TW201934329A - Divalent-Fe/Al composite metallic oxidation electrode structure and manufacturing method thereof - Google Patents

Divalent-Fe/Al composite metallic oxidation electrode structure and manufacturing method thereof Download PDF

Info

Publication number
TW201934329A
TW201934329A TW107104032A TW107104032A TW201934329A TW 201934329 A TW201934329 A TW 201934329A TW 107104032 A TW107104032 A TW 107104032A TW 107104032 A TW107104032 A TW 107104032A TW 201934329 A TW201934329 A TW 201934329A
Authority
TW
Taiwan
Prior art keywords
metal
electrode
composite metal
iron
bivalent
Prior art date
Application number
TW107104032A
Other languages
Chinese (zh)
Other versions
TWI653139B (en
Inventor
袁菁
陳彥圻
Original Assignee
國立高雄大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立高雄大學 filed Critical 國立高雄大學
Priority to TW107104032A priority Critical patent/TWI653139B/en
Application granted granted Critical
Publication of TWI653139B publication Critical patent/TWI653139B/en
Publication of TW201934329A publication Critical patent/TW201934329A/en

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

A composite metallic oxidation electrode structure includes a metallic oxidation electrode, an electrode core layer made of a first metallic (aluminum-contained) material and an electrode outer layer made of a second composite metallic (cobalt and ferrum-contained) material. The electrode outer layer is formed on the electrode core layer to form the metallic oxidation electrode. In soil or water remediation, the first metallic material and the second composite metallic material are combined with a persulfate material to catalyze a reaction in water to attenuate or mineralize a TCS (triclosan) contamination.

Description

二價金屬-鐵/鋁複合金屬氧化電極構造及其製造方法 Structure of bivalent metal-iron / aluminum composite metal oxidation electrode and manufacturing method thereof

本發明係關於一種複合金屬氧化電極構造及其製造方法;特別是關於一種二價金屬-鐵/鋁複合金屬氧化電極構造及其製造方法;更特別是關於一種鈷-鐵/鋁複合金屬氧化電極構造及其製造方法適用於催化降解或礦化處理環境〔土壤、水體或地下水〕中的污染物-三氯沙〔TCS,Triclosan〕。 The invention relates to a composite metal oxide electrode structure and a manufacturing method thereof; in particular, to a bivalent metal-iron / aluminum composite metal oxide electrode structure and a manufacturing method thereof; and more particularly, to a cobalt-iron / aluminum composite metal oxide electrode. The structure and its manufacturing method are suitable for catalytic degradation or mineralization treatment of pollutants in the environment [soil, water body or groundwater]-triclosan [TCS, Trilosan].

有關習用電動力土壤整治裝置,例如:中華民國專利第TW-I571326號〝複合金屬氧化電極構造及其製造方法〞之發明專利案,其揭示一種複合金屬氧化電極構造及其製造方法。該複合金屬氧化電極構造包含一金屬氧化電極、一電極芯層及一電極外層,而該電極芯層由一第一金屬材料製成,且該電極外層由一第二金屬材料製成。該電極外層設置於該電極芯層上,以組成該金屬氧化電極。在電動力土壤整治上,利用該第一金屬材料及第二金屬材料之氧化還原電位適當產生一自發反應,以便該第一金屬材料可供應電子,以利該第二金屬材料之氧化第二金屬還原形成零價第二金屬,再於水中進行芬頓反應,以便進行降解或礦化一有機污染物。該第一金屬材料選自鋁或含鋁材料,而該第二金屬材料選自鐵或含鐵材料。 Regarding the conventional electric soil conditioning device, for example, the invention patent of the Republic of China Patent No. TW-I571326 "Composite Metal Oxide Electrode Structure and Manufacturing Method" discloses a composite metal oxide electrode structure and manufacturing method thereof. The composite metal oxide electrode structure includes a metal oxide electrode, an electrode core layer, and an electrode outer layer, and the electrode core layer is made of a first metal material, and the electrode outer layer is made of a second metal material. The electrode outer layer is disposed on the electrode core layer to form the metal oxide electrode. In electromotive soil remediation, the redox potentials of the first metal material and the second metal material are used to appropriately generate a spontaneous reaction so that the first metal material can supply electrons to facilitate the oxidation of the second metal by the second metal material A zero-valent second metal is reduced to form a Fenton reaction in water to degrade or mineralize an organic pollutant. The first metal material is selected from aluminum or an aluminum-containing material, and the second metal material is selected from iron or an iron-containing material.

前述第TW-I571326號之複合金屬氧化電極構造及其製造方法僅適用於降解或礦化有機污染物之處理作 業,且該複合金屬氧化電極為鐵/鋁複合金屬氧化電極。因此,習用複合金屬氧化電極構造及其製造方法必然存在進一步改良之需求,以適用於其它污染物之處理。 The aforementioned composite metal oxide electrode structure No. TW-I571326 and its manufacturing method are only suitable for the treatment of degradation or mineralization of organic pollutants Industry, and the composite metal oxide electrode is an iron / aluminum composite metal oxide electrode. Therefore, the conventional composite metal oxide electrode structure and its manufacturing method inevitably require further improvement to be suitable for the treatment of other pollutants.

另一習用電動力土壤整治裝置,例如:中華民國專利第TW-M377425號〝環境電動力技術之中空透水性電極棒結構〞之新型專利案,其揭示一種中空透水性電極棒結構,其包含:一電場裝置使預設區域內之土壤產生電場,其具有一正極及一負極;至少二電極棒分別設於各該正、負極上,該電極棒呈中空桿狀,其中央以軸線方向形成一空間,並以徑向穿設之至少一滲孔,為可連通該空間至電極棒外徑緣之通孔;利用各該電極棒分別設於各該正極及負極上,當產生電場時,土壤內之陰離子開始朝向正極游移;重金屬陽離子及溶解在水中之有機物則皆朝向負極游移,並可滲入至該空間內以集中,可方便於配合一抽出裝置將該空間內之重金屬污染物予以抽出。 Another conventional electric soil conditioning device, for example, a new patent case of the Republic of China Patent No. TW-M377425 "Environmental Electric Power Technology Hollow Water Permeability Electrode Structure", discloses a hollow water permeation electrode structure including: An electric field device generates an electric field in the soil in a preset area. The electric field device has a positive electrode and a negative electrode. At least two electrode rods are respectively arranged on the positive and negative electrodes. The electrode rods are hollow rods, and the center of the electrode rods forms an axis. Space, and at least one perforation hole penetrating radially is a through hole that can connect the space to the outer edge of the electrode rod; each electrode rod is provided on each of the positive electrode and the negative electrode respectively; when an electric field is generated, the soil The anions inside begin to migrate toward the positive electrode; heavy metal cations and organic matter dissolved in water all migrate toward the negative electrode, and can penetrate into the space for concentration, which can be easily matched with an extraction device to extract heavy metal pollutants in the space.

另一習用電動力土壤整治裝置,例如:中華民國專利第TW-I249441號〝電動力整治重金屬污染土壤之系統與方法〞之發明專利案,其揭示一種電動力整治系統與其方法。電動力反應槽為開放式,將不同寬度之子槽可置入該電動力反應槽內,可供作土壤子槽、緩衝子槽、電極區等。 Another conventional electric soil remediation device, for example, the invention patent case of the Republic of China Patent No. TW-I249441 "System and method for remediation of heavy metal contaminated soil by electric power", discloses an electric power remediation system and method. The electrodynamic reaction tank is open, and sub-slots of different widths can be placed in the electrodynamic reaction tank, which can be used as soil sub-slots, buffer sub-slots, electrode areas, etc.

另一習用電動力土壤整治裝置,例如:中華民國專利第TW-I408258號〝電動力法採用雙金屬氧化物電極之再生系統〞之發明專利案,其揭示一種電動力法採用雙金屬氧化物電極之再生系統。該再生系統包含一電源裝置、一陰極及一陽極。該電源裝置用以供應電動力移除污染物之所需電力至該陰極及陽極。該陰極電性連接於該電源裝置,且該陰極連接一待再生元件之一第一端。該陽極電性連接於該電源裝置,且該陽極連接該待再生元件之一 第二端,以便自該待再生元件進行電動力移除污染物。該陽極係屬一雙金屬氧化電極,如此該雙金屬氧化電極在該陽極進行污染物降解。 Another conventional electric soil conditioning device, for example, the invention patent of the Republic of China Patent No. TW-I408258 "Regeneration system using bimetal oxide electrode in electric force method", which discloses a bimetal oxide electrode in electric force method Regeneration system. The regeneration system includes a power supply device, a cathode, and an anode. The power supply device is used to supply electric power required to remove pollutants to the cathode and anode. The cathode is electrically connected to the power supply device, and the cathode is connected to a first end of a component to be regenerated. The anode is electrically connected to the power supply device, and the anode is connected to one of the components to be regenerated. The second end, so as to remove the pollutants by electric force from the element to be regenerated. The anode is a bimetallic oxidation electrode, so the bimetallic oxidation electrode performs pollutant degradation at the anode.

另一習用電動力土壤整治裝置,例如:中華民國專利第TW-I280952號〝改善土壤〔污泥〕鉛、銅含量之方法〞之發明專利案,其揭示一種改善土壤〔污泥〕鉛、銅含量之方法可維持pH中性,且具提升去除土壤〔污泥〕重金屬效率。將陽、陰二電極設置在操作液儲存槽中,且不與土壤〔污泥〕直接接觸,並對處理土壤〔污泥〕施加一直流電壓。 Another conventional electric soil conditioning device, for example, the invention patent case of the method of improving the content of lead and copper in soil [sludge] of the Republic of China Patent No. TW-I280952, which discloses a method for improving lead and copper in soil [sludge] The content method can maintain the pH neutrality and improve the removal efficiency of soil [sludge] heavy metals. The anode and cathode electrodes are set in the operating liquid storage tank without direct contact with the soil [sludge], and a DC voltage is applied to the treated soil [sludge].

另一習用電動力土壤整治裝置,例如:中華民國專利第TW-293056號〝被污染非均質土壞之原位補救〞之發明專利案,其揭示一種被污染非均質土壤區域之原位補救方法。該原位補救方法包含〔a〕將處理被污染非均質土壞區域中污染物之物質投入至少該被污染非均質土壤區域中一液體可滲透區域,以於該被污染非均質土壤區域中形成一處理區,〔b〕傳導直接電流通過被污染非均質土壤區域中至少一低滲透性土壤區,介於第一電極和具有相反電荷之第二電極之間,其中〔i〕第一電極位在被污染非均質土壤區域之首端,而第二電極則位於被污染非均質土壤區域之相對端或〔ii〕第一電極位在每個低滲透性土壤區域之首端,及第二電極位在每個低滲透性土壤區域之相對端,〔1〕以造成一種由第二電極至第一電極之電滲透流,〔2〕造成一種離子污染物朝相反電荷電極方向的電遷移移動,或〔3〕造成一種由第二電極至第一電極的電滲透流及一種離子污染物朝相反電荷電極方向的電遷移移動,並且〔c〕應用一種橫過被污染非均質土壤區域之水壓降,以造成一種由被污染非均質土壤區域之高壓端至被污染非均質土壤區域之低壓端的水壓流。 Another conventional electric soil remediation device, for example, the Republic of China Patent No. TW-293056 "In-situ Remediation of Contaminated Heterogeneous Soil Damage", which discloses an in-situ remediation method for contaminated heterogeneous soil areas . The in situ remediation method includes [a] putting a substance that treats pollutants in a bad area of the contaminated heterogeneous soil into at least a liquid-permeable area of the contaminated heterogeneous soil area to form in the contaminated heterogeneous soil area A treatment area, [b] conducting a direct current through at least one low-permeability soil area in a contaminated heterogeneous soil area between a first electrode and a second electrode having an opposite charge, wherein [i] the first electrode position At the first end of the contaminated heterogeneous soil area, the second electrode is located at the opposite end of the contaminated heterogeneous soil area or [ii] the first electrode is located at the first end of each low-permeability soil area, and the second electrode Located at the opposite end of each low-permeability soil area, [1] caused an electroosmotic flow from the second electrode to the first electrode, [2] caused an electromigration movement of an ionic pollutant in the direction of the oppositely charged electrode, Or [3] causing an electroosmotic flow from the second electrode to the first electrode and an electromigration movement of an ionic contaminant toward the oppositely charged electrode, and [c] applying a Water pressure drop homogeneous soil area to create a hydraulic flow of contaminated heterogeneous soil low-side area of the contaminated heterogeneous soil region to the high-voltage terminal is.

另外,關於習用電動力土壤整治技術,其亦揭示於許多國外專利,例如:中國專利公告第CN-102527707號、美國專利第US-6193867號及美國專利公開第US-2006163068號申請案。 In addition, the conventional electric soil remediation technology is also disclosed in many foreign patents, such as: Chinese Patent Publication No. CN-102527707, US Patent No. US-6193867, and US Patent Publication No. US-2006163068.

事實上,前述中華民國專利第TW-M377425號、第TW-I249441號、中國專利公告第CN-102527707號及美國專利第US-6193867號為僅屬採用傳統式惰性電極進行電動力整治土壤技術而已。然而,傳統式惰性電極亦僅能移除污染物部分而已,即其仍具有無法有效進行全面土壤整治的技術問題。 In fact, the aforementioned Republic of China Patent Nos. TW-M377425, TW-I249441, Chinese Patent Publication No. CN-102527707, and U.S. Patent No. US-6193867 are only technologies for soil remediation by electric force using traditional inert electrodes. . However, the conventional inert electrode can only remove the pollutant part, that is, it still has the technical problem that it cannot effectively perform comprehensive soil remediation.

另外,前述中華民國專利公告第TW-I408258號採用複合金屬氧化電極,即採用改良式之雙金屬氧化物電極及其再生系統。然而,許多複合金屬電極通常為選擇由貴重金屬製成,因此其仍具有製造成本價格較昂貴及較不符合經濟效益之技術前題。 In addition, the aforementioned Republic of China Patent Publication No. TW-I408258 uses a composite metal oxide electrode, that is, an improved bimetal oxide electrode and a regeneration system thereof. However, many composite metal electrodes are usually made of precious metals, so they still have the technical problem of higher manufacturing cost and less economic benefits.

另外,前述中華民國專利公告第TW-I280952號之改善土壤〔污泥〕鉛、銅含量之方法及第TW-293056號之被污染非均質土壤區域之補救方法僅為被污染土壤的一般修護技術方法而已,其仍具有無法有效進行全面整治土壤的技術問題。 In addition, the method of improving the content of lead and copper in soil [sludge] of the aforementioned Republic of China Patent Publication No. TW-I280952 and the remedy method of the contaminated heterogeneous soil area of No. TW-293056 are only general maintenance of the contaminated soil Only the technical method, it still has the technical problem of unable to effectively complete the soil remediation.

前述專利公告中華民國專利第TW-I571326號、第TW-M377425號、第TW-I249441號、第TW-I408258號、第TW-I280952號、第TW-293056號、第CN-102527707號、美國專利第US-6193867號及美國專利公開第US-2006163068號僅為本發明技術背景之參考及說明目前技術發展狀態而已,其並非用以限制本發明之範圍。 The aforementioned patent publications: Republic of China Patent Nos. TW-I571326, TW-M377425, TW-I249441, TW-I408258, TW-I280952, TW-293056, CN-102527707, U.S. Patents No. US-6193867 and US Patent Publication No. US-2006163068 are only references to the technical background of the present invention and illustrate the current state of technological development, and are not intended to limit the scope of the present invention.

有鑑於此,本發明為了滿足上述技術問題及需求,其提供一種二價金屬-鐵/鋁複合金屬氧化電極構造及其製造方法,其於一金屬氧化電極設置一電極芯層及一複合 金屬電極外層,而該電極芯層及複合金屬電極外層包含一第一金屬材料及一第二複合金屬材料,且將該複合金屬電極外層設置於該電極芯層上,且利用該第一金屬材料及第二複合金屬材料適當結合一過硫酸鹽材料,以便進行催化降解或礦化處理環境中的三氯沙污染物,因此相對於習用鐵/鋁複合金屬氧化電極構造及其製造方法可適用於處理環境中的三氯沙污染物。 In view of this, the present invention provides a bivalent metal-iron / aluminum composite metal oxide electrode structure and a method for manufacturing the same in order to meet the above technical problems and requirements. An electrode core layer and a composite electrode are provided on a metal oxide electrode. A metal electrode outer layer, and the electrode core layer and the composite metal electrode outer layer include a first metal material and a second composite metal material, and the composite metal electrode outer layer is disposed on the electrode core layer, and the first metal material is used And the second composite metal material appropriately combines a persulfate material for catalytic degradation or mineralization of triclosan pollutants in the environment. Therefore, compared with the conventional iron / aluminum composite metal oxide electrode structure and its manufacturing method, it can be applied to Dispose of triclosan in the environment.

本發明之主要目的係提供一種二價金屬-鐵/鋁複合金屬氧化電極構造及其製造方法,其於一金屬氧化電極設置一電極芯層及一複合金屬電極外層,而該電極芯層及複合金屬電極外層包含一第一金屬材料及一第二複合金屬材料,且將該複合金屬電極外層設置於該電極芯層上,且利用該第一金屬材料及第二複合金屬材料適當結合一過硫酸鹽材料,以便進行催化降解或礦化處理環境中的三氯沙污染物,且達成處理環境中的三氯沙污染物之功效。 The main object of the present invention is to provide a bivalent metal-iron / aluminum composite metal oxide electrode structure and a manufacturing method thereof. An electrode core layer and a composite metal electrode outer layer are provided on a metal oxide electrode, and the electrode core layer and composite The outer layer of the metal electrode includes a first metal material and a second composite metal material, and the composite metal electrode outer layer is disposed on the electrode core layer, and a persulfuric acid is appropriately combined with the first metal material and the second composite metal material. Salt material for catalytic degradation or mineralization of triclosan pollutants in the environment, and achieve the effect of treating triclosan pollutants in the environment.

為了達成上述目的,本發明較佳實施例之二價金屬-鐵/鋁複合金屬氧化電極構造包含:一金屬氧化電極,其為一陽極,且該金屬氧化電極用於電動力土壤或水〔或地下水〕整治;一電極芯層,其由一第一金屬材料製成,且該第一金屬材料為一含鋁金屬材料;及至少一複合金屬電極外層,其由一第二複合金屬材料製成,而該第二複合金屬材料為一含二價金屬-鐵複合金屬材料,且將該複合金屬電極外層設置於該電極芯層上,以形成一二價金屬-鐵/鋁複合金屬氧化電極;其中該電極芯層及複合金屬電極外層組成該金屬氧化電極,且利用該金屬氧化電極之第一金屬材料及第二複合金屬材料適當結合一過硫酸鹽材料,以便進行催 化降解或礦化處理環境中的三氯沙污染物。 In order to achieve the above object, the bivalent metal-iron / aluminum composite metal oxide electrode structure of the preferred embodiment of the present invention includes: a metal oxide electrode, which is an anode, and the metal oxide electrode is used for electrodynamic soil or water [or Groundwater] remediation; an electrode core layer made of a first metal material and the first metal material is an aluminum-containing metal material; and at least one composite metal electrode outer layer made of a second composite metal material And the second composite metal material is a bivalent metal-iron composite metal material, and an outer layer of the composite metal electrode is disposed on the electrode core layer to form a bivalent metal-iron / aluminum composite metal oxidation electrode; The electrode core layer and the outer layer of the composite metal electrode constitute the metal oxide electrode, and the first metal material and the second composite metal material of the metal oxide electrode are appropriately combined with a persulfate material to facilitate the catalysis. Degradation or mineralization of triclosan pollutants in the environment.

本發明較佳實施例之該複合金屬電極外層具有一鈷鐵氧磁體結構或一鈷鐵氧結晶結構。 The outer layer of the composite metal electrode of the preferred embodiment of the present invention has a cobalt ferrite structure or a cobalt ferrite crystal structure.

本發明較佳實施例之該二價金屬-鐵/鋁複合金屬氧化電極為一圓柱體或一扁柱體。 The bivalent metal-iron / aluminum composite metal oxide electrode of the preferred embodiment of the present invention is a cylinder or a flat cylinder.

本發明較佳實施例之該圓柱體或扁柱體組成一電極陣列。 The cylinder or flat cylinder of the preferred embodiment of the present invention forms an electrode array.

本發明較佳實施例之該過硫酸鹽材料包含過硫酸鈉材料、過硫酸鉀材料、具硫酸根自由基材料或其任意組合。 The persulfate material according to a preferred embodiment of the present invention includes a sodium persulfate material, a potassium persulfate material, a sulfate radical material, or any combination thereof.

為了達成上述目的,本發明較佳實施例之二價金屬-鐵/鋁複合金屬氧化電極製造方法包含:將至少一第一金屬棒進行酸洗,並取出該第一金屬棒,且該第一金屬棒由一含鋁金屬材料製成;將該第一金屬棒浸漬於一第二複合金屬離子溶液,並取出該第一金屬棒,且該第二複合金屬離子溶液為一含二價金屬-鐵金屬離子溶液;將該第一金屬棒進行預先烘乾;及將該第一金屬棒進行高溫烘烤鍛燒,以便在該第一金屬棒上形成至少一第二複合金屬層,以形成一二價金屬-鐵/鋁複合金屬氧化電極。 In order to achieve the above object, a method for manufacturing a bivalent metal-iron / aluminum composite metal oxide electrode according to a preferred embodiment of the present invention includes: pickling at least one first metal rod, and removing the first metal rod, and the first The metal rod is made of an aluminum-containing metal material; the first metal rod is immersed in a second composite metal ion solution, and the first metal rod is taken out, and the second composite metal ion solution is a divalent metal- Iron metal ion solution; pre-drying the first metal rod; and baking and calcining the first metal rod at high temperature to form at least one second composite metal layer on the first metal rod to form a Divalent metal-iron / aluminum composite metal oxidation electrode.

本發明較佳實施例之該第一金屬棒形成一電極芯層,且該第二複合金屬層包覆該電極芯層。 In the preferred embodiment of the present invention, the first metal rod forms an electrode core layer, and the second composite metal layer covers the electrode core layer.

本發明較佳實施例之該第二複合金屬層形成一複合金屬電極外層,且將該複合金屬電極外層設置於該電極芯層上。 In the preferred embodiment of the present invention, the second composite metal layer forms an outer layer of a composite metal electrode, and the outer layer of the composite metal electrode is disposed on the electrode core layer.

本發明較佳實施例在該第二複合金屬層上形成另一複合金屬層,以便形成一多層複合金屬層。 In the preferred embodiment of the present invention, another composite metal layer is formed on the second composite metal layer, so as to form a multilayer composite metal layer.

本發明較佳實施例利用該二價金屬-鐵/鋁複合 金屬氧化電極增強一硫酸根自由基於環境中的移動能力。 The preferred embodiment of the present invention utilizes the divalent metal-iron / aluminum composite Metal oxide electrodes enhance the ability of monosulfate to move freely in the environment.

1‧‧‧金屬氧化電極 1‧‧‧metal oxide electrode

1a‧‧‧金屬氧化電極 1a‧‧‧metal oxide electrode

1’‧‧‧金屬氧化電極 1’‧‧‧metal oxide electrode

10‧‧‧電極芯層 10‧‧‧ electrode core layer

20‧‧‧複合金屬電極外層 20‧‧‧ Outer layer of composite metal electrode

20a‧‧‧第一複合金屬電極外層 20a‧‧‧The first composite metal electrode outer layer

20b‧‧‧第二複合金屬電極外層 20b‧‧‧Second composite metal electrode outer layer

第1圖:本發明第一較佳實施例之二價金屬-鐵/鋁複合金屬氧化電極構造之立體示意圖。 FIG. 1 is a perspective view of the structure of a bivalent metal-iron / aluminum composite metal oxide electrode according to the first preferred embodiment of the present invention.

第2圖:本發明較佳實施例之二價金屬-鐵/鋁複合金屬氧化電極製造方法之流程示意圖。 FIG. 2 is a schematic flowchart of a method for manufacturing a bivalent metal-iron / aluminum composite metal oxide electrode according to a preferred embodiment of the present invention.

第3圖:本發明較佳實施例之二價金屬-鐵/鋁複合金屬氧化電極構造採用浸漬液二價金屬濃度對電極塗佈率之曲線示意圖。 Fig. 3: Schematic diagram of the divalent metal-iron / aluminum composite metal oxide electrode structure of the preferred embodiment of the present invention using the divalent metal concentration of the dipping solution as a function of electrode coating rate.

第4圖:本發明較佳實施例之二價金屬-鐵/鋁複合金屬氧化電極構造進行X光繞射分析之圖譜示意圖。 FIG. 4 is a schematic diagram of X-ray diffraction analysis of a bivalent metal-iron / aluminum composite metal oxide electrode structure according to a preferred embodiment of the present invention.

第5圖:本發明第二較佳實施例之二價金屬-鐵/鋁複合金屬氧化電極構造之立體示意圖。 FIG. 5 is a perspective view of the structure of a bivalent metal-iron / aluminum composite metal oxide electrode according to a second preferred embodiment of the present invention.

第6圖:本發明第三較佳實施例之二價金屬-鐵/鋁複合金屬氧化電極構造之立體示意圖。 FIG. 6 is a perspective view of the structure of a bivalent metal-iron / aluminum composite metal oxide electrode according to a third preferred embodiment of the present invention.

第7圖:本發明第三較佳實施例之二價金屬-鐵/鋁複合金屬氧化電極構造組成電極陣列之立體示意圖。 FIG. 7 is a three-dimensional schematic diagram of an electrode array composed of a bivalent metal-iron / aluminum composite metal oxide electrode structure according to a third preferred embodiment of the present invention.

為了充分瞭解本發明,於下文將舉例較佳實施例並配合所附圖式作詳細說明,且其並非用以限定本發明。 In order to fully understand the present invention, the preferred embodiments will be described in detail below with reference to the accompanying drawings, which are not intended to limit the present invention.

本發明較佳實施例之二價金屬-鐵/鋁複合金屬氧化電極構造及其用於土壤整治方法適用於各種電動力土壤〔污泥〕整治裝置,例如:電動力土壤〔或水、環境〕現場〔in-situ〕整治裝置,但其並非用以限制本發明之範圍。另外,本發明較佳實施例之本發明較佳實施例之二價金屬-鐵/鋁複合金屬氧化電極構造、其製造方法及其用於土壤整治方法適用於整治處理環境〔例如:土壤、底泥或地下水〕中的三氯沙污染物,但其並非用以限定本發明之應 用範圍。 The bivalent metal-iron / aluminum composite metal oxidation electrode structure of the preferred embodiment of the present invention and its method for soil remediation are applicable to various electromotive soil [sludge] remediation devices, such as electromotive soil [or water, environment] An in-situ rectification device, but it is not intended to limit the scope of the invention. In addition, the preferred embodiment of the present invention is a bivalent metal-iron / aluminum composite metal oxidation electrode structure, a manufacturing method thereof, and a soil remediation method suitable for the remediation treatment environment [eg, soil, bottom Mud or groundwater], but it is not intended to limit the application of the present invention. Use range.

一般而言,由於人類廣泛使用藥品及個人保健用品〔Pharmaceuticals Personal care products,PPCSPS〕,因此在土壤或地下體水中造成嚴重的污染,其中三氯沙〔TCS,5-氯-2-(2,4-二氯苯氧基)苯酚〕為一種新興污染物。三氯沙可由處理廠未處理排放方式或經由其他途徑流佈於環境中,由於其對土壤具有較高之親和力,故常存在於土壤及底泥中。在環境中對於三氯沙之降解及礦化高級氧化處理方法包含光催化法、化學氧化法〔芬頓法、臭氧法等〕及電化學法等。然而,化學氧化法大多因需添加額外的化學藥劑而產生大量底泥,另還需考慮整治所產生之中間產物是否造成更嚴重的二次污染。 In general, due to the widespread use of pharmaceuticals and personal care products (PPCSPS) by human beings, serious pollution has been caused in soil or underground water, among which triclosan [TCS, 5-chloro-2- (2, 4-Dichlorophenoxy) phenol] is an emerging pollutant. Trichloro sand can be distributed to the environment by the untreated discharge method of the treatment plant or through other channels. Because of its high affinity for soil, it is often found in soil and sediment. The advanced oxidation treatment methods for the degradation and mineralization of triclosan in the environment include photocatalytic methods, chemical oxidation methods [Fenton method, ozone method, etc.] and electrochemical methods. However, most chemical oxidation methods generate a large amount of sediment due to the need to add additional chemicals, and it is also necessary to consider whether the intermediate products generated during the treatment cause more serious secondary pollution.

本發明採用技術名詞〝二價金屬-鐵/鋁複合金屬〞為以〝二價金屬材料及鐵材料與鋁材料〞或〝含二價金屬材料及含鐵材料與含鋁材料〞合成一複合金屬,並以〝鈷-鐵/鋁複合金屬〞或〝含鈷-鐵/鋁複合金屬〞舉例說明,但其並非用以限定本發明之範圍。 This invention uses the technical term "divalent metal-iron / aluminum composite metal" to synthesize a composite metal with "divalent metal material and iron material and aluminum material" or "divalent metal material and iron-containing material and aluminum-containing material" "" Cobalt-iron / aluminum composite metal "or" cobalt-iron / aluminum composite metal "is used as an example, but it is not intended to limit the scope of the present invention.

第1圖揭示本發明第一較佳實施例之二價金屬-鐵/鋁複合金屬氧化電極構造之立體示意圖。請參照第1圖所示,本發明第一較佳實施例之二價金屬-鐵/鋁複合金屬氧化電極構造包含一金屬氧化電極1、一電極芯層〔electrode core〕10及一複合金屬電極外層〔composite metallic electrode shell layer〕20,而該電極芯層10由該第一金屬材料製成,且該複合金屬電極外層20由該第二複合金屬材料〔即,鈷-鐵/鋁複合金屬材料、含鈷-鐵/鋁複合金屬材料或其它二價金屬-鐵/鋁複合金屬材料〕製成。即該第一金屬材料配置於該電極芯層10,而該第二複合金屬材料設置於該複合金屬電極外層20。 FIG. 1 is a perspective view showing the structure of a bivalent metal-iron / aluminum composite metal oxide electrode according to a first preferred embodiment of the present invention. Please refer to FIG. 1. The structure of the bivalent metal-iron / aluminum composite metal oxide electrode according to the first preferred embodiment of the present invention includes a metal oxide electrode 1, an electrode core layer 10, and a composite metal electrode. An outer layer [composite metallic electrode shell layer] 20, and the electrode core layer 10 is made of the first metal material, and the composite metal electrode outer layer 20 is made of the second composite metal material [ie, a cobalt-iron / aluminum composite metal material , Cobalt-iron / aluminum composite metal material or other bivalent metal-iron / aluminum composite metal material]. That is, the first metal material is disposed on the electrode core layer 10, and the second composite metal material is disposed on the composite metal electrode outer layer 20.

請再參照第1圖所示,舉例而言,該金屬氧化 電極1為一圓柱體〔cylinder〕或其它斷面形狀長條體〔elongated rod〕,例如:多角形斷面長條體或齒輪形斷面長條體,且該複合金屬電極外層20對應設置於該電極芯層10上,以便在該電極芯層10及複合金屬電極外層20之間形成一氧化還原反應區域。 Please refer to Figure 1 again, for example, the metal is oxidized The electrode 1 is a cylinder or other elongated rod, for example, a polygonal section or a gear-shaped section, and the composite metal electrode outer layer 20 is correspondingly disposed on The electrode core layer 10 is configured to form a redox reaction region between the electrode core layer 10 and the composite metal electrode outer layer 20.

請再參照第1圖所示,舉例而言,該電極芯層10及複合金屬電極外層20組成該金屬氧化電極1,且利用該金屬氧化電極1之第一金屬材料及第二複合金屬材料適當結合一過硫酸鹽材料,例如:過硫酸鈉材料〔SPS,Sodium persulfate〕、過氧硫酸鉀材料〔PMS,Potassium peroxymonosulfate〕、具硫酸根自由基材料或其任意組合,以便適當進行催化〔catalyze〕降解或礦化處理環境中的三氯沙污染物。 Please refer to FIG. 1 again. For example, the electrode core layer 10 and the composite metal electrode outer layer 20 constitute the metal oxide electrode 1, and the first metal material and the second composite metal material of the metal oxide electrode 1 are appropriately used. Combine a persulfate material, such as: sodium persulfate material [SPS, Sodium persulfate], potassium peroxosulfate material [PMS, Potassium peroxymonosulfate], a material with sulfate radicals, or any combination thereof, in order to properly perform the catalyst [catalyze] Degradation or mineralization of triclosan pollutants in the environment.

第2圖揭示本發明較佳實施例之二價金屬-鐵/鋁複合金屬氧化電極製造方法之流程示意圖,其包含四個主要步驟S1至S4,但其並非用以限定本發明之步驟順序,在不脫離本發明範圍之下,可適當變更、分割、增加、合併或減少本發明較佳實施例之步驟順序。請參照第1及2圖所示,舉例而言,該金屬氧化電極1之製造適用於第2圖所示之二價金屬-鐵/鋁複合金屬氧化電極製造方法。 FIG. 2 illustrates a schematic flow chart of a method for manufacturing a bivalent metal-iron / aluminum composite metal oxide electrode according to a preferred embodiment of the present invention, which includes four main steps S1 to S4, but it is not intended to limit the sequence of steps of the present invention. Without departing from the scope of the present invention, the order of steps of the preferred embodiments of the present invention may be appropriately changed, divided, increased, combined, or reduced. Please refer to FIG. 1 and FIG. 2. For example, the manufacturing of the metal oxide electrode 1 is applicable to the method for manufacturing a bivalent metal-iron / aluminum composite metal oxide electrode shown in FIG. 2.

請參照第2圖所示,本發明較佳實施例之二價金屬-鐵/鋁複合金屬氧化電極製造方法包含第一步驟S1:首先,將至少一第一金屬棒〔例如:直徑為5或10mm、長度為10cm之鋁棒或其它尺寸規格〕以一酸性溶液〔例如:稀釋硫酸溶液,其硫酸與水之比例為1:2〕進行酸洗一預定時間〔例如:約為6分鐘〕,並取出該第一金屬棒。 Please refer to FIG. 2, a method for manufacturing a bivalent metal-iron / aluminum composite metal oxide electrode according to a preferred embodiment of the present invention includes a first step S1: First, at least one first metal rod [for example, a diameter of 5 or 10mm, aluminum rod with a length of 10cm or other size specifications] pickling with an acidic solution [for example: dilute sulfuric acid solution with a sulfuric acid to water ratio of 1: 2] for a predetermined time [for example: about 6 minutes], And take out the first metal rod.

請再參照第2圖所示,本發明較佳實施例之二價金屬-鐵/鋁複合金屬氧化電極製造方法包含第二步驟S2:接著,將該第一金屬棒浸漬於一第二複合金屬離子溶 液〔例如:濃度約0.172M或0.86M之FeCl3溶液及濃度約0.172M、0.36M、0.5M、0.75M、0.86M或1.032M之CoCl2‧H2O溶液之共溶液〕一預定時間,並取出該已浸漬第一金屬棒。 Please refer to FIG. 2 again. The method for manufacturing a bivalent metal-iron / aluminum composite metal oxide electrode according to a preferred embodiment of the present invention includes a second step S2: Next, the first metal rod is immersed in a second composite metal. Ionic solution [e.g. co-solution of FeCl 3 solution with a concentration of about 0.172M or 0.86M and CoCl 2 ‧H 2 O solution with a concentration of about 0.172M, 0.36M, 0.5M, 0.75M, 0.86M or 1.032M] Time, and remove the impregnated first metal rod.

請再參照第2圖所示,本發明較佳實施例之二價金屬-鐵/鋁複合金屬氧化電極製造方法包含第三步驟S3:接著,將該已浸漬第一金屬棒以一預定溫度〔約105℃〕進行預先烘乾一預定時間〔例如:約10分鐘〕,以獲得該已烘乾第一金屬棒。 Please refer to FIG. 2 again, the method for manufacturing a bivalent metal-iron / aluminum composite metal oxide electrode according to a preferred embodiment of the present invention includes a third step S3: Next, the impregnated first metal rod is at a predetermined temperature [ (About 105 ° C.) to perform pre-drying for a predetermined time [for example, about 10 minutes] to obtain the dried first metal rod.

請再參照第2圖所示,本發明較佳實施例之二價金屬-鐵/鋁複合金屬氧化電極製造方法包含第四步驟S4:接著,將該已烘乾第一金屬棒以一預定溫度〔約500至600℃,例如:500℃、550℃或600℃〕進行高溫烘烤鍛燒一預定時間〔例如:約1至10分鐘〕,以便在該第一金屬棒上形成至少一第二複合金屬層。本發明另一較佳實施例可選擇將該第一金屬棒以一預定溫度〔約500至600℃〕進行最後高溫烘烤鍛燒一預定時間〔例如:約60分鐘〕。 Please refer to FIG. 2 again. The method for manufacturing a bivalent metal-iron / aluminum composite metal oxide electrode according to a preferred embodiment of the present invention includes a fourth step S4. Next, the dried first metal rod is heated at a predetermined temperature. [About 500 to 600 ° C, for example: 500 ° C, 550 ° C, or 600 ° C] High temperature baking and calcining for a predetermined time [for example, about 1 to 10 minutes] to form at least a second on the first metal rod Composite metal layer. In another preferred embodiment of the present invention, the first metal rod may be subjected to final high-temperature baking and calcination at a predetermined temperature (about 500 to 600 ° C.) for a predetermined time (for example, about 60 minutes).

請再參照第1及2圖所示,該第一金屬棒形成該電極芯層10,且該複合金屬電極外層20包覆該電極芯層10。即,將該複合金屬電極外層20設置於該電極芯層10上,以形成一二價金屬-鐵/鋁複合金屬氧化電極。舉例而言,該複合金屬電極外層20具有一鈷鐵氧磁體結構、一鈷鐵氧結晶結構〔例如:CoFe2O4結晶型態〕或其它二價金屬鐵氧磁體結構。 Please refer to FIGS. 1 and 2 again, the first metal rod forms the electrode core layer 10, and the composite metal electrode outer layer 20 covers the electrode core layer 10. That is, the composite metal electrode outer layer 20 is disposed on the electrode core layer 10 to form a divalent metal-iron / aluminum composite metal oxide electrode. For example, the composite metal electrode outer layer 20 has a cobalt ferrite structure, a cobalt ferrite crystal structure (eg, a CoFe 2 O 4 crystalline form), or other bivalent metal ferrite structure.

請再參照第1及2圖所示,在整治土壤或水體時,利用該二價金屬-鐵/鋁複合金屬氧化電極增強一硫酸根自由基〔sulfate radical〕於環境中的移動能力,以便適當進行催化降解或礦化處理環境中的三氯沙污染物。 Please refer to Figures 1 and 2 again. When remediation of soil or water, use the bivalent metal-iron / aluminum composite metal oxidation electrode to enhance the ability of a sulfur radical to move in the environment, so as to properly Catalytic degradation or mineralization of triclosan pollutants in the environment.

第3圖揭示本發明較佳實施例之二價金屬-鐵/鋁複合金屬氧化電極構造採用浸漬液二價金屬濃度對電極塗佈率之曲線示意圖。請參照第3圖所示,本發明較佳實施例選擇製備一鈷-鐵/鋁複合金屬氧化電極。隨著製備液中鈷濃度上升,其電極表面鈷塗佈量上升;當鈷濃度超過0.86M後,其有效二價鈷塗佈量開始下降,而鐵之塗佈量卻上升。另外,在製備液中鈷濃度達0.75M時,鈷鐵塗佈比例達最大1.1;當鈷濃度再提升至0.86M時,鈷鐵塗佈比例較低。 FIG. 3 is a schematic diagram showing the curve of the divalent metal-iron / aluminum composite metal oxide electrode structure of the preferred embodiment of the present invention using the divalent metal concentration of the dipping solution versus the electrode coating ratio. Referring to FIG. 3, a preferred embodiment of the present invention selects to prepare a cobalt-iron / aluminum composite metal oxide electrode. As the cobalt concentration in the preparation solution increases, the cobalt coating amount on the electrode surface increases; when the cobalt concentration exceeds 0.86M, the effective divalent cobalt coating amount starts to decrease, while the iron coating amount increases. In addition, when the cobalt concentration in the preparation solution reached 0.75M, the cobalt-iron coating ratio reached a maximum of 1.1; when the cobalt concentration was further increased to 0.86M, the cobalt-iron coating ratio was low.

第4圖揭示本發明較佳實施例之二價金屬-鐵/鋁複合金屬氧化電極構造進行X光繞射〔XRD,X ray diffraction〕分析之圖譜示意圖。請參照第4圖所示,本發明較佳實施例選擇製備一鈷-鐵/鋁複合金屬氧化電極,並以XRD晶體繞射實驗時,所塗佈之鐵鋁金屬氧化物經過X光繞射分析後,於2 θ=30.7、36.5、38、55.6、65具有數個較強之特徵峰值,其為CoFe2O4之結晶結構(JCPDS No:00-022-1068),其峰值分別對應之晶格平面指數分別為(2 2 0)、(3 1 1)、(2 2 2)、(4 0 0)、(5 1 1)及(4 4 0)。 FIG. 4 illustrates a schematic diagram of a X-ray diffraction (XRD, XRD) analysis of a bivalent metal-iron / aluminum composite metal oxide electrode structure according to a preferred embodiment of the present invention. Please refer to FIG. 4. In the preferred embodiment of the present invention, a cobalt-iron / aluminum composite metal oxide electrode is prepared and XRD diffraction experiments are performed on the coated iron-aluminum metal oxide through X-ray diffraction. After analysis, there are several strong characteristic peaks at 2 θ = 30.7, 36.5, 38, 55.6, and 65, which are the crystal structure of CoFe 2 O 4 (JCPDS No: 00-022-1068), and their peaks correspond to The lattice plane indices are (2 2 0), (3 1 1), (2 2 2), (4 0 0), (5 1 1), and (4 4 0).

請再參照第3及4圖所示,將製備液鈷濃度分別選擇為0M、0.172M、0.43M、0.86M,製備溫度600℃,鍛燒次數為10次下製備之電極,進行表面材料晶格結構分析,並以主要所產生之CoFe2O4尖晶石結構〔cubic spinel structure〕在2 θ=36.5下所產生之特徵峰,進行CoFe2O4晶體結構完整性之比較。在鈷濃度為0M時,並無產生尖晶石結構之特徵峰;當鈷濃度提升至0.172M時,其2 θ=36.5之特徵峰波形較紊亂,即其晶體結構較為複雜;當鈷濃度為0.43M時,分裂特徵峰消失,即其晶體結構形成較單一;當鈷濃度再提升為0.86M時,其特徵峰強度提升,且波型亦較尖銳,即提升其晶體結構的穩定性。 Please refer to Figures 3 and 4 again. Select the concentration of cobalt in the preparation liquid as 0M, 0.172M, 0.43M, 0.86M, the preparation temperature is 600 ° C, and the electrode is prepared at 10 times of calcination. Lattice structure analysis, and the characteristic peaks of the main CoFe 2 O 4 spinel structure [cubic spinel structure] generated at 2 θ = 36.5, to compare the integrity of CoFe 2 O 4 crystal structure. When the cobalt concentration is 0M, there are no characteristic peaks of the spinel structure; when the cobalt concentration is increased to 0.172M, the characteristic peak waveform of 2 θ = 36.5 is disordered, that is, its crystal structure is more complicated; when the cobalt concentration is At 0.43M, the splitting characteristic peak disappears, that is, the crystal structure is relatively single; when the cobalt concentration is further increased to 0.86M, the characteristic peak intensity increases, and the wave shape is sharper, which improves the stability of its crystal structure.

請再參照第3及4圖所示,在整治土壤或水體時,利用該鈷-鐵/鋁複合金屬氧化電極增強硫酸根自由基於環境中的移動能力。 Please refer to Figures 3 and 4 again. When remediation of soil or water, use this cobalt-iron / aluminum composite metal oxide electrode to enhance the ability of sulfate to move freely based on the environment.

第5圖揭示本發明第二較佳實施例之二價金屬-鐵/鋁複合金屬氧化電極構造之立體示意圖,其對應於第1圖之二價金屬-鐵/鋁複合金屬氧化電極構造。請參照第5圖所示,相對於第一實施例,本發明第二較佳實施例之金屬氧化電極1a包含一電極芯層10、一第一複合金屬電極外層20a及一第二複合金屬電極外層20b。 FIG. 5 shows a three-dimensional schematic diagram of the structure of the bivalent metal-iron / aluminum composite metal oxide electrode of the second preferred embodiment of the present invention, which corresponds to the structure of the bivalent metal-iron / aluminum composite metal oxide electrode of FIG. 1. Referring to FIG. 5, compared to the first embodiment, the metal oxide electrode 1 a of the second preferred embodiment of the present invention includes an electrode core layer 10, a first composite metal electrode outer layer 20 a, and a second composite metal electrode. Outer layer 20b.

請再參照第2及5圖所示,本發明第二較佳實施例之金屬氧化電極1a可選擇重複第一步驟S1至第四步驟S4數次〔例如:10次〕,如第2圖所示。在該第一複合金屬電極外層20a上形成該第二複合金屬電極外層20b,以便形成一多層複合金屬層。最後,可選擇將該第一金屬棒以一預定溫度〔約500至600℃〕進行最後高溫烘烤鍛燒一預定時間〔例如:約60分鐘〕。 Please refer to FIG. 2 and FIG. 5 again, the metal oxide electrode 1a of the second preferred embodiment of the present invention may choose to repeat the first step S1 to the fourth step S4 several times (for example, 10 times), as shown in FIG. 2 Show. The second composite metal electrode outer layer 20b is formed on the first composite metal electrode outer layer 20a to form a multilayer composite metal layer. Finally, the first metal rod may be optionally subjected to final high-temperature baking and calcination at a predetermined temperature (about 500 to 600 ° C.) for a predetermined time (for example, about 60 minutes).

第6圖揭示本發明第三較佳實施例之二價金屬-鐵/鋁複合金屬氧化電極構造之立體示意圖,其對應於第1圖之二價金屬-鐵/鋁複合金屬氧化電極構造。請參照第6圖所示,相對於第一實施例,本發明第三較佳實施例之金屬氧化電極1’包含一電極芯層10及一複合金屬電極外層20,且該金屬氧化電極1’為一扁柱體,以便增加在該電極芯層10及複合金屬電極外層20之間形成一氧化還原反應區域。 FIG. 6 illustrates a three-dimensional schematic diagram of a bivalent metal-iron / aluminum composite metal oxide electrode structure according to a third preferred embodiment of the present invention, which corresponds to the bivalent metal-iron / aluminum composite metal oxide electrode structure of FIG. 1. Referring to FIG. 6, compared to the first embodiment, the metal oxide electrode 1 ′ of the third preferred embodiment of the present invention includes an electrode core layer 10 and a composite metal electrode outer layer 20, and the metal oxide electrode 1 ′ It is a flat cylinder, so as to increase the formation of a redox reaction region between the electrode core layer 10 and the composite metal electrode outer layer 20.

第7圖揭示本發明第三較佳實施例之二價金屬-鐵/鋁複合金屬氧化電極構造組成電極陣列之立體示意圖,其對應於第1圖之二價金屬-鐵/鋁複合金屬氧化電極構造。請參照第7圖所示,選擇將數個該金屬氧化電極1’以一預定排列間距組成一扁柱體電極陣列,以便依不同需 求配置不同數量的該金屬氧化電極1’,且可容置於一電動力土壤現場整治裝置或一電動力土壤整治槽內。 FIG. 7 illustrates a three-dimensional schematic diagram of an electrode array composed of a bivalent metal-iron / aluminum composite metal oxide electrode structure according to a third preferred embodiment of the present invention, which corresponds to the bivalent metal-iron / aluminum composite metal oxide electrode of FIG. 1. structure. Referring to FIG. 7, a plurality of metal oxide electrodes 1 ′ are selected to form a flat column electrode array with a predetermined arrangement pitch, so as to meet different requirements. It is required to arrange different numbers of the metal oxidation electrodes 1 ', and they can be accommodated in an electric soil field remediation device or an electric soil remediation tank.

請再參照第1、5及7圖所示,同樣的,選擇將數個該金屬氧化電極1或1a以一預定排列間距組成一圓柱體電極陣列,且該圓柱體電極陣列或扁柱體電極陣列可選擇排列形成各種形狀的電極陣列。或,本發明另一較佳實施例可選擇將數個該金屬氧化電極1或1a及數個該金屬氧化電極1’混合編排形成一混編電極陣列。 Please refer to Figures 1, 5, and 7 again. Similarly, a plurality of the metal oxide electrodes 1 or 1a are selected to form a cylindrical electrode array at a predetermined arrangement pitch, and the cylindrical electrode array or the flat cylindrical electrode is selected. The array can be selected to form an electrode array of various shapes. Or, in another preferred embodiment of the present invention, a plurality of the metal oxide electrodes 1 or 1a and a plurality of the metal oxide electrodes 1 'may be mixed and arranged to form a mixed electrode array.

前述較佳實施例僅舉例說明本發明及其技術特徵,該實施例之技術仍可適當進行各種實質等效修飾及/或替換方式予以實施;因此,本發明之權利範圍須視後附申請專利範圍所界定之範圍為準。本案著作權限制使用於中華民國專利申請用途。 The foregoing preferred embodiment merely exemplifies the present invention and its technical features, and the technology of this embodiment can still be appropriately implemented with various substantially equivalent modifications and / or replacements; therefore, the scope of rights of the present invention shall be subject to the attached patent application The scope defined by the scope shall prevail. The copyright in this case restricts the use to the patent application of the Republic of China.

Claims (10)

一種二價金屬-鐵/鋁複合金屬氧化電極構造,其包含:一金屬氧化電極,其為一陽極,且該金屬氧化電極用於電動力土壤或水整治;一電極芯層,其由一第一金屬材料製成,且該第一金屬材料為一含鋁金屬材料;及至少一複合金屬電極外層,其由一第二複合金屬材料製成,而該第二複合金屬材料為一含二價金屬-鐵複合金屬材料,且將該複合金屬電極外層設置於該電極芯層上,以形成一二價金屬-鐵/鋁複合金屬氧化電極;其中該電極芯層及複合金屬電極外層組成該金屬氧化電極,且利用該金屬氧化電極之第一金屬材料及第二複合金屬材料適當結合一過硫酸鹽材料,以便進行催化降解或礦化處理環境中的三氯沙污染物。 A bivalent metal-iron / aluminum composite metal oxide electrode structure includes: a metal oxide electrode, which is an anode, and the metal oxide electrode is used for electrodynamic soil or water remediation; an electrode core layer, which is composed of a first A metal material, and the first metal material is an aluminum-containing metal material; and at least one composite metal electrode outer layer, which is made of a second composite metal material, and the second composite metal material is a bivalent A metal-iron composite metal material, and the composite metal electrode outer layer is disposed on the electrode core layer to form a divalent metal-iron / aluminum composite metal oxide electrode; wherein the electrode core layer and the composite metal electrode outer layer constitute the metal The electrode is oxidized, and the first metal material and the second composite metal material of the metal oxidation electrode are appropriately combined with a persulfate material in order to perform catalytic degradation or mineralize the triclosan pollutants in the environment. 依申請專利範圍第1項所述之二價金屬-鐵/鋁複合金屬氧化電極構造,其中該複合金屬電極外層具有一鈷鐵氧磁體結構或一鈷鐵氧結晶結構。 According to the bivalent metal-iron / aluminum composite metal oxide electrode structure described in item 1 of the scope of the patent application, wherein the outer layer of the composite metal electrode has a cobalt ferrite magnet structure or a cobalt ferrite crystal structure. 依申請專利範圍第1項所述之二價金屬-鐵/鋁複合金屬氧化電極構造,其中該二價金屬-鐵/鋁複合金屬氧化電極為一圓柱體或一扁柱體。 According to the bivalent metal-iron / aluminum composite metal oxide electrode structure described in item 1 of the scope of the patent application, the bivalent metal-iron / aluminum composite metal oxide electrode is a cylinder or a flat cylinder. 依申請專利範圍第1項所述之二價金屬-鐵/鋁複合金屬氧化電極構造,其中該圓柱體或扁柱體組成一電極陣列。 According to the bivalent metal-iron / aluminum composite metal oxide electrode structure described in item 1 of the scope of the patent application, the cylinder or flat cylinder forms an electrode array. 依申請專利範圍第1項所述之二價金屬-鐵/鋁複合金屬氧化電極構造,其中該過硫酸鹽材料包含過硫酸鈉材料、過硫酸鉀材料、具硫酸根自由基材料或其任意組合。 The bivalent metal-iron / aluminum composite metal oxide electrode structure according to item 1 of the scope of the patent application, wherein the persulfate material includes a sodium persulfate material, a potassium persulfate material, a sulfate radical material, or any combination thereof . 一種二價金屬-鐵/鋁複合金屬氧化電極製造方法,其包含:將至少一第一金屬棒進行酸洗,並取出該第一金屬棒,且該第一金屬棒由一含鋁金屬材料製成;將該第一金屬棒浸漬於一第二複合金屬離子溶液,並取 出該第一金屬棒,且該第二複合金屬離子溶液為一含二價金屬-鐵金屬離子溶液;將該第一金屬棒進行預先烘乾;及將該第一金屬棒進行高溫烘烤鍛燒,以便在該第一金屬棒上形成至少一第二複合金屬層,以形成一二價金屬-鐵/鋁複合金屬氧化電極。 A method for manufacturing a bivalent metal-iron / aluminum composite metal oxidation electrode, comprising: pickling at least one first metal rod, and taking out the first metal rod, and the first metal rod is made of an aluminum-containing metal material Completion; immersing the first metal rod in a second composite metal ion solution, and taking The first metal rod is taken out, and the second composite metal ion solution is a divalent metal-iron metal ion-containing solution; the first metal rod is pre-dried; and the first metal rod is subjected to high-temperature baking and forging Firing to form at least a second composite metal layer on the first metal rod to form a bivalent metal-iron / aluminum composite metal oxide electrode. 依申請專利範圍第6項所述之二價金屬-鐵/鋁複合金屬氧化電極製造方法,其中該第一金屬棒形成一電極芯層,且該第二複合金屬層包覆該電極芯層。 According to the method for manufacturing a bivalent metal-iron / aluminum composite metal oxide electrode according to item 6 of the scope of the patent application, wherein the first metal rod forms an electrode core layer, and the second composite metal layer covers the electrode core layer. 依申請專利範圍第6項所述之二價金屬-鐵/鋁複合金屬氧化電極製造方法,其中該第二複合金屬層形成一複合金屬電極外層,且將該複合金屬電極外層設置於該電極芯層上。 The method for manufacturing a bivalent metal-iron / aluminum composite metal oxide electrode according to item 6 of the scope of the patent application, wherein the second composite metal layer forms a composite metal electrode outer layer, and the composite metal electrode outer layer is disposed on the electrode core. On the floor. 依申請專利範圍第6項所述之二價金屬-鐵/鋁複合金屬氧化電極製造方法,其中在該第二複合金屬層上形成另一複合金屬層,以便形成一多層複合金屬層。 According to the method for manufacturing a bivalent metal-iron / aluminum composite metal oxide electrode according to item 6 of the scope of the patent application, wherein another composite metal layer is formed on the second composite metal layer so as to form a multilayer composite metal layer. 依申請專利範圍第6項所述之二價金屬-鐵/鋁複合金屬氧化電極製造方法,其中利用該二價金屬-鐵/鋁複合金屬氧化電極增強一硫酸根自由基於環境中的移動能力。 According to the method for manufacturing a bivalent metal-iron / aluminum composite metal oxide electrode according to item 6 of the scope of the patent application, the bivalent metal-iron / aluminum composite metal oxide electrode is used to enhance the ability of the monosulfate to move freely based on the environment.
TW107104032A 2018-02-05 2018-02-05 Divalent-fe/al composite metallic oxidation electrode structure and manufacturing method thereof TWI653139B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107104032A TWI653139B (en) 2018-02-05 2018-02-05 Divalent-fe/al composite metallic oxidation electrode structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107104032A TWI653139B (en) 2018-02-05 2018-02-05 Divalent-fe/al composite metallic oxidation electrode structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI653139B TWI653139B (en) 2019-03-11
TW201934329A true TW201934329A (en) 2019-09-01

Family

ID=66590753

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107104032A TWI653139B (en) 2018-02-05 2018-02-05 Divalent-fe/al composite metallic oxidation electrode structure and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI653139B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398756A (en) 1992-12-14 1995-03-21 Monsanto Company In-situ remediation of contaminated soils
US9004816B2 (en) 2013-03-11 2015-04-14 Geosyntec Consultants, Inc. In situ remediation of soils and ground water containing organic contaminants
TWI571326B (en) 2015-03-27 2017-02-21 國立高雄大學 Composite metallic oxidation electrode structure and manufacturing method thereof

Also Published As

Publication number Publication date
TWI653139B (en) 2019-03-11

Similar Documents

Publication Publication Date Title
Babar et al. Evolution of waste iron rust into magnetically separable g-C3N4–Fe2O3 photocatalyst: an efficient and economical waste management approach
Brugnera et al. Silver ion release from electrodes of nanotubes of TiO2 impregnated with Ag nanoparticles applied in photoelectrocatalytic disinfection
Rocha et al. Copper ferrite synthesis from spent Li-ion batteries for multifunctional application as catalyst in photo Fenton process and as electrochemical pseudocapacitor
CN103663631A (en) Three-dimensional particle electrode loaded with catalyst active carbon and preparation method thereof
RU2624466C1 (en) Method of synthesis of layer of electroactive substance for electrodes of supercondensors on basis of nanocomposites from metal-oxygenic compounds of cobalt and nickel
JP5093801B2 (en) Method for producing titanium oxide film molded member, photocatalyst, photoelectrode, and water treatment apparatus
Kuang et al. Construction and optimization of an iron particle–zeolite packing electrochemical–adsorption system for the simultaneous removal of nitrate and by-products
CN106809921B (en) Preparation method of kaolin-based three-dimensional particle electrode
Xue et al. Efficient oxidative dissolution of V2O3 by the in situ electro-generated reactive oxygen species on N-doped carbon felt electrodes
JP2016027562A5 (en)
KR101723594B1 (en) carbon materials coated by iron oxide as adsorbent for removing heavy metal ions in wastewater
TWI571326B (en) Composite metallic oxidation electrode structure and manufacturing method thereof
CN101767768B (en) Perovskite-based nanotube array composite material and preparation method thereof
Bashirom et al. Comparison of ZrO2, TiO2, and α-Fe2O3 nanotube arrays on Cr (VI) photoreduction fabricated by anodization of Zr, Ti, and Fe foils
Ji et al. Hydrophobic Ce-doped β-PbO2-SDS anode achieving synergistic effects for enhanced electrocatalytic oxidation of As (III)
CN103613174A (en) Micro-electrolysis intensifying treater and method for treating wastewater by using same
TW201934329A (en) Divalent-Fe/Al composite metallic oxidation electrode structure and manufacturing method thereof
CN105040069B (en) A kind of electrochemistry anodic oxidation prepares porous nanometer material Na6Mo7O24·14H2O method
TW201934162A (en) TCS (Triclosan) treatment system and method thereof for soil, sludge and water
TWI692447B (en) Tph (total petroleum hydrocarbon) treatment system and method thereof in environment
CN104909437A (en) Method for efficiently removing nitrate from water by Ti nano-electrode
CN104815638A (en) Preparation method of amorphous nano-porous titanium dioxide-supported graphene photocatalytic thin film
CN107337262B (en) Method for degrading organic pollutants in water body through oxygen-assisted anodic catalytic oxidation at low voltage
CN203741202U (en) Anode for electro-osmotic sludge dewatering equipment and equipment
Sharma et al. AND logic gate supported novel speckled phosphorus-doped carbon dots decorated ZrO2/CaO/MgO sonocatalysts for efficient MB dye decolorization