TW201934191A - Granular moving bed and method for improving the filtering effect using thereof - Google Patents

Granular moving bed and method for improving the filtering effect using thereof Download PDF

Info

Publication number
TW201934191A
TW201934191A TW107103708A TW107103708A TW201934191A TW 201934191 A TW201934191 A TW 201934191A TW 107103708 A TW107103708 A TW 107103708A TW 107103708 A TW107103708 A TW 107103708A TW 201934191 A TW201934191 A TW 201934191A
Authority
TW
Taiwan
Prior art keywords
temperature
module
particulate material
filtered
flow channel
Prior art date
Application number
TW107103708A
Other languages
Chinese (zh)
Other versions
TWI640354B (en
Inventor
蕭述三
陳一順
王柏鈞
張家維
張立群
Original Assignee
國立中央大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中央大學 filed Critical 國立中央大學
Priority to TW107103708A priority Critical patent/TWI640354B/en
Application granted granted Critical
Publication of TWI640354B publication Critical patent/TWI640354B/en
Publication of TW201934191A publication Critical patent/TW201934191A/en

Links

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

A granular moving bed comprises a granular moving channel module, and an inlet module. The granular moving channel allows the granule materials flowing therethrough and the inlet module allows a contaminated gas flowing therethrough and passing through the granular moving channel module whereby the contaminated gas is filtered by the granule materials and become a filtered gas flowing out therefrom. The granular moving bed is characterized in that further comprises a heating module arranged inside the granular moving channel module, and a controller is utilized to control the heater for heating the granule materials thereby making a temperature of the granules is equal to a temperature a temperature of the contaminated gas or have a temperature difference from the temperature of the contaminated gas.

Description

移動式顆粒床及其提升過濾效率的移動式顆粒床控制方法Mobile particle bed and mobile particle bed control method for improving filtration efficiency

本發明為一種移動式顆粒床,特別是指一種控制待過濾氣流之溫度與顆粒材料溫度之一種移動式顆粒床及其提升過濾效率的移動式顆粒床控制方法。The invention relates to a mobile particle bed, in particular to a mobile particle bed for controlling the temperature of the air stream to be filtered and the temperature of the particulate material, and a mobile particle bed control method for improving filtration efficiency.

近年來能源議題受到社會大眾的關注。在國家能源發展的政策上,要以建立非核家園為能源發展的方向。為了達到此目的,許多替代性的能源也逐漸加重比重,荷擔我國經濟發展供電的角色。在各種非核能的發電方式中,燃煤電廠擔任著重要的發電比重。然而燃燒煤炭之故,因此會產生含有大量有害物質之氣體,其係含有大量的微塵物質、硫化物、氮化物或者是其他的污染物,如果將有害氣體在不經過處理的情況下予以排放,將會對人類的環境產生重大的影響。In recent years, energy issues have attracted the attention of the public. In terms of national energy development policies, the goal of energy development is to establish non-nuclear homes. In order to achieve this goal, many alternative energy sources have gradually increased their weight, and have played the role of power supply for China's economic development. Among various non-nuclear power generation methods, coal-fired power plants play an important role in power generation. However, because of burning coal, it will produce a gas containing a large amount of harmful substances, which contains a large amount of particulate matter, sulfide, nitride or other pollutants. If the harmful gas is discharged without treatment, Will have a significant impact on the human environment.

除了燃煤發電排放的廢氣之外,垃圾焚化廠在處理垃圾焚化時,也會產生廢氣,該廢氣中主要的有害成分為煙塵、硫化物(SOx)、HCl、氮氧化物(NOx)、氨(NH3)、氰(HCN)、碳氫化合物(HC)、有機酸、乙醛、重金屬及戴奧辛等。In addition to the waste gas from coal-fired power generation, waste incineration plants also generate waste gas when processing waste incineration. The main harmful components in the waste gas are soot, sulfide (SOx), HCl, nitrogen oxides (NOx), ammonia. (NH3), cyanide (HCN), hydrocarbons (HC), organic acids, acetaldehyde, heavy metals and dioxin.

不管是發電、垃圾焚化或其他相關產業(如化工廠、半導體廠、鋼鐵廠或造紙廠等)所產生的工業廢氣,如果沒有採取有效的措施,往往會對空氣環境造成很大的污染,因此各個工業大國,無不制定嚴格的有害物質排放標準,並且為了因應該排放標準,也投入不少的研發資源,發展出能夠有效的處理廢氣中的有害物質之方法與技術。Regardless of industrial waste gas generated by power generation, waste incineration or other related industries (such as chemical plants, semiconductor plants, steel plants or paper mills, etc.), if no effective measures are taken, it will often cause great pollution to the air environment. All major industrial countries have formulated strict emission standards for hazardous substances, and in order to respond to the emission standards, they have also invested a lot of research and development resources to develop methods and technologies that can effectively deal with hazardous substances in exhaust gas.

其中,在習用技術中,如圖1所示,該圖係為習用之移動式顆粒床示意圖。習知移動式顆粒床1具有一濾材流道11、一進氣單元12及一出氣單元13。濾材111以適當速度移動之方式由導入口112填充至濾材流道11內,並由排出口113移動至濾材流道11外。而待過濾氣流則由進氣單元12送至濾材流道11之一側,其中,待過濾氣流中之粉塵微粒及污染物,將被濾材111過濾或吸附,並隨著濾材111以適當速度由上往下移動,直到濾材111由排出口113排出。而已過濾之潔淨氣體將從濾材流道11之另一側流動至出氣單元13,並由出氣單元13向外界排出。Among them, in the conventional technology, as shown in FIG. 1, the figure is a schematic diagram of a conventional moving particle bed. The conventional mobile particle bed 1 has a filter material flow channel 11, an air inlet unit 12 and an air outlet unit 13. The filter material 111 is filled into the filter material flow path 11 from the introduction port 112 at a proper speed, and is moved out of the filter material flow path 11 from the discharge port 113. The air stream to be filtered is sent to one side of the filter material flow path 11 by the air intake unit 12, wherein the dust particles and pollutants in the air stream to be filtered will be filtered or adsorbed by the filter material 111, and the filter material 111 will pass through the filter material 111 at an appropriate speed. Move up and down until the filter material 111 is discharged from the discharge port 113. The filtered clean gas will flow from the other side of the filter material flow path 11 to the air outlet unit 13 and be discharged from the air outlet unit 13 to the outside.

習用技術的顆粒濾材會藉由熱傳導及對流將其提升至工作溫度,若顆粒濾材於過濾程序中與進風口帶有粉塵之骯髒氣體之溫度不同,將會造成濾材孔隙的熱漲冷縮變化,進而影響過濾系統之過濾效率與成效。綜合上述,需要一種移動式顆粒床及其提升過濾效率的移動式顆粒床控制方法解決習用技術的不足之處。Conventional particle filter materials will be raised to the working temperature by heat conduction and convection. If the temperature of the particle filter material in the filtering process is different from the dirty gas with dust at the air inlet, it will cause the thermal expansion and contraction of the filter material pores. , Which in turn affects the filtration efficiency and effectiveness of the filtration system. To sum up, there is a need for a mobile particle bed and a mobile particle bed control method for improving filtration efficiency to solve the shortcomings of conventional technology.

根據實驗發現,習用的移動濾材會藉由熱傳導及對流將其提升至工作溫度,若濾材於過濾程序中與進風口帶有粉塵之骯髒氣體之溫度不同,將會造成過濾面之孔隙率的熱漲冷縮,會影響系統之過濾效率。為了解決這個問題,本發明提供一種移動式顆粒床及其提升過濾效率的移動式顆粒床控制方法,其係透過控制入口處的待過濾氣流與顆粒材料的溫度,使其溫度適當或相近,進而可以避免濾材之孔隙的熱漲冷縮變化,而影響移動式顆粒床的過濾效率。According to experiments, conventional mobile filter media will be raised to the working temperature by heat conduction and convection. If the filter media is at a different temperature from the dirty gas with dust in the air inlet during the filtering process, it will cause the porosity of the filter surface. Thermal expansion and contraction will affect the filtration efficiency of the system. In order to solve this problem, the present invention provides a mobile particle bed and a mobile particle bed control method for improving filtration efficiency, which control the temperature of the air stream to be filtered at the inlet and the temperature of the particulate material to make the temperature appropriate or similar, and further It can avoid the thermal expansion and contraction of the pores of the filter material and affect the filtration efficiency of the mobile particle bed.

在一實施例中,本發明提供一種提升過濾效率的移動式顆粒床控制方法,其係包括有下列步驟:首先,提供一移動式顆粒床,其係包括有一顆粒流道模組、一進氣管道模組、一出氣管道模組、一加熱模組以及一控制單元,該顆粒流道模組,具有一顆粒材料導入口以及一顆粒材料排出口,該進氣管道模組設置於該顆粒流道模組之一側,該出氣管道模組,設置於該顆粒流道模組之另一側,該加熱模組設置於該顆粒流道模組內,該控制單元與該加熱模組電性連接。接著,使一顆粒材料經由該顆粒材料導入口進入而由該顆粒材料排出口排出。然後,使一待過濾氣流由該進氣管道模組進入該顆粒流道模組,再經由該出氣管道模組排出。最後,該控制單元控制該加熱模組加熱該顆粒材料,使該顆粒材料的溫度適當或近似於該待過濾氣流的溫度。In one embodiment, the present invention provides a mobile particle bed control method for improving filtration efficiency, which includes the following steps: First, a mobile particle bed is provided, which includes a particle flow channel module and an air inlet. A pipe module, an air outlet pipe module, a heating module and a control unit; the particle flow channel module has a particle material inlet and a particle material outlet, and the air inlet pipe module is disposed on the particle flow One side of the channel module, the air outlet pipe module is disposed on the other side of the particle flow channel module, the heating module is disposed in the particle flow channel module, and the control unit and the heating module are electrically connection. Next, a granular material is allowed to enter through the granular material inlet and is discharged from the granular material outlet. Then, a gas stream to be filtered is caused to enter the particle flow channel module from the air inlet pipe module, and then discharged through the air outlet pipe module. Finally, the control unit controls the heating module to heat the particulate material so that the temperature of the particulate material is appropriate or similar to the temperature of the air stream to be filtered.

在一實施例中,該控制單元係根據該待過濾氣流進出該顆粒流道模組之溫度變化或者是根據該顆粒材料在該顆粒材料導入口以及該顆粒材料排出口的溫度變化,以控制該加熱模組加熱該顆粒材料。In one embodiment, the control unit is configured to control the airflow according to the temperature change of the airflow to and from the granular flow channel module or the temperature change of the granular material at the granular material inlet and the granular material outlet. The heating module heats the particulate material.

其中,根據該待過濾氣流進出該顆粒流道模組之溫度變化或者是該顆粒材料的步驟更包括有下列步驟:首先設置一第一溫度感測器在該進氣管道模組以量測進入該顆粒流道模組之該待過濾氣流的一第一溫度。接著,設置一第二溫度感測器在該出氣管道模組。然後,該待過濾氣流通過該顆粒流道模組之後形成一過濾氣體,使該第二溫度感測器量測該過濾氣體之一第二溫度。最後,該控制單元控制該加熱模組,使該第二溫度等於於該第一溫度,或在特殊需求下,使第二溫度與第一溫度維持適當溫差變化,以適用其他嚴苛環境之工業製程與需求。Wherein, according to the temperature change of the air flow to be filtered in and out of the granular flow channel module or the granular material, the steps further include the following steps: First, a first temperature sensor is set in the intake duct module to measure the entrance. A first temperature of the air flow to be filtered in the particle flow channel module. Then, a second temperature sensor is set in the air outlet pipe module. Then, a filtered gas is formed after the airflow to be filtered passes through the particle flow channel module, so that the second temperature sensor measures a second temperature of the filtered gas. Finally, the control unit controls the heating module to make the second temperature equal to the first temperature, or to maintain a proper temperature difference between the second temperature and the first temperature under special requirements to apply to other harsh environment industries Process and requirements.

其中,根據該顆粒材料在該顆粒材料導入口以及該顆粒材料排出口的溫度變化更包括有下列步驟:首先,設置一第一溫度感測器在該顆粒材料導入口以量測進入該顆粒流道模組前之該顆粒材料的一第一溫度。接著,設置一第二溫度感測器在該顆粒材料排出口。然後,該待過濾氣流通過該顆粒流道模組之後獲得一已過濾乾淨氣流,使該第二溫度感測器量測由該顆粒材料排出口所排出的顆粒材料的一第二溫度。最後,該控制單元控制該加熱模組,使該第二溫度等於該第一溫度,或在特殊需求下,使第二溫度與第一溫度維持適當溫差變化,以適用其他嚴苛環境之工業製程與需求。Wherein, according to the temperature change of the particulate material at the particulate material introduction port and the particulate material discharge port, the following steps are further included: First, a first temperature sensor is set at the particulate material introduction port to measure entering the particulate flow. A first temperature of the particulate material in front of the module. Next, a second temperature sensor is provided at the particulate material discharge port. Then, the filtered airflow passes through the particle flow channel module to obtain a filtered clean airflow, so that the second temperature sensor measures a second temperature of the particulate material discharged from the particulate material discharge port. Finally, the control unit controls the heating module to make the second temperature equal to the first temperature, or to maintain a proper temperature difference between the second temperature and the first temperature under special requirements to apply to other harsh industrial processes And demand.

在一實施例中,本發明提供一種移動式顆粒床,包括有一顆粒流道模組、一進氣管道模組以及一出氣管道模組,該顆粒流道模組,具有一顆粒材料導入口以及一顆粒材料排出口,一顆粒材料經由該顆粒材料導入口進入而由該顆粒材料排出口排出,該進氣管道模組設置於該顆粒流道模組之一側,一待過濾氣流由該進氣管道模組進入該顆粒流道模組,以形成一已過濾之乾淨氣流,該出氣管道模組,設置於該顆粒流道模組之另一側,用以排出該已過濾之乾淨氣流,其特徵在於該移動式顆粒床更具有一加熱模組以及一控制單元。該加熱模組,設置於該顆粒流道模組內。該控制單元,控制該加熱模組加熱該顆粒材料,使該顆粒材料的溫度等於該待過濾氣流的溫度或與該待過濾氣流的溫度之間具有一溫差。In one embodiment, the present invention provides a mobile particle bed, which includes a particle flow channel module, an intake duct module, and an air outlet duct module. The particle flow channel module has a granular material inlet and A particulate material discharge port, a particulate material entering through the particulate material introduction port and being discharged by the particulate material discharge port, the intake duct module is disposed on one side of the particulate flow channel module, and an air stream to be filtered is passed through the inlet. An air duct module enters the particle flow path module to form a filtered clean air flow. The air outlet duct module is disposed on the other side of the particle flow path module to discharge the filtered clean air flow. It is characterized in that the mobile particle bed further has a heating module and a control unit. The heating module is disposed in the particle flow channel module. The control unit controls the heating module to heat the particulate material so that the temperature of the particulate material is equal to the temperature of the airflow to be filtered or a temperature difference between the temperature of the airflow to be filtered and the temperature of the airflow to be filtered.

在一實施例中,該移動式顆粒床係更包括有:一第一溫度感測器以及一第二溫度感測器。該第一溫度感測器,係設置於該進氣管道模組,以量測進入該顆粒流道模組前之該待過濾氣流的第一溫度,該第一溫度係等於或近似該顆粒材料於該顆粒材料導入口的溫度。該第二溫度感測器,其係設置於該出氣管道模組用以感測該待過濾氣流通過該顆粒流道模組後,形成一已過濾之乾淨氣流的第二溫度。其中,該控制單元,與該加熱模組、該第一與第二感測模組電性連接,該控制單元用以控制該加熱模組,使該第二溫度等於該第一溫度或與該第一溫度具有一溫差。In one embodiment, the mobile particle bed system further includes a first temperature sensor and a second temperature sensor. The first temperature sensor is disposed on the air inlet duct module to measure a first temperature of the airflow to be filtered before entering the particle flow channel module, and the first temperature is equal to or similar to the particulate material. The temperature of the inlet of the particulate material. The second temperature sensor is disposed in the air outlet pipe module to sense the second temperature of the filtered clean air stream after the air stream to be filtered passes through the particle flow channel module. The control unit is electrically connected to the heating module, the first and second sensing modules, and the control unit is used to control the heating module to make the second temperature equal to the first temperature or to the first temperature. The first temperature has a temperature difference.

在一實施例中,該移動式顆粒床更包括有:一第一溫度感測器以及一第二溫度感測器。該第一溫度感測器,其係設置於該顆粒材料導入口,該第一溫度感測器用以感測通過該顆粒材料導入口的顆粒材料的之第一溫度,該第一溫度係等於或近似該待過濾氣流的溫度。該第二溫度感測器,其係設置於該顆粒材料排出口用以感測通過該顆粒材料排出口的該顆粒材料的第二溫度。其中,該控制單元,與該加熱模組、該第一與第二感測模組電性連接,該控制單元用以控制該加熱模組,使該第二溫度等於該第一溫度或與該第一溫度具有一溫差。In one embodiment, the mobile particle bed further includes: a first temperature sensor and a second temperature sensor. The first temperature sensor is disposed at the particulate material inlet. The first temperature sensor is used to sense a first temperature of the particulate material passing through the particulate material inlet. The first temperature is equal to or Approximate the temperature of the air stream to be filtered. The second temperature sensor is disposed at the particulate material discharge port to sense a second temperature of the particulate material passing through the particulate material discharge port. The control unit is electrically connected to the heating module, the first and second sensing modules, and the control unit is used to control the heating module to make the second temperature equal to the first temperature or to the first temperature. The first temperature has a temperature difference.

在下文將參考隨附圖式,可更充分地描述各種例示性實施例,在隨附圖式中展示一些例示性實施例。然而,本發明概念可能以許多不同形式來體現,且不應解釋為限於本文中所闡述之例示性實施例。確切而言,提供此等例示性實施例使得本發明將為詳盡且完整,且將向熟習此項技術者充分傳達本發明概念的範疇。類似數字始終指示類似元件。以下將以多種實施例配合圖式來說明所述移動式顆粒床及其提升過濾效率的移動式顆粒床控制方法,然而,下述實施例並非用以限制本發明。Various exemplary embodiments may be described more fully hereinafter with reference to the accompanying drawings, in which some exemplary embodiments are shown. However, the inventive concept may be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein. Rather, these exemplary embodiments are provided so that this invention will be thorough and complete, and will fully convey the scope of the inventive concept to those skilled in the art. Similar numbers always indicate similar components. In the following, the mobile particle bed and the mobile particle bed control method for improving filtration efficiency will be described with various embodiments and drawings, however, the following embodiments are not intended to limit the present invention.

請參閱圖2A與圖2B所示,該圖為本發明之移動式顆粒床之一實施例示意圖。該移動式顆粒床2包括有一顆粒流道模組20、一進氣管道模組21以及一出氣管道模組22。該顆粒流道模組20,具有一顆粒材料導入口200以及一顆粒材料排出口201。該顆粒流道模組20可以提供一顆粒材料90經由該顆粒材料導入口200進入,而由該顆粒材料排出口201排出。該顆粒材料90可以為過濾材質、吸附材質、觸媒材質或前述之至少兩種組合。該顆粒流道模組20係由複數層子流道202所構成,相鄰兩子流道202之間具有間隙D,且具有至少一分流元件203,用以分流顆粒材料90。每一個子流道202和分流元件203係屬習用技術,在此不作贅述。Please refer to FIG. 2A and FIG. 2B, which are schematic diagrams of an embodiment of a mobile particle bed according to the present invention. The mobile particle bed 2 includes a particle flow channel module 20, an air inlet duct module 21 and an air outlet duct module 22. The granular flow channel module 20 has a granular material inlet 200 and a granular material outlet 201. The particulate flow channel module 20 can provide a particulate material 90 to enter through the particulate material introduction port 200 and be discharged from the particulate material discharge port 201. The particulate material 90 may be a filter material, an adsorption material, a catalyst material, or at least two combinations thereof. The granular flow channel module 20 is composed of a plurality of layers of sub flow channels 202. There is a gap D between two adjacent sub flow channels 202, and at least one flow distribution element 203 is used to flow the granular material 90. Each of the sub-flow channels 202 and the shunt element 203 is a conventional technology, and details are not described herein.

該進氣管道模組21,設置於該顆粒流道模組20的一側,該進氣管道模組21具有一流路210以及複數個流體參數感測器,包括有壓力感測器211及/或速度感測器212。該流路210用以提供待過濾氣流91通過。在一實施例中,該進氣管道模組21和該顆粒流道模組20之間更具有一管道連接殼體23,其係連接該流路210的一端部以及該出氣管道模組22,使得該進氣管道模組21氣密連接於該顆粒流道模組20上。在本實施例中,該管道連接殼體23內且位於該流路210之端部外側的區域更具有複數個導流板230~232。在一實施例中,該複數個導流板,更包括有一第一導流板230、一第二導流板231以及一第三導流板232。該第一導流板230,水平夾角係介於0°至50°之間。該第二導流板231,其係設置於該第一導流板230之一側,該第二導流板231具有一介於10°至80°之水平夾角。該第三導流板232,其係設置於該第一導流板230之另一側,與該第二導流板231相對應,該第三導流板232具有一介於-10°至-80°之水平夾角。該複數個導流板230~232用以將該待過濾氣流91分成複數個子氣流910,以讓待過濾氣流91可以均勻的通過該顆粒流道模組20。The intake duct module 21 is disposed on one side of the particle flow channel module 20. The intake duct module 21 has a first-stage path 210 and a plurality of fluid parameter sensors, including a pressure sensor 211 and / Or speed sensor 212. The flow path 210 is used for providing the airflow 91 to be filtered. In one embodiment, a duct connection housing 23 is further provided between the intake duct module 21 and the particle flow channel module 20, which is connected to one end of the flow path 210 and the exhaust duct module 22, The air inlet duct module 21 is hermetically connected to the particle flow channel module 20. In this embodiment, a region inside the pipe connection housing 23 and located outside the end of the flow path 210 further includes a plurality of deflectors 230-232. In one embodiment, the plurality of deflectors further includes a first deflector 230, a second deflector 231, and a third deflector 232. A horizontal included angle of the first deflector 230 is between 0 ° and 50 °. The second deflector 231 is disposed on one side of the first deflector 230. The second deflector 231 has a horizontal included angle between 10 ° and 80 °. The third deflector 232 is disposed on the other side of the first deflector 230 and corresponds to the second deflector 231. The third deflector 232 has a range of -10 ° to- Horizontal angle of 80 °. The plurality of deflectors 230 to 232 are used to divide the airflow to be filtered 91 into a plurality of sub-airflows 910 so that the airflow to be filtered 91 can pass through the particle flow channel module 20 uniformly.

該待過濾氣流91由該進氣管道模組21進入該顆粒流道模組20,通過顆粒材料90之後被過濾以形成一已過濾之乾淨氣流92。該出氣管道模組22,設置於該顆粒流道模組20之另一側,與該進氣管道模組21對應,用以排出該已過濾之乾淨氣流92。在本實施例中,該出氣管道模組22具有一出氣管路220與該管道連接殼體23連接。該出氣管道模組22更包括有壓力感測器221及/或速度感測器222,用以量測該乾淨氣流92的壓力與速度。The airflow to be filtered 91 enters the particle flow channel module 20 from the air inlet duct module 21 and is filtered after passing through the particulate material 90 to form a filtered clean airflow 92. The air outlet pipe module 22 is disposed on the other side of the particle flow channel module 20 and corresponds to the air inlet pipe module 21 to discharge the filtered clean airflow 92. In this embodiment, the air outlet pipe module 22 has an air outlet pipe 220 connected to the pipe connection housing 23. The air outlet pipe module 22 further includes a pressure sensor 221 and / or a speed sensor 222 for measuring the pressure and speed of the clean airflow 92.

該移動式顆粒床2更具有一溫度感測模組24、一加熱模組25以及一控制單元26。該溫度感測模組24,在本實施例中,更具有一第一溫度感測器240以及一第二溫度感測器241。該第一溫度感測器240,其係設置於該進氣管道模組21的流路210,以量測進入該顆粒流道模組20前之該待過濾氣流91的第一溫度,該第一溫度係等於或近似該顆粒材料90於該顆粒材料導入口200的溫度。該第二溫度感測器241,其係設置於該出氣管道模組22的出氣管路220,用以感測該乾淨氣流92的第二溫度。此外,在該顆粒流道模組20的該顆粒材料導入口200的位置上具有一第三溫度感測器242用以感測該顆粒材料90的溫度。The mobile particle bed 2 further has a temperature sensing module 24, a heating module 25 and a control unit 26. In this embodiment, the temperature sensing module 24 further includes a first temperature sensor 240 and a second temperature sensor 241. The first temperature sensor 240 is disposed in the flow path 210 of the intake duct module 21 to measure a first temperature of the airflow 91 to be filtered before entering the particle flow channel module 20, and the first temperature A temperature is equal to or similar to the temperature of the particulate material 90 at the particulate material introduction port 200. The second temperature sensor 241 is disposed on the air outlet pipe 220 of the air outlet pipe module 22 to sense the second temperature of the clean airflow 92. In addition, a third temperature sensor 242 is located at the position of the particulate material introduction port 200 of the particulate flow channel module 20 to sense the temperature of the particulate material 90.

要說明的是,溫度感測模組24的設置並不以圖2A與圖2B的例子為限制。例如在另一實施例中,如圖3所示,本實施例的溫度感測模組24的第一溫度感測器243與第二溫度感測器244的設置係以設置在顆粒流道模組20內為主,其中,該第一溫度感測器243,其係設置於該顆粒材料導入口200,該第一溫度感測器243用以感測通過該顆粒材料導入口200的顆粒材料90的之一第一溫度,該第一溫度係等於或近似該待過濾氣流91的溫度。該第二溫度感測器244,其係設置於該顆粒材料排出口201用以感測通過該顆粒材料排出口201的該顆粒材料的一第二溫度。此外,在該流路210靠近該顆粒流道模組20的位置更具有一第三溫度感測器245,用以感測該待過濾氣流91的溫度。It should be noted that the arrangement of the temperature sensing module 24 is not limited to the example shown in FIGS. 2A and 2B. For example, in another embodiment, as shown in FIG. 3, the first temperature sensor 243 and the second temperature sensor 244 of the temperature sensing module 24 of this embodiment are disposed in the particle flow channel mold. The group 20 is mainly composed of the first temperature sensor 243 and the first temperature sensor 243. The first temperature sensor 243 is used to detect the particulate material passing through the particulate material inlet 200. A first temperature of 90, the first temperature is equal to or similar to the temperature of the airflow 91 to be filtered. The second temperature sensor 244 is disposed at the particulate material discharge port 201 to sense a second temperature of the particulate material passing through the particulate material discharge port 201. In addition, a third temperature sensor 245 is located at a position of the flow path 210 near the particle flow path module 20 to sense the temperature of the airflow 91 to be filtered.

回到圖2A與圖2B所示,該加熱模組25,設置於該顆粒流道模組20內,用以加熱顆粒材料90。本實施例中,該加熱模組25具有複數個第一加熱器250以及複數個第二加熱器251。該複數個第一加熱器250設置於靠近該顆粒材料導入口200內部,在一實施例中,其係可以環設在該顆粒材料導入口200內部周圍的區域。該複數個第二加熱器251,則設置於該複數層子流道202所構成內部空間內,在一實施例中,其係可以環設於該複數層子流道202所構成內部空間內。該顆粒材料的操作溫度,係根據顆粒材料的材質與使用需求而定,並無一定限制,例如:在一實施例中,顆粒材料為含石英砂的材料,因此其操作溫度在常溫25℃至1100℃之間。Returning to FIG. 2A and FIG. 2B, the heating module 25 is disposed in the particle flow channel module 20 to heat the particulate material 90. In this embodiment, the heating module 25 includes a plurality of first heaters 250 and a plurality of second heaters 251. The plurality of first heaters 250 are disposed near the interior of the particulate material inlet 200. In one embodiment, the first heaters 250 can be disposed in a region around the interior of the particulate material inlet 200. The plurality of second heaters 251 are disposed in the inner space formed by the plurality of sub-flow channels 202. In one embodiment, they can be looped in the inner space formed by the plurality of sub-flow channels 202. The operating temperature of the granular material is determined according to the material and usage requirements of the granular material, and there is no certain limit. For example, in one embodiment, the granular material is a material containing quartz sand, so its operating temperature is 25 ° C to room temperature. Between 1100 ° C.

另外,要說明的是,該加熱模組,除了圖2B的方式之外,在另一實施例中,如圖4所示,其係為本發明之加熱模組25之另一實施例示意圖,為了提升加熱效果,本實施例的顆粒材料導入口200的上方更具有一進料斗27,該進料斗27的內部也設置有至少一第三加熱器252,以提前對顆粒材90料進行加熱。另外,雖然圖4係在圖3的實施例上方更進一步設置第三加熱器252,但不以圖3的實施例為限制,例如圖2A與圖2B的實施例亦可以增加第三加熱器。In addition, it should be noted that, in addition to the method of FIG. 2B, in another embodiment, the heating module is shown in FIG. 4, which is a schematic diagram of another embodiment of the heating module 25 of the present invention. In order to improve the heating effect, there is a feed hopper 27 above the granular material introduction port 200 in this embodiment, and at least one third heater 252 is also provided inside the feed hopper 27 to heat the pellet 90 in advance. In addition, although FIG. 4 is further provided with a third heater 252 above the embodiment of FIG. 3, it is not limited to the embodiment of FIG. 3. For example, the third heater may be added to the embodiment of FIGS. 2A and 2B.

回到圖2A與圖2B所示,該控制單元26,與該溫度感測模組24以及該加熱模組25電訊連接,該控制單元26根據該溫度感測模組24所取得關於該待過濾氣流91以及該乾淨氣流92的溫度,控制該加熱模組25加熱該顆粒材料90,使該顆粒材料90的溫度等於該待過濾氣流91的溫度或與該待過濾氣流91的溫度之間具有一溫差,以供其他嚴苛環境下,保持一定過濾成效與運作穩定性。在一實施例中,該溫差為±10℃。Returning to FIG. 2A and FIG. 2B, the control unit 26 is in telecommunication connection with the temperature sensing module 24 and the heating module 25. The control unit 26 obtains information about the filter to be filtered according to the temperature sensing module 24. The temperature of the airflow 91 and the clean airflow 92 controls the heating module 25 to heat the particulate material 90 so that the temperature of the particulate material 90 is equal to the temperature of the airflow 91 to be filtered or a temperature between the airflow 91 and the temperature of the airflow 91 to be filtered. Temperature difference to maintain certain filtration effect and operation stability under other harsh environments. In one embodiment, the temperature difference is ± 10 ° C.

請參閱圖5A所示,該圖為本發明之提升過濾效率的移動式顆粒床控制方法之一實施例流程示意圖。該控制方法包括有下列步驟,首先進行步驟30提供一移動式顆粒床,其係可以為如圖2A或圖2B的顆粒床結構,或只是如圖3或圖4所示的顆粒床結構,其結構係如前所述,在此不作贅述。本實施例中的移動式顆粒床2係以圖2A與2B的結構來作說明。接下來,進行步驟31使一顆粒材料90經由該顆粒材料導入口200進入流動,而由該顆粒材料排出口201排出。接著進行步驟32,使一待過濾氣流91由該進氣管道模組21進入該顆粒流道模組20,該待過濾氣流91中所含有的微粒、黏性、有害與有毒等物質,被顆粒材料90濾除之後,獲得已過濾之乾淨氣流92,再經由該出氣管道模組22排出。接著,再以步驟33,使該控制單元26控制該加熱模組25加熱該顆粒材料90,使該顆粒材料90的溫度等於該待過濾氣流91的溫度或與該待過濾氣流91的溫度之間具有一溫差,以供其他嚴苛環境下,保持一定過濾成效與運作穩定性。在一實施例中,該溫差為±10℃。Please refer to FIG. 5A, which is a schematic flowchart of an embodiment of a mobile particle bed control method for improving filtration efficiency according to the present invention. The control method includes the following steps. First, step 30 is performed to provide a mobile particle bed, which may be a particle bed structure as shown in FIG. 2A or FIG. 2B, or only a particle bed structure as shown in FIG. 3 or FIG. The structure is as described above, and will not be repeated here. The movable particle bed 2 in this embodiment is described with the structure of FIGS. 2A and 2B. Next, step 31 is performed to allow a particulate material 90 to flow through the particulate material introduction port 200 and be discharged from the particulate material discharge port 201. Then, step 32 is performed, so that an airflow to be filtered 91 enters the particle flow path module 20 from the air inlet duct module 21, and particles, viscous, harmful and toxic substances contained in the airflow to be filtered 91 are particles. After the material 90 is filtered off, the filtered clean air stream 92 is obtained, and then discharged through the air outlet pipe module 22. Then, in step 33, the control unit 26 controls the heating module 25 to heat the particulate material 90, so that the temperature of the particulate material 90 is equal to or between the temperature of the airflow 91 to be filtered and the temperature of the airflow 91 to be filtered. Has a temperature difference for other filtration environments to maintain a certain filtration effect and operational stability. In one embodiment, the temperature difference is ± 10 ° C.

在步驟33中,該控制單元26係根據該待過濾氣流91進出該顆粒流道模組20之溫度變化或者是根據該顆粒材料90在該顆粒材料導入口200以及該顆粒材料排出口201的溫度變化,來控制該加熱模組25加熱該顆粒材料,使得顆粒材料90的溫度可以和待過濾氣流91的溫度相等或相近,以避免顆粒材料之孔隙率因熱漲冷縮變化,而影響濾除該待過濾氣流的污染物、雜質或有毒物質的效率。如圖5B所示,在本實施例中,因為是採用圖2A與圖2B的架構,因此在步驟33中,根據該待過濾氣流91進出該顆粒流道模組20之溫度變化的步驟更包括有以步驟330設置一第一溫度感測器240在該進氣管道模組21以量測進入該顆粒流道模組20之該待過濾氣流91的一第一溫度。該第一溫度係等於或近似該顆粒材料90於該顆粒材料導入口200的溫度。要說明的是,該顆粒材料90在該顆粒材料導入口200的溫度可以藉由設置於該顆粒材料導入口200特定位置上的一第三溫度感測器242進行感測,控制單元26內設置有預設的溫度值,本實施例為500℃。因此控制單元26可以控制第一加熱器250作動,供給顆粒材料90熱能,使得在該顆粒材料導入口200的顆粒材料900溫度可以被控制在500℃。另外,要說明的是,更可以在圖2A與2B的移動式顆粒床上設置如圖4所示的具有第三加熱器252的進料斗27,與第一加熱器250一起作動,以控制進入顆粒材料導入口200的顆粒材料90的溫度。In step 33, the control unit 26 is based on the temperature change of the airflow 91 to be filtered in and out of the particulate flow channel module 20 or the temperature of the particulate material 90 at the particulate material inlet 200 and the particulate material outlet 201. Change to control the heating module 25 to heat the particulate material, so that the temperature of the particulate material 90 can be equal to or similar to the temperature of the air stream 91 to be filtered, so as to prevent the porosity of the particulate material from changing due to thermal expansion and contraction. The efficiency of the pollutants, impurities or toxic substances of the air stream to be filtered. As shown in FIG. 5B, in this embodiment, because the structure of FIG. 2A and FIG. 2B is adopted, in step 33, the step of changing the temperature of the airflow 91 to be filtered in and out of the particle flow channel module 20 further includes In step 330, a first temperature sensor 240 is provided in the intake duct module 21 to measure a first temperature of the airflow 91 to be filtered entering the particle flow channel module 20. The first temperature is equal to or similar to the temperature of the particulate material 90 at the particulate material inlet 200. It should be noted that the temperature of the particulate material 90 at the particulate material introduction port 200 can be sensed by a third temperature sensor 242 provided at a specific position of the particulate material introduction port 200, and is set in the control unit 26. There is a preset temperature value, which is 500 ° C in this embodiment. Therefore, the control unit 26 can control the operation of the first heater 250 to supply the thermal energy of the particulate material 90 so that the temperature of the particulate material 900 at the particulate material inlet 200 can be controlled at 500 ° C. In addition, it is to be noted that a feeding hopper 27 having a third heater 252 as shown in FIG. 4 can be further provided on the movable particle bed shown in FIGS. 2A and 2B, and can be operated together with the first heater 250 to control the entry of particles. Temperature of the particulate material 90 of the material introduction port 200.

接著進行步驟331,以設置在該出氣管道模組220的該第二溫度感測器241,量測該乾淨氣流92之一第二溫度。接著進行步驟332,該控制單元26控制該加熱模組25,使該第二溫度等於或近似於該第一溫度。在步驟332中,該控制單元26根據出口處的乾淨氣流92的溫度判斷顆粒材料90熱能的多寡。如果該乾淨氣流92的溫度大幅小於待過濾氣流91的溫度,代表該待過濾氣流91的熱能大幅被顆粒材料90所吸收。如此一來,便會降低過濾材料吸附或過濾該待過濾氣流的能力與效率,因此控制單元26控制加熱模組25加熱顆粒材料90,使待過濾氣流91的溫度與乾淨氣流92無過大之溫差狀態,當乾淨氣流92的溫度相近於待過濾氣流91的溫度時,代表氣體的熱能沒有被顆粒材料90吸收,進而可以避免顆粒材料90之過濾面之孔隙率的熱漲冷縮而影響移動式顆粒床2的過濾效率。Then, step 331 is performed to measure the second temperature of one of the clean air flows 92 by the second temperature sensor 241 disposed in the air outlet pipe module 220. Then, step 332 is performed. The control unit 26 controls the heating module 25 so that the second temperature is equal to or similar to the first temperature. In step 332, the control unit 26 determines the amount of thermal energy of the particulate material 90 based on the temperature of the clean air stream 92 at the outlet. If the temperature of the clean airflow 92 is substantially lower than the temperature of the airflow 91 to be filtered, it means that the thermal energy of the airflow 91 to be filtered is largely absorbed by the particulate material 90. In this way, the ability and efficiency of the filter material to adsorb or filter the air stream to be filtered will be reduced. Therefore, the control unit 26 controls the heating module 25 to heat the particulate material 90 so that the temperature of the air stream 91 to be filtered does not have an excessive temperature difference from the clean air stream 92 In the state, when the temperature of the clean air stream 92 is close to the temperature of the air stream 91 to be filtered, the thermal energy of the representative gas is not absorbed by the particulate material 90, and the thermal expansion and contraction of the porosity of the filtering surface of the particulate material 90 can be prevented from affecting the mobile type. Filtration efficiency of the particle bed 2.

請參閱圖5C所示,該圖為本發明移動式顆粒床控制方法之溫度控制方式的另一實施例流程示意圖。本實施例的流程係以圖3的實施例來作溫度控制之方式,亦即,根據該顆粒材料在該顆粒材料導入口以及該顆粒材料排出口的溫度變化來進行控制,其係更包括有下列步驟:首先以步驟330a,以設置於該顆粒材料導入口200之第一溫度感測器243量測進入該顆粒流道模組20前之該顆粒材料90的一第一溫度。當移動式顆粒床2運作使該待過濾氣流91通過該顆粒流道模組20之後形成一乾淨氣流92後,進行步驟331a使該第二溫度感測器244量測由該顆粒材料排出口201所排出的顆粒材料90的一第二溫度。最後進行步驟332a,使該控制單元控制該加熱模組25,使該第二溫度等於或近似於該第一溫度。在步驟332a中,該控制單元26根據排出口201的顆粒材料90的溫度判斷顆粒材料90熱能的多寡。如果在排出口201的顆粒材料90的溫度大幅低於導入口200的顆粒材料溫度,代表該顆粒材料90在與待過濾氣流91接觸時,顆粒材料90的熱能大幅被待過濾氣流91所吸收。如此一來,便會降低過濾材料吸附或過濾該待過濾氣流的能力與效率,因此控制單元26控制加熱模組25加熱顆粒材料90,使待過濾氣流91的溫度與導入口200的顆粒材料溫度無過大之溫差狀態,當導入口200的該顆粒材料90的溫度相近於排出口201的顆粒材料90的溫度時,代表氣體的熱能沒有被顆粒材料90吸收,進而可以避免顆粒材料90之過濾面之孔隙率的熱漲冷縮而影響移動式顆粒床2的過濾效率。Please refer to FIG. 5C, which is a schematic flowchart of another embodiment of a temperature control method for a mobile particle bed control method according to the present invention. The process of this embodiment is based on the temperature control method of the embodiment of FIG. 3, that is, according to the temperature change of the particulate material at the particulate material inlet and the particulate material discharge port, and it further includes: The following steps: First, in step 330a, a first temperature sensor 243 provided at the particulate material inlet 200 measures a first temperature of the particulate material 90 before entering the particulate flow channel module 20. After the mobile particulate bed 2 is operated to form a clean air stream 92 after the air stream to be filtered 91 passes through the particle flow channel module 20, step 331a is performed to enable the second temperature sensor 244 to measure the particulate material discharge port 201 A second temperature of the discharged particulate material 90. Finally, step 332a is performed to enable the control unit to control the heating module 25 so that the second temperature is equal to or similar to the first temperature. In step 332a, the control unit 26 determines the amount of thermal energy of the particulate material 90 based on the temperature of the particulate material 90 of the discharge port 201. If the temperature of the particulate material 90 at the discharge port 201 is substantially lower than the temperature of the particulate material at the introduction port 200, it means that when the particulate material 90 is in contact with the air stream 91 to be filtered, the thermal energy of the particulate material 90 is largely absorbed by the air stream 91 to be filtered. In this way, the ability and efficiency of the filter material to adsorb or filter the air stream to be filtered will be reduced. Therefore, the control unit 26 controls the heating module 25 to heat the particulate material 90 so that the temperature of the air stream 91 to be filtered and the temperature of the particulate material at the inlet 200 There is no excessive temperature difference state. When the temperature of the particulate material 90 at the inlet 200 is close to the temperature of the particulate material 90 at the discharge port 201, the thermal energy of the representative gas is not absorbed by the particulate material 90, and the filtering surface of the particulate material 90 can be avoided. The thermal expansion and contraction of the porosity affect the filtration efficiency of the mobile particle bed 2.

接下來說明本發明透過控制顆粒材料90與待過濾氣流91溫度相同或相近,可以避免過濾效率變差的原理。請參閱圖6所示,在圖6(a)中,代表顆粒材料90沒有熱脹冷縮問題時,顆粒材料90的顆粒之間的間隙900可維持特定的寬度。當材顆粒材料90膨脹時,如圖6(b)所示,顆粒材料90之間的間隙900變太小,如此會影響待過濾氣流與顆粒材料90的接觸效果,進而影響過濾效率。同理,當材顆粒材料90收縮時,如圖6(c)所示,顆粒材料90之間的間隙900變的過大,因為間隙太大會影響待過濾氣流與顆粒材料90的接觸效果,使得有部分區域的氣體無法和顆粒材料90接觸到,進而影響過濾效率。由於顆粒材料的熱脹冷縮會影響過濾的效果,因此透過本發明控制入口處的待過濾氣流與顆粒材料的溫度,使其溫度相同或相近,進而可以避免過濾面之孔隙率的熱漲冷縮而影響移動式顆粒床的過濾效率。Next, the principle that the temperature of the particulate material 90 and the airflow 91 to be filtered 91 of the present invention are the same or similar can be avoided to prevent the filter efficiency from being deteriorated. Please refer to FIG. 6. In FIG. 6 (a), when the granular material 90 has no thermal expansion and contraction problems, the gap 900 between the particles of the granular material 90 can maintain a specific width. When the granular material 90 expands, as shown in FIG. 6 (b), the gap 900 between the granular materials 90 becomes too small, which will affect the contact effect between the airflow to be filtered and the granular material 90, and then the filtering efficiency. Similarly, when the granular material 90 shrinks, as shown in FIG. 6 (c), the gap 900 between the granular materials 90 becomes too large, because the gap is too large, which will affect the contact effect between the airflow to be filtered and the granular material 90, so that The gas in some areas cannot be contacted with the particulate material 90, thereby affecting the filtration efficiency. Since the thermal expansion and contraction of the particulate material will affect the filtering effect, the temperature of the air stream to be filtered at the inlet and the temperature of the particulate material are controlled by the present invention so that the temperature is the same or similar, thereby avoiding the thermal expansion and cooling of the porosity of the filtering surface. Shrinkage and affect the filtration efficiency of the mobile particle bed.

此外,如圖7A與圖7B所示,該圖為本發明之顆粒材料流量與待過濾氣流的關係示意圖。在圖7A中可以看出在待過濾氣流在30 cm/sec 且待過濾氣流溫度與顆粒材料溫度相同的控制情況下,不同顆粒材料流量300, 350, 450, 550, 600 g/min 的過濾效率值。根據實驗結果可以看出在待過濾氣流在30 cm/sec,最佳過濾效率是發生在顆粒材料流量在450 g/min。而在圖7B中,則可以看出在待過濾氣流在20 cm/sec 且待過濾氣流溫度與顆粒材料溫度相同的控制情況下,不同顆粒材料流量120, 240, 360, 480, 560 g/min 的過濾效率值。根據實驗結果可以看出在待過濾氣流在20cm/sec,最佳過濾效率是發生在顆粒材料流量在120 g/min。由圖7A與圖7B可以看出,隨著待過濾氣流的流速降低,顆粒材料流量的也要向下調整,才能夠使得顆粒材料產生最佳的過濾效果。In addition, as shown in FIG. 7A and FIG. 7B, this figure is a schematic diagram showing the relationship between the particulate material flow rate and the airflow to be filtered in the present invention. In Figure 7A, it can be seen that under the control of the airflow to be filtered at 30 cm / sec and the temperature of the airflow to be filtered and the temperature of the particulate material, the filtration efficiency of different particulate material flows of 300, 350, 450, 550, 600 g / min value. According to the experimental results, it can be seen that when the airflow to be filtered is 30 cm / sec, the optimal filtering efficiency occurs when the particulate material flow rate is 450 g / min. In Figure 7B, it can be seen that under the control of the airflow to be filtered at 20 cm / sec and the temperature of the airflow to be filtered and the temperature of the particulate material, the flow rate of different particulate materials is 120, 240, 360, 480, 560 g / min Filtration efficiency value. According to the experimental results, it can be seen that when the airflow to be filtered is at 20 cm / sec, the optimal filtering efficiency occurs when the particulate material flow rate is at 120 g / min. It can be seen from FIG. 7A and FIG. 7B that as the flow velocity of the airflow to be filtered decreases, the flow rate of the particulate material must also be adjusted downward, so that the particulate material can produce the best filtering effect.

以上所述,乃僅記載本發明為呈現解決問題所採用的技術手段之較佳實施方式或實施例而已,並非用來限定本發明專利實施之範圍。即凡與本發明專利申請範圍文義相符,或依本發明專利範圍所做的均等變化與修飾,皆為本發明專利範圍所涵蓋。The above description only describes the preferred implementations or embodiments of the technical means adopted by the present invention to solve the problem, and is not intended to limit the scope of patent implementation of the present invention. That is, all changes and modifications that are consistent with the meaning of the scope of patent application of the present invention, or made according to the scope of patent of the present invention, are covered by the scope of patent of the present invention.

2‧‧‧移動式顆粒床2‧‧‧ Mobile particle bed

20‧‧‧顆粒流道模組20‧‧‧ Particle Channel Module

200‧‧‧顆粒材料導入口200‧‧‧ particle material inlet

201‧‧‧顆粒材料排出口201‧‧‧ particulate material outlet

202‧‧‧子流道202‧‧‧ Sub-runner

203‧‧‧分流元件203‧‧‧ shunt element

21‧‧‧進氣管道模組21‧‧‧Air inlet duct module

210‧‧‧流路210‧‧‧flow

211‧‧‧壓力感測器211‧‧‧Pressure sensor

212‧‧‧速度感測器212‧‧‧speed sensor

22‧‧‧出氣管道模組22‧‧‧Outlet pipeline module

220‧‧‧出氣管路220‧‧‧Outlet line

221‧‧‧壓力感測器 221‧‧‧Pressure sensor

222‧‧‧速度感測器222‧‧‧speed sensor

23‧‧‧管道連接殼體23‧‧‧pipe connection housing

230‧‧‧第一導流板230‧‧‧First deflector

231‧‧‧第二導流板231‧‧‧Second deflector

232‧‧‧第三導流板232‧‧‧Third deflector

24‧‧‧溫度感測模組24‧‧‧Temperature Sensing Module

240、243‧‧‧第一溫度感測器240, 243‧‧‧first temperature sensor

241、244‧‧‧第二溫度感測器241, 244‧‧‧Second temperature sensor

242、245‧‧‧第三溫度感測器242, 245‧‧‧ Third temperature sensor

25‧‧‧加熱模組25‧‧‧Heating Module

250‧‧‧第一加熱器250‧‧‧The first heater

251‧‧‧第二加熱器251‧‧‧Second heater

252‧‧‧第三加熱器252‧‧‧Third heater

26‧‧‧控制單元26‧‧‧Control unit

27‧‧‧進料斗27‧‧‧feed hopper

90‧‧‧顆粒材料90‧‧‧ granular material

900‧‧‧間隙900‧‧‧ clearance

91‧‧‧待過濾氣流91‧‧‧Air to be filtered

910‧‧‧子氣流910‧‧‧ sub-flow

92‧‧‧乾淨氣流92‧‧‧ clean air

3‧‧‧控制方法3‧‧‧Control method

30~33‧‧‧步驟30 ~ 33‧‧‧step

330~332‧‧‧步驟330 ~ 332‧‧‧step

330a~332a‧‧‧步驟330a ~ 332a‧‧‧step

圖1係為習用技術之移動式顆粒床示意圖。 圖2A與圖2B係為本發明之移動式顆粒床示意圖。 圖3係為本發明之之移動式顆粒床另一實施例示意圖。 圖4係為本發明之移動式顆粒床又一實施例示意圖。 圖5A為本發明之提升過濾效率的移動式顆粒床控制方法之一實施例操作流程示意圖。 圖5B為本發明移動式顆粒床控制方法之溫度控制方式的一實施例流程示意圖。 圖5C為本發明移動式顆粒床控制方法之溫度控制方式的另一實施例流程示意圖。 圖6係為待過濾氣流與顆粒材料間具有溫差使得顆粒材料熱脹影像過濾效果示意圖。 圖7A與圖7B為本發明之顆粒材料流量與待過濾氣流的關係示意圖。Figure 1 is a schematic diagram of a conventional moving particle bed. 2A and 2B are schematic diagrams of a mobile particle bed according to the present invention. FIG. 3 is a schematic diagram of another embodiment of a moving particle bed according to the present invention. FIG. 4 is a schematic diagram of another embodiment of a moving particle bed according to the present invention. FIG. 5A is a schematic flowchart of an embodiment of a mobile particle bed control method for improving filtration efficiency according to the present invention. FIG. 5B is a schematic flowchart of an embodiment of a temperature control method for a mobile particle bed control method according to the present invention. FIG. 5C is a schematic flowchart of another embodiment of a temperature control method for a mobile particle bed control method according to the present invention. FIG. 6 is a schematic diagram of the filtering effect of the thermal expansion image of the particulate material due to the temperature difference between the air stream to be filtered and the particulate material. 7A and 7B are schematic diagrams showing the relationship between the particulate material flow rate and the airflow to be filtered according to the present invention.

Claims (10)

一種提升過濾效率的移動式顆粒床控制方法,其係包括有下列步驟: 提供一移動式顆粒床,其係包括有一顆粒流道模組、一進氣管道模組、一出氣管道模組、一加熱模組以及一控制單元,該顆粒流道模組,具有一顆粒材料導入口以及一顆粒材料排出口,該進氣管道模組設置於該顆粒流道模組之一側,該出氣管道模組,設置於該顆粒流道模組之另一側,該加熱模組設置於該顆粒流道模組內,該控制單元與該加熱模組電性連接; 使一顆粒材料經由該顆粒材料導入口進入而由該顆粒材料排出口排出; 使一待過濾氣流由該進氣管道模組進入該顆粒流道模組,再經由該出氣管道模組排出;以及 該控制單元控制該加熱模組加熱該顆粒材料,使該顆粒材料的溫度等於該待過濾氣流的溫度或與該待過濾氣流的溫度具有一特定溫差。A mobile particle bed control method for improving filtration efficiency includes the following steps: A mobile particle bed is provided, which includes a particle flow channel module, an air inlet duct module, an air outlet duct module, a A heating module and a control unit. The granular flow channel module has a granular material inlet and a granular material outlet. The inlet duct module is disposed on one side of the granular flow channel module. The outlet duct mold Group, which is set on the other side of the particle flow channel module, the heating module is set in the particle flow channel module, the control unit is electrically connected to the heating module, and a particle material is introduced through the particle material The inlet enters and is discharged by the particulate material discharge port; the air flow to be filtered enters the particulate flow channel module from the intake duct module, and then is discharged through the outlet duct module; and the control unit controls the heating module to heat For the particulate material, the temperature of the particulate material is equal to the temperature of the air stream to be filtered or has a specific temperature difference from the temperature of the air stream to be filtered. 如申請專利範圍第1項所述之提升過濾效率的移動式顆粒床控制方法,其中該控制單元係根據該待過濾氣流進出該顆粒流道模組之溫度變化,或者是根據該顆粒材料在該顆粒材料導入口以及該顆粒材料排出口的溫度變化,以調控該加熱模組加熱該顆粒材料。The mobile particle bed control method for improving filtration efficiency according to item 1 of the scope of the patent application, wherein the control unit is based on a temperature change of the air flow to be filtered in and out of the particle flow channel module, or according to the particle material in the The temperature of the particulate material inlet and the particulate material outlet changes to regulate the heating module to heat the particulate material. 如申請專利範圍第2項所述之提升過濾效率的移動式顆粒床控制方法,其中根據該待過濾氣流進出該顆粒流道模組之溫度變化或者是該顆粒材料的步驟更包括有下列步驟: 設置一第一溫度感測器在該進氣管道模組以量測進入該顆粒流道模組之該待過濾氣流的一第一溫度; 設置一第二溫度感測器在該出氣管道模組; 該待過濾氣流通過該顆粒流道模組之後獲得一過濾之乾淨氣體,使該第二溫度感測器量測該過濾氣體之一第二溫度;以及 該控制單元控制該加熱模組,使該第二溫度等於該第一溫度或與該第一溫度具有一特定溫差。The mobile particle bed control method for improving filtration efficiency according to item 2 of the scope of patent application, wherein the steps according to the temperature change of the airflow to be filtered into and out of the particle flow channel module or the particulate material further include the following steps: A first temperature sensor is set in the air inlet pipe module to measure a first temperature of the airflow to be filtered entering the particle flow channel module; a second temperature sensor is set in the air outlet pipe module ; Obtaining a filtered clean gas after the airflow to be filtered passes through the particle flow channel module, so that the second temperature sensor measures a second temperature of the filtered gas; and the control unit controls the heating module so that The second temperature is equal to the first temperature or has a specific temperature difference from the first temperature. 如申請專利範圍第2項所述之提升過濾效率的移動式顆粒床控制方法,其中根據該顆粒材料在該顆粒材料導入口以及該顆粒材料排出口的溫度變化更包括有下列步驟: 設置一第一溫度感測器在該顆粒材料導入口以量測進入該顆粒流道模組前之該顆粒材料的一第一溫度; 設置一第二溫度感測器在該顆粒材料排出口; 該待過濾氣流通過該顆粒流道模組之後形成一乾淨氣流,使該第二溫度感測器量測由該顆粒材料排出口所排出的顆粒材料的一第二溫度;以及 該控制單元控制該加熱模組,使該第二溫度等於該第一溫度或與該第一溫度具有一溫差。The mobile particle bed control method for improving filtration efficiency according to item 2 of the scope of the patent application, wherein according to the temperature change of the particulate material at the particulate material inlet and the particulate material outlet, the method further includes the following steps: A temperature sensor at the particulate material inlet to measure a first temperature of the particulate material before entering the particulate flow channel module; setting a second temperature sensor at the particulate material outlet; the to-be-filtered After the airflow passes through the particulate flow channel module, a clean airflow is formed, so that the second temperature sensor measures a second temperature of the particulate material discharged from the particulate material discharge port; and the control unit controls the heating module , Making the second temperature equal to the first temperature or having a temperature difference from the first temperature. 一種移動式顆粒床,包括有一顆粒流道模組、一進氣管道模組以及一出氣管道模組,該顆粒流道模組,具有一顆粒材料導入口以及一顆粒材料排出口,一顆粒材料經由該顆粒材料導入口進入而由該顆粒材料排出口排出,該進氣管道模組設置於該顆粒流道模組之一側,一待過濾氣流由該進氣管道模組進入該顆粒流道模組,以形成一乾淨氣流,該出氣管道模組,設置於該顆粒流道模組之另一側,用以排出該乾淨氣流,其特徵在於該移動式顆粒床更具有: 一溫度感測模組,用以感測關於該顆粒材料或者是該待過濾氣流與該該鏡氣流之溫度; 一加熱模組,設置於該顆粒流道模組內;以及 一控制單元,與該溫度感測模組以及該加熱模組電訊連接,該控制單元控制該加熱模組加熱該顆粒材料,使該顆粒材料的溫度等於該待過濾氣流的溫度或與該待過濾氣流的溫度具有一溫差。A movable granular bed includes a granular flow channel module, an intake duct module, and an outlet duct module. The granular flow channel module has a granular material inlet and a granular material outlet, and a granular material. It enters through the particulate material inlet and is discharged from the particulate material outlet. The intake duct module is disposed on one side of the particulate flow channel module. A gas stream to be filtered enters the particulate flow channel through the intake duct module. Module to form a clean airflow, the air outlet pipe module is disposed on the other side of the particle flow channel module to discharge the clean airflow, and is characterized in that the mobile particle bed further has: a temperature sensing A module for sensing the temperature of the particulate material or the airflow to be filtered and the mirror airflow; a heating module disposed in the particle flow channel module; and a control unit for detecting the temperature The module and the heating module are electrically connected. The control unit controls the heating module to heat the particulate material so that the temperature of the particulate material is equal to the temperature of the air stream to be filtered or the temperature of the air stream to be filtered. Having a degree of temperature difference. 如申請專利範圍第5項所述之移動式顆粒床,其中該溫度感測模組係更包括有: 一第一溫度感測器,其係設置於該進氣管道模組,以量測進入該顆粒流道模組前之該待過濾氣流的一第一溫度,該第一溫度等於該顆粒材料於該顆粒材料導入口的溫度或與該顆粒材料於該顆粒材料導入口的溫度之間具有一溫差; 一第二溫度感測器,其係設置於該出氣管道模組用以感測該待過濾氣流通過該顆粒流道模組後,形成一過濾氣體的一第二溫度; 其中,該控制單元,與該加熱模組、該第一與第二感測模組電性連接,該控制單元用以控制該加熱模組,使該第二溫度等於該第一溫度或與該第一溫度具有該溫差。According to the movable particle bed described in item 5 of the scope of patent application, wherein the temperature sensing module further includes: a first temperature sensor, which is disposed in the intake duct module to measure the entrance A first temperature of the air stream to be filtered before the particulate flow channel module, the first temperature being equal to the temperature of the particulate material at the particulate material inlet or between the particulate material and the particulate material at the particulate material inlet A temperature difference; a second temperature sensor provided in the air outlet pipe module to sense a second temperature of a filtered gas after the airflow to be filtered passes through the particle flow channel module; A control unit is electrically connected to the heating module, the first and second sensing modules, and the control unit is used to control the heating module so that the second temperature is equal to the first temperature or the first temperature With this temperature difference. 如申請專利範圍第5項所述之移動式顆粒床,其中該溫度感測模組係更包括有: 一第一溫度感測器,其係設置於該顆粒材料導入口,該第一溫度感測器用以感測通過該顆粒材料導入口的顆粒材料的之一第一溫度,該第一溫度係等於該待過濾氣流的溫度或與該待過濾氣流的溫度之間具有一溫差; 一第二溫度感測器,其係設置於該顆粒材料排出口用以感測通過該顆粒材料排出口的該顆粒材料的一第二溫度; 其中,該控制單元,與該加熱模組、該第一與第二感測模組電性連接,該控制單元用以控制該加熱模組,使該第二溫度等於該第一溫度或與該第一溫度具有該溫差。According to the movable particle bed described in item 5 of the patent application scope, wherein the temperature sensing module further includes: a first temperature sensor, which is disposed at the particle material introduction port, the first temperature sensor The detector is used to sense a first temperature of the particulate material passing through the particulate material inlet, the first temperature being equal to the temperature of the air stream to be filtered or a temperature difference between the temperature of the air stream to be filtered; a second A temperature sensor is disposed at the particulate material discharge port to sense a second temperature of the particulate material passing through the particulate material discharge port; wherein the control unit, the heating module, the first and The second sensing module is electrically connected, and the control unit is used to control the heating module so that the second temperature is equal to the first temperature or has a temperature difference from the first temperature. 如申請專利範圍第1項所述之移動式顆粒床,其中該顆粒流道模組內更具有複數個分流元件,沿著該顆粒材料流動的方向,有間隔的設置。According to the movable particle bed described in the first item of the patent application scope, wherein the particle flow channel module further includes a plurality of shunting elements, which are arranged at intervals along the direction of the particle material flow. 如申請專利範圍第1項所述之移動式顆粒床,其中該顆粒材料係為過濾材質、吸附材質、觸媒材質或前述之至少兩種組合。The movable particle bed according to item 1 of the scope of the patent application, wherein the granular material is a filter material, an adsorption material, a catalyst material, or at least two combinations thereof. 如申請專利範圍第1項所述之移動式顆粒床,其中該進氣管道模組內更包括有: 一第一導流板,水平夾角係介於0°至80°之間; 一第二導流板,其係設置於該第一導流板之一側,該第二導流板具有一介於10°至80°之水平夾角;以及 一第三導流板,其係設置於該第一導流板之另一側,與該第二導流板相對應,該第三導流板具有一介於-10°至-80°之水平夾角。The movable particle bed according to item 1 of the scope of patent application, wherein the intake duct module further includes: a first deflector, and a horizontal included angle between 0 ° and 80 °; a second A deflector is disposed on one side of the first deflector, the second deflector has a horizontal included angle between 10 ° and 80 °, and a third deflector is disposed on the first deflector. The other side of a deflector corresponds to the second deflector, and the third deflector has a horizontal included angle between -10 ° and -80 °.
TW107103708A 2018-02-01 2018-02-01 Granular moving bed and method for improving the filtering effect using thereof TWI640354B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107103708A TWI640354B (en) 2018-02-01 2018-02-01 Granular moving bed and method for improving the filtering effect using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107103708A TWI640354B (en) 2018-02-01 2018-02-01 Granular moving bed and method for improving the filtering effect using thereof

Publications (2)

Publication Number Publication Date
TWI640354B TWI640354B (en) 2018-11-11
TW201934191A true TW201934191A (en) 2019-09-01

Family

ID=65034238

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107103708A TWI640354B (en) 2018-02-01 2018-02-01 Granular moving bed and method for improving the filtering effect using thereof

Country Status (1)

Country Link
TW (1) TWI640354B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI730727B (en) * 2020-04-17 2021-06-11 國立中央大學 Granular moving bed and method for controlling the granular material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI243232B (en) * 2003-12-23 2005-11-11 Ind Tech Res Inst Granular moving-bed structure of water-jacket type
TWI255734B (en) * 2004-03-30 2006-06-01 Ind Tech Res Inst Thermal regenerative granular-moving bed apparatus
TWI350198B (en) * 2008-12-22 2011-10-11 Ind Tech Res Inst Filter for separating biomass oil gas and char of biomass pyrolysis product
TWI486201B (en) * 2013-02-01 2015-06-01 Univ Nat Central Gas-convey recycling type granular bed filter syster

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI730727B (en) * 2020-04-17 2021-06-11 國立中央大學 Granular moving bed and method for controlling the granular material

Also Published As

Publication number Publication date
TWI640354B (en) 2018-11-11

Similar Documents

Publication Publication Date Title
EP3531018B1 (en) System for handling coal processing emissions
CN101619881B (en) Dedusting system of whole factory building
CN102421508B (en) integrated mercury control system
CN204502634U (en) A kind of high-temperature gas duster device
TWI419732B (en) Compact two-stage granular moving-bed apparatus
CN110152485A (en) A kind of cement kiln fume high-temperature denitration dust collecting device
TWI404563B (en) Moving granular bed and gas guiding system thereof
CN105148696A (en) Denitration and dust removal system and method for industrial kiln gas
JP2007308343A (en) Apparatus for thermally regenerating waste gypsum
TW201934191A (en) Granular moving bed and method for improving the filtering effect using thereof
JP2012223758A (en) Mercury capture originating from coal-fired thermal power station at filter bag house using combustion exhaust gas temperature as process control means
Yin et al. Experimental study on filtration characteristics of a novel moving granular bed filter
JP2020520791A (en) A cloth filter that emits less particulate matter
TWI730727B (en) Granular moving bed and method for controlling the granular material
CN103845969A (en) Smoke purification device for cooperatively removing smoke fine particles and gas-state pollutants
CN206198879U (en) A kind of fume dust remover
CN106621598A (en) Synergistic control system for high-temperature flue gas dust and nitrogen oxide
TWI818637B (en) Device and controlling method for filtering gas
CN100421770C (en) Flue-gas purification system
CN213823905U (en) Device for filtering and preventing blockage of dust removal system pipeline
TWI658857B (en) Granular moving bed and method for removing tar using thereof
CN206526616U (en) A kind of high-temperature flue gas dust and nitrogen oxides cooperative control system
CN204447649U (en) A kind of electric-bag complex dust collector
Lv et al. The Elaboration of Flow Resistance Model for a Bag Filter Serving a 200 MW Power Plant
CN111706931A (en) Underground position self-regeneration air purification system and treatment method thereof