TW201933879A - Method and device for content recommendation - Google Patents

Method and device for content recommendation Download PDF

Info

Publication number
TW201933879A
TW201933879A TW107144112A TW107144112A TW201933879A TW 201933879 A TW201933879 A TW 201933879A TW 107144112 A TW107144112 A TW 107144112A TW 107144112 A TW107144112 A TW 107144112A TW 201933879 A TW201933879 A TW 201933879A
Authority
TW
Taiwan
Prior art keywords
information
location
content
service
determining
Prior art date
Application number
TW107144112A
Other languages
Chinese (zh)
Other versions
TWI703862B (en
Inventor
劉陽陽
Original Assignee
香港商阿里巴巴集團服務有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港商阿里巴巴集團服務有限公司 filed Critical 香港商阿里巴巴集團服務有限公司
Publication of TW201933879A publication Critical patent/TW201933879A/en
Application granted granted Critical
Publication of TWI703862B publication Critical patent/TWI703862B/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/953Querying, e.g. by the use of web search engines
    • G06F16/9535Search customisation based on user profiles and personalisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/953Querying, e.g. by the use of web search engines
    • G06F16/9537Spatial or temporal dependent retrieval, e.g. spatiotemporal queries
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/52Network services specially adapted for the location of the user terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/55Push-based network services

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Information Transfer Between Computers (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

Provided by an embodiment disclosed in the description is a content recommendation method, the method comprising: obtaining location data of a user, and determining location information corresponding to the location data according to a location mapping model; then, at least according to the determined location information and feature information of various content information in a content information library, determining content recommendation information recommended to the user.

Description

內容推薦方法及裝置Content recommendation method and device

本說明書揭露的多個實施例涉及網際網路技術領域,尤其涉及一種內容推薦方法及裝置。The embodiments disclosed in the present disclosure relate to the field of Internet technologies, and in particular, to a content recommendation method and apparatus.

隨著網際網路技術的發展,人們越來越頻繁地瀏覽網路平臺提供的內容資訊。例如,在網路購物平臺中瀏覽商品資訊,或者在新聞平臺瀏覽熱點資訊,或者在理財平臺瀏覽理財資訊等。
不同用戶在使用同一網路平臺時,對其提供的內容資訊的需求有著或多或少的差異。另一態樣,網路平臺中資訊的巨量增長也常常讓用戶難以選擇。目前,向用戶推薦的內容資訊由於存在不夠精準、不夠及時等不足,難以滿足用戶的要求。因此,需要提供一種合理的方法,以滿足用戶瀏覽網路平臺中提供的內容資訊的多種需求。
With the development of Internet technology, people are more and more frequently browsing the content information provided by the network platform. For example, browse product information in the online shopping platform, or browse hot information on the news platform, or browse financial information on the financial platform.
Different users have more or less different requirements for the content information they provide when using the same network platform. In another aspect, the huge amount of information in the web platform often makes it difficult for users to choose. At present, content information recommended to users is insufficiently accurate, not timely enough, etc., and it is difficult to meet the requirements of users. Therefore, there is a need to provide a reasonable method to meet the various needs of users to browse the content information provided in the network platform.

本說明書描述了一種內容推薦方法及裝置,根據用戶的場所資訊和內容資訊庫中各個內容資訊的特徵資訊確定向用戶推薦的內容推薦資訊,從而及時地向用戶推薦更加精準的內容資訊。
第一態樣,提供了一種內容推薦方法。該方法包括:
獲取用戶的位置資料;
根據位置映射模型,確定與所述位置資料對應的場所資訊,所述位置映射模型基於預先獲取的服務資訊而訓練獲得,所述服務資訊中包含服務位置資料和對應的服務場所資料;
至少根據所述場所資訊,以及內容資訊庫中各個內容資訊的特徵資訊,確定向所述用戶推薦的內容推薦資訊。
在一種可能的實施方式中,所述位置映射模型通過以下步驟訓練獲得:
對所述服務資訊中包含的服務位置資料進行聚類,獲得多個類簇;
根據所述服務資訊中與所述服務位置資料對應的服務場所資料,確定所述多個類簇對應的場所標籤。
在一種可能的實施方式中,所述確定與所述位置資料對應的場所資訊包括:
從所述多個類簇中確定與所述用戶的位置資料對應的類簇;
根據確定出的類簇所對應的場所標籤,確定所述場所資訊。
在一種可能的實施方式中,所述確定向所述用戶推薦的內容推薦資訊,包括:
確定與所述場所資訊對應的服務類別資訊;
根據所述各個內容資訊的特徵資訊,從所述內容資訊庫中確定與所述服務類別資訊相關的內容資訊,並將所述內容資訊作為所述內容推薦資訊。
在一種可能的實施方式中,所述特徵資訊包括所述內容資訊的所述服務類別資訊,所述從所述內容資訊庫中確定與所述服務類別資訊相關的內容資訊,包括:
從所述內容資訊庫中確定與所述服務類別資訊對應的所述內容資訊。
在一種可能的實施方式中,所述各個內容資訊的特徵資訊包括預先確定的與該內容資訊對應的場所資訊,所述確定向所述用戶推薦的內容推薦資訊,包括:
當與所述各個內容資訊對應的場所資訊和與所述位置資料對應的場所資訊之間的從屬關係符合預設規則時,將該內容資訊作為所述內容推薦資訊。
在一種可能的實施方式中,所述特徵資訊基於從所述內容資訊中提取出的關鍵詞資訊和場所資訊而確定。
在一種可能的實施方式中,所述位置資料包括無線保真WiFi指紋資料和經緯度資料中的至少一種。
在一種可能的實施方式中,所述場所資訊包括建築名稱、商戶名稱和商圈資訊中的至少一種。
第二態樣,提供了一種內容推薦裝置。該裝置包括:
獲取單元,用於獲取用戶的位置資料;
確定單元,用於根據位置映射模型,確定與所述位置資料對應的場所資訊,所述位置映射模型基於預先獲取的服務資訊而訓練獲得,所述服務資訊中包含服務位置資料和對應的服務場所資料;
處理單元,用於至少根據所述場所資訊,以及內容資訊庫中各個內容資訊的特徵資訊,確定向所述用戶推薦的內容推薦資訊。
在一種可能的實施方式中,所述位置映射模型由所述確定單元通過以下步驟訓練獲得:
對所述服務資訊中包含的服務位置資料進行聚類,獲得多個類簇;
根據所述服務資訊中與所述服務位置資料對應的服務場所資料,確定所述多個類簇對應的場所標籤。
在一種可能的實施方式中,所述確定單元具體包括:
第一確定子單元,用於從所述多個類簇中確定與所述用戶的位置資料對應的類簇;
第二確定子單元,用於根據確定出的類簇所對應的場所標籤,確定所述場所資訊。
在一種可能的實施方式中,所述處理單元具體包括:
第一處理子單元,用於確定與所述場所資訊對應的服務類別資訊;
第二處理子單元,用於根據所述各個內容資訊的特徵資訊,從所述內容資訊庫中確定與所述服務類別資訊相關的內容資訊,並將所述內容資訊作為所述內容推薦資訊。
在一種可能的實施方式中,所述第二處理子單元中的特徵資訊包括所述內容資訊的所述服務類別資訊,所述第二處理子單元具體用於:
從所述內容資訊庫中確定與所述服務類別資訊對應的所述內容資訊。
在一種可能的實施方式中,所述處理單元中包括的各個內容資訊的特徵資訊包括預先確定的與該內容資訊對應的場所資訊,所述處理單元具體用於:
當與所述各個內容資訊對應的場所資訊和與所述位置資料對應的場所資訊之間的從屬關係符合預設規則時,將該內容資訊作為所述內容推薦資訊。
在一種可能的實施方式中,所述處理單元中包括的特徵資訊基於從所述內容資訊中提取出的關鍵詞資訊和場所資訊而確定。
在一種可能的實施方式中,所述獲取單元獲取的位置資料包括無線保真WiFi指紋資料和經緯度資料中的至少一種。
在一種可能的實施方式中,所述確定單元確定的場所資訊包括建築名稱、商戶名稱和商圈資訊中的至少一種。
第三態樣,提供了一種電腦可讀儲存媒體,其上儲存有電腦程式。當所述電腦程式在電腦中執行時,令電腦執行上述第一態樣中任一種實施方式提供的方法。
第四態樣,提供了一種計算設備,包括儲存器和處理器。所述儲存器中儲存有可執行程式碼,所述處理器執行所述可執行程式碼時,實現上述第一態樣中任一種實施方式提供的方法。
本說明書提供的一種內容推薦方法及裝置,通過獲取用戶的位置資料,並根據位置映射模型,確定與位置資料對應的場所資訊。然後,至少根據該場所資訊,以及內容資訊庫中各個內容資訊的特徵資訊,確定向所述用戶推薦的內容推薦資訊,從而及時地向用戶推薦更加精準的內容資訊。
The present specification describes a content recommendation method and apparatus for determining content recommendation information recommended to a user according to the location information of the user and the feature information of each content information in the content information database, thereby promptly recommending more accurate content information to the user.
In the first aspect, a content recommendation method is provided. The method includes:
Obtain the user's location data;
Determining, according to the location mapping model, location information corresponding to the location data, where the location mapping model is obtained based on pre-acquired service information, where the service information includes service location data and corresponding service location data;
Determining the content recommendation information recommended to the user according to at least the location information and the feature information of each content information in the content information database.
In a possible implementation manner, the location mapping model is obtained through the following steps:
Clustering the service location data included in the service information to obtain a plurality of clusters;
Determining the location label corresponding to the plurality of clusters according to the service location data corresponding to the service location data in the service information.
In a possible implementation manner, the determining location information corresponding to the location data includes:
Determining a cluster corresponding to the location data of the user from the plurality of clusters;
The location information is determined according to the location label corresponding to the determined cluster.
In a possible implementation manner, the determining content recommendation information recommended to the user includes:
Determining service category information corresponding to the location information;
Determining, according to the feature information of the respective content information, content information related to the service category information from the content information database, and using the content information as the content recommendation information.
In a possible implementation, the feature information includes the service category information of the content information, and the determining content information related to the service category information from the content information database includes:
Determining the content information corresponding to the service category information from the content information library.
In a possible implementation manner, the feature information of each content information includes a predetermined location information corresponding to the content information, and the determining content recommendation information recommended to the user includes:
When the affiliation relationship between the location information corresponding to the content information and the location information corresponding to the location data conforms to a preset rule, the content information is used as the content recommendation information.
In a possible implementation manner, the feature information is determined based on keyword information and location information extracted from the content information.
In a possible implementation manner, the location data includes at least one of a wireless fidelity WiFi fingerprint data and latitude and longitude data.
In a possible implementation manner, the location information includes at least one of a building name, a business name, and a business circle information.
In a second aspect, a content recommendation device is provided. The device includes:
An obtaining unit, configured to acquire location information of the user;
a determining unit, configured to determine, according to the location mapping model, location information corresponding to the location data, where the location mapping model is trained based on pre-acquired service information, where the service information includes service location data and a corresponding service location data;
The processing unit is configured to determine content recommendation information recommended to the user according to at least the location information and the feature information of each content information in the content information database.
In a possible implementation manner, the location mapping model is obtained by the determining unit by the following steps:
Clustering the service location data included in the service information to obtain a plurality of clusters;
Determining the location label corresponding to the plurality of clusters according to the service location data corresponding to the service location data in the service information.
In a possible implementation, the determining unit specifically includes:
a first determining subunit, configured to determine, from the plurality of clusters, a cluster corresponding to the location data of the user;
And a second determining subunit, configured to determine the location information according to the location label corresponding to the determined cluster.
In a possible implementation, the processing unit specifically includes:
a first processing subunit, configured to determine service category information corresponding to the location information;
The second processing sub-unit is configured to determine, according to the feature information of the respective content information, content information related to the service category information from the content information database, and use the content information as the content recommendation information.
In a possible implementation, the feature information in the second processing sub-unit includes the service category information of the content information, and the second processing sub-unit is specifically configured to:
Determining the content information corresponding to the service category information from the content information library.
In a possible implementation, the feature information of each content information included in the processing unit includes a predetermined location information corresponding to the content information, and the processing unit is specifically configured to:
When the affiliation relationship between the location information corresponding to the content information and the location information corresponding to the location data conforms to a preset rule, the content information is used as the content recommendation information.
In a possible implementation manner, the feature information included in the processing unit is determined based on keyword information and location information extracted from the content information.
In a possible implementation manner, the location information acquired by the acquiring unit includes at least one of a wireless fidelity WiFi fingerprint data and latitude and longitude data.
In a possible implementation manner, the location information determined by the determining unit includes at least one of a building name, a merchant name, and a business circle information.
In a third aspect, a computer readable storage medium is provided having a computer program stored thereon. When the computer program is executed in a computer, the computer is caused to perform the method provided by any of the first aspects described above.
In a fourth aspect, a computing device is provided that includes a storage and a processor. An executable code is stored in the storage, and when the processor executes the executable code, the method provided by any one of the foregoing first aspects is implemented.
The content recommendation method and device provided by the present specification determine the location information corresponding to the location data by acquiring the location data of the user and according to the location mapping model. Then, at least according to the location information and the feature information of each content information in the content information database, the content recommendation information recommended to the user is determined, so that more accurate content information is recommended to the user in time.

下面結合圖式,對本說明書揭露的多個實施例進行描述。
圖1為本說明書揭露的一個實施例提供的一種內容推薦方法的應用場景示意圖。所述推薦方法的執行主體可以為伺服器。當用戶通過終端(如,終端可以為手機、平板電腦、可穿戴智慧設備等)登錄內容推薦平臺(如,支付寶應用平臺)時,可以採用本說明書揭露的多個實施例提供的業務功能的推薦方法,伺服器獲取用戶的位置資料(如,經緯度資料),並根據位置映射模型(如,位置映射模型可以包括位置資料與場所資訊的映射關係),確定與該位置資料對應的場所資訊(如,汽車4S店)。然後,根據該場所資訊,以及內容資訊庫中各個內容資訊的特徵資訊(如,特徵資訊可以包括服務類別資訊),確定向用戶推薦的內容推薦資訊(如,汽車保養知識等)。
本說明書揭露的多個實施例提供的業務功能的推薦方法,通過獲取用戶的位置資料,並根據位置映射模型,確定與位置資料對應的場所資訊。然後,至少根據該場所資訊,以及內容資訊庫中各個內容資訊的特徵資訊,確定向所述用戶推薦的內容推薦資訊,從而及時地向用戶推薦更加精準的內容資訊。
圖2為本說明書揭露的一個實施例提供的一種內容推薦方法的流程圖。所述方法的執行主體可以為具有處理能力的設備:伺服器或者系統或者裝置,例如,如圖1所示的伺服器。如圖2所示,所述方法具體包括:
步驟S210,獲取用戶的位置資料。
具體地,位置資料可以為通過基於位置的服務(Location Based Service,簡稱LBS)從用戶的終端採集的資料。LBS中包括多種定位方式,如全球定位系統(Global Positioning System,簡稱GPS)定位、基站定位、無線保真(Wireless Fidelity,簡稱WiFi)定位等。
在一個實施例中,位置資料可以包括通過GPS定位或基站定位得到的經緯度資料。例如,位置資料中包括的經緯度資料為:北緯39°54′ 25.70″和東經116°23′ 28.49″。
在另一個實施例中,位置資料可以包括通過WiFi定位得到的WiFi指紋資料。在一個例子中,WiFi指紋資料可以包括WiFi接入點(Access Point,簡稱AP)的地址(如,媒體存取控制(Media Access Control,簡稱MAC)地址)和相應的訊號強度等。
步驟S220,根據位置映射模型,確定與用戶的位置資料對應的場所資訊。
具體地,場所資訊與位置資料的不同之處在於,場所資訊是用戶可以感知到的、具有明確語義的位置資訊。在一個實施例中,場所資訊可以包括建築名稱(如,新中關大廈)、商戶名稱(如,哈姆玩具店)和商圈資訊(如,三裡屯太古裡)等。在另一個實施例中,場所資訊還可以包括與場所(如,商戶)相關的服務類別資訊(如,美食、服裝、美容、電影等)。
從位置資料到場所資訊的轉換可以根據預先獲得的位置映射模型來執行。在一個實施例中,上述位置映射模型包括GPS坐標資料與場所標籤之間的映射關係,該映射關係預先通過人工採集而獲得。
在另一實施例中,上述位置映射模型可以基於預先獲取的服務資訊中包含的服務位置資料和對應的服務場所資料而訓練獲得。與服務資訊對應的服務可以包括支付服務(如,使用支付應用對訂單進行支付)和定位服務(如,在社交平臺發送狀態資訊時對當前位置進行定位)等。
其中,服務資訊可以通過多種方式獲取。在一個實施例中,與服務資訊對應的服務可以包括支付服務,相應的服務資訊可以包括支付資訊。獲取支付資訊,可以包括:伺服器在檢測到用戶通過終端提交訂單或對訂單進行支付時,可以採集支付資訊,具體包括通過採集終端的位置資料作為支付資訊中的服務位置資料,以及從提交的訂單中獲取與服務位置資料相應的服務場所資訊。在一個例子中,用戶使用已連接WiFi的終端上的支付應用(如,支付寶)進行支付操作時,該支付應用的伺服器可以通過WiFi定位採集此時終端的位置資料,(如,WiFi指紋資料)和支付資訊中包括的服務場所資料(如,麥當勞學院路店)。
在另一個實施例中,與服務資訊對應的服務可以包括定位服務,相應的服務資訊可以包括定位服務資訊。獲取定位服務資訊,可以包括:伺服器在檢測到用戶通過終端使用定位服務時,可以獲取定位服務資訊,具體包括採集終端的位置資料作為定位服務資訊中的服務位置資料,以及獲取用戶在使用定位服務時選定或創建的位置資訊。在一個例子中,用戶使用支持GPS定位的終端登錄工作應用(如,釘釘)進行上班打卡操作,此時,可以通過GPS定位採集終端的位置資料(如,經緯度資料)和打卡資訊中包括的服務場所資料(如,加州美食餐廳)。在另一個例子中,用戶使用連接有蜂巢式網的終端在社交平臺上發佈包括場所資訊的狀態,此時,可以通過基站定位採集終端的位置資料(如,經緯度資料)和用戶選定(或創建)的服務場所資料(如,一二咖啡館)。
進一步地,基於預先獲取的服務資訊,位置映射模型可以通過以下步驟訓練獲得:對服務資訊中包含的服務位置資料進行聚類,獲得多個類簇。然後,根據服務資訊中與服務位置資料對應的服務場所資料,確定多個類簇對應的場所標籤。如此,可以建立多個類簇與多個場所標籤之間的映射關係。
在一個實施例中,可以採用聚類演算法對服務位置資料進行聚類,並獲得多個類簇。其中聚類演算法可以為GEOHASH演算法或DBSCAN演算法,在此不作限定。
在一個例子中,服務位置資料包括多個經緯度資料,此時可以採用GEOHASH演算法將該資料轉換成GEOHASH網格,並確定各個經緯度資料的網格編號。例如,服務位置資料包括100個經緯度坐標,採用GEOHASH演算法將這100經緯度坐標轉換成GEOHASH網格後,如圖3所示,每20個經緯度坐標具有相同的網格編號,得到的5個網格編號分別為:WX4G01、WX4H02、WX4I03、WX4J04、WX4K05。如此,以上100個經緯度坐標被聚類為5個類簇。
在另一個例子中,服務位置資料包括多個WiFi指紋資料,此時可以採用DBSCAN演算法對該資料進行聚類,獲取多個具有不同編號的類簇。DBSCAN演算法是一種基於密度的聚類演算法。與劃分和層次聚類方法不同,它將簇定義為密度相連的點的最大集合,能夠把具有足夠高密度的區域劃分為簇,並可在噪訊的空間資料庫中發現任意形狀的聚類。具體而言,在DBSCAN演算法中,首先將所有位置點標記為核心點、邊界點或噪訊點,刪除其中的噪訊點。然後為距離在預設參數之內的所有核心點之間賦予一條邊,每組連通的核心點形成一個簇,將每個邊界點指派到一個與之關聯的核心點的簇中,由此完成位置點的聚類。
可以理解的是,可以通過調整聚類演算法的參數,控制聚類得到的類簇的精度(如,類簇的範圍大小)。例如,可以通過控制GEOHASH演算法中對服務位置資料進行編碼的編碼位數,控制類簇的精度。更具體地,服務位置資料的編碼位數越多,得到的類簇範圍越精確。又例如,可以通過控制DBSCAN演算法中鄰域半徑ε的大小,控制類簇的精度。更具體地,輸入的領域半徑ε的值越小,得到的類簇範圍越精確。
在一個實施例中,對聚類獲得的多個類簇,可以根據服務資訊中與服務位置資料對應的服務場所資料,確定多個類簇中各個類簇所對應的場所標籤。
在一個例子中,與服務位置資料對應的服務場所資料中包括服務場所的名稱(如,幸福超市),則可以將此服務場所的名稱作為該服務位置資料所在類簇對應的場所標籤。
在另一個例子中,單個類簇中可以對應多個服務位置資料,而與多個服務位置資料對應的多個服務場所資料所標識的範圍(如,商戶或商圈)可能不同。相應地,單個類簇可以具有多個場所標籤,如,商戶標籤和商圈標籤等。例如,某個類簇的場所標籤可以包括商戶標籤(如,西部馬華)和商圈標籤(如,大鐘寺)等。
此步驟中,確定與用戶的位置資料對應的場所資訊,可以包括:從聚類獲得的多個類簇中確定與用戶的位置資料對應的類簇。接著,根據確定出的類簇所對應的場所標籤,確定場所資訊。
在一個實施例中,位置映射模型中包括多個類簇中各個類簇的中心點的位置資料,以及多個類簇與多個場所標籤之間的映射關係。如此,從聚類獲得的多個類簇中確定與用戶的位置資料對應的類簇,可以包括:計算用戶的位置資料與各中心點的位置資料之間距離,將計算出的距離的最小值所對應的類簇作為與用戶的位置資料對應的類簇。
進一步地,根據確定出的類簇所對應的場所標籤,確定場所資訊,可以包括:根據多個類簇與多個場所標籤之間的映射關係,以及確定出的與用戶的位置資料對應類簇,確定與該類簇對應的場所標籤,進而確定場所資訊。
在一個實施例中,確定出的場所標籤包括商戶標籤(如,西部馬華),可以據此確定出包括商戶名稱(如,西部馬華)的場所資訊。
在步驟S220中確定出與用戶的位置資料對應的場所資訊後,接著,在步驟S230,至少根據場所資訊,以及內容資訊庫中各個內容資訊的特徵資訊,確定向用戶推薦的內容推薦資訊。
具體地,確定向用戶推薦的內容推薦資訊,可以包括:確定與場所資訊對應的服務類別資訊,以及根據各個內容資訊的特徵資訊,從內容資訊庫中確定與服務類別資訊相關的內容資訊,並將該內容資訊作為內容推薦資訊。
在一個實施例中,從內容資訊庫中確定與服務類別資訊相關的內容資訊,可以包括:根據各個內容資訊的特徵資訊,計算各個內容資訊與服務類別資訊的相關度,並根據計算出的相關度確定與服務類別資訊相關的內容資訊。
在一個例子中,可以將相關度在預定範圍內(如,預定範圍可以為大於0.6)的內容資訊確定為與服務類別資訊相關的內容資訊。在另一個例子中,可以根據相關度對內容資訊進行排名,並將名次在預定範圍(如,預定範圍可以為前五名)內的內容資訊確定為與服務類別資訊相關的內容資訊。
在另一個實施例中,特徵資訊可以包括內容資訊的服務類別資訊。從內容資訊庫中確定與服務類別資訊相關的內容資訊,可以包括:從內容資訊庫中確定與服務類別資訊對應的內容資訊。
在一個例子中,步驟S220中確定的場所資訊為“汽車4S店”,相應地,可以確定出與該場所資訊對應的服務類別資訊為“汽車”。相應地,可以從內容資訊庫中確定服務類別資訊為“汽車”的內容資訊,並將此內容資訊作為向用戶推薦的內容推薦資訊。
或者,各個內容資訊的特徵資訊中可以包括預先確定的與該內容資訊對應的場所資訊。在這樣的情況下,確定向用戶推薦的內容推薦資訊,可以包括:當與各個內容資訊對應的場所資訊和與位置資料對應的場所資訊之間的從屬關係符合預設規則時,將該內容資訊作為內容推薦資訊。
在一個實施例中,預設規則可以由業務方根據業務的屬性(如,該業務對場所範圍的精度要求)確定。例如,當業務為向用戶推送商家優惠券時,預設規則可以包括要求與內容推薦資訊對應的場所資訊與位置資料對應的場所資訊完全相同。當業務為向用戶推薦附近的類似的場所時,預設規則可以包括要求與內容推薦資訊對應的場所資訊與位置資料對應的場所資訊部分相同。
在一個例子中,預設規則包括要求與內容推薦資訊對應的場所資訊與位置資料對應的場所資訊完全相同,與位置資料對應的場所資訊包括“老好吃香鍋”、“三裡屯”。相應地,可以將與場所資訊 “老好吃香鍋”(商戶)、“三裡屯”(商圈)對應的內容資訊(如,商戶優惠活動、商戶公眾號資訊、商戶評價資訊)作為內容推薦資訊。
在另一個例子中,預設規則可以包括要求與內容推薦資訊對應的場所資訊與位置資料對應的場所資訊部分相同,與位置資料對應的場所資訊包括“優衣庫”(商戶)、“三裡屯”(商圈)。相應地,可以將與場所資訊“三裡屯”對應的內容資訊(如,三裡屯商圈內的服裝店、餐廳等)作為內容推薦資訊。
在通過上述步驟確定向用戶推薦的內容推薦資訊後,還可以包括:向用戶發送內容推薦資訊。例如,當用戶打開相應的應用App,或打開推薦頻道時,或當檢測到用戶的位置發生變化時,獲取用戶最新的位置資訊,據此確定向用戶推薦的內容推薦資訊,並向用戶發送該內容推薦資訊。
需要說明的是,在步驟S220中,還可以包括:確定與場所資訊對應的服務類別資訊。在一個實施例中,場所資訊中除了包括場所的名稱外,還可以包括與場所對應的服務類別資訊,相應地,可以據此直接確定出與場所資訊對應的服務類別資訊。
在另一個實施例中,可以在確定場所資訊後,根據預存的多個場所資訊和多個服務類別資訊的對應關係,確定該場所資訊對應的服務類別資訊。在一個例子中,確定出的場所標籤包括商戶標籤(如,西部馬華),可以據此確定出包括商戶名稱(如,西部馬華)、以及與商戶名稱對應的服務類別資訊(如,美食)。
在步驟S230中提及的特徵資訊可以基於從內容資訊中提取的關鍵詞資訊和/或位置資訊而確定,具體可以採用如圖4所示的方法進行確定:
步驟S410,對內容資訊進行預處理。
具體地,預處理可以包括結構化分析、分詞處理、去停用詞處理、詞性標注(postag)等。其中,結構化分析可以包括對內容資訊中段落結構的分析,例如,判斷出內容資訊中的標題和正文;分詞處理可以包括一元分詞(unigram)、二元分詞(bigram)、三元分詞(trigram)等;去停用詞可以包括根據預設的停用詞表去除內容資訊中的停用詞(如,無實際意義的功能詞:這、那、的);詞性標注是指對內容資訊中的詞語的詞性(如,名詞、副詞、形容詞等)進行標注。
步驟S420,根據預處理後的內容資訊,提取關鍵詞資訊。
具體地,可以根據預處理得到的詞語在內容資訊中的位置(如,位於標題中或位於正文中)、標注的詞性,採用TextRank演算法或TF-IDF(Term Frequency–inverse Document Frequency)演算法加權識別出關鍵詞資訊。
步驟S430,根據預處理後的內容資訊,提取位置資訊。
具體地,可以根據內容資訊中包括的位置標籤提取位置資訊,位置資訊中可以包括場所資訊。在一個實施例中,該位置標籤可以為內容資訊的生產者在發佈該內容資訊時,為其所貼的位置標籤,如,北京、杭州等。
或者,可以採用命名實體識別(Named Entity Recognition,簡稱NER)的方法,識別內容資訊中的地名、機構名等。例如,可以識別出內容資訊中的地名為五臺山,機構名為海澱區民政局(屬於場所資訊)。
又或者,伺服器中可以預先儲存有位置資訊庫,可以據此從預處理後的內容資訊中提取出與所述位置資訊庫中的資訊匹配的位置資訊。
步驟S440,將初步提取的關鍵詞資訊和位置資訊輸入預先訓練的特徵提取模型中,確定出特徵資訊。
具體地,特徵提取模型可以為對大規模內容語料資料進行離線訓練,而產出的詞嵌入(Word Embedding)模型或基於雙向循環神經網路(Recurrent Neural Networks, 簡稱RNN)的NER模型。
此外,上述特徵資訊的確定可以在內容資訊產生以後的預定時間(如,5min或10min)內進行。
由上可知,在本說明書揭露的多個實施例提供的內容推薦方法中,通過獲取用戶的位置資料,並根據位置映射模型,確定與位置資料對應的場所資訊。然後,至少根據該場所資訊,以及內容資訊庫中各個內容資訊的特徵資訊,確定向所述用戶推薦的內容推薦資訊,從而及時地向用戶推薦更加精準的內容資訊。
與內容推薦方法對應地,本說明書揭露的多個實施例還提供一種內容推薦裝置,如圖5所示,該裝置500包括:
獲取單元510,用於獲取用戶的位置資料;
確定單元520,用於根據位置映射模型,確定與位置資料對應的場所資訊,該位置映射模型基於預先獲取的服務資訊而訓練獲得,該服務資訊中包含服務位置資料和對應的服務場所資料;
處理單元530,用於至少根據場所資訊,以及內容資訊庫中各個內容資訊的特徵資訊,確定向用戶推薦的內容推薦資訊。
在一種可能的實施方式中,位置映射模型由確定單元520通過以下步驟訓練獲得:
對服務資訊中包含的服務位置資料進行聚類,獲得多個類簇;
根據服務資訊中與服務位置資料對應的服務場所資料,確定多個類簇對應的場所標籤。
在一種可能的實施方式中,確定單元520具體包括:
第一確定子單元521,用於從多個類簇中確定與用戶的位置資料對應的類簇;
第二確定子單元522,用於根據確定出的類簇所對應的場所標籤,確定場所資訊。
在一種可能的實施方式中,處理單元530具體包括:
第一處理子單元531,用於確定與場所資訊對應的服務類別資訊;
第二處理子單元532,用於根據各個內容資訊的特徵資訊,從內容資訊庫中確定與服務類別資訊相關的內容資訊,並將內容資訊作為內容推薦資訊。
在一種可能的實施方式中,第二處理子單元532中的特徵資訊包括內容資訊的服務類別資訊,第二處理子單元532具體用於:
從內容資訊庫中確定與服務類別資訊對應的內容資訊。
在一種可能的實施方式中,處理單元530中包括的各個內容資訊的特徵資訊包括預先確定的與該內容資訊對應的場所資訊,處理單元530具體用於:
當與各個內容資訊對應的場所資訊和與位置資料對應的場所資訊之間的從屬關係符合預設規則時,將該內容資訊作為內容推薦資訊。
在一種可能的實施方式中,處理單元530中包括的特徵資訊基於從內容資訊中提取出的關鍵詞資訊和場所資訊而確定。
在一種可能的實施方式中,其特徵在於,獲取單元510獲取的位置資料包括無線保真WiFi指紋資料和經緯度資料中的至少一種。
在一種可能的實施方式中,確定單元520確定的場所資訊包括建築名稱、商戶名稱和商圈資訊中的至少一種。
由上可知,在本說明書揭露的多個實施例提供的內容推薦裝置中,獲取單元510獲取用戶的位置資料,確定單元520根據位置映射模型,確定與位置資料對應的場所資訊。處理單元530至少根據該場所資訊,以及內容資訊庫中各個內容資訊的特徵資訊,確定向所述用戶推薦的內容推薦資訊,從而及時地向用戶推薦更加精準的內容資訊。
發明所屬技術領域中具有通常知識者應該可以意識到,在上述一個或多個示例中,本說明書揭露的多個實施例所描述的功能可以用硬體、軟體、韌體或它們的任意組合來實現。當使用軟體實現時,可以將這些功能儲存在電腦可讀媒體中或者作為電腦可讀媒體上的一個或多個指令或程式碼進行傳輸。
以上所述的實施方式,對本說明書揭露的多個實施例的目的、技術方案和有益效果進行了進一步詳細說明,所應理解的是,以上所述僅為本說明書揭露的多個實施例的實施方式而已,並不用於限定本說明書揭露的多個實施例的保護範圍,凡在本說明書揭露的多個實施例的技術方案的基礎之上,所做的任何修改、均等、改進等,均應包括在本說明書揭露的多個實施例的保護範圍之內。
The various embodiments disclosed herein are described below in conjunction with the drawings.
FIG. 1 is a schematic diagram of an application scenario of a content recommendation method according to an embodiment of the present disclosure. The execution body of the recommendation method may be a server. When a user logs in to a content recommendation platform (for example, an Alipay application platform) through a terminal (for example, the terminal can be a mobile phone, a tablet, a wearable smart device, etc.), the recommendation of the service function provided by the multiple embodiments disclosed in the present specification may be adopted. Method, the server obtains the location data of the user (eg, latitude and longitude data), and according to the location mapping model (eg, the location mapping model may include a mapping relationship between the location data and the location information), determining location information corresponding to the location data (eg, , car 4S shop). Then, based on the location information and the feature information of each content information in the content information database (eg, the feature information may include service category information), content recommendation information (eg, car maintenance knowledge, etc.) recommended to the user is determined.
The recommendation method of the business function provided by the multiple embodiments disclosed in the present specification determines the location information corresponding to the location data by acquiring the location data of the user and according to the location mapping model. Then, at least according to the location information and the feature information of each content information in the content information database, the content recommendation information recommended to the user is determined, so that more accurate content information is recommended to the user in time.
FIG. 2 is a flowchart of a content recommendation method according to an embodiment of the present disclosure. The execution subject of the method may be a device having processing capabilities: a server or a system or device, such as the server shown in FIG. As shown in FIG. 2, the method specifically includes:
Step S210: Acquire location information of the user.
Specifically, the location data may be data collected from a user's terminal by a Location Based Service (LBS). The LBS includes multiple positioning methods, such as Global Positioning System (GPS) positioning, base station positioning, and Wireless Fidelity (WiFi) positioning.
In one embodiment, the location data may include latitude and longitude data obtained by GPS location or base station location. For example, the latitude and longitude data included in the location data are: north latitude 39°54'25.70" and east longitude 116°23'28.49".
In another embodiment, the location profile may include WiFi fingerprint data obtained by WiFi location. In one example, the WiFi fingerprint data may include an address of a WiFi access point (AP) (eg, a Media Access Control (MAC) address) and a corresponding signal strength.
Step S220, determining location information corresponding to the location data of the user according to the location mapping model.
Specifically, the difference between the location information and the location data is that the location information is location information that the user can perceive and has clear semantics. In one embodiment, the venue information may include a building name (eg, New Zhongguan Building), a business name (eg, a Hamm toy store), and a business district information (eg, Sanlitun Taikooli). In another embodiment, the venue information may also include service category information (eg, food, clothing, beauty, movies, etc.) associated with the venue (eg, merchant).
The conversion from the location data to the location information can be performed according to a pre-obtained location mapping model. In one embodiment, the location mapping model includes a mapping relationship between the GPS coordinate data and the location tag, and the mapping relationship is obtained in advance by manual acquisition.
In another embodiment, the location mapping model may be trained and obtained based on the service location data and the corresponding service location data included in the pre-acquired service information. The service corresponding to the service information may include a payment service (eg, payment using an payment application) and a location service (eg, locating the current location when the social platform sends status information).
Among them, service information can be obtained in a variety of ways. In one embodiment, the service corresponding to the service information may include a payment service, and the corresponding service information may include payment information. Obtaining the payment information may include: the server may collect the payment information when detecting that the user submits the order through the terminal or pays the order, specifically including collecting the location information of the terminal as the service location information in the payment information, and submitting the The service location information corresponding to the service location data is obtained in the order. In an example, when a user performs a payment operation using a payment application (eg, Alipay) on a terminal connected to WiFi, the server of the payment application can collect the location data of the terminal at this time through WiFi positioning (eg, WiFi fingerprint data). ) and information on the service areas included in the payment information (eg, McDonald's College Road Shop).
In another embodiment, the service corresponding to the service information may include a location service, and the corresponding service information may include location service information. Obtaining the location service information may include: when the server detects that the user uses the location service by using the terminal, the server may obtain the location service information, specifically, the location information of the collection terminal is used as the service location data in the location service information, and the user is used in the location information. Location information selected or created at the time of service. In one example, the user uses a terminal that supports GPS positioning to log in to a work application (eg, a nail) to perform a work punching operation. At this time, the location information (eg, latitude and longitude data) of the collection terminal and the punch information may be collected by GPS. Service location information (eg, California gourmet restaurant). In another example, the user uses the terminal connected to the cellular network to publish the status including the location information on the social platform. At this time, the location information (eg, latitude and longitude data) of the collection terminal can be collected by the base station and the user selects (or creates ) Service location information (eg, one or two cafes).
Further, based on the pre-acquired service information, the location mapping model can be obtained through the following steps: clustering the service location data included in the service information to obtain multiple clusters. Then, the location label corresponding to the plurality of clusters is determined according to the service location data corresponding to the service location data in the service information. In this way, a mapping relationship between multiple clusters and multiple place tags can be established.
In one embodiment, the clustering algorithm may be used to cluster the service location data and obtain multiple clusters. The clustering algorithm may be a GEOSHASH algorithm or a DBSCAN algorithm, which is not limited herein.
In one example, the service location data includes a plurality of latitude and longitude data, and the GEOSHASH algorithm can be used to convert the data into a GEOHASH grid, and the grid number of each latitude and longitude data is determined. For example, the service location data includes 100 latitude and longitude coordinates, and the 100 latitude and longitude coordinates are converted into a GEOHASH grid by the GEOHASH algorithm. As shown in FIG. 3, each 20 latitude and longitude coordinates have the same mesh number, and the obtained 5 meshes are obtained. The grid numbers are: WX4G01, WX4H02, WX4I03, WX4J04, WX4K05. Thus, the above 100 latitude and longitude coordinates are clustered into 5 clusters.
In another example, the service location data includes a plurality of WiFi fingerprint data. In this case, the data may be clustered by using a DBSCAN algorithm to obtain a plurality of clusters having different numbers. The DBSCAN algorithm is a density-based clustering algorithm. Unlike the partitioning and hierarchical clustering methods, it defines the cluster as the largest set of points connected by density, can divide the area with sufficient high density into clusters, and can find clusters of arbitrary shapes in the spatial database of noise. . Specifically, in the DBSCAN algorithm, all the location points are first marked as core points, boundary points or noise points, and the noise points are deleted. Then assign an edge between all the core points within the preset parameters, each group of connected core points form a cluster, and assign each boundary point to a cluster of core points associated with it, thereby completing Clustering of location points.
It can be understood that the precision of the cluster obtained by the clustering (for example, the range size of the cluster) can be controlled by adjusting the parameters of the clustering algorithm. For example, the accuracy of the cluster can be controlled by controlling the number of coded bits in the GEOSHASH algorithm that encodes the service location data. More specifically, the more coded bits of the service location data, the more accurate the resulting cluster range. For another example, the accuracy of the cluster can be controlled by controlling the size of the neighborhood radius ε in the DBSCAN algorithm. More specifically, the smaller the value of the input domain radius ε, the more accurate the resulting cluster size range.
In an embodiment, for the plurality of clusters obtained by the cluster, the location labels corresponding to the clusters in the plurality of clusters may be determined according to the service location data corresponding to the service location data in the service information.
In an example, if the service location data corresponding to the service location data includes the name of the service location (for example, a happiness supermarket), the name of the service location may be used as a location label corresponding to the cluster of the service location data.
In another example, a plurality of service location data may be corresponding to a single cluster, and a range (eg, a merchant or a business circle) identified by multiple service location materials corresponding to multiple service location data may be different. Accordingly, a single cluster can have multiple place tags, such as a merchant tag and a business circle tag. For example, a place label for a cluster may include a merchant label (eg, West MCA) and a business circle label (eg, Dazhong Temple).
In this step, determining the location information corresponding to the location data of the user may include: determining a cluster corresponding to the location data of the user from the plurality of clusters obtained by the cluster. Then, the location information is determined according to the location tag corresponding to the determined cluster.
In one embodiment, the location mapping model includes location data of a center point of each cluster cluster among the plurality of clusters, and a mapping relationship between the plurality of cluster clusters and the plurality of location labels. In this manner, determining a cluster corresponding to the location data of the user from the plurality of clusters obtained by the clustering may include: calculating a distance between the location data of the user and the location data of each central point, and calculating a minimum value of the distance The corresponding cluster is used as a cluster corresponding to the location data of the user.
Further, determining the location information according to the location label corresponding to the determined cluster may include: mapping the relationship between the plurality of clusters and the plurality of location labels, and determining the cluster corresponding to the location data of the user. Determine the location label corresponding to the cluster to determine the location information.
In one embodiment, the determined location tag includes a merchant tag (eg, West MCA), and the location information including the merchant name (eg, West MCA) may be determined accordingly.
After determining the location information corresponding to the location data of the user in step S220, next, in step S230, the content recommendation information recommended to the user is determined based on at least the location information and the feature information of each content information in the content information repository.
Specifically, the determining the content recommendation information recommended by the user may include: determining service category information corresponding to the location information, and determining content information related to the service category information from the content information database according to the feature information of each content information, and Use this content information as content recommendation information.
In an embodiment, determining the content information related to the service category information from the content information base may include: calculating, according to the feature information of each content information, the relevance of each content information and the service category information, and calculating the correlation according to the Determine the content information related to the service category information.
In one example, content information having a relevance within a predetermined range (eg, a predetermined range may be greater than 0.6) may be determined as content information related to the service category information. In another example, the content information may be ranked according to the relevance, and the content information within the predetermined range (eg, the predetermined range may be the top five) may be determined as the content information related to the service category information.
In another embodiment, the feature information may include service category information of the content information. Determining the content information related to the service category information from the content information base may include: determining content information corresponding to the service category information from the content information base.
In one example, the location information determined in step S220 is “automobile 4S shop”, and accordingly, the service category information corresponding to the location information may be determined to be “car”. Correspondingly, the content information of the service category information is “car” can be determined from the content information base, and the content information is used as the content recommendation information recommended to the user.
Alternatively, the feature information of each content information may include predetermined location information corresponding to the content information. In this case, determining the content recommendation information recommended to the user may include: when the affiliation relationship between the location information corresponding to each content information and the location information corresponding to the location data conforms to the preset rule, the content information is As content recommendation information.
In one embodiment, the preset rules may be determined by the business party based on the attributes of the business (eg, the accuracy requirements of the business for the location of the venue). For example, when the service is to push the merchant coupon to the user, the preset rule may include the location information corresponding to the content recommendation information and the location information corresponding to the location data. When the service is to recommend similar places in the vicinity to the user, the preset rule may include that the location information corresponding to the content recommendation information is the same as the location information corresponding to the location data.
In an example, the preset rule includes that the location information corresponding to the content recommendation information and the location information corresponding to the location data are completely the same, and the location information corresponding to the location data includes “the old delicious pot” and “Sanlitun”. Correspondingly, content information (such as merchant discounts, merchant public number information, and merchant evaluation information) corresponding to the location information "old and delicious" (business) and "Sanlitun" (commercial circle) can be used as content. Recommended information.
In another example, the preset rule may include that the location information corresponding to the content recommendation information is the same as the location information portion corresponding to the location data, and the location information corresponding to the location data includes “Uniqlo” (business), “Sanlitun” (Business circle). Correspondingly, content information corresponding to the location information "Sanlitun" (for example, clothing stores, restaurants, etc. in the Sanlitun business district) can be used as content recommendation information.
After the content recommendation information recommended by the user is determined through the foregoing steps, the method further includes: sending the content recommendation information to the user. For example, when the user opens the corresponding application App, or opens the recommended channel, or when it detects that the location of the user changes, the latest location information of the user is obtained, and the content recommendation information recommended to the user is determined according to the content recommendation information, and the user is sent to the user. Content recommendation information.
It should be noted that, in step S220, the method further includes: determining service category information corresponding to the location information. In one embodiment, the location information may include service category information corresponding to the location in addition to the name of the location, and accordingly, the service category information corresponding to the location information may be directly determined according to the location information.
In another embodiment, after the location information is determined, the service category information corresponding to the location information may be determined according to the correspondence between the pre-stored plurality of location information and the plurality of service category information. In one example, the identified location tag includes a merchant tag (eg, West MCA), which can be used to determine a business name (eg, West MCA) and service category information (eg, food) corresponding to the merchant name.
The feature information mentioned in step S230 may be determined based on keyword information and/or location information extracted from the content information, and may be determined by using the method shown in FIG. 4:
Step S410, preprocessing the content information.
Specifically, the pre-processing may include structured analysis, word segmentation processing, de-stop word processing, word-of-speech (postag), and the like. Wherein, the structured analysis may include an analysis of the paragraph structure in the content information, for example, determining the title and the body in the content information; the word segmentation processing may include a unigram, a bigram, and a trigram. Waiting for the stop word can include removing the stop words in the content information according to the preset stop word list (eg, non-meaningful function words: this, that,); part of speech tagging refers to content information The part of speech (such as nouns, adverbs, adjectives, etc.) is marked.
Step S420, extracting keyword information according to the pre-processed content information.
Specifically, the position of the word obtained by the preprocessing in the content information (for example, in the title or in the text), the part of the tag, the TextRank algorithm or the TF-IDF (Term Frequency–inverse Document Frequency) algorithm may be used. Weighted to identify keyword information.
Step S430, extracting location information according to the pre-processed content information.
Specifically, the location information may be extracted according to the location tag included in the content information, and the location information may include the location information. In one embodiment, the location tag may be a location tag for the content information producer when posting the content information, such as Beijing, Hangzhou, and the like.
Alternatively, a method of Named Entity Recognition (NER) may be used to identify place names, institution names, and the like in the content information. For example, it can be identified that the name of the content information is Wutai Mountain, and the institution is called Haidian District Civil Affairs Bureau (belonging to the location information).
Alternatively, the server may pre-store a location information database, and accordingly, the location information matching the information in the location information database may be extracted from the pre-processed content information.
Step S440, input the initially extracted keyword information and location information into the pre-trained feature extraction model to determine the feature information.
Specifically, the feature extraction model may be an offline training of large-scale content corpus data, and a word embedding model or a NER model based on Recurrent Neural Networks (RNN).
Further, the determination of the above feature information may be performed within a predetermined time (for example, 5 min or 10 min) after the content information is generated.
It can be seen from the above that in the content recommendation method provided by the multiple embodiments disclosed in the present specification, the location information corresponding to the location data is determined by acquiring the location data of the user and according to the location mapping model. Then, at least according to the location information and the feature information of each content information in the content information database, the content recommendation information recommended to the user is determined, so that more accurate content information is recommended to the user in time.
Corresponding to the content recommendation method, the multiple embodiments disclosed in the present specification further provide a content recommendation device. As shown in FIG. 5, the device 500 includes:
The obtaining unit 510 is configured to acquire location information of the user.
The determining unit 520 is configured to determine, according to the location mapping model, the location information corresponding to the location data, where the location mapping model is trained based on the pre-acquired service information, where the service information includes the service location data and the corresponding service location data;
The processing unit 530 is configured to determine content recommendation information recommended to the user according to at least the location information and the feature information of each content information in the content information database.
In a possible implementation, the location mapping model is obtained by the determining unit 520 through the following steps:
Clustering the service location data contained in the service information to obtain multiple clusters;
The location label corresponding to the plurality of clusters is determined according to the service location data corresponding to the service location data in the service information.
In a possible implementation, the determining unit 520 specifically includes:
a first determining subunit 521, configured to determine a cluster corresponding to the location data of the user from the plurality of clusters;
The second determining subunit 522 is configured to determine the location information according to the location label corresponding to the determined cluster.
In a possible implementation, the processing unit 530 specifically includes:
The first processing sub-unit 531 is configured to determine service category information corresponding to the location information;
The second processing sub-unit 532 is configured to determine content information related to the service category information from the content information base according to the feature information of each content information, and use the content information as the content recommendation information.
In a possible implementation manner, the feature information in the second processing sub-unit 532 includes service category information of the content information, and the second processing sub-unit 532 is specifically configured to:
The content information corresponding to the service category information is determined from the content information library.
In a possible implementation, the feature information of each content information included in the processing unit 530 includes a predetermined location information corresponding to the content information, and the processing unit 530 is specifically configured to:
When the affiliation between the location information corresponding to each content information and the location information corresponding to the location data conforms to the preset rule, the content information is used as the content recommendation information.
In a possible implementation manner, the feature information included in the processing unit 530 is determined based on the keyword information and the location information extracted from the content information.
In a possible implementation, the location information acquired by the obtaining unit 510 includes at least one of a wireless fidelity WiFi fingerprint data and latitude and longitude data.
In a possible implementation manner, the location information determined by the determining unit 520 includes at least one of a building name, a merchant name, and a business circle information.
It can be seen from the above that in the content recommendation apparatus provided by the multiple embodiments disclosed in the present specification, the obtaining unit 510 acquires the location data of the user, and the determining unit 520 determines the location information corresponding to the location data according to the location mapping model. The processing unit 530 determines the content recommendation information recommended to the user according to the location information and the feature information of each content information in the content information database, so as to promptly recommend more accurate content information to the user.
Those of ordinary skill in the art should recognize that the functions described in the various embodiments disclosed herein may be in the form of hardware, software, firmware, or any combination thereof. achieve. When implemented in software, these functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
The embodiments, the technical solutions, and the beneficial effects of the various embodiments disclosed in the present specification are further described in detail. It should be understood that the foregoing is only the implementation of the embodiments disclosed in the specification. The manner of the present invention is not limited to the scope of protection of the various embodiments disclosed herein, and any modifications, improvements, improvements, etc., which are based on the technical solutions of the various embodiments disclosed herein, should be It is intended to be included within the scope of the various embodiments disclosed herein.

500‧‧‧裝置500‧‧‧ device

510‧‧‧獲取單元 510‧‧‧Acquisition unit

520‧‧‧確定單元 520‧‧‧Determining unit

521‧‧‧第一確定子單元 521‧‧‧First determined subunit

522‧‧‧第二確定子單元 522‧‧‧Secondary subunit

530‧‧‧處理單元 530‧‧‧Processing unit

531‧‧‧第一處理子單元 531‧‧‧First Processing Subunit

532‧‧‧第二處理子單元 532‧‧‧Second processing subunit

S210‧‧‧步驟 S210‧‧‧Steps

S220‧‧‧步驟 S220‧‧‧Steps

S230‧‧‧步驟 S230‧‧‧Steps

S410‧‧‧步驟 S410‧‧‧Steps

S420‧‧‧步驟 S420‧‧‧ steps

S430‧‧‧步驟 S430‧‧‧Steps

S440‧‧‧步驟 S440‧‧‧Steps

為了更清楚地說明本說明書揭露的多個實施例的技術方案,下面將對實施例描述中所需要使用的圖式作簡單地介紹,顯而易見地,下面描述中的圖式僅僅是本說明書揭露的多個實施例,對於發明所屬技術領域中具有通常知識者來講,在不付出創造性勞動的前提下,還可以根據這些圖式獲得其它的圖式。In order to more clearly illustrate the technical solutions of the various embodiments disclosed in the specification, the drawings used in the description of the embodiments will be briefly described below. It is obvious that the drawings in the following description are only disclosed in the present specification. A plurality of embodiments, for those of ordinary skill in the art to which the invention pertains, may obtain other drawings based on these drawings without undue creative effort.

圖1為本說明書揭露的一個實施例提供的一種內容推薦方法的應用場景示意圖; FIG. 1 is a schematic diagram of an application scenario of a content recommendation method according to an embodiment of the present disclosure;

圖2為本說明書揭露的一個實施例提供的一種內容推薦方法的流程圖; FIG. 2 is a flowchart of a content recommendation method according to an embodiment of the present disclosure;

圖3為本說明書揭露的一個實施例提供的一種將服務位置資料聚類成多個類簇的示意圖; FIG. 3 is a schematic diagram of clustering service location data into multiple clusters according to an embodiment of the present disclosure;

圖4為本說明書揭露的一個實施例提供的一種特徵資訊確定方法的流程圖; FIG. 4 is a flowchart of a feature information determining method according to an embodiment of the present disclosure;

圖5為本說明書揭露的一個實施例提供的一種內容推薦裝置的示意圖。 FIG. 5 is a schematic diagram of a content recommendation apparatus according to an embodiment of the present disclosure.

Claims (18)

一種內容推薦方法,其特徵在於,包括: 獲取用戶的位置資料; 根據位置映射模型,確定與所述位置資料對應的場所資訊,所述位置映射模型基於預先獲取的服務資訊而訓練獲得,所述服務資訊中包含服務位置資料和對應的服務場所資料; 至少根據所述場所資訊,以及內容資訊庫中各個內容資訊的特徵資訊,確定向所述用戶推薦的內容推薦資訊。A content recommendation method, comprising: Obtain the user's location data; Determining, according to the location mapping model, location information corresponding to the location data, where the location mapping model is obtained based on pre-acquired service information, where the service information includes service location data and corresponding service location data; Determining the content recommendation information recommended to the user according to at least the location information and the feature information of each content information in the content information database. 根據請求項1所述的方法,其中,所述位置映射模型通過以下步驟訓練獲得: 對所述服務資訊中包含的服務位置資料進行聚類,獲得多個類簇; 根據所述服務資訊中與所述服務位置資料對應的服務場所資料,確定所述多個類簇對應的場所標籤。The method of claim 1, wherein the location mapping model is obtained by training in the following steps: Clustering the service location data included in the service information to obtain a plurality of clusters; Determining the location label corresponding to the plurality of clusters according to the service location data corresponding to the service location data in the service information. 根據請求項2所述的方法,其中,所述確定與所述位置資料對應的場所資訊包括: 從所述多個類簇中確定與所述用戶的位置資料對應的類簇; 根據確定出的類簇所對應的場所標籤,確定所述場所資訊。The method of claim 2, wherein the determining the location information corresponding to the location data comprises: Determining a cluster corresponding to the location data of the user from the plurality of clusters; The location information is determined according to the location label corresponding to the determined cluster. 根據請求項1所述的方法,其中,所述確定向所述用戶推薦的內容推薦資訊,包括: 確定與所述場所資訊對應的服務類別資訊; 根據所述各個內容資訊的特徵資訊,從所述內容資訊庫中確定與所述服務類別資訊相關的內容資訊,並將所述內容資訊作為所述內容推薦資訊。The method of claim 1, wherein the determining content recommendation information recommended to the user comprises: Determining service category information corresponding to the location information; Determining, according to the feature information of the respective content information, content information related to the service category information from the content information database, and using the content information as the content recommendation information. 根據請求項4所述的方法,其中,所述特徵資訊包括所述內容資訊的所述服務類別資訊,所述從所述內容資訊庫中確定與所述服務類別資訊相關的內容資訊,包括: 從所述內容資訊庫中確定與所述服務類別資訊對應的所述內容資訊。The method of claim 4, wherein the feature information includes the service category information of the content information, and the determining content information related to the service category information from the content information database comprises: Determining the content information corresponding to the service category information from the content information library. 根據請求項1所述的方法,其中,所述各個內容資訊的特徵資訊包括預先確定的與該內容資訊對應的場所資訊,所述確定向所述用戶推薦的內容推薦資訊,包括: 當與所述各個內容資訊對應的場所資訊和與所述位置資料對應的場所資訊之間的從屬關係符合預設規則時,將該內容資訊作為所述內容推薦資訊。The method of claim 1, wherein the feature information of each content information comprises predetermined location information corresponding to the content information, and the determining content recommendation information recommended to the user comprises: When the affiliation relationship between the location information corresponding to the content information and the location information corresponding to the location data conforms to a preset rule, the content information is used as the content recommendation information. 根據請求項1至6中任一項所述的方法,其中,所述特徵資訊基於從所述內容資訊中提取出的關鍵詞資訊和場所資訊而確定。The method of any one of claims 1 to 6, wherein the feature information is determined based on keyword information and location information extracted from the content information. 根據請求項1至6中任一項所述的方法,其中,所述位置資料包括無線保真WiFi指紋資料和經緯度資料中的至少一種。The method of any one of claims 1 to 6, wherein the location profile comprises at least one of wireless fidelity WiFi fingerprint data and latitude and longitude data. 根據請求項1至6中任一項所述的方法,其中,所述場所資訊包括建築名稱、商戶名稱和商圈資訊中的至少一種。The method of any one of claims 1 to 6, wherein the location information comprises at least one of a building name, a business name, and a business circle information. 一種內容推薦裝置,其特徵在於,包括: 獲取單元,用於獲取用戶的位置資料; 確定單元,用於根據位置映射模型,確定與所述位置資料對應的場所資訊,所述位置映射模型基於預先獲取的服務資訊而訓練獲得,所述服務資訊中包含服務位置資料和對應的服務場所資料; 處理單元,用於至少根據所述場所資訊,以及內容資訊庫中各個內容資訊的特徵資訊,確定向所述用戶推薦的內容推薦資訊。A content recommendation device, comprising: An obtaining unit, configured to acquire location information of the user; a determining unit, configured to determine, according to the location mapping model, location information corresponding to the location data, where the location mapping model is trained based on pre-acquired service information, where the service information includes service location data and a corresponding service location data; The processing unit is configured to determine content recommendation information recommended to the user according to at least the location information and the feature information of each content information in the content information database. 根據請求項10所述的裝置,其中,所述位置映射模型由所述確定單元通過以下步驟訓練獲得: 對所述服務資訊中包含的服務位置資料進行聚類,獲得多個類簇; 根據所述服務資訊中與所述服務位置資料對應的服務場所資料,確定所述多個類簇對應的場所標籤。The apparatus of claim 10, wherein the location mapping model is obtained by the determining unit by the following steps: Clustering the service location data included in the service information to obtain a plurality of clusters; Determining the location label corresponding to the plurality of clusters according to the service location data corresponding to the service location data in the service information. 根據請求項11所述的裝置,其中,所述確定單元具體包括: 第一確定子單元,用於從所述多個類簇中確定與所述用戶的位置資料對應的類簇; 第二確定子單元,用於根據確定出的類簇所對應的場所標籤,確定所述場所資訊。The device of claim 11, wherein the determining unit specifically includes: a first determining subunit, configured to determine, from the plurality of clusters, a cluster corresponding to the location data of the user; And a second determining subunit, configured to determine the location information according to the location label corresponding to the determined cluster. 根據請求項10所述的裝置,其中,所述處理單元具體包括: 第一處理子單元,用於確定與所述場所資訊對應的服務類別資訊; 第二處理子單元,用於根據所述各個內容資訊的特徵資訊,從所述內容資訊庫中確定與所述服務類別資訊相關的內容資訊,並將所述內容資訊作為所述內容推薦資訊。The device of claim 10, wherein the processing unit specifically includes: a first processing subunit, configured to determine service category information corresponding to the location information; The second processing sub-unit is configured to determine, according to the feature information of the respective content information, content information related to the service category information from the content information database, and use the content information as the content recommendation information. 根據請求項13所述的裝置,其中,所述第二處理子單元中的特徵資訊包括所述內容資訊的所述服務類別資訊,所述第二處理子單元具體用於: 從所述內容資訊庫中確定與所述服務類別資訊對應的所述內容資訊。The device of claim 13, wherein the feature information in the second processing sub-unit includes the service category information of the content information, and the second processing sub-unit is specifically configured to: Determining the content information corresponding to the service category information from the content information library. 根據請求項10所述的裝置,其中,所述處理單元中包括的各個內容資訊的特徵資訊包括預先確定的與該內容資訊對應的場所資訊,所述處理單元具體用於: 當與所述各個內容資訊對應的場所資訊和與所述位置資料對應的場所資訊之間的從屬關係符合預設規則時,將該內容資訊作為所述內容推薦資訊。The device of claim 10, wherein the feature information of each content information included in the processing unit includes a predetermined location information corresponding to the content information, and the processing unit is specifically configured to: When the affiliation relationship between the location information corresponding to the content information and the location information corresponding to the location data conforms to a preset rule, the content information is used as the content recommendation information. 根據請求項10至15中任一項所述的裝置,其中,所述處理單元中包括的特徵資訊基於從所述內容資訊中提取出的關鍵詞資訊和場所資訊而確定。The apparatus according to any one of claims 10 to 15, wherein the feature information included in the processing unit is determined based on keyword information and location information extracted from the content information. 根據請求項10至15中任一項所述的裝置,其中,所述獲取單元獲取的位置資料包括無線保真WiFi指紋資料和經緯度資料中的至少一種。The device of any one of claims 10 to 15, wherein the location data acquired by the acquisition unit comprises at least one of wireless fidelity WiFi fingerprint data and latitude and longitude data. 根據請求項10至15中任一項所述的裝置,其中,所述確定單元確定的場所資訊包括建築名稱、商戶名稱和商圈資訊中的至少一種。The apparatus of any one of claims 10 to 15, wherein the location information determined by the determining unit comprises at least one of a building name, a merchant name, and a business circle information.
TW107144112A 2018-01-17 2018-12-07 Content recommendation method and device TWI703862B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201810043114.2 2018-01-17
CN201810043114.2A CN108363733A (en) 2018-01-17 2018-01-17 Content recommendation method and device
??201810043114.2 2018-01-17

Publications (2)

Publication Number Publication Date
TW201933879A true TW201933879A (en) 2019-08-16
TWI703862B TWI703862B (en) 2020-09-01

Family

ID=63006224

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107144112A TWI703862B (en) 2018-01-17 2018-12-07 Content recommendation method and device

Country Status (3)

Country Link
CN (1) CN108363733A (en)
TW (1) TWI703862B (en)
WO (1) WO2019141109A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI820500B (en) * 2021-06-07 2023-11-01 韓商韓領有限公司 Operating method for electronic apparatus for providing store information and electronic apparatus supporting thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108363733A (en) * 2018-01-17 2018-08-03 阿里巴巴集团控股有限公司 Content recommendation method and device
CN110909250B (en) * 2018-09-14 2023-05-02 阿里巴巴集团控股有限公司 Information processing method and device, storage medium and processor
CN109409959A (en) * 2018-10-31 2019-03-01 广州品唯软件有限公司 A kind of user information analysis method, device, equipment and medium
CN111723959B (en) * 2019-03-19 2023-12-12 腾讯科技(深圳)有限公司 Region dividing method and device, storage medium and electronic device
CN110377195B (en) * 2019-07-15 2022-09-30 腾讯科技(深圳)有限公司 Method and device for displaying interaction function
CN112395486B (en) * 2019-08-12 2023-11-03 中国移动通信集团重庆有限公司 Broadband service recommendation method, system, server and storage medium
CN111815361B (en) * 2020-07-10 2024-06-18 北京思特奇信息技术股份有限公司 Region boundary calculation method, device, electronic equipment and storage medium
CN113807916A (en) * 2021-09-02 2021-12-17 支付宝(杭州)信息技术有限公司 Service recommendation processing method and device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8229458B2 (en) * 2007-04-08 2012-07-24 Enhanced Geographic Llc Systems and methods to determine the name of a location visited by a user of a wireless device
US20090094189A1 (en) * 2007-10-08 2009-04-09 At&T Bls Intellectual Property, Inc. Methods, systems, and computer program products for managing tags added by users engaged in social tagging of content
CN103023977B (en) * 2012-11-19 2015-07-01 华南理工大学 Recommendation system and method based on positional information
US9699491B1 (en) * 2014-10-10 2017-07-04 ThinkAnalytics Content recommendation engine
CN106294489B (en) * 2015-06-08 2022-09-30 北京三星通信技术研究有限公司 Content recommendation method, device and system
CN106776776A (en) * 2016-11-11 2017-05-31 广东小天才科技有限公司 Method and device for recommending sport place information
CN107391605A (en) * 2017-06-30 2017-11-24 北京奇虎科技有限公司 Information-pushing method, device and mobile terminal based on geographical position
CN107545052A (en) * 2017-08-23 2018-01-05 广东欧珀移动通信有限公司 Information recommendation method, device, mobile terminal and storage medium
CN108363733A (en) * 2018-01-17 2018-08-03 阿里巴巴集团控股有限公司 Content recommendation method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI820500B (en) * 2021-06-07 2023-11-01 韓商韓領有限公司 Operating method for electronic apparatus for providing store information and electronic apparatus supporting thereof

Also Published As

Publication number Publication date
WO2019141109A1 (en) 2019-07-25
CN108363733A (en) 2018-08-03
TWI703862B (en) 2020-09-01

Similar Documents

Publication Publication Date Title
TWI703862B (en) Content recommendation method and device
CN109145219B (en) Method and device for judging validity of interest points based on Internet text mining
CN107315759B (en) Method, device and processing system for classifying keywords and classification model generation method
JP6759844B2 (en) Systems, methods, programs and equipment that associate images with facilities
US10694324B2 (en) Method and apparatus for matching wireless hotspot with POI
CN110472066B (en) Construction method of urban geographic semantic knowledge map
US20190057697A1 (en) Better resolution when referencing to concepts
WO2018177316A1 (en) Information identification method, computing device, and storage medium
CN108153824B (en) Method and device for determining target user group
US10176244B2 (en) Text characterization of trajectories
JP2017045435A (en) Method for estimating link between social media message and facility, computer system and program
US8914044B2 (en) Method and system for associating context information with defined location data
JP4950508B2 (en) Facility information management system, facility information management device, facility information management method, and facility information management program
US11082800B2 (en) Method and system for determining an occurrence of a visit to a venue by a user
US11675845B2 (en) Identifying merchant data associated with multiple data structures
CN110674208B (en) Method and device for determining position information of user
JP6725718B2 (en) Location-based information search method and computer apparatus
Williams et al. Improving geolocation of social media posts
CN111291158B (en) Information query method and device, electronic equipment and storage medium
JP2018537760A (en) Method and apparatus for account mapping based on address information
Lee et al. Spatio-temporal provenance: Identifying location information from unstructured text
CN111488468A (en) Geographic information knowledge point extraction method and device, storage medium and computer equipment
KR102457359B1 (en) Marketing cost efficiency calculation method and electronic system for performing the method using neural networks
US9361633B1 (en) Determining present venue for a user device
CN113515687A (en) Logistics information acquisition method and device