TW201933623A - Optically transparent adhesion layer to connect noble metals to oxides - Google Patents

Optically transparent adhesion layer to connect noble metals to oxides Download PDF

Info

Publication number
TW201933623A
TW201933623A TW108103146A TW108103146A TW201933623A TW 201933623 A TW201933623 A TW 201933623A TW 108103146 A TW108103146 A TW 108103146A TW 108103146 A TW108103146 A TW 108103146A TW 201933623 A TW201933623 A TW 201933623A
Authority
TW
Taiwan
Prior art keywords
layer
dielectric layer
dielectric
metal
intermediate layer
Prior art date
Application number
TW108103146A
Other languages
Chinese (zh)
Other versions
TWI703740B (en
Inventor
裕秋 關
Original Assignee
美商亮銳公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/881,140 external-priority patent/US20190237629A1/en
Application filed by 美商亮銳公司 filed Critical 美商亮銳公司
Publication of TW201933623A publication Critical patent/TW201933623A/en
Application granted granted Critical
Publication of TWI703740B publication Critical patent/TWI703740B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector

Abstract

A reflective layer for use in lighting devices and methods of forming the reflective layer are provided. The reflective layer may include a dielectric layer including one or more insulating materials. An intermediate layer may be formed on the dielectric layer. The intermediate layer may include one or more materials having a higher enthalpy of reaction than the one or more insulating materials. Because of the higher enthalpy of reaction, atoms of the one or more materials in the intermediate layer may form bonds with atoms of the one or more insulating materials. A metal layer may be formed on the intermediate layer to reflect light emitted from an active region of a light emitting diode (LED).

Description

連接貴金屬至氧化物之光學透明黏著層Optically transparent adhesive layer connecting precious metal to oxide

半導體發光裝置(包含發光二極體(LED)、諧振腔發光二極體(RCLED)、垂直腔雷射二極體(VCSEL)及邊緣發射雷射)係當前可用之最有效率的光源之一。當前在能夠跨可見光譜操作之高亮度發光裝置之製造中受關注之材料系統包含III-V族半導體,尤其是鎵、鋁、銦與氮之二元合金、三元合金及四元合金(亦被稱為III族氮化物材料)。Semiconductor light-emitting devices (including light-emitting diodes (LEDs), resonant cavity light-emitting diodes (RCLEDs), vertical-cavity laser diodes (VCSELs), and edge-emitting lasers) are among the most efficient light sources currently available. . Current material systems of interest in the fabrication of high-intensity illumination devices capable of operating across the visible spectrum include III-V semiconductors, especially binary alloys of gallium, aluminum, indium and nitrogen, ternary alloys and quaternary alloys (also Known as the Group III nitride material).

通常言之,藉由憑藉金屬有機化學氣相沈積(MOCVD)、分子束磊晶(MBE)或其他磊晶技術,在一藍寶石、碳化矽、III族氮化物或其他適合基板上磊晶生長具不同組合物及摻雜物濃度之半導體層之一堆疊而製造III族氮化物發光裝置。堆疊通常包含形成於基板上方之摻雜有例如矽之一或多個n型層、形成於該(等)n型層上方之一作用區域中之一或多個發光層,及形成於該作用區域上方之摻雜有例如鎂之一或多個p型層。電接觸件形成於n型區域及p型區域上。In general, epitaxial growth on a sapphire, tantalum carbide, group III nitride or other suitable substrate by means of metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE) or other epitaxial techniques A group III nitride light-emitting device is fabricated by stacking one of semiconductor layers of different compositions and dopant concentrations. The stack generally includes one or more light-emitting layers formed on the substrate and doped with one or more n-type layers such as germanium, one of the active regions formed above the n-type layer, and formed in the function The top of the region is doped with one or a plurality of p-type layers such as magnesium. Electrical contacts are formed on the n-type region and the p-type region.

提供一種用於照明裝置中之反射層及形成該反射層之方法。該反射層可包含一介電層,該介電層包含一或多個絕緣材料。具有至該介電層及一後續金屬層之穩固黏著性質之一中間層可形成於該介電層上。該中間層可包含具有比該一或多個絕緣材料更高之一反應焓之一或多個材料。由於該更高反應焓,故該中間層中之該一或多個材料之原子可與該一或多個絕緣材料之原子形成鍵。一金屬層可形成於該中間層上以反射自一發光二極體(LED)之一作用區域發射之光。A reflective layer for use in an illumination device and a method of forming the reflective layer are provided. The reflective layer can comprise a dielectric layer comprising one or more insulating materials. An intermediate layer having a stable adhesive property to the dielectric layer and a subsequent metal layer may be formed on the dielectric layer. The intermediate layer can comprise one or more materials having a higher reactivity than the one or more insulating materials. Due to the higher reaction enthalpy, atoms of the one or more materials in the intermediate layer may form bonds with atoms of the one or more insulating materials. A metal layer can be formed on the intermediate layer to reflect light emitted from an active region of one of the light emitting diodes (LEDs).

將在下文中參考隨附圖式更完整地描述不同發光二極體(LED)實施方案之實例。此等實例不相互排斥,且在一個實例中發現之特徵可與在一或多個其他實例中發現之特徵組合以達成額外實施方案。因此,將理解,在隨附圖式中展示之實例僅係為了闡釋性目的提供且其等絕不旨在限制本發明。貫穿全文,相同數字係指相同元件。Examples of different light emitting diode (LED) implementations are described more fully below with reference to the accompanying drawings. Such examples are not mutually exclusive, and features found in one example can be combined with features found in one or more other examples to achieve additional embodiments. Therefore, it is to be understood that the invention is not intended to be limited Throughout the text, the same numbers refer to the same elements.

將理解,儘管在本文中可使用術語第一、第二等來描述各種元件,然此等元件不應受限於此等術語。此等術語僅用以區分一個元件與另一元件。例如,一第一元件可被稱為一第二元件,且類似地,一第二元件可被稱為一第一元件而不脫離本發明之範疇。如本文中使用,術語「及/或」包含相關聯所列舉品項之一或多者之任何及全部組合。It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, such elements are not limited to such terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element without departing from the scope of the invention. The term "and/or" as used herein includes any and all combinations of one or more of the associated listed items.

將理解,當將諸如一層、區域或基板之一元件稱為在另一元件「上」或延伸「至」另一元件「上」時,其可直接在該另一元件上或直接延伸至該另一元件上或亦可存在中介元件。相比之下,當將一元件稱為「直接在」另一元件「上」或「直接」延伸至另一元件「上」時,不存在中介元件。亦將理解,當將一元件稱為「連接」或「耦合」至另一元件時,其可直接連接或耦合至該另一元件,或可存在中介元件。相比之下,當將一元件稱為「直接連接」或「直接耦合」至另一元件時,不存在中介元件。將理解,此等術語旨在亦涵蓋除在圖中描繪之任何定向以外之元件之不同定向。It will be understood that when an element such as a layer, region or substrate is referred to as being "on" or "an" or "an" or "the" Intermediary elements may also be present on another component. In contrast, when an element is referred to as "directly on" another element or "directly" or "directly" or "directly", there is no intervening element. It will also be understood that when an element is referred to as "connected" or "coupled" to another element, it can be directly connected or coupled to the other element or the intervening element can be present. In contrast, when an element is referred to as "directly connected" or "directly coupled" to another element, there is no intervening element. It will be understood that the terms are intended to encompass different orientations of the elements in addition to any orientation depicted in the figures.

可在本文中使用諸如「下方」或「上方」或「上」或「下」或「水平」或「垂直」之相對術語來描述如圖中繪示之一個元件、層或區域對另一元件、層或區域之一關係。將理解,此等術語旨在亦涵蓋除在圖中描繪之定向以外之裝置之不同定向。The relative terms such as "lower" or "above" or "upper" or "lower" or "horizontal" or "vertical" may be used herein to describe one element, layer or region to another element as illustrated in the drawings. One of the layers, or a relationship between regions. It will be understood that such terms are intended to encompass different orientations of the device in addition to the orientation depicted in the drawings.

半導體發光二極體(LED)係當前可用之最有效率的光源之一。在能夠跨可見光譜操作之LED的製造中使用之材料包含III-V族半導體,尤其是鎵、鋁、銦與氮之二元合金、三元合金及四元合金(其等可被稱為III族氮化物材料)。通常言之,III族氮化物裝置藉由金屬有機化學氣相沈積(MOCVD)、分子束磊晶(MBE)或其他磊晶技術磊晶生長於藍寶石、碳化矽或III族氮化物基板上。此等基板之一些係絕緣的或導電性差的。由生長於此等基板上之半導體晶體製造之裝置可在裝置之相同側上具有至磊晶生長半導體之正及負極性電接觸件兩者。相比之下,生長於導電基板上之半導體裝置可經製造使得一個電接觸件形成於磊晶生長之材料上且另一電接觸件形成於基板上。然而,製造於導電基板上之裝置亦可經設計以使兩個接觸件在裝置之相同側上,磊晶材料以一覆晶幾何形狀生長於該側上以便改良自LED晶片之光提取,改良晶片之電流攜載能力或改良LED晶粒之散熱。為了製造有效率的LED裝置,接觸件可彼此電隔離,使得具有適當極性之電載子經注入至半導體接面之p型及n型側中,其中其等重新組合以產生光。Semiconductor light-emitting diodes (LEDs) are one of the most efficient light sources currently available. Materials used in the fabrication of LEDs capable of operating across the visible spectrum comprise III-V semiconductors, especially binary alloys of gallium, aluminum, indium and nitrogen, ternary alloys and quaternary alloys (these may be referred to as III) Group nitride material). Generally speaking, a Group III nitride device is epitaxially grown on a sapphire, tantalum carbide or Group III nitride substrate by metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE) or other epitaxial techniques. Some of these substrates are insulative or poorly conductive. Devices fabricated from semiconductor crystals grown on such substrates can have both positive and negative electrical contacts to the epitaxially grown semiconductor on the same side of the device. In contrast, a semiconductor device grown on a conductive substrate can be fabricated such that one electrical contact is formed on the epitaxially grown material and another electrical contact is formed on the substrate. However, the device fabricated on the conductive substrate can also be designed such that the two contacts are on the same side of the device, and the epitaxial material is grown on the side in a flip chip geometry to improve light extraction from the LED wafer. The current carrying capacity of the chip or the heat dissipation of the LED die. To produce an efficient LED device, the contacts can be electrically isolated from one another such that electrical carriers of appropriate polarity are injected into the p-type and n-type sides of the semiconductor junction, where they are recombined to produce light.

現參考圖1,展示繪示一例示性III族氮化物LED裝置100之一橫截面視圖。包含(例如)一n型層102、一作用區域104及一p型層106之一或多個半導體層可磊晶生長於一基板108上。一p型接觸件110及一n型接觸件112可形成於裝置之相同側上,如上文描述。p型接觸件110與n型接觸件112之間之電隔離可藉由以下項達成:將自最頂層向下延伸至下方n型層102中之一台面結構114蝕刻至裝置中且形成一單獨經界定p型接觸件110及n型接觸件112。LED可安裝至一基台總成116,該基台總成116可包含在其上使用焊料凸塊安裝LED之一基台。焊料凸塊可在基台與LED之間產生一間隙。經連接之LED及基台總成可接著囊封於一高折射率凝膠或環氧樹脂中。Referring now to Figure 1, a cross-sectional view of an exemplary III-nitride LED device 100 is shown. One or more semiconductor layers including, for example, an n-type layer 102, an active region 104, and a p-type layer 106 may be epitaxially grown on a substrate 108. A p-type contact 110 and an n-type contact 112 can be formed on the same side of the device as described above. Electrical isolation between the p-type contact 110 and the n-type contact 112 can be achieved by etching one of the mesa structures 114 extending from the topmost layer down to the lower n-type layer 102 into the device and forming a separate The p-type contact 110 and the n-type contact 112 are defined. The LEDs can be mounted to a submount assembly 116 that can include one of the submounts on which the LEDs are mounted using solder bumps. The solder bumps create a gap between the base and the LED. The connected LED and abutment assembly can then be encapsulated in a high refractive index gel or epoxy.

高折射率凝膠或環氧樹脂可經選擇以儘可能接近地匹配基板108之一折射率,此係因為在裝置中產生之光可透過基板108提取。當光入射於兩個材料之間之一介面上時,折射率之差異判定在該介面處反射多少光及多少光經透射穿過其。折射率之差異愈大,愈多光被反射。因此,藍寶石基板與囊封裝置之高折射率凝膠或環氧樹脂之折射率之間之小差異可確保在裝置中產生之到達基板108之發射表面之大多數光自裝置提取。The high refractive index gel or epoxy can be selected to match the refractive index of one of the substrates 108 as closely as possible, since the light generated in the device can be extracted through the substrate 108. When light is incident on one of the interfaces between the two materials, the difference in refractive index determines how much light is reflected at the interface and how much light is transmitted through it. The greater the difference in refractive index, the more light is reflected. Thus, the small difference between the refractive index of the sapphire substrate and the high refractive index gel or epoxy of the encapsulating device ensures that most of the light generated in the device that reaches the emitting surface of the substrate 108 is extracted from the device.

可在作用區域104內產生光子。部分歸因於半導體層之高折射率,故將來自半導體作用區域104之光子提取至LED封裝中及外部可係困難的。在磊晶半導體層內產生之光子可入射於半導體層與基板108之間之介面、台面114之一壁122與基台總成116中之高折射率凝膠或環氧樹脂之介面或半導體層與金屬接觸件之間之介面上。入射於三個介面之任何者上之光子面臨材料折射率之一步階(step)。折射率之此一步階可引起入射於此一介面上之一光線118被分裂成一透射部分118a及一反射部分118b。自台面114之壁122透射離開之光(即,部分118a)可未在一有用方向上被引導離開裝置。因此,透過在台面114之壁122處之透射損失之光可促成III族氮化物LED裝置100之一低光提取效率。Photons can be generated within the active area 104. Due in part to the high refractive index of the semiconductor layer, it is difficult to extract photons from the semiconductor active region 104 into and out of the LED package. The photons generated in the epitaxial semiconductor layer may be incident on the interface between the semiconductor layer and the substrate 108, the wall 122 of the mesa 114 and the high refractive index gel or epoxy interface or semiconductor layer in the base assembly 116. Interface with metal contacts. A photon incident on any of the three interfaces faces one of the refractive indices of the material. This step of the refractive index can cause one of the rays 118 incident on this interface to be split into a transmissive portion 118a and a reflective portion 118b. Light transmitted from the wall 122 of the deck 114 (i.e., portion 118a) may not be directed away from the device in a useful direction. Thus, transmission of transmitted light at the wall 122 of the mesa 114 can contribute to low light extraction efficiency of one of the III-nitride LED devices 100.

囊封裝置之高折射率凝膠或環氧樹脂可導致在台面114之壁122之介面處之接觸件與基台總成116之間之半導體層之間之折射率之一小差異。因此,入射於此區域上之許多光可在基台總成之方向上被透射,此可引起顯著光學損失。如上文描述,在該區域中朝向基台總成116提取之光可未自III族氮化物LED裝置100有用地提取。The high refractive index gel or epoxy of the encapsulating device can result in a small difference in refractive index between the semiconductor layers between the contacts at the interface of the walls 122 of the mesas 114 and the submount assembly 116. Therefore, much of the light incident on this area can be transmitted in the direction of the base assembly, which can cause significant optical loss. As described above, light extracted toward the base assembly 116 in this region may not be usefully extracted from the III-nitride LED device 100.

隨著光傳播穿過裝置,其可經受衰減。衰減可在半導體內之全部位置處發生,但可能在介面處最大,例如,在n型層102與基板108之間;在半導體層與接觸件之間;在作用區域104中;及在存在於n型層102與基板108之間之任何成核層中。光傳播愈遠,其衰減愈多。相較於具有一小角度β之光線,以一大角度β (相對於基板108之傳播角度)行進穿過半導體層之光線可需要一更長路徑長度以在半導體中行進平行於基板108解析之一給定距離。每當一光線被反射,傳播角度之符號可經反轉。例如,以角度β傳播之一光線可在反射之後以一角度−β傳播。大角度β光線可穿過作用區域104更大次數且可被反射離開各種介面更大次數。每當光線被反射,其變得更經衰減。因此,相較於以較淺角度β行進之光線,此等光線可在x方向上每單位傳播距離經受更大衰減。因此,入射於台面114之壁122上之大多數通量(光學功率)以淺角度β入射。針對在接觸件中具有一些吸收之一裝置(例如,具有一鋁p型接觸件之一裝置),入射於台面114之壁122上之總通量之70%或更多可以在近似-10度< β < 30度之範圍中之一角度入射。針對具有一高度反射性p型接觸件110 (諸如一純銀p型接觸件110)之一裝置,在此相同角度範圍內入射於台面114之壁122上之通量之比例可下降至約60%。As the light propagates through the device, it can withstand attenuation. Attenuation can occur at all locations within the semiconductor, but may be greatest at the interface, for example, between the n-type layer 102 and the substrate 108; between the semiconductor layer and the contacts; in the active region 104; Any nucleation layer between the n-type layer 102 and the substrate 108. The farther the light travels, the more it decays. Light traveling through the semiconductor layer at a large angle β (relative to the propagation angle of the substrate 108) may require a longer path length to travel parallel to the substrate 108 in the semiconductor compared to light having a small angle β. A given distance. Whenever a ray is reflected, the sign of the angle of propagation can be reversed. For example, one of the rays propagating at an angle β can propagate at an angle −β after reflection. The large angle beta rays can pass through the active area 104 a greater number of times and can be reflected away from the various interfaces a greater number of times. Whenever the light is reflected, it becomes more attenuated. Thus, such rays can experience greater attenuation per unit propagation distance in the x direction than rays traveling at a shallower angle β. Therefore, most of the flux (optical power) incident on the wall 122 of the mesa 114 is incident at a shallow angle β. For a device having some absorption in the contact (e.g., a device having an aluminum p-type contact), 70% or more of the total flux incident on the wall 122 of the mesa 114 may be approximately -10 degrees. <An angle of one of the ranges of β < 30 degrees. For a device having a highly reflective p-type contact 110 (such as a pure silver p-type contact 110), the proportion of flux incident on the wall 122 of the mesa 114 in the same angular range can be reduced to about 60%. .

一反射層120可用於反射自作用區域104發射之光。反射層120可由介電層、金屬堆疊、複合鏡或分散式布拉格(Bragg)反射器(DBR)之一或多者構成。反射層120可形成於台面114之壁122上以最大化入射於台面114之壁122上之光之反射。反射層120可包含一透明導電層、一介電層及一金屬鏡。一複合鏡可需要金屬鏡直接形成於介電層上。金屬鏡可由一貴金屬構成,諸如(例如)銀(Ag)或金(Au)。介電層可由任何絕緣材料構成,諸如(例如)矽之氧化物或氮化物或氟化鎂。A reflective layer 120 can be used to reflect light emitted from the active area 104. The reflective layer 120 may be composed of one or more of a dielectric layer, a metal stack, a composite mirror, or a distributed Bragg reflector (DBR). Reflective layer 120 can be formed on wall 122 of mesa 114 to maximize reflection of light incident on wall 122 of mesa 114. The reflective layer 120 can include a transparent conductive layer, a dielectric layer, and a metal mirror. A composite mirror may require a metal mirror to be formed directly on the dielectric layer. The metal mirror may be composed of a noble metal such as, for example, silver (Ag) or gold (Au). The dielectric layer can be composed of any insulating material such as, for example, an oxide or nitride of cerium or magnesium fluoride.

此項技術中已知,一貴金屬(諸如Ag)未良好地黏著至一介電材料(諸如氧化矽)。差黏著性可在製造程序期間引入問題且可降低反射層之反射率。可在沈積金屬鏡之前粗糙化介電層之一上表面以增加黏著性。表面特徵之發展及粗糙化表面之經增加表面積可促進貴金屬與介電材料之間之黏著性。然而,此可不足以確保適當及/或充分黏著性。可在介電層與金屬鏡之間引入一黏著層以增加兩者之黏著性。然而,大多數黏著劑層係光學吸收性的且可負面地影響反射層之反射率。因此,可期望改良金屬鏡與介電層之間之黏著強度,同時最小化對反射層120之總反射比之光學影響。It is known in the art that a precious metal such as Ag does not adhere well to a dielectric material such as yttrium oxide. Poor adhesion can introduce problems during the manufacturing process and can reduce the reflectivity of the reflective layer. The upper surface of one of the dielectric layers may be roughened prior to depositing the metal mirror to increase adhesion. The development of surface features and the increased surface area of the roughened surface promote adhesion between the precious metal and the dielectric material. However, this may not be sufficient to ensure proper and/or sufficient adhesion. An adhesive layer can be introduced between the dielectric layer and the metal mirror to increase the adhesion of the two. However, most adhesive layers are optically absorptive and can negatively affect the reflectivity of the reflective layer. Therefore, it may be desirable to improve the adhesion strength between the metal mirror and the dielectric layer while minimizing the optical effect on the total reflectance of the reflective layer 120.

現參考圖2,展示繪示在一發射層202上形成一介電層204之一橫截面視圖。如上文描述,發射層202可含有一第一半導體層206、一作用區域208及一第二半導體層210。發射層202可形成於一基板212上。基板212可由矽或一結晶材料(諸如氧化鋁)構成,且可係一商業藍寶石晶圓。Referring now to Figure 2, a cross-sectional view of one dielectric layer 204 formed on an emissive layer 202 is shown. As described above, the emissive layer 202 can include a first semiconductor layer 206, an active region 208, and a second semiconductor layer 210. The emissive layer 202 can be formed on a substrate 212. The substrate 212 may be composed of tantalum or a crystalline material such as alumina, and may be a commercial sapphire wafer.

第一半導體層206可由任何III-V族半導體構成,包含鎵、鋁、銦與氮之二元合金、三元合金及四元合金(亦被稱為III族氮化物材料)。例如,第一半導體層206可由以下項構成:III-V族半導體,包含(但不限於) AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb;II-VI族半導體,包含(但不限於) ZnS、ZnSe、CdSe、CdTe;IV族半導體,包含(但不限於) Ge、Si、SiC;及其等之混合物或合金。此等半導體可在其等存在於其中之LED之典型發射波長下具有在自約2.4至約4.1之範圍中之折射率。例如,III族氮化物半導體(諸如GaN)可在500 nm下具有約2.4之折射率,且III族磷化物半導體(諸如InGaP)可在600 nm下具有約3.7之折射率。在一實例中,第一半導體層206可由GaN構成。The first semiconductor layer 206 may be composed of any III-V semiconductor, including gallium, aluminum, a binary alloy of indium and nitrogen, a ternary alloy, and a quaternary alloy (also referred to as a Group III nitride material). For example, the first semiconductor layer 206 may be composed of a group III-V semiconductor including, but not limited to, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb; II- Group VI semiconductors, including but not limited to, ZnS, ZnSe, CdSe, CdTe; Group IV semiconductors, including but not limited to Ge, Si, SiC; and mixtures or alloys thereof. Such semiconductors may have a refractive index in the range of from about 2.4 to about 4.1 at the typical emission wavelength of the LED in which they are present. For example, a Group III nitride semiconductor such as GaN may have a refractive index of about 2.4 at 500 nm, and a Group III phosphide semiconductor such as InGaP may have a refractive index of about 3.7 at 600 nm. In an example, the first semiconductor layer 206 can be composed of GaN.

第一半導體層206可使用習知沈積技術(諸如MOCVD、MBE或其他磊晶技術)形成。第一半導體層206可使用n型摻雜劑摻雜。The first semiconductor layer 206 can be formed using conventional deposition techniques such as MOCVD, MBE, or other epitaxial techniques. The first semiconductor layer 206 can be doped with an n-type dopant.

第二半導體層210及作用區域208可由任何III-V族半導體構成,包含鎵、鋁、銦與氮之二元合金、三元合金及四元合金(亦被稱為III族氮化物材料)。例如,第二半導體層210及作用區域208可由以下項構成:III-V族半導體,包含(但不限於) AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb;II-VI族半導體,包含(但不限於) ZnS、ZnSe、CdSe、CdTe;IV族半導體,包含(但不限於) Ge、Si、SiC;及其等之混合物或合金。此等半導體可在其等存在於其中之LED之典型發射波長下具有在自約2.4至約4.1之範圍中之折射率。例如,III族氮化物半導體(諸如GaN)可在500 nm下具有約2.4之折射率,且III族磷化物半導體(諸如InGaP)可在600 nm下具有約3.7之折射率。在一實例中,第二半導體層210及作用區域208可由GaN構成。The second semiconductor layer 210 and the active region 208 may be composed of any III-V semiconductor, including gallium, aluminum, a binary alloy of indium and nitrogen, a ternary alloy, and a quaternary alloy (also referred to as a III-nitride material). For example, the second semiconductor layer 210 and the active region 208 may be composed of a III-V semiconductor including, but not limited to, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb; II-VI semiconductors, including but not limited to ZnS, ZnSe, CdSe, CdTe; Group IV semiconductors, including but not limited to Ge, Si, SiC; and mixtures or alloys thereof. Such semiconductors may have a refractive index in the range of from about 2.4 to about 4.1 at the typical emission wavelength of the LED in which they are present. For example, a Group III nitride semiconductor such as GaN may have a refractive index of about 2.4 at 500 nm, and a Group III phosphide semiconductor such as InGaP may have a refractive index of about 3.7 at 600 nm. In an example, the second semiconductor layer 210 and the active region 208 may be composed of GaN.

第二半導體層210及作用區域208可使用習知沈積技術(諸如MOCVD、MBE或其他磊晶技術)形成。作用區域208及第二半導體層210可連同第一半導體層206一起形成或可分開形成。作用區域208及第二半導體層210可由類似於第一半導體層206之一半導體材料構成或其等組合物可變動。The second semiconductor layer 210 and the active region 208 can be formed using conventional deposition techniques such as MOCVD, MBE, or other epitaxial techniques. The active region 208 and the second semiconductor layer 210 may be formed together with the first semiconductor layer 206 or may be formed separately. The active region 208 and the second semiconductor layer 210 may be constitutable from a semiconductor material similar to one of the first semiconductor layers 206 or a composition thereof.

第二半導體層210可使用p型摻雜劑摻雜。因此,作用區域208可係與第一半導體層206及第二半導體層210之介面相關聯之一p-n二極體接面。替代地,作用區域208可包含經n型摻雜、經p型摻雜或未摻雜之一或多個半導體層。作用區域208可在透過第一半導體層206及第二半導體層210施加一適合電壓之後發射光。在替代實施方案中,第一半導體層206及第二半導體層210之導電類型可反轉。亦即,第一半導體層206可係一p型層且第二半導體層210可係一n型層。The second semiconductor layer 210 may be doped using a p-type dopant. Thus, the active region 208 can be a p-n diode junction associated with the interface of the first semiconductor layer 206 and the second semiconductor layer 210. Alternatively, active region 208 can comprise one or more semiconductor layers that are n-doped, p-doped, or undoped. The active region 208 can emit light after a suitable voltage is applied through the first semiconductor layer 206 and the second semiconductor layer 210. In an alternative embodiment, the conductivity types of the first semiconductor layer 206 and the second semiconductor layer 210 may be reversed. That is, the first semiconductor layer 206 can be a p-type layer and the second semiconductor layer 210 can be an n-type layer.

應注意,發射層202可採取任何形狀。例如,發射層202可經塑形如同如上文參考圖1描述之一台面。在另一實例中,發射層202可與其他半導體層分段且可藉由一溝渠或一隔離區域與另一發射層分離。It should be noted that the emissive layer 202 can take any shape. For example, emissive layer 202 can be shaped like one of the mesas as described above with reference to FIG. In another example, the emissive layer 202 can be segmented from other semiconductor layers and can be separated from another emissive layer by a trench or an isolation region.

介電層204可形成於發射層202之一上表面214上。介電層204可由一或多個介電材料構成,諸如氧化物、氮化物或氮氧化物。在一實例中,介電層204可由氧化矽構成。在另一實例中,介電層204可由一金屬氟化物(諸如氟化鎂)構成。介電層204可使用一習知沈積技術形成,諸如(例如) CVD、電漿輔助化學氣相沈積(PECVD)、MOCVD、原子層沈積(ALD)、蒸鍍、反應性濺鍍、化學溶液沈積、旋塗沈積或其他類似程序。介電層204可具有在自近似100 nm至近似1000 nm之範圍中之一厚度T204 。介電層204可使用習知技術圖案化及蝕刻。A dielectric layer 204 can be formed on one of the upper surfaces 214 of the emissive layer 202. Dielectric layer 204 may be comprised of one or more dielectric materials such as oxides, nitrides or oxynitrides. In one example, dielectric layer 204 can be comprised of yttrium oxide. In another example, dielectric layer 204 can be comprised of a metal fluoride such as magnesium fluoride. Dielectric layer 204 can be formed using a conventional deposition technique such as, for example, CVD, plasma assisted chemical vapor deposition (PECVD), MOCVD, atomic layer deposition (ALD), evaporation, reactive sputtering, chemical solution deposition. , spin-on deposition or other similar procedures. Dielectric layer 204 can have a thickness T 204 in a range from approximately 100 nm to approximately 1000 nm. Dielectric layer 204 can be patterned and etched using conventional techniques.

應注意,介電層204可取決於發射層202之組態而形成於任何表面上。例如,介電層204可與第一半導體層206、作用區域208及第二半導體層210接觸,如上文參考圖1所見。在另一實例中,介電層204可形成於基板212之一下表面216上。在另一實例中,介電層204可形成於一磷光體區域(未展示)上,該磷光體區域形成於發射層202上以對經發射光進行波長轉換。It should be noted that the dielectric layer 204 can be formed on any surface depending on the configuration of the emissive layer 202. For example, the dielectric layer 204 can be in contact with the first semiconductor layer 206, the active region 208, and the second semiconductor layer 210, as seen above with reference to FIG. In another example, dielectric layer 204 can be formed on one of the lower surfaces 216 of substrate 212. In another example, dielectric layer 204 can be formed on a phosphor region (not shown) that is formed on emissive layer 202 to wavelength convert the emitted light.

現參考圖3,展示繪示在介電層204上形成一中間層302之一橫截面視圖。中間層302可由具有比介電層204之材料更高之一反應焓之一材料構成。例如,若介電層204包含一或多個氧化物,則中間層302可由具有比介電層204之材料更高之一氧化焓之一或多個材料構成。在另一實例中,若介電層204包含氟化物,則中間層302可由具有比介電層204之材料更高之一氟化焓之一或多個材料構成。Referring now to FIG. 3, a cross-sectional view of one of the intermediate layers 302 formed on the dielectric layer 204 is shown. The intermediate layer 302 may be composed of one of the materials having a higher reactivity than the material of the dielectric layer 204. For example, if the dielectric layer 204 comprises one or more oxides, the intermediate layer 302 can be composed of one or more materials having one cerium oxide higher than the material of the dielectric layer 204. In another example, if the dielectric layer 204 comprises fluoride, the intermediate layer 302 can be comprised of one or more materials having a higher level of barium fluoride than the material of the dielectric layer 204.

中間層302可由一或多個金屬材料之原子構成,諸如(例如) Mg、Al、Ge、Ti、Si、Ta、Mn、W、Co、Ni、Cu、Ru、Pd、Pt及Ag。在一實例中,中間層可由Al構成,Al可具有每一經形成鍵近似550 kJ/莫耳至每一經形成鍵近似600 kJ/莫耳之氧化物形成負熱。此可大於二氧化矽之氧化物形成負熱(其可係每一經形成鍵近似400 kJ/莫耳至每一經形成鍵近似500 kJ/莫耳)。中間層302可良好地黏著至介電層204。The intermediate layer 302 may be composed of atoms of one or more metallic materials such as, for example, Mg, Al, Ge, Ti, Si, Ta, Mn, W, Co, Ni, Cu, Ru, Pd, Pt, and Ag. In one example, the intermediate layer can be composed of Al, and Al can have a negative heat formed by forming an oxide of approximately 550 kJ/mole to each formed bond of approximately 600 kJ/mole. This may be greater than the formation of a negative heat of the oxide of cerium oxide (which may be approximately 400 kJ/mole for each formed bond to approximately 500 kJ/mole for each formed bond). The intermediate layer 302 can adhere well to the dielectric layer 204.

中間層302可使用一習知沈積技術形成,諸如(例如) CVD、PECVD、MOCVD、ALD、蒸鍍、反應性濺鍍、化學溶液沈積、電鍍、旋塗沈積或其他類似程序。中間層302可具有在自近似1埃至近似50埃之範圍中之一厚度T302 。在一實例中,中間層302可具有在自近似5埃至近似20埃之範圍中之一厚度T302The intermediate layer 302 can be formed using a conventional deposition technique such as, for example, CVD, PECVD, MOCVD, ALD, evaporation, reactive sputtering, chemical solution deposition, electroplating, spin-on deposition, or the like. The intermediate layer 302 can have a thickness T 302 in a range from approximately 1 angstrom to approximately 50 angstroms. In an example, the intermediate layer 302 can have a thickness T 302 in a range from approximately 5 angstroms to approximately 20 angstroms.

現參考圖4,展示繪示在中間層302上形成一金屬層402以形成一反射層404之一橫截面視圖。金屬層402可由反射光之一或多個金屬材料構成。例如,金屬層402可由一貴金屬(諸如Ru、Rh、Pd、Ag、Os、Ir、Pd及Au)構成。金屬層402可由上文描述之一或多個金屬之堆疊構成。Referring now to FIG. 4, a cross-sectional view of one of the metal layers 402 formed on the intermediate layer 302 to form a reflective layer 404 is shown. The metal layer 402 may be composed of one or more metallic materials of reflected light. For example, the metal layer 402 may be composed of a noble metal such as Ru, Rh, Pd, Ag, Os, Ir, Pd, and Au. Metal layer 402 can be constructed from one or a stack of multiple metals as described above.

金屬層402可使用一習知沈積技術形成,諸如(例如) CVD、PECVD、MOCVD、ALD、蒸鍍、反應性濺鍍、化學溶液沈積、電鍍、旋塗沈積或其他類似程序。金屬層402可具有在自近似50 nm至近似1000 nm之範圍中之一厚度T402 。中間層302可良好地黏著至金屬層402。Metal layer 402 can be formed using a conventional deposition technique such as, for example, CVD, PECVD, MOCVD, ALD, evaporation, reactive sputtering, chemical solution deposition, electroplating, spin-on deposition, or the like. Metal layer 402 can have a thickness T 402 in a range from approximately 50 nm to approximately 1000 nm. The intermediate layer 302 can adhere well to the metal layer 402.

在沈積之後及/或在後續退火步驟中,中間層302中之原子可部分與來自下方介電層204之原子反應且中間層302可變得光學透明。由於中間層302可具有比下方介電層204更高之一反應焓,故形成黏著劑層之原子可破壞彼此之間之鍵且與介電層204中之原子形成鍵。例如,若Al用於形成中間層302且氧化矽用於形成介電層204,則Al原子可破壞介電層204中之現有Si-O鍵且形成一單一Al-O鍵。在介電層204可已具有Si-O-Si鍵之情況下,其現可含有Si-O-Al鍵,其等具有在Si上之可與一Al原子終接之一懸鍵。After deposition and/or in a subsequent annealing step, the atoms in the intermediate layer 302 may partially react with atoms from the underlying dielectric layer 204 and the intermediate layer 302 may become optically transparent. Since the intermediate layer 302 can have a higher reactivity than the lower dielectric layer 204, the atoms forming the adhesive layer can break the bonds between each other and form bonds with the atoms in the dielectric layer 204. For example, if Al is used to form the intermediate layer 302 and yttrium oxide is used to form the dielectric layer 204, the Al atoms can destroy existing Si-O bonds in the dielectric layer 204 and form a single Al-O bond. In the case where the dielectric layer 204 may already have a Si-O-Si bond, it may now contain a Si-O-Al bond, which has a dangling bond on Si that terminates with an Al atom.

反應焓用作預測中間層302與介電層204之間之鍵之一導引。在上文之實例中,破壞一Si-O鍵且形成一Al-O鍵歸因於中間層302具有一較高氧化焓而在能量上有利,藉此實現黏著性。中間層302之厚度T302 可係足以改良介電層204與金屬層402之間之黏著力,但不太厚使得中間層302中之大多數材料不與下方介電層204反應。隨著中間層302上之原子氧化且與介電層204中之原子反應,所得鍵可產生具有一大帶隙之氧化物。此可容許自作用區域208發射之光子在具有減小電阻至無電阻之情況下穿過介電層204及中間層302且反射離開金屬層402。換言之,由於大帶隙,介電層204及中間層302可對於自作用區域208發射之光實質上透明。The reaction enthalpy is used as a guide for predicting the bond between the intermediate layer 302 and the dielectric layer 204. In the above examples, the destruction of a Si-O bond and the formation of an Al-O bond are energetically advantageous due to the intermediate layer 302 having a higher cerium oxide, thereby achieving adhesion. The thickness T 302 of the intermediate layer 302 may be sufficient to improve the adhesion between the dielectric layer 204 and the metal layer 402, but not so thick that most of the material in the intermediate layer 302 does not react with the underlying dielectric layer 204. As the atoms on the intermediate layer 302 oxidize and react with the atoms in the dielectric layer 204, the resulting bond can produce an oxide having a large band gap. This may allow photons emitted from the active region 208 to pass through the dielectric layer 204 and the intermediate layer 302 and reflect away from the metal layer 402 with reduced resistance to no resistance. In other words, the dielectric layer 204 and the intermediate layer 302 may be substantially transparent to light emitted from the active region 208 due to the large band gap.

現參考圖5A至圖5B,展示繪示一例示性反射層404之一橫截面之透射電子顯微鏡(TEM)顯微照片。圖5A展示發射層202、介電層204、中間層302及金屬層402。圖5B係反射層404之一放大,其展示介電層204、中間層302及金屬層402。如圖5B中可見,中間層302之原子可與介電層204之原子反應以形成一黏著鍵。Referring now to Figures 5A-5B, a transmission electron microscope (TEM) photomicrograph showing a cross section of one of the exemplary reflective layers 404 is shown. FIG. 5A shows an emissive layer 202, a dielectric layer 204, an intermediate layer 302, and a metal layer 402. FIG. 5B is an enlarged view of one of the reflective layers 404 showing the dielectric layer 204, the intermediate layer 302, and the metal layer 402. As can be seen in Figure 5B, the atoms of the intermediate layer 302 can react with the atoms of the dielectric layer 204 to form an adhesive bond.

應注意,圖1至圖5B展示形成於經磊晶生長之GaN上之反射層404,反射層404可用於需要一介電層與貴金屬之間之良好黏著性之全光學敏感介面中。例如,反射層404可形成於其上形成一或多個半導體層之一基板之任何表面上。在另一實例中,反射層404可形成於用於對自一作用區域發射之光進行波長轉換之一磷光體區域上。It should be noted that Figures 1 through 5B show a reflective layer 404 formed on epitaxially grown GaN that can be used in an all optically sensitive interface that requires good adhesion between a dielectric layer and a noble metal. For example, reflective layer 404 can be formed on any surface on which one of the one or more semiconductor layers is formed. In another example, reflective layer 404 can be formed on a phosphor region for wavelength conversion of light emitted from an active region.

現參考圖6,展示繪示形成反射層404之一方法之一流程圖。在步驟602中,可形成一真空。在步驟604中,可使用上文描述之一或多個方法在不破壞真空之情況下形成介電層204。在步驟606中,可使用上文描述之一或多個方法在不破壞真空之情況下形成中間層302。在步驟608中,可使用上文描述之一或多個方法在不破壞真空之情況下形成金屬層402。在步驟610中,可破壞真空。Referring now to Figure 6, a flow chart illustrating one method of forming a reflective layer 404 is shown. In step 602, a vacuum can be formed. In step 604, the dielectric layer 204 can be formed using one or more of the methods described above without breaking the vacuum. In step 606, the intermediate layer 302 can be formed without destroying the vacuum using one or more of the methods described above. In step 608, the metal layer 402 can be formed using one or more of the methods described above without breaking the vacuum. In step 610, the vacuum can be broken.

現參考圖7,展示繪示形成反射層404之另一方法之一流程圖。在步驟702中,可形成一真空。在步驟704中,可使用上文描述之一或多個方法在不破壞真空之情況下形成介電層204。在步驟706中,可使用上文描述之一或多個方法在不破壞真空之情況下形成中間層302。在步驟708中,可破壞真空。在步驟710中,可使用上文描述之一或多個方法形成金屬層402。在一替代實例中,可在執行步驟710之前形成一第二真空。Referring now to Figure 7, a flow chart showing another method of forming a reflective layer 404 is shown. In step 702, a vacuum can be formed. In step 704, dielectric layer 204 can be formed using one or more of the methods described above without breaking the vacuum. In step 706, the intermediate layer 302 can be formed without destroying the vacuum using one or more of the methods described above. In step 708, the vacuum can be destroyed. In step 710, metal layer 402 can be formed using one or more of the methods described above. In an alternate example, a second vacuum can be formed prior to performing step 710.

現參考圖8,展示繪示形成反射層404之另一方法之一流程圖。在步驟802中,可形成一真空。在步驟804中,可使用上文描述之一或多個方法在不破壞真空之情況下形成介電層204。在步驟806中,可破壞真空。在步驟808中,可使用上文描述之一或多個方法形成中間層302。在步驟810中,可使用上文描述之一或多個方法形成金屬層402。在一替代實例中,可在執行步驟808或步驟810之前形成一第二真空。Referring now to Figure 8, a flow chart illustrating another method of forming reflective layer 404 is shown. In step 802, a vacuum can be formed. In step 804, dielectric layer 204 can be formed using one or more of the methods described above without breaking the vacuum. In step 806, the vacuum can be destroyed. In step 808, the intermediate layer 302 can be formed using one or more of the methods described above. In step 810, metal layer 402 can be formed using one or more of the methods described above. In an alternate example, a second vacuum may be formed prior to performing step 808 or step 810.

現參考圖9,展示繪示形成反射層404之另一方法之一流程圖。在步驟902中,可形成一真空。在步驟904中,可使用上文描述之一或多個方法在不破壞真空之情況下形成介電層204。在步驟906中,可使用上文描述之一或多個方法在不破壞真空之情況下形成中間層302。在步驟908中,可破壞真空。Referring now to Figure 9, a flow chart showing another method of forming a reflective layer 404 is shown. In step 902, a vacuum can be formed. In step 904, dielectric layer 204 can be formed using one or more of the methods described above without breaking the vacuum. In step 906, the intermediate layer 302 can be formed using one or more of the methods described above without breaking the vacuum. In step 908, the vacuum can be broken.

一旦破壞真空,一原生氧化物可形成在中間層302之一上表面上。原生氧化物可干擾中間層302與介電層204及/或金屬層402之間之黏著性。在步驟910中,可清潔並製備中間層302之上表面以移除原生氧化物層。清潔及製備可包含任何習知清洗、蝕刻或平坦化程序。Once the vacuum is broken, a primary oxide can be formed on the upper surface of one of the intermediate layers 302. The native oxide can interfere with the adhesion between the intermediate layer 302 and the dielectric layer 204 and/or the metal layer 402. In step 910, the upper surface of the intermediate layer 302 can be cleaned and prepared to remove the native oxide layer. Cleaning and preparation can include any conventional cleaning, etching or planarization procedure.

在步驟912中,可在移除原生氧化物之後使用上文描述之一或多個方法形成金屬層402。在一替代實例中,可在執行步驟910或步驟912之前形成一第二真空。In step 912, the metal layer 402 can be formed using one or more of the methods described above after the native oxide is removed. In an alternate example, a second vacuum may be formed prior to performing step 910 or step 912.

雖然特徵及元件在上文以特定組合描述,但一般技術者將瞭解,各特徵或元件可單獨使用或以與其他特徵及元件之任何組合使用。另外,本文中描述之方法可實施於併入一電腦可讀媒體中之一電腦程式、軟體或韌體中以供一電腦或處理器執行。電腦可讀媒體之實例包含(經由有線或無線連接傳輸之)電子信號及電腦可讀儲存媒體。電腦可讀儲存媒體之實例包含(但不限於)一唯讀記憶體(ROM)、一隨機存取記憶體(RAM)、一暫存器、快取記憶體、半導體記憶體裝置、磁性媒體(諸如內置硬碟及可抽換式磁碟)、磁光學媒體及光學媒體(諸如CD-ROM光碟及數位多功能光碟(DVD))。Although the features and elements are described above in a particular combination, it will be apparent to those skilled in the art that the various features or elements can be used alone or in any combination with other features and elements. Additionally, the methods described herein can be implemented in a computer program, software or firmware embodied in a computer readable medium for execution by a computer or processor. Examples of computer readable media include electronic signals (transmitted via a wired or wireless connection) and computer readable storage media. Examples of computer readable storage media include, but are not limited to, a read only memory (ROM), a random access memory (RAM), a scratchpad, a cache memory, a semiconductor memory device, and a magnetic medium ( Such as built-in hard drives and removable disks), magneto-optical media and optical media (such as CD-ROM discs and digital versatile discs (DVD)).

100‧‧‧III族氮化物半導體發光二極體(LED)裝置100‧‧‧III-type nitride semiconductor light-emitting diode (LED) device

102‧‧‧n型層 102‧‧‧n-type layer

104‧‧‧作用區域 104‧‧‧Action area

106‧‧‧p型層 106‧‧‧p-type layer

108‧‧‧基板 108‧‧‧Substrate

110‧‧‧p型接觸件 110‧‧‧p-type contacts

112‧‧‧n型接觸件 112‧‧‧n type contacts

114‧‧‧台面結構 114‧‧‧ countertop structure

116‧‧‧基台總成 116‧‧‧Abutment assembly

118‧‧‧光線 118‧‧‧Light

118a‧‧‧透射部分 118a‧‧‧Transmission section

118b‧‧‧反射部分 118b‧‧‧reflection

120‧‧‧反射層 120‧‧‧reflective layer

122‧‧‧壁 122‧‧‧ wall

202‧‧‧發射層 202‧‧‧Emission layer

204‧‧‧介電層 204‧‧‧Dielectric layer

206‧‧‧第一半導體層 206‧‧‧First semiconductor layer

208‧‧‧作用區域 208‧‧‧Action area

210‧‧‧第二半導體層 210‧‧‧Second semiconductor layer

212‧‧‧基板 212‧‧‧Substrate

214‧‧‧上表面 214‧‧‧ upper surface

216‧‧‧下表面 216‧‧‧ lower surface

302‧‧‧中間層 302‧‧‧Intermediate

402‧‧‧金屬層 402‧‧‧metal layer

404‧‧‧反射層 404‧‧‧reflective layer

602‧‧‧步驟 602‧‧ steps

604‧‧‧步驟 604‧‧‧Steps

606‧‧‧步驟 606‧‧‧Steps

608‧‧‧步驟 608‧‧‧Steps

610‧‧‧步驟 610‧‧‧Steps

702‧‧‧步驟 702‧‧‧Steps

704‧‧‧步驟 704‧‧‧Steps

706‧‧‧步驟 706‧‧‧Steps

708‧‧‧步驟 708‧‧ steps

710‧‧‧步驟 710‧‧ steps

802‧‧‧步驟 802‧‧ steps

804‧‧‧步驟 804‧‧‧ steps

806‧‧‧步驟 806‧‧‧Steps

808‧‧‧步驟 808‧‧‧Steps

810‧‧‧步驟 810‧‧‧Steps

902‧‧‧步驟 902‧‧ steps

904‧‧‧步驟 904‧‧‧Steps

906‧‧‧步驟 906‧‧‧Steps

908‧‧‧步驟 908‧‧‧Steps

910‧‧‧步驟 910‧‧ steps

912‧‧‧步驟 912‧‧ steps

T204‧‧‧厚度T 204 ‧‧‧thickness

T302‧‧‧厚度T 302 ‧‧‧thickness

T402‧‧‧厚度T 402 ‧‧‧thickness

自結合隨附圖式藉由實例給出之以下描述可獲得一更詳細理解,其中:A more detailed understanding can be obtained from the following description given by way of example with the accompanying drawings, in which:

圖1係繪示一例示性III族氮化物發光二極體(LED)裝置之一橫截面視圖;1 is a cross-sectional view showing an exemplary group III nitride light emitting diode (LED) device;

圖2係繪示在一發射層上形成一介電層之一橫截面視圖;2 is a cross-sectional view showing a dielectric layer formed on an emissive layer;

圖3係繪示在介電層上形成一中間層之一橫截面視圖;3 is a cross-sectional view showing an intermediate layer formed on a dielectric layer;

圖4係繪示在中間層上形成一金屬層以形成一反射層之一橫截面視圖;4 is a cross-sectional view showing a metal layer formed on the intermediate layer to form a reflective layer;

圖5A至圖5B係繪示一例示性反射層之一橫截面之透射電子顯微鏡(TEM)顯微照片;5A to 5B are transmission electron microscope (TEM) micrographs showing a cross section of one of the exemplary reflective layers;

圖6係繪示形成反射層之一方法之一流程圖;Figure 6 is a flow chart showing one of the methods of forming a reflective layer;

圖7係繪示形成反射層之另一方法之一流程圖;Figure 7 is a flow chart showing another method of forming a reflective layer;

圖8係繪示形成反射層之另一方法之一流程圖;及Figure 8 is a flow chart showing another method of forming a reflective layer;

圖9係繪示形成反射層之另一方法之一流程圖。Figure 9 is a flow chart showing another method of forming a reflective layer.

Claims (20)

一種導電反射層,其包括: 一介電層,其在一下方層上,該介電層具有一第一反應焓; 一中間層,其在該介電層上;及 一金屬層,其在該中間層上,該金屬層及該中間層電耦合至該下方層。A conductive reflective layer comprising: a dielectric layer on a lower layer, the dielectric layer having a first reaction enthalpy; An intermediate layer on the dielectric layer; and a metal layer on the intermediate layer, the metal layer and the intermediate layer being electrically coupled to the underlying layer. 如請求項1之導電反射層,其中該下方層係導電的。The conductive reflective layer of claim 1, wherein the underlying layer is electrically conductive. 如請求項1之導電反射層,其中該中間層具有大於該第一反應焓之一第二反應焓。The conductive reflective layer of claim 1, wherein the intermediate layer has a second reaction enthalpy greater than one of the first reaction enthalpies. 如請求項1之反射層,其中該介電層具有在自5埃至50埃之範圍中之一厚度。The reflective layer of claim 1, wherein the dielectric layer has a thickness in a range from 5 angstroms to 50 angstroms. 如請求項1之導電反射層,其中該金屬層具有在自50 nm至1000 nm之範圍中之一厚度。The conductive reflective layer of claim 1, wherein the metal layer has a thickness in a range from 50 nm to 1000 nm. 如請求項1之導電反射層,其中該介電層包括氧化矽。The conductive reflective layer of claim 1, wherein the dielectric layer comprises ruthenium oxide. 如請求項1之導電反射層,其中該中間層包括鋁。The conductive reflective layer of claim 1, wherein the intermediate layer comprises aluminum. 如請求項1之導電反射層,其中該金屬層包括一貴金屬。The conductive reflective layer of claim 1, wherein the metal layer comprises a precious metal. 如請求項1之導電反射層,其中該中間層之大多數原子與該介電層之原子形成鍵。The conductive reflective layer of claim 1, wherein a majority of the atoms of the intermediate layer form a bond with atoms of the dielectric layer. 如請求項1之導電反射層,其中該介電層在一發射層上。The conductive reflective layer of claim 1, wherein the dielectric layer is on an emissive layer. 一種形成一導電反射層之方法,該方法包括: 在一下方層上形成一介電層,該介電層具有一第一反應焓; 在該介電層上形成一中間層;及 在該中間層上形成一金屬層,該金屬層及該中間層電耦合至該下方層。A method of forming a conductive reflective layer, the method comprising: Forming a dielectric layer on a lower layer, the dielectric layer having a first reaction enthalpy; Forming an intermediate layer on the dielectric layer; and A metal layer is formed on the intermediate layer, the metal layer and the intermediate layer being electrically coupled to the underlying layer. 如請求項11之方法,其中該下方層係導電的。The method of claim 11, wherein the underlying layer is electrically conductive. 如請求項11之方法,其中該中間層具有大於該第一反應焓之一第二反應焓。The method of claim 11, wherein the intermediate layer has a second reaction enthalpy greater than one of the first reaction enthalpies. 如請求項11之方法,其中該介電層具有在自5埃至1000埃之範圍中之一厚度。The method of claim 11, wherein the dielectric layer has a thickness in a range from 5 angstroms to 1000 angstroms. 如請求項11之方法,其中該介電層包括氧化矽。The method of claim 11, wherein the dielectric layer comprises ruthenium oxide. 如請求項11之方法,其中該中間層包括鋁。The method of claim 11, wherein the intermediate layer comprises aluminum. 如請求項11之方法,其中該金屬層包括一貴金屬。The method of claim 11, wherein the metal layer comprises a precious metal. 如請求項11之方法,其中該中間層之大多數原子與該介電層之原子形成鍵。The method of claim 11, wherein a majority of the atoms of the intermediate layer form a bond with atoms of the dielectric layer. 如請求項11之方法,其中該介電層安置於一發射層上。The method of claim 11, wherein the dielectric layer is disposed on an emissive layer. 一種發光二極體(LED)裝置,其包括: 一發光層;及 一導電反射層,其包括: 一介電層,其在一下方層上,該介電層具有一第一反應焓; 一中間層,其在該介電層上;及 一金屬層,其在該中間層上,該金屬層及該中間層電耦合至該下方層。A light emitting diode (LED) device comprising: a luminescent layer; and a conductive reflective layer comprising: a dielectric layer on a lower layer, the dielectric layer having a first reaction enthalpy; An intermediate layer on the dielectric layer; and a metal layer on the intermediate layer, the metal layer and the intermediate layer being electrically coupled to the underlying layer.
TW108103146A 2018-01-26 2019-01-28 Optically transparent adhesion layer to connect noble metals to oxides TWI703740B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US15/881,140 2018-01-26
US15/881,140 US20190237629A1 (en) 2018-01-26 2018-01-26 Optically transparent adhesion layer to connect noble metals to oxides
EP18165085.4 2018-03-29
EP18165085 2018-03-29
??18165085.4 2018-03-29

Publications (2)

Publication Number Publication Date
TW201933623A true TW201933623A (en) 2019-08-16
TWI703740B TWI703740B (en) 2020-09-01

Family

ID=65278478

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108103146A TWI703740B (en) 2018-01-26 2019-01-28 Optically transparent adhesion layer to connect noble metals to oxides

Country Status (5)

Country Link
EP (1) EP3743949A1 (en)
KR (1) KR20200121815A (en)
CN (1) CN111971806A (en)
TW (1) TWI703740B (en)
WO (1) WO2019148064A1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3707947B2 (en) * 1999-02-12 2005-10-19 三菱化学株式会社 Semiconductor light emitting device
JP4961887B2 (en) * 2005-09-07 2012-06-27 豊田合成株式会社 Solid state device
US8143636B2 (en) * 2008-11-18 2012-03-27 Epistar Corporation Light-emitting device
JP4441658B1 (en) * 2008-12-19 2010-03-31 国立大学法人東北大学 Copper wiring forming method, copper wiring, and semiconductor device
JP5659728B2 (en) * 2010-11-22 2015-01-28 パナソニックIpマネジメント株式会社 Light emitting element
KR20130068448A (en) * 2011-12-15 2013-06-26 한국전자통신연구원 Light emitting diode
JP5819335B2 (en) * 2013-02-18 2015-11-24 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
US20150280078A1 (en) * 2014-03-31 2015-10-01 SemiLEDs Optoelectronics Co., Ltd. White flip chip light emitting diode (fc led) and fabrication method
TWI614920B (en) * 2014-05-19 2018-02-11 晶元光電股份有限公司 Optoelectronic device and method for manufacturing the same
CN106663734B (en) * 2014-06-10 2019-06-14 世迈克琉明有限公司 Semiconductor light-emitting elements
US9543488B2 (en) * 2014-06-23 2017-01-10 Seoul Viosys Co., Ltd. Light emitting device
TWI565098B (en) * 2015-06-10 2017-01-01 隆達電子股份有限公司 Light emitting device

Also Published As

Publication number Publication date
EP3743949A1 (en) 2020-12-02
KR20200121815A (en) 2020-10-26
CN111971806A (en) 2020-11-20
WO2019148064A1 (en) 2019-08-01
TWI703740B (en) 2020-09-01

Similar Documents

Publication Publication Date Title
JP4907842B2 (en) Light emitting diode with planar omnidirectional reflector
US20240042166A1 (en) Semiconductor light-emitting device
JP6942767B2 (en) Devices with porous reflective contacts
JP5797640B2 (en) Semiconductor light-emitting diode having a reflective structure and manufacturing method thereof
US8017963B2 (en) Light emitting diode with a dielectric mirror having a lateral configuration
US8319243B2 (en) Nitride semiconductor light-emitting device and method of manufacturing the same
US6891197B2 (en) Semiconductor LED flip-chip with dielectric coating on the mesa
JP5953155B2 (en) Semiconductor light emitting device
TWI575773B (en) Contact for a semiconductor light emitting device
US8093607B2 (en) Optoelectronic semiconductor component
TWI449201B (en) High reflectivity p-contact for ingan leds
US20070012937A1 (en) High-brightness light emitting diode having reflective layer
WO2009099187A1 (en) Compound semiconductor light-emitting diode
JP2006157024A (en) Light emission semiconductor element
JP2009524918A (en) Photoelectric semiconductor chip
US20230317898A1 (en) Light-emitting device
JP2006128659A (en) Nitride series semiconductor light emitting element and manufacturing method of the same
JP5245529B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
US20210143306A1 (en) Semiconductor light-emitting device
KR101499954B1 (en) fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
TWI703740B (en) Optically transparent adhesion layer to connect noble metals to oxides
US20210336091A1 (en) Optically transparent adhesion layer to connect noble metals to oxides