TW201929374A - Distributed single stage on board charging device and method thereof - Google Patents
Distributed single stage on board charging device and method thereof Download PDFInfo
- Publication number
- TW201929374A TW201929374A TW106145394A TW106145394A TW201929374A TW 201929374 A TW201929374 A TW 201929374A TW 106145394 A TW106145394 A TW 106145394A TW 106145394 A TW106145394 A TW 106145394A TW 201929374 A TW201929374 A TW 201929374A
- Authority
- TW
- Taiwan
- Prior art keywords
- diode
- current
- transistor
- terminal
- capacitor
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
- B60L53/24—Using the vehicle's propulsion converter for charging
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
- B60L2210/12—Buck converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
- B60L2210/14—Boost converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/30—AC to DC converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
本案係關於一種分散式單級車載充電裝置及其方法。 This case relates to a decentralized single-stage vehicle-mounted charging device and method.
現有電動車輛中的電力轉換系統包括充電系統與驅動系統兩個部分,而充電系統與驅動系統各自需要獨立的線路及變流器(Inverter)分別連接至電池組,充電系統是使用外部交流電源(AC Power)對電池組充電,而驅動系統則是由電池組供應啟動發電機(Integrated Starter Generator,ISG)及牽引馬達(Traction Motor)運轉所需的電力。 The electric power conversion system in the existing electric vehicle includes two parts: a charging system and a driving system, and the charging system and the driving system each need an independent line and an inverter to be connected to the battery pack. The charging system uses an external AC power supply ( AC Power) charges the battery pack, and the drive system is supplied by the battery pack with the power required to start the Integrated Starter Generator (ISG) and the traction motor (Traction Motor).
在現有的充電系統中,外部交流電源與電池組之間需要一車載充電器(On-Board Charger)將外部交流電源轉換為穩定的直流電力對電池組充電。現有的充電系統大都僅能夠達到升壓充電,而無法降壓充電。現有的充電系統若需達到升壓或降壓充電的功能,則會增加電路的複雜度,且必須加裝一個大功率的儲能電感器。因此如何簡化電動車輛之電力轉換系統的電路架構,如何降低成本與體積,且又能達到升壓或降壓充電的功能,實是目前有待解決的重要課題。 In the existing charging system, an on-board charger is needed between the external AC power source and the battery pack to convert the external AC power source into stable DC power to charge the battery pack. Most of the existing charging systems can only achieve step-up charging, but cannot step-down charging. If the existing charging system needs to achieve the function of step-up or step-down charging, it will increase the complexity of the circuit, and a high-power energy storage inductor must be added. Therefore, how to simplify the circuit architecture of the electric power conversion system of electric vehicles, how to reduce the cost and volume, and how to achieve the functions of boost or buck charging are really important issues to be solved at present.
本揭露之一實施例提供一種分散式單級車載充電裝置,包含:一第一變壓器,具有第一初級繞組與第一次級繞組;一第一電容,連接該第一初級繞組;一第一電感,連接該第一電容,該第一電容位於該第一電感與該第一變壓器之間;一第一電晶體,連接該第一電容與該第一電感;一第一二極體,連接該第一次級繞組;一第二變壓器,具有第二初級繞組與第二次級繞組,該第二變壓器與該第一變壓器並聯;一第二電容,連接該第二初級繞組;一第二電感,連接該第二電容,該第二電容位於該第二電感與該第二變壓器之間;一第二電晶體,連接該第二電容與該第二電感;以及一第二二極體,連接該第二次級繞組,該第一二極體與該第二二極體並聯。 An embodiment of the present disclosure provides a decentralized single-stage vehicle-mounted charging device, including: a first transformer having a first primary winding and a first secondary winding; a first capacitor connected to the first primary winding; a first An inductor is connected to the first capacitor, the first capacitor is located between the first inductor and the first transformer; a first transistor is connected to the first capacitor and the first inductor; a first diode is connected The first secondary winding; a second transformer having a second primary winding and a second secondary winding, the second transformer being connected in parallel with the first transformer; a second capacitor connected to the second primary winding; a second An inductor connected to the second capacitor, the second capacitor being located between the second inductor and the second transformer; a second transistor connected to the second capacitor and the second inductor; and a second diode, The second secondary winding is connected, and the first diode is connected in parallel with the second diode.
本揭露之一實施例提供一種分散式單級車載充電方法,包含:輸入一交流電源;判定定電壓充電模式或定電流充電模式;對該交流電源的交流電流端與交流電壓端進行功率因素修正;在該交流電源的上半波時,利用第一變壓器,進行升壓或降壓轉換;在該交流電源的下半波時,利用第二變壓器,進行升壓或降壓轉換;以及輸出一脈動直流電流。 An embodiment of the disclosure provides a decentralized single-stage vehicle charging method, including: inputting an AC power source; determining a constant voltage charging mode or a constant current charging mode; and performing power factor correction on the AC current terminal and the AC voltage terminal of the AC power ; Using the first transformer to perform step-up or step-down conversion during the first half-wave of the AC power supply; using the second transformer to perform step-up or step-down conversion during the lower half-wave of the AC power supply; Pulsed DC current.
10‧‧‧充電架構 10‧‧‧Charging architecture
12‧‧‧外部電源 12‧‧‧External Power
14‧‧‧整流器 14‧‧‧ Rectifier
15‧‧‧分散式單級車載充電裝置 15‧‧‧ decentralized single-stage vehicle charging device
16、17‧‧‧隔離轉換器 16, 17‧‧‧ isolated converter
18‧‧‧正半波 18‧‧‧ positive half wave
19‧‧‧整流後的負半波 19‧‧‧ Rectified negative half wave
20‧‧‧電池 20‧‧‧ Battery
22、23、24、25‧‧‧波形圖 22, 23, 24, 25‧‧‧ waveform
30‧‧‧分散式單級車載充電裝置 30‧‧‧ decentralized single-stage vehicle charging device
31‧‧‧第一初級繞組 31‧‧‧first primary winding
32‧‧‧第一次級繞組 32‧‧‧ the first secondary winding
33‧‧‧第二初級繞組 33‧‧‧Secondary primary winding
34‧‧‧第二次級繞組 34‧‧‧Secondary secondary winding
35‧‧‧起繞端 35‧‧‧ from the end
36‧‧‧起繞端 36‧‧‧Starting around
37‧‧‧起繞端 From 37‧‧‧ around the end
38‧‧‧起繞端 38‧‧‧ from the end
41‧‧‧電磁干擾濾波器 41‧‧‧Electromagnetic interference filter
42‧‧‧交流電源 42‧‧‧AC Power
43‧‧‧起繞端 43‧‧‧ from the end
45‧‧‧起繞端 45‧‧‧ from the end
47‧‧‧車用充電電池 47‧‧‧Rechargeable battery for car
Vac‧‧‧交流電壓端 V ac ‧‧‧ AC voltage terminal
Iac‧‧‧交流電壓端 I ac ‧‧‧ AC voltage terminal
T1‧‧‧第一變壓器 T1‧‧‧First transformer
T2‧‧‧第二變壓器 T2‧‧‧Second Transformer
L1‧‧‧第一電感 L1‧‧‧First inductor
L2‧‧‧第二電感 L2‧‧‧Second inductor
C1‧‧‧第一電容 C1‧‧‧first capacitor
C2‧‧‧第二電容 C2‧‧‧Second capacitor
Co‧‧‧第三電容 Co‧‧‧Third Capacitor
D1‧‧‧第一二極體 D1‧‧‧First Diode
D2‧‧‧第二二極體 D2‧‧‧Second Diode
D3‧‧‧第三二極體 D3‧‧‧ third diode
M1‧‧‧第一電晶體 M1‧‧‧First transistor
M2‧‧‧第二電晶體 M2‧‧‧Second transistor
Dp‧‧‧第四二極體 Dp‧‧‧ Fourth Diode
Dn‧‧‧第五二極體 Dn‧‧‧ fifth diode
dr1、dr2‧‧‧汲極 dr1, dr2‧‧‧‧ drain
G1、G2‧‧‧閘極 G1, G2‧‧‧‧Gate
s1、s2‧‧‧源極 s1, s2‧‧‧ source
50‧‧‧控制電路 50‧‧‧control circuit
52‧‧‧充電模式控制電路 52‧‧‧Charge mode control circuit
53‧‧‧功率因數修正控制電路 53‧‧‧Power factor correction control circuit
54‧‧‧第一加法器 54‧‧‧The first adder
55‧‧‧第二加法器 55‧‧‧second adder
56‧‧‧第六二極體 56‧‧‧ Sixth Diode
57‧‧‧第七二極體 57‧‧‧Seventh Diode
58‧‧‧第一比例積分控制器 58‧‧‧The first proportional integral controller
59‧‧‧低通濾波器 59‧‧‧low-pass filter
Ierr‧‧‧電流誤差訊號 I err ‧‧‧ current error signal
Verr‧‧‧電壓誤差訊號 V err ‧‧‧Voltage error signal
Vn‧‧‧節點電壓 Vn‧‧‧node voltage
Ifb‧‧‧電流回授端 I fb ‧‧‧ Current feedback terminal
Vfb‧‧‧電壓回授端 V fb ‧‧‧Voltage feedback terminal
Iref‧‧‧電流參考命令端 I ref ‧‧‧Current reference command terminal
Vref‧‧‧電壓參考命令端 V ref ‧‧‧ Voltage reference command terminal
Sn1‧‧‧充電控制訊號 Sn1‧‧‧Charge control signal
61‧‧‧乘法器 61‧‧‧Multiplier
62‧‧‧第三加法器 62‧‧‧third adder
|Vac|‧‧‧全波整流交流電壓端 | V ac | ‧‧‧Full-wave rectified AC voltage terminal
|Iac|‧‧‧全波整流交流電流端 | I ac | ‧‧‧Full-wave rectified AC current terminal
Iac-ref‧‧‧交流電流參考命令 I ac-ref ‧‧‧ AC current reference command
Iac-error‧‧‧交流電流參考命令 I ac-error ‧‧‧ AC current reference command
63‧‧‧第二比例積分控制器 63‧‧‧Second Proportional Integral Controller
64‧‧‧振幅限制器 64‧‧‧Amplitude Limiter
65‧‧‧第一比較器 65‧‧‧first comparator
Sn2‧‧‧功率因數修正控制訊號 Sn2‧‧‧ Power Factor Correction Control Signal
66‧‧‧第二比較器 66‧‧‧Second Comparator
67‧‧‧第一及閘 67‧‧‧First and Gate
68‧‧‧第二及閘 68‧‧‧Second and Gate
69‧‧‧反閘 69‧‧‧Reverse
70‧‧‧高頻鋸齒波端 70‧‧‧ high frequency sawtooth wave end
71‧‧‧正半波 71‧‧‧ positive half wave
72‧‧‧負半波 72‧‧‧ negative half wave
75‧‧‧分散式單級車載充電方法 75‧‧‧ decentralized single-stage vehicle charging method
76~81‧‧‧步驟 76 ~ 81‧‧‧step
86~90‧‧‧步驟 86 ~ 90‧‧‧ steps
91~98‧‧‧步驟 91 ~ 98‧‧‧ steps
I1‧‧‧一次電流 I1‧‧‧ primary current
102‧‧‧迴路 102‧‧‧loop
103‧‧‧迴路 103‧‧‧loop
I2‧‧‧二次電流 I2‧‧‧ secondary current
I3‧‧‧一次電流 I3‧‧‧ primary current
104‧‧‧迴路 104‧‧‧loop
105‧‧‧迴路 105‧‧‧loop
I4‧‧‧二次電流 I4‧‧‧ secondary current
108‧‧‧交流輸入電壓 108‧‧‧AC input voltage
109‧‧‧電池充電電壓 109‧‧‧ Battery charging voltage
110‧‧‧交流輸入電流 110‧‧‧AC input current
111‧‧‧電池充電電流 111‧‧‧ Battery charging current
112‧‧‧虛線 112‧‧‧ dotted line
113‧‧‧虛線 113‧‧‧ dotted line
114‧‧‧圓圈 114‧‧‧circle
120‧‧‧分散式單級車載充電裝置 120‧‧‧ decentralized single-stage vehicle charging device
131‧‧‧第一變壓器 131‧‧‧First transformer
132‧‧‧第一初級繞組 132‧‧‧first primary winding
133‧‧‧第一次級繞組 133‧‧‧first secondary winding
134‧‧‧第一電容 134‧‧‧first capacitor
135‧‧‧第一電感 135‧‧‧first inductor
136‧‧‧第一電晶體 136‧‧‧First transistor
137‧‧‧第一二極體 137‧‧‧First Diode
140‧‧‧第二變壓器 140‧‧‧Second transformer
141‧‧‧第二初級繞組 141‧‧‧secondary primary winding
142‧‧‧第二次級繞組 142‧‧‧Secondary secondary winding
143‧‧‧第二電容 143‧‧‧Second capacitor
144‧‧‧第二電感 144‧‧‧Second inductor
145‧‧‧第二電晶體 145‧‧‧Second transistor
146‧‧‧第二二極體 146‧‧‧Second Diode
150‧‧‧電磁干擾濾波器 150‧‧‧ electromagnetic interference filter
151‧‧‧交流電源 151‧‧‧AC Power
153‧‧‧第三電容 153‧‧‧Third capacitor
154‧‧‧第三二極體 154‧‧‧Third Diode
155‧‧‧車用充電電池 155‧‧‧Rechargeable battery for car
160‧‧‧全橋整流器 160‧‧‧Full Bridge Rectifier
161、162‧‧‧交流端 161, 162‧‧‧AC
163、164‧‧‧直流端 163, 164‧‧‧ DC terminal
第1圖係根據一些實施例說明充電架構的示意圖。 FIG. 1 is a schematic diagram illustrating a charging architecture according to some embodiments.
第2圖係根據一些實施例說明分散式單級車載充 電裝置的電路圖。 Figure 2 illustrates a decentralized single-stage car charger according to some embodiments. Circuit diagram of electric device.
第3圖係根據一些實施例說明分散式單級車載充電裝置的控制電路之電路圖。 FIG. 3 is a circuit diagram illustrating a control circuit of a distributed single-stage vehicle-mounted charging device according to some embodiments.
第4圖係根據一些實施例說明分散式單級車載充電方法的流程圖。 FIG. 4 is a flowchart illustrating a decentralized single-stage vehicle charging method according to some embodiments.
第5圖係根據一些實施例說明第4圖中判定定電壓充電模式或定電流充電模式之步驟的細部流程圖。 FIG. 5 is a detailed flowchart illustrating the steps of determining the constant voltage charging mode or the constant current charging mode in FIG. 4 according to some embodiments.
第6圖係根據一些實施例說明第4圖中對該交流電源的交流電流端與交流電壓端進行功率因素修正之步驟的細部流程圖。 FIG. 6 is a detailed flowchart illustrating the steps of performing power factor correction on the AC current terminal and the AC voltage terminal of the AC power source in FIG. 4 according to some embodiments.
第7圖係根據一些實施例說明第4圖中在該交流電源的上半波時,利用第一變壓器,進行升壓或降壓轉換之之步驟的示意圖。 FIG. 7 is a schematic diagram illustrating the steps of performing step-up or step-down conversion using the first transformer during the upper half of the AC power source in FIG. 4 according to some embodiments.
第8圖係根據一些實施例說明第4圖中在該交流電源的上半波時,利用第一變壓器,進行升壓或降壓轉換之之步驟的另一示意圖。 FIG. 8 is another schematic diagram illustrating the steps of performing step-up or step-down conversion using the first transformer when the upper half of the AC power is used in FIG. 4 according to some embodiments.
第9圖係根據一些實施例說明第4圖中在該交流電源的下半波時,利用第二變壓器,進行升壓或降壓轉換之步驟的示意圖。 FIG. 9 is a schematic diagram illustrating the steps of performing step-up or step-down conversion by using a second transformer during the lower half of the AC power source in FIG. 4 according to some embodiments.
第10圖係根據一些實施例說明第4圖中在該交流電源的下半波時,利用第二變壓器,進行升壓或降壓轉換之步驟的另一示意圖。 FIG. 10 is another schematic diagram illustrating the step of performing step-up or step-down conversion by using a second transformer during the lower half of the AC power source in FIG. 4 according to some embodiments.
第11圖係根據一些實施例說明分散式單級車載充電裝置的波形圖。 FIG. 11 is a waveform diagram illustrating a decentralized single-stage vehicle-mounted charging device according to some embodiments.
第12圖係根據一些實施例說明分散式單級車載充電裝置的效率折線圖。 FIG. 12 is a line chart illustrating the efficiency of a distributed single-stage vehicle-mounted charging device according to some embodiments.
第13圖係根據一些實施例說明分散式單級車載充電裝置的電路圖。 FIG. 13 is a circuit diagram illustrating a decentralized single-stage vehicle charging device according to some embodiments.
第14圖係根據一些實施例說明分散式單級車載充電裝置的效率折線圖。 FIG. 14 is a line chart illustrating the efficiency of a distributed single-stage vehicle-mounted charging device according to some embodiments.
本案提供一種分散式單級車載充電裝置及其方法。本車載充電裝置係基於單端初級電感轉換器(Single Ended Primary Inductive Converter),並且進一步減少功率元件的使用及簡化電路結構設計的單級車載充電裝置。本案提供控制策略不需要直流至直流轉換器(DC to DC converter)。本案搭配此控制策略來達成脈動直流充電、能源轉換、以及高壓電氣隔離,同時符合汽車安全規範的要求。 This case provides a decentralized single-stage vehicle-mounted charging device and method thereof. The vehicle charging device is a single-stage vehicle charging device based on a Single Ended Primary Inductive Converter, and further reducing the use of power components and simplifying the circuit structure design. The control strategy provided in this case does not require a DC to DC converter. This case is matched with this control strategy to achieve pulsating DC charging, energy conversion, and high-voltage electrical isolation, while meeting the requirements of automotive safety regulations.
第1圖係根據一些實施例說明充電架構10的示意圖。充電架構10的特點係將外部電源12轉換為穩定的直流電力對電池20充電。外部電源12為交流電或市用電源(110/220伏特),其電壓與時間的關係如波形圖22所示,電壓隨時間變化並且為弦波,具有正電壓與負電壓。外部電源12的交流 電壓進入整流器14,整流器14可選擇橋式整流器(bridge rectifier)進行整流,或可選用無橋式整流器(bridgeless rectifier)進行整流,整流後的電壓與時間關係如波形圖23所示,負電壓經過整流後變成正電壓。整流後的電壓進入分散式單級車載充電裝置15,分散式單級車載充電裝置15包含隔離轉換器16與隔離轉換器17,隔離轉換器16負責正半波18的訊號轉換,進行升壓或降壓處理,隔離轉換器17負責整流後的負半波19(原始訊號如波形圖22的負半波,經過整流後成為正電壓)的訊號轉換,進行升壓或降壓處理。分散式單級車載充電裝置15具有功率因數修正(Power Factor Correction)、升壓與降壓電路、及取代直流至直流轉換器(DC-DC converter)的功能。分散式單級車載充電裝置15調整電壓與電流之間的相位差,對輸入電壓進行功率因數調整,以降低虛功產生並且提升能量的利用效率。並且,分散式單級車載充電裝置15能進行提升電壓與降低電壓的處理,經過提升的電壓與降低的電壓用來對電池20充電,分散式單級車載充電裝置15的輸出電壓如充電電壓Vo如波型圖24,充電電壓Vo為一定值直流電壓。分散式單級車載充電裝置15能產生脈動直流電流Io,其特點具有二倍頻率的弦波電流如波型圖25,此種充電架構10是將外部電源12經分散式單級車載充電裝置15轉換後,直接傳送至電池20,因此不需要直流鏈電容及第二級的直流至直流轉換器,如此可以大幅度地降低充電 器的體積及成本。 FIG. 1 is a schematic diagram illustrating a charging architecture 10 according to some embodiments. The charging structure 10 is characterized by converting the external power source 12 into stable DC power to charge the battery 20. The external power source 12 is an alternating current or a commercial power source (110/220 volts). The relationship between the voltage and time is shown in the waveform diagram 22. The voltage varies with time and is a sine wave, with positive and negative voltages. AC of external power supply 12 The voltage enters the rectifier 14. The rectifier 14 can choose a bridge rectifier for rectification, or a bridgeless rectifier for rectification. The relationship between the rectified voltage and time is shown in the waveform diagram 23, and the negative voltage passes It becomes a positive voltage after rectification. The rectified voltage enters the decentralized single-stage vehicle-mounted charging device 15. The decentralized single-stage vehicle-mounted charging device 15 includes an isolation converter 16 and an isolation converter 17, and the isolation converter 16 is responsible for the signal conversion of the positive half wave 18 for boosting or In the step-down process, the isolation converter 17 is responsible for converting the signal of the rectified negative half-wave 19 (the original signal, such as the negative half-wave of FIG. 22, which becomes a positive voltage after rectification), and performs step-up or step-down processing. The decentralized single-stage vehicle charging device 15 has a function of a Power Factor Correction, a step-up and step-down circuit, and a function of replacing a DC-DC converter. The decentralized single-stage vehicle-mounted charging device 15 adjusts the phase difference between the voltage and the current, and adjusts the power factor of the input voltage to reduce the generation of virtual work and improve the energy utilization efficiency. In addition, the decentralized single-stage vehicle-mounted charging device 15 can perform the processing of increasing and decreasing the voltage. The boosted and reduced voltage is used to charge the battery 20. The output voltage of the decentralized single-stage vehicle-mounted charging device 15 is such as the charging voltage Vo As shown in waveform 24, the charging voltage Vo is a constant value DC voltage. The decentralized single-stage vehicle charging device 15 can generate a pulsating DC current Io, which is characterized by a sine wave current with a double frequency as shown in Figure 25. This charging architecture 10 uses an external power source 12 via a decentralized single-stage vehicle charging device 15 After conversion, it is directly transmitted to the battery 20, so a DC link capacitor and a second-stage DC-to-DC converter are not needed, which can greatly reduce charging. Volume and cost.
第2圖係根據一些實施例說明分散式單級車載充電裝置30的電路圖。分散式單級車載充電裝置30包含:第一變壓器T1,具有第一初級繞組31與第一次級繞組32;第一電容C1,連接第一初級繞組31;第一電感L1,連接第一電容C1,第一電容C1位於第一電感L1與第一變壓器T1之間;第一電晶體M1,連接第一電容C1與第一電感L1;第一二極體D1,連接第一次級繞組32;第二變壓器T2,具有第二初級繞組33與第二次級繞組34,第二變壓器T2與第一變壓器T1並聯;第二電容C2,連接第二初級繞組33;第二電感L2,連接第二電容C2,第二電容C2位於第二電感L2與第二變壓器T2之間;第二電晶體M2,連接第二電容C2與第二電感L2;以及第二二極體D2,連接第二次級繞組34,第一二極體D1與第二二極體D2並聯。 FIG. 2 is a circuit diagram illustrating a decentralized single-stage vehicle-mounted charging device 30 according to some embodiments. The distributed single-stage vehicle-mounted charging device 30 includes: a first transformer T1 having a first primary winding 31 and a first secondary winding 32; a first capacitor C1 connected to the first primary winding 31; and a first inductor L1 connected to the first capacitor C1, the first capacitor C1 is located between the first inductor L1 and the first transformer T1; the first transistor M1 is connected to the first capacitor C1 and the first inductor L1; the first diode D1 is connected to the first secondary winding 32 A second transformer T2 having a second primary winding 33 and a second secondary winding 34, the second transformer T2 is connected in parallel with the first transformer T1; a second capacitor C2 is connected to the second primary winding 33; a second inductor L2 is connected to the first Two capacitors C2 and C2 are located between the second inductor L2 and the second transformer T2; a second transistor M2 is connected between the second capacitor C2 and the second inductor L2; and a second diode D2 is connected for the second time In the secondary winding 34, the first diode D1 and the second diode D2 are connected in parallel.
在一實施例中,在第一變壓器T1中,第一初級繞組31的起繞端(starting winding end)35連接第一電容C1,第一次級繞組32連接第一二極體D1的陽極。詳言之,第一次級繞組32的起繞端36連接第一二極體D1的陽極。在第二變壓器T2中,第二初級繞組33的起繞端37連接第二電容C2,第二次級繞組34連接第二二極體D2的陽極。詳言之,第二次級繞組34的起繞端38連接第二二極體D2的陽極。 In one embodiment, in the first transformer T1, the starting winding end 35 of the first primary winding 31 is connected to the first capacitor C1, and the first secondary winding 32 is connected to the anode of the first diode D1. In detail, the winding end 36 of the first secondary winding 32 is connected to the anode of the first diode D1. In the second transformer T2, the winding end 37 of the second primary winding 33 is connected to the second capacitor C2, and the second secondary winding 34 is connected to the anode of the second diode D2. Specifically, the winding end 38 of the second secondary winding 34 is connected to the anode of the second diode D2.
在一實施例中,第二變壓器T2與第一變壓器T1 並聯,第一初級繞組31的末端連接第二初級繞組33的末端、第一電晶體M1的源極s1、及第二電晶體M2的源極s2。第一次級繞組32的末端(ending winding end)及第二次級繞組34的末端接地。 In one embodiment, the second transformer T2 and the first transformer T1 In parallel, the end of the first primary winding 31 is connected to the end of the second primary winding 33, the source s1 of the first transistor M1, and the source s2 of the second transistor M2. The end of the first secondary winding 32 and the end of the second secondary winding 34 are grounded.
在一實施例中,對於第一電晶體M1與第二電晶體M2的連接方式,第一電晶體M1的汲極dr1同時連接第一電容C1與第一電感L1,第二電晶體M2的汲極dr2同時連接第二電容C2與第二電感L2,第一電晶體M1的源極s1連接第二電晶體M2的源極s2。第一電晶體M1與第二電晶體M2可採用金氧半場效電晶體(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)或絕緣柵雙極電晶體(Insulated Gate Bipolar Transistor,IGBT)等。 In an embodiment, for the connection mode of the first transistor M1 and the second transistor M2, the drain dr1 of the first transistor M1 is connected to the first capacitor C1 and the first inductor L1 and the drain of the second transistor M2 at the same time. The electrode dr2 is connected to the second capacitor C2 and the second inductor L2 at the same time, and the source s1 of the first transistor M1 is connected to the source s2 of the second transistor M2. The first transistor M1 and the second transistor M2 may be metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) or insulated gate bipolar transistor (IGBT).
在一實施例中,分散式單級車載充電裝置30另包含:電磁干擾濾波器41(Electro Magnetic Interference filter),位於第一電感L1與交流電源42之間,也位於第二電感L2與交流電源42之間。第一電感L1的起繞端43及第二電感L2的起繞端45分別連接電磁干擾濾波器41。交流電源42輸入電磁干擾濾波器41,電磁干擾濾波器41係過濾交流電雜訊。 In one embodiment, the decentralized single-stage vehicle-mounted charging device 30 further includes: an electromagnetic interference filter 41 (Electro Magnetic Interference filter) located between the first inductor L1 and the AC power source 42 and also located between the second inductor L2 and the AC power source Between 42. The winding end 43 of the first inductor L1 and the winding end 45 of the second inductor L2 are respectively connected to the electromagnetic interference filter 41. The AC power source 42 is input to the electromagnetic interference filter 41, and the electromagnetic interference filter 41 filters AC noise.
在一實施例中,分散式單級車載充電裝置30另包含第三電容Co,第三電容Co的一端連接第一二極體D1的陰極及第二二極體D2的陰極,第三電容Co的另一端接地。分散式單級車載充電裝置30另包含車用充電電池47以及第三二 極體D3,車用充電電池47的陰極接地。第三二極體D3的陽極連接第三電容Co、第一二極體D1的陰極、及第二二極體D2的陰極,車用充電電池47的陽極連接第三二極體D3的陰極。 In one embodiment, the decentralized single-stage vehicle charging device 30 further includes a third capacitor Co. One end of the third capacitor Co is connected to the cathode of the first diode D1 and the cathode of the second diode D2. The third capacitor Co The other end is grounded. The decentralized single-stage vehicle charging device 30 further includes a vehicle rechargeable battery 47 and a third two In the electrode body D3, the cathode of the rechargeable battery 47 for a vehicle is grounded. The anode of the third diode D3 is connected to the third capacitor Co, the cathode of the first diode D1, and the cathode of the second diode D2. The anode of the rechargeable battery 47 for a vehicle is connected to the cathode of the third diode D3.
在一實施例中,分散式單級車載充電裝置30另包含第四二極體Dp、及第五二極體Dn。第四二極體Dp的陰極連接第一電感L1的起繞端43。第五二極體Dn的陰極連接第二電感L2的起繞端45,其中第四二極體Dp的陽極連接第五二極體Dn的陽極、第一電晶體M1的源極s1、第二電晶體M2的源極s2、第一初級繞組31的末端、及第二初級繞組33的末端。 In one embodiment, the decentralized single-stage vehicle-mounted charging device 30 further includes a fourth diode Dp and a fifth diode Dn. The cathode of the fourth diode Dp is connected to the winding end 43 of the first inductor L1. The cathode of the fifth diode Dn is connected to the winding end 45 of the second inductor L2, wherein the anode of the fourth diode Dp is connected to the anode of the fifth diode Dn, the source s1 of the first transistor M1, and the second The source s2 of the transistor M2, the end of the first primary winding 31, and the end of the second primary winding 33.
第3圖係根據一些實施例說明分散式單級車載充電裝置30的控制電路50之電路圖。分散式單級車載充電裝置30另包含控制電路50,控制電路50判斷當下應採用定電壓模式(constant voltage mode)或是定電流模式(constant current mode),對車用充電電池47進行充電,並且進行功率因數修正控制,控制電路50的兩輸出端分別連接第一電晶體M1的閘極G1與第二電晶體M2的閘極G2,簡言之,控制電路50控制第一電晶體M1與第二電晶體M2。在一實施例中,控制電路50係由軟體方法實現,將控制電路50寫入數位信號處理器(digital signal processor,DSP)中。在一實施例中,控制電路50係由現場可程式化閘陣列(Field-Programmable Gate Array,FPGA)來實現,但不在此限。 FIG. 3 is a circuit diagram illustrating a control circuit 50 of the distributed single-stage vehicle-mounted charging device 30 according to some embodiments. The decentralized single-stage vehicle-mounted charging device 30 further includes a control circuit 50. The control circuit 50 determines that a constant voltage mode or a constant current mode should be used to charge the vehicle rechargeable battery 47, and Power factor correction control is performed. The two output terminals of the control circuit 50 are respectively connected to the gate G1 of the first transistor M1 and the gate G2 of the second transistor M2. In short, the control circuit 50 controls the first transistor M1 and the first transistor M1. Two transistor M2. In one embodiment, the control circuit 50 is implemented by a software method, and the control circuit 50 is written into a digital signal processor (DSP). In one embodiment, the control circuit 50 is implemented by a Field-Programmable Gate Array (FPGA), but not limited thereto.
在一實施例中,控制電路50包含定電壓/定電流之充電模式控制電路52與功率因數修正控制電路53,充電模式控制電路52連接功率因數修正控制電路53。充電模式控制電路52間接耦合第一電晶體M1與第二電晶體M2。功率因數修正控制電路53的兩輸出端分別連接第一電晶體M1的閘極G1與第二電晶體M2的閘極G2。 In one embodiment, the control circuit 50 includes a constant voltage / constant current charging mode control circuit 52 and a power factor correction control circuit 53. The charging mode control circuit 52 is connected to the power factor correction control circuit 53. The charging mode control circuit 52 indirectly couples the first transistor M1 and the second transistor M2. The two output terminals of the power factor correction control circuit 53 are respectively connected to the gate G1 of the first transistor M1 and the gate G2 of the second transistor M2.
在一實施例中,充電模式控制電路52判斷當下應採用定電壓模式或是定電流模式,對車用充電電池47進行充電。充電模式控制電路52包含:第一加法器54,連接電流回授端Ifb及電流參考命令端Iref,用以輸出電流回授端Ifb與電流參考命令端Iref的差值(Iref-Ifb);第六二極體56,連接第一加法器54;第二加法器55,連接電壓回授端Vfb及電壓參考命令端Vref,用以輸出電壓回授端Vfb與電壓參考命令端Vref的差值(Vref-Vfb);以及第七二極體57,連接第二加法器55,第六二極體56與第七二極體57並聯。電流回授端Ifb的訊號係來自車用充電電池47的充電電流訊號,電流參考命令端Iref係一預設的電流值,電壓回授端Vfb的訊號係來自車用充電電池47的充電電壓訊號,電壓參考命令端Vref係一預設的電壓值。第一加法器54係輸出電流誤差訊號Ierr(Iref-Ifb=Ierr),第二加法器55係輸出電壓誤差訊號Verr(Vref-Vfb=Verr)。在電流誤差訊號Ierr小於電壓誤差訊號Verr的情況下,節點電壓Vn與電流誤差訊號Ierr的差異讓第六二極體56產生順向偏壓並且導 通時,電流誤差訊號Ierr進入第一比例積分控制器(proportion-integration controller)58,此時為定電流模式(Constant Current mode)。在電壓誤差訊號Verr小於電流誤差訊號Ierr的情況下,節點電壓Vn與電壓誤差訊號Verr的差異讓第七二極體57產生順向偏壓並且導通時,電壓誤差訊號Verr進入第一比例積分控制器58,此時為定電壓模式(Constant Voltage mode)。 In one embodiment, the charging mode control circuit 52 determines that the constant voltage mode or the constant current mode should be used to charge the vehicle rechargeable battery 47. The charging mode control circuit 52 includes a first adder 54 connected to the current feedback terminal I fb and the current reference command terminal I ref to output a difference between the current feedback terminal I fb and the current reference command terminal I ref (I ref -I fb ); the sixth diode 56 is connected to the first adder 54; the second adder 55 is connected to the voltage feedback terminal V fb and the voltage reference command terminal V ref to output the voltage feedback terminal V fb and The difference (V ref -V fb ) of the voltage reference command terminal V ref ; and the seventh diode 57 is connected to the second adder 55, and the sixth diode 56 is connected in parallel with the seventh diode 57. The signal of the current feedback terminal I fb is the charging current signal from the vehicle rechargeable battery 47, the current reference command terminal I ref is a preset current value, and the signal of the voltage feedback terminal V fb is from the vehicle rechargeable battery 47 The charging voltage signal, the voltage reference command terminal V ref is a preset voltage value. The first adder 54 outputs a current error signal I err (I ref -I fb = I err ), and the second adder 55 outputs a voltage error signal V err (V ref -V fb = V err ). When the current error signal I err is smaller than the voltage error signal V err , the difference between the node voltage Vn and the current error signal I err causes the sixth diode 56 to be forward biased and turned on, and the current error signal I err enters the first A proportional-integration controller 58 is a constant current mode at this time. When the voltage error signal V err is smaller than the current error signal I err , the difference between the node voltage Vn and the voltage error signal V err causes the seventh diode 57 to be forward biased and turned on, and the voltage error signal V err enters the first A proportional-integral controller 58 is now in a Constant Voltage mode.
在一實施例中,充電模式控制電路52包含第一比例積分控制器(proportional integral controller)58以及低通濾波器59,第一比例積分控制器58的輸入端連接第六二極體56的陽極與第七二極體57的陽極。低通濾波器59的輸入端連接第一比例積分控制器58的輸出端。第一比例積分控制器58的輸出與輸入誤差訊號成比例關係,能使系統在進入穩態後不會產生穩態誤差。低通濾波器59係過濾高頻訊號,讓低頻訊號通過,低通濾波器59輸出充電控制訊號Sn1。 In one embodiment, the charging mode control circuit 52 includes a first proportional integral controller 58 and a low-pass filter 59. The input of the first proportional integral controller 58 is connected to the anode of the sixth diode 56. Anode with seventh diode 57. An input terminal of the low-pass filter 59 is connected to an output terminal of the first proportional-integral controller 58. The output of the first proportional-integral controller 58 is proportional to the input error signal, so that the system does not generate a steady-state error after entering a steady state. The low-pass filter 59 filters high-frequency signals to allow low-frequency signals to pass, and the low-pass filter 59 outputs a charging control signal Sn1.
在一實施例中,功率因數修正控制電路53包含:乘法器61,連接充電模式控制電路52的輸出端、及一全波整流交流電壓端|Vac|;第三加法器62,連接乘法器61的輸出端、及一全波整流交流電流端|Iac|;第二比例積分控制器63,連接第三加法器62的輸出端;以及振幅限制器(limiter)64,連接第二比例積分控制器63的輸出端。全波整流交流電壓端|Vac|和全波整流交流電流端|Iac|分別擷取交 流電源42的交流電壓訊號與交流電流訊號,並且經過全波整流。乘法器61接收充電控制訊號Sn1和全波整流交流電壓端|Vac|的訊號,乘法器61輸出交流電流參考命令Iac-ref。第三加法器62接收全波整流交流電流端|Iac|的訊號以及交流電流參考命令Iac-ref,第三加法器62輸出交流電流誤差命令Iac-error。第二比例積分控制器63接收交流電流誤差命令Iac-error,並且進行比例控制項與積分控制項的調整。振幅限制器(limiter)64能防止過大的振幅訊號,去除過載訊號以保護後續邏輯電路,振幅限制器64輸出功率因數修正控制訊號Sn2。 In one embodiment, the power factor correction control circuit 53 includes: a multiplier 61 connected to the output terminal of the charging mode control circuit 52 and a full-wave rectified AC voltage terminal | V ac |; a third adder 62 connected to the multiplier The output end of 61 and a full-wave rectified AC current end | I ac |; the second proportional-integral controller 63 is connected to the output of the third adder 62; and the amplitude limiter 64 is connected to the second proportional-integral The output of the controller 63. The full-wave rectified AC voltage terminal | V ac | and the full-wave rectified AC current terminal | I ac | respectively capture the AC voltage signal and the AC current signal of the AC power source 42 and undergo full-wave rectification. The multiplier 61 receives the charging control signal Sn1 and the signal of the full-wave rectified AC voltage terminal | V ac |, and the multiplier 61 outputs an AC current reference command I ac-ref . The third adder 62 receives the signal of the full-wave rectified AC current terminal | I ac | and the AC current reference command I ac-ref . The third adder 62 outputs an AC current error command I ac-error . The second proportional-integral controller 63 receives the AC current error command I ac-error and adjusts the proportional control term and the integral control term. The amplitude limiter 64 can prevent excessive amplitude signals, remove overload signals to protect subsequent logic circuits, and the amplitude limiter 64 outputs a power factor correction control signal Sn2.
在一實施例中,功率因數修正控制電路53包含:第一比較器65,第一比較器65的正端連接第二比例積分控制器63,第一比較器65的負端連接高頻鋸齒波端70;第二比較器66,第二比較器66的正端連接交流電壓端Vac,第二比較器66的負端接地;第一及閘(AND gate)67;以及第二及閘68,其中第一比較器65的輸出端連接第一及閘67、與第二及閘68,第二比較器66的輸出端連接第一及閘67。功率因數修正控制電路53另包含反閘(NOT gate)69,位於第二及閘68與第二比較器66之間,反閘69的輸入端連接第二比較器66的輸出端,反閘69的輸出端連接第二及閘68。高頻鋸齒波端70輸出一高頻鋸齒波。交流電壓端Vac含有正半波71與負半波72,第二比較器66與反閘69將正半波71與負半波72分離,並 且配合第一及閘67以及第二及閘68,讓第一電晶體M1的閘極G1與第二電晶體M2的閘極G2具有區分時序的作用,用以決定當正半波71與負半波72分別輸入第一電晶體M1與第二電晶體M2時,第一電晶體M1與第二電晶體M2的開關狀態。 In an embodiment, the power factor correction control circuit 53 includes a first comparator 65, a positive terminal of the first comparator 65 is connected to the second proportional-integral controller 63, and a negative terminal of the first comparator 65 is connected to a high-frequency sawtooth wave. Terminal 70; second comparator 66, the positive terminal of the second comparator 66 is connected to the AC voltage terminal Vac , the negative terminal of the second comparator 66 is grounded; the first AND gate 67; and the second and gate 68 The output of the first comparator 65 is connected to the first and gate 67 and the second and gate 68, and the output of the second comparator 66 is connected to the first and gate 67. The power factor correction control circuit 53 further includes a NOT gate 69, which is located between the second gate 68 and the second comparator 66. The input of the gate 69 is connected to the output of the second comparator 66, and the gate 69 The output terminal is connected to the second and gate 68. The high-frequency sawtooth wave terminal 70 outputs a high-frequency sawtooth wave. The AC voltage terminal V ac includes a positive half wave 71 and a negative half wave 72. The second comparator 66 and the reverse gate 69 separate the positive half wave 71 from the negative half wave 72, and cooperate with the first sum gate 67 and the second sum gate 68. Let the gate G1 of the first transistor M1 and the gate G2 of the second transistor M2 have the function of distinguishing timings, to determine when the positive half wave 71 and the negative half wave 72 are input to the first transistor M1 and the second half, respectively. When the transistor M2 is in a switching state between the first transistor M1 and the second transistor M2.
第4圖係根據一些實施例說明分散式單級車載充電方法75的流程圖。可同時參酌第2、3圖,一種分散式單級車載充電方法75包含步驟76至步驟81。在步驟76中,輸入一交流電源42(含有交流電流端Vac與交流電壓端Iac)到分散式單級車載充電裝置30,並且,藉由充電模式控制電路52從車用充電電池47擷取電流回授端Ifb和電壓回授端Vfb的訊號;在步驟77中,藉由充電模式控制電路52,判定定電壓充電模式或定電流充電模式;在步驟78中,藉由功率因數修正控制電路53,對交流電源42的交流電流端Vac與交流電壓端Iac進行功率因素修正;在步驟79中,在交流電源42的上半波71時,利用第一變壓器T1,進行升壓或降壓轉換;在步驟80中,在交流電源42的下半波72時,利用第二變壓器T2,進行升壓或降壓轉換;在步驟81中,藉由分散式單級車載充電裝置30,輸出一脈動直流電流。 FIG. 4 is a flowchart illustrating a decentralized single-stage vehicle charging method 75 according to some embodiments. Referring to FIGS. 2 and 3 at the same time, a decentralized single-stage vehicle charging method 75 includes steps 76 to 81. In step 76, an AC power source 42 (including an AC current terminal V ac and an AC voltage terminal I ac ) is input to the decentralized single-stage vehicle charging device 30, and the charging mode control circuit 52 is used to extract the battery from the vehicle rechargeable battery 47. Take the signals of the current feedback terminal I fb and the voltage feedback terminal V fb ; in step 77, determine the constant voltage charging mode or the constant current charging mode by the charging mode control circuit 52; in step 78, by the power factor The correction control circuit 53 performs power factor correction on the AC current terminal V ac and the AC voltage terminal I ac of the AC power source 42. In step 79, when the upper half wave 71 of the AC power source 42 is used, the first transformer T1 is used to perform the power factor correction. Step-down or step-down conversion; in step 80, the second transformer T2 is used to perform step-up or step-down conversion at the time of the lower half wave 72 of the AC power source 42; in step 81, a decentralized single-stage vehicle charging device is used 30. Output a pulsating DC current.
第5圖係根據一些實施例說明分散式單級車載充電方法75之步驟77的細部流程圖。可同時參酌第3圖,判定定電壓充電模式或定電流充電模式的步驟77包含步驟86至步驟90。在步驟86中,將電流回授端Ifb的電流回授值與電流參 考命令端Iref的電流參考命令值相減,產生電流誤差訊號Ierr;在步驟87中,將電壓回授端Vfb的電壓回授值與電壓參考命令端Vref的電壓參考命令值相減,產生電壓誤差訊號Verr;在步驟88中,比較電流誤差訊號Ierr與該電壓誤差訊號Verr的量值大小;在步驟89中,根據該比較量值大小的結果,判斷電流誤差訊號Ierr或電壓誤差訊號Verr進入第一比例積分控制器58,並且進行比例積分補償調節;在步驟90中,第一比例積分控制器58的輸出訊號,進入低通濾波器59,產生充電控制訊號Sn1。 FIG. 5 is a detailed flowchart illustrating step 77 of the distributed single-stage vehicle charging method 75 according to some embodiments. Referring to FIG. 3 at the same time, step 77 of determining a constant voltage charging mode or a constant current charging mode includes steps 86 to 90. In step 86, the current feedback value of the current feedback terminal I fb is subtracted from the current reference command value of the current reference command terminal I ref to generate a current error signal I err ; in step 87, the voltage feedback terminal V The voltage feedback value of fb is subtracted from the voltage reference command value of the voltage reference command terminal V ref to generate a voltage error signal V err . In step 88, the magnitude of the current error signal I err and the voltage error signal V err are compared. In step 89, according to the result of the magnitude of the comparison value, it is judged that the current error signal I err or the voltage error signal V err enters the first proportional-integral controller 58 and performs proportional-integral compensation adjustment; in step 90, the first The output signal of the proportional-integral controller 58 enters the low-pass filter 59 to generate a charging control signal Sn1.
在步驟88中,在電流誤差訊號Ierr小於電壓誤差訊號Verr的情況下,電流誤差訊號Ierr進入第一比例積分控制器58,此時為定電流模式(Constant Current mode)。在電壓誤差訊號Verr小於電流誤差訊號Ierr的情況下,電壓誤差訊號Verr進入第一比例積分控制器58,此時為定電壓模式(Constant Voltage mode)。 In step 88, when the current error signal I err is smaller than the voltage error signal V err , the current error signal I err enters the first proportional-integral controller 58, and it is a constant current mode at this time. When the voltage error signal V err is smaller than the current error signal I err , the voltage error signal V err enters the first proportional-integral controller 58 and is in a Constant Voltage mode at this time.
第6圖係根據一些實施例說明分散式單級車載充電方法75之步驟78的細部流程圖。同時參酌第2、3圖,對交流電源42的交流電流端Iac與交流電壓端Vac進行功率因素修正的步驟78包含步驟91至步驟98。在步驟91中,利用乘法器61,將充電控制訊號Sn1與全波整流交流電壓端|Vae|的全波整流交流電壓值相乘,產生交流電流參考命令Iac-ref;在步驟92中,利用第三加法器62,將交流電流參考命令Iac-ref與全波 整流交流電流端|Iac|的全波整流交流電流值相減,產生交流電流誤差命令Iac-error。在步驟93中,利用第二比例積分控制器63,將交流電流誤差命令Iac-error進行比例積分補償調節;在步驟94中,利用振幅限制器64,接收第二比例積分控制器63的輸出訊號,並且產生功率因數修正控制訊號Sn2。 FIG. 6 is a detailed flowchart illustrating step 78 of the decentralized single-stage vehicle charging method 75 according to some embodiments. At the same time, referring to FIGS. 2 and 3, step 78 of performing power factor correction on the AC current terminal I ac and the AC voltage terminal V ac of the AC power source 42 includes steps 91 to 98. In step 91, the multiplier 61 is used to multiply the charge control signal Sn1 by the full-wave rectified AC voltage value of the full-wave rectified AC voltage terminal | V ae | to generate an AC current reference command I ac-ref ; in step 92 Using the third adder 62, the AC current reference command I ac-ref is subtracted from the full-wave rectified AC current value of the full-wave rectified AC current terminal | I ac | to generate an AC current error command I ac-error . In step 93, the second proportional-integral controller 63 is used to perform proportional-integral compensation adjustment on the AC current error command I ac-error ; in step 94, the amplitude limiter 64 is used to receive the output of the second proportional-integral controller 63 Signal and generates a power factor correction control signal Sn2.
在步驟95中,利用第一比較器65,接收功率因數修正控制訊號Sn2與高頻鋸齒波端70的鋸齒波訊號;在步驟96中,利用第二比較器66,接收交流電源42與接地訊號;在步驟97中,利用第一及閘67,聯集第一比較器65的輸出訊號與第二比較器66的輸出訊號;在步驟98中,利用第二及閘68,聯集第一比較器65的輸出訊號與第二比較器66的輸出訊號的一反相訊號。 In step 95, the first comparator 65 is used to receive the power factor correction control signal Sn2 and the sawtooth wave signal of the high-frequency sawtooth wave terminal 70. In step 96, the second comparator 66 is used to receive the AC power source 42 and the ground signal. In step 97, the first sum gate 67 is used to combine the output signal of the first comparator 65 and the second comparator 66; in step 98, the second sum gate 68 is used to combine the first comparison An output signal of the comparator 65 and an output signal of the second comparator 66 are inverted.
第7圖係根據一些實施例說明分散式單級車載充電方法75之步驟79的示意圖。在該交流電源42的上半波71時,利用第一變壓器T1,進行升壓或降壓轉換的步驟79包含:導通第一電晶體M1,關閉第二電晶體M2,迴路102流通第一電容C1、第一電感L1、與第一變壓器T1的第一初級繞組31,並且第一變壓器T1產生一次電流I1。再者,迴路102導通第五二極體Dn,並且進入電磁干擾濾波器41。在一實施例中,交流電源42係60赫茲的頻率,第一電晶體M1與第二電晶體M2係以70赫茲的頻率作切換。 FIG. 7 is a schematic diagram illustrating step 79 of the decentralized single-stage vehicle charging method 75 according to some embodiments. At the time of the upper half wave 71 of the AC power source 42, the first transformer T1 is used to perform the step-up or step-down conversion 79. The first transistor M1 is turned on, the second transistor M2 is turned off, and the first capacitor flows through the loop 102. C1, the first inductor L1, and the first primary winding 31 of the first transformer T1, and the first transformer T1 generates a primary current I1. Furthermore, the loop 102 turns on the fifth diode Dn and enters the electromagnetic interference filter 41. In one embodiment, the AC power source 42 is at a frequency of 60 Hz, and the first transistor M1 and the second transistor M2 are switched at a frequency of 70 Hz.
第8圖係根據一些實施例說明分散式單級車載充 電方法75之步驟79的另一示意圖。在該交流電源42的上半波71時,利用第一變壓器T1,進行升壓或降壓轉換的步驟79包含:關閉第一電晶體M1,關閉第二電晶體M2,第一變壓器T1的第一次級繞組32產生二次電流I2,並且迴路103流通第一二極體D1、第三電容Co、第三二極體D3與車用充電電池47。第三電容Co的容量較小,在第三電容Co充飽電荷後,二次電流I2隨即對車用充電電池47充電。 Figure 8 illustrates a decentralized single-stage car charger according to some embodiments. Another schematic diagram of step 79 of the electric method 75. At the time of the upper half wave 71 of the AC power source 42, step 79 of performing step-up or step-down conversion by using the first transformer T1 includes: turning off the first transistor M1, turning off the second transistor M2, The primary winding 32 generates a secondary current I2, and the circuit 103 passes through the first diode D1, the third capacitor Co, the third diode D3, and the rechargeable battery 47 for the vehicle. The capacity of the third capacitor Co is small. After the third capacitor Co is fully charged, the secondary current I2 then charges the rechargeable battery 47 for the vehicle.
第9圖係根據一些實施例說明分散式單級車載充電方法75之步驟80的示意圖。在交流電源42的下半波72時,利用第二變壓器T2,進行升壓或降壓轉換的步驟80包含:關閉第一電晶體M1,導通第二電晶體M2,迴路104流通第二電容C2、第二電感L2、與第二變壓器T2的第二初級繞組33,第二變壓器T2產生一次電流I3。並且迴路104導通第四二極體Dp,並且進入電磁干擾濾波器41。 FIG. 9 is a schematic diagram illustrating step 80 of the decentralized single-stage vehicle charging method 75 according to some embodiments. When the second half wave 72 of the AC power source 42 is used, the step 80 of performing the step-up or step-down conversion by using the second transformer T2 includes: turning off the first transistor M1, turning on the second transistor M2, and the loop 104 flowing the second capacitor C2 , The second inductor L2, and the second primary winding 33 of the second transformer T2, and the second transformer T2 generates a primary current I3. And the loop 104 turns on the fourth diode Dp and enters the electromagnetic interference filter 41.
第10圖係根據一些實施例說明分散式單級車載充電方法75之步驟80的另一示意圖。在交流電源42的下半波72時,利用第二變壓器T2,進行升壓或降壓轉換的步驟80包含:關閉第一電晶體M1,關閉第二電晶體M2,第二變壓器T2的第二次級繞組34產生二次電流I4,並且迴路105流通第二二極體D2、第三電容Co、第三二極體D3與車用充電電池。 FIG. 10 is another schematic diagram illustrating step 80 of the decentralized single-stage vehicle charging method 75 according to some embodiments. When the second half wave 72 of the AC power source 42 is used, the step 80 of performing the step-up or step-down conversion by using the second transformer T2 includes: turning off the first transistor M1, turning off the second transistor M2, and the second of the second transformer T2 The secondary winding 34 generates a secondary current I4, and the circuit 105 passes through the second diode D2, the third capacitor Co, the third diode D3, and the rechargeable battery for the vehicle.
第11圖係根據一些實施例說明分散式單級車載 充電裝置30的波形圖。第11圖的(a)圖顯示橫軸為時間(秒),縱軸為電壓(伏特)。弦波代表交流輸入電壓108,交流輸入電壓108係交流電源42的交流電流端Vac的訊號,交流輸入電壓108的範圍介於±300伏特之間。水平線代表電池充電電壓109,電池充電電壓109係輸入車用充電電池47的電壓值,電池充電電壓109約300伏特。 FIG. 11 is a waveform diagram illustrating a decentralized single-stage vehicle-mounted charging device 30 according to some embodiments. (A) of FIG. 11 shows time (seconds) on the horizontal axis and voltage (volts) on the vertical axis. The sine wave represents the AC input voltage 108. The AC input voltage 108 is a signal of the AC current terminal V ac of the AC power source 42. The range of the AC input voltage 108 is between ± 300 volts. The horizontal line represents the battery charging voltage 109. The battery charging voltage 109 is the voltage input to the vehicle's rechargeable battery 47. The battery charging voltage 109 is about 300 volts.
第11圖的(b)圖顯示橫軸為時間(秒),縱軸為電流(安培)。弦波代表交流輸入電流110,交流輸入電流110係交流電壓端Iac的訊號,交流輸入電流110的範圍介於±15安培之間。第11圖的(c)圖顯示橫軸為時間(秒),縱軸為電流(安培)。弦波代表電池充電電流111,交流電源42輸入分散式單級車載充電裝置30後,配合分散式單級車載充電方法75,分散式單級車載充電裝置30輸出電池充電電流111,電池充電電流111對車用充電電池47進行充電,電池充電電流111的範圍介於0~15安培之間。電池充電電流111係一脈動直流電流。 (B) of FIG. 11 shows time (seconds) on the horizontal axis and current (amps) on the vertical axis. The sine wave represents the AC input current 110. The AC input current 110 is a signal at the AC voltage terminal I ac . The range of the AC input current 110 is between ± 15 amps. (C) of FIG. 11 shows time (seconds) on the horizontal axis and current (amperes) on the vertical axis. The sine wave represents the battery charging current 111. After the AC power source 42 is input to the decentralized single-stage vehicle charging device 30, the decentralized single-stage vehicle charging device 75 is used to output the battery charging current 111 and the battery charging current 111 The vehicle rechargeable battery 47 is charged, and the battery charging current 111 ranges from 0 to 15 amps. The battery charging current 111 is a pulsating DC current.
分散式單級車載充電裝置30對交流電源42進行功率因數修正後,交流輸入電壓108的相位與交流輸入電流110的相位呈現同相,如虛線112代表交流輸入電壓108的波峰對應交流輸入電流110的波峰,虛線113代表交流輸入電壓108的波谷對應交流輸入電流110的波谷,以降低虛功產生並且提升能量的利用效率。另外,分散式單級車載充電裝置30 能輸出脈動直流電流,圓圈114表示電池充電電流111的量值係大於0的正值電流,電池充電電流111亦為2倍頻率的弦波充電電流(在輸入一週期T波形下,輸出為兩週期波形)。 After the decentralized single-stage vehicle charging device 30 performs power factor correction on the AC power source 42, the phase of the AC input voltage 108 and the phase of the AC input current 110 are in phase. For example, the dotted line 112 represents the peak of the AC input voltage 108 corresponding to the AC input current 110. The crests and dashed lines 113 represent the troughs of the AC input voltage 108 corresponding to the troughs of the AC input current 110 in order to reduce the generation of virtual work and improve the energy utilization efficiency. In addition, the distributed single-stage vehicle charging device 30 Can output pulsating DC current. The circle 114 indicates that the magnitude of the battery charging current 111 is a positive current greater than 0. The battery charging current 111 is also a sine wave charging current with twice the frequency (under the input T cycle waveform, the output is two Periodic waveform).
第12圖係根據一些實施例說明分散式單級車載充電裝置30的效率折線圖。橫軸係輸出功率(瓦特watt),縱軸係能源轉換效率(百分比%)。能源轉換效率係輸出功率除以輸入功率。在輸出功率為500瓦時,能源轉換效率約為82.3%;在輸出功率為1000瓦時,能源轉換效率約為89%;在輸出功率為1500瓦時,能源轉換效率約為93%;在輸出功率為2000瓦時,能源轉換效率約為93.9%;在輸出功率為2500瓦時,能源轉換效率約為93.5%;在輸出功率為3000瓦時,能源轉換效率約為93%。分散式單級車載充電裝置30具有93.9%的峰值效率,故分散式單級車載充電裝置30具有較高的能源轉換效率。 FIG. 12 is a line chart illustrating the efficiency of the distributed single-stage vehicle-mounted charging device 30 according to some embodiments. Horizontal axis output power (watt), vertical axis energy conversion efficiency (%). Energy conversion efficiency is the output power divided by the input power. When the output power is 500 watts, the energy conversion efficiency is about 82.3%; when the output power is 1000 watts, the energy conversion efficiency is about 89%; when the output power is 1500 watts, the energy conversion efficiency is about 93%; at the output The power conversion efficiency is about 93.9% when the power is 2000 watt hours; the energy conversion efficiency is about 93.5% when the output power is 2500 watt hours; and the energy conversion efficiency is about 93% when the output power is 3000 watt hours. The distributed single-stage vehicle-mounted charging device 30 has a peak efficiency of 93.9%, so the distributed single-stage vehicle-mounted charging device 30 has a higher energy conversion efficiency.
第13圖係根據一些實施例說明分散式單級車載充電裝置120的電路圖。分散式單級車載充電裝置120和分散式單級車載充電裝置30相似。分散式單級車載充電裝置120包含:第一變壓器131,具有第一初級繞組132與第一次級繞組133;第一電容134,連接第一初級繞組132;第一電感135,連接第一電容134,第一電容134位於第一電感135與第一變壓器131之間;第一電晶體136,連接第一電容134與第一電感135;第一二極體137,連接第一次級繞組133;第二 變壓器140,具有第二初級繞組141與第二次級繞組142,第二變壓器140與第一變壓器131並聯;第二電容143,連接第二初級繞組141;第二電感144,連接第二電容143,第二電容143位於第二電感144與第二變壓器140之間;第二電晶體145,連接第二電容143與第二電感144;以及第二二極體146,連接第二次級繞組142,第一二極體137與第二二極體146並聯。 FIG. 13 is a circuit diagram illustrating a decentralized single-stage vehicle-mounted charging device 120 according to some embodiments. The distributed single-stage vehicle-mounted charging device 120 is similar to the distributed single-stage vehicle-mounted charging device 30. The decentralized single-stage vehicle charging device 120 includes: a first transformer 131 having a first primary winding 132 and a first secondary winding 133; a first capacitor 134 connected to the first primary winding 132; a first inductor 135 connected to the first capacitor 134, the first capacitor 134 is located between the first inductor 135 and the first transformer 131; the first transistor 136 is connected to the first capacitor 134 and the first inductor 135; the first diode 137 is connected to the first secondary winding 133 ;second The transformer 140 has a second primary winding 141 and a second secondary winding 142, and the second transformer 140 is connected in parallel with the first transformer 131; a second capacitor 143 is connected to the second primary winding 141; a second inductor 144 is connected to the second capacitor 143 The second capacitor 143 is located between the second inductor 144 and the second transformer 140; the second transistor 145 is connected to the second capacitor 143 and the second inductor 144; and the second diode 146 is connected to the second secondary winding 142 The first diode 137 is connected in parallel with the second diode 146.
在一實施例中,分散式單級車載充電裝置120另包含:電磁干擾濾波器150,位於第一電感135與交流電源151之間,也位於第二電感144與交流電源151之間。分散式單級車載充電裝置120另包含第三電容153,連接第一二極體137的陰極及第二二極體146的陰極,第三電容153的另一端接地。分散式單級車載充電裝置120另包含車用充電電池155以及第三二極體154,車用充電電池155的陰極接地。 In one embodiment, the decentralized single-stage vehicle charging device 120 further includes an electromagnetic interference filter 150 located between the first inductor 135 and the AC power source 151 and also between the second inductor 144 and the AC power source 151. The decentralized single-stage vehicle charging device 120 further includes a third capacitor 153, which is connected to the cathode of the first diode 137 and the cathode of the second diode 146, and the other end of the third capacitor 153 is grounded. The decentralized single-stage vehicle-mounted charging device 120 further includes a vehicle rechargeable battery 155 and a third diode 154. The cathode of the vehicle rechargeable battery 155 is grounded.
分散式單級車載充電裝置30和分散式單級車載充電裝置120主要差異在於:分散式單級車載充電裝置120使用全橋整流器160取代第四二極體Dp與第五二極體Dn。全橋整流器160的交流端161、162連接電磁干擾濾波器150,全橋整流器160的一直流端163連接第一電感135與第二電感144,全橋整流器160的另一直流端164連接第一初級繞組132的末端、第二初級繞組141的末端、第一電晶體136、及第二電晶體145。 The main difference between the decentralized single-stage vehicle charging device 30 and the decentralized single-stage vehicle charging device 120 is that the decentralized single-stage vehicle charging device 120 uses a full-bridge rectifier 160 instead of the fourth diode Dp and the fifth diode Dn. The AC terminals 161 and 162 of the full-bridge rectifier 160 are connected to the electromagnetic interference filter 150, the DC terminal 163 of the full-bridge rectifier 160 is connected to the first inductor 135 and the second inductor 144, and the other DC terminal 164 of the full-bridge rectifier 160 is connected to the first An end of the primary winding 132, an end of the second primary winding 141, a first transistor 136, and a second transistor 145.
第14圖係根據一些實施例說明分散式單級車載充電裝置120的效率折線圖。橫軸係輸出功率(瓦特watt),縱軸係能源轉換效率(百分比%)。能源轉換效率係輸出功率除以輸入功率。在輸出功率為500瓦時,能源轉換效率約為87.5%;在輸出功率為1000瓦時,能源轉換效率約為91.5%;在輸出功率為1500瓦時,能源轉換效率約為92.7%;在輸出功率為2000瓦時,能源轉換效率約為93.4%;在輸出功率為2500瓦時,能源轉換效率約為93.5%;在輸出功率為3000瓦時,能源轉換效率約為93.4%。分散式單級車載充電裝置120具有93.5%的封值效率,故分散式單級車載充電裝置120具有較高的能源使用效率。 FIG. 14 is a line chart illustrating the efficiency of the distributed single-stage vehicle-mounted charging device 120 according to some embodiments. Horizontal axis output power (watt), vertical axis energy conversion efficiency (%). Energy conversion efficiency is the output power divided by the input power. When the output power is 500 watts, the energy conversion efficiency is about 87.5%; when the output power is 1000 watts, the energy conversion efficiency is about 91.5%; when the output power is 1500 watts, the energy conversion efficiency is about 92.7%; at the output The power conversion efficiency is about 93.4% when the power is 2000 watt hours; the energy conversion efficiency is about 93.5% when the output power is 2500 watt hours; and the energy conversion efficiency is about 93.4% when the output power is 3000 watt hours. The decentralized single-stage vehicle charging device 120 has a sealed value efficiency of 93.5%, so the decentralized single-stage vehicle charging device 120 has higher energy use efficiency.
綜合上述,本案提供分散式單級車載充電裝置與方法,分散式單級車載充電裝置的特點為兩相交錯式,每一相各自負責交流電源的正半波及負半波的功率轉換與傳送,輸出充電電流為二倍線頻(double line frequency)的弦波電流,亦為脈動直流電流,如此對車載電池的充電效率、時間、及最大溫升均有改善。此外,兩相的變壓器各負責交流電源正半波及負半波的升壓或降壓轉換,具有分散功率功效,避免過大功率負載,並且採用變壓器的設計具有高壓電氣隔離之功效。分散式單級車載充電裝置的主要架構只需14個元件(以分散式單級車載充電裝置30為例,包含2個主動開關),即可不需要直流至直流轉換器,達到升壓或降壓充 電,搭配本案分散式單級車載充電方法,能有效地達到功率因數修正,藉以提升充電品質及降低成本。 To sum up, this case provides a decentralized single-stage vehicle-mounted charging device and method. The decentralized single-stage vehicle-mounted charging device is characterized by two-phase interleaving, and each phase is responsible for the power conversion and transmission of the positive half wave and negative half wave of the AC power supply. The output charging current is a sine wave current of double line frequency and a pulsating DC current, which improves the charging efficiency, time and maximum temperature rise of the vehicle battery. In addition, the two-phase transformers are responsible for the step-up or step-down conversion of the positive and negative half-waves of the AC power supply, which has the function of dispersing power and avoiding excessive power loads, and the design of the transformer has the effect of high-voltage electrical isolation. The main architecture of a decentralized single-stage vehicle charging device requires only 14 components (take the decentralized single-stage vehicle charging device 30 as an example, including 2 active switches), which can step up or step down without a DC-to-DC converter. Charge Electricity, combined with the distributed single-stage on-board charging method in this case, can effectively achieve power factor correction, thereby improving charging quality and reducing costs.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with the examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some modifications and retouching without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application.
Claims (24)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106145394A TWI664790B (en) | 2017-12-22 | 2017-12-22 | Distributed single stage on board charging device and method thereof |
CN201711435043.2A CN110014986B (en) | 2017-12-22 | 2017-12-26 | Distributed single-stage vehicle-mounted charging device and method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106145394A TWI664790B (en) | 2017-12-22 | 2017-12-22 | Distributed single stage on board charging device and method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI664790B TWI664790B (en) | 2019-07-01 |
TW201929374A true TW201929374A (en) | 2019-07-16 |
Family
ID=67187081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106145394A TWI664790B (en) | 2017-12-22 | 2017-12-22 | Distributed single stage on board charging device and method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110014986B (en) |
TW (1) | TWI664790B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4239827A4 (en) * | 2020-12-23 | 2024-01-17 | Shinry Technologies Co., Ltd. | Charging system and vehicle |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5245520A (en) * | 1991-10-10 | 1993-09-14 | Paul Imbertson | Asymmetrical duty cycle power converter |
KR0132987B1 (en) * | 1994-10-05 | 1998-04-20 | 김광호 | Switching power source apparatus |
US6975098B2 (en) * | 2002-01-31 | 2005-12-13 | Vlt, Inc. | Factorized power architecture with point of load sine amplitude converters |
JP4306209B2 (en) * | 2002-09-09 | 2009-07-29 | 株式会社日立メディコ | Neutral point ground X-ray generator and X-ray CT apparatus using the same |
TWM438760U (en) * | 2012-04-09 | 2012-10-01 | Sinpro Electronics Co Ltd | Power conversion device with control switch |
TWM453303U (en) * | 2012-11-08 | 2013-05-11 | Chung Shan Inst Of Science | Half bridge dual output LLC series resonant converter |
US20150162842A1 (en) * | 2013-02-21 | 2015-06-11 | Fuxiang LIN | Single stage power factor correction converter |
TWI501529B (en) * | 2013-12-06 | 2015-09-21 | Ind Tech Res Inst | Dc-dc power conversion apparatus and method |
KR101734641B1 (en) * | 2015-04-14 | 2017-05-11 | 현대자동차주식회사 | Charging device of vehicle |
TWI551023B (en) * | 2016-01-21 | 2016-09-21 | Isolated power conversion system | |
CN206422704U (en) * | 2017-01-11 | 2017-08-18 | 广东百事泰电子商务股份有限公司 | Intelligent half-bridge sine voltage change-over circuit based on PFC interleaving inverse excitations |
CN106712535A (en) * | 2017-01-11 | 2017-05-24 | 广东百事泰电子商务股份有限公司 | Intelligent half-bridge correction wave voltage conversion circuit based on PFC interleaved flyback |
-
2017
- 2017-12-22 TW TW106145394A patent/TWI664790B/en active
- 2017-12-26 CN CN201711435043.2A patent/CN110014986B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN110014986A (en) | 2019-07-16 |
TWI664790B (en) | 2019-07-01 |
CN110014986B (en) | 2022-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10944283B2 (en) | Distributed single-stage on-board charging device and method thereof | |
US9584047B2 (en) | Bidirectional power converter having a charger and export modes of operation | |
TWI373900B (en) | High efficiency charging circuit and power supplying system | |
US8901883B2 (en) | Charger for electric vehicle | |
US9425641B2 (en) | Battery charging apparatus | |
US20110156643A1 (en) | High-voltage battery charging system for use in electric vehicle | |
US20170117731A1 (en) | Power source device | |
JP5760143B2 (en) | Battery charger for electric vehicles | |
KR101481277B1 (en) | On board charger for charging battery | |
US20180278149A1 (en) | Power factor correcting device, bidirectional ac/dc conversion apparatus and computer program | |
US10759285B2 (en) | Power supply system | |
US20200091830A1 (en) | Vehicle power supply device | |
KR101558794B1 (en) | Battery charger for an electric vehicle | |
US20120262113A1 (en) | Charging apparatus of mobile vehicle | |
CN109687702B (en) | DC-DC converter | |
KR20140143908A (en) | Mehtod for controlling duty of Low Voltage DC/DC Converter | |
WO2017122519A1 (en) | Power conversion device and control method for power conversion device | |
CA3088909A1 (en) | Power converter controlled capacitor circuits and methods | |
Abbasi et al. | An SiC-based AC/DC CCM bridgeless onboard EV charger with coupled active voltage doubler rectifiers for 800-V battery systems | |
US11689112B2 (en) | DC-DC converter and vehicle | |
US20220263335A1 (en) | Power conversion device | |
US11431253B2 (en) | Large capacity bidirectional isolated DC-DC converter and control method thereof | |
TWI551024B (en) | Ac-dc power conversion device and control method thereof | |
TWI664790B (en) | Distributed single stage on board charging device and method thereof | |
Endo et al. | Isolated AC/DC converter used in EV/PHEV battery charger from household AC outlet |