TW201926157A - Method for predicting the daily life function of disabled people capable of properly arranging caring resources and reducing waste of caring resources - Google Patents

Method for predicting the daily life function of disabled people capable of properly arranging caring resources and reducing waste of caring resources Download PDF

Info

Publication number
TW201926157A
TW201926157A TW106141328A TW106141328A TW201926157A TW 201926157 A TW201926157 A TW 201926157A TW 106141328 A TW106141328 A TW 106141328A TW 106141328 A TW106141328 A TW 106141328A TW 201926157 A TW201926157 A TW 201926157A
Authority
TW
Taiwan
Prior art keywords
daily life
function
scale
predicting
daily
Prior art date
Application number
TW106141328A
Other languages
Chinese (zh)
Other versions
TWI649699B (en
Inventor
陳智光
陳春賢
王信堯
林宛瑩
Original Assignee
長庚醫療財團法人林口長庚紀念醫院
長庚大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 長庚醫療財團法人林口長庚紀念醫院, 長庚大學 filed Critical 長庚醫療財團法人林口長庚紀念醫院
Priority to TW106141328A priority Critical patent/TWI649699B/en
Application granted granted Critical
Publication of TWI649699B publication Critical patent/TWI649699B/en
Publication of TW201926157A publication Critical patent/TW201926157A/en

Links

Landscapes

  • Medical Treatment And Welfare Office Work (AREA)

Abstract

A method for predicting the daily life function of disabled people includes inputting the measurement results of a plurality of rehabilitation assessment indicator sets of a plurality of disabled persons and their corresponding daily life function states into a mechanical learning machine; selecting the variable values of several rehabilitation assessment indicator sets with the best classification performance through the mechanical learning machine; using a supervised mechanical learning algorithm to establish a daily life function state prediction model in cooperation with the corresponding daily life function states. Finally, inputting a test result of the plurality of rehabilitation assessment indicator sets of a new examinee into the daily life function state prediction model, and using the internal calculations of the daily life function state prediction model to obtain a prediction result of the daily life function state.

Description

一種預測失能者日常生活功能之方法 A method for predicting the function of daily life of disabled person

本發明係提供一種預測失能者日常生活功能之方法,係透過日常生活功能狀態預測模型的建立,從而預測受檢者未來的日常生活功能狀態,並據以妥善分配照護資源,減少不必要的照護資源浪費。 The present invention provides a method for predicting the function of daily life of a disabled person, which is to predict the future functional state of daily life of the subject through the establishment of a functional state prediction model for daily life, and to appropriately allocate care resources to reduce unnecessary Waste of care resources.

身心失能者(簡稱失能者)的定義為:身體或心智功能部分或全部喪失,致其日常生活需要他人協助者。失能的程度,通常係由日常生活功能量表(ADLs)或工具性日常生活功能量表(IADLs)來評判,通常依照狀況分為輕度、中度與重度失能。據統計,台灣於2011年共有近67萬失能者,其中65歲以上約41萬人,到了2020年將預估成為86萬失能者,65歲以上的失能者則會突破60萬人。 A person who is physically and mentally disabled (referred to as a disabled person) is defined as the loss of part or all of the physical or mental function, so that his or her daily life needs assistance from others. The degree of disability is usually judged by the Daily Life Function Scale (ADLs) or the Instrumental Daily Living Function Scale (IADLs), which are usually classified into mild, moderate, and severe disability according to the condition. According to statistics, Taiwan had nearly 670,000 disabled people in 2011, of which about 410,000 were over 65 years old. By 2020, it will be estimated to be 860,000 disabled, and those who are over 65 will exceed 600,000. .

現今社會往往在輕度失能時缺乏照護,隨即很快地惡化成為中、重度失能,而當今的醫學技術又足以維持失能者的生命,長期下來會造成中、重度失能者的人數越來越多,造成國家與社會的負擔越來越重。 Today's society often lacks care during mild disability, and then quickly deteriorates into moderate and severe disability. Today's medical technology is enough to sustain the lives of the disabled, and the number of people with moderate or severe disability will be long-term. More and more, the burden on the state and society is getting heavier and heavier.

為了克服上述問題,現有技術係使用人工對單一危險因子的復健評估量表進行判讀,以評估失能者日常生活功能之方法,然而上述方法缺乏系統性的評估、未使用多項實驗室檢驗數據、無法評估整體數據的分佈型態且效率低下,無法輕易得知失能者未來的日常功能狀態,進而 影響其在臨床使用上的效能,因此在正確性、時效性及判讀結果重現性上仍有改善的空間。 In order to overcome the above problems, the prior art uses a manual assessment of a single risk factor's rehabilitation assessment scale to evaluate the function of the disabled's daily life. However, the above method lacks systematic evaluation and does not use multiple laboratory test data. Unable to assess the distribution of the overall data and inefficiency, it is not easy to know the future functional status of the disabled, and then It affects its efficacy in clinical use, so there is still room for improvement in correctness, timeliness and reproducibility of interpretation results.

本發明係提供一種預測失能者日常生活功能之方法,主要透過將多項復健評估指標套組對複數失能者施測,並將測量結果及其對應各個失能者的日常生活功能狀態輸入至機械學習機中,透過機械學習機選出數個分類效能最佳的復健評估指標套組之變量數值後,搭配其相對應的日常生活功能狀態,藉由監督式機械學習演算法以建立日常生活功能狀態預測模型,最後將新受檢者進行多項復健評估指標套組的施測,再把施測後結果輸入至日常生活功能狀態預測模型中,即可進行日常生活功能狀態的運算,並得到日常生活功能狀態之預測結果;所得到的結果可提醒受檢者採取後續行動,達到高效能預測受檢者未來的日程生活狀態,並據以分配照護資源,減少不必要的照護資源浪費為其主要目的。 The present invention provides a method for predicting the function of daily life of a disabled person, mainly by applying a plurality of rehabilitation assessment index sets to the plurality of disabled persons, and inputting the measurement results and the daily functional status of each disabled person. In the mechanical learning machine, the number of variables of the rehabilitation evaluation index set with the best classification efficiency is selected through the mechanical learning machine, and the corresponding daily life function state is matched, and the supervised mechanical learning algorithm is used to establish the daily routine. The life function state prediction model, finally, the new subject is subjected to the measurement of a plurality of rehabilitation evaluation index sets, and then the test results are input into the daily life function state prediction model, and the daily functional state calculation can be performed. And get the predicted results of the functional status of daily life; the results obtained can remind the subject to follow up, achieve high efficiency to predict the future life status of the subject, and allocate care resources to reduce unnecessary waste of care resources For its main purpose.

本發明第二目的為日常生活功能狀態預測模型解決大數據判讀的問題,該等復健評估量表套組包含多樣化的資訊,能讓醫療人員能從更多面向得知失能者的身體情況及日常生活功能,因此當評估指標越多,其評估效果會越好,但這大數據直接由臨床醫療人員進行判斷,在時效性及正確性上可能皆有其不足,因此本發明利用監督式機械學習演算法,得以最大程度地從現有的數據中,分析失能者於復健評估指標套組分佈上的差異,並且從整體的數據分佈樣貌中找出分類依據,從而預測未來個案的日常生活狀態是屬於輕度依賴、中度依賴或重度依賴;因此利用建立的日常生活功能狀態預測模型代替人力判讀,則是增加了整體判讀效率 及正確率,且該日常生活功能狀態預測模型,亦可多方面地複製至使用者的終端機進行使用。 The second object of the present invention is to solve the problem of big data interpretation by the daily function state prediction model, which includes diverse information, which enables medical personnel to learn the body of the disabled from more aspects. The situation and daily life functions, so the more evaluation indicators, the better the evaluation will be, but the big data is directly judged by the clinical medical staff, and may have its shortcomings in timeliness and correctness. Therefore, the present invention utilizes supervision. The mechanical learning algorithm is able to analyze the difference in the distribution of the disability assessment indicator sets from the existing data to the greatest extent, and find the classification basis from the overall data distribution appearance to predict the future case. The daily life state is mild, moderate or heavy; therefore, using the established daily life function state prediction model instead of human interpretation, it increases the overall interpretation efficiency. And the correct rate, and the daily life function state prediction model can also be copied to the user's terminal for use in various aspects.

圖1為本發明之流程示意圖 Figure 1 is a schematic flow chart of the present invention

圖2為本發明工具性日常生活功能分數預測模型之ROC曲線 2 is a ROC curve of a toolive daily life function score prediction model of the present invention

圖3為本發明工具性日常生活功能分數預測模型之效能,以ROC曲線下面積作為指標 Figure 3 is the performance of the toolive daily life function score prediction model of the present invention, taking the area under the ROC curve as an index

圖4為本發明以ROC曲線下面積為指標,比較複數指標搭配不同的監督式機械學習演算法及單一指標預測效能的比較表 Figure 4 is a comparison table of the supervised mechanical learning algorithms and the single indicator predictive performance of the composite index with the area under the ROC curve as an index.

有關本發明的實施例及原理,請參閱圖式說明如下:首先請參閱圖1,本發明所提供的主體概念為一種預測失能者日常生活功能之方法,將複數失能者統計分數的多項復健評估量表及實驗室檢驗數值建立復健評估指標套組;將複數失能者分別進行多項復健評估指標套組的施測後,再將測量結果及其對應各個失能者的日常生活功能狀態輸入至機械學習機中;透過機械學習機挑選出數個分類效能最佳的復健評估指標套組之變量數值後,搭配相對應的日常生活功能狀態,藉由監督式機械學習演算法以建立日常生活功能狀態預測模型;最後將新受檢者進行多項復健評估指標套組的施測,並將施測後結果輸入至日常生活功能狀態預測模型中,即可進行日常生活功能狀態的運算,並得到日常生活功能狀態之預測結果,而後即可根據預測結果提醒受檢者採取後續對應狀態之行動。 For the embodiments and principles of the present invention, please refer to the following description: First, referring to FIG. 1, the subject concept provided by the present invention is a method for predicting the daily function of a disabled person, and multiple statistical scores of the multiple disabled persons. Rehabilitation assessment scale and laboratory test values are used to establish a set of rehabilitation assessment indicators; after the multiple disabled persons are individually tested for multiple rehabilitation assessment indicators, the measurement results and their daily lives are corresponding to each disabled person. The function status of the life is input into the mechanical learning machine; the variable values of the rehabilitation evaluation index sets with the best classification performance are selected through the mechanical learning machine, and the corresponding daily functional state is matched with the supervised mechanical learning calculation The method is to establish a predictive model of daily life function state; finally, the new subject is subjected to the measurement of a plurality of rehabilitation evaluation index sets, and the test results are input into the daily life function state prediction model, and the daily life function can be performed. The operation of the state, and the prediction result of the function state of daily life, and then the subject can be reminded to follow the prediction result Action in the state.

其中日常功能狀態之判定日期與復健評估量表之評估日期,兩者相隔時間為2周至1年。 The date of determination of the daily functional status and the evaluation date of the rehabilitation assessment scale are between 2 weeks and 1 year.

其中復健評估量表為雷氏修正量表(Modified Rankin Scale,MRS)、巴氏量表(Barthel Index)、功能性由口進食量表(Functional oral intake scale,FOIS)、迷你營養評估量表(Mini Nutrition Assessment,MNA)、健康生活品質測量問卷(Euro QoL-5D)、工具性日常生活功能量表(IADL Scale)、伯格氏平衡量表(Berg Balance Scale,BBS)、步行速率(Gait speed)、六分鐘行走測試(Six minutes walking test,6MWT)、傅格-梅爾評估量表(Fugl-Meyer Assessment,FMA)、簡短智能測驗(Mini-mental state examination,MMSE)、動作活動量表(Motor Activity Log,MAL)、簡明失語症測驗(Concise Chinese Aphasia Test,CCAT)或上述之任意組合。 The rehabilitation assessment scale is the Modified Rankin Scale (MRS), the Barthel Index, the Functional Oral Intake Scale (FOIS), and the Mini Nutrition Assessment Scale. (Mini Nutrition Assessment, MNA), Healthy Quality of Life Measurement Questionnaire (Euro QoL-5D), Instrumental Daily Life Function Scale (IADL Scale), Berg Balance Scale (BBS), Walking Rate (Gait) Speed), Six minutes walking test (6MWT), Fugl-Meyer Assessment (FMA), Mini-mental state examination (MMSE), Activity Activity Scale (Motor Activity Log, MAL), Concise Chinese Aphasia Test (CCAT), or any combination of the above.

其中日常生活功能狀態係使用巴氏量表-日常生活依賴程度(Barthel Index)、工具性日常生活功能分數(IADL Scale)或雷氏修正量表分數(MRS)進行評估。 The functional status of daily life is assessed using the Barthel Scale, the Barrier Index, the Instrumental Daily Function Score (IADL Scale), or the Rayleigh Correction Scale Score (MRS).

其中實驗室檢驗數值為全套血液檢查(CBC)、白血球分類計數(White Blood Cells Differential Counts)、總蛋白(Total Protein),白蛋白(Albumin)、白血球脂化酶(Leukocyte Esterase)、C反應蛋白(C-Reactive Protein)、前降鈣素(Procalcitonin)、紅血球沉降速率(Erythrocyte Sedimentation Rate)、乳酸(Lactate)、乳酸去氫酶(Lactate Dehydrogenase),糖份(Sugar)、鈉離子(Na)、鉀離子(K)、鈣離子(Ca)、氯離子(Cl)、鎂離子(Mg)、亞鐵離子(Fe2+)、鐵離子(Fe3+)、尿素氮(Urea Nitrogen)、肌酐酸(Creatinine)、胱蛋白C(Cystatin C)、膽紅素(Bilirubin)、低密度脂蛋白 (Low Density Lipoprotein,LDL)、高密度脂蛋白(High Density Lipoprotein,HDL)、三酸甘油脂(Triglyceride)、總膽固醇(Total cholesterol)、血糖(blood sugar)、微白蛋白(Microalbumin)、醣化血色素(HbA1C)、同半胱胺酸(Homocysteine)、脂蛋白(Lipoprotein A)、尿酸(Uric acid)或上述之任意組合。 The laboratory test values are full blood test (CBC), white blood cells differential counts, total protein, albumin, Leukocyte Esterase, C-reactive protein ( C-Reactive Protein), Procalcitonin, Erythrocyte Sedimentation Rate, Lactate, Lactate Dehydrogenase, Sugar, Na(Na), Potassium Ions (K), calcium (Ca), chloride (Cl), magnesium (Mg), ferrous (Fe 2+ ), iron (Fe 3+ ), urea nitrogen (Urea Nitrogen), creatinine ( Creatinine), Cystatin C, Bilirubin, Low Density Lipoprotein (LDL), High Density Lipoprotein (HDL), Triglyceride, Total cholesterol, blood sugar, microalbumin, glycosylated hemoglobin (HbA1C), homocysteine, lipoprotein A, Uric acid or the like random combination.

其中監督式機械學習演算法係使用邏輯式回歸、K鄰近法、支持向量機、類神經網路學習、決策樹、隨機森林、貝氏決策法或上述之任意組合。 The supervised mechanical learning algorithm uses logical regression, K-neighbor method, support vector machine, neural network learning, decision tree, random forest, Bayesian decision method or any combination of the above.

接著參閱圖2及圖3並搭配圖1,具體的實施方式如下:本實施例以三年長庚醫院北院區腦中風病人之復健評估指標套組作為基礎,並將復健評估指標套組結合相對應之日常生活功能狀態後輸入至機械學習機中,並透過監督式機械學習機演算法建立日常生活功能狀態預測模型。 Referring to FIG. 2 and FIG. 3 together with FIG. 1 , the specific implementation manner is as follows: This embodiment is based on the rehabilitation evaluation index set of the brain stroke patients in the north hospital area of Chang Gung Hospital, and the rehabilitation evaluation index is set. After inputting the corresponding daily function state, it is input into the mechanical learning machine, and the predictive model of daily life function state is established through the supervised mechanical learning machine algorithm.

受試者的條件(納入、排除條件)、數目:受試者為長庚醫院北院區腦中風病人之復健資料,採用病歷回溯,不需另外招募受試者。 Subject conditions (inclusion, exclusion conditions), number: The subjects were rehabilitation data of patients with cerebral apoplexy in the Changyuan Hospital North Campus. The medical records were retrospectively and no additional subjects were required.

設計及方法:日常生活功能狀態的主要臨床資訊為入院時雷氏修正量表(Modified Rankin Scale,MRS)、巴氏量表(Barthel Index)、功能性由口進食量表(Functional oral intake scale,FOIS)、迷你營養評估量表(Mini Nutrition Assessment,MNA)、健康生活品質測量問卷(Euro QoL-5D)、工具性日常生活功能量表(IADL Scale)、伯格氏平衡量表(Berg Balance Scale,BBS)、步 行速率(Gait speed)、六分鐘行走測試(Six minutes walking test,6MWT)、傅格-梅爾評估量表(Fugl-Meyer Assessment,FMA)、簡短智能測驗(Mini-mental state examination,MMSE)、動作活動量表(Motor Activity Log,MAL)、簡明失語症測驗(Concise Chinese Aphasia Test,CCAT)量表分數。此264位成人,同時皆有出院時的日常生活功能狀態的評估資料,因此在上述資料整理並以變量挑選方法挑選出分類效能最佳的日常生活功能狀態之變量數值。變量挑選:在進行初步資料篩選後,本實施例使用單變量分析,依變量特性選擇適當的單變量統計法(卡方檢定與t檢定),可選出雷氏修正量表(MRS)、伯格氏平衡量表(BBS)、工具性日常生活功能量表(IADL Scale)為分類效能最佳的變量。挑選最佳的變量後,再輸入至機械學習機中使用複數監督式機械學習演算法,如:邏輯式回歸(Logistic Regression,LR)、決策樹(Decision Tree,DT)、隨機森林(Random Forest,RF)、K鄰近(K Nearest Neighbor,KNN)、支持向量機(Support Vector Machines,SVM)、類神經網路學習(Artificial Neuron Network)、貝氏決策法(Bayesian Network)等,建立日常生活功能狀態預測模型。 DESIGN AND METHODS: The main clinical information on the functional status of daily life is the Modified Rankin Scale (MRS), the Barthel Index, and the Functional Oral Intake Scale (Dental). FOIS), Mini Nutrition Assessment (MNA), Healthy Quality of Life Measurement Questionnaire (Euro QoL-5D), Instrumental Daily Life Function Scale (IADL Scale), Berg Balance Scale (Berg Balance Scale) , BBS), step Gait speed, Six minutes walking test (6MWT), Fugl-Meyer Assessment (FMA), Mini-mental state examination (MMSE), Motor Activity Log (MAL), Concise Chinese Aphasia Test (CCAT) scale score. The 264 adults, at the same time, have evaluation data on the functional status of daily life at the time of discharge. Therefore, in the above data, the variable selection method is used to select the variable value of the daily function state with the best classification efficiency. Variable selection: After the preliminary data screening, this example uses univariate analysis, selects the appropriate univariate statistical method according to the variable characteristics (chi-square test and t-test), and selects the Rayleigh correction scale (MRS), Berg. The Balanced Balance Scale (BBS) and the Instrumental Daily Life Function Scale (IADL Scale) are the variables with the best classification performance. After selecting the best variables, input them into the mechanical learning machine using complex supervised mechanical learning algorithms such as Logistic Regression (LR), Decision Tree (DT), Random Forest (Random Forest, RF), K Nearest Neighbor (KNN), Support Vector Machines (SVM), Artificial Neuron Network, Bayesian Network, etc. Forecast model.

資料回溯期間、本實施例執行期間:資料回溯其間自2014年3月至2016年10月。 Data review period, implementation period of this embodiment: data backtracking from March 2014 to October 2016.

結果之評估及驗證方法:本實施例計算各個復健評估指標套組的分布情形,並依此變量及其數值訓練日常生活功能狀態預測模型,透過內部驗證各個日常生活功能狀態預測模型的預測能力。日常生活功能狀態預測模型之效力將以接收者操作特徵曲線(ROC curve)進行驗證,並同時計算其曲線下面積。 Evaluation and verification method of the results: This embodiment calculates the distribution of each rehabilitation evaluation index set, and trains the daily life functional state prediction model according to the variable and its numerical value, and internally verifies the predictive ability of each daily life function state prediction model. . The effectiveness of the daily life functional state prediction model will be verified by the receiver operating characteristic curve (ROC curve), and the area under the curve will be calculated simultaneously.

效能:圖2、圖3顯示日常生活功能狀態預測模型係使用不同監督式機械學習演算法進行測試,能透過該等監督式機械學習演算法的ROC曲線下面積作為效能的評測,以預測工具性日常生活功能分數(IADL Scale)的效能。所使用的監督式機械學習演算法包括邏輯式回歸、決策樹、隨機森林及K鄰近。其中邏輯式回歸的曲線下面積為0.84、決策樹為0.75、隨機森林為0.86,而K鄰近則為0.77,綜合而言,各種機械學習方法效益都相當良好,其中又以邏輯式回歸及隨機森林為佳。 Efficacy: Figure 2 and Figure 3 show that the daily life function state prediction model is tested using different supervised mechanical learning algorithms. The area under the ROC curve of these supervised mechanical learning algorithms can be used as a performance evaluation to predict instrumentality. The performance of the IADL Scale. The supervised mechanical learning algorithms used include logical regression, decision trees, random forests, and K proximity. The area under the curve of logistic regression is 0.84, the decision tree is 0.75, the random forest is 0.86, and the K is 0.77. In general, the various mechanical learning methods are quite good, including logical regression and random forest. It is better.

圖4係以ROC曲線下面積平均值(AUC平均值)為指標,比較採用複數指標(搭配不同的監督式機械學習演算法)與單一指標,預測出院後的日常生活功能狀態之效能。先以受試者入院時的量表數值作為基準,以預測出院後的量表數值。所使用的監督式機械學習演算法:邏輯式回歸AUC平均值為0.796(AUC標準誤差為0.015)、隨機森林AUC平均值為0.792(AUC標準誤差為0.014)及支持向量機AUC平均值為0.774(AUC標準誤差為0.028)。所使用的單一指標:巴式量表AUC平均值為0.756(AUC標準誤差為0.029)、工具性日常生活功能量表AUC平均值為0.681(AUC標準誤差為0.035)、伯格氏平衡量表AUC平均值為0.720(AUC標準誤差為0.032)。從上述來看,使用複數指標(監督式機械學習演算法)的標準誤差明顯小於單一指標的標準誤差,且各個監督式機械學習演算法的AUC平均值均大於單一指標的AUC平均值,證明了增加複數個復健評估指標於復健評估指標套組中,不但可增加日常生活功能狀態預測的效能,同時,透過不同的監督式機械學習演算法進行復健評估指標套組資料形式學習及使用,均能大幅地 提升了日常生活功能狀態的預測效能。 Figure 4 is based on the average area under the ROC curve (AUC average) as an indicator, comparing the use of complex indicators (with different supervised mechanical learning algorithms) and a single indicator to predict the performance of daily functional status after discharge. The scale value of the subject at the time of admission is used as a baseline to predict the scale value after discharge. The supervised mechanical learning algorithm used: the logistic regression AUC average is 0.796 (AUC standard error is 0.015), the random forest AUC average is 0.792 (AUC standard error is 0.014), and the support vector machine AUC average is 0.774 ( The AUC standard error is 0.028). The single indicator used: the average AUC of the Barometer scale is 0.756 (AUC standard error is 0.029), the average AUC of the instrumental daily life function scale is 0.681 (AUC standard error is 0.035), and the Berg balance scale AUC The average value is 0.720 (AUC standard error is 0.032). From the above point of view, the standard error of using the complex index (supervised mechanical learning algorithm) is significantly smaller than the standard error of the single index, and the average AUC of each supervised mechanical learning algorithm is greater than the average of the AUC of the single index, which proves The addition of multiple rehabilitation assessment indicators in the rehabilitation assessment indicator set can not only increase the effectiveness of daily life functional status prediction, but also use the different supervised mechanical learning algorithms to conduct rehabilitation assessment index set data learning and use. Can be significantly Improve the predictive performance of daily functional status.

因此,本實施例使用日常生活功能狀態預測模型分析複數個多項復健評估指標,可做出準確之日常生活功能狀態預測。 Therefore, the present embodiment analyzes a plurality of multiple rehabilitation evaluation indicators using the daily life function state prediction model, and can accurately predict the daily life function state.

需注意的是,上述實施例僅為例示性說明本發明之原理及其功效,而非用於限制本發明之範圍。任何熟於此項技術之人均可在不違背本發明之技術原理及精神下,對實施例作修改與變化。因此本發明之權利保護範圍應如後述之申請專利範圍所述。 It is to be noted that the above-described embodiments are merely illustrative of the principles of the invention and its advantages, and are not intended to limit the scope of the invention. Modifications and variations of the embodiments can be made by those skilled in the art without departing from the spirit and scope of the invention. Therefore, the scope of protection of the present invention should be as described in the appended claims.

Claims (7)

一種預測失能者日常生活功能之方法,包括:A.建立多項復健評估指標套組,該等復健評估指標套組具有可統計分數的復健評估量表及實驗室檢驗數值;B.將複數失能者分別進行多項復健評估指標套組的施測後,再將復健評估指標套組之測量結果及其對應各個失能者的日常生活功能狀態輸入至機械學習機中;C.透過機械學習機選出複數分類效能最佳的復健評估指標套組之變量數值,搭配其相對應的日常生活功能狀態,並透過監督式機械學習演算法以建立日常生活功能狀態預測模型;及D.將新受檢者進行多項復健評估指標套組的施測,並將施測後結果輸入至日常生活功能狀態預測模型中,即可進行日常生活功能狀態的運算,並得到日常生活功能狀態之預測結果。 A method for predicting the function of daily life of a disabled person, comprising: A. establishing a plurality of rehabilitation assessment indicator sets, the rehabilitation evaluation indicator sets having a statistical assessment score and a laboratory test value; After the multiple disabled persons are respectively subjected to the test of the plurality of rehabilitation evaluation index sets, the measurement results of the rehabilitation evaluation index sets and the daily function states of the respective disabled persons are input into the mechanical learning machine; Selecting the variable value of the rehabilitation evaluation indicator set with the best classification efficiency by the mechanical learning machine, matching the corresponding daily life function state, and establishing the daily life function state prediction model through the supervised mechanical learning algorithm; D. The new subject is subjected to the measurement of a plurality of rehabilitation assessment indicator sets, and the results of the test are input into the daily life function state prediction model, and the daily functional state calculation can be performed, and the daily life function can be obtained. The predicted result of the state. 如申請專利範圍第1項所述之一種預測失能者日常生活功能之方法,其中獲得日常生活功能狀態之預測後,可根據預測結果提醒受檢者採取後續對應狀態之行動。 For example, in the method for predicting the daily function of the disabled person according to the first aspect of the patent application, after obtaining the prediction of the functional state of the daily life, the subject may be reminded to take the action of the subsequent corresponding state according to the predicted result. 如申請專利範圍第1項所述之一種預測失能者日常生活功能之方法,其中日常功能狀態之判定日期與復健評估量表之評估日期,兩者相隔時間為2周至1年。 A method for predicting the function of daily life of a disabled person according to claim 1, wherein the date of determination of the daily functional status and the evaluation date of the rehabilitation assessment scale are between 2 weeks and 1 year. 如申請專利範圍第1項所述之一種預測失能者日常生活功能之方法,其中復健評估量表為雷氏修正量表(Modified Rankin Scale,MRS)、巴氏量表(Barthel Index)、功能性由口進食量表(Functional oral intake scale, FOIS)、迷你營養評估量表(Mini Nutrition Assessment,MNA)、健康生活品質測量問卷(Euro QoL-5D)、工具性日常生活功能量表(IADL Scale)、伯格氏平衡量表(Berg Balance Scale,BBS)、步行速率(Gait speed)、六分鐘行走測試(Six minutes walking test,6MWT)、傅格-梅爾評估量表(Fugl-Meyer Assessment,FMA)、簡短智能測驗(Mini-mental state examination,MMSE)、動作活動量表(Motor Activity Log,MAL)、簡明失語症測驗(Concise Chinese Aphasia Test,CCAT)或上述之任意組合。 A method for predicting the daily function of a disabled person as described in claim 1, wherein the rehabilitation assessment scale is a Modified Rankin Scale (MRS), a Barthel Index, Functional oral intake scale (Functional oral intake scale, FOIS), Mini Nutrition Assessment (MNA), Healthy Quality of Life Measurement Questionnaire (Euro QoL-5D), Instrumental Daily Life Function Scale (IADL Scale), Berg Balance Scale (Berg Balance Scale) , BBS), Gait speed, Six minutes walking test (6MWT), Fugl-Meyer Assessment (FMA), Mini-mental state examination , MMSE), Motor Activity Log (MAL), Concise Chinese Aphasia Test (CCAT), or any combination of the above. 如申請專利範圍第1項所述之一種預測失能者日常生活功能之方法,其中日常生活功能狀態係使用巴氏量表-日常生活依賴程度(Barthel Index)、工具性日常生活功能分數(IADL Scale)或雷氏修正量表分數(Modified Rankin Scale,MRS)進行評估。 A method for predicting the function of daily life of a disabled person according to the first aspect of the patent application, wherein the functional status of daily life is a Barthel Index, a daily life function score (IADL) Scale) or Modified Rankin Scale (MRS) for evaluation. 如申請專利範圍第1項所述之一種預測失能者日常生活功能之方法,其中實驗室檢驗數值為全套血液檢查(CBC)、白血球分類計數(White Blood Cells Differential Counts)、總蛋白(Total Protein),白蛋白(Albumin)、白血球脂化酶(Leukocyte Esterase)、C反應蛋白(C-Reactive Protein)、前降鈣素(Procalcitonin)、紅血球沉降速率(Erythrocyte Sedimentation Rate)、乳酸(Lactate)、乳酸去氫酶(Lactate Dehydrogenase),糖份(Sugar)、鈉離子(Na)、鉀離子(K)、鈣離子(Ca)、氯離子(Cl)、鎂離子(Mg)、亞鐵離子(Fe2+)、鐵離子(Fe3+)、尿素氮(Urea Nitrogen)、肌酐酸(Creatinine)、胱蛋白C(Cystatin C)、膽紅素(Bilirubin)、低密度脂蛋白(Low Density Lipoprotein,LDL)、高密度脂蛋 白(High Density Lipoprotein,HDL)、三酸甘油脂(Triglyceride)、總膽固醇(Total cholesterol)、血糖(blood sugar)、微白蛋白(Microalbumin)、醣化血色素(HbA1C)、同半胱胺酸(Homocysteine)、脂蛋白(Lipoprotein A)、尿酸(Uric acid)或上述之任意組合。 A method for predicting the function of daily life of a disabled person as described in claim 1, wherein the laboratory test values are a complete blood test (CBC), white blood cells differential counts, and total protein (Total Protein). ), Albumin, Leukocyte Esterase, C-Reactive Protein, Procalcitonin, Erythrocyte Sedimentation Rate, Lactic Acid, Lactic Acid Lactate Dehydrogenase, Sugar, Sodium (Na), Potassium (K), Calcium (Ca), Chloride (Cl), Magnesium (Mg), Ferrous (Fe 2 + ), iron ion (Fe 3+ ), urea nitrogen (Urea Nitrogen), Creatinine, Cystatin C, Bilirubin, Low Density Lipoprotein (LDL) , High Density Lipoprotein (HDL), Triglyceride, Total cholesterol, Blood sugar, Microalbumin, Hemoglobin (HbA1C), Homocysteine Amino acid (Homocysteine), lipoprotein (L Ipoprotein A), Uric acid or any combination of the above. 如申請專利範圍第1項所述之一種預測失能者日常生活功能之方法,其中監督式機械學習演算法係使用邏輯式回歸、K鄰近法、支持向量機、類神經網路學習、決策樹、隨機森林、貝氏決策法或上述之任意組合。 A method for predicting the function of daily life of a disabled person as described in claim 1, wherein the supervised mechanical learning algorithm uses logical regression, K-neighborhood, support vector machine, neural network learning, decision tree , random forest, Bayesian decision making, or any combination of the above.
TW106141328A 2017-11-28 2017-11-28 A method for predicting the function of daily life of disabled person TWI649699B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106141328A TWI649699B (en) 2017-11-28 2017-11-28 A method for predicting the function of daily life of disabled person

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106141328A TWI649699B (en) 2017-11-28 2017-11-28 A method for predicting the function of daily life of disabled person

Publications (2)

Publication Number Publication Date
TWI649699B TWI649699B (en) 2019-02-01
TW201926157A true TW201926157A (en) 2019-07-01

Family

ID=66213524

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106141328A TWI649699B (en) 2017-11-28 2017-11-28 A method for predicting the function of daily life of disabled person

Country Status (1)

Country Link
TW (1) TWI649699B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI732370B (en) 2019-12-04 2021-07-01 財團法人工業技術研究院 Training device and training method for neural network model
CN111657621B (en) * 2020-06-04 2022-05-13 福建奇鹭物联网科技股份公司 Sports shoe for detecting wearing time and sports strength and injury prevention method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9339241B2 (en) * 2011-05-27 2016-05-17 Virginia Commonwealth University Assessment and prediction of cardiovascular status during cardiac arrest and the post-resuscitation period using signal processing and machine learning
CA2969140A1 (en) * 2014-12-01 2016-06-09 Quikflo Technologies Inc. Decision support tool for stroke patients
CN106650284B (en) * 2016-12-30 2019-03-15 深圳先进技术研究院 A kind of rehabilitation evaluation system
CN107280666A (en) * 2017-08-08 2017-10-24 中山大学孙逸仙纪念医院 A kind of deafness patient CI postoperative rehabilitations Forecasting Methodology and system based on machine learning

Also Published As

Publication number Publication date
TWI649699B (en) 2019-02-01

Similar Documents

Publication Publication Date Title
Oeffinger et al. Gross Motor Function Classification System and outcome tools for assessing ambulatory cerebral palsy: a multicenter study
Williams et al. Physical activity interventions for people with congenital heart disease
Nutting et al. Competing demands from physical problems: effect on initiating and completing depression care over 6 months
Shinozaki et al. Blood ammonia and lactate levels on hospital arrival as a predictive biomarker in patients with out-of-hospital cardiac arrest
Pineles et al. Psychophysiologic reactivity, subjective distress, and their associations with PTSD diagnosis.
US20150332012A1 (en) Patient risk evaluation
Van Mierlo et al. Psychological factors determine depressive symptomatology after stroke
Jones et al. Performance of the Mortality in Emergency Department Sepsis score for predicting hospital mortality among patients with severe sepsis and septic shock
Jiang et al. An explainable machine learning algorithm for risk factor analysis of in-hospital mortality in sepsis survivors with ICU readmission
SanGiovanni et al. Infantile cataract in the collaborative perinatal project: prevalence and risk factors
Heikkinen et al. Effects of regular exercise on adult asthma
Tragesser et al. Longitudinal associations in borderline personality disorder features: Diagnostic Interview for Borderlines—Revised (DIB-R) scores over time
Huang et al. Predicting the hyperglycemic crisis death (PHD) score: a new decision rule for emergency and critical care
Pérez-Zepeda et al. Predictive value of frailty indices for adverse outcomes in older adults
Flynn-O’Brien et al. Mortality after emergency department thoracotomy for pediatric blunt trauma: analysis of the National Trauma Data Bank 2007–2012
TWI649699B (en) A method for predicting the function of daily life of disabled person
Ogunmoroti et al. Trends in ideal cardiovascular health metrics among employees of a large healthcare organization (from the Baptist Health South Florida Employee Study)
Berges et al. Positive affect and pain ratings in persons with stroke.
Siela Use of self-efficacy and dyspnea perceptions to predict functional performance in people with COPD
Kaur et al. Artificial Intelligence approaches for Predicting Hypertension Diseases: Open Challenges and Research Issues
Ebrahimi et al. Comparing the quality of life and emotional intelligence among patients with psychosomatic disease (Type 2 Diabetes) and healthy individuals
Feldman et al. The adaptive effect of illness-specific panic-fear on asthma outcomes in Mexican and Puerto Rican children
US20190216368A1 (en) Method of predicting daily activities performance of a person with disabilities
Hughes Memory and arithmetic as laboratory stressors for analyses of cardiovascular reactivity: A cursory assessment
Lacasa et al. Unsupervised cluster analysis reveals distinct subtypes of ME/CFS patients based on peak oxygen consumption and SF-36 scores