TW201925777A - Non-invasive testing method for aflatoxin, food inspection server, and food inspection system - Google Patents

Non-invasive testing method for aflatoxin, food inspection server, and food inspection system Download PDF

Info

Publication number
TW201925777A
TW201925777A TW106143256A TW106143256A TW201925777A TW 201925777 A TW201925777 A TW 201925777A TW 106143256 A TW106143256 A TW 106143256A TW 106143256 A TW106143256 A TW 106143256A TW 201925777 A TW201925777 A TW 201925777A
Authority
TW
Taiwan
Prior art keywords
food
tested
toxin
inspection
item
Prior art date
Application number
TW106143256A
Other languages
Chinese (zh)
Inventor
謝振傑
王彥翔
李冠潔
鍾偉和
魏妏純
江明憲
Original Assignee
艾思博生物科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾思博生物科技股份有限公司 filed Critical 艾思博生物科技股份有限公司
Priority to TW106143256A priority Critical patent/TW201925777A/en
Publication of TW201925777A publication Critical patent/TW201925777A/en

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A non-invasive testing method for aflatoxin is provided. The method tests a food-to-be-tested by an optical detecting device and a cloud server, and includes the following steps: projecting an excitation beam on the food-to-be-tested by the optical detecting device, such that a reaction beam is emitted from the food-to-be-tested; receiving the reaction beam to obtain a spectral signature of the reaction beam, and transmitting the spectral signature to the cloud server by the optical detecting device; and obtaining an analysis result corresponding to the aflatoxin by the cloud server according to the spectral signature of the reaction beam and an aflatoxin analysis model, where the aflatoxin analysis model is established by the cloud server using a plurality of experimental spectral signature and an intelligent algorithm, where each of the experimental spectral signature corresponds to an aflatoxin content. In addition, a food inspection server and a food inspection system are also provided.

Description

非侵入式黃麴毒素檢驗方法、食品檢驗伺服器以及食品檢驗系統Non-invasive safrole toxin test method, food inspection server and food inspection system

本發明是有關於一種毒素檢驗方法,且特別是有關於一種非侵入式的食品毒素檢驗方法、食品檢驗伺服器以及食品檢驗系統。The present invention relates to a method for testing toxins, and more particularly to a non-invasive method for testing food toxins, a food inspection server, and a food inspection system.

使用近紅外光譜式檢測儀器已是行之有年的技術。然而,過去這類傳統的檢測儀器,不但造價昂貴且體積龐大只能應用在研究單位或實驗室,且近紅外光譜檢測儀器在操作使用上往往須經過專業的訓練。因此,對於使用者端而言相當的不便。The use of near-infrared spectroscopy instruments has been a technology of the past. However, in the past, such traditional testing instruments are not only expensive and bulky, but can only be applied to research units or laboratories, and the near-infrared spectroscopy instruments often require professional training in operation and use. Therefore, it is quite inconvenient for the user side.

近年來食安問題層出不窮,因此許多民眾都希望能夠自行對食品進行檢測。然而,食品中可能存在的有害物質濃度通常極低,難以直接從食品本身的光譜中分析出來。具體而言,食品中的糖度通常較高(例如,以百分率作為單位),因此食品的糖度很容易可以從食品本身的光譜訊號中反映出來;食品中的農藥通常濃度較低(例如,以百萬分率(ppm)作為單位),因此從食品本身的光譜訊號已不容易分辨出農藥的殘留;而食品中的極低濃度的毒素(例如,以十億分率(ppb)作為單位)就可能對人體造成危害,這樣的濃度幾乎是不可能透過比對峰值等方式就從食品本身的光譜訊號看出來。In recent years, food safety problems have emerged in an endless stream, so many people hope to be able to test food on their own. However, the concentration of harmful substances that may be present in foods is usually extremely low and is difficult to analyze directly from the spectrum of the food itself. In particular, the sugar content in a food product is usually high (for example, in percentage units), so the sugar content of the food can easily be reflected from the spectral signal of the food itself; the pesticide in the food is usually low in concentration (for example, The 10,000 parts per million (ppm), so it is not easy to distinguish the residue of the pesticide from the spectral signal of the food itself; and the very low concentration of the toxin in the food (for example, in parts per billion (ppb)) It may cause harm to the human body. It is almost impossible to see the concentration from the spectral signal of the food itself by comparing the peak value.

因此,目前在對食品進行檢測時,大多必須先進行樣品製備,也就是將待測的食品浸泡在溶液當中使欲檢測的目標成分溶出,再針對含有目標成分的溶液進行檢測,以濾除掉光譜中不必要的雜訊。但是,這樣的檢測方法在應用上並不切實際。對於食品的生產者而言,僅泡過溶液的食品將不再能夠販售;對於消費者而言,將買回來的食品浸泡了溶液也不再能夠食用。Therefore, at present, in the detection of food, most of the samples must be prepared first, that is, the food to be tested is immersed in the solution to dissolve the target component to be detected, and then the solution containing the target component is detected to be filtered out. Unnecessary noise in the spectrum. However, such detection methods are not practical in application. For food producers, foods that have only been soaked in solution will no longer be available for sale; for consumers, the food that has been bought will be no longer edible.

本發明提供一種非侵入式黃麴毒素檢驗方法、食品檢驗伺服器以及食品檢驗系統,無須對食品作樣品製備就能夠檢驗出食品中濃度極低的毒素,提升了食品檢驗的便利性。The invention provides a non-invasive safrole toxin test method, a food inspection server and a food inspection system, which can detect toxins with extremely low concentration in food without preparing samples for food, thereby improving the convenience of food inspection.

本發明的非侵入式黃麴毒素檢驗方法,適於透過光學檢驗裝置以及雲端伺服器檢驗待測食品。所述非侵入式黃麴毒素檢驗方法包括以下步驟:光學檢驗裝置投射激發光束至待測食品,以使待測食品發出反應光;光學檢驗裝置接收反應光以取得反應光的光譜訊號,並且傳遞此光譜訊號至雲端伺服器;以及雲端伺服器依據反應光光譜訊號以及黃麴毒素分析模型取得對應於黃麴毒素的分析結果,其中雲端伺服器係利用多筆實驗光譜訊號以及智慧型演算法建立黃麴毒素分析模型,其中所述多筆實驗光譜訊號分別對應於一黃麴毒素含量。The non-invasive xanthine toxin test method of the present invention is suitable for inspecting a food to be tested through an optical inspection device and a cloud server. The non-invasive xanthine toxin test method comprises the steps of: an optical inspection device projecting an excitation beam to a food to be tested, so that the food to be tested emits reaction light; and the optical inspection device receives the reaction light to obtain a spectral signal of the reaction light, and transmits The spectral signal to the cloud server; and the cloud server obtains the analysis result corresponding to the xanthine toxin according to the reaction light spectrum signal and the xanthine toxin analysis model, wherein the cloud server system is established by using multiple experimental spectral signals and intelligent algorithms. A xanthine toxin analysis model, wherein the plurality of experimental spectral signals respectively correspond to a xanthine toxin content.

本發明的食品檢驗伺服器包括通訊模組、儲存裝置以及耦接於通訊模組以及儲存裝置的處理器。通訊模組用以接收對應於待測食品的反應光光譜訊號。儲存裝置用以記錄多個檢驗項目以及對應此些檢驗項目的多個分析模型。多個檢驗項目包括黃麴毒素,並且多個分析模型包括黃麴毒素分析模型。通訊模組更接收其中一個檢驗項目以作為待測項目,並且處理器用以依據反應光光譜訊號以及待測項目所對應的分析模型,取得對應於待測項目的分析結果,其中處理器係利用多筆實驗光譜訊號以及智慧型演算法建立黃麴毒素分析模型,其中所述多筆實驗光譜訊號分別對應於一黃麴毒素含量。The food inspection server of the present invention comprises a communication module, a storage device and a processor coupled to the communication module and the storage device. The communication module is configured to receive a response light spectrum signal corresponding to the food to be tested. The storage device is configured to record a plurality of inspection items and a plurality of analysis models corresponding to the inspection items. Multiple test items include safrole toxin, and multiple analytical models include the xanthine toxin analysis model. The communication module further receives one of the inspection items as the item to be tested, and the processor is configured to obtain an analysis result corresponding to the item to be tested according to the reaction light spectrum signal and the analysis model corresponding to the item to be tested, wherein the processor system utilizes more The pen experimental spectral signal and the intelligent algorithm establish a xanthine toxin analysis model, wherein the plurality of experimental spectral signals respectively correspond to a xanthine toxin content.

本發明的食品檢驗系統包括光學檢驗裝置以及耦接至光學檢驗裝置的食品檢驗伺服器。光學檢驗裝置用以投射激發光束至待測食品以使待測食品發出反應光,並且接收反應光以取得反應光的光譜訊號。食品檢驗伺服器用以取得光譜訊號以及待測項目,並且依據此光譜訊號以及待測項目所對應的分析模型,取得對應於待測項目的分析結果,其中待測項目是食品檢驗伺服器的多個檢驗項目的其中之一。所述多個檢驗項目包括黃麴毒素,並且所述分析模型包括黃麴毒素分析模型,其中食品檢驗伺服器利用多筆實驗光譜訊號以及智慧型演算法取得所述黃麴毒素分析模型。The food inspection system of the present invention includes an optical inspection device and a food inspection server coupled to the optical inspection device. The optical inspection device is configured to project an excitation beam to the food to be tested to emit a reaction light to the food to be tested, and receive the reaction light to obtain a spectral signal of the reaction light. The food inspection server is configured to obtain the spectral signal and the item to be tested, and obtain an analysis result corresponding to the item to be tested according to the spectral signal and the analysis model corresponding to the item to be tested, wherein the item to be tested is more than the food inspection server. One of the inspection items. The plurality of test items include safrole toxin, and the analysis model includes a xanthine toxin analysis model, wherein the food inspection server obtains the xanthine toxin analysis model using a plurality of experimental spectral signals and a smart algorithm.

基於上述,本發明實施例所提供的非侵入式黃麴毒素檢驗方法、食品檢驗伺服器以及食品檢驗系統中,食品檢驗伺服器利用智慧型演算法,透過資料探勘技術來提煉出多個檢驗項目的多個分析模型,進而利用此些分析模型來分析光學檢驗裝置所取得的光譜訊號。如此一來,能夠無須對食品作樣品製備就能夠檢驗出食品中濃度極低的毒素,提升了食品檢驗的便利性。Based on the above, in the non-invasive safrole toxin test method, the food inspection server, and the food inspection system provided by the embodiments of the present invention, the food inspection server utilizes a smart algorithm to extract a plurality of inspection items through data exploration technology. The plurality of analysis models are further used to analyze the spectral signals obtained by the optical inspection device. In this way, it is possible to detect toxins having extremely low concentrations in the food without preparing the sample for food, thereby improving the convenience of food inspection.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

現將詳細參考本發明之示範性實施例,在附圖中說明所述示範性實施例之實例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件代表相同或類似部分。DETAILED DESCRIPTION OF THE INVENTION Reference will now be made in detail to the exemplary embodiments embodiments In addition, wherever possible, the same reference numerals in the drawings

圖1繪示本發明一實施例的食品檢驗系統的示意圖。請參照圖1,食品檢驗系統10包括光學檢驗裝置100以及食品檢驗伺服器200。在本實施例中,食品檢驗伺服器200是實作為雲端伺服器,光學檢驗裝置100透過網路連接至食品檢驗伺服器200來與其傳遞及接收資料。1 is a schematic view of a food inspection system in accordance with an embodiment of the present invention. Referring to FIG. 1, the food inspection system 10 includes an optical inspection device 100 and a food inspection server 200. In the present embodiment, the food inspection server 200 is implemented as a cloud server, and the optical inspection device 100 is connected to the food inspection server 200 via a network to transmit and receive data thereto.

圖2繪示本發明一實施例的光學檢驗裝置100的概要方塊圖。請參照圖2,光學檢驗裝置100包括激發光源110、光譜儀120、處理器130以及通訊模組140。在一實施例中,光學檢驗裝置100的各項元件例如是封裝在同一外殼之內,以實作為可攜式的光學檢驗裝置100,便於隨身攜帶使用。2 is a schematic block diagram of an optical inspection apparatus 100 in accordance with an embodiment of the present invention. Referring to FIG. 2, the optical inspection apparatus 100 includes an excitation light source 110, a spectrometer 120, a processor 130, and a communication module 140. In one embodiment, the components of the optical inspection device 100 are, for example, packaged within the same housing to serve as a portable optical inspection device 100 for easy portability.

激發光源110用以提供激發光束至待測食品,以使待測食品產生反應光。舉例而言,激發光源110例如為雷射光源,並且提供紅外光光束作為激發光束。在一實施例中,使用者欲檢驗透明包裝的花生中的黃麴毒素含量,則其例如將激發光束從透明包裝的外部發射至包裝內部的花生,以使花生產生反應光。然而,本發明並不在此限制待測食品的種類以及提供激發光束至待測食品的具體手段,所屬技術領域具備通常知識者當可依其需求來應用本實施例的激發光源110。The excitation light source 110 is configured to provide an excitation light beam to the food to be tested to generate a reaction light for the food to be tested. For example, the excitation light source 110 is, for example, a laser light source, and provides an infrared light beam as an excitation light beam. In one embodiment, where the user desires to test the xanthotoxin content of the transparent packaged peanuts, for example, the excitation beam is emitted from the exterior of the transparent package to the peanuts inside the package to cause the peanuts to produce a reactive light. However, the present invention does not limit the kind of the food to be tested and the specific means for providing the excitation light beam to the food to be tested, and the technical person skilled in the art can apply the excitation light source 110 of the present embodiment according to the needs thereof.

光譜儀120(Spectrometer)利用光感測元件接收來自待測食品的反應光,以取得待測食品的反應光的光譜訊號。在一實施例中,光譜儀120例如為拉曼(Raman)光譜儀,並且取得波長介於1000奈米(nm)至1300奈米之間的光譜訊號,但本發明並不限於此。The spectrometer 120 (Spectrometer) receives the reaction light from the food to be tested by using the light sensing element to obtain the spectral signal of the reaction light of the food to be tested. In one embodiment, the spectrometer 120 is, for example, a Raman spectrometer and obtains spectral signals having a wavelength between 1000 nanometers (nm) and 1300 nm, but the invention is not limited thereto.

處理器130例如是中央處理單元(Central Processing Unit,CPU),或是其他可程式化之微處理器(Microprocessor)、數位訊號處理器(Digital Signal Processor,DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuits,ASIC)、可程式化邏輯裝置(Programmable Logic Device,PLD),但不限於此。在一實施例中,處理器130耦接光譜儀120,用以接收光譜儀120所取得的光譜訊號並且透過通訊模組140將光譜訊號傳遞至雲端的食品檢驗伺服器200。在另一實施例中,處理器130可更透過通訊模組140來將使用者的身分認證資訊、檢驗項目或其他資料傳遞至食品檢驗伺服器200。The processor 130 is, for example, a central processing unit (CPU), or other programmable microprocessor (Microprocessor), a digital signal processor (DSP), a programmable controller, and a special application. Application Specific Integrated Circuits (ASICs) and Programmable Logic Devices (PLDs) are not limited thereto. In one embodiment, the processor 130 is coupled to the spectrometer 120 for receiving the spectral signals obtained by the spectrometer 120 and transmitting the spectral signals to the food inspection server 200 of the cloud through the communication module 140. In another embodiment, the processor 130 can further transmit the user's identity authentication information, inspection items or other materials to the food inspection server 200 through the communication module 140.

通訊模組140用以有線或無線地連接至網路,進而連線至食品檢驗伺服器200以與其傳遞及接收資料。在一實施例中,通訊模組140例如是與食品檢驗伺服器200共同連接至網際網路。在另一實施例中,食品檢驗伺服器200例如可作為有線電視業者所提供的機房端設備(Cable Modem Terminal System,CMTS),而通訊模組140例如是透過數位用戶迴路(xDSL)或有線電視同軸電纜線的纜線數據機(Cable Modem),來依據有線電纜資料服務介面規範(Data-Over-Cable Service Interface Specifications,DOCSIS)連接至CMTS進而與食品檢驗伺服器150傳遞與接收光譜訊號等資料。The communication module 140 is connected to the network by wire or wirelessly, and is then connected to the food inspection server 200 to transmit and receive data therewith. In one embodiment, the communication module 140 is, for example, co-connected to the Internet with the food inspection server 200. In another embodiment, the food inspection server 200 can be, for example, a Cable Modem Terminal System (CMTS) provided by a cable TV provider, and the communication module 140 is, for example, a digital subscriber loop (xDSL) or a cable television. A cable modem (Cable Modem) for connecting to the CMTS and transmitting and receiving spectral signals with the food inspection server 150 according to the Data-Over-Cable Service Interface Specifications (DOCSIS). .

圖3繪示本發明一實施例的食品檢驗伺服器的概要方塊圖。請參照圖3,食品檢驗伺服器200包括通訊模組210、儲存裝置220以及處理器230,其中處理器230耦接於通訊模組210以及儲存裝置220。在一實施例中,食品檢驗伺服器200提供多種檢驗項目,在接收來自光學檢驗裝置100的光譜訊號後,會對依據至少一個檢驗項目對光譜訊號進行分析並產生分析結果。3 is a schematic block diagram of a food inspection server in accordance with an embodiment of the present invention. Referring to FIG. 3 , the food inspection server 200 includes a communication module 210 , a storage device 220 , and a processor 230 . The processor 230 is coupled to the communication module 210 and the storage device 220 . In one embodiment, the food inspection server 200 provides a plurality of inspection items. After receiving the spectral signals from the optical inspection apparatus 100, the spectral signals are analyzed based on the at least one inspection item and the analysis results are generated.

通訊模組210是類似於圖2實施例中,光學檢驗裝置100的通訊模組140,故在此不再贅述。在一實施例中,通訊模組210是用以有線或無線地連接至網際網路。在另一實施例中,通訊模組210是用以依據DOCSIS接收來自通訊模組140的光譜訊號等資料,以及傳遞分析結果等資料至通訊模組140。The communication module 210 is similar to the communication module 140 of the optical inspection device 100 in the embodiment of FIG. 2, and therefore will not be described herein. In one embodiment, the communication module 210 is for wired or wireless connection to the Internet. In another embodiment, the communication module 210 is configured to receive data such as spectral signals from the communication module 140 according to the DOCSIS, and transmit the analysis result and the like to the communication module 140.

儲存裝置220用以記錄資料,例如是任何型態的固定式或可移動式隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)或類似元件或上述元件的組合,本發明並不限於此。在一實施例中,儲存元件220包括資料庫,其用以記錄食品檢驗伺服器200所提供的多個檢驗項目以及各個檢驗項目所對應的分析模型。The storage device 220 is used for recording data, such as any type of fixed or removable random access memory (RAM), read-only memory (ROM), flash memory. (flash memory) or the like or a combination of the above elements, the present invention is not limited thereto. In an embodiment, the storage component 220 includes a database for recording a plurality of inspection items provided by the food inspection server 200 and an analysis model corresponding to each inspection item.

處理器230例如是中央處理單元(Central Processing Unit,CPU),或是其他可程式化之微處理器(Microprocessor)、數位訊號處理器(Digital Signal Processor,DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuits,ASIC)、可程式化邏輯裝置(Programmable Logic Device,PLD),但不限於此。在一實施例中,處理器230會選擇其中一個檢驗項目來作為待測項目,並且根據通訊模組210所接收到的光譜訊號以及待測項目在儲存裝置220的資料庫中所對應的分析模型,來利用此分析模型取得待測項目的分析結果。The processor 230 is, for example, a central processing unit (CPU), or other programmable microprocessor (Microprocessor), a digital signal processor (DSP), a programmable controller, and a special application. Application Specific Integrated Circuits (ASICs) and Programmable Logic Devices (PLDs) are not limited thereto. In an embodiment, the processor 230 selects one of the inspection items as the item to be tested, and according to the spectral signal received by the communication module 210 and the analysis model corresponding to the item to be tested in the database of the storage device 220. To use this analysis model to obtain the analysis results of the project to be tested.

舉例而言,通訊模組210在接收到光譜訊號時例如會同時接收到此光譜訊號所欲檢驗的待測項目(例如,黃麴毒素)。基此,處理器230會從儲存裝置220的資料庫中查找待測項目所對應的分析模型(例如,黃麴毒素分析模型),並利用此分析模型來分析所接收的光譜訊號以取得分析結果(例如,以十億分率(ppb)來表示的黃麴毒素含量)。For example, when receiving the spectral signal, the communication module 210 receives, for example, the item to be tested (for example, xanthotoxin) to be inspected by the spectral signal. Based on this, the processor 230 searches the database of the storage device 220 for the analysis model corresponding to the item to be tested (for example, the saxitoxin analysis model), and uses the analysis model to analyze the received spectral signal to obtain the analysis result. (for example, xanthine toxin content expressed in parts per billion (ppb)).

值得一提的是,儲存裝置220的資料庫中所記錄的多個檢驗項目所對應的多個分析模型例如是處理器230預先智慧型演算法(例如,深度學習演算法、類神經網路演算法、以及機器學習演算法的其中之一或其組合),透過資料探勘(data mining)技術來從多筆已知各檢驗項目濃度的實驗光譜訊號提煉出來。據此,食品檢驗伺服器200所提供的服務將能夠檢驗出濃度極低的檢驗項目。It is worth mentioning that the plurality of analysis models corresponding to the plurality of test items recorded in the database of the storage device 220 are, for example, the processor 230 pre-smart algorithm (for example, a deep learning algorithm, a neural network algorithm). And one or a combination of machine learning algorithms) is extracted from experimental spectral signals of various known test item concentrations by data mining techniques. Accordingly, the service provided by the food inspection server 200 will be able to inspect an inspection item of extremely low concentration.

以下將同樣以黃麴毒素作為待測項目來示例性地介紹本發明實施例的非侵入式黃麴毒素檢驗方法。Hereinafter, the non-invasive xanthine toxin test method of the embodiment of the present invention will be exemplarily described using astragalus toxin as a test item.

圖4繪示本發明一實施例的非侵入式黃麴毒素檢驗方法的流程圖。請同時參照圖1至圖4,本實施例的非侵入式黃麴毒素檢驗方法適用於圖1至圖3所介紹的食品檢驗系統10,故以下將搭配圖1至圖3中的各元件來說明本實施例的方法。4 is a flow chart showing a non-invasive xanthine toxin test method according to an embodiment of the present invention. Referring to FIG. 1 to FIG. 4 simultaneously, the non-invasive safrole toxin test method of the present embodiment is applied to the food inspection system 10 described in FIGS. 1 to 3, so that the components in FIGS. 1 to 3 will be combined below. The method of this embodiment will be described.

首先,食品檢驗伺服器200會建立其所提供的多個檢驗項目所對應的分析模型的資料庫。在一實施例中,通訊模組210首先會接收對應於各個檢驗項目的多筆實驗光譜訊號(S410),並且處理器230會利用智慧型演算法,透過資料探勘技術,根據各個檢驗項目對應的多筆實驗光譜訊號來建立對應的分析模型(S420)。隨後,將各個檢驗項目以及其所對應的分析模型記錄於儲存裝置220的資料庫中。First, the food inspection server 200 will establish a database of analysis models corresponding to the plurality of inspection items provided. In an embodiment, the communication module 210 first receives a plurality of experimental spectral signals corresponding to the respective inspection items (S410), and the processor 230 uses the intelligent algorithm to perform data scanning techniques according to the respective inspection items. A plurality of experimental spectral signals are used to establish a corresponding analysis model (S420). Subsequently, each inspection item and its corresponding analysis model are recorded in a database of the storage device 220.

舉例而言,食品檢驗伺服器200提供黃麴毒素含量的檢測服務,因此多個檢驗項目中包括黃麴毒素。因此,通訊模組210例如會接收多筆(例如,3000筆)實驗光譜訊號,且各筆實驗光譜訊號例如是藉由光學檢驗裝置100從已知待測物中黃麴毒素含量的反應光取得的。處理器230會例如利用深度學習演算法、類神經網路演算法、以及機器學習演算法的其中之一或其組合,來根據此些實驗光譜訊號取得黃麴毒素分析模型。取得了黃麴毒素分析模型後,處理器230便具備了分析黃麴毒素含量的能力。隨後,處理器230會將黃麴毒素以及對應的黃麴毒素分析模型記錄於儲存裝置220的資料庫當中。除了黃麴毒素之外,對應於其他檢驗項目的分析模型也可以類似的方式來利用智慧型演算法取得,故在此不再贅述。For example, the food inspection server 200 provides a detection service for the xanthine toxin content, and thus a plurality of test items include safrole toxin. Therefore, the communication module 210 receives, for example, a plurality of (for example, 3,000) experimental spectral signals, and each experimental spectral signal is obtained, for example, by the optical inspection device 100 from the reaction light of the known content of xanthine toxin in the analyte. of. The processor 230 may obtain a xanthine toxin analysis model based on the experimental spectral signals, for example, using one or a combination of a deep learning algorithm, a neural network-like algorithm, and a machine learning algorithm. After obtaining the xanthine toxin analysis model, the processor 230 has the ability to analyze the content of xanthine toxin. Subsequently, the processor 230 records the xanthine toxin and the corresponding xanthine toxin analysis model in a database of the storage device 220. In addition to the toxoid toxin, the analytical model corresponding to other test items can also be obtained in a similar manner using a smart algorithm, so it will not be described here.

建立資料庫後,食品檢驗伺服器200可提供食品檢驗的服務。在一實施例中,光學檢驗裝置100透過激發光源110來投射激發光束至待測食品(例如,花生),以使待測食品發出反應光(S430),透過光感測元件來接收待測食品所發出的反應光,以利用光譜儀120取得反應光光譜訊號,並透過通訊模組140將反應光光譜訊號傳遞至食品檢驗伺服器200(S440)。After the database is established, the food inspection server 200 can provide food inspection services. In an embodiment, the optical inspection device 100 transmits the excitation light beam to the food to be tested (for example, peanuts) through the excitation light source 110 to emit the reaction light to the food to be tested (S430), and receives the food to be tested through the light sensing element. The emitted reaction light is used to obtain the reaction light spectrum signal by the spectrometer 120, and the reaction light spectrum signal is transmitted to the food inspection server 200 through the communication module 140 (S440).

值得一提的是,本實施例中的待測食品花生可例如是賣場中未拆封的袋裝花生,使用者可例如是利用可攜式光學檢驗裝置100來取得對應於袋裝花生的反應光光譜訊號。由於此待測食品並未經過樣品製備的過程,且黃麴毒素在花生中的含量過低,因此所取得的反應光光譜訊號並無法單純藉由比對光訊號強度峰值的方式來推測其中的黃麴毒素含量。為了進行分析,光學檢驗裝置100將其所取得的反應光光譜訊號傳遞至雲端的食品檢驗伺服器200。It is worth mentioning that the peanut to be tested in the embodiment can be, for example, an unopened bagged peanut in a store, and the user can use the portable optical inspection device 100 to obtain a reaction corresponding to the bagged peanut. Optical spectrum signal. Since the food to be tested has not undergone the process of sample preparation, and the content of the xanthine toxin in the peanut is too low, the obtained reaction light spectrum signal cannot be inferred by simply comparing the peak intensity of the optical signal. The content of scorpion toxin. For analysis, the optical inspection apparatus 100 transmits the response light spectrum signals it has acquired to the food inspection server 200 in the cloud.

在一實施例中,光學檢驗裝置100除了傳遞反應光光譜訊號之外,更一併傳遞檢驗項目至食品檢驗伺服器200,以告知食品檢驗伺服器200其所欲檢驗的項目為何。在一實施例中,食品檢驗伺服器200的通訊模組210會接收反應光光譜訊號以及檢驗項目(例如,黃麴毒素),而處理器230會將所接收的檢驗項目作為待測項目(S450)。隨後,處理器230會依據反應光光譜訊號以及待測項目所對應的分析模型(例如,黃麴毒素分析模型),來取得對應於待測項目的分析結果(S460)。在此實施例中,分析結果將包括所檢測的袋裝花生的黃麴毒素含量。In one embodiment, in addition to transmitting the spectral signal of the reactive light, the optical inspection device 100 further transmits the inspection item to the food inspection server 200 to inform the food inspection server 200 of the items to be inspected. In an embodiment, the communication module 210 of the food inspection server 200 receives the reactive light spectrum signal and the inspection item (eg, safrole), and the processor 230 uses the received inspection item as the item to be tested (S450). ). Then, the processor 230 obtains the analysis result corresponding to the item to be tested according to the reaction light spectrum signal and the analysis model corresponding to the item to be tested (for example, the xanthine toxin analysis model) (S460). In this embodiment, the results of the analysis will include the amount of xanthine toxin detected in the bagged peanuts.

在一實施例中,食品檢驗伺服器200最後會透過通訊模組230來將分析結果回傳至光學檢驗裝置100中(S470)。In an embodiment, the food inspection server 200 will finally transmit the analysis result to the optical inspection device 100 through the communication module 230 (S470).

值得一提的是,本發明實施例的食品檢驗系統10不僅可用於檢測花生中的黃麴毒素。藉由機器學習等智慧型演算法,食品檢驗伺服器200可透過上述實施例所介紹的方法來擴充其所能夠檢驗的檢驗項目。如此一來,使用者只需要帶著輕便的可攜式光學檢驗裝置100,便可以在任意地點(例如,賣場等)針對其欲檢測的食品(例如,未開封食品等)以及欲檢驗的項目進行初步檢驗,並即時的得到分析結果。It is worth mentioning that the food inspection system 10 of the embodiment of the present invention can be used not only for detecting safrole toxin in peanuts. The food inspection server 200 can expand the inspection items that can be inspected by the method described in the above embodiments by a smart algorithm such as machine learning. In this way, the user only needs to carry the portable portable optical inspection device 100, so that the food to be detected (for example, unopened food, etc.) and the item to be inspected can be located at any place (for example, a store, etc.). Conduct a preliminary test and get the results immediately.

綜上所述,本發明實施例所提供的非侵入式黃麴毒素檢驗方法、食品檢驗伺服器以及食品檢驗系統中,食品檢驗伺服器利用智慧型演算法,透過資料探勘技術來提煉出多個檢驗項目的多個分析模型,進而利用此些分析模型來分析光學檢驗裝置所取得的光譜訊號。如此一來,能夠無須對食品作樣品製備就能夠檢驗出食品中濃度極低的毒素,提升了食品檢驗的便利性。In summary, in the non-invasive xanthine toxin testing method, the food testing server, and the food inspection system provided by the embodiments of the present invention, the food inspection server utilizes a smart algorithm to extract multiple data through data exploration techniques. A plurality of analytical models of the test item are tested, and the analytical models are used to analyze the spectral signals obtained by the optical test device. In this way, it is possible to detect toxins having extremely low concentrations in the food without preparing the sample for food, thereby improving the convenience of food inspection.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

10‧‧‧食品檢驗系統10‧‧‧Food Inspection System

100‧‧‧光學檢驗裝置100‧‧‧Optical inspection device

110‧‧‧激發光源110‧‧‧Excitation source

120‧‧‧光譜儀120‧‧‧ Spectrometer

130、230‧‧‧處理器130, 230‧‧‧ processor

140、210‧‧‧通訊模組140, 210‧‧‧ communication module

200‧‧‧食品檢驗伺服器200‧‧‧Food Inspection Server

220‧‧‧儲存裝置220‧‧‧Storage device

S410~S470‧‧‧非侵入式黃麴毒素檢驗方法的步驟S410~S470‧‧‧Steps for non-invasive xanthine toxin test method

圖1繪示本發明一實施例的食品檢驗系統的示意圖。 圖2繪示本發明一實施例的光學檢驗裝置的概要方塊圖。 圖3繪示本發明一實施例的食品檢驗伺服器的概要方塊圖。 圖4繪示本發明一實施例的非侵入式黃麴毒素檢驗方法的流程圖。1 is a schematic view of a food inspection system in accordance with an embodiment of the present invention. 2 is a schematic block diagram of an optical inspection apparatus according to an embodiment of the present invention. 3 is a schematic block diagram of a food inspection server in accordance with an embodiment of the present invention. 4 is a flow chart showing a non-invasive xanthine toxin test method according to an embodiment of the present invention.

Claims (10)

一種非侵入式黃麴毒素檢驗方法,適於透過光學檢驗裝置以及雲端伺服器檢驗待測食品,該非侵入式黃麴毒素檢驗方法包括: 該光學檢驗裝置投射一激發光束至該待測食品,以使該待測食品發出反應光; 該光學檢驗裝置接收該反應光以取得反應光光譜訊號,並且傳遞該反應光光譜訊號至該雲端伺服器;以及 該雲端伺服器依據該反應光光譜訊號以及黃麴毒素分析模型取得對應於黃麴毒素的分析結果,其中該雲端伺服器係利用多筆實驗光譜訊號以及智慧型演算法建立該黃麴毒素分析模型,其中該些實驗光譜訊號分別對應於一黃麴毒素含量。A non-invasive xanthine toxin test method, which is suitable for inspecting a food to be tested through an optical inspection device and a cloud server, the non-invasive xanthine toxin test method comprising: the optical inspection device projecting an excitation beam to the food to be tested, The food test device emits reaction light; the optical inspection device receives the reaction light to obtain a reaction light spectrum signal, and transmits the reaction light spectrum signal to the cloud server; and the cloud server according to the reaction light spectrum signal and yellow The scorpion toxin analysis model obtains the analysis result corresponding to the saxitoxin, wherein the cloud server establishes the xanthine toxin analysis model by using multiple experimental spectral signals and a smart algorithm, wherein the experimental spectral signals respectively correspond to a yellow The content of scorpion toxin. 如申請專利範圍第1項所述的非侵入式黃麴毒素檢驗方法,更包括: 該雲端伺服器接收該反應光光譜訊號以及一檢驗項目,其中該檢驗項目為該黃麴毒素,並且該分析結果包括該待測食品的黃麴毒素含量。The non-invasive safrole toxin test method according to claim 1, further comprising: the cloud server receiving the reactive light spectrum signal and an inspection item, wherein the inspection item is the safrole toxin, and the analysis The result includes the xanthine toxin content of the food to be tested. 如申請專利範圍第1項所述的非侵入式黃麴毒素檢驗方法,其中該智慧型演算法包括深度學習演算法、類神經網路演算法、以及機器學習演算法的其中之一或其組合。The non-invasive xanthine toxin test method according to claim 1, wherein the intelligent algorithm comprises one or a combination of a deep learning algorithm, a neural network-like algorithm, and a machine learning algorithm. 一種食品檢驗伺服器,包括: 通訊模組,用以接收對應於待測食品的反應光光譜訊號; 儲存裝置,用以記錄多個檢驗項目以及對應該些檢驗項目的多個分析模型,其中該些檢驗項目包括黃麴毒素,並且該些分析模型包括黃麴毒素分析模型;以及 處理器,耦接於該通訊模組以及該儲存裝置, 其中該通訊模組更接收該些檢驗項目的其中之一以作為待測項目,並且該處理器用以依據該反應光光譜訊號以及該待測項目所對應的該分析模型,取得對應於該待測項目的分析結果, 其中該處理器利用多筆實驗光譜訊號以及智慧型演算法建立該黃麴毒素分析模型,其中該些實驗光譜訊號分別對應於一黃麴毒素含量。A food inspection server includes: a communication module for receiving a response light spectrum signal corresponding to the food to be tested; and a storage device for recording a plurality of inspection items and a plurality of analysis models corresponding to the inspection items, wherein the The test items include safrole toxin, and the analysis models include a saxitoxin analysis model; and a processor coupled to the communication module and the storage device, wherein the communication module further receives the test items As a project to be tested, and the processor is configured to obtain an analysis result corresponding to the item to be tested according to the reaction light spectrum signal and the analysis model corresponding to the item to be tested, wherein the processor utilizes multiple experimental spectra The signal and the intelligent algorithm establish the yellow toxin analysis model, wherein the experimental spectral signals correspond to a xanthine toxin content, respectively. 如申請專利範圍第4項所述的食品檢驗伺服器,其中該待測項目為該黃麴毒素,並且該處理器用以依據該反應光光譜訊號以及該黃麴毒素分析模型,取得對應於該黃麴毒素的該分析結果,其中該分析結果包括該待測食品的黃麴毒素含量。The food inspection server according to claim 4, wherein the item to be tested is the safrole toxin, and the processor is configured to obtain the yellow corresponding to the yellow light toxin according to the reaction light spectrum signal and the yellow toxin analysis model. The result of the analysis of saxitoxin, wherein the result of the analysis includes the xanthine toxin content of the food to be tested. 如申請專利範圍第5項所述的食品檢驗伺服器,其中對應於各該檢驗項目,該處理器利用該智慧型演算法,根據多筆實驗光譜訊號取得該檢驗項目對應的該分析模型,其中該些實驗光譜訊號分別對應於該檢驗項目的已知含量。The food inspection server according to claim 5, wherein the processor corresponds to each of the inspection items, and the processor uses the intelligent algorithm to obtain the analysis model corresponding to the inspection item according to the plurality of experimental spectral signals, wherein The experimental spectral signals correspond to the known levels of the test items, respectively. 如申請專利範圍第4項所述的食品檢驗伺服器,其中該智慧型演算法包括深度學習演算法、類神經網路演算法、以及機器學習演算法的其中之一或其組合。The food inspection server of claim 4, wherein the intelligent algorithm comprises one or a combination of a deep learning algorithm, a neural network-like algorithm, and a machine learning algorithm. 一種食品檢驗系統,包括: 光學檢驗裝置,用以投射一激發光束至待測食品以使該待測食品發出反應光,並且接收該反應光以取得反應光光譜訊號; 食品檢驗伺服器,耦接至該光學檢驗裝置,用以取得該反應光光譜訊號以及待測項目,並且依據該反應光光譜訊號以及該待測項目所對應的分析模型,取得對應於該待測項目的分析結果,其中該待測項目為該食品檢驗伺服器的多個檢驗項目的其中之一, 其中該些檢驗項目包括黃麴毒素,並且該些分析模型包括黃麴毒素分析模型,其中該食品檢驗伺服器利用多筆實驗光譜訊號以及智慧型演算法取得該黃麴毒素分析模型。A food inspection system comprising: an optical inspection device for projecting an excitation beam to a food to be tested to cause the food to be tested to emit reaction light, and receiving the reaction light to obtain a reaction light spectrum signal; a food inspection server coupled And the optical inspection device is configured to obtain the reaction light spectrum signal and the item to be tested, and obtain an analysis result corresponding to the item to be tested according to the reaction light spectrum signal and the analysis model corresponding to the item to be tested, wherein the The item to be tested is one of a plurality of inspection items of the food inspection server, wherein the inspection items include safrole toxin, and the analysis models include a xanthine toxin analysis model, wherein the food inspection server utilizes multiple pens The xanthine toxin analysis model was obtained by experimental spectral signal and intelligent algorithm. 如申請專利範圍第8項所述的食品檢驗系統,其中該待測項目為該黃麴毒素,並且該食品檢驗伺服器依據該反應光光譜訊號以及該黃麴毒素分析模型,取得對應於該黃麴毒素的該分析結果,其中該分析結果包括該待測食品的黃麴毒素含量。The food inspection system of claim 8, wherein the item to be tested is the safrole toxin, and the food inspection server obtains the yellow corresponding to the yellow light toxin analysis model according to the reaction light spectrum signal The result of the analysis of saxitoxin, wherein the result of the analysis includes the xanthine toxin content of the food to be tested. 如申請專利範圍第8項所述的食品檢驗系統,其中對應於各該檢驗項目,該食品檢驗伺服器利用該智慧型演算法,根據多筆實驗光譜訊號取得該檢驗項目對應的該分析模型,其中該些實驗光譜訊號對應於該檢驗項目的已知含量。The food inspection system of claim 8, wherein the food inspection server uses the intelligent algorithm to obtain the analysis model corresponding to the inspection item according to the plurality of experimental spectral signals, corresponding to each of the inspection items, The experimental spectral signals correspond to known amounts of the test item.
TW106143256A 2017-12-08 2017-12-08 Non-invasive testing method for aflatoxin, food inspection server, and food inspection system TW201925777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106143256A TW201925777A (en) 2017-12-08 2017-12-08 Non-invasive testing method for aflatoxin, food inspection server, and food inspection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106143256A TW201925777A (en) 2017-12-08 2017-12-08 Non-invasive testing method for aflatoxin, food inspection server, and food inspection system

Publications (1)

Publication Number Publication Date
TW201925777A true TW201925777A (en) 2019-07-01

Family

ID=68048839

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106143256A TW201925777A (en) 2017-12-08 2017-12-08 Non-invasive testing method for aflatoxin, food inspection server, and food inspection system

Country Status (1)

Country Link
TW (1) TW201925777A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112730269A (en) * 2020-12-10 2021-04-30 青岛农业大学 Aflatoxin intelligent detection method based on deep learning

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112730269A (en) * 2020-12-10 2021-04-30 青岛农业大学 Aflatoxin intelligent detection method based on deep learning

Similar Documents

Publication Publication Date Title
US9316628B2 (en) Spectroscopic characterization of seafood
Beć et al. Principles and applications of miniaturized near‐infrared (NIR) spectrometers
McVey et al. Portable spectroscopy for high throughput food authenticity screening: Advancements in technology and integration into digital traceability systems
Buratti et al. Discrimination between washed Arabica, natural Arabica and Robusta coffees by using near infrared spectroscopy, electronic nose and electronic tongue analysis
US20200116564A1 (en) Spectrometry systems, methods, and applications
US10197504B2 (en) Method and system of detecting foreign materials within an agricultural product stream
US20210140895A1 (en) Non-invasive wine taint detector
Haughey et al. The feasibility of using near infrared and Raman spectroscopic techniques to detect fraudulent adulteration of chili powders with Sudan dye
KR101926181B1 (en) Apparatus and method for measuring freshness based on machine-learning
Cozzolino The role of vibrational spectroscopy as a tool to assess economically motivated fraud and counterfeit issues in agricultural products and foods
US20210164898A1 (en) Characterization of liquids in sealed containers
CN105973837A (en) Detecting method and detecting system of organic matter
US20140267684A1 (en) System and method for detecting contamination in food using hyperspectral imaging
CN102435580A (en) Quick near-infrared measuring device and method for milk ingredients
Jahani et al. Novel application of near-infrared spectroscopy and chemometrics approach for detection of lime juice adulteration
CN111044466A (en) Spectrum detection system and method for freshness of fruits and vegetables
Farley III et al. Short distance standoff Raman detection of extra virgin olive oil adulterated with canola and grapeseed oils
TW201925777A (en) Non-invasive testing method for aflatoxin, food inspection server, and food inspection system
Zhang et al. Rapid screening of DON contamination in whole wheat meals by Vis/NIR spectroscopy and computer vision coupling technology
Ehsani et al. Ensemble classification and regression techniques combined with portable near infrared spectroscopy for facile and rapid detection of water adulteration in bovine raw milk
KR20110008489A (en) Determining system for meat and determining method for meat using the same
CN106706555A (en) Milk powder determination method and system based on near infrared spectroscopy technology
CN110174393B (en) Device and method for detecting vomitoxin of wheat by differential single photon Raman
Rovira et al. In-depth chemometric strategy to detect up to four adulterants in cashew nuts by IR spectroscopic techniques
RU2018130827A (en) METHOD AND DEVICE FOR DETECTING THE PRESENCE OF MYCOTOXINS IN CEREALS