TW201922006A - 與增強型機器類型通訊有關的方法和裝置 - Google Patents

與增強型機器類型通訊有關的方法和裝置 Download PDF

Info

Publication number
TW201922006A
TW201922006A TW107132592A TW107132592A TW201922006A TW 201922006 A TW201922006 A TW 201922006A TW 107132592 A TW107132592 A TW 107132592A TW 107132592 A TW107132592 A TW 107132592A TW 201922006 A TW201922006 A TW 201922006A
Authority
TW
Taiwan
Prior art keywords
channel
anchor
channels
subset
anchor channels
Prior art date
Application number
TW107132592A
Other languages
English (en)
Other versions
TWI768121B (zh
Inventor
劉志豪
史瑞凡斯 葉倫馬里
天爾 庫多茲
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW201922006A publication Critical patent/TW201922006A/zh
Application granted granted Critical
Publication of TWI768121B publication Critical patent/TWI768121B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0085Timing of allocation when channel conditions change
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

描述了與eMTC-U部署有關的各個特徵。在本案內容的態樣中,一種裝置(例如,基地站)可以被配置為:從可用非錨定通道的集合中選擇非錨定通道的子集,其中非錨定通道的子集可以與未授權頻帶內的頻寬相對應。裝置亦可以被配置為:經由錨定通道來傳輸用於指示非錨定通道的子集的資訊。在一些配置中,可以基於由基地站或UE執行的通道量測來選擇非錨定通道的子集。在一個態樣中,UE可以經由錨定通道來從基地站接收用於指示從可用非錨定通道的集合中選擇的非錨定通道的子集的資訊。UE可以在非錨定通道的子集中的一或多個非錨定通道上傳輸資料。

Description

與增強型機器類型通訊有關的方法和裝置
本專利申請案主張於2017年9月20日提出申請的題為「METHODS AND APPARATUS RELATED TO ENHANCED MACHINE TYPE COMMUNICATION」的美國臨時申請案序列第62/561,156號,以及於2018年6月11日提出申請的題為「METHODS AND APPARATUS RELATED TO ENHANCED MACHINE TYPE COMMUNICATION」的美國專利申請案第16/005,558的權益,以引用方式將上述申請案的完整內容明確地併入本文。
大體而言,本案內容係關於通訊系統,並且更具體而言,係關於與未授權頻帶中的增強型機器類型通訊(eMTC)有關的方法和裝置。
為了提供諸如電話、視訊、資料、訊息傳遞以及廣播之類的各種電信服務,廣泛部署了無線通訊系統。典型的無線通訊系統可以採用能夠經由共享可用系統資源來支援與多個使用者的通訊的多工存取技術。此種多工存取技術的實例係包括分碼多工存取(CDMA)系統、分時多工存取(TDMA)系統、分頻多工存取(FDMA)系統、正交分頻多工存取(OFDMA)系統、單載波分頻多工存取(SC-FDMA)系統和時分同步分碼多工存取(TD-SCDMA)系統。
在各種電信標準中已經採用了該等多工存取技術來提供使不同的無線設備能夠在城市、國家、地區和甚至全球級別上進行通訊的共用協定。示例性電信標準是5G新無線電(NR)。5G NR是由第三代合作夥伴計畫(3GPP)發佈的連續行動寬頻進化的一部分,以滿足與時延、可靠性、安全性、可擴展性(例如,與物聯網路(IoT))以及其他要求相關聯的新要求。5G NR的一些態樣可以基於4G長期進化(LTE)標準。存在5G NR技術中的進一步改良的需要。該等改良亦可以適用於其他多工存取技術和使用該等技術的電信標準。
下文提供了一或多個態樣的簡要概述,以提供對此種態樣的基本理解。該概述不是全部預期態樣的泛泛概括,並且不意欲標識全部態樣的關鍵或重要元素或者描述任意或全部態樣的範疇。其目的僅在於作為後文提供的更詳細描述的序言,以簡化形式提供一或多個態樣的一些概念。
描述了與未授權頻帶中的增強型機器類型通訊(eMTC)有關的各種特徵。在一個態樣中,可以在2.4 GHz頻帶內的頻帶中執行增強型機器類型通訊。例如,在可以用於由eMTC設備進行通訊的針對每個通道的1.4 MHz的頻寬的情況下,在2.4 GHz頻帶的80 MHz頻寬內可以有60個可用通道。根據一個態樣,基地站可以選擇總共可用通道中的多個乾淨(clean)通道,以用於由eMTC設備在通訊中使用。根據一個態樣,為了避免2.4 GHz頻帶中的干擾,提出了保持多個乾淨(例如,具有最小雜訊/干擾)通道的白名單。白名單中的乾淨通道可以由基地站選擇,例如,基於在與用於2.4 GHz頻帶內的增強型機器類型通訊的給定頻寬相對應的通道上的通道量測,及/或其他標準。根據一些配置的特徵,可以由基地站向一或多個eMTC設備(例如,使用者設備(UE))通知通道的白名單。用於eMTC的與未授權2.4 GHz頻帶內的給定頻帶相對應的可用通道可以被稱為非錨定通道,以及可以向UE通知可以非常適合用於eMTC資料傳輸的非錨定通道的乾淨子集。在一個態樣中,具有固定頻率以及在系統獲取之前對eMTC設備是已知的錨定通道可以用於向UE提供對非錨定通道的乾淨子集的指示。
在本案內容的態樣中,提供了方法、電腦可讀取媒體和裝置。裝置(例如,基地站)可以被配置為:從可用非錨定通道的集合中選擇非錨定通道的子集。在一些配置中,非錨定通道的子集可以與未授權頻帶內的頻寬相對應。裝置亦可以被配置為:經由錨定通道來傳輸用於指示非錨定通道的子集的資訊。
在本案內容的另一個態樣中,提供了方法、電腦可讀取媒體和裝置。裝置(例如,UE)可以被配置為:經由錨定通道,從基地站接收用於指示從可用非錨定通道的集合中選擇的非錨定通道的子集的資訊。在一些配置中,非錨定通道的子集可以與未授權頻帶內的頻寬相對應。裝置亦可以被配置為:在非錨定通道的子集中的至少一個非錨定通道上傳輸資料。在一些配置中,裝置亦可以被配置為:傳輸用於指示可用非錨定通道的集合中的一或多個非錨定通道的通道品質的一或多個通道品質報告。
為了實現前述和相關目的,一或多個態樣包括後文充分描述以及在請求項中特定指出的特徵。下文的描述和附圖具體闡述了一或多個態樣的某些說明性特徵。然而,該等特徵僅僅指示可以採用各個態樣的原理的各種方式中的一些方式,並且該描述意欲包括全部此種態樣及其均等物。
下文結合附圖闡述的詳細描述意欲作為對各種配置的描述,並且不意欲表示可以實踐本文所描述的概念的唯一配置。出於提供對各種概念的徹底理解的目的,詳細描述包括具體細節。但是,對於熟習此項技術者而言將顯而易見的是,可以在沒有該等具體細節的情況下實踐該等概念。在一些實例中,以方塊圖的形式圖示公知的結構和元件,以便避免使此種概念模糊。
現在將參照各種裝置和方法來呈現電信系統的若干態樣。該等裝置和方法將在下文的詳細描述中進行描述,並在附圖中由各個方塊、元件、電路、過程、演算法等(統稱為「元素」)來圖示。可以使用電子硬體、電腦軟體或者其任何組合來實現該等元素。至於此種元素是實現成硬體還是軟體,取決於具體應用和施加到整體系統上的設計約束。
舉例而言,元素,或元素的任何部分或元素的任意組合可以實現為包括一或多個處理器的「處理系統」。處理器的實例包括微處理器、微控制器、圖形處理單元(GPU)、中央處理單元(CPU)、應用處理器、數位信號處理器(DSP)、精簡指令集計算(RISC)處理器、晶片上系統(SoC)、基頻處理器、現場可程式設計閘陣列(FPGA)、可程式設計邏輯設備(PLD)、狀態機、閘控邏輯、個別硬體電路以及被配置為執行貫穿本案內容所描述的各種功能的其他合適的硬體。處理系統中的一或多個處理器可以執行軟體。無論是被稱為軟體、韌體、中間軟體、微代碼、硬體描述語言或者其他名稱,軟體應當被廣義地解釋為意指指令、指令集、代碼、程式碼片段、程式碼、程式、副程式、軟體元件、應用程式、軟體應用程式、套裝軟體、常式、子常式、物件、可執行檔案、執行執行緒、程序、函數等。
相應地,在一或多個示例性實施例中,可以在硬體、軟體或者其任何組合中來實現所描述的功能。若在軟體中實現,則功能可以作為一或多個指令或代碼來在電腦可讀取媒體上進行儲存或者編碼。電腦可讀取媒體包括電腦儲存媒體。儲存媒體可以是可以由電腦存取的任何可用媒體。經由舉例而非限制的方式,此種電腦可讀取媒體可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、電子可抹除可程式設計ROM(EEPROM)、光碟儲存、磁碟儲存、其他磁儲存設備、上述類型的電腦可讀取媒體的組合,或者可以用於以指令或資料結構的形式儲存能夠由電腦存取的電腦可執行代碼的任意其他媒體。
圖1是圖示無線通訊系統和存取網路100的實例的圖。無線通訊系統(亦稱為無線廣域網路(WWAN))包括基地站102、UE 104和進化型封包核心(EPC)160。基地站102可以包括巨集細胞(高功率蜂巢基地站)及/或小型細胞(低功率蜂巢基地站)。巨集細胞包括基地站。小型細胞包括毫微微細胞、微微細胞和微細胞。
基地站102(統稱為進化型通用行動電信系統(UMTS)陸地無線電存取網路(E-UTRAN))經由回載鏈路132(例如,S1介面)來與EPC 160連接。除了其他功能之外,基地站102可以執行下文功能中的一或多個功能:使用者資料的轉移、無線電通道加密和解密、完整性保護、標頭壓縮、行動性控制功能(例如,交遞、雙連接)、細胞間干擾協調、連接建立和釋放、負載均衡、針對非存取層(NAS)訊息的分發、NAS節點選擇、同步、無線電存取網路(RAN)共享、多媒體廣播多播服務(MBMS)、用戶和設備追蹤、RAN資訊管理(RIM)、傳呼、定位和對警告訊息的傳送。基地站102可以在回載鏈路134(例如,X2介面)上相互直接或間接(例如,經由EPC 160)通訊。回載鏈路134可以是有線的或無線的。
基地站102可以與UE 104無線地通訊。基地站102之每一者基地站102可以為各自的地理覆蓋區域110提供通訊覆蓋。可以有重疊的地理覆蓋區域110。例如,小型細胞102'可以具有與一或多個巨集基地站102的覆蓋區域110重疊的覆蓋區域110'。包括小型細胞和巨集細胞的網路可以被稱為異質網路。異質網路亦可以包括家庭進化型節點B(eNB)(HeNB),該等HeNB可以為被稱為封閉用戶群組(CSG)的受限制群組提供服務。基地站102和UE 104之間的通訊鏈路120可以包括從UE 104到基地站102的上行鏈路(UL)(亦稱為反向鏈路)傳輸及/或從基地站102到UE 104的下行鏈路(DL)(亦稱為前向鏈路)傳輸。通訊鏈路120可以使用多輸入多輸出(MIMO)天線技術,包括空間多工、波束成形及/或傳輸分集。通訊鏈路可以經由一或多個載波。基地站102/UE 104可以使用在用於每個方向中的傳輸的總共高達Yx MHz(x 個分量載波)的載波聚合中分配的、每載波高達Y MHz(例如,5、10、15、20、100 MHz)頻寬的頻譜。載波可以相互相鄰或可以不相鄰。對載波的分配可以是關於DL和UL不對稱的(例如,針對DL可以比針對UL分配更多或更少的載波)。分量載波可以包括主分量載波和一或多個次分量載波。主分量載波可以被稱為主細胞(PCell),以及次分量載波可以被稱為次細胞(SCell)。
某些UE 104可以使用設備到設備(D2D)通訊鏈路192來彼此通訊。D2D通訊鏈路192可以使用DL/UL WWAN頻譜。D2D通訊鏈路192可以使用一或多個側鏈路(sidelink)通道,諸如實體側鏈路廣播通道(PSBCH)、實體側鏈路探索通道(PSDCH)、實體側鏈路共享通道(PSSCH)和實體側鏈路控制通道(PSCCH)。D2D通訊可以經由各種無線D2D通訊系統,諸如例如,FlashLinQ、WiMedia、藍芽、ZigBee、基於IEEE 802.11標準的Wi-Fi、LTE或者NR。
無線通訊系統亦可以包括在5 GHz未授權頻譜中經由通訊鏈路154來與Wi-Fi站(STA)152相通訊的Wi-Fi存取點(AP)150。當在未授權頻譜中通訊時,STA 152/AP 150可以在通訊之前執行閒置通道評估(CCA)以便決定通道是否可用。
小型細胞102'可以操作在經授權的及/或未授權頻譜中。當操作在未授權頻譜中時,小型細胞102'可以採用NR並且使用如由Wi-Fi AP 150所使用的相同的5 GHz未授權頻譜。採用未授權頻譜中的NR的小型細胞102'可以提高存取網路的覆蓋及/或增加存取網路的容量。
下一代節點B(gNB)180可以以毫米波(mmW)頻率及/或接近mmW頻率進行操作與UE 104相通訊。當gNB 180以mmW或接近mmW頻率操作時,gNB 180可以被稱為mmW基地站。極高頻率(EHF)是電磁頻譜中的RF的一部分。EHF具有30 GHz到300 GHz的範圍和在1毫米與10毫米之間的波長。頻帶中的無線電波可以被稱為毫米波。接近mmW可以向下擴展到具有100毫米的波長的3 GHz的頻率。超高頻(SHF)帶擴展在3 GHz和30 GHz之間,亦稱為釐米波。使用mmW/接近mmW射頻帶的通訊具有極高的路徑損耗和較短的範圍。mmW基地站180可以與UE 104使用波束成形184來補償極高的路徑損耗和較短的範圍。
EPC 160可以包括行動性管理實體(MME)162、其他MME 164、服務閘道166、多媒體廣播多播服務(MBMS)閘道168、廣播多播服務中心(BM-SC)170和封包資料網路(PDN)閘道172。MME 162可以與歸屬用戶伺服器(HSS)174相通訊。MME 162是處理UE 104和EPC 160之間的信號傳遞的控制節點。一般而言,MME 162提供承載和連接管理。所有使用者網際網路協定(IP)封包是經由服務閘道166來傳送的,該服務閘道本身連接到PDN閘道172。PDN閘道172為UE提供IP位址分配以及其他功能。PDN閘道172和BM-SC 170連接到IP服務176。IP服務176可以包括網際網路、網內網路、IP多媒體子系統(IMS)、PS串流服務及/或其他IP服務。BM-SC 170可以提供用於MBMS使用者服務設定和傳送的功能。BM-SC 170可以用作針對內容提供方MBMS傳輸的入口點,可以用於授權並啟動公共陸地行動網路(PLMN)內的MBMS承載服務,並且可以用於排程MBMS傳輸。MBMS閘道168可以用於向屬於廣播特定服務的多播廣播單頻網路(MBSFN)區域的基地站102分配MBMS訊務,並且可以負責通信期管理(開始/停止)和負責收集與eMBMS有關的收費資訊。
基地站亦可以被稱為gNB、節點B、進化型節點B(eNB)、存取點、基地站收發機、無線電基地站、無線電收發機、收發機功能、基本服務集(BSS)、擴展服務集(ESS)或者某種其他適當的術語。基地站102為UE 104提供到EPC 160的存取點。UE 104的實例包括蜂巢式電話、智慧型電話、通信期啟動協定(SIP)電話、膝上型電腦、個人數位助理(PDA)、衛星無線電、全球定位系統、多媒體設備、視訊設備、數位音訊播放機(例如,MP3播放機)、攝像機、遊戲控制台、平板電腦、智慧設備、可穿戴設備、車輛、電錶、氣泵、大型或小型廚房電器、醫療設備、植入物、顯示器,或任何其他相似功能的設備。UE 104中的一些UE可以被稱為IoT設備(例如,停車收費表、氣泵、烤麵包機、車輛、心臟監測器等)。UE 104亦可以被稱為站、行動站、用戶站、行動單元、用戶單元、無線單元、遠端單元、行動設備、無線設備、無線通訊設備、遠端設備、行動用戶站、存取終端、行動終端、無線終端、遠端終端機、手持設備、使用者代理、行動服務客戶端、客戶端或者某種其他適當的術語。
再次參照圖1,在某些態樣中,基地站180可以被配置為:基於通道量測來從可用非錨定通道的集合中選擇非錨定通道的子集,以及經由錨定通道來傳輸用於指示非錨定通道的子集的資訊(198),如結合圖4-圖13更詳細描述的。在一些配置中,非錨定通道的子集可以與未授權頻帶內的頻寬相對應。在一種配置中,非錨定通道的子集可以包括可以用於(例如,由諸如UE 104的eMTC及/或IoT設備的)資料傳輸的乾淨/閒置通道。在一種配置中,錨定通道可以具有固定的中心頻率,以及在系統獲取之前對eMTC設備可以是已知的。在某些態樣中,UE 104可以被配置為:經由錨定通道從基地站180接收用於指示從可用非錨定通道的集合中選擇的非錨定通道的子集的資訊,以及在非錨定通道的子集中的至少一個非錨定通道上傳輸資料(199)。結合圖4-圖13更詳細地描述了各種額外態樣和相關特徵。
圖2A是圖示DL訊框結構的實例的圖200。圖2B是圖示DL訊框結構內的通道的實例的圖230。圖2C是圖示UL訊框結構的實例的圖250。圖2D是圖示UL訊框結構內的通道的實例的圖280。其他無線通訊技術可以具有不同訊框結構及/或不同通道。訊框(10 ms)可以被劃分為10個相等大小的子訊框。每個子訊框可以包括兩個連續的時槽。資源網格可以用於表示兩個時槽,每個時槽包括一或多個時間併發資源區塊(RB)(亦稱為實體RB(PRB))。資源網格被劃分為多個資源元素(RE)。對於普通循環字首,RB可以包含頻域中的12個連續次載波和時域中的7個連續符號(針對DL是OFDM符號;針對UL是SC-FDMA符號),總共84個RE。對於擴展循環字首,RB可以包含頻域中的12個連續次載波和時域中的6個連續符號,總共72個RE。由每個RE攜帶的位元數量取決於調制方案。
如圖2A中所示,RE中的一些RE攜帶用於UE處的通道估計的DL參考(引導頻)信號(DL-RS)。DL-RS可以包括細胞特定參考信號(CRS)(有時亦稱為共用RS)、UE特定參考信號(UE-RS)和通道狀態資訊參考信號(CSI-RS)。圖2A圖示針對天線埠0、1、2和3的CRS(分別指示為R0 、R1 、R2 和R3 )、針對天線埠5的UE-RS(指示為R5 )和針對天線埠15的CSI-RS(指示為R)。
圖2B圖示訊框的DL子訊框內的各種通道的實例。實體控制格式指示符通道(PCFICH)在時槽0的符號0內,並且攜帶指示實體下行鏈路控制通道(PDCCH)是否佔用1、2或3個符號(圖2B圖示佔用3個符號的PDCCH)的控制格式指示符(CFI)。PDCCH在一或多個控制通道元素(CCE)內攜帶下行鏈路控制資訊(DCI),每個CCE包括九個RE群組(REG),每個REG在OFDM符號中包括四個連續RE。UE可以配備有亦攜帶DCI的UE特定的增強型PDCCH(ePDCCH)。ePDCCH可以具有2、4或8個RB對(圖2B圖示兩個RB對,每個子集包括一個RB對)。實體混合自動重傳請求(ARQ)(HARQ)指示符通道(PHICH)亦在時槽0的符號0內並且攜帶HARQ指示符(HI),該HI基於實體上行鏈路共享通道(PUSCH)來指示HARQ認可(ACK)/否定ACK(NACK)回饋。主同步通道(PSCH)可以在訊框的子訊框0和5內的時槽0的符號6內。PSCH攜帶由UE 104用於決定子訊框/符號時序和實體層標識的主要同步信號(PSS)。次同步通道(SSCH)可以在訊框的子訊框0和5內的時槽0的符號5內。SSCH攜帶由UE用於決定實體層細胞標識群組號和無線電訊框時序的次要同步信號(SSS)。基於實體層標識和實體層細胞標識群組號,UE能夠決定實體細胞標識符(PCI)。基於PCI,UE能夠決定前述DL-RS的位置。攜帶主資訊區塊(MIB)的實體廣播通道(PBCH)可以邏輯地與PSCH和SSCH分類,以形成同步信號(SS)區塊。MIB提供DL系統頻寬中的數個RB、PHCIH配置和系統訊框號(SFN)。實體下行鏈路共享通道(PDSCH)攜帶使用者資料、未經由PBCH傳輸的廣播系統資訊(諸如系統資訊區塊(SIB))和傳呼訊息。
如圖2C中所示,RE中的一些RE攜帶用於基地站處的通道估計的解調參考信號(DM-RS)。UE可以另外在子訊框的最後符號中傳輸探測參考信號(SRS)。SRS可以具有梳狀結構,並且UE可以在梳中的一個梳上傳輸SRS。SRS可以由基地站用於通道品質估計以實現UL上的依賴頻率的排程。
圖2D圖示訊框的UL子訊框內的各種通道的實例。實體隨機存取通道(PRACH)可以基於PRACH配置處於訊框內的一或多個子訊框內。PRACH可以包括子訊框內的六個連續RB對。PRACH允許UE執行初始系統存取以及實現UL同步。實體上行鏈路控制通道(PUCCH)可以位於UL系統頻寬的邊緣上。PUCCH攜帶上行鏈路控制資訊(UCI),諸如排程請求、通道品質指示符(CQI)、預編碼矩陣指示符(PMI)、秩指示符(RI)和HARQ ACK/NACK回饋。PUSCH攜帶資料,並且可以另外用於攜帶緩衝狀態報告(BSR)、功率餘量報告(PHR)及/或UCI。
圖3是在存取網路中與UE 350相通訊的基地站310的方塊圖。在DL中,來自EPC 160的IP封包可以被提供給控制器/處理器375。控制器/處理器375實現層3和層2功能。層3包括無線電資源控制(RRC)層,以及層2包括封包資料彙聚協定(PDCP)層、無線電鏈路控制(RLC)層和媒體存取控制(MAC)層。控制器/處理器375提供:RRC層功能,其與以下各項相關聯:對系統資訊(例如,MIB、SIB)的廣播、RRC連接控制(例如,RRC連接傳呼、RRC連接建立、RRC連接修改和RRC連接釋放)、無線電存取技術(RAT)間行動性和用於UE量測報告的量測配置;PDCP層功能,其與以下各項相關聯:標頭壓縮/解壓、安全性(加密、解密、完整性保護、完整性驗證)和交遞支援功能;RLC層功能,其與以下各項相關聯:上層封包資料單元(PDU)的傳送、經由ARQ的糾錯、對RLC服務資料單元(SDU)的級聯、分段和重組、對RLC資料PDU的重新分段和對RLC資料PDU的重新排序;及MAC層功能,其與以下各項相關聯:邏輯通道和傳輸通道之間的映射、對MAC SDU到傳輸塊(TB)上的多工、對MAC SDU從TB的解多工、排程資訊報告、經由HARQ的糾錯、優先順序處理和邏輯通道優先化。
傳輸(TX)處理器316和接收(RX)處理器370實現與各種信號處理功能相關聯的層1功能。包括實體(PHY)層的層1,可以包括傳輸通道上的錯誤偵測、對傳輸通道的前向糾錯(FEC)編碼/解碼、交錯、速率匹配、到實體通道上的映射、對實體通道的調制/解調和MIMO天線處理。TX處理器316基於各種調制方案(例如,二進位移相鍵控(BPSK)、正交移相鍵控(QPSK)、M相-移相鍵控(M-PSK)、M階正交幅度調制(M-QAM))來處理至信號群集的映射。隨後,可以將編碼和調制的符號分離成並行的串流。隨後,可以將每個串流映射到OFDM次載波、在時域及/或頻域中與參考信號(例如,引導頻)進行多工處理,並且隨後使用快速傅立葉逆變換(IFFT)將其組合在一起來產生攜帶時域OFDM符號串流的實體通道。對OFDM串流進行空間預編碼來產生多個空間串流。來自通道估計器374的通道估計可以被用於決定編碼和調制方案以及用於空間處理。通道估計可以從參考信號及/或由UE 350傳輸的通道狀況回饋來匯出。隨後,將每個空間串流經由單獨的傳輸器318TX來提供給不同的天線320。每個傳輸器318TX可以利用各自的空間串流來對RF載波進行調制以用於傳輸。
在UE 350處,每個接收器354RX經由其各自的天線352來接收信號。每個接收器354RX對調制到RF載波上的資訊進行恢復並向接收(RX)處理器356提供資訊。TX處理器368和RX處理器356實現與各種信號處理功能相關聯的層1功能。RX處理器356可以在資訊上執行空間處理以恢復去往UE 350的任何空間串流。若多個空間串流去往UE 350,則RX處理器356可以將該多個空間串流組合成單個OFDM符號串流。隨後,RX處理器356使用快速傅立葉變換(FFT)來將OFDM符號串流從時域轉換到頻域。頻域信號包括針對OFDM信號的每個次載波的單獨的OFDM符號串流。經由決定由基地站310傳輸的最有可能的信號群集點來對每個次載波上的符號以及參考信號進行恢復和解調。該等軟判決可以基於由通道估計器358所計算出的通道估計。隨後,對軟判決進行解碼和解交錯來恢復最初由基地站310在實體通道上傳輸的資料和控制信號。隨後將資料和控制信號提供給控制器/處理器359,該控制器/處理器實現層3和層2功能。
控制器/處理器359可以與儲存程式碼和資料的記憶體360相關聯。記憶體360可以被稱為電腦可讀取媒體。在UL中,控制器/處理器359提供傳輸和邏輯通道之間的解多工、封包重組、解密、標頭解壓縮和控制信號處理以恢復來自EPC 160的IP封包。控制器/處理器359亦負責使用ACK及/或NACK協定的錯誤偵測以支援HARQ操作。
與結合由基地站310的DL傳輸描述的功能類似,控制器/處理器359提供:RRC層功能,其與以下各項相關聯:系統資訊(例如,MIB、SIB)獲取、RRC連接和量測報告;PDCP層功能,其與以下各項相關聯:標頭壓縮/解壓縮和安全性(加密、解密、完整性保護、完整性驗證);RLC層功能,其與以下各項相關聯:上層PDU的傳送、經由ARQ的糾錯、對RLC SDU的級聯、分段和重組、對RLC資料PDU的重新分段和對RLC資料PDU的重新排序;及MAC層功能,其與以下各項相關聯:在邏輯通道和傳輸通道之間的映射、對MAC SDU到TB上的多工、對MAC SDU從TB的解多工、排程資訊報告、經由HARQ的糾錯、優先順序處理和邏輯通道優先化。
由通道估計器358從參考信號或由基地站310傳輸的回饋匯出的通道估計可以由TX處理器368用於選擇適當的編碼和調制方案,以及用於促進空間處理。由TX處理器368產生的空間串流可以經由分離的傳輸器354TX來提供給不同天線352。每個傳輸器354TX可以利用各自的空間串流來對RF載波進行調制用於傳輸。
UL傳輸在基地站310處以類似於所描述的結合UE 350處的接收器功能的方式來處理。每個接收器318RX經由其各自的天線320來接收信號。每個接收器318RX恢復調制到RF載波上的資訊並且將資訊提供給RX處理器370。
控制器/處理器375可以與儲存程式碼和資料的記憶體376相關聯。記憶體376可以被稱為電腦可讀取媒體。在UL中,控制器/處理器375提供傳輸和邏輯通道之間的解多工、封包重組、解密、標頭解壓、控制信號處理以恢復來自UE 350的IP封包。來自控制器/處理器375的IP封包可以被提供給EPC 160。控制器/處理器375亦負責使用ACK及/或NACK協定的錯誤偵測來支援HARQ操作。
增強型機器類型通訊-未授權(eMTC-U)是可以用於增強型機器類型通訊的2.4 GHz頻帶中的頻率躍變系統。未授權頻帶亦可以用於其他類型的窄頻通訊,例如,用於由IoT設備以類似方式進行通訊。在一些實現方式中,可以用於由eMTC及/或IoT設備進行通訊的每個通道的頻寬可以是1.4 MHz,以及在2.4 GHz頻帶的80 MHz頻寬內可以有60個可用通道。為滿足法規,可能需要15個通道的最少數量可用。在一個態樣中,可以選擇60個可用通道中的15/16個通道用於操作。在其他實例中,通道的具體數量可以是不同的。60個通道和15或16個通道的子集的實例僅是一個實例。根據態樣,為了避免2.4 GHz頻帶中的干擾,提出了保持數個乾淨通道的白名單。可以基於量測,例如,在與用於2.4 GHz頻帶內的增強型機器類型通訊及/或IoT設備通訊的給定頻寬(例如,80 MHz)相對應的通道上的通道感測和通道量測,來選擇白名單的乾淨通道。在一些配置中,白名單可以包括16個乾淨/閒置通道,該等乾淨/閒置通道可以用於eMTC及/或IoT資料傳輸。在其他實例中,白名單可以包括可以可用於由eMTC及/或IoT設備進行資料傳輸的不同數量的乾淨/閒置通道。
可以用於通訊目的的可用通道可以被稱為非錨定通道,以及非錨定通道的乾淨子集(例如,基於通道量測/感測及/或其他標準來決定的)可以用於eMTC資料傳輸。在一個態樣中,具有固定頻率並且在系統獲取之前對eMTC設備(例如,UE 104)是已知的錨定通道可以用於提供初始同步。在另一個態樣中,可以經由偵測同步信號(例如,PSS/SSS)的搜尋器過程來偵測錨定通道。例如,經由錨定通道,可以傳輸PSS、SSS、MIB以及可能的一些減小的SIB(例如,減小的SIB1)。減小的SIB1可以具有減小的位元數以及攜帶較少的資訊(與傳統的SIB1相比),包括:例如,通道清單、超訊框編號、傳呼指示、UL/DL配置,以及擴展的閒置通道評估(eCCA)參數。根據一個態樣,為了向eMTC及/或IoT設備通知關於可以用於資料傳輸的非錨定通道,可以在初始獲取時經由錨定通道來提供對來自白名單的可使用的15/16個非錨定通道的指示。
可以觀察到,針對在工廠/工業環境中部署的eMTC-U的干擾可以主要來自:諸如在Wi-Fi通道上通訊的802.11 Wi-Fi設備、802.15 ZigBee設備的干擾源,以及在2.4 GHz頻帶內使用一或多個通道/頻帶進行操作/通訊的類似干擾源。圖4是包括圖示可以由根據各種不同的802.11協定進行操作的設備使用的2.4 GHz頻帶中的無線區域網路(LAN)通道的各個圖的圖400。圖425圖示用於802.11(b)直接序列展頻(DSSS)相容通訊的非重疊通道。在圖示的實例中,圖示4個非重疊通道,包括具有2412 MHz的中心頻率的通道1、具有2437 MHz的中心頻率的通道6、具有2462 MHz的中心頻率的通道11,以及具有2484的中心頻率的通道14。802.11(b)通道之每一者通道具有22 MHz的通道寬度。圖450圖示由使用802.11g/n協定進行通訊的設備使用的非重疊通道。可以看出,在802.11g/n的情況下,可以使用通道1、6和11,但是每個通道的通道寬度是20 MHz。圖475圖示可以與802.11n(OFDM)協定一起使用的具有2422 MHz的中心頻率和40 MHz的通道寬度的通道3。因此,在具有各種共存的802.11變型的部署中,可以觀察到具有20/22/40 MHz的通道頻寬的通道。對於i =1, 2,......,14,第i個通道的中心頻率可以表示為:2412+(i -1)*.5 MHz。在802.15 ZigBee的情況下,對於k =11, 12,......,26,每個通道的通道頻寬是2 MHz,以及第k個通道的中心頻率是2405+(k -11)*5 MHz。該等通道可以攜帶可能對eMTC-U非錨定通道造成干擾的通訊。
eMTC-U部署中的考慮因素中的一個考慮因素可以是:可能需要在小於5 ms的錨定傳輸時段(例如,針對錨定通道上的傳輸的時間段)中(例如,由基地站向一或多個eMTC及/或IoT設備)傳送非錨定通道的白名單。另外,可以限制MIB或減小的SIB的有效負荷大小。例如,MIB有效負荷包括40個位元,其中16個位元通常用於循環冗餘檢查(CRC),以及14個位元用於SFN、PHICH分配和系統頻寬資訊。儘管MIB有效負荷大小是有限的,但若期望跨越60個可用通道的白名單指示的完全靈活性,則此情形可能要求較大的有效負荷,例如,60位元的位元映像。若非錨定通道限於60個可用通道中的16個通道(例如,與白名單相對應),則可能需要47個位元來從eNB向一或多個eMTC及/或IoT設備提供對16個非錨定通道的指示。
在一態樣中,基地站(例如,eNB 180)可以選擇非錨定通道的子集以從可用非錨定通道的集合(2.4 GHz內的給定頻寬中的總數的可用通道)中形成白名單。在一些配置中,選擇可以基於在可用非錨定通道上的通道量測。通道感測/通道量測可以包括量測在一或多個可用非錨定通道上的功率,以偵測在可用通道上來自干擾源的雜訊及/或干擾。通道感測/量測可以允許決定何者通道是閒置的或具有最少量的雜訊/干擾。例如,對通道上的較高位準的功率的偵測可以指示:給定通道具有較高位準的雜訊/干擾。在一些配置中,通道量測可以由基地站180執行。在一些其他配置中,通道量測可以由一或多個eMTC及/或IoT設備(例如,UE 104)執行,以及被報告給基地站180。例如,一或多個UE可以執行通道量測以偵測可用非錨定通道上的通道品質,以及向基地站180發送一或多個通道品質報告(例如,CQI報告)。在一些配置中,基地站180和UE 104皆可以執行通道量測,以及基地站180可以在對白名單的非錨定通道的子集的選擇時考慮二者。在一種配置中,可用非錨定通道的集合可以包括X個非錨定通道,以及非錨定通道的子集可以包括Y個非錨定通道,其中X和Y是正整數,以及Y<X。在一個特定配置中,可用非錨定通道的集合包括60個通道,以及與白名單相對應的非錨定通道的子集包括16個通道。在一些配置中,基地站180可以在經由錨定通道傳輸的MIB或減小的SIB中指示非錨定通道的白名單。如前述,錨定通道可以是在系統獲取之前對eMTC設備已知的固定頻率通道,以及設備可以監測錨定通道上的傳輸以進行初始同步和獲取系統資訊。或者,設備可以使用搜尋程序及/或頻率掃瞄來偵測錨定通道。
從對圖4中所示的無線通道的說明和上文的相關論述,可以理解,來自亦在未授權頻帶(例如,2.4 GHz頻帶)中操作的Wi-Fi和ZigBee的干擾具有比eMTC-U更大的頻寬。例如,可以注意到,用於Wi-Fi和ZigBee相容通訊的通道的通道頻寬大於eMTC-U非錨定通道的通道寬度(例如,在一些配置中,其可以是1.4 MHz)。在主要干擾來自Wi-Fi和ZigBee技術的一些部署場景中,可能更適合將非錨定通道分類為通道群組。相應地,根據一個態樣,在一些配置中,可以將多個連續的1.4 MHz通道分類為一個通道群組。例如,可以將可用非錨定通道劃分為通道群組,其中每個通道群組可以包括相同數量(例如,N)的連續1.4 MHz通道(N是整數)。在一些此種配置中,與白名單相對應的非錨定通道的子集可以是一或多個群組的一部分,以及基地站180可以通知與白名單中的非錨定通道相關聯的一或多個通道群組。為了促進理解,參考圖5論述了通道分類的實例。
圖5圖示了圖示非錨定通道的通道群組的實例的圖500。在圖示實例中,每群組中的連續通道的數量N被認為是=4。此外,考慮可以有60個可用非錨定通道。相應地,在此種情況下,可以將可用非錨定通道分類為60/4=15個通道群組(例如,通道群組502、504、506、508、510、512、514、516、518、520、522、524、526、528和530),每個通道群組包括4個連續的非錨定通道,以及具有5.6 MHz的通道群組頻寬,如圖所示。在圖示實例中,如由圖例525指示的,包括與白名單相對應的乾淨非錨定通道的通道群組504、508、514和530利用交叉填充圖案圖示,而其他剩餘的非錨定通道群組利用不具有任何圖案的實心填充圖示。圖中亦圖示可能對一或多個通道群組中的通道造成干擾的Wi-Fi通道11。在可以使用通道分類的一些此種配置中,通知非錨定通道的白名單可以包括:發送對包括與白名單相對應的非錨定通道的子集的通道群組的指示。此舉可以減少用於向eMTC設備指示白名單所需要的位元數。因此,在圖5的實例中,基地站180可以在錨定通道中發送用於指示(15個通道群組中的)4個通道群組504、508、514和530的資訊。在一個態樣中,可以使用11個位元來完成通知15個通道群組中的4個通道群組(例如,16個通道,N=4)。在一些配置中,用於指示4個通道群組的資訊可以被包括在MIB中。例如,MIB的有效負荷中的11個位元可以用於向eMTC設備通知4個通道群組。在一些配置中,為了容納用於指示4個通道群組的11個位元,可以將CRC長度減小到例如12個CRC位元而不是通常用於CRC的16個位元。
在一些eMTC-U部署場景中,可能僅觀察到Wi-Fi干擾,例如,在來自在未授權頻帶中操作的Wi-Fi設備的干擾是對eMTC-U的唯一干擾的部署中,或者在Wi-Fi干擾是最主要的,以及來自其他來源的干擾/雜訊可以忽略的部署中。如結合圖4所論述的,Wi-Fi信號可以佔用22 MHz頻寬(例如,802.11(b)通道的通道寬度)。因此,在一些此種部署中,小於22 MHz的白名單細微性可能不是非常有用。在此種部署場景中(例如,僅有Wi-Fi干擾),根據一個態樣,白名單可以限於15/16個連續非錨定通道的集合。關於圖6論述了白名單可以包括可以用於資料傳輸的15/16個連續非錨定通道的一個實例,例如,在僅Wi-Fi干擾狀況下。
圖6是圖示具有4個連續通道群組的非錨定通道的15個通道群組的實例的圖600,在一種配置中,該等非錨定通道組成了白名單。為了簡單和一致,已經假設了關於非錨定通道的總數(例如,60)和每群組的非錨定通道的數量(N=4)的相同考慮。如上文所論述的,圖600中圖示的分類可以是期望的,以及在一些(例如,由基地站180)僅可以觀察到Wi-Fi干擾的部署中使用。在圖示實例中,15個通道群組包括通道群組602、604、606、608、610、612、614、616、618、620、622、624、626、628和630。與白名單相對應的非錨定通道被包括在通道群組604、606、608、610中,每個通道群組包括4個連續的非錨定通道(假設N=4)。類似於先前的說明,在圖6所示的實例中,如由圖例625指示的,包括所決定的乾淨非錨定通道的通道群組利用交叉填充圖案圖示,而其他剩餘的非錨定通道群組利用不具有的任何圖案的實心填充圖示。從圖6可以理解,與白名單相對應的16個非錨定通道與4個連續通道群組604、606、608、610相關聯。因此,4個連續通道群組604、606、608、610可以形成通道群組的白名單。在N=4以及對4個連續通道群組的選擇的情況下,通道群組的總數是15,以及對於通道的白名單的4個連續通道群組的集合中的第一通道群組而言,僅十二個起始位置可以是可能的。因此,若可以由基地站180向eMTC設備通知通道群組的白名單(604、606、608、610)中的第一通道群組(604)的起始位置,則eMTC設備可以確切地決定何者非錨定通道屬於白名單,因為eMTC設備可以知道白名單包括16個連續通道。換言之,在上文論述的考慮(例如,在給定實現方式中的N=4,以及60個非錨定通道)的情況下,若與白名單相對應的非錨定通道的子集包括16個連續通道,則僅有十二個起始位置對於包括16個連續通道的白名單中的第一非錨定通道(例如,第一通道群組604中的第一通道)可以是可能的,以及通知白名單的第一通道的起始位置可以在假設eMTC設備知道/被通知了關於部署場景及/或對白名單的非通道的分類的情況下,足以允許eMTC設備決定可使用的非錨定通道。在一個態樣中,基地站可以使用4個位元來傳送12個可能的起始位置中的第一非錨定通道/通道群組的起始位置。指示起始位置的4個位元可以被包括在錨定通道上傳送的MIB中或者減小的SIB中。
在另一種配置中,可以經由從數個連續通道群組中選擇通道群組的白名單之每一者通道群組,來形成通道群組的白名單。圖7是圖示可以在一些配置中(例如,由基地站180/310)實現的、對非錨定通道的M個連續通道群組分類為超級群組的實例的圖700。假設N=4,則可能有15個通道群組,每個通道群組具有4個連續通道。在圖示實例中,15個通道群組包括通道群組710、712、714、716、718、720、722、724、726、728、730、732、734、736和738。如圖例725所示,包括所決定的乾淨非錨定通道的通道群組利用交叉填充圖案圖示,而其他剩餘的非錨定通道群組利用實心填充圖示。在一個態樣中,可以將15個通道群組劃分為M個連續通道群組的超級群組。圖7圖示M=4,使得每個超級群組(除了最後一個超級群組708之外)包括4個連續的通道群組的實例,不同的超級群組在圖7中圖示為被垂直邊界線分離。M可以是任何整數個連續的通道群組,M=4的實例僅僅是一個實例。例如,如圖所示,第一超級群組702可以包括4個連續通道群組710、712、714和716;第二超級群組704可以包括4個連續通道群組718、720、722和724;第三超級群組706可以包括4個連續通道群組726、728、730和732;及最後超級群組708可以包括3個通道群組734、736和738,如圖所示。在一個態樣中,可以經由從超級群組702、704、706和708之每一者超級群組中選擇一個通道群組來形成通道群組的白名單(例如,包括4個通道群組)。在圖7所示,通道群組的白名單包括通道群組712(來自超級群組702)、通道群組718(來自超級群組704)、通道群組728(來自超級群組706)和通道群組738(來自超級群組708)。可以觀察到,若N=4並且M=4,則可以存在總共{4*4*4*3}=192個(例如,與通道群組的白名單相對應的通道群組的)隨機模式的可能性。因此,在此種情況下對白名單的指示可能要求8個位元。提供指示的8個位元可以包括在MIB或減小的SIB中。
在另一個態樣中,MIB或減小的SIB中的X位元欄位可以用於指示白名單使用了何種簡介或指示方法。
圖8是根據本文提供的態樣的無線通訊的示例性方法的流程圖800。方法可以由基地站(例如,基地站180、310,裝置902/902')來執行。操作中的一些操作可以是可選的,如虛線方塊所表示。在一種配置中,在805處,基地站可以在可用非錨定通道的集合中的一或多個非錨定通道上執行通道量測。例如,基地站可以量測可用非錨定通道的集合上的信號功率位準。根據上文描述的某些態樣,可以儲存量測結果以用於在通道選擇中的潛在使用。
在一種配置中,在806處,基地站可以從一或多個UE接收用於指示一或多個非錨定通道的通道品質的一或多個CQI報告。例如,UE可以執行通道量測以決定與一或多個非錨定通道相對應的通道品質,以及為基地站產生一或多個CQI報告以提供用於指示通道品質的資訊。根據上文描述的某些態樣,可以儲存所接收的CQI報告及/或量測結果以用於通道選擇中的潛在使用。
在808處,基地站可以從可用非錨定通道的集合中選擇非錨定通道的子集。在一些配置中,非錨定通道的子集可以與未授權頻帶內的頻寬相對應。例如,未授權頻帶可以是2.4 GHz頻帶,與可用非錨定通道的集合相關聯的頻寬可以是2.4 GHz頻帶內的80 MHz頻帶(例如,如圖5所示),以及與非錨定通道的子集相關聯的頻寬可以是80 MHz頻帶內的頻帶。在一些配置中,與非錨定通道的子集相關聯的頻寬可以用於(例如,由eMTC及/或IoT設備進行的)eMTC及/或窄頻通訊。如上文更詳細論述的,非錨定通道的子集可以包括複數個乾淨/閒置的非錨定通道,該等乾淨/閒置的非錨定通道可以由基地站從可用非錨定通道中選擇(例如,基於通道量測或另一個基地站選擇的標準)。通道量測可以由基地站(例如,如上文結合方塊805所論述的)及/或由一或多個UE(例如,如上文結合方塊806所論述的)執行。在一或多個UE執行通道量測的情況下,UE可以被配置為向基地站報告量測報告(例如,CQI報告)。
在一些配置中,基於通道量測,基地站可以選擇具有最佳量測通道品質及/或最小干擾/雜訊量的非錨定通道的子集。在一些其他配置中,基地站可以基於不同的標準來選擇非錨定通道的子集,例如,從可用非錨定通道的集合中對通道的隨機選擇。所選擇的非錨定通道的子集可以是非錨定通道的白名單的一部分,例如,被基地站決定為可用於由eMTC及/或窄頻設備進行資料傳輸的通道。在一個特定實現方式中,可用非錨定通道的集合可以包括60個非錨定通道,以及非錨定通道的子集可以包括15/16個非錨定通道。在其他實現方式中,可用非錨定通道的集合可以包括多於或少於60個非錨定通道。類似地,非錨定通道的子集可以基於與15或16不同的數。
在810處,基地站可以經由錨定通道,例如向UE傳輸用於指示非錨定通道的子集的資訊。在一些配置中,錨定通道可以是在系統獲取之前對eMTC設備已知的固定頻率通道。在一些配置中,可以經由頻率掃瞄或搜尋器過程來決定錨定通道。eMTC設備可以在加電之後調諧到錨定通道以進行初始同步和獲取系統資訊。因此,當基地站在錨定通道上提供對可使用的非錨定通道的指示時,eMTC設備可以在初始獲取期間,獲取用於指示可以用於例如資料傳輸的非錨定通道的資訊連同其他系統資訊。在一些配置中,用於指示非錨定通道的子集(例如,白名單)的資訊可以是以位元映像的形式。
在一些配置中,在812處,基地站可以在非錨定通道的子集中的至少一個非錨定通道上從UE接收資料。在一些配置中,UE可以是eMTC類型設備,以及接收的資料可以是eMTC資料。
如前述,可以注意到,用於Wi-Fi和ZigBee相容通訊的通道的通道頻寬可以大於eMTC-U非錨定通道的通道寬度。在主要干擾來自Wi-Fi和ZigBee技術的一些部署場景中,可能更適合將非錨定通道分類為通道群組。根據一個態樣,在一些配置中,可以將多個連續的1.4 MHz通道分類為一個通道群組。在一些此種配置中,在802處,基地站可以形成複數個通道群組,其中每個通道群組可以包括可用非錨定通道集合中的相同數量的連續非錨定通道。例如,參考圖5,可以以圖500中所示的方式來對可用非錨定通道進行分類,每個通道群組包括4個連續通道(N=4)。繼續圖5的實例,假設可用非錨定通道的完整集合包括60個通道,複數個通道群組可以包括15個通道群組,每個群組包括4個連續通道。在一些配置中,非錨定通道的子集可以基於選擇與非錨定通道的子集相對應的通道群組的集合(例如,圖5的通道群組504、508、514和530)。在此種實例中,包括可使用的非錨定通道的子集的通道群組的集合可以是通道群組的白名單的一部分。在一些此種配置中,指示非錨定通道的子集的資訊可以指示複數個通道群組中的通道群組集合,以及非錨定通道的子集與通道群組集合中的通道相對應。在一些此種配置中,通道群組集合是在主資訊區塊中使用11個位元指示的。例如,指示與通道群組集合相對應的通道的白名單的資訊可以包括:可以被包括在MIB中的11個位元。
在一些eMTC-U部署場景中,可能僅觀察到Wi-Fi干擾。在一些此種部署中,小於22 MHz的白名單細微性可能不是非常有用,以及白名單可以限於15/16個連續非錨定通道的集合。在一種此種配置中,通道群組的集合可以包括4個連續通道群組,以及用於指示非錨定通道的子集的資訊可以指示包括非錨定通道的子集的4個連續通道群組的集合中的第一群組的起始位置。例如,參考圖6,複數個通道群組可以包括通道群組602至630,以及通道群組的集合(例如,包括非錨定通道的子集)可以包括通道群組604、606、608和610的集合。因此,在實例中,與白名單相對應的非錨定通道可以被包括在連續通道群組604、606、608、610的集合中,每個通道群組包括4個連續的非錨定通道(假設N=4)。在N=4的情況下,通道群組的總數是15(例如,考慮總共60個通道),以及對於通道的白名單的4個連續通道群組的集合中的第一通道群組而言,僅十二(12)個起始位置可以是可能的。在此種情況下,可以由基地站180在810處向eMTC設備(例如,UE 104)通知通道群組的白名單(604、606、608、610)中的第一通道群組(604)的起始位置。在接收器側,接收第一通道群組的起始位置的UE能夠基於所指示的第一通道群組的起始位置來決定/標識與白名單相對應的剩餘通道群組,因為所選擇的通道與連續的通道群組相對應。換言之,若與白名單相對應的非錨定通道的子集包括16個連續通道,則對於包括16個連續通道的非錨定通道的子集的第一非錨定通道,僅十二個起始位置可以是可能的。在一些配置中,基地站可以使用4個位元來傳送第一非錨定通道/通道群組在12個可能的起始位置中的起始位置。指示起始位置的4個位元可以被包括在錨定通道上傳送的MIB中或者減小的SIB中。接收此種指示的UE能夠決定被選擇用於資料傳輸的非錨定通道的子集。
在一種配置中,在804處,基地站可以將複數個通道群組分類為連續通道群組的群組的第二集合。群組的第二集合在本文中亦可以被稱為由複數個可用通道群組形成的超級群組的集合。例如,參考圖7,基地站可以將非錨定通道的M個連續通道群組分類為超級群組702、704、706和708。在圖示實例中,M=4,因為超級群組之每一者超級群組包括4個連續通道群組。在一個此種配置中,可以基於從群組的第二集合中的連續通道群組的(超級)群組之每一者(超級)群組選擇單個通道群組,來選擇非錨定通道的子集。例如,在一種配置中,可以經由從超級群組702、704、707和708之每一者超級群組中選擇一個通道群組來形成通道群組的白名單(例如,包括4個通道群組)。在該實例中,通道群組的白名單可以包括通道群組712、718、728和738。如前面結合圖7所論述的,在具有N=4且M=4的實例情況下,可以存在總共192種(例如,與通道群組的白名單相對應的通道群組的)隨機模式的可能性以及在此種情況下,指示白名單(例如,包括與通道群組712、718、728和738相對應的通道子集)可能要求8個位元。在一些配置中,提供對白名單的指示的8個位元可以被包括在MIB或減小的SIB中。因此,在此種配置中,用於指示非錨定通道的子集的資訊(在810處傳輸的)可以包括用於指示所選擇的非錨定通道群組的8個位元。
圖9是圖示示例性裝置902中的不同構件/元件之間的資料流程的概念性資料流程圖900。裝置902可以是基地站(例如,諸如基地站102、180、310)。裝置902可以包括接收元件904、量測元件906、分類元件908、選擇元件910和傳輸元件912。
接收元件904可以被配置為:從包括例如UE 950的其他設備接收信號及/或其他資訊。由接收元件904接收的信號/資訊可以提供給裝置902的一或多個元件以用於進一步處理和用於根據上述方法(包括流程圖800的方法)來執行各種操作。在一些配置中,接收元件904可以從UE(例如,UE 950)接收用於指示與一或多個非錨定通道相對應的通道品質及/或通道量測的通道品質(例如,CQI)報告。在一種配置中,接收元件904可以被配置為:從UE 950接收在由基地站指示的一或多個非錨定通道上傳輸的用於資料傳輸的資料。接收元件904亦可以被配置為:偵測來自一或多個源的在未授權頻譜中的可用非錨定通道上的信號。例如,接收元件可以進行監測以偵測來自例如使用2.4 GHz頻帶內的一或多個通道/頻帶來進行操作/通訊的Wi-Fi設備、ZigBee設備和類似干擾源的信號。
量測元件906可以實現為獨立元件或者實現為接收元件904的一部分。如上文更詳細論述的,量測元件906可以被配置為在可用非錨定通道的集合上執行通道量測。例如,量測元件906可以被配置為量測可用非錨定通道的集合上的信號功率位準。可以執行通道量測以量測來自可用非錨定通道上的各種源的雜訊及/或干擾,以決定何者通道是閒置的或具有最少量的雜訊/干擾。通道量測結果可以儲存在裝置902中,以及可以被提供給選擇元件910,用於在一些配置中在對非錨定通道的子集的選擇時的可能使用。
分類元件908可以被配置為從可用非錨定通道的集合中形成複數個通道群組。在一些配置中,分類元件908可以形成複數個通道群組,使得每個通道群組可以包括可用非錨定通道集合中的相同數量的連續非錨定通道。在一種配置中,複數個通道群組可以包括15個通道群組。在一種配置中,分類元件908可以被配置為將複數個通道群組分類為連續通道群組的群組的第二集合。例如,群組的第二集合可以是從複數個可用通道群組中形成的超級群組的集合。例如,參考圖7,裝置902可以是基地站180,以及分類元件908可以將非錨定通道的M個連續通道群組(如圖7所示)分類為超級群組702、704、706和708。
選擇元件910可以被配置為根據上文論述的方法來從可用非錨定通道的集合中選擇非錨定通道的子集。例如,在一種配置中,選擇元件910可以基於由裝置902(例如,使用量測元件906)執行的在可用非錨定通道上的通道量測,來選擇非錨定通道的子集。在一些其他配置中,選擇元件910可以基於由一或多個UE(例如,包括UE 950)執行的通道量測來選擇非錨定通道的子集,該等UE可以向裝置902報告該等UE的通道量測及/或通道品質報告。在一些配置中,選擇元件910可以基於由量測元件906提供的通道量測和從UE 950接收的通道量測報告二者來選擇白名單中的非錨定通道的子集。在另一種配置中,選擇元件910可以從可用非錨定通道的集合中隨機選擇非錨定通道的子集。
在一些配置中,在裝置902可以被配置為從可用非錨定通道集合中形成複數個通道群組的情況下,所選擇的非錨定通道的子集可以與複數個通道群組中的通道群組的集合相對應,每個通道群組具有包括相同數量的連續非錨定通道。在一些配置中,在裝置902可以被配置為將複數個通道群組分類為連續通道群組的群組的第二集合的情況下,選擇元件910可以經由從群組的第二集合中的連續通道群組的群組之每一者群組選擇單個通道群組,來選擇非錨定通道的子集,如上文中更詳細論述的。在各種配置中,選擇元件908向傳輸元件912提供關於所選擇的非錨定通道的子集(例如,通道或通道群組)的選擇資訊。
傳輸元件912可以被配置為:根據本文中揭示的方法,產生各種信號和訊息以及將該各種信號和訊息傳輸給一或多個外部設備,例如,包括UE 950。例如,在一些配置中,傳輸元件912可以被配置為:經由錨定通道,向UE 950傳輸用於指示非錨定通道的子集(如上文所論述的來選擇)的資訊。可以在其上傳輸資訊的錨定通道可以是對UE 950已知的以及具有固定中心頻率的通道。換言之,傳輸元件912可以被配置為:傳輸包括所選擇的非錨定通道的子集的白名單。所選擇的非錨定通道的子集(例如,白名單)可以標識可以適合於eMTC資料傳輸的通道。在一種配置中,非錨定通道的子集可以包括16個連續非錨定通道,以及所傳輸的用於指示非錨定通道的子集的資訊可以指示16個連續非錨定通道中的第一非錨定通道的起始位置。在一些配置中,用於指示非錨定通道的子集的資訊可以經由錨定通道,在MIB或減小SIB中的至少一項中被傳輸。
在一些配置中。在裝置902可以被配置為從可用非錨定通道集合中形成複數個通道群組的情況下,用於指示非錨定通道的子集的資訊可以指示複數個通道群組的通道群組集合。在此種情況下,所選擇的非錨定通道的子集可以與通道群組集合中的通道相對應。在一些配置中,在裝置902可以被配置為將複數個通道群組分類為連續通道群組的群組的第二集合(例如,超級群組的集合)的情況下,所傳輸的用於指示非錨定通道的子集的資訊可以指示所選擇的來自連續通道群組的群組的第二集合的非錨定通道群組。在此種情況下,所選擇的非錨定通道的子集可以與來自第二集合的非錨定通道群組中的通道相對應。
裝置可以包括執行上述圖8的流程圖中演算法的方塊之每一者方塊的額外元件。同樣地,上述圖8的流程圖之每一者方塊可以由元件和可以包括彼等元件中的一或多個元件的裝置來執行。元件可以是被專門配置為執行所述過程/演算法的一或多個硬體元件、由被配置為執行所述過程/演算法的處理器來實現、被儲存在電腦可讀取媒體之內用於由處理器來實現,或者其一些組合。
圖10是圖示使用處理系統1014的裝置902'的硬體實現方式的實例的圖1000。處理系統1014可以利用通常由匯流排1024表示的匯流排架構來實現。匯流排1024可以包括任何數量的互連匯流排和橋接器,取決於處理系統1014的具體應用以及整體的設計約束。匯流排1024將各種電路連結在一起,該等電路包括由處理器1004、元件904、906、908、910、912和電腦可讀取媒體/記憶體1006表示的一或多個處理器及/或硬體元件。匯流排1024亦可以將諸如定時源、周邊設備、電壓調節器以及功率管理電路的各種其他電路連結在一起,該等其他電路在本領域中是公知的,並且因此將不再進一步描述。
處理系統1014可以耦合到收發機1010。收發機1010耦合到一或多個天線1020。收發機1010提供用於經由傳輸媒體來與各種其他裝置進行通訊的構件。收發機1010從一或多個天線1020接收信號,從所接收的信號提取資訊,以及向處理系統1014(具體而言,接收元件904)提供所提取的資訊。此外,收發機1010從處理系統1014(具體而言,傳輸元件912)接收資訊,以及基於所接收的資訊來產生要應用於一或多個天線1020的信號。處理系統1014包括耦合到電腦可讀取媒體/記憶體1006的處理器1004。處理器1004負責通用處理,包括對電腦可讀取媒體/記憶體1006上儲存的軟體的執行。軟體當由處理器1004執行時,使處理系統1014針對任何特定的裝置來執行以上描述的各種功能。電腦可讀取媒體/記憶體1006亦可以被用於儲存由處理器1004在執行軟體時操控的資料。處理系統1014亦包括元件904、906、908、910、912中的至少一個元件。元件可以是位於/儲存在電腦可讀取媒體/記憶體1006中的、在處理器1004中執行的軟體元件;耦合到處理器1004的一或多個硬體元件,或其某種組合。處理系統1014可以是基地站310的元件以及可以包括記憶體376及/或TX處理器316、RX處理器370以及控制器/處理器375中的至少一者。
在一種配置中,用於無線通訊的裝置902/902'包括用於從可用非錨定通道的集合中選擇非錨定通道的子集的構件,其中非錨定通道的子集與未授權頻帶內的頻寬相對應。在一些配置中,裝置亦可以包括:用於在一或多個非錨定通道上執行通道量測的構件。在一些配置中,裝置亦可以包括:用於接收用於指示一或多個非錨定通道的通道量測及/或通道品質的一或多個通道品質報告的構件。裝置亦可以包括:用於經由錨定通道來傳輸用於指示非錨定通道的子集的資訊的構件。在一些配置中,裝置亦可以包括:用於形成複數個通道群組的構件,其中每個通道群組包括可用非錨定通道集合中的相同數量的連續非錨定通道。在一些配置中,用於指示非錨定通道的子集的資訊指示了複數個通道群組中的通道群組集合,非錨定通道的子集與通道群組集合中的通道相對應。
在一些配置中,用於形成複數個通道群組的構件亦可以被配置為:將複數個通道群組分類為連續通道群組的群組的第二集合,並且其中非錨定通道的子集是基於從群組的第二集合中的連續通道群組的群組之每一者群組選擇單個通道群組來選擇的。在一些配置中,用於接收的構件亦可以被配置為:在非錨定通道的子集中的一或多個非錨定通道上接收資料。
上述構件可以是裝置902的上述元件中的一或多個元件及/或是被配置為執行由上述構件所闡述的功能的裝置902'的處理系統1014。如前述,處理系統1014可以包括TX處理器316、RX處理器370以及控制器/處理器375。同樣地,在一種配置中,上述構件可以是TX處理器316、RX處理器370以及被配置為執行上述構件所記載的功能的控制器/處理器375。
圖11是根據本文提供的態樣的無線通訊的示例性方法的流程圖1100。方法可以由UE(例如,UE 104、350、950、裝置1202/1202')來執行。該等操作中的一些操作可以是可選的,如虛線方塊所表示。在一種配置中,UE可以知道可以用於eMTC的可用非錨定通道的集合,以及在1102處可以在可用非錨定通道的集合中的一或多個非錨定通道上執行通道量測。例如,UE可以量測在可用非錨定通道集合中的一或多個通道上的功率位準,以偵測來自干擾源的雜訊及/或干擾。在一些配置中,作為方塊1102處的操作的一部分,UE可以產生用於指示可用非錨定通道的集合中的一或多個非錨定通道的通道品質的一或多個通道品質報告(例如,CQI報告)。
在1104處,UE可以向基地站(例如,基地站180、310、裝置902)傳輸用於指示一或多個非錨定通道的通道品質的一或多個通道品質報告。通道品質報告及/或通道量測可以被傳輸給基地站,以用於基地站在選擇乾淨/閒置非錨定通道時潛在使用,如上文中更詳細論述的。
在1106處,UE可以經由錨定通道從基地站接收用於指示從可用非錨定通道的集合中選擇的非錨定通道的子集的資訊。在各個配置中,非錨定通道的子集可以與未授權頻帶(例如,2.4 GHz頻帶)內的頻寬相對應。如上文所論述的,在一些配置中,基地站可以基於由基地站執行的通道量測及/或與從UE接收的非錨定通道相對應的通道品質報告,從可用非錨定通道集合中選擇非錨定通道的子集。在一些其他配置中,非錨定通道的子集可以由基地站隨機選擇以及向UE指示。在一些配置中,用於指示非錨定通道的子集的資訊可以被包括在可以由UE經由錨定通道接收的MIB或減小SIB中的至少一項內。在一些配置中,錨定通道可以是在系統獲取之前對UE已知的固定頻率通道。UE可以在加電之後調諧到錨定通道以進行初始同步和獲取系統資訊,以及亦可以週期性地如此做。
在一些配置中,向UE指示的非錨定通道的子集可以包括16個連續非錨定通道,以及用於指示非錨定通道的子集的資訊可以指示16個連續非錨定通道中的第一非錨定通道的起始位置。在一些配置中,用於指示非錨定通道的子集的資訊可以指示(例如,標識)來自複數個通道群組的通道群組集合,以及非錨定通道的子集(為UE選擇的)可以與通道群組集合中的通道相對應。在一些此種配置中,每個通道群組可以包括相同數量的連續非錨定通道。例如,參考圖5,可以以圖500中所示的方式來將可用非錨定通道進行分類,每個通道群組包括4個連續通道。在一些配置中,非錨定通道的子集可以基於選擇可以包括乾淨/閒置非錨定通道的通道群組的集合(例如,圖5的通道群組504、508、514和530)。在此種實例中,用於指示非錨定通道的子集的資訊可以指示通道群組(例如,群組504、508、514和530)的集合,以及非錨定通道的子集可以與通道群組集合中的通道相對應。在一些此種配置中,如前述,在MIB或減小的SIB中接收用於指示通道群組集合(包括基地站選擇的非錨定通道的子集)的資訊。在一些實例中,該資訊可以在MIB中指示(例如,經由11個位元)。
在一種配置中,用於指示非錨定通道的子集的資訊可以指示連續通道群組的集合中的第一群組的起始位置,以及非錨定通道的子集可以與連續通道群組的集合中的通道相對應。在一種配置中,連續通道群組的集合可以包括4個連續通道群組。在一種配置中,每個通道群組可以包括4個非錨定通道。例如,參考圖6,與4個連續通道群組604、606、608和610的集合相對應的通道可以包括由基地站為UE選擇的非錨定通道的子集。在此種情況下,在一種配置中,用於指示由UE接收的非錨定通道的子集的資訊(在1106處)可以指示連續通道群組集合中的第一群組604的起始位置,以及UE可以決定:該UE可以使用與通道群組604、606、608和610相對應的非錨定通道。
在已經接收到用於指示要使用何者非錨定通道及/或通道群組的資訊的情況下,在1108處,UE可以在所指示的非錨定通道的子集中的至少一個非錨定通道上傳輸資料。在一個實例中,UE(例如,UE 104)可以是窄頻IoT設備或eMTC設備,以及可以在一或多個非錨定通道上傳輸eMTC資料。可以使用所指示的非錨定通道的子集中的一或多個非錨定通道來向基地站及/或另一個UE傳輸資料。
圖12是圖示示例性裝置1202中的不同構件/元件之間的資料流程的概念性資料流程圖1200。裝置1202可以是UE(例如,諸如UE 104、350、950)。裝置1202可以包括接收元件1204、量測元件1206和傳輸元件1208。
接收元件1204可以被配置為:從包括例如基地站1250的其他設備接收信號及/或其他資訊。由接收元件1204接收的信號/資訊可以提供給裝置1202的一或多個元件以用於進一步處理和用於根據上述方法(包括流程圖1100的方法)執行各種操作。在一些配置中,接收元件1204可以被配置為:偵測來自一或多個源的在未授權頻譜中的可用非錨定通道上的信號。例如,接收元件1204可以進行監測以偵測來自使用2.4 GHz頻帶內的一或多個通道/頻帶來進行操作/通訊的例如Wi-Fi設備、ZigBee設備和類似干擾源的信號。
量測元件1206可以實現為獨立元件或者實現為接收元件1204的一部分。量測元件1206可以被配置為:在可用非錨定通道的集合上執行通道量測。例如,量測元件1206可以被配置為:量測在可用非錨定通道的集合上偵測到的功率位準。可以執行通道量測以量測來自可用非錨定通道上的各種源的雜訊及/或干擾,以決定各種可用非錨定通道的通道品質。通道量測可以儲存在裝置1202中,及/或可以提供給傳輸元件1208。
在一些配置中,接收元件1204亦可以被配置為:經由錨定通道從基地站(例如,基地站1250)接收用於指示從可用非錨定通道的集合中選擇的非錨定通道的子集的資訊。在一些配置中,非錨定通道的子集可以與未授權頻帶內的頻寬相對應。在一些配置中,用於指示非錨定通道的子集的資訊可以標識來自複數個非錨定通道群組的通道群組集合,以及非錨定通道的子集可以與通道群組集合中的通道相對應。在一些此種配置中,每個通道群組可以包括可用非錨定通道的集合中的相同數量的連續非錨定通道。在一些配置中,複數個通道群組可以包括15個通道群組,以及通道群組集合可以包括4個通道群組。在一些配置中,用於指示通道群組集合的資訊是在MIB中指示的(例如,使用11個位元)。
在一些配置中,用於指示非錨定通道的子集的資訊可以指示連續通道群組的集合中的第一通道群組的起始位置,以及非錨定通道的子集可以與連續通道群組的集合中的通道相對應。在一些此種配置中,連續通道群組的集合可以包括4個連續通道群組。在一些配置中,非錨定通道的子集可以包括16個連續非錨定通道,以及用於指示非錨定通道的子集的資訊可以指示16個連續非錨定通道中的第一非錨定通道的起始位置。在一些配置中,用於指示非錨定通道的子集的資訊可以被包括在可以由接收元件1204經由錨定通道接收的MIB或減小的SIB(例如,攜帶較少的位元)中的至少一項內。
傳輸元件1208可以被配置為根據本文中揭示的方法來產生各種信號和訊息以及將信號和訊息傳輸給一或多個外部設備,例如,包括基地站1250。例如,在一些配置中,傳輸元件1208可以被配置為:基於由量測元件1206執行的通道量測來產生一或多個通道品質報告(例如,CQI報告)。在一些配置中,傳輸元件1208可以例如向基地站1250傳輸指示與一或多個非錨定通道相對應的通道品質及/或通道量測的一或多個通道品質報告。在一些配置中,傳輸元件1208亦可以被配置為:在所指示的非錨定通道的子集中的一或多個非錨定通道上傳輸資料。
裝置可以包括執行上述圖11的流程圖中演算法的方塊之每一者方塊的額外元件。同樣地,上述圖11的流程圖之每一者方塊可以由元件和可以包括彼等元件中的一或多個元件的裝置來執行。元件可以是被專門配置為執行所述過程/演算法的一或多個硬體元件、由被配置為執行所述過程/演算法的處理器來實現、儲存在電腦可讀取媒體之內用於由處理器來實現,或者其一些組合。
圖13是圖示使用處理系統1314的裝置1202'的硬體實現方式的實例的圖1300。處理系統1314可以利用通常由匯流排1324表示的匯流排架構來實現。匯流排1324可以包括任何數量的互連匯流排以及橋接器,取決於處理系統1314的具體應用以及整體的設計約束。匯流排1324將各種電路連結在一起,該等電路包括由處理器1304、元件1204、1206、1208和電腦可讀取媒體/記憶體1306表示的一或多個處理器及/或硬體元件。匯流排1324亦可以將諸如定時源、周邊設備、電壓調節器以及功率管理電路的各種其他電路連結在一起,該等其他電路在本領域中是公知的,並且因此將不再進一步描述。
處理系統1314可以耦合到收發機1310。收發機1310耦合到一或多個天線1320。收發機1310提供用於經由傳輸媒體來與各種其他裝置進行通訊的構件。收發機1310從一或多個天線1320接收信號,從所接收的信號提取資訊,以及向處理系統1314(具體而言,接收元件1204)提供所提取的資訊。此外,收發機1310從處理系統1314(具體而言,傳輸元件1208)接收資訊,以及基於所接收的資訊來產生要應用於一或多個天線1320的信號。處理系統1314包括耦合到電腦可讀取媒體/記憶體1306的處理器1304。處理器1304負責通用處理,包括對電腦可讀取媒體/記憶體1306上儲存的軟體的執行。軟體當由處理器1304執行時,使處理系統1314針對任何特定的裝置來執行以上描述的各種功能。電腦可讀取媒體/記憶體1306亦可以被用於儲存由處理器1304在執行軟體時操控的資料。處理系統1314亦包括元件1204、1206、1208中的至少一個元件。元件可以是位於/儲存在電腦可讀取媒體/記憶體1306中、在處理器1304中執行的軟體元件;耦合到處理器1304的一或多個硬體元件,或其某種組合。處理系統1314可以是UE 350的元件以及可以包括記憶體360及/或TX處理器368、RX處理器356以及控制器/處理器359中的至少一者。
在一種配置中,用於無線通訊的裝置1202/1202'是UE,以及可以包括:用於經由錨定通道從基地站接收用於指示從可用非錨定通道的集合中選擇的非錨定通道的子集的資訊的構件。在一種配置中,非錨定通道的子集可以與未授權頻帶中的頻寬相對應。在一些配置中,裝置亦可以包括:用於在非錨定通道的子集中的至少一個非錨定通道(例如,在一或多個通道上)上傳輸資料的構件。在一些配置中,用於指示非錨定通道的子集的資訊標識了來自複數個通道群組的通道群組集合,以及非錨定通道的子集與通道群組集合中的通道相對應。在一些此種配置中,每個通道群組可以包括可用非錨定通道的集合中的相同數量的連續非錨定通道。
在一些配置中,裝置亦可以包括:用於在可用非錨定通道的集合中的一或多個非錨定通道上執行通道量測的構件。在一些配置中,用於傳輸的構件亦可以被配置為:產生以及傳輸一或多個通道品質報告,該等通道品質報告指示可用非錨定通道的集合中的一或多個非錨定通道的通道品質。在一些配置中,可以基於在一或多個非錨定通道上執行的通道量測來決定通道品質。
上述構件可以是裝置1202的上述元件中的一或多個元件及/或是被配置為執行由上述構件所闡述的功能的裝置1202'的處理系統1314。如前述,處理系統1314可以包括TX處理器368、RX處理器356以及控制器/處理器359。同樣地,在一種配置中,上述構件可以是被配置為執行上述構件所記載的功能的TX處理器368、RX處理器356以及控制器/處理器359。
要理解的是,所揭示的過程/流程圖中的方塊的具體順序或層級是對示例性方式的說明。基於設計偏好,要理解的是過程/流程圖中的方塊的特定順序或層級是可以重新排列的。此外,一些方塊可以被組合或省略。所附方法請求項以取樣順序顯示出各個方塊的元素,並且不是意在將其限制在所提供的特定順序或層級中。
為使任何熟習此項技術者能夠實踐本文中所描述的各個態樣,提供了先前描述。對於熟習此項技術者而言,對該等態樣的各種修改將是顯而易見的,並且,本文所定義的整體原理可以適用於其他的態樣。因此,請求項不意欲限於本文中展示的態樣,而是要符合與請求項所表達的相一致的全部範疇,其中除非具體如此說明,否則以單數形式提到的元素不意欲意為「一個且僅有一個」,而是意為「一或多個」。本文中使用的詞語「示例性的」意為「用作示例、實例或說明」。本文中被描述為「示例性的」任何態樣不必須被解釋為比其他態樣更佳或更有優勢。除非在其他態樣具體說明,否則術語「一些」指的是一或多個。諸如「A、B或C中的至少一個」、「A、B或C中的一或多個」、「A、B和C中的至少一個」、「A、B和C中的一或多個」和「A、B、C或其任何組合」之類的組合包括A、B及/或C的任何組合,並且可以包括A的倍數、B的倍數或C的倍數。具體而言,諸如「A、B或C中的至少一個」、「A、B或C中的一或多個」、「A、B和C中的至少一個」、「A、B和C中的一或多個」和「A、B、C或其任何組合」之類的組合可以是僅A、僅B、僅C、A和B、A和C、B和C,或A和B和C,其中任何此種組合可以包含A、B或C的一或多個成員。對於一般技術者公知的或稍後將知的貫穿本案內容所描述的各個態樣的元素的所有結構性和功能性均等物明確地以引用的方式併入本文,並且意欲包含在請求項中。此外,本文中所揭示的沒有內容是意欲奉獻給公眾的,不管此種揭示內容是否在請求項中有明確的記述。詞語「模組」、「機制」、「元素」、「設備」等等可以不是針對詞語「構件」的替代。同樣,除非使用短語「用於……的構件」明確地敘述元素,否則沒有請求項元素是被解釋為功能構件的。
100‧‧‧存取網路
102‧‧‧基地站
102'‧‧‧小型細胞
104‧‧‧UE
110‧‧‧地理覆蓋區域
110'‧‧‧覆蓋區域
120‧‧‧通訊鏈路
132‧‧‧回載鏈路
134‧‧‧回載鏈路
150‧‧‧Wi-Fi存取點(AP)
152‧‧‧Wi-Fi站(STA)
154‧‧‧通訊鏈路
160‧‧‧進化型封包核心(EPC)
162‧‧‧行動性管理實體(MME)
164‧‧‧其他MME
166‧‧‧服務閘道
168‧‧‧多媒體廣播多播服務(MBMS)閘道
170‧‧‧廣播多播服務中心(BM-SC)
172‧‧‧封包資料網路(PDN)閘道
174‧‧‧歸屬用戶伺服器(HSS)
176‧‧‧IP服務
180‧‧‧下一代節點B(gNB)
184‧‧‧波束成形
192‧‧‧設備到設備(D2D)通訊鏈路
200‧‧‧圖
230‧‧‧圖
250‧‧‧圖
280‧‧‧圖
310‧‧‧基地站
316‧‧‧傳輸(TX)處理器
318‧‧‧傳輸器/接收器
320‧‧‧天線
350‧‧‧UE
352‧‧‧天線
354‧‧‧接收器/傳輸器
356‧‧‧RX處理器
358‧‧‧通道估計器
359‧‧‧控制器/處理器
360‧‧‧記憶體
368‧‧‧TX處理器
370‧‧‧接收(RX)處理器
374‧‧‧通道估計器
375‧‧‧控制器/處理器
376‧‧‧記憶體
400‧‧‧圖
425‧‧‧圖
450‧‧‧圖
475‧‧‧圖
500‧‧‧圖
502‧‧‧通道群組
504‧‧‧通道群組
506‧‧‧通道群組
508‧‧‧通道群組
510‧‧‧通道群組
512‧‧‧通道群組
514‧‧‧通道群組
516‧‧‧通道群組
518‧‧‧通道群組
520‧‧‧通道群組
522‧‧‧通道群組
524‧‧‧通道群組
525‧‧‧圖例
526‧‧‧通道群組
528‧‧‧通道群組
530‧‧‧通道群組
600‧‧‧圖
602‧‧‧通道群組
604‧‧‧通道群組
606‧‧‧通道群組
608‧‧‧通道群組
610‧‧‧通道群組
612‧‧‧通道群組
614‧‧‧通道群組
616‧‧‧通道群組
618‧‧‧通道群組
620‧‧‧通道群組
622‧‧‧通道群組
624‧‧‧通道群組
625‧‧‧圖例
626‧‧‧通道群組
628‧‧‧通道群組
630‧‧‧通道群組
700‧‧‧圖
702‧‧‧第一超級群組
704‧‧‧第二超級群組
706‧‧‧第三超級群組
708‧‧‧最後超級群組
710‧‧‧通道群組
712‧‧‧通道群組
714‧‧‧通道群組
716‧‧‧通道群組
718‧‧‧通道群組
720‧‧‧通道群組
722‧‧‧通道群組
724‧‧‧通道群組
725‧‧‧圖例
726‧‧‧通道群組
728‧‧‧通道群組
730‧‧‧通道群組
732‧‧‧通道群組
734‧‧‧通道群組
736‧‧‧通道群組
738‧‧‧通道群組
800‧‧‧流程圖
802‧‧‧方塊
804‧‧‧方塊
805‧‧‧方塊
806‧‧‧方塊
808‧‧‧方塊
810‧‧‧方塊
812‧‧‧方塊
900‧‧‧概念性資料流程圖
902‧‧‧裝置
902'‧‧‧裝置
904‧‧‧接收元件
906‧‧‧量測元件
908‧‧‧分類元件
910‧‧‧選擇元件
912‧‧‧傳輸元件
950‧‧‧UE
1000‧‧‧圖
1004‧‧‧處理器
1006‧‧‧電腦可讀取媒體/記憶體
1010‧‧‧收發機
1014‧‧‧處理系統
1020‧‧‧天線
1024‧‧‧匯流排
1100‧‧‧流程圖
1102‧‧‧方塊
1104‧‧‧方塊
1106‧‧‧方塊
1108‧‧‧方塊
1200‧‧‧概念性資料流程圖
1202‧‧‧裝置
1202'‧‧‧裝置
1204‧‧‧接收元件
1206‧‧‧量測元件
1208‧‧‧傳輸元件
1250‧‧‧基地站
1300‧‧‧圖
1304‧‧‧處理器
1306‧‧‧電腦可讀取媒體/記憶體
1310‧‧‧收發機
1314‧‧‧處理系統
1320‧‧‧天線
1324‧‧‧匯流排
圖1是圖示無線通訊系統和存取網路的實例的圖。
圖2A、圖2B、圖2C和圖2D是分別圖示DL訊框結構、DL訊框結構內的DL通道、UL訊框結構和UL訊框結構內的UL通道的實例的圖。
圖3是圖示存取網路中的基地站和使用者設備(UE)的實例的圖。
圖4包括圖示可以由根據各種不同的802.11協定進行通訊的設備使用的2.4 GHz頻帶中的無線區域網路(LAN)通道的各個圖。
圖5圖示了圖示形成非錨定通道的通道群組的實例的圖。
圖6圖示了圖示非錨定通道的多個通道群組的圖,其中連續通道群組的集合中的非錨定通道構成了通道的白名單。
圖7是圖示可以在一些配置中實現的對非錨定通道的連續通道群組的集合到超級群組(super group)的示例性分類的圖。
圖8是一種無線通訊的方法的流程圖。
圖9是圖示示例性裝置中的不同構件/元件之間的資料流程的概念性資料流程圖。
圖10是圖示針對使用處理系統的裝置的硬體實現方式的實例的圖。
圖11是另一種無線通訊的示例性方法的流程圖。
圖12是圖示示例性裝置中的不同構件/元件之間的資料流程的概念性資料流程圖。
圖13是圖示針對使用處理系統的裝置的硬體實現方式的實例的圖。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無

Claims (30)

  1. 一種一使用者設備(UE)的無線通訊的方法,包括以下步驟: 經由一錨定通道,從一基地站接收用於指示從可用非錨定通道的一集合中選擇的非錨定通道的一子集的資訊,其中該非錨定通道的子集與一未授權頻帶內的一頻寬相對應;及在該非錨定通道的子集中的至少一個非錨定通道上傳輸資料。
  2. 根據請求項1之方法, 其中用於指示該非錨定通道的子集的該資訊標識了來自複數個通道群組的一通道群組集合,該非錨定通道的子集與該通道群組集合中的通道相對應;並且其中每個通道群組包括該可用非錨定通道的集合中的一相同數量的連續的非錨定通道。
  3. 根據請求項2之方法,其中該複數個通道群組包括15個通道群組,以及該通道群組集合包括4個通道群組。
  4. 根據請求項2之方法,其中該通道群組集合是在一主資訊區塊中使用11個位元來指示的。
  5. 根據請求項1之方法,亦包括以下步驟: 傳輸用於指示該可用非錨定通道的集合中的一或多個非錨定通道的通道品質的一或多個通道品質報告。
  6. 根據請求項1之方法,其中在所接收的該資訊中指示的該非錨定通道的子集是基於通道量測來從該可用非錨定通道的集合中選擇的。
  7. 根據請求項1之方法,其中用於指示該非錨定通道的子集的該資訊指示了連續通道群組的一集合中的一第一群組的一起始位置,該非錨定通道的子集與該連續通道群組的集合中的通道相對應。
  8. 根據請求項7之方法,其中該連續通道群組的集合包括4個連續通道群組。
  9. 根據請求項1之方法,其中該非錨定通道的子集包括16個連續非錨定通道,並且其中用於指示該非錨定通道的子集的該資訊指示了該16個連續非錨定通道中的一第一非錨定通道的一起始位置。
  10. 根據請求項1之方法,其中用於指示該非錨定通道的子集的該資訊被包括在經由該錨定通道接收的一主資訊區塊或一減小的系統資訊區塊中的至少一項內。
  11. 一種用於無線通訊的裝置,包括: 一記憶體;及至少一個處理器,其耦合到該記憶體並且被配置為:經由一錨定通道,從一基地站接收用於指示從可用非錨定通道的一集合中選擇的非錨定通道的一子集的資訊,其中該非錨定通道的子集與一未授權頻帶內的一頻寬相對應;及在該非錨定通道的子集中的至少一個非錨定通道上傳輸資料。
  12. 根據請求項11之裝置, 其中用於指示該非錨定通道的子集的該資訊標識了來自複數個通道群組的一通道群組集合,該非錨定通道的子集與該通道群組集合中的通道相對應;並且其中每個通道群組包括該可用非錨定通道的集合中的一相同數量的連續非錨定通道。
  13. 根據請求項12之裝置,其中該複數個通道群組包括15個通道群組,以及該通道群組集合包括4個通道群組;並且 其中該通道群組集合是在一主資訊區塊中使用11個位元來指示的。
  14. 根據請求項11之裝置,其中該至少一個處理器亦被配置為:傳輸用於指示該可用非錨定通道的集合中的一或多個非錨定通道的通道品質的一或多個通道品質報告。
  15. 根據請求項11之裝置,其中用於指示該非錨定通道的子集的該資訊指示了連續通道群組的一集合中的一第一群組的一起始位置,該非錨定通道的子集與該連續通道群組的集合中的通道相對應。
  16. 一種一基地站的無線通訊的方法,包括以下步驟: 從可用非錨定通道的一集合中選擇非錨定通道的一子集,其中該非錨定通道的子集與一未授權頻帶內的一頻寬相對應;及經由一錨定通道來傳輸用於指示該非錨定通道的子集的資訊。
  17. 根據請求項16之方法,其中該非錨定通道的子集是基於由該基地站執行的通道量測來從該可用非錨定通道的集合中選擇的。
  18. 根據請求項16之方法,其中該非錨定通道的子集是基於由一UE執行的通道量測來從該可用非錨定通道的集合中選擇的,由該UE執行的該等通道量測是在來自該UE的一或多個通道品質報告中指示的,該方法亦包括以下步驟: 從該UE接收該一或多個通道品質報告。
  19. 根據請求項16之方法,亦包括以下步驟: 形成複數個通道群組,每個通道群組包括該可用非錨定通道的集合中的一相同數量的連續非錨定通道;並且其中用於指示該非錨定通道的子集的該資訊指示了該複數個通道群組中的一通道群組集合,該非錨定通道的子集與該通道群組集合中的通道相對應。
  20. 根據請求項19之方法,其中該複數個通道群組包括15個通道群組,以及該通道群組集合包括4個通道群組。
  21. 根據請求項19之方法,其中該通道群組集合是在一主資訊區塊中使用11個位元來指示的。
  22. 根據請求項19之方法, 其中該通道群組集合包括4個連續通道群組,並且其中用於指示該非錨定通道的子集的該資訊指示了該4個連續通道群組的集合中的一第一群組的一起始位置。
  23. 根據請求項16之方法,其中該非錨定通道的子集包括16個連續非錨定通道,並且其中用於指示該非錨定通道的子集的該資訊指示了該16個連續非錨定通道中的一第一非錨定通道的一起始位置。
  24. 根據請求項19之方法,亦包括以下步驟: 將該複數個通道群組分類為連續通道群組的群組的一第二集合,其中該非錨定通道的子集是基於從該群組的第二集合中的該等連續通道群組的群組之每一者群組中選擇一單個通道群組來選擇的。
  25. 根據請求項16之方法,其中用於指示該非錨定通道的子集的該資訊被包括在經由該錨定通道來傳輸的一主資訊區塊或一減小的系統資訊區塊中的至少一項內。
  26. 一種用於無線通訊的基地站,包括: 一記憶體;及至少一個處理器,其耦合到該記憶體並且被配置為:從可用非錨定通道的一集合中選擇非錨定通道的一子集,其中該非錨定通道的子集與一未授權頻帶內的一頻寬相對應;及經由一錨定通道來傳輸用於指示該非錨定通道的子集的資訊。
  27. 根據請求項26之基地站,其中該至少一個處理器亦被配置為:基於由該基地站執行的通道量測來從該可用非錨定通道的集合中選擇該非錨定通道的子集。
  28. 根據請求項26之基地站,其中該至少一個處理器亦被配置為: 基於由一UE執行的通道量測來從該可用非錨定通道的集合中選擇該非錨定通道的子集,由該UE執行的該等通道量測是在來自該UE的一或多個通道品質報告中指示的;及從該UE接收該一或多個通道品質報告。
  29. 根據請求項26之基地站,其中該至少一個處理器亦被配置為:形成複數個通道群組,每個通道群組包括該可用非錨定通道的集合中的一相同數量的連續非錨定通道;並且 其中用於指示該非錨定通道的子集的該資訊指示了該複數個通道群組中的一通道群組集合,該非錨定通道的子集與該通道群組集合中的通道相對應。
  30. 根據請求項29之基地站, 其中該通道群組集合包括4個連續通道群組,並且其中用於指示該非錨定通道的子集的該資訊指示了該4個連續通道群組的集合中的一第一群組的一起始位置。
TW107132592A 2017-09-20 2018-09-17 與增強型機器類型通訊有關的方法和裝置 TWI768121B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762561156P 2017-09-20 2017-09-20
US62/561,156 2017-09-20
US16/005,558 2018-06-11
US16/005,558 US10511987B2 (en) 2017-09-20 2018-06-11 Methods and apparatus related to enhanced machine type communication

Publications (2)

Publication Number Publication Date
TW201922006A true TW201922006A (zh) 2019-06-01
TWI768121B TWI768121B (zh) 2022-06-21

Family

ID=65721221

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107132592A TWI768121B (zh) 2017-09-20 2018-09-17 與增強型機器類型通訊有關的方法和裝置

Country Status (5)

Country Link
US (2) US10511987B2 (zh)
EP (1) EP3685540B1 (zh)
CN (1) CN111095854B (zh)
TW (1) TWI768121B (zh)
WO (1) WO2019060248A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10511987B2 (en) * 2017-09-20 2019-12-17 Qualcomm Incorporated Methods and apparatus related to enhanced machine type communication
US20190044810A1 (en) * 2017-09-21 2019-02-07 Intel IP Corporation Channel whitelist and flexible frame design for enhanced machine-type communications systems in unlicensed spectrum
US10707915B2 (en) * 2017-12-04 2020-07-07 Qualcomm Incorporated Narrowband frequency hopping mechanisms to overcome bandwidth restrictions in the unlicensed frequency spectrum
US11197210B2 (en) * 2018-07-19 2021-12-07 Qualcomm Incorporated Radio resource management for paging in a non-anchor carrier
CN112913175A (zh) * 2018-08-01 2021-06-04 苹果公司 用于测量和同步的窄带参考信号传输
US10756860B2 (en) 2018-11-05 2020-08-25 XCOM Labs, Inc. Distributed multiple-input multiple-output downlink configuration
US10659112B1 (en) 2018-11-05 2020-05-19 XCOM Labs, Inc. User equipment assisted multiple-input multiple-output downlink configuration
US10812216B2 (en) 2018-11-05 2020-10-20 XCOM Labs, Inc. Cooperative multiple-input multiple-output downlink scheduling
KR20210087089A (ko) 2018-11-27 2021-07-09 엑스콤 랩스 인코퍼레이티드 넌-코히어런트 협력 다중 입출력 통신
CN111835652B (zh) * 2019-04-17 2024-04-16 华为技术有限公司 一种数据流的虚拟通道的设置方法及装置
US11411778B2 (en) 2019-07-12 2022-08-09 XCOM Labs, Inc. Time-division duplex multiple input multiple output calibration
US11411779B2 (en) 2020-03-31 2022-08-09 XCOM Labs, Inc. Reference signal channel estimation
CN113543272B (zh) * 2020-04-15 2023-07-07 阿里巴巴集团控股有限公司 一种终端与基站、终端与服务器通信的方法和装置
WO2021242574A1 (en) 2020-05-26 2021-12-02 XCOM Labs, Inc. Interference-aware beamforming
CA3195885A1 (en) 2020-10-19 2022-04-28 XCOM Labs, Inc. Reference signal for wireless communication systems
WO2022093988A1 (en) 2020-10-30 2022-05-05 XCOM Labs, Inc. Clustering and/or rate selection in multiple-input multiple-output communication systems

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005060360A2 (en) * 2003-12-22 2005-07-07 Electronics And Telecommunications Research Institute Method for constituting layered cell in ofdma system
US8432859B2 (en) * 2009-06-22 2013-04-30 Alcatel Lucent Indicating dynamic allocation of component carriers in multi-component carrier systems
US9544792B2 (en) * 2010-09-13 2017-01-10 Blinq Wireless Inc. System and method for joint scheduling in dual-carrier wireless backhaul networks
CN106658721B (zh) * 2015-10-30 2020-05-19 中兴通讯股份有限公司 非授权载波资源处理方法及装置
US10278180B2 (en) * 2016-01-15 2019-04-30 Qualcomm Incorporated Raster design for narrowband operation for machine type communications
US10034176B2 (en) * 2016-02-29 2018-07-24 Alcatel Lucent Extending a wireless coverage area in an unlicensed frequency band of a small cell using remote radio heads
US10511987B2 (en) * 2017-09-20 2019-12-17 Qualcomm Incorporated Methods and apparatus related to enhanced machine type communication

Also Published As

Publication number Publication date
US20200213888A1 (en) 2020-07-02
WO2019060248A1 (en) 2019-03-28
CN111095854B (zh) 2022-06-07
US11115852B2 (en) 2021-09-07
TWI768121B (zh) 2022-06-21
EP3685540A1 (en) 2020-07-29
US20190090149A1 (en) 2019-03-21
US10511987B2 (en) 2019-12-17
CN111095854A (zh) 2020-05-01
EP3685540B1 (en) 2022-04-13

Similar Documents

Publication Publication Date Title
TWI768121B (zh) 與增強型機器類型通訊有關的方法和裝置
US10945265B2 (en) Narrowband time-division duplex frame structure for narrowband communications
KR102647457B1 (ko) 가변 길이 업링크 제어 채널을 위한 구성가능한 슬롯 내 주파수 호핑
KR102487992B1 (ko) 링크 품질 기반 릴레이 선택을 위한 시스템들, 방법들, 및 디바이스들
TWI678934B (zh) 用於增強型授權輔助存取的週期性和非週期性csi報告程序
KR102510461B1 (ko) 주파수 간 lte-d 발견
TWI731203B (zh) 涉及多載波系統中的時間追蹤的方法和裝置
TW201838458A (zh) 用於窄頻通訊的窄頻分時雙工訊框結構
TW201828634A (zh) 用於選擇或發送針對相位追蹤參考信號的頻域模式的系統和方法
TW201935982A (zh) 多載波系統的能力結構的尺寸最佳化編碼
TW201830910A (zh) 用於窄頻通訊的窄頻分時雙工訊框結構
TWI766111B (zh) 用於無線通訊的說前先聽序列設計
TW201806403A (zh) 用於共存的技術的偵測
CN111034239A (zh) 发信号通知用户装备能力信息