TW201921007A - Systems and methods for high dynamic range microLED backlighting - Google Patents
Systems and methods for high dynamic range microLED backlighting Download PDFInfo
- Publication number
- TW201921007A TW201921007A TW107129538A TW107129538A TW201921007A TW 201921007 A TW201921007 A TW 201921007A TW 107129538 A TW107129538 A TW 107129538A TW 107129538 A TW107129538 A TW 107129538A TW 201921007 A TW201921007 A TW 201921007A
- Authority
- TW
- Taiwan
- Prior art keywords
- micro led
- layer
- quantum dot
- transparent substrate
- blue
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0066—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
- G02B6/0073—Light emitting diode [LED]
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133603—Direct backlight with LEDs
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133605—Direct backlight including specially adapted reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133614—Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133628—Illuminating devices with cooling means
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/36—Micro- or nanomaterials
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Planar Illumination Modules (AREA)
- Liquid Crystal (AREA)
Abstract
Description
相關申請案之交互參照Cross-references to related applications
本申請案根據專利法主張2018年6月26日申請之美國臨時申請案序列號第62/689980號及2017年8月24日申請之美國臨時申請案序列號第62/549531號之優先權權益,該等美國臨時申請案中之每一者的內容為本案之基礎且以全文引用方式併入本文中。This application claims priority rights to U.S. Provisional Application Serial No. 62/689980 filed on June 26, 2018 and U.S. Provisional Application Serial No. 62/549531 filed on August 24, 2017 in accordance with the Patent Law. The content of each of these U.S. provisional applications is the basis of this case and is incorporated herein by reference in its entirety.
實施例係關於用於照明的系統及方法,且更特定地,係關於用於為顯示器提供光的系統及方法。Embodiments relate to systems and methods for lighting, and more particularly, to systems and methods for providing light to a display.
在一些情況下,背光係使用定位在具有藍色發光二極體(light emitting diode; LED)陣列之印刷電路板(printed circuit board; PCB)與液晶顯示器(liquid crystal display; LCD)面板之間的量子點增強膜(quantum dot enhancement film; QDEF)構造。LED陣列與QDEF之間的顯著空間為自LED發射之光的擴展所需。該所需空間限制可製造之顯示器的薄度。In some cases, the backlight is positioned between a printed circuit board (PCB) with a blue light emitting diode (LED) array and a liquid crystal display (LCD) panel. Quantum dot enhancement film (QDEF) structure. The significant space between the LED array and the QDEF is required for the expansion of light emitted from the LED. This required space limits the thinness of the display that can be manufactured.
由此,至少出於上述原因,在此項技術中需要用於照明顯示器的先進系統及方法。Thus, at least for the reasons described above, there is a need in the art for advanced systems and methods for lighting displays.
實施例係關於用於照明的系統及方法,且更特定地,係關於用於為顯示器提供光的系統及方法。Embodiments relate to systems and methods for lighting, and more particularly, to systems and methods for providing light to a display.
此發明內天僅提供對本發明之一些實施例之一般概述。片語「在一個實施例中」、「根據一個實施例」、「在各種實施例中」、「在一或多個實施例中」、「在特定實施例中」等通常意指跟在該片語之後的特定特徵、結構或特性包括在至少一個實施例中,且可包括在大於一個實施例中。重要地,此類片語未必係指同一實施例。本發明之諸多其他實施例將自以下詳細描述、隨附申請專利範圍及隨附圖式變得更加清楚明瞭。This invention provides only a general overview of some embodiments of the invention. The phrases "in one embodiment", "in accordance with an embodiment", "in various embodiments", "in one or more embodiments", "in a specific embodiment", etc. generally mean following the The particular feature, structure, or characteristic following the phrase is included in at least one embodiment, and may be included in more than one embodiment. Importantly, such phrases do not necessarily refer to the same embodiment. Many other embodiments of the present invention will become clearer from the following detailed description, the scope of the accompanying patent application, and the accompanying drawings.
實施例係關於用於照明的系統及方法,且更特定地,係關於用於為顯示器提供光的系統及方法。Embodiments relate to systems and methods for lighting, and more particularly, to systems and methods for providing light to a display.
各個實施例提供包括LCD面板及處於相對於LCD面板之固定位置中之微LED背光的LCD顯示器。微LED背光包括:反射構造(formation);透明基板;及至少一個微LED裝置。微LED裝置相對於反射構造及透明基板安置成使得自至少一個微LED裝置發射之光自反射構造反射出且在到達LCD面板之前穿過透明基板。在一些情況下,散熱器黏合至反射構造。Various embodiments provide an LCD display including an LCD panel and a micro LED backlight in a fixed position relative to the LCD panel. The micro LED backlight includes: a reflection formation; a transparent substrate; and at least one micro LED device. The micro LED device is disposed relative to the reflective structure and the transparent substrate such that light emitted from at least one micro LED device is reflected from the reflective structure and passes through the transparent substrate before reaching the LCD panel. In some cases, the heat sink is glued to a reflective construction.
在上述實施例之一些情況下,反射構造可為但不限於:(a)形成於另一基板上方之量子點層,及形成於量子點層上方之金屬層;(b)量子點增強膜;(c)具有形成於量子點增強膜之一個表面上方之金屬層的量子點增強膜;(d)金屬層;(e)安置於基板之表面上方之漫反射體;或(f)形成於基板之表面上方之量子點層,及形成於量子點層上方之金屬層。In some cases of the above embodiments, the reflective structure may be, but is not limited to: (a) a quantum dot layer formed over another substrate, and a metal layer formed over the quantum dot layer; (b) a quantum dot enhanced film; (c) a quantum dot enhancement film having a metal layer formed on one surface of the quantum dot enhancement film; (d) a metal layer; (e) a diffuse reflector disposed above the surface of the substrate; or (f) formed on the substrate A quantum dot layer above the surface, and a metal layer formed above the quantum dot layer.
在上述實施例之一或多種情況下,透明基板由玻璃形成。在上述實施例之一些其他情況下,透明基板係由半透明氧化鋁形成。在上述實施例之特定情況下,微LED係白色LED。在一些此類情況下,反射構造係但不限於:(a)金屬層;或(b)安置於基板之表面上方之漫反射體。在其他特定情況下,微LED係藍色LED。在一些此類情況下,反射構造係但不限於:(a)形成於另一基板上方之量子點層,及形成於量子點層上方之金屬層;(b)量子點增強膜;(c)具有形成於量子點增強膜之一個表面上方之金屬層的量子點增強膜;或(d)形成於基板之表面上方之量子點層,及形成於量子點層上方之金屬層。在又其他特定情況下,微LED包括紅色LED、綠色LED及藍色LED。在一些此類情況下,反射構造係但不限於:(a)金屬層;及(b)安置於第一基板之表面上方之漫反射體。In one or more of the above embodiments, the transparent substrate is formed of glass. In some other cases of the above embodiments, the transparent substrate is formed of translucent alumina. In the specific case of the above embodiment, the micro LED is a white LED. In some such cases, the reflective structure is, but is not limited to: (a) a metal layer; or (b) a diffuse reflector disposed above the surface of the substrate. In other specific cases, the micro LED is a blue LED. In some such cases, the reflective structure is, but is not limited to: (a) a quantum dot layer formed over another substrate, and a metal layer formed over the quantum dot layer; (b) a quantum dot enhancement film; (c) A quantum dot enhancement film having a metal layer formed on one surface of the quantum dot enhancement film; or (d) a quantum dot layer formed above the surface of the substrate, and a metal layer formed above the quantum dot layer. In yet other specific cases, micro LEDs include red LEDs, green LEDs, and blue LEDs. In some such cases, the reflective structure is, but is not limited to: (a) a metal layer; and (b) a diffuse reflector disposed above the surface of the first substrate.
其他實施例提供包括透明基板、反射構造及至少一個微LED的背光裝置。反射構造形成於透明基板之第一側上,且微LED安置於透明基板之第二側上方。微LED定向成使得自此發射之光穿過透明基板且自反射構造反射出以生成反射光。反射光在提供為來自背光裝置之光輸出之前穿過透明基板。在一些情況下,反射構造包括散熱器黏合至的金屬層。Other embodiments provide a backlight device including a transparent substrate, a reflective structure, and at least one micro LED. The reflective structure is formed on the first side of the transparent substrate, and the micro LED is disposed above the second side of the transparent substrate. The micro LED is oriented so that the light emitted therefrom passes through the transparent substrate and is reflected off the reflective structure to generate reflected light. The reflected light passes through the transparent substrate before being provided as a light output from the backlight device. In some cases, the reflective construction includes a metal layer to which the heat sink is adhered.
在其中微LED包括藍色LED之上述實施例的一些情況下,反射構造包括:量子點層,其可操作以對自藍色LED發射之藍色光進行色彩轉換以反射紅色、綠色及藍色分量光。在一些此類情況下,量子點層安置於透明基板上,且量子點層被金屬層密封。在其中微LED包括藍色LED之上述實施例的其他情況下,反射構造包括QDEF。In some cases of the above embodiments in which the micro LED includes a blue LED, the reflective structure includes a quantum dot layer operable to perform color conversion of blue light emitted from the blue LED to reflect red, green, and blue components Light. In some such cases, the quantum dot layer is disposed on a transparent substrate, and the quantum dot layer is sealed by a metal layer. In other cases of the above embodiments in which the micro LED includes a blue LED, the reflective structure includes QDEF.
在其中至少一個微LED包括紅色LED、綠色LED及藍色LED之上述實施例之各種情況下,反射構造包括:安置於透明基板上之漫反射體,或安置於透明基板上之金屬層。在上述實施例的一些情況下,透明基板由半透明氧化鋁製成。在上述實施例之其他情況下,透明基板由玻璃製成。In each of the above embodiments in which at least one micro LED includes a red LED, a green LED, and a blue LED, the reflective structure includes a diffuse reflector disposed on a transparent substrate, or a metal layer disposed on the transparent substrate. In some cases of the above embodiments, the transparent substrate is made of translucent alumina. In other cases of the above embodiments, the transparent substrate is made of glass.
又其他實施例提供包括以下各項之背光:發光構造及反射構造。發光構造包括:透明基板;及安置於透明基板之表面上之至少一個微LED。微LED定向成使得自此發射之光經引導遠離透明基板。反射構造包括反射層。反射構造相對於發光構造定位成使得自至少一個微LED發射之光自反射層反射出為反射光,且反射光穿過透明基板以作為來自背光裝置之光輸出。在一些情況下,反射構造包括散熱器黏合至的金屬層。Still other embodiments provide a backlight including the following: a light emitting structure and a reflective structure. The light emitting structure includes: a transparent substrate; and at least one micro LED disposed on a surface of the transparent substrate. The micro LED is oriented so that the light emitted therefrom is directed away from the transparent substrate. The reflective structure includes a reflective layer. The reflective structure is positioned relative to the light emitting structure such that light emitted from the at least one micro LED is reflected as reflected light from the reflective layer, and the reflected light passes through the transparent substrate as a light output from the backlight device. In some cases, the reflective construction includes a metal layer to which the heat sink is adhered.
在上述實施例的一些情況下,透明基板係半透明氧化鋁。在上述實施例之其他情況下,透明基板係玻璃。在上述實施例之各種情況下,透明基板之安置有微LED之表面係透明基板之第一表面,且發光構造另外包括形成於透明基板之第二表面上的玻璃體積漫射體。在上述實施例的一些情況下,微LED係藍色LED。在一些此類情況下,反射層包括:量子點增強膜,其可操作以對自藍色LED發射之藍色光進行色彩轉換以反射紅色、綠色及藍色分量光;及金屬層,其沉積於量子點增強膜上。In some cases of the above embodiments, the transparent substrate is a translucent alumina. In other cases of the above embodiments, the transparent substrate is glass. In each case of the above embodiments, the surface of the transparent substrate on which the micro LEDs are disposed is the first surface of the transparent substrate, and the light emitting structure further includes a glass volume diffuser formed on the second surface of the transparent substrate. In some cases of the above embodiments, the micro LED is a blue LED. In some such cases, the reflective layer includes: a quantum dot enhancement film operable to color convert blue light emitted from a blue LED to reflect red, green, and blue component light; and a metal layer deposited on Quantum dot enhancement film.
在上述實施例之各種情況下,透明基板係透明基板,且反射構造包括安置於第二透明基板上之反射層,其中自至少一個微LED發射之光在自反射層反射出之前穿過第二基板。在其中微LED係藍色LED之一些此類情況下,反射層包括形成於第二透明基板上之量子點層,及形成於量子點層上方之金屬層。在一些情況下,區劃分器形成於第二透明基板中。區劃分器展現至少部分地在第二透明基板之第一表面與第二透明基板之第二表面之間延伸的錐形壁。在一些特定情況下,第二透明基板之錐形側壁被金屬層覆蓋。在其他特定情況下,第二透明基板之錐形側壁被量子點層及金屬層覆蓋。In each case of the above embodiments, the transparent substrate is a transparent substrate, and the reflective structure includes a reflective layer disposed on the second transparent substrate, wherein light emitted from at least one micro LED passes through the second before being reflected from the reflective layer. Substrate. In some such cases where the micro LED is a blue LED, the reflective layer includes a quantum dot layer formed on a second transparent substrate, and a metal layer formed over the quantum dot layer. In some cases, the partitioner is formed in the second transparent substrate. The zone divider exhibits a tapered wall extending at least partially between a first surface of the second transparent substrate and a second surface of the second transparent substrate. In some specific cases, the tapered sidewall of the second transparent substrate is covered by a metal layer. In other specific cases, the tapered sidewall of the second transparent substrate is covered by the quantum dot layer and the metal layer.
轉向第1a圖,根據一些實施例示出在各個區之間包括區劃分器140 (140a、140b)之微LED背光100。微LED背光100包括發光構造121及反射構造136。Turning to Fig. 1a, a micro LED backlight 100 including a zone divider 140 (140a, 140b) between various zones is shown according to some embodiments. The micro LED backlight 100 includes a light emitting structure 121 and a reflective structure 136.
發光構造121包括安置於透明層110上方之散射表面105。在一些實施例中,透明層110由半透明氧化鋁形成。此類半透明氧化鋁充當將藍色微LED 115 (表示為115a、115b、115c)連接至其各別電子電源及/或控制之電路板。半透明氧化鋁亦提供相對高導熱率(與針對玻璃之近1W/m-k相比,其大約為近40W/m-k)。使用具有此類高導熱率之材料提供用於消散橫向朝向發光構造121之邊緣的藍色微LED 115產生之熱量的機構,其中散熱器(未示出)可安裝在觀察孔外部。另外,半透明氧化鋁之半透明性有助於達成藉由充當體積漫射體之反射構造136反射回之RGB光的更大均勻性。散射表面105進一步增強透明層110引起之漫射,且因而散射表面105可為透明層110之表面及/或形成於透明層110之表面上之材料的任何結構化或圖案化。The light emitting structure 121 includes a scattering surface 105 disposed above the transparent layer 110. In some embodiments, the transparent layer 110 is formed of translucent alumina. This type of translucent alumina serves as a circuit board that connects blue micro LEDs 115 (designated 115a, 115b, 115c) to their respective electronic power sources and / or controls. Translucent alumina also provides relatively high thermal conductivity (about 40 W / m-k compared to nearly 1 W / m-k for glass). A material having such a high thermal conductivity is used to provide a mechanism for dissipating the heat generated by the blue micro LED 115 that is laterally oriented toward the edge of the light emitting structure 121, wherein a heat sink (not shown) can be installed outside the observation hole. In addition, the translucency of the translucent alumina helps to achieve greater uniformity of the RGB light reflected back by the reflective structure 136 acting as a volume diffuser. The scattering surface 105 further enhances the diffusion caused by the transparent layer 110, and thus the scattering surface 105 can be any structure or patterning of the surface of the transparent layer 110 and / or the material formed on the surface of the transparent layer 110.
藍色微LED 115 (亦即,115a、115b、115c)使用導電跡線(未示出)連接至透明層110。在一些情況下,導電跡線係藍色微LED 115焊接至的金屬跡線。在各種情況下,導電跡線並非筆直的,而是可為Z字形或人字形圖案,以便減少假影及非所要雲紋(Moirè)圖案。藍色微LED 115可為此項技術中已知之任何類型之藍色發光二極體。基於本文中提供之本揭示內容,熟習此項技術者將認識到可相對於不同實施例使用之多個藍色發光二極體。藍色微LED 115經安裝為使得其在操作期間發射之光經引導遠離透明層110。在一些實施例中,藍色微LED 115係橫向裝置,其中與p型材料及n型材料之接觸位於各別LED裝置之同一側。在其他實施例中,藍色微LED 115係垂直裝置,其中與p型材料之接觸係在裝置之一側且與n型材料之接觸係在裝置之另一側。出於此論述目的,使用上述垂直裝置。The blue micro LED 115 (ie, 115a, 115b, 115c) is connected to the transparent layer 110 using conductive traces (not shown). In some cases, the conductive trace is a metal trace to which the blue micro LED 115 is soldered. In each case, the conductive traces are not straight, but can be zigzag or herringbone patterns in order to reduce artifacts and unwanted moirè patterns. The blue micro LED 115 may be any type of blue light emitting diode known in the art. Based on the disclosure provided herein, those skilled in the art will recognize multiple blue light emitting diodes that can be used with respect to different embodiments. The blue micro LED 115 is installed such that the light it emits during operation is directed away from the transparent layer 110. In some embodiments, the blue micro LED 115 is a lateral device, and the contact with the p-type material and the n-type material is on the same side of each LED device. In other embodiments, the blue micro LED 115 is a vertical device, wherein the contact with the p-type material is on one side of the device and the contact with the n-type material is on the other side of the device. For the purpose of this discussion, the vertical device described above is used.
在使用此類垂直裝置之情況下,各別微LED 115之側壁保持敞開以允許與將形成之各別裝置的頂部及底部兩者接觸。為避免在藍色微LED 115中之各別者之間發生短路,平面化層120形成於各別藍色微LED 115之間以使得其囊封藍色微LED 115之側,同時使藍色微LED 115中之每一者的頂部區域保持暴露。平面化層120由適用於形成環繞藍色微LED 115之層的任何非導電的透明材料形成。在一些實施例中,平面化層120係由聚合物形成。透明導電層125形成於平面化層120上方,以使得在透明導電層125與藍色微LED 115中之每一者之間產生導電連接。因而,假定藍色微LED 115係上述垂直裝置,且使用透明層110形成與藍色微LED 115中之每一者之一側的電接觸且使用透明導電層125形成與藍色微LED 115中之每一者之另一側的電接觸。透明導電層125可由實質上透明且亦導電之任何材料製成。在一些實施例中,透明導電層125係由氧化銦錫(indium tin oxide; ITO)形成。Where such a vertical device is used, the side walls of the respective micro LEDs 115 remain open to allow contact with both the top and bottom of the respective device to be formed. In order to avoid a short circuit between each of the blue micro LEDs 115, the planarization layer 120 is formed between the respective blue micro LEDs 115 so that it encapsulates the side of the blue micro LEDs 115 while making the blue The top area of each of the micro LEDs 115 remains exposed. The planarization layer 120 is formed of any non-conductive transparent material suitable for forming a layer surrounding the blue micro LED 115. In some embodiments, the planarization layer 120 is formed of a polymer. A transparent conductive layer 125 is formed over the planarization layer 120 so that a conductive connection is generated between the transparent conductive layer 125 and each of the blue micro LEDs 115. Therefore, it is assumed that the blue micro LED 115 is the above-mentioned vertical device, and the transparent layer 110 is used to form an electrical contact with one side of each of the blue micro LEDs 115 and the transparent conductive layer 125 is used to form the blue micro LED 115. Electrical contact on the other side of each of them. The transparent conductive layer 125 may be made of any material that is substantially transparent and also conductive. In some embodiments, the transparent conductive layer 125 is formed of indium tin oxide (ITO).
反射構造136包括安置於基底基板135上方之反射層151。反射層151包括安置於基底基板135上方之量子點層150,及安置於量子點層150上方之金屬層155。量子點層150包括操作以反射自藍色微LED 115發射之光的多個量子點。在一些情況下,量子點層150中之量子點的大小與形狀經設計為使得當來自藍色微LED 115之藍色光的射線照在各別量子點上時,各別量子點發射處於經定義頻率範圍內之光。在一些實施例中,當來自藍色微LED 115之藍色光的射線照在量子點層150之量子點上時,發生紅色或綠色光之各向同性重發射。The reflective structure 136 includes a reflective layer 151 disposed above the base substrate 135. The reflective layer 151 includes a quantum dot layer 150 disposed above the base substrate 135 and a metal layer 155 disposed above the quantum dot layer 150. The quantum dot layer 150 includes a plurality of quantum dots operated to reflect light emitted from the blue micro LED 115. In some cases, the size and shape of the quantum dots in the quantum dot layer 150 are designed so that when the blue light rays from the blue micro LED 115 shine on the respective quantum dots, the respective quantum dot emission is in a defined Light in the frequency range. In some embodiments, when the rays of blue light from the blue micro LED 115 strike the quantum dots of the quantum dot layer 150, isotropic re-emission of red or green light occurs.
可使用製造經識別為量子點層150之色彩轉換元件的各種方法,且因此量子點層150可在不同實施例中展現不同組成物。作為一個實例,多個量子點可在跨越大片材之聚合物懸浮液中(例如,藉由噴塗沉積,或槽模塗佈(slot die coating))混合。接著,基底基板135切割或單切成匹配反射構造136之暗區之大小的塊。此類暗區在具有384個區之65吋顯示器的情況下可為例如50×60 mm區域。基於本文中提供之揭示內容,熟習此項技術者將認識到可相對於不同實施例使用之多個暗區大小。Various methods of manufacturing a color conversion element identified as the quantum dot layer 150 may be used, and thus the quantum dot layer 150 may exhibit different compositions in different embodiments. As one example, multiple quantum dots may be mixed in a polymer suspension (e.g., by spray deposition, or slot die coating) across a large sheet. Next, the base substrate 135 is cut or single cut into pieces matching the size of the dark area of the reflective structure 136. Such a dark area may be, for example, a 50 × 60 mm area in the case of a 65-inch display with 384 areas. Based on the disclosure provided herein, those skilled in the art will recognize a number of dark region sizes that can be used with respect to different embodiments.
如此實施例中所示,切割基底基板包括斜切基底基板135之玻璃,當附接至發光構造121時達成斜截稜錐,從而在基底基板135之各別部分之間產生三角形形狀之區劃分器140。在來自藍色微LED之藍色射線照在量子點層150之量子點上時,所得之重發射係各向同性的,然而,反射器使光在所要方向上朝向LCD面板重定向。此意指所有光能夠直接往回穿過發光構造121逸散。為避免將引起非所要串擾的至相鄰區中之顯著光洩漏,基底基板135形成於上述具有居間區劃分器140之斜截稜錐中。當以與轉換器幾乎平行之大角度行進的重發射之光接觸斜截稜錐之成角度側壁時,彼光往回朝向發光構造121引導,而非行進至相鄰區上。由於相鄰區之間的特定光洩漏可為可取的,因此光在穿過透明層110時可被導引至相鄰區中,但在橫越透明層110之過多部分之前,其散射表面105促進射出。As shown in this embodiment, the cutting base substrate includes a bevel cut glass of the base substrate 135, and when attached to the light emitting structure 121, a beveled pyramid is achieved, thereby generating a triangle-shaped division between the respective portions of the base substrate 135器 140。 140. When the blue rays from the blue micro LED shine on the quantum dots of the quantum dot layer 150, the resulting heavy emission is isotropic, however, the reflector redirects the light toward the LCD panel in the desired direction. This means that all light can escape directly back through the light emitting structure 121. In order to avoid significant light leakage into adjacent regions that would cause unwanted crosstalk, the base substrate 135 is formed in the above-mentioned beveled pyramid with the intervening region divider 140. When the re-emitted light traveling at a large angle that is almost parallel to the converter contacts the angled side wall of the truncated pyramid, the light is directed back toward the light emitting structure 121 instead of advancing onto the adjacent area. Since specific light leakage between adjacent regions may be desirable, light may be directed into the adjacent region as it passes through the transparent layer 110, but before traversing an excessive portion of the transparent layer 110, its scattering surface 105 Promote injection.
在所描繪之情況下,在量子點層150形成於基底基板135之後,切割該基底基板。在其他情況(未示出)下,在量子點層150形成於基底基板135上之前,切割該基底基板。此類預切割提供使量子點層150延伸至切割製程暴露之基底基板的側壁上(亦即,量子點層150使基底基板135與居間區劃分器140分離)的機會。使量子點層150延伸至基底層135之經切割側壁可為所要的,其中來自藍色微LED 115之顯著藍色光發射預期照射在基底基板135之側壁上。In the depicted case, after the quantum dot layer 150 is formed on the base substrate 135, the base substrate is cut. In other cases (not shown), the quantum dot layer 150 is cut before the base substrate 135 is formed. Such pre-cutting provides an opportunity to extend the quantum dot layer 150 onto the sidewall of the base substrate exposed by the cutting process (ie, the quantum dot layer 150 separates the base substrate 135 from the intervening region divider 140). The cut sidewalls that extend the quantum dot layer 150 to the base layer 135 may be desirable, where significant blue light emission from the blue micro LED 115 is expected to illuminate the sidewalls of the base substrate 135.
金屬層155充當反射層且亦用以密封量子點層150之量子點。在切割基底基板135之後形成金屬層155,且因此金屬層155延伸以覆蓋基底基板135之經切割側壁。當在形成量子點層150之後切割基底基板135的情況下,金屬層155將直接安置在基底基板135之側壁上。替代性地,當在形成量子點層150之前切割基底基板135的情況下,金屬層155將安置於在基底基板135之側壁上方延伸的量子點層上方。金屬層155可由具反射性且亦能夠傳遞熱量之任何金屬形成。在一個特定實施例中,金屬層155係濺鍍鋁層。由於在反射中使用量子點層150之量子點且自藍色微LED 115發射之藍色光射線意欲往回朝向發光構造121反射,因此金屬層155之暴露側係可接達的。散熱器(未示出)可黏合至金屬層155以冷卻量子點。此冷卻允許量子點比無冷卻能力的可能情況更難以被泵送,且因此可達成亮度增加。The metal layer 155 functions as a reflective layer and also serves to seal the quantum dots of the quantum dot layer 150. The metal layer 155 is formed after the base substrate 135 is cut, and thus the metal layer 155 extends to cover the cut sidewalls of the base substrate 135. When the base substrate 135 is cut after the quantum dot layer 150 is formed, the metal layer 155 will be directly placed on the sidewall of the base substrate 135. Alternatively, when the base substrate 135 is cut before the quantum dot layer 150 is formed, the metal layer 155 will be disposed above the quantum dot layer extending above the sidewall of the base substrate 135. The metal layer 155 may be formed of any metal that is reflective and also capable of transferring heat. In a specific embodiment, the metal layer 155 is a sputtered aluminum layer. Since the quantum dots of the quantum dot layer 150 are used in the reflection and the blue light rays emitted from the blue micro LED 115 are intended to be reflected back toward the light emitting structure 121, the exposed side of the metal layer 155 is accessible. A heat sink (not shown) may be adhered to the metal layer 155 to cool the quantum dots. This cooling allows the quantum dots to be more difficult to pump than possible situations without cooling capability, and thus an increase in brightness can be achieved.
如上文所建議,在一些情況下,基底基板135由玻璃製成。基於本文中提供之揭示內容,熟習此項技術者將認識到可相對於不同實施例使用的用於基底基板之多種玻璃組成物。As suggested above, in some cases, the base substrate 135 is made of glass. Based on the disclosure provided herein, those skilled in the art will recognize a variety of glass compositions for base substrates that can be used with respect to different embodiments.
在某些實施例中,基底基板135可由具有小於或等於約3 mm例如在自約0.1 mm至約2.5 mm、自約0.3 mm至約2 mm、自約0.5 mm至約1.5 mm或自約0.7 mm至約1 mm包括其間之所有範圍及子範圍的範圍內之厚度的玻璃形成。基底基板135可包含此項技術中已知之供在顯示裝置中使用之任何材料,包括鋁矽酸鹽、鹼性鋁矽酸鹽、硼矽酸鹽、鹼性硼矽酸鹽、鋁硼矽酸鹽、鹼性鋁硼矽酸鹽、鹼石灰或其他適合玻璃。適於用作玻璃光導之市售玻璃的非限制性實例包括例如來自Corning Incorporated之EAGLE XG® 、Lotus™ 、Willow® 、IrisTM 及Gorilla® 玻璃。In some embodiments, the base substrate 135 may have a thickness of less than or equal to about 3 mm, for example, from about 0.1 mm to about 2.5 mm, from about 0.3 mm to about 2 mm, from about 0.5 mm to about 1.5 mm, or from about 0.7. The glass is formed from a thickness ranging from mm to about 1 mm in all ranges and subranges therebetween. Base substrate 135 may include any material known in the art for use in display devices, including aluminosilicate, alkaline aluminosilicate, borosilicate, basic borosilicate, aluminum borosilicate Salt, alkaline aluminoborosilicate, soda lime or other suitable glass. Non-limiting examples of glass suitable for use as a light guide of the glass include, for example, commercially available from Corning Incorporated's EAGLE XG ®, Lotus ™, Willow ® , Iris TM , and Gorilla ® glass.
一些非限制性玻璃組成物可包括介於約50莫耳%至約90莫耳%之間的SiO2 、介於0莫耳%至約20莫耳%之間的Al2 O3 、介於0莫耳%至約20莫耳%之間的B2 O3 、介於0莫耳%至約20莫耳%之間的P2 O5 ,及介於0莫耳%至約25莫耳%之間的Rx O,其中R係Li、Na、K、Rb、Cs且x為2,或者係Zn、Mg、Ca、Sr或Ba且x為1中之任一或多者。在一些實施例中,Rx O - Al2 O3 > 0;0 < Rx O - Al2 O3 < 15;x = 2且R2 O - Al2 O3 < 15;R2 O - Al2 O3 < 2;x=2且R2 O - Al2 O3 - MgO > -15;0 < (Rx O - Al2 O3 ) <25,-11 < (R2 O - Al2 O3 ) < 11,且-15 < (R2 O - Al2 O3 - MgO) < 11;及/或-1 < (R2 O - Al2 O3 ) < 2且-6 < (R2 O - Al2 O3 - MgO) < 1。在一些實施例中,玻璃包含小於1 ppm之Co、Ni及Cr中之每一者。在一些實施例中,Fe之濃度<約50 ppm,<約20 ppm或<約10 ppm。在其他實施例中,Fe + 30Cr + 35Ni <約60 ppm,Fe + 30Cr + 35Ni <約40 ppm,Fe + 30Cr + 35Ni <約20 ppm,或Fe + 30Cr + 35Ni <約10 ppm。在其他實施例中,玻璃包含介於約60 mol %至約80莫耳%之間的SiO2 、介於約0.1莫耳%至約15莫耳%之間的Al2 O3 、0莫耳%至約12莫耳%的B2 O3 ,以及約0.1莫耳%至約15莫耳% R2 O及約0.1莫耳%至約15莫耳%的RO,其中R係Li、Na、K、Rb、Cs且x為2,或者係Zn、Mg、Ca、Sr或Ba且x為1中之任一或多者。Some non-limiting glass compositions may include SiO 2 between about 50 mol% and about 90 mol%, Al 2 O 3 between 0 mol% and about 20 mol%, between B 2 O 3 between 0 mol% and about 20 mol%, P 2 O 5 between 0 mol% and about 20 mol%, and between 0 mol% and about 25 mol R x O between%, where R is Li, Na, K, Rb, Cs and x is 2 or is Zn, Mg, Ca, Sr or Ba and x is any one or more of x. In some embodiments, R x O-Al 2 O 3 >0; 0 <R x O-Al 2 O 3 <15; x = 2 and R 2 O-Al 2 O 3 <15; R 2 O-Al 2 O 3 <2; x = 2 and R 2 O-Al 2 O 3 -MgO>-15; 0 <(R x O-Al 2 O 3 ) <25, -11 <(R 2 O-Al 2 O 3 ) <11 and -15 <(R 2 O-Al 2 O 3 -MgO) <11; and / or -1 <(R 2 O-Al 2 O 3 ) <2 and -6 <(R 2 O -Al 2 O 3 -MgO) <1. In some embodiments, the glass contains less than 1 ppm of each of Co, Ni, and Cr. In some embodiments, the concentration of Fe is <about 50 ppm, <about 20 ppm, or <about 10 ppm. In other embodiments, Fe + 30Cr + 35Ni <about 60 ppm, Fe + 30Cr + 35Ni <about 40 ppm, Fe + 30Cr + 35Ni <about 20 ppm, or Fe + 30Cr + 35Ni <about 10 ppm. In other embodiments, the glass comprises SiO 2 between about 60 mol% and about 80 mol%, Al 2 O 3 between 0 mol and 15 mol%, and 0 mol. % To about 12 mol% of B 2 O 3 , and about 0.1 mol% to about 15 mol% R 2 O and about 0.1 mol% to about 15 mol% RO, where R is Li, Na, K, Rb, Cs, and x is 2, or is Zn, Mg, Ca, Sr, or Ba and x is any one or more of 1.
在其他實施例中,玻璃組成物可包含介於約65.79莫耳%至約78.17莫耳%之間的SiO2 、介於約2.94莫耳%至約12.12莫耳%之間的Al2 O3 、介於約0莫耳%至約11.16莫耳%之間的B2 O3 、介於約0莫耳%至約2.06莫耳%之間的Li2 O、介於約3.52莫耳%至約13.25莫耳%之間的Na2 O、介於約0莫耳%至約4.83莫耳%之間的K2 O、介於約0莫耳%至約3.01莫耳%之間的ZnO、介於約0莫耳%至約8.72莫耳%之間的MgO、介於約0莫耳%至約4.24莫耳%之間的CaO、介於約0莫耳%至約6.17莫耳%之間的SrO、介於約0莫耳%至約4.3莫耳%之間的BaO,及介於約0.07莫耳%至約0.11莫耳%之間的SnO2 。In other embodiments, the glass composition may include SiO 2 between about 65.79 mole% to about 78.17 mole%, Al 2 O 3 between about 2.94 mole% to about 12.12 mole%. , B between about 0 mole% to about 11.16 mole percent 2 O 3, between about 0 mole% to about 2.06 mole percent Li 2 O, between about 3.52 mole% to Na between about 13.25 mole% of the 2 O, K between about 0 mole% to about 4.83 mole percent 2 O, ZnO ranging between about 0 mole% to about 3.01% by mole, MgO between about 0 mole% and about 8.72 mole%, CaO between about 0 mole% and about 4.24 mole%, and between about 0 mole% and about 6.17 mole% among SrO, BaO range between about 0 mole% to about 4.3% by mole, and SnO range between about 0.07 to about 0.11 mole% to 2 mole%.
在額外實施例中,基底基板135可包含具有介於0.95與3.23之間的Rx O/Al2 O3 比值的玻璃,其中R係Li、Na、K、Rb、Cs中之任一或多者且x係2。在進一步實施例中,玻璃可包含介於1.18與5.68之間的Rx O/Al2 O3 比值,其中R係Li、Na、K、Rb、Cs且x為2,或者係Zn、Mg、Ca、Sr或Ba且x為1中之任一或多者。在又進一步實施例中,玻璃可包含介於-4.25與4.0之間的Rx O - Al2 O3 - MgO,其中R係Li、Na、K、Rb、Cs中之任一或多者且x係2。在又進一步實施例中,玻璃可包含介於約66莫耳%至約78莫耳%之間的SiO2 、介於約4莫耳%至約11莫耳%之間的Al2 O3 、介於約4莫耳%至約11莫耳%之間的B2 O3 、介於約0莫耳%至約2莫耳%之間的Li2 O、介於約4莫耳%至約12莫耳%之間的Na2 O、介於約0莫耳%至約2莫耳%之間的K2 O、介於約0莫耳%至約2莫耳%之間的ZnO、介於約0莫耳%至約5莫耳%之間的MgO、介於約0莫耳%至約2莫耳%之間的CaO、介於約0莫耳%至約5莫耳%之間的SrO、介於約0莫耳%至約2莫耳%之間的BaO,及介於約0莫耳%至約2莫耳%之間的SnO2 。In an additional embodiment, the base substrate 135 may include glass having an R x O / Al 2 O 3 ratio between 0.95 and 3.23, wherein R is any one or more of Li, Na, K, Rb, and Cs者 和 x 系 2。 And x is 2. In a further embodiment, the glass may include an R x O / Al 2 O 3 ratio between 1.18 and 5.68, where R is Li, Na, K, Rb, Cs and x is 2, or Zn, Mg, Ca, Sr, or Ba and x is any one or more of 1. In still further embodiments, the glass may include R x O-Al 2 O 3 -MgO between -4.25 and 4.0, wherein R is any one or more of Li, Na, K, Rb, Cs and x 系 2. In still further embodiments, the glass may include SiO 2 between about 66 mol% to about 78 mol%, Al 2 O 3 between about 4 mol% to about 11 mol%, B 2 O 3 between about 4 mol% and about 11 mol%, Li 2 O between about 0 mol% and about 2 mol%, between about 4 mol% and about Na 2 O between 12 mol%, K 2 O between about 0 mol% to about 2 mol%, ZnO between about 0 mol% to about 2 mol%, mediator MgO between about 0 mole% and about 5 mole%, CaO between about 0 mole% and about 2 mole%, between about 0 mole% and about 5 mole% of SrO, BaO range between about 0 mole% to about 2 mole percent, and SnO range between about 0 mole% to about 2 mole% of 2.
在額外實施例中,玻璃基板可包含一玻璃材料,該玻璃材料包括介於約72莫耳%至約80莫耳%之間的SiO2 、介於約3莫耳%至約7莫耳%之間的Al2 O3 、介於約0莫耳%至約2莫耳%之間的B2 O3 、介於約0莫耳%至約2莫耳%之間的Li2 O、介於約6莫耳%至約15莫耳%之間的Na2 O、介於約0莫耳%至約2莫耳%之間的K2 O、介於約0莫耳%至約2莫耳%之間的ZnO、介於約2莫耳%至約10莫耳%之間的MgO、介於約0莫耳%至約2莫耳%之間的CaO、介於約0莫耳%至約2莫耳%之間的SrO、介於約0莫耳%至約2莫耳%之間的BaO,及介於約0莫耳%至約2莫耳%之間的SnO2 。在特定實施例中,玻璃可包含介於約60莫耳%至約80莫耳%之間的SiO2 、介於約0莫耳%至約15莫耳%之間的Al2 O3 、介於約0莫耳%至約15莫耳%之間的B2 O3 ,及約2莫耳%至約50莫耳%的Rx O,其中R係Li、Na、K、Rb、Cs且x為2,或者係Zn、Mg、Ca、Sr或Ba且x為1中之任一或多者,且其中Fe + 30Cr + 35Ni <約60 ppm。In additional embodiments, the glass substrate may include a glass material including SiO 2 between about 72 mol% and about 80 mol%, between about 3 mol% and about 7 mol%. Between Al 2 O 3 , B 2 O 3 between about 0 mol% to about 2 mol%, Li 2 O between about 0 mol% to about 2 mol%, and at between about 6 mole% to about 15 mole% of Na 2 O, K range between about 0 mole% to about 2 mole percent 2 O, between about 0% to about 2 mole Mo Mol of ZnO, MgO of about 2 mol% to about 10 mol%, CaO of about 0 mol% to about 2 mol%, of about 0 mol% between about 2 mole percent SrO, BaO range between about 0 mole% to about 2 mole percent, and SnO range between about 0 mole% to about 2 mole% of 2. In particular embodiments, the glass may include SiO 2 between about 60 mol% to about 80 mol%, Al 2 O 3 between about 0 mol% to about 15 mol%, B 2 O 3 between about 0 mol% to about 15 mol%, and R x O from about 2 mol% to about 50 mol%, where R is Li, Na, K, Rb, Cs and x is 2, or is Zn, Mg, Ca, Sr, or Ba and x is any one or more of 1, and wherein Fe + 30Cr + 35Ni <about 60 ppm.
在一些實施例中,基底基板135可包含小於0.05諸如在自約-0.005至約0.05之範圍內或在自約0.005至約0.015之範圍內(例如,約-0.005、-0.004、-0.003、-0.002、-0.001、0、0.001、0.002、0.003、0.004、0.005、0.006、0.007、0.008、0.009、0.010、0.011、0.012、0.013、0.014、0.015、0.02、0.03、0.04或0.05)之色彩偏移△y。在其他實施例中,玻璃基板可包含小於0.008之色彩偏移。根據某些實施例,玻璃基板可針對自約420 nm至750 nm之範圍內之波長具有小於約4 dB/m諸如小於約3 dB/m、小於約2 dB/m、小於約1 dB/m、小於約0.5 dB/m、小於約0.2 dB/m或甚至更小例如在自約0.2 dB/m至約4 dB/m之範圍內之光衰減α1 (例如,歸因於吸收及/或散射損失)。In some embodiments, the base substrate 135 may include less than 0.05 such as in a range from about -0.005 to about 0.05 or in a range from about 0.005 to about 0.015 (e.g., about -0.005, -0.004, -0.003,- 0.002, -0.001, 0, 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.010, 0.011, 0.012, 0.013, 0.014, 0.015, 0.02, 0.03, 0.04, or 0.05) y. In other embodiments, the glass substrate may include a color shift of less than 0.008. According to some embodiments, the glass substrate may have less than about 4 dB / m for wavelengths in a range from about 420 nm to 750 nm, such as less than about 3 dB / m, less than about 2 dB / m, and less than about 1 dB / m , Less than about 0.5 dB / m, less than about 0.2 dB / m, or even less, for example, light attenuation α 1 in the range from about 0.2 dB / m to about 4 dB / m (for example, due to absorption and / or Scattering loss).
衰減可表徵為穿過長度L之透明基板量測輸入源之光透射且藉由源譜歸一化此透射。以dB/m為單位,衰減係藉由 給出,其中L係以米計之長度且及係以輻射度單位量測。Attenuation can be characterized as light transmission through a transparent substrate measuring input source of length L Source spectrum Normalize this transmission. In dB / m, attenuation is determined by Gives, where L is the length in meters and and Measured in radiometric units.
在一些實施例中,基底基板135可包含例如藉由離子交換經化學強化之玻璃。在離子交換製程期間,玻璃片材內在玻璃片材之表面處或附近的離子可交換為例如來自鹽浴之較大金屬離子。較大離子併入至玻璃中可藉由在近表面區域中產生壓縮應力而強化片材。可在玻璃片材之中心區域內誘發對應拉伸應力以平衡壓縮應力。In some embodiments, the base substrate 135 may include glass that is chemically strengthened, such as by ion exchange. During the ion exchange process, ions within or near the surface of the glass sheet within the glass sheet can be exchanged to larger metal ions, such as from a salt bath. The incorporation of larger ions into the glass can strengthen the sheet by generating compressive stress in the near surface area. Corresponding tensile stress can be induced in the central region of the glass sheet to balance compressive stress.
可例如藉由將玻璃浸入於熔鹽浴中達預定時間段,進行離子交換。例示性鹽浴包括但不限於KNO3 、LiNO3 、NaNO3 、RbNO3 及其組合。熔鹽浴之溫度及處理時間段可變化。熟習此項技術者有能力根據所要應用判定時間及溫度。藉助於非限制性實例,熔鹽浴之溫度可在自約400℃至約800℃諸如自約400℃至約500℃之範圍內,且預定時間段可在自約4至約24小時諸如自約4小時至約10小時之範圍內,不過預期其他溫度及時間組合。藉助於非限制性實例,玻璃可淹沒於約450℃之KNO3 浴液中達約6小時,以獲得提供表面壓縮應力之K富集層。Ion exchange can be performed, for example, by immersing the glass in a molten salt bath for a predetermined period of time. Exemplary salt bath include, without limitation, KNO 3, LiNO 3, NaNO 3 , RbNO 3 , and combinations thereof. The temperature and processing time of the molten salt bath can be changed. Those skilled in the art have the ability to determine time and temperature based on the intended application. By way of non-limiting example, the temperature of the molten salt bath may be in a range from about 400 ° C to about 800 ° C, such as from about 400 ° C to about 500 ° C, and the predetermined period of time may be from about 4 to about 24 hours, such as from In the range of about 4 hours to about 10 hours, although other temperature and time combinations are expected. By way of non-limiting example, the glass can be submerged in a KNO 3 bath at about 450 ° C. for about 6 hours to obtain a K-rich layer that provides surface compressive stress.
反射構造136使用基底基板135之表面與透明導電層125之間的光學透明黏附劑130附接至發光構造121。光學透明黏附劑130可由能夠將反射構造136固持至發光構造121之任何黏附劑材料製成。在一些實施例中,光學透明黏附劑130係經UV固化之丙烯酸系液體。The reflective structure 136 is attached to the light emitting structure 121 using an optically transparent adhesive 130 between the surface of the base substrate 135 and the transparent conductive layer 125. The optically transparent adhesive 130 may be made of any adhesive material capable of holding the reflective structure 136 to the light emitting structure 121. In some embodiments, the optically clear adhesive 130 is a UV-cured acrylic liquid.
轉向第1b圖至第1i圖,示出根據一些實施例之可單獨或組合使用以製造類似於微LED背光100之背光的各個處理步驟。第1b圖至第1d圖之處理用以製造反射構造136,且第1e圖至第1i圖之處理用以製造發光構造121。Turning to FIGS. 1b to 1i, various processing steps that can be used alone or in combination to make a backlight similar to the micro LED backlight 100 according to some embodiments are shown. The processes of FIGS. 1b to 1d are used to manufacture the reflective structure 136, and the processes of FIGS. 1e to 1i are used to manufacture the light emitting structure 121.
轉向第1b圖,示出在進行切割以形成居間區劃分器140之前的基底基板135之視圖160。量子點層150使用此項技術中已知之用於形成量子點層的任何製程形成於基底基板135之表面上方。轉向第1C圖,斜切基底基板135之玻璃材料以產生具有居間區劃分器140之倒置稜錐形狀。轉向第1d圖,金屬或其他導熱材料沉積在量子點層150之剩餘部分及藉由切割基底基板135暴露之側面上方。Turning to FIG. 1b, a view 160 of the base substrate 135 before cutting to form the intervening zone divider 140 is shown. The quantum dot layer 150 is formed over the surface of the base substrate 135 using any process known in the art for forming a quantum dot layer. Turning to FIG. 1C, the glass material of the base substrate 135 is beveled to produce an inverted pyramid shape having an intervening zone divider 140. Turning to FIG. 1d, a metal or other thermally conductive material is deposited over the remaining portion of the quantum dot layer 150 and the side exposed by cutting the base substrate 135.
轉向第1e圖,提供透明層110,且導電跡線(未示出)形成於透明層110之表面上。轉向第1f圖,藍色微LED 115藉由例如焊接至導電跡線附接至透明層110。轉向第1g圖,平面化層120形成於藍色微LED 115之間,使微LED 115中之每一者之表面保持暴露。轉向第1h圖,透明導電層125形成於平面化層120上方。轉向第1i圖,散射表面105形成於透明層110之表面中及/或上。在此時,使用透明黏附劑將反射構造136黏合至發光構造121,從而製造微LED背光100。Turning to FIG. 1e, a transparent layer 110 is provided, and conductive traces (not shown) are formed on the surface of the transparent layer 110. Turning to FIG. 1f, the blue micro LED 115 is attached to the transparent layer 110 by, for example, soldering to a conductive trace. Turning to Fig. 1g, a planarization layer 120 is formed between the blue micro LEDs 115 so that the surface of each of the micro LEDs 115 remains exposed. Turning to FIG. 1h, a transparent conductive layer 125 is formed over the planarization layer 120. Turning to FIG. 1i, the scattering surface 105 is formed in and / or on the surface of the transparent layer 110. At this time, the reflective structure 136 is adhered to the light emitting structure 121 using a transparent adhesive, thereby manufacturing the micro LED backlight 100.
轉向第1j圖,示出根據一或多個實施例之包括微LED背光100之顯示器190。如所示,微LED背光100朝向液晶顯示器(LCD)面板180引導分量紅色、綠色及藍色光射線160 (亦即,表示為線160a、160b、160c、160d、160e、160f、160g、160h、160i、160j),其各自取決於量子點層150中之反射光之量子點的類型而表示紅色、綠色或藍色光射線中之一者)。LCD顯示面板180可為此項技術中已知之能夠選擇性地閘控及/或色彩過濾各別像素位置處接收之光的任何裝置。基於本文中提供之揭示內容,熟習此項技術者將認識到可相對於不同實施例使用之多種LCD面板。Turning to FIG. 1j, a display 190 including a micro LED backlight 100 is shown in accordance with one or more embodiments. As shown, the micro LED backlight 100 directs component red, green, and blue light rays 160 toward the liquid crystal display (LCD) panel 180 (ie, represented as lines 160a, 160b, 160c, 160d, 160e, 160f, 160g, 160h, 160i 160j), each of which represents one of red, green, or blue light rays depending on the type of the quantum dot of the reflected light in the quantum dot layer 150). The LCD display panel 180 can be any device known in the art that can selectively gate and / or color filter light received at respective pixel locations. Based on the disclosure provided herein, those skilled in the art will recognize a variety of LCD panels that can be used with respect to different embodiments.
如所示,功率應用於微LED背光100,從而致使藍色微LED 115朝向反射構造136發射藍色光射線(表示為線165a、165b、165c、166a、166b、166c、167a、167b、167c),其中藍色光射線自量子點層150中之量子點反射出。取決於量子點層150中之反射各別藍色光射線之量子點的類型,紅色或綠色光射線160經反射或藍色光射線經散射且無色彩轉換。自包括用於各別紅色、綠色及藍色色彩中之每一者的大量量子點的量子點層150反射出之連續藍色光射線產生往回朝向發光構造121反射之連續紅色、綠色及藍色光射線160。紅色、綠色及藍色光射線160穿過發光構造121之各個透明層且行進至LCD面板180上。歸因於透明層110及其他層之漫射能力,基本上消除由藍色微LED 115及紅色、綠色及藍色光射線160之傳輸路徑中之其他不透明元件引起之陰影,從而產生紅色、綠色及藍色分量光跨越LCD面板180之表面的實質上均勻分佈。LCD面板180接著可如此項技術中已知地操作以使顯示器上之各個像素位置處之選定色彩的光通過。As shown, power is applied to the micro LED backlight 100, causing the blue micro LED 115 to emit blue light rays (represented as lines 165a, 165b, 165c, 166a, 166b, 166c, 167a, 167b, 167c) toward the reflective structure 136, The blue light rays are reflected from the quantum dots in the quantum dot layer 150. Depending on the type of quantum dot in the quantum dot layer 150 that reflects the respective blue light rays, the red or green light rays 160 are reflected or the blue light rays are scattered without color conversion. The continuous blue light rays reflected from the quantum dot layer 150 including a large number of quantum dots for each of the respective red, green, and blue colors generate continuous red, green, and blue light reflected back toward the light emitting structure 121. Ray 160. The red, green, and blue light rays 160 pass through the transparent layers of the light emitting structure 121 and travel on the LCD panel 180. Due to the diffusive ability of the transparent layer 110 and other layers, the shadows caused by the blue micro LED 115 and other opaque elements in the transmission path of the red, green and blue light rays 160 are basically eliminated, thereby producing red, green and The blue component light is distributed substantially uniformly across the surface of the LCD panel 180. The LCD panel 180 may then be operated as is known in the art to pass light of a selected color at each pixel location on the display.
轉向第2a圖,示出根據各個實施例之另一微LED背光200。與上文相對於第1a圖至第1b圖所論述之微LED背光100相比,形成不具有區劃分器之微LED背光200。微LED背光200包括發光構造221及反射構造236。Turning to Figure 2a, another micro LED backlight 200 is shown according to various embodiments. Compared with the micro LED backlight 100 discussed above with respect to FIGS. 1 a to 1 b, a micro LED backlight 200 without a partition is formed. The micro LED backlight 200 includes a light emitting structure 221 and a reflective structure 236.
發光構造221包括安置於透明層210上方之散射表面205。在一些實施例中,透明層210由半透明氧化鋁形成。此類半透明氧化鋁充當將藍色微LED 215 (表示為215a、215b、215c)連接至其各別電子電源及/或控制之電路板。半透明氧化鋁亦提供相對高導熱率(與針對玻璃之近1W/m-k相比,其大約為近40W/m-k)。使用具有此類高導熱率之材料提供用於消散橫向朝向發光構造221之邊緣的藍色微LED 215產生之熱量的機構,其中散熱器(未示出)可安裝在觀察孔外部。另外,半透明氧化鋁之半透明性有助於達成藉由充當體積漫射體之反射構造236反射回之RGB光的更大均勻性。散射表面205進一步增強透明層210引起之漫射,且因而散射表面205可為透明層210之表面及/或形成於透明層210之表面上之材料的任何結構化或圖案化。The light emitting structure 221 includes a scattering surface 205 disposed above the transparent layer 210. In some embodiments, the transparent layer 210 is formed of translucent alumina. This type of translucent alumina serves as a circuit board that connects blue micro LEDs 215 (denoted as 215a, 215b, 215c) to their respective electronic power sources and / or controls. Translucent alumina also provides relatively high thermal conductivity (about 40 W / m-k compared to nearly 1 W / m-k for glass). A material having such a high thermal conductivity is used to provide a mechanism for dissipating the heat generated by the blue micro LED 215 laterally facing the edge of the light emitting structure 221, wherein a heat sink (not shown) can be installed outside the observation hole. In addition, the translucency of the translucent alumina helps to achieve greater uniformity of the RGB light reflected back by the reflective structure 236 acting as a volume diffuser. The scattering surface 205 further enhances the diffusion caused by the transparent layer 210, and thus the scattering surface 205 may be any structured or patterned surface of the transparent layer 210 and / or a material formed on the surface of the transparent layer 210.
藍色微LED 215 (亦即,215a、215b、215c)使用導電跡線(未示出)連接至透明層210。在一些情況下,導電跡線係藍色微LED 215焊接至的金屬跡線。在各種情況下,導電跡線並非筆直的,而是可為Z字形或人字形圖案,以便減少假影及非所要雲紋圖案。藍色微LED 215可為此項技術中已知之任何類型之藍色發光二極體。基於本文中提供之本揭示內容,熟習此項技術者將認識到可相對於不同實施例使用之多個藍色發光二極體。藍色微LED 215經安裝為使得其在操作期間發射之光經引導遠離透明層210。在一些實施例中,藍色微LED 215係橫向裝置,其中與p型材料及n型材料之接觸位於各別LED裝置之同一側。在其他實施例中,藍色微LED 215係垂直裝置,其中與p型材料之接觸係在裝置之一側且與n型材料之接觸係在裝置之另一側。出於此論述目的,使用上述垂直裝置。The blue micro LED 215 (ie, 215a, 215b, 215c) is connected to the transparent layer 210 using conductive traces (not shown). In some cases, the conductive trace is a metal trace to which the blue micro LED 215 is soldered. In each case, the conductive traces are not straight, but can be zigzag or herringbone patterns in order to reduce artifacts and unwanted moire patterns. The blue micro LED 215 may be any type of blue light emitting diode known in the art. Based on the disclosure provided herein, those skilled in the art will recognize multiple blue light emitting diodes that can be used with respect to different embodiments. The blue micro LED 215 is installed such that the light it emits during operation is directed away from the transparent layer 210. In some embodiments, the blue micro LED 215 is a lateral device, wherein the contact with the p-type material and the n-type material is on the same side of each LED device. In other embodiments, the blue micro LED 215 is a vertical device, wherein the contact with the p-type material is on one side of the device and the contact with the n-type material is on the other side of the device. For the purpose of this discussion, the vertical device described above is used.
在使用此類垂直裝置之情況下,各別微LED 215之側壁保持敞開以允許與將形成之各別裝置的頂部及底部兩者接觸。為避免在藍色微LED 215中之各別者之間發生短路,平面化層220形成於各別藍色微LED 215之間以使得其囊封藍色微LED 215之側,同時使藍色微LED 215中之每一者的頂部區域保持暴露。平面化層220由適用於形成環繞藍色微LED 215之層的任何非導電的透明材料形成。在一些實施例中,平面化層220係由聚合物形成。透明導電層225形成於平面化層220上方,以使得在透明導電層225與藍色微LED 215中之每一者之間產生導電連接。因而,假定藍色微LED 215係上述垂直裝置,且使用透明層210形成與藍色微LED 215中之每一者之一側的電接觸且使用透明導電層225形成與藍色微LED 215中之每一者之另一側的電接觸。透明導電層225可由實質上透明且亦導電之任何材料製成。在一些實施例中,透明導電層225係由ITO形成。Where such a vertical device is used, the side walls of the respective micro LED 215 remain open to allow contact with both the top and bottom of the respective device to be formed. In order to avoid a short circuit between each of the blue micro LEDs 215, a planarization layer 220 is formed between the respective blue micro LEDs 215 so that it encapsulates the sides of the blue micro LEDs 215 while making the blue The top area of each of the micro LEDs 215 remains exposed. The planarization layer 220 is formed of any non-conductive transparent material suitable for forming a layer surrounding the blue micro LED 215. In some embodiments, the planarization layer 220 is formed of a polymer. A transparent conductive layer 225 is formed over the planarization layer 220 so that a conductive connection is created between the transparent conductive layer 225 and each of the blue micro LEDs 215. Therefore, it is assumed that the blue micro LED 215 is the above-mentioned vertical device, and the transparent layer 210 is used to form an electrical contact with one side of each of the blue micro LEDs 215 and the transparent conductive layer 225 is used to form the blue micro LED 215. Electrical contact on the other side of each of them. The transparent conductive layer 225 may be made of any material that is substantially transparent and also conductive. In some embodiments, the transparent conductive layer 225 is formed of ITO.
反射構造236包括安置於基底基板235上方之反射層251。反射層251包括安置於基底基板235上方之量子點層250,及安置於量子點層250上方之金屬層255。量子點層250包括操作以反射自藍色微LED 215發射之光的多個量子點。在一些情況下,量子點層250中之量子點的大小與形狀經設計為使得當來自藍色微LED 215之藍色光的射線照在各別量子點上時,各別量子點發射處於經定義頻率範圍內之光。在一些實施例中,當來自藍色微LED 215之藍色光的射線照在量子點層250之量子點上時,發生紅色、綠色或藍色光之各向同性重發射。應注意,量子點不轉換藍色光。更確切地,散射粒子諸如TiO2包括在其中懸浮量子點之聚合物中。引入之藍色光中之一些散射出且不藉由量子點進行色彩轉換。以此方式,產生RGB。The reflective structure 236 includes a reflective layer 251 disposed above the base substrate 235. The reflective layer 251 includes a quantum dot layer 250 disposed above the base substrate 235 and a metal layer 255 disposed above the quantum dot layer 250. The quantum dot layer 250 includes a plurality of quantum dots operated to reflect light emitted from the blue micro LED 215. In some cases, the size and shape of the quantum dots in the quantum dot layer 250 are designed so that when the blue light rays from the blue micro LED 215 strike the respective quantum dots, the respective quantum dot emission is at a defined Light in the frequency range. In some embodiments, when the blue light rays from the blue micro LED 215 strike the quantum dots of the quantum dot layer 250, isotropic re-emission of red, green, or blue light occurs. It should be noted that quantum dots do not convert blue light. More precisely, scattering particles such as TiO2 are included in polymers in which quantum dots are suspended. Some of the incoming blue light is scattered and does not undergo color conversion by quantum dots. In this way, RGB is generated.
可使用製造經識別為量子點層250之色彩轉換元件的各種方法,且因此量子點層250可在不同實施例中展現不同組成物。作為一個實例,多個量子點可在跨越大片材之聚合物懸浮液中(例如,藉由噴塗沉積,或槽模塗佈)混合。在此實施例中,基底基板235不切割或單切成匹配反射構造236之暗區之大小的塊,而是由於基底基板235係平面的,因此執行對下側之塗佈,從而生成暗區。此類暗區在具有384個區之65吋顯示器的情況下可為例如50×60 mm區域。基於本文中提供之揭示內容,熟習此項技術者將認識到可相對於不同實施例使用之多個暗區大小。使量子點層250延伸至基底層235之經切割側壁可為所要的,其中來自藍色微LED 215之顯著藍色光發射預期照射在基底基板235之側壁上。作為另一實例,色彩轉換元件可藉由以下步驟形成:用量子點塗佈金屬層(亦即,層255)且接著使用濺鍍玻璃、氧化物或其他膜密封量子點金屬層,以生成量子點層250。接著可使用透明黏附劑將量子點層250與金屬層255之組合黏合至基底基板235。作為又一實例,量子點首先沉積於基底基板235之下側上,接著藉由在基底基板235之同一下側上濺鍍金屬以生成量子點層250與金屬層255之組合,從而密封彼等量子點。此類製程不需要上述黏合製程。Various methods of manufacturing a color conversion element identified as the quantum dot layer 250 may be used, and thus the quantum dot layer 250 may exhibit different compositions in different embodiments. As an example, multiple quantum dots may be mixed in a polymer suspension (e.g., by spray deposition, or slot die coating) across a large sheet. In this embodiment, the base substrate 235 is not cut or cut into pieces that match the size of the dark area of the reflective structure 236, but because the base substrate 235 is planar, coating on the lower side is performed to generate dark areas . Such a dark area may be, for example, a 50 × 60 mm area in the case of a 65-inch display with 384 areas. Based on the disclosure provided herein, those skilled in the art will recognize a number of dark region sizes that can be used with respect to different embodiments. The cut sidewalls that extend the quantum dot layer 250 to the base layer 235 may be desirable, where significant blue light emission from the blue micro LED 215 is expected to illuminate the sidewalls of the base substrate 235. As another example, a color conversion element can be formed by coating a metal layer (ie, layer 255) with quantum dots and then sealing the quantum dot metal layer with sputtering glass, oxide, or other films to generate a quantum Point layer 250. Then, the combination of the quantum dot layer 250 and the metal layer 255 can be adhered to the base substrate 235 using a transparent adhesive. As yet another example, the quantum dots are first deposited on the lower side of the base substrate 235, and then a metal dot is sputtered on the same lower side of the base substrate 235 to generate a combination of the quantum dot layer 250 and the metal layer 255, thereby sealing them Quantum dots. This type of process does not require the above-mentioned bonding process.
金屬層255可由具反射性且亦能夠傳遞熱量之任何金屬形成。在一個特定實施例中,金屬層255係濺鍍鋁層。由於在反射中使用量子點層250之量子點且自藍色微LED 215發射之藍色光射線意欲往回朝向發光構造221反射,因此金屬層255之暴露側係可接達的。散熱器(未示出)可黏合至金屬層255以冷卻量子點。此冷卻允許量子點比無冷卻能力的可能情況更難以被泵送,且因此可達成亮度增加。The metal layer 255 may be formed of any metal that is reflective and also capable of transferring heat. In a specific embodiment, the metal layer 255 is a sputtered aluminum layer. Since the quantum dots of the quantum dot layer 250 are used in the reflection and the blue light rays emitted from the blue micro LED 215 are intended to be reflected back toward the light emitting structure 221, the exposed side of the metal layer 255 is accessible. A heat sink (not shown) may be adhered to the metal layer 255 to cool the quantum dots. This cooling allows the quantum dots to be more difficult to pump than possible situations without cooling capability, and thus an increase in brightness can be achieved.
在一些實施例中,基底基板235由玻璃製成。基於本文中提供之揭示內容,熟習此項技術者將認識到可相對於不同實施例使用的用於基底基板之多種玻璃組成物。上文相對於第1a圖論述此類玻璃組成物之一些實例。反射構造236使用基底基板235之表面與透明導電層225之間的光學透明黏附劑230附接至發光構造221。光學透明黏附劑230可由能夠將反射構造236固持至發光構造221之任何黏附劑材料製成。在一些實施例中,光學透明黏附劑230係經UV固化之丙烯酸系液體。In some embodiments, the base substrate 235 is made of glass. Based on the disclosure provided herein, those skilled in the art will recognize a variety of glass compositions for base substrates that can be used with respect to different embodiments. Some examples of such glass compositions are discussed above with respect to Figure 1a. The reflective structure 236 is attached to the light emitting structure 221 using an optically transparent adhesive 230 between the surface of the base substrate 235 and the transparent conductive layer 225. The optically transparent adhesive 230 may be made of any adhesive material capable of holding the reflective structure 236 to the light emitting structure 221. In some embodiments, the optically clear adhesive 230 is a UV-cured acrylic liquid.
轉向第2b圖,示出根據一或多個實施例之包括微LED背光200之顯示器290。如所示,微LED背光200朝向液晶顯示器(LCD)面板280引導分量紅色、綠色及藍色光射線260 (亦即,表示為線260a、260b、260c、260d、260e、260f、260g、260h、260i、260j),其各自取決於量子點層250中之反射光之量子點的類型而表示紅色、綠色或藍色光射線中之一者)。LCD顯示面板280可為此項技術中已知之能夠選擇性地閘控及/或色彩過濾各別像素位置處接收之光的任何裝置。基於本文中提供之揭示內容,熟習此項技術者將認識到可相對於不同實施例使用之多種LCD面板。Turning to FIG. 2b, a display 290 including a micro LED backlight 200 is shown in accordance with one or more embodiments. As shown, the micro LED backlight 200 directs component red, green, and blue light rays 260 toward the liquid crystal display (LCD) panel 280 (that is, represented as lines 260a, 260b, 260c, 260d, 260e, 260f, 260g, 260h, 260i 260j), each of which represents one of red, green, or blue light rays depending on the type of quantum dots of the reflected light in the quantum dot layer 250). The LCD display panel 280 may be any device known in the art that can selectively gate and / or color filter light received at respective pixel locations. Based on the disclosure provided herein, those skilled in the art will recognize a variety of LCD panels that can be used with respect to different embodiments.
如所示,功率應用於微LED背光200,從而致使藍色微LED 215朝向反射構造236發射藍色光射線(表示為線265a、265b、265c、266a、266b、266c、267a、267b、267c),其中藍色光射線自量子點層250中之量子點反射出。取決於量子點層250中之反射各別藍色光射線之量子點的類型,反射紅色、綠色或藍色光射線260。自包括用於各別紅色、綠色及藍色色彩中之每一者的大量量子點的量子點層250反射出之連續藍色光射線產生往回朝向發光構造221反射之連續紅色、綠色及藍色光射線260。紅色、綠色及藍色光射線260穿過發光構造221之各個透明層且行進至LCD面板280上。歸因於透明層210及其他層之漫射能力,基本上消除由藍色微LED 215及紅色、綠色及藍色光射線260之傳輸路徑中之其他不透明元件引起之陰影,從而產生紅色、綠色及藍色分量光跨越LCD面板280之表面的實質上均勻分佈。LCD面板280接著可如此項技術中已知地操作以使顯示器上之各個像素位置處之選定色彩的光通過。As shown, power is applied to the micro LED backlight 200, causing the blue micro LED 215 to emit blue light rays (represented as lines 265a, 265b, 265c, 266a, 266b, 266c, 267a, 267b, 267c) toward the reflective structure 236, The blue light rays are reflected from the quantum dots in the quantum dot layer 250. Depending on the type of quantum dot in the quantum dot layer 250 that reflects respective blue light rays, red, green or blue light rays 260 are reflected. The continuous blue light rays reflected from the quantum dot layer 250 including a large number of quantum dots for each of the respective red, green, and blue colors generate continuous red, green, and blue light reflected back toward the light emitting structure 221 Ray 260. The red, green, and blue light rays 260 pass through the transparent layers of the light emitting structure 221 and travel on the LCD panel 280. Due to the diffusion capability of the transparent layer 210 and other layers, the shadows caused by the blue micro LED 215 and other opaque elements in the transmission path of the red, green, and blue light rays 260 are basically eliminated, thereby producing red, green and The blue component light is distributed substantially uniformly across the surface of the LCD panel 280. The LCD panel 280 may then operate as known in the art to pass light of a selected color at each pixel location on the display.
轉向第3a圖,示出根據各個實施例之包括藍色微LED 315、併入於量子點層350中之紅色及綠色量子點以及體積漫射體305的又一微LED背光300。微LED背光300包括機械地間隔開間隙320之發光構造321及反射構造336。間隙320可填充有能夠允許光通過之任何氣體或其混合物。Turning to FIG. 3a, there is shown another micro LED backlight 300 including a blue micro LED 315, red and green quantum dots incorporated in a quantum dot layer 350, and a volume diffuser 305 according to various embodiments. The micro LED backlight 300 includes a light emitting structure 321 and a reflective structure 336 that are mechanically spaced apart from the gap 320. The gap 320 may be filled with any gas or mixture thereof capable of allowing light to pass through.
發光構造321包括安置於透明層310上方之體積漫射體305。在一些實施例中,透明層310由半透明氧化鋁形成。在其他實施例中,透明層由玻璃形成。在使用半透明氧化鋁之情況下,該半透明氧化鋁充當將藍色微LED 315 (表示為315a、315b、315c)連接至其各別電子電源及/或控制之電路板。半透明氧化鋁亦提供相對高導熱率(與針對玻璃之近1W/m-k相比,其大約為近40W/m-k)。使用具有此類高導熱率之材料提供用於消散橫向朝向發光構造321之邊緣的藍色微LED 315產生之熱量的機構,其中散熱器(未示出)可安裝在觀察孔外部。應注意,半透明氧化鋁之半透明性有助於達成藉由充當體積漫射體之反射構造336反射回之RGB光的更大均勻性,然而,在此實施例中不需要此類體積漫射體,此係由於藉由體積漫射體305執行漫射功能。體積漫射體305可由用於漫射穿過其之光的任何半透明材料形成。在一些實施例中,體積漫射體305由諸如PMMA或聚碳酸酯等其中具有散射光之顯微內含物的聚合物製成。在一些情況下,內含物係氧化鋯、氧化鋁及/或二氧化鈦。基於本文中提供之揭示內容,熟習此項技術者將認識到可相對於不同實施例使用之多種體積漫射體及材料。The light emitting structure 321 includes a volume diffuser 305 disposed above the transparent layer 310. In some embodiments, the transparent layer 310 is formed of translucent alumina. In other embodiments, the transparent layer is formed of glass. Where translucent alumina is used, the translucent alumina acts as a circuit board that connects the blue micro LED 315 (denoted as 315a, 315b, 315c) to its respective electronic power source and / or control. Translucent alumina also provides relatively high thermal conductivity (about 40 W / m-k compared to nearly 1 W / m-k for glass). A material having such a high thermal conductivity is used to provide a mechanism for dissipating the heat generated by the blue micro LED 315 laterally facing the edge of the light emitting structure 321, wherein a heat sink (not shown) can be installed outside the observation hole. It should be noted that the translucency of translucent alumina helps to achieve greater uniformity of the RGB light reflected back by the reflective structure 336 acting as a volume diffuser, however, such a volume diffuser is not required in this embodiment This is because the volume diffuser 305 performs the diffusion function. The volume diffuser 305 may be formed of any translucent material for diffusing light passing therethrough. In some embodiments, the volume diffuser 305 is made of a polymer, such as PMMA or polycarbonate, having microscopic inclusions of scattered light therein. In some cases, the inclusions are zirconia, alumina, and / or titania. Based on the disclosure provided herein, those skilled in the art will recognize a variety of volume diffusers and materials that can be used with respect to different embodiments.
藍色微LED 315 (亦即,315a、315b、315c)使用導電跡線(未示出)連接至透明層310。在一些情況下,導電跡線係藍色微LED 315焊接至的金屬跡線。在各種情況下,導電跡線並非筆直的,而是可為Z字形或人字形圖案,以便減少假影及非所要雲紋圖案。藍色微LED 315可為此項技術中已知之任何類型之藍色發光二極體。基於本文中提供之本揭示內容,熟習此項技術者將認識到可相對於不同實施例使用之多個藍色發光二極體。藍色微LED 315經安裝為使得其在操作期間發射之光經引導遠離透明層310。在一些實施例中,藍色微LED 315係橫向裝置,其中與p型材料及n型材料之接觸位於各別LED裝置之同一側。在其他實施例中,藍色微LED 315係垂直裝置,其中與p型材料之接觸係在裝置之一側且與n型材料之接觸係在裝置之另一側。在任一情況下,產生至藍色微LED 315之p型材料及n型材料兩者的電連接。The blue micro LED 315 (ie, 315a, 315b, 315c) is connected to the transparent layer 310 using conductive traces (not shown). In some cases, the conductive trace is a metal trace to which the blue micro LED 315 is soldered. In each case, the conductive traces are not straight, but can be zigzag or herringbone patterns in order to reduce artifacts and unwanted moire patterns. The blue micro LED 315 may be any type of blue light emitting diode known in the art. Based on the disclosure provided herein, those skilled in the art will recognize multiple blue light emitting diodes that can be used with respect to different embodiments. The blue micro LED 315 is installed such that the light it emits during operation is directed away from the transparent layer 310. In some embodiments, the blue micro LED 315 is a lateral device, wherein the contact with the p-type material and the n-type material is on the same side of each LED device. In other embodiments, the blue micro LED 315 is a vertical device, wherein the contact with the p-type material is on one side of the device and the contact with the n-type material is on the other side of the device. In either case, an electrical connection is made to both the p-type material and the n-type material of the blue micro LED 315.
反射構造336包括安置於基底基板335上方之反射層351。反射層351包括安置於基底基板335上方之量子點層350,及安置於量子點層350上方之金屬層355。量子點層350包括操作以反射自藍色微LED 315發射之光的多個量子點。在一些情況下,量子點層350中之量子點的大小與形狀經設計為使得當來自藍色微LED 315之藍色光的射線照在各別量子點上時,各別量子點發射處於經定義頻率範圍內之光。在一些實施例中,當來自藍色微LED 315之藍色光的射線照在量子點層350之量子點上時,發生紅色、綠色或藍色光之各向同性重發射。The reflective structure 336 includes a reflective layer 351 disposed above the base substrate 335. The reflective layer 351 includes a quantum dot layer 350 disposed above the base substrate 335 and a metal layer 355 disposed above the quantum dot layer 350. The quantum dot layer 350 includes a plurality of quantum dots operated to reflect light emitted from the blue micro LED 315. In some cases, the size and shape of the quantum dots in the quantum dot layer 350 are designed so that when the blue light rays from the blue micro LED 315 shine on the respective quantum dots, the respective quantum dot emission is in a defined Light in the frequency range. In some embodiments, when rays of blue light from the blue micro LED 315 strike the quantum dots of the quantum dot layer 350, isotropic re-emission of red, green, or blue light occurs.
可使用製造經識別為量子點層350之色彩轉換元件的各種方法,且因此量子點層350可在不同實施例中展現不同組成物。作為一個實例,多個量子點可在跨越大片材之聚合物懸浮液中(例如,藉由噴塗沉積,或槽模塗佈)混合。在一些情況下,用量子點塗佈基底基板335之下側,接著藉由在基底基板335之下側濺鍍金屬以密封量子點進行密封,從而產生金屬層355與量子點層350之組合。除密封量子點之外,金屬層355亦充當反射層。金屬層355可由具反射性且亦能夠傳遞熱量之任何金屬形成。在一個特定實施例中,金屬層355係濺鍍鋁層。由於在反射中使用量子點層350之量子點且自藍色微LED 315發射之藍色光射線意欲往回朝向發光構造321反射,因此金屬層355之暴露側係可接達的。散熱器(未示出)可黏合至金屬層355以冷卻量子點。此冷卻允許量子點比無冷卻能力的可能情況更難以被泵送,且因此可達成亮度增加。Various methods of manufacturing a color conversion element identified as the quantum dot layer 350 may be used, and thus the quantum dot layer 350 may exhibit different compositions in different embodiments. As an example, multiple quantum dots may be mixed in a polymer suspension (e.g., by spray deposition, or slot die coating) across a large sheet. In some cases, the lower side of the base substrate 335 is coated with quantum dots, and then sealed by sputtering metal on the lower side of the base substrate 335 to seal the quantum dots, thereby generating a combination of the metal layer 355 and the quantum dot layer 350. In addition to sealing the quantum dots, the metal layer 355 also functions as a reflective layer. The metal layer 355 may be formed of any metal that is reflective and also capable of transferring heat. In a specific embodiment, the metal layer 355 is a sputtered aluminum layer. Since the quantum dots of the quantum dot layer 350 are used in the reflection and the blue light rays emitted from the blue micro LED 315 are intended to be reflected back toward the light emitting structure 321, the exposed side of the metal layer 355 is accessible. A heat sink (not shown) may be adhered to the metal layer 355 to cool the quantum dots. This cooling allows the quantum dots to be more difficult to pump than possible situations without cooling capability, and thus an increase in brightness can be achieved.
在一些實施例中,基底基板335由玻璃製成。基於本文中提供之揭示內容,熟習此項技術者將認識到可相對於不同實施例使用的用於基底基板之多種玻璃組成物。上文相對於第1a圖論述此類玻璃組成物之一些實例。此外,反射構造336機械懸置在距發光構造321一定義距離處。可使用朝向微LED背光300之邊緣的結構元件(未示出)產生反射構造336與發光構造321之間的此實體間隔,從而使得其在觀察孔外部。In some embodiments, the base substrate 335 is made of glass. Based on the disclosure provided herein, those skilled in the art will recognize a variety of glass compositions for base substrates that can be used with respect to different embodiments. Some examples of such glass compositions are discussed above with respect to Figure 1a. In addition, the reflective structure 336 is mechanically suspended at a defined distance from the light emitting structure 321. This physical separation between the reflective structure 336 and the light emitting structure 321 can be generated using a structural element (not shown) facing the edge of the micro LED backlight 300 so that it is outside the viewing hole.
轉向第3b圖,示出根據一或多個實施例之包括微LED背光300之顯示器390。如所示,微LED背光300朝向液晶顯示器(LCD)面板380引導分量紅色、綠色及藍色光射線360 (亦即,表示為線360a、360b、360c、360d、360e、360f、360g、360h、360i、360j),其各自取決於量子點層350中之反射光之量子點的類型而表示紅色、綠色或藍色光射線中之一者)。在使用藍色微LED之情況下,量子點層350將兼具紅色量子點及綠色量子點加散射粒子。重發射(或散射)之波長將取決於引入的藍色光照在什麼上。LCD顯示面板380可為此項技術中已知之能夠選擇性地閘控及/或色彩過濾各別像素位置處接收之光的任何裝置。基於本文中提供之揭示內容,熟習此項技術者將認識到可相對於不同實施例使用之多種LCD面板。Turning to Figure 3b, a display 390 including a micro LED backlight 300 is shown in accordance with one or more embodiments. As shown, the micro LED backlight 300 directs component red, green, and blue light rays 360 toward the liquid crystal display (LCD) panel 380 (ie, represented as lines 360a, 360b, 360c, 360d, 360e, 360f, 360g, 360h, 360i 360j), each of which represents one of red, green, or blue light rays depending on the type of quantum dot of the reflected light in the quantum dot layer 350). In the case of using a blue micro LED, the quantum dot layer 350 will have both red quantum dots and green quantum dots plus scattering particles. The wavelength of the re-emission (or scattering) will depend on what blue light is introduced. The LCD display panel 380 may be any device known in the art that is capable of selectively gating and / or color filtering light received at respective pixel locations. Based on the disclosure provided herein, those skilled in the art will recognize a variety of LCD panels that can be used with respect to different embodiments.
如所示,功率應用於微LED背光300,從而致使藍色微LED 315朝向反射構造336發射藍色光射線(表示為線365a、365b、365c、366a、366b、366c、367a、367b、367c),其中藍色光射線自量子點層350中之量子點反射出。取決於量子點層350中之反射各別藍色光射線之量子點的類型,反射紅色、綠色或藍色光射線360。自包括用於各別紅色、綠色及藍色色彩中之每一者的大量量子點的量子點層350反射出之連續藍色光射線產生往回朝向發光構造321反射之連續紅色、綠色及藍色光射線360。紅色、綠色及藍色光射線360穿過發光構造321之各個透明層且行進至LCD面板380上。歸因於體積漫射體305之漫射能力,基本上消除由藍色微LED 315及紅色、綠色及藍色光射線360之傳輸路徑中之其他不透明元件引起之陰影,從而產生紅色、綠色及藍色分量光跨越LCD面板380之表面的實質上均勻分佈。LCD面板380接著可如此項技術中已知地操作以使顯示器上之各個像素位置處之選定色彩的光通過。As shown, power is applied to the micro LED backlight 300, causing the blue micro LED 315 to emit blue light rays (represented as lines 365a, 365b, 365c, 366a, 366b, 366c, 367a, 367b, 367c) toward the reflective structure 336, The blue light rays are reflected from the quantum dots in the quantum dot layer 350. Depending on the type of quantum dot in the quantum dot layer 350 that reflects respective blue light rays, red, green or blue light rays 360 are reflected. The continuous blue light rays reflected from the quantum dot layer 350 including a large number of quantum dots for each of the respective red, green, and blue colors generate continuous red, green, and blue light reflected back toward the light emitting structure 321. Ray 360. The red, green, and blue light rays 360 pass through each transparent layer of the light emitting structure 321 and travel on the LCD panel 380. Due to the diffusive capacity of the volume diffuser 305, the shadows caused by the blue micro LED 315 and other opaque elements in the transmission path of the red, green and blue light rays 360 are basically eliminated, thereby producing red, green and blue The color component light is distributed substantially uniformly across the surface of the LCD panel 380. The LCD panel 380 may then operate as known in the art to pass light of a selected color at each pixel location on the display.
轉向第4a圖,又一微LED背光400類似於上文第3a圖至第3b圖之微LED背光300,不同之處在於在微LED背光400中使用量子點增強膜(QDEF) 435,代替量子點層350及微LED背光300之基底基板335。微LED背光400包括機械地間隔開間隙420之先前描述之發光構造321及反射構造436。間隙420可填充有能夠允許光通過之任何氣體或其混合物。Turning to Figure 4a, another micro LED backlight 400 is similar to the micro LED backlight 300 in Figures 3a to 3b above, except that a quantum dot enhanced film (QDEF) 435 is used in the micro LED backlight 400 instead of quantum The dot layer 350 and the base substrate 335 of the micro LED backlight 300. The micro LED backlight 400 includes a previously described light emitting structure 321 and a reflective structure 436 that are mechanically spaced apart by a gap 420. The gap 420 may be filled with any gas or mixture thereof capable of allowing light to pass through.
反射構造436包括安置於QDEF 435上方之金屬層455。作為一個實例,QDEF 435係可購自3Mtm 且描述於John Van Derlofsek等人之在http://multimedia.3m.com/mws/media/985375O/3mtm-quantum-dot-enhancement-film-qdef-white-paper.pdf處可得之「3MTM Quantum Dot Enhancement Film (QDEF)」(未注明日期)中的QDEF。上述參考之全文出於所有目的以引用方式併入本文中。應注意,可使用具有與上述3Mtm 產品之性質類似的性質之另一材料。The reflective structure 436 includes a metal layer 455 disposed over the QDEF 435. As an example, QDEF 435 is commercially available from 3M tm and is described by John Van Derlofsek et al. At http://multimedia.3m.com/mws/media/985375O/3mtm-quantum-dot-enhancement-film-qdef- QDEF in "3M TM Quantum Dot Enhancement Film (QDEF)" (undated) available at white-paper.pdf. The entire contents of the above references are incorporated herein by reference for all purposes. It should be noted that another material having properties similar to those of the 3M tm product described above may be used.
在一個特定實施例中,金屬層455係濺鍍鋁層。由於在往回朝向發光構造321反射自藍色微LED 315發射之藍色光射線中使用QDEF 435,因此金屬層455之暴露側係可接達的。散熱器(未示出)可黏合至金屬層455以冷卻量子點。此冷卻允許量子點比無冷卻能力的可能情況更難以被泵送,且因此可達成亮度增加。類似於上文相對於第3a圖所論述,反射構造436機械懸置在距發光構造321一定義距離處。可使用朝向微LED背光400之邊緣的結構元件(未示出)產生反射構造436與發光構造321之間的此實體間隔,從而使得其在觀察孔外部。In a particular embodiment, the metal layer 455 is a sputtered aluminum layer. Since QDEF 435 is used in reflecting the blue light rays emitted from the blue micro LED 315 back toward the light emitting structure 321, the exposed side of the metal layer 455 is accessible. A heat sink (not shown) may be adhered to the metal layer 455 to cool the quantum dots. This cooling allows the quantum dots to be more difficult to pump than possible situations without cooling capability, and thus an increase in brightness can be achieved. Similar to that discussed above with respect to Figure 3a, the reflective structure 436 is mechanically suspended at a defined distance from the light emitting structure 321. This physical separation between the reflective structure 436 and the light emitting structure 321 can be generated using a structural element (not shown) facing the edge of the micro LED backlight 400 so that it is outside the viewing hole.
轉向第4b圖,示出根據一或多個實施例之包括微LED背光400之顯示器490。如所示,微LED背光400朝向液晶顯示器(LCD)面板480引導分量紅色、綠色及藍色光射線460 (亦即,表示為線460a、460b、460c、460d、460e、460f、460g、460h、460i、460j),其各自取決於量子點層450中之反射光之量子點的類型而表示紅色、綠色或藍色光射線中之一者)。LCD顯示面板480可為此項技術中已知之能夠選擇性地閘控及/或色彩過濾各別像素位置處接收之光的任何裝置。基於本文中提供之揭示內容,熟習此項技術者將認識到可相對於不同實施例使用之多種LCD面板。Turning to Figure 4b, a display 490 including a micro LED backlight 400 is shown in accordance with one or more embodiments. As shown, the micro LED backlight 400 directs component red, green, and blue light rays 460 toward the liquid crystal display (LCD) panel 480 (ie, represented as lines 460a, 460b, 460c, 460d, 460e, 460f, 460g, 460h, 460i 460j), each of which represents one of red, green, or blue light rays depending on the type of quantum dots of the reflected light in the quantum dot layer 450). The LCD display panel 480 may be any device known in the art that can selectively gate and / or color filter light received at respective pixel locations. Based on the disclosure provided herein, those skilled in the art will recognize a variety of LCD panels that can be used with respect to different embodiments.
如所示,功率應用於微LED背光400,從而致使藍色微LED 415朝向反射構造436發射藍色光射線(表示為線465a、465b、465c、466a、466b、466c、467a、467b、467c),其中藍色光射線自量子點層450中之量子點反射出。取決於量子點層450中之反射各別藍色光射線之量子點的類型,反射紅色、綠色或藍色光射線460。自包括用於各別紅色、綠色及藍色色彩中之每一者的大量量子點的量子點層450反射出之連續藍色光射線產生往回朝向發光構造421反射之連續紅色、綠色及藍色光射線460。紅色、綠色及藍色光射線460穿過發光構造321之各個透明層且行進至LCD面板480上。歸因於體積漫射體305之漫射能力,基本上消除由藍色微LED 315及紅色、綠色及藍色光射線460之傳輸路徑中之其他不透明元件引起之陰影,從而產生紅色、綠色及藍色分量光跨越LCD面板480之表面的實質上均勻分佈。LCD面板480接著可如此項技術中已知地操作以使顯示器上之各個像素位置處之選定色彩的光通過。As shown, power is applied to the micro LED backlight 400, causing the blue micro LED 415 to emit blue light rays (represented as lines 465a, 465b, 465c, 466a, 466b, 466c, 467a, 467b, 467c) toward the reflective structure 436, The blue light rays are reflected from the quantum dots in the quantum dot layer 450. Depending on the type of quantum dot in the quantum dot layer 450 that reflects respective blue light rays, red, green or blue light rays 460 are reflected. The continuous blue light rays reflected from the quantum dot layer 450 including a large number of quantum dots for each of the respective red, green, and blue colors generate continuous red, green, and blue light reflected back toward the light emitting structure 421 Ray 460. The red, green, and blue light rays 460 pass through each transparent layer of the light emitting structure 321 and travel on the LCD panel 480. Due to the diffusive ability of the volume diffuser 305, the shadows caused by the blue micro LED 315 and other opaque elements in the transmission path of the red, green and blue light rays 460 are basically eliminated, thereby producing red, green and blue The color component light is distributed substantially uniformly across the surface of the LCD panel 480. The LCD panel 480 may then operate as known in the art to pass light of a selected color at each pixel location on the display.
轉向第5a圖,示出根據其他實施例之使用磷光體轉換之白色微LED 515 (表示為515a、515b、515c)的又一微LED背光500。微LED背光500包括發光構造521及反射體層555。反射體層可由能夠反射自磷光體轉換之白色微LED 515發射之光的任何材料形成。另外,在其中反射體層555係無其他結構支撐之獨立層的彼等實施例中,用以形成反射體層555之材料應強至足以自支撐。在一些實施例中,反射體層555係由金屬製成。在一個特定實施例中,反射體層555係由鋁製成。發光構造521與反射體層555機械地間隔開間隙520。間隙520可填充有能夠允許光通過之任何氣體或其混合物。Turning to Fig. 5a, there is shown another micro LED backlight 500 of white micro LED 515 (denoted as 515a, 515b, 515c) using phosphor conversion according to other embodiments. The micro LED backlight 500 includes a light emitting structure 521 and a reflector layer 555. The reflector layer may be formed of any material capable of reflecting light emitted from the white micro LED 515 converted from the phosphor. In addition, in those embodiments where the reflector layer 555 is a separate layer without other structural support, the material used to form the reflector layer 555 should be strong enough to be self-supporting. In some embodiments, the reflector layer 555 is made of metal. In a particular embodiment, the reflector layer 555 is made of aluminum. The light emitting structure 521 is mechanically spaced from the reflector layer 555 by a gap 520. The gap 520 may be filled with any gas or mixture thereof capable of allowing light to pass through.
發光構造521包括安置於透明層510上方之體積漫射體505。在一些實施例中,透明層510係由半透明氧化鋁形成。在其他實施例中,透明層係由玻璃形成。在使用半透明氧化鋁之情況下,其充當將磷光體轉換之白色微LED 515連接至其各別電子電源及/或控制之電路板。半透明氧化鋁亦提供相對高導熱率(與針對玻璃之近1W/m-k相比,其大約為近40W/m-k)。使用具有此類高導熱率之材料提供用於消散橫向朝向發光構造521之邊緣的藍色微LED 515產生之熱量的機構,其中散熱器(未示出)可安裝在觀察孔外部。應注意,半透明氧化鋁之半透明性有助於達成藉由充當體積漫射體之反射構造536反射回之RGB光的更大均勻性,然而,在此實施例中不需要此類體積漫射體,此係由於藉由體積漫射體505執行漫射功能。體積漫射體505可由用於漫射穿過其之光的任何半透明材料形成。在一些實施例中,體積漫射體505由諸如PMMA或聚碳酸酯等其中具有散射光之顯微內含物的聚合物製成。在一些情況下,內含物係氧化鋯、氧化鋁及/或二氧化鈦。基於本文中提供之揭示內容,熟習此項技術者將認識到可相對於不同實施例使用之多種體積漫射體及材料。The light emitting structure 521 includes a volume diffuser 505 disposed above the transparent layer 510. In some embodiments, the transparent layer 510 is formed of translucent alumina. In other embodiments, the transparent layer is formed of glass. Where translucent alumina is used, it acts as a circuit board that connects the phosphor-converted white micro LED 515 to its respective electronic power source and / or control. Translucent alumina also provides relatively high thermal conductivity (about 40 W / m-k compared to nearly 1 W / m-k for glass). A material having such a high thermal conductivity is used to provide a mechanism for dissipating the heat generated by the blue micro LED 515 laterally facing the edge of the light emitting structure 521, wherein a heat sink (not shown) can be installed outside the observation hole. It should be noted that the translucency of translucent alumina helps to achieve greater uniformity of RGB light reflected back by the reflective structure 536 acting as a volume diffuser, however, such a volume diffuser is not required in this embodiment This is because the volume diffuser 505 performs the diffusion function. The volume diffuser 505 may be formed of any translucent material for diffusing light passing therethrough. In some embodiments, the volume diffuser 505 is made of a polymer such as PMMA or polycarbonate with microscopic inclusions of scattered light therein. In some cases, the inclusions are zirconia, alumina, and / or titania. Based on the disclosure provided herein, those skilled in the art will recognize a variety of volume diffusers and materials that can be used with respect to different embodiments.
磷光體轉換之白色微LED 515 (亦即,515a、515b、515c)使用導電跡線(未示出)連接至透明層510。在一些情況下,導電跡線係磷光體轉換之白色微LED 515焊接至的金屬跡線。在各種情況下,導電跡線並非筆直的,而是可為Z字形或人字形圖案,以便減少假影及非所要雲紋圖案。磷光體轉換之白色微LED 515可為此項技術中已知之任何類型之白色發光二極體。基於本文中提供之本揭示內容,熟習此項技術者將認識到可相對於不同實施例使用之多個白色發光二極體。磷光體轉換之白色微LED 515經安裝為使得其在操作期間發射之光經引導遠離透明層510。在一些實施例中,磷光體轉換之白色微LED 515係橫向裝置,其中與p型材料及n型材料之接觸位於各別LED裝置之同一側。在其他實施例中,磷光體轉換之白色微LED 515係垂直裝置,其中與p型材料之接觸係在裝置之一側且與n型材料之接觸係在裝置之另一側。在任一情況下,產生至磷光體轉換之白色微LED 515之p型材料及n型材料兩者的電連接。The phosphor-converted white micro LED 515 (ie, 515a, 515b, 515c) is connected to the transparent layer 510 using conductive traces (not shown). In some cases, the conductive trace is a metal trace to which the phosphor-converted white micro LED 515 is soldered. In each case, the conductive traces are not straight, but can be zigzag or herringbone patterns in order to reduce artifacts and unwanted moire patterns. The phosphor-converted white micro LED 515 may be any type of white light emitting diode known in the art. Based on the disclosure provided herein, those skilled in the art will recognize multiple white light emitting diodes that can be used with respect to different embodiments. The phosphor-converted white micro LED 515 is installed such that the light it emits during operation is directed away from the transparent layer 510. In some embodiments, the phosphor-converted white micro LED 515 is a lateral device, wherein the contact with the p-type material and the n-type material is on the same side of each LED device. In other embodiments, the phosphor-converted white micro LED 515 is a vertical device, wherein the contact with the p-type material is on one side of the device and the contact with the n-type material is on the other side of the device. In either case, an electrical connection is generated to both the p-type material and the n-type material of the white micro LED 515 converted to the phosphor.
類似於上文相對於第5a圖所論述,反射體層555機械懸置在距發光構造521一定義距離處。可使用朝向微LED背光500之邊緣的結構元件(未示出)產生反射體層555與發光構造521之間的此實體間隔,從而使得其在觀察孔外部。Similar to that discussed above with respect to FIG. 5a, the reflector layer 555 is mechanically suspended at a defined distance from the light emitting structure 521. This physical separation between the reflector layer 555 and the light emitting structure 521 can be generated using a structural element (not shown) facing the edge of the micro LED backlight 500 so that it is outside the viewing hole.
轉向第5b圖,示出根據一或多個實施例之包括微LED背光500之顯示器590。如所示,微LED背光500朝向液晶顯示器(LCD)面板580引導自反射體層555反射出之白色光射線560 (亦即,表示為線560a、560b、560c、560d、560e、560f、560g、560h、560i、560j)。LCD顯示面板580可為此項技術中已知之能夠選擇性地閘控及/或色彩過濾各別像素位置處接收之光的任何裝置。基於本文中提供之揭示內容,熟習此項技術者將認識到可相對於不同實施例使用之多種LCD面板。Turning to Figure 5b, a display 590 including a micro LED backlight 500 is shown in accordance with one or more embodiments. As shown, the micro-LED backlight 500 directs the white light rays 560 (that is, represented as lines 560a, 560b, 560c, 560d, 560e, 560f, 560g, 560h) reflected from the reflector layer 555 toward the liquid crystal display (LCD) panel 580. , 560i, 560j). The LCD display panel 580 can be any device known in the art that can selectively gate and / or color filter light received at respective pixel locations. Based on the disclosure provided herein, those skilled in the art will recognize a variety of LCD panels that can be used with respect to different embodiments.
如所示,功率應用於微LED背光500,從而致使磷光體轉換之白色微LED 515朝向反射體層555發射白色光射線(表示為線565a、565b、565c、566a、566b、566c、567a、567b、567c),其中白色光射線往回朝向發光構造521反射。白色光射線560穿過發光構造521之各個透明層且至LCD面板580上。歸因於體積漫射體505之漫射能力,基本上消除由磷光體轉換之白色微LED 315及白色光射線560之傳輸路徑中之其他不透明元件引起之陰影,從而產生光跨越LCD面板580之表面的實質上均勻分佈。LCD面板580接著可如此項技術中已知地操作以使顯示器上之各個像素位置處之選定色彩的光通過。As shown, the power is applied to the micro LED backlight 500, causing the phosphor-converted white micro LED 515 to emit white light rays toward the reflector layer 555 (denoted as lines 565a, 565b, 565c, 566a, 566b, 566c, 567a, 567b, 567c), in which the white light rays are reflected back toward the light emitting structure 521. The white light rays 560 pass through each transparent layer of the light emitting structure 521 and onto the LCD panel 580. Due to the diffusive capacity of the volume diffuser 505, the shadow caused by other opaque elements in the transmission path of the white micro LED 315 and white light ray 560 converted by the phosphor is basically eliminated, thereby generating light across the LCD panel 580. The surface is substantially uniformly distributed. The LCD panel 580 can then operate as known in the art to pass light of a selected color at each pixel location on the display.
轉向第6a圖,示出根據其他實施例之使用RGB微LED 615 (表示為615a、615b、615c)之又一微LED背光600。微LED背光600包括發光構造621及反射體層655。反射體層可由能夠反射自RGB微LED 615發射之光的任何材料形成。另外,在其中反射體層655係無其他結構支撐之獨立層的彼等實施例中,用以形成反射體層655之材料應強至足以自支撐。在一些實施例中,反射體層655係由金屬製成。在一個特定實施例中,反射體層655係由鋁製成。發光構造621與反射體層655機械地間隔開間隙620。間隙620可填充有能夠允許光通過之任何氣體或其混合物。Turning to FIG. 6a, there is shown another micro LED backlight 600 using RGB micro LEDs 615 (denoted as 615a, 615b, 615c) according to other embodiments. The micro LED backlight 600 includes a light emitting structure 621 and a reflector layer 655. The reflector layer may be formed of any material capable of reflecting light emitted from the RGB micro LED 615. In addition, in those embodiments where the reflector layer 655 is an independent layer without other structural support, the material used to form the reflector layer 655 should be strong enough to be self-supporting. In some embodiments, the reflector layer 655 is made of metal. In a particular embodiment, the reflector layer 655 is made of aluminum. The light emitting structure 621 is mechanically spaced from the reflector layer 655 by a gap 620. The gap 620 may be filled with any gas or mixture thereof capable of allowing light to pass through.
發光構造621包括安置於透明層610上方之體積漫射體605。在一些實施例中,透明層610係由半透明氧化鋁形成。在其他實施例中,透明層係由玻璃形成。在使用半透明氧化鋁之情況下,其充當將RGB微LED 615連接至其各別電子電源及/或控制之電路板。半透明氧化鋁亦提供相對高導熱率(與針對玻璃之近1W/m-k相比,其大約為近40W/m-k)。使用具有此類高導熱率之材料提供用於消散橫向朝向發光構造621之邊緣的藍色微LED 615產生之熱量的機構,其中散熱器(未示出)可安裝在觀察孔外部。應注意,半透明氧化鋁之半透明性有助於達成藉由充當體積漫射體之反射構造636反射回之RGB光的更大均勻性,然而,在此實施例中不需要此類體積漫射體,此係由於藉由體積漫射體605執行漫射功能。體積漫射體605可由用於漫射穿過其之光的任何半透明材料形成。在一些實施例中,體積漫射體605由諸如PMMA或聚碳酸酯等其中具有散射光之顯微內含物的聚合物製成。在一些情況下,內含物係氧化鋯、氧化鋁及/或二氧化鈦。基於本文中提供之揭示內容,熟習此項技術者將認識到可相對於不同實施例使用之多種體積漫射體及材料。The light emitting structure 621 includes a volume diffuser 605 disposed above the transparent layer 610. In some embodiments, the transparent layer 610 is formed of translucent alumina. In other embodiments, the transparent layer is formed of glass. Where translucent alumina is used, it acts as a circuit board that connects the RGB microLED 615 to its respective electronic power source and / or control. Translucent alumina also provides relatively high thermal conductivity (about 40 W / m-k compared to nearly 1 W / m-k for glass). A material having such a high thermal conductivity is used to provide a mechanism for dissipating the heat generated by the blue micro LED 615 laterally facing the edge of the light emitting structure 621, wherein a heat sink (not shown) can be installed outside the observation hole. It should be noted that the translucency of translucent alumina helps achieve greater uniformity of RGB light reflected back by the reflective structure 636 acting as a volume diffuser, however, such a volume diffuser is not required in this embodiment This is because the volume diffuser 605 performs the diffusion function. The volume diffuser 605 may be formed of any translucent material for diffusing light passing therethrough. In some embodiments, the volume diffuser 605 is made of a polymer such as PMMA or polycarbonate with microscopic inclusions of scattered light therein. In some cases, the inclusions are zirconia, alumina, and / or titania. Based on the disclosure provided herein, those skilled in the art will recognize a variety of volume diffusers and materials that can be used with respect to different embodiments.
RGB微LED 615 (亦即,615a、615b、615c)使用導電跡線(未示出)連接至透明層610。在一些情況下,導電跡線係RGB微LED 615焊接至的金屬跡線。在各種情況下,導電跡線並非筆直的,而是可為Z字形或人字形圖案,以便減少假影及非所要雲紋圖案。RGB微LED 615可為此項技術中已知之任何類型之白色發光二極體。基於本文中提供之本揭示內容,熟習此項技術者將認識到可相對於不同實施例使用之多個白色發光二極體。RGB微LED 615經安裝為使得其在操作期間發射之光經引導遠離透明層610。在一些實施例中,RGB微LED 615係橫向裝置,其中與p型材料及n型材料之接觸位於各別LED裝置之同一側。在其他實施例中,RGB微LED 615係垂直裝置,其中與p型材料之接觸係在裝置之一側且與n型材料之接觸係在裝置之另一側。在任一情況下,產生至RGB微LED 615之p型材料及n型材料兩者的電連接。The RGB micro LEDs 615 (ie, 615a, 615b, 615c) are connected to the transparent layer 610 using conductive traces (not shown). In some cases, the conductive traces are metal traces to which the RGB micro LED 615 is soldered. In each case, the conductive traces are not straight, but can be zigzag or herringbone patterns in order to reduce artifacts and unwanted moire patterns. The RGB micro LED 615 may be any type of white light emitting diode known in the art. Based on the disclosure provided herein, those skilled in the art will recognize multiple white light emitting diodes that can be used with respect to different embodiments. The RGB micro LED 615 is installed such that the light it emits during operation is directed away from the transparent layer 610. In some embodiments, the RGB micro LED 615 is a lateral device, wherein the contact with the p-type material and the n-type material is on the same side of each LED device. In other embodiments, the RGB micro LED 615 is a vertical device, wherein the contact with the p-type material is on one side of the device and the contact with the n-type material is on the other side of the device. In either case, an electrical connection is made to both the p-type material and the n-type material of the RGB microLED 615.
類似於上文相對於第6a圖所論述,反射體層655機械懸置在距發光構造621一定義距離處。可使用朝向微LED背光600之邊緣的結構元件(未示出)產生反射體層655與發光構造621之間的此實體間隔,從而使得其在觀察孔外部。Similar to that discussed above with respect to Figure 6a, the reflector layer 655 is mechanically suspended at a defined distance from the light emitting structure 621. This physical separation between the reflector layer 655 and the light emitting structure 621 can be generated using a structural element (not shown) facing the edge of the micro LED backlight 600 so that it is outside the viewing hole.
轉向第6b圖,示出根據一或多個實施例之包括微LED背光600之顯示器690。如所示,微LED背光600朝向液晶顯示器(LCD)面板680引導自反射體層655反射出之分量紅色、綠色及藍色光射線光射線660 (亦即,表示為線660a、660b、660c、660d、660e、660f、660g、660h、660i、660j)。LCD顯示面板680可為此項技術中已知之能夠選擇性地閘控及/或色彩過濾各別像素位置處接收之光的任何裝置。基於本文中提供之揭示內容,熟習此項技術者將認識到可相對於不同實施例使用之多種LCD面板。Turning to FIG. 6b, a display 690 including a micro LED backlight 600 is shown in accordance with one or more embodiments. As shown, the micro-LED backlight 600 guides the component red, green, and blue light rays light rays 660 (ie, denoted as lines 660a, 660b, 660c, 660d, 660e, 660f, 660g, 660h, 660i, 660j). The LCD display panel 680 may be any device known in the art that can selectively gate and / or color filter light received at respective pixel locations. Based on the disclosure provided herein, those skilled in the art will recognize a variety of LCD panels that can be used with respect to different embodiments.
如所示,功率應用於微LED背光600,從而致使RGB微LED 615朝向反射體層655發射分量紅色、綠色或藍色光射線(表示為線665a、665b、665c、666a、666b、666c、667a、667b、667c),其中分量紅色、綠色或藍色光射線往回朝向發光構造621反射。分量紅色、綠色及藍色光射線660穿過發光構造621之各個透明層且至LCD面板680上。歸因於體積漫射體605之漫射能力,基本上消除由RGB微LED 615及白色光射線660之傳輸路徑中之其他不透明元件引起之陰影,從而產生光跨越LCD面板680之表面的實質上均勻分佈。LCD面板680接著可如此項技術中已知地操作以使顯示器上之各個像素位置處之選定色彩的光通過。As shown, power is applied to the micro LED backlight 600, causing the RGB micro LED 615 to emit component red, green, or blue light rays toward the reflector layer 655 (denoted as lines 665a, 665b, 665c, 666a, 666b, 666c, 667a, 667b 667c), in which component red, green or blue light rays are reflected back toward the light emitting structure 621. The component red, green, and blue light rays 660 pass through each transparent layer of the light emitting structure 621 and onto the LCD panel 680. Due to the diffusive ability of the volume diffuser 605, the shadows caused by other opaque elements in the transmission path of the RGB micro LED 615 and the white light ray 660 are basically eliminated, thereby generating a substantial amount of light across the surface of the LCD panel 680 Evenly distributed. The LCD panel 680 may then operate as known in the art to pass light of a selected color at each pixel location on the display.
轉向第7a圖,示出根據各個實施例之使用底部啟動RGB微LED 715 (表示為715a、715b、715c)之另一微LED背光700。微LED背光700包括透明基板720。在一些實施例中,透明基板720由玻璃、半透明氧化鋁或一些其他透明材料形成。Turning to FIG. 7a, another micro LED backlight 700 using a bottom activated RGB micro LED 715 (denoted as 715a, 715b, 715c) according to various embodiments is shown. The micro LED backlight 700 includes a transparent substrate 720. In some embodiments, the transparent substrate 720 is formed of glass, translucent alumina, or some other transparent material.
RGB微LED 715 (亦即,715a、715b、715c)使用導電跡線(未示出)連接至透明層710。在一些情況下,導電跡線係RGB微LED 715焊接至的金屬跡線。在各種情況下,導電跡線並非筆直的,而是可為Z字形或人字形圖案,以便減少假影及非所要雲紋圖案。RGB微LED 715可為此項技術中已知之任何類型之紅色、綠色或藍色發光二極體。基於本文中提供之本揭示內容,熟習此項技術者將認識到可相對於不同實施例使用之多個RGB發光二極體。RGB微LED 715經安裝為使得其在操作期間發射之光朝向形成於透明基板720之相對表面上之漫反射體755引導。在一些實施例中,RGB微LED 715係橫向裝置,其中與p型材料及n型材料之接觸位於各別LED裝置之同一側。在其他實施例中,RGB微LED 715係垂直裝置,其中與p型材料之接觸係在裝置之一側且與n型材料之接觸係在裝置之另一側。The RGB microLED 715 (ie, 715a, 715b, 715c) is connected to the transparent layer 710 using conductive traces (not shown). In some cases, the conductive traces are metal traces to which the RGB micro LED 715 is soldered. In each case, the conductive traces are not straight, but can be zigzag or herringbone patterns in order to reduce artifacts and unwanted moire patterns. RGB microLED 715 may be any type of red, green or blue light emitting diode known in the art. Based on the disclosure provided herein, those skilled in the art will recognize multiple RGB light emitting diodes that can be used with respect to different embodiments. The RGB micro LED 715 is installed such that the light it emits during operation is directed toward a diffuse reflector 755 formed on the opposite surface of the transparent substrate 720. In some embodiments, the RGB micro LED 715 is a lateral device, wherein the contact with the p-type material and the n-type material is on the same side of each LED device. In other embodiments, the RGB micro LED 715 is a vertical device, wherein the contact with the p-type material is on one side of the device and the contact with the n-type material is on the other side of the device.
使用半透明氧化鋁透明基板720提供一些優點,此係因其傳導率提供操作為將RGB微LED 715 (表示為715a、715b、715c)連接至其各別電子電源及/或控制之電路板的能力。半透明氧化鋁亦提供相對高導熱率(與針對玻璃之近1W/m-k相比,其大約為近40W/m-k)。使用具有此類高導熱率之材料提供用於消散橫向朝向微LED背光700之邊緣的RGB微LED 715產生之熱量的機構,其中散熱器(未示出)可安裝在觀察孔外部。另外,半透明氧化鋁之半透明性有助於達成藉由漫反射體755反射回之RGB光的更大均勻性。漫反射體755可由能夠使自RGB微LED 715發射之光往回反射穿過透明基板720的任何材料形成。在一個特定實施例中,漫反射體755由粗糙化基板上之濺鍍鋁製成。The use of a translucent alumina transparent substrate 720 provides some advantages due to its conductivity providing operation for connecting RGB micro LEDs 715 (denoted as 715a, 715b, 715c) to their respective electronic power and / or control circuit boards ability. Translucent alumina also provides relatively high thermal conductivity (about 40 W / m-k compared to nearly 1 W / m-k for glass). A material having such a high thermal conductivity is used to provide a mechanism for dissipating the heat generated by the RGB micro LED 715 laterally facing the edge of the micro LED backlight 700, wherein a heat sink (not shown) can be installed outside the observation hole. In addition, the translucency of the translucent alumina helps to achieve greater uniformity of the RGB light reflected back by the diffuse reflector 755. The diffuse reflector 755 may be formed of any material capable of reflecting the light emitted from the RGB micro LED 715 back through the transparent substrate 720. In a specific embodiment, the diffuse reflector 755 is made of sputtered aluminum on a roughened substrate.
轉向第7b圖,示出根據一或多個實施例之包括微LED背光700之顯示器790。如所示,微LED背光700朝向液晶顯示器(LCD)面板680引導自反射體層655反射出之分量紅色、綠色及藍色光射線760 (亦即,表示為線760a、760b、760c、760d、760e、760f、760g、760h、760i、760j)。LCD顯示面板680可為此項技術中已知之能夠選擇性地閘控及/或色彩過濾各別像素位置處接收之光的任何裝置。基於本文中提供之揭示內容,熟習此項技術者將認識到可相對於不同實施例使用之多種LCD面板。Turning to FIG. 7b, a display 790 including a micro LED backlight 700 is shown in accordance with one or more embodiments. As shown, the micro-LED backlight 700 directs the component red, green, and blue light rays 760 (i.e., represented as lines 760a, 760b, 760c, 760d, 760e, 760f, 760g, 760h, 760i, 760j). The LCD display panel 680 may be any device known in the art that can selectively gate and / or color filter light received at respective pixel locations. Based on the disclosure provided herein, those skilled in the art will recognize a variety of LCD panels that can be used with respect to different embodiments.
如所示,功率應用於微LED背光700,從而致使RGB微LED 715分別朝向漫反射體755發射分量紅色、綠色及藍色光射線(表示為線765a、765b、765c、766a、766b、766c、767a、767b、767c)。此引起連續紅色、綠色及藍色光射線760往回穿過半透明基板720且朝向LCD面板780反射。LCD面板780接著可如此項技術中已知地操作以使顯示器上之各個像素位置處之選定色彩的光通過。As shown, the power is applied to the micro LED backlight 700, which causes the RGB micro LED 715 to emit component red, green, and blue light rays toward the diffuse reflector 755 (indicated as lines 765a, 765b, 765c, 766a, 766b, 766c, 767a). , 767b, 767c). This causes continuous red, green, and blue light rays 760 to pass back through the translucent substrate 720 and be reflected toward the LCD panel 780. The LCD panel 780 may then operate as known in the art to pass light of a selected color at each pixel location on the display.
轉向第8a圖,示出根據各個實施例之使用底部啟動藍色微LED 815 (表示為815a、815b、815c)之另一微LED背光800。微LED背光800包括透明基板820。在一些實施例中,透明基板820係由玻璃、半透明氧化鋁或一些其他透明材料形成。反射體構造836安置於透明基板之一側上且包括量子點層850及金屬層855。Turning to Fig. 8a, another micro LED backlight 800 using a bottom-activated blue micro LED 815 (denoted as 815a, 815b, 815c) according to various embodiments is shown. The micro LED backlight 800 includes a transparent substrate 820. In some embodiments, the transparent substrate 820 is formed of glass, translucent alumina, or some other transparent material. The reflector structure 836 is disposed on one side of the transparent substrate and includes a quantum dot layer 850 and a metal layer 855.
藍色微LED 815 (亦即,815a、815b、815c)使用導電跡線(未示出)連接至透明層810。在一些情況下,導電跡線係藍色微LED 815焊接至的金屬跡線。在各種情況下,導電跡線並非筆直的,而是可為Z字形或人字形圖案,以便減少假影及非所要雲紋圖案。藍色微LED 815可為此項技術中已知之任何類型之藍色發光二極體。基於本文中提供之本揭示內容,熟習此項技術者將認識到可相對於不同實施例使用之多個藍色發光二極體。藍色微LED 815經安裝為使得其在操作期間發射之光朝向安置於透明基板820之相對表面上之反射體構造836引導。在一些實施例中,藍色微LED 815係橫向裝置,其中與p型材料及n型材料之接觸位於各別LED裝置之同一側。在其他實施例中,藍色微LED 815係垂直裝置,其中與p型材料之接觸係在裝置之一側且與n型材料之接觸係在裝置之另一側。The blue micro LED 815 (ie, 815a, 815b, 815c) is connected to the transparent layer 810 using conductive traces (not shown). In some cases, the conductive trace is a metal trace to which the blue micro LED 815 is soldered. In each case, the conductive traces are not straight, but can be zigzag or herringbone patterns in order to reduce artifacts and unwanted moire patterns. The blue micro LED 815 may be any type of blue light emitting diode known in the art. Based on the disclosure provided herein, those skilled in the art will recognize multiple blue light emitting diodes that can be used with respect to different embodiments. The blue micro LED 815 is installed such that the light it emits during operation is directed toward a reflector structure 836 disposed on the opposite surface of the transparent substrate 820. In some embodiments, the blue micro LED 815 is a lateral device, wherein the contact with the p-type material and the n-type material is on the same side of each LED device. In other embodiments, the blue micro LED 815 is a vertical device, wherein the contact with the p-type material is on one side of the device and the contact with the n-type material is on the other side of the device.
將半透明氧化鋁用於透明基板820提供一些優點,此係因其傳導率提供操作為將藍色微LED 815 (表示為815a、815b、815c)連接至其各別電子電源及/或控制之電路板的能力。半透明氧化鋁亦提供相對高導熱率(與針對玻璃之近1W/m-k相比,其大約為近40W/m-k)。使用具有此類高導熱率之材料提供用於消散橫向朝向微LED背光800之邊緣的藍色微LED 815產生之熱量的機構,其中散熱器(未示出)可安裝在觀察孔外部。另外,半透明氧化鋁之半透明性有助於達成藉由包括在量子點層850中之量子點反射回之RGB光的更大均勻性。The use of translucent alumina for the transparent substrate 820 provides some advantages due to its conductivity providing operation to connect the blue micro LED 815 (denoted as 815a, 815b, 815c) to its respective electronic power source and / or control Circuit board capabilities. Translucent alumina also provides relatively high thermal conductivity (about 40 W / m-k compared to nearly 1 W / m-k for glass). A material having such a high thermal conductivity is used to provide a mechanism for dissipating the heat generated by the blue micro LED 815 laterally facing the edge of the micro LED backlight 800, wherein a heat sink (not shown) can be installed outside the observation hole. In addition, the translucency of translucent alumina helps achieve greater uniformity of RGB light reflected back by the quantum dots included in the quantum dot layer 850.
量子點層850包括操作以反射自藍色微LED 315發射之光的多個量子點。在一些情況下,量子點層850中之量子點的大小與形狀經設計為使得當來自藍色微LED 815之藍色光的射線照在各別量子點上時,各別量子點發射處於定義頻率範圍內之光。在一些實施例中,當來自藍色微LED 815之藍色光的射線照在量子點層850之量子點上時,發生紅色、綠色或藍色光之各向同性重發射。可使用製造識別為量子點層850之色彩轉換元件的各種方法,且因此量子點層850可在不同實施例中展現不同組成物。作為一個實例,多個量子點可在跨越大片材之聚合物懸浮液中(例如,藉由噴塗沉積,或槽模塗佈)混合。The quantum dot layer 850 includes a plurality of quantum dots that operate to reflect light emitted from the blue micro LED 315. In some cases, the size and shape of the quantum dots in the quantum dot layer 850 are designed so that when the blue light rays from the blue micro LED 815 shine on the respective quantum dots, the respective quantum dot emission is at a defined frequency Light within range. In some embodiments, when the rays of blue light from the blue micro LED 815 strike the quantum dots of the quantum dot layer 850, isotropic re-emission of red, green, or blue light occurs. Various methods of manufacturing a color conversion element identified as the quantum dot layer 850 may be used, and thus the quantum dot layer 850 may exhibit different compositions in different embodiments. As an example, multiple quantum dots may be mixed in a polymer suspension (e.g., by spray deposition, or slot die coating) across a large sheet.
金屬層855充當反射層且亦用以密封量子點層850之量子點。在切割基底基板820之後形成金屬層855,且因此金屬層855延伸以覆蓋基底基板820之經切割側壁。金屬層855可由具反射性且亦能夠傳遞熱量之任何金屬形成。在一個特定實施例中,金屬層855係濺鍍鋁層。由於在反射中使用量子點層850之量子點且自藍色微LED 815發射之藍色光射線意欲往回反射穿過透明層820,因此金屬層855之暴露側係可接達的。散熱器895可黏合至金屬層855以冷卻量子點。此冷卻允許量子點比無冷卻能力的可能情況更難以被泵送,且因此可達成亮度增加。The metal layer 855 acts as a reflective layer and also serves to seal the quantum dots of the quantum dot layer 850. A metal layer 855 is formed after the base substrate 820 is cut, and thus the metal layer 855 extends to cover the cut sidewalls of the base substrate 820. The metal layer 855 may be formed of any metal that is reflective and also capable of transferring heat. In a specific embodiment, the metal layer 855 is a sputtered aluminum layer. Since the quantum dots of the quantum dot layer 850 are used in the reflection and the blue light rays emitted from the blue micro LED 815 are intended to reflect back through the transparent layer 820, the exposed side of the metal layer 855 is accessible. The heat sink 895 may be adhered to the metal layer 855 to cool the quantum dots. This cooling allows the quantum dots to be more difficult to pump than possible situations without cooling capability, and thus an increase in brightness can be achieved.
轉向第8b圖,示出根據一或多個實施例之包括微LED背光800之顯示器890。如所示,微LED背光800朝向液晶顯示器(LCD)面板680引導自反射體構造836反射出之分量紅色、綠色及藍色光射線860 (亦即,表示為線860a、860b、860c、860d、860e、860f、860g、860h、860i、860j)。LCD顯示面板680可為此項技術中已知之能夠選擇性地閘控及/或色彩過濾各別像素位置處接收之光的任何裝置。基於本文中提供之揭示內容,熟習此項技術者將認識到可相對於不同實施例使用之多種LCD面板。Turning to FIG. 8b, a display 890 including a micro LED backlight 800 is shown in accordance with one or more embodiments. As shown, the micro-LED backlight 800 directs the component red, green, and blue light rays 860 (ie, represented as lines 860a, 860b, 860c, 860d, 860e) reflected from the reflector structure 836 toward the liquid crystal display (LCD) panel 680. , 860f, 860g, 860h, 860i, 860j). The LCD display panel 680 may be any device known in the art that can selectively gate and / or color filter light received at respective pixel locations. Based on the disclosure provided herein, those skilled in the art will recognize a variety of LCD panels that can be used with respect to different embodiments.
如所示,功率應用於微LED背光800,從而致使藍色微LED 815分別朝向反射體構造836發射分量藍色光射線(表示為線865a、865b、865c、866a、866b、866c、867a、867b、867c),其中藍色光射線自量子點層850中之量子點反射出。取決於量子點層850中之反射各別藍色光射線之量子點的類型,反射紅色、綠色或藍色光射線860。自包括用於各別紅色、綠色及藍色色彩中之每一者的大量量子點的量子點層850反射出之連續藍色光射線產生往回反射穿過透明基板820且至LCD面板880上的連續紅色、綠色及藍色光射線360。LCD面板880接著可如此項技術中已知地操作以使顯示器上之各個像素位置處之選定色彩的光通過。As shown, the power is applied to the micro LED backlight 800, causing the blue micro LED 815 to emit component blue light rays (represented as lines 865a, 865b, 865c, 866a, 866b, 866c, 867a, 867b, 867c), in which blue light rays are reflected from the quantum dots in the quantum dot layer 850. Depending on the type of quantum dot in the quantum dot layer 850 that reflects respective blue light rays, red, green, or blue light rays 860 are reflected. The continuous blue light rays reflected from the quantum dot layer 850 including a large number of quantum dots for each of the respective red, green, and blue colors are generated to reflect back through the transparent substrate 820 and onto the LCD panel 880. Continuous red, green and blue light rays 360. The LCD panel 880 may then be operated as is known in the art to pass light of a selected color at each pixel location on the display.
轉向第9圖,流程圖900示出根據各個實施例之用於製造背光顯示器之方法。在流程圖900之後,提供具有第一側及第二側之基板(方塊905)。基板係由透明材料諸如玻璃或半透明氧化鋁形成。Turning to FIG. 9, a flowchart 900 illustrates a method for manufacturing a backlit display according to various embodiments. After the flowchart 900, a substrate having a first side and a second side is provided (block 905). The substrate is formed of a transparent material such as glass or translucent alumina.
在基板上形成反射材料(方塊910)。在一些實施例中,反射材料包括色彩轉換器,諸如由聚合物中之量子點懸浮液製成之量子點層。在此類情況下,形成量子點層包括在基板之表面上噴塗沉積或槽模塗佈該懸浮液。在其他實施例中,反射材料係黏合至基板之QDEF。在又其他實施例中,反射材料係可例如濺鍍至基板之表面上的金屬。基於本文中提供之揭示內容,熟習此項技術者將認識到可應用於基板之表面以形成反射層的多種材料。在一些情況下,反射材料係包括例如量子點層及金屬層或QDEF及金屬層的材料層之組合。A reflective material is formed on the substrate (block 910). In some embodiments, the reflective material includes a color converter, such as a quantum dot layer made from a quantum dot suspension in a polymer. In such cases, forming a quantum dot layer includes spray-depositing or slot-coating the suspension on the surface of a substrate. In other embodiments, the reflective material is QDEF bonded to the substrate. In yet other embodiments, the reflective material is a metal that can be sputtered onto the surface of the substrate, for example. Based on the disclosure provided herein, those skilled in the art will recognize a variety of materials that can be applied to the surface of a substrate to form a reflective layer. In some cases, the reflective material includes a combination of material layers such as a quantum dot layer and a metal layer or a QDEF and a metal layer.
在基板之相對表面之一部分上形成導電材料(方塊915)。此導電材料提供微LED可黏合至基板的位置。在一些實施例中,電氣材料係使用沉積及微影製程形成於基板上方之金屬。多個微LED在存在上述電氣材料之位置處黏合至基板,使得電氣材料中之一些操作為至微LED之觸點(方塊920)。微LED在自微LED發射之光穿過基板朝向基板之相對側上之反射材料引導的定向中黏合至基板。在此時,已製成發光構造或光源。此發光構造或光源相對於LCD面板組裝成使得自反射材料往回穿過基板反射之光照射在LCD面板上(方塊925)。雖然未示出,但在一些情況下,散熱器可黏合至反射層及/或黏合至在所得之顯示器之孔口外部的基板之側。A conductive material is formed on a portion of the opposite surface of the substrate (block 915). The conductive material provides a position where the micro LED can be adhered to the substrate. In some embodiments, the electrical material is a metal formed over the substrate using a deposition and lithography process. The plurality of micro LEDs are bonded to the substrate at the location where the electrical material is present, so that some of the electrical materials operate as contacts to the micro LED (block 920). The micro LED is bonded to the substrate in an orientation in which light emitted from the micro LED is directed through the substrate toward the reflective material on the opposite side of the substrate. At this time, a light emitting structure or a light source has been produced. This light emitting structure or light source is assembled with respect to the LCD panel such that light reflected from the self-reflecting material through the substrate irradiates the LCD panel (block 925). Although not shown, in some cases, the heat sink may be adhered to the reflective layer and / or to the side of the substrate outside the aperture of the resulting display.
轉向第10圖,流程圖1000示出根據一些實施例之用於製造背光顯示器之另一方法。在流程圖1000之後,提供具有第一側及第二側之基板(方塊1005)。基板係由透明材料諸如玻璃或半透明氧化鋁形成。Turning to FIG. 10, a flowchart 1000 illustrates another method for manufacturing a backlit display according to some embodiments. After the flowchart 1000, a substrate having a first side and a second side is provided (block 1005). The substrate is formed of a transparent material such as glass or translucent alumina.
在基板之一側上方形成光漫射體(方塊1010),且在基板之相對側上方形成導電材料(方塊1015)。此導電材料提供微LED可黏合至基板的位置。在一些實施例中,電氣材料係使用沉積及微影製程形成於基板上方之金屬。多個微LED在存在上述電氣材料之位置處黏合至基板,使得電氣材料中之一些操作為至微LED之觸點(方塊1020)。微LED在自微LED發射之光遠離基板引導的定向中黏合至基板。A light diffuser is formed above one side of the substrate (block 1010), and a conductive material is formed above the opposite side of the substrate (block 1015). The conductive material provides a position where the micro LED can be adhered to the substrate. In some embodiments, the electrical material is a metal formed over the substrate using a deposition and lithography process. The plurality of micro LEDs are bonded to the substrate at the location where the electrical material is present, so that some of the electrical materials operate as contacts to the micro LED (block 1020). The micro LED is bonded to the substrate in an orientation where the light emitted from the micro LED is directed away from the substrate.
另外,提供反射層(方塊1040)。反射層可為例如由反射材料諸如金屬製成之基板。替代性地,反射層可為反射式色彩轉換器及/或金屬層已黏合至的玻璃基板。上述色彩轉換器可為例如量子點層或QDEF。基於本文中提供之揭示內容,熟習此項技術者將認識到可相對於不同實施例使用的多種反射層。In addition, a reflective layer is provided (block 1040). The reflective layer may be, for example, a substrate made of a reflective material such as a metal. Alternatively, the reflective layer may be a glass substrate to which a reflective color converter and / or a metal layer has been bonded. The above-mentioned color converter may be, for example, a quantum dot layer or QDEF. Based on the disclosure provided herein, those skilled in the art will recognize a variety of reflective layers that may be used with respect to different embodiments.
基板(包括微LED)相對於反射層組裝成使得基板上之微LED朝向反射層發射光(方塊1050)。此組裝可包括例如將基板黏合至反射層。作為另一實例,上述組合件可包括附接所得之發光構造之孔口外部的結構元件。基於本文中提供之揭示內容,熟習此項技術者將認識到可相對於反射層組裝基板的多種方式。在此時,已製成發光構造或光源。此發光構造或光源相對於LCD面板組裝成使得自反射材料往回穿過基板反射之光照射在LCD面板上(方塊1050)。雖然未示出,但在一些情況下,散熱器可黏合至反射層及/或黏合至在所得之顯示器之孔口外部的基板之側。The substrate (including the micro LED) is assembled with respect to the reflective layer such that the micro LED on the substrate emits light toward the reflective layer (block 1050). This assembly may include, for example, bonding a substrate to a reflective layer. As another example, the above-mentioned assembly may include a structural element external to the aperture of the resulting light emitting structure. Based on the disclosure provided herein, those skilled in the art will recognize many ways in which a substrate can be assembled relative to a reflective layer. At this time, a light emitting structure or a light source has been produced. The light emitting structure or light source is assembled with respect to the LCD panel such that light reflected from the self-reflecting material through the substrate is irradiated on the LCD panel (block 1050). Although not shown, in some cases, the heat sink may be adhered to the reflective layer and / or to the side of the substrate outside the aperture of the resulting display.
轉向第11圖,在根據一些實施例之反射式背光顯示器1100旁邊示出習知背光顯示器1101,以證明可使用實施例達成顯示器厚度減小。應注意,證明的顯示器厚度減小適用於本文中論述之顯示器實施例中之任一者。Turning to FIG. 11, a conventional backlit display 1101 is shown next to a reflective backlit display 1100 according to some embodiments to demonstrate that the embodiment can be used to achieve a reduction in display thickness. It should be noted that the demonstrated reduction in display thickness is applicable to any of the display embodiments discussed herein.
如所示,習知背光顯示器1101具有微LED 1116附接至的背光基板1121,以及LCD面板1181。為達成自微LED 1116以一角度1130發射之光(1106a、1106b)的分散寬度(示出為W),LCD面板1181必須置於遠離微LED 1116附接至的背光基板1121之表面一距離(示出為D3)處。此產生總顯示器厚度D1。As shown, the conventional backlight display 1101 has a backlight substrate 1121 to which a micro LED 1116 is attached, and an LCD panel 1181. In order to achieve the dispersion width (shown as W) of the light (1106a, 1106b) emitted from the micro LED 1116 at an angle 1130, the LCD panel 1181 must be placed at a distance from the surface of the backlight substrate 1121 to which the micro LED 1116 is attached ( Shown as D3). This results in a total display thickness D1.
反射式背光顯示器1100具有微LED 1115附接至的背光基板1120,以及LCD面板1180。微LED定向成使得其朝向背光基板1120之相對側上的反射層1150發射穿過背光基板的光。在此類定向中,自微LED 1115以某一角度1130發射之光(1105a、1105b)穿過基板1120且自反射層1150反射出為光1110a、1110b。為達成與習知背光顯示器1101針對自反射層1120重發射之光(1110a、1110b)的分散寬度相同的分散寬度(示出為W)。LCD面板1180只需置於遠離微LED 1116附接至的背光基板1120之表面一距離(示出為D4)處。應注意,D4顯著小於D3。此產生類似地遠小於D1的總顯示器厚度D2。因此,藉由使用本文中揭示之實施例可達成之諸多優點中之一者係產生較薄LCD顯示器的能力。The reflective backlight display 1100 has a backlight substrate 1120 to which a micro LED 1115 is attached, and an LCD panel 1180. The micro LED is oriented so that it faces the reflective layer 1150 on the opposite side of the backlight substrate 1120 to emit light through the backlight substrate. In such an orientation, light (1105a, 1105b) emitted from the micro LED 1115 at a certain angle 1130 passes through the substrate 1120 and is reflected as light 1110a, 1110b from the reflective layer 1150. In order to achieve the same dispersion width (shown as W) for the conventional backlight display 1101 for the light (1110a, 1110b) that is re-emitted from the self-reflective layer 1120. The LCD panel 1180 need only be placed a distance (shown as D4) away from the surface of the backlight substrate 1120 to which the micro LED 1116 is attached. It should be noted that D4 is significantly smaller than D3. This results in a total display thickness D2 that is similarly much smaller than D1. Therefore, one of the many advantages that can be achieved by using the embodiments disclosed herein is the ability to produce a thinner LCD display.
綜上所述,本發明提供用於提供照明之新穎系統、裝置、方法及配置。雖然上文已給出本發明之一或多個實施例之詳細描述,但不脫離本發明之精神的各種替代性方案、修改及等效物對於熟習此項技術者而言係顯而易見的。舉例而言,反射層通常描述為實施於金屬中,但亦可實施於包括但不限於白色漆之其他材料中。因而,以上描述不應被視為限制由隨附申請專利範圍定義之本發明之範疇。In summary, the present invention provides novel systems, devices, methods, and configurations for providing lighting. Although a detailed description of one or more embodiments of the present invention has been given above, various alternatives, modifications, and equivalents without departing from the spirit of the present invention will be apparent to those skilled in the art. For example, the reflective layer is generally described as being implemented in metal, but can also be implemented in other materials including, but not limited to, white paint. Accordingly, the above description should not be construed as limiting the scope of the invention as defined by the scope of the accompanying patent application.
100‧‧‧微LED背光100‧‧‧micro LED backlight
105‧‧‧散射表面105‧‧‧ scattering surface
110‧‧‧透明層110‧‧‧ transparent layer
115a‧‧‧藍色微LED115a‧‧‧Blue Micro LED
115b‧‧‧藍色微LED115b‧‧‧Blue Micro LED
115c‧‧‧藍色微LED115c‧‧‧Blue Micro LED
120‧‧‧平面化層120‧‧‧Planarization layer
121‧‧‧發光構造121‧‧‧ Light emitting structure
125‧‧‧透明導電層125‧‧‧ transparent conductive layer
130‧‧‧光學透明黏附劑130‧‧‧Optical transparent adhesive
135‧‧‧基底基板135‧‧‧ base substrate
136‧‧‧反射構造136‧‧‧Reflective Structure
140a‧‧‧區劃分器140a‧‧‧Division
140b‧‧‧區劃分器140b‧‧‧Division
150‧‧‧量子點層150‧‧‧ Quantum Dot Layer
151‧‧‧反射層151‧‧‧Reflective layer
155‧‧‧金屬層155‧‧‧metal layer
160‧‧‧視圖/分量紅色、綠色及藍色光射線/紅色或綠色光射線/連續紅色、綠色及藍色光射線160‧‧‧view / component red, green and blue light rays / red or green light rays / continuous red, green and blue light rays
160a‧‧‧線160a‧‧‧line
160b‧‧‧線160b‧‧‧line
160c‧‧‧線160c‧‧‧line
160d‧‧‧線160d‧‧‧line
160e‧‧‧線160e‧‧‧line
160f‧‧‧線160f‧‧‧line
160g‧‧‧線160g‧‧‧line
160h‧‧‧線160h‧‧‧line
160i‧‧‧線160i‧‧‧line
160j‧‧‧線160j‧‧‧line
160k‧‧‧線160k‧‧‧line
160l‧‧‧線160l‧‧‧line
165‧‧‧藍色光射線165‧‧‧ blue light rays
165a‧‧‧線165a‧‧‧line
165b‧‧‧線165b‧‧‧line
165c‧‧‧線165c‧‧‧line
166a‧‧‧線166a‧‧‧line
166b‧‧‧線166b‧‧‧line
166c‧‧‧線166c‧‧‧line
167a‧‧‧線167a‧‧‧line
167b‧‧‧線167b‧‧‧line
167c‧‧‧線167c‧‧‧line
180‧‧‧LCD顯示面板180‧‧‧LCD display panel
190‧‧‧顯示器190‧‧‧Display
200‧‧‧微LED背光200‧‧‧ micro LED backlight
205‧‧‧散射表面205‧‧‧ scattering surface
210‧‧‧透明層210‧‧‧ transparent layer
215a‧‧‧藍色微LED215a‧‧‧Blue Micro LED
215b‧‧‧藍色微LED215b‧‧‧Blue Micro LED
215c‧‧‧藍色微LED215c‧‧‧Blue Micro LED
220‧‧‧平面化層220‧‧‧Planarization layer
221‧‧‧發光構造221‧‧‧light emitting structure
225‧‧‧透明導電層225‧‧‧ transparent conductive layer
230‧‧‧光學透明黏附劑230‧‧‧Optical transparent adhesive
235‧‧‧基底基板235‧‧‧ base substrate
236‧‧‧反射構造236‧‧‧Reflective Structure
250‧‧‧量子點層250‧‧‧ Quantum Dot Layer
251‧‧‧反射層251‧‧‧Reflective layer
255‧‧‧金屬層255‧‧‧metal layer
260a‧‧‧線260a‧‧‧line
260b‧‧‧線260b‧‧‧line
260c‧‧‧線260c‧‧‧line
260d‧‧‧線260d‧‧‧line
260e‧‧‧線260e‧‧‧line
260f‧‧‧線260f‧‧‧line
260g‧‧‧線260g‧‧‧line
260h‧‧‧線260h‧‧‧line
260i‧‧‧線260i‧‧‧line
260j‧‧‧線260j‧‧‧line
265a‧‧‧線265a‧‧‧line
265b‧‧‧線265b‧‧‧line
265c‧‧‧線265c‧‧‧line
266a‧‧‧線266a‧‧‧line
266b‧‧‧線266b‧‧‧line
266c‧‧‧線266c‧‧‧line
267a‧‧‧線267a‧‧‧line
267b‧‧‧線267b‧‧‧line
267c‧‧‧線267c‧‧‧line
280‧‧‧LCD面板280‧‧‧LCD panel
290‧‧‧顯示器290‧‧‧ Display
300‧‧‧微LED背光300‧‧‧Micro LED backlight
305‧‧‧體積漫射體305‧‧‧ volume diffuser
310‧‧‧透明層310‧‧‧Transparent layer
315a‧‧‧藍色微LED315a‧‧‧Blue Micro LED
315b‧‧‧藍色微LED315b‧‧‧Blue Micro LED
315c‧‧‧藍色微LED315c‧‧‧Blue Micro LED
320‧‧‧間隙320‧‧‧ Clearance
321‧‧‧發光構造321‧‧‧light emitting structure
335‧‧‧基底基板335‧‧‧ base substrate
336‧‧‧反射構造336‧‧‧Reflective Structure
350‧‧‧量子點層350‧‧‧ Quantum Dot Layer
355‧‧‧金屬層355‧‧‧metal layer
360a‧‧‧線360a‧‧‧line
360b‧‧‧線360b‧‧‧line
360c‧‧‧線360c‧‧‧line
360d‧‧‧線360d‧‧‧line
360e‧‧‧線360e‧‧‧line
360f‧‧‧線360f‧‧‧line
360g‧‧‧線360g‧‧‧line
360h‧‧‧線360h‧‧‧line
360i‧‧‧線360i‧‧‧line
360j‧‧‧線360j‧‧‧line
365a‧‧‧線365a‧‧‧line
365b‧‧‧線365b‧‧‧line
365c‧‧‧線365c‧‧‧line
366a‧‧‧線366a‧‧‧line
366b‧‧‧線366b‧‧‧line
366c‧‧‧線366c‧‧‧line
367a‧‧‧線367a‧‧‧line
367b‧‧‧線367b‧‧‧line
367c‧‧‧線367c‧‧‧line
380‧‧‧LCD面板380‧‧‧LCD panel
390‧‧‧顯示器390‧‧‧Display
400‧‧‧微LED背光400‧‧‧micro LED backlight
420‧‧‧間隙420‧‧‧Gap
435‧‧‧量子點增強膜435‧‧‧ Quantum Dot Enhancement Film
436‧‧‧反射構造436‧‧‧Reflective Structure
455‧‧‧金屬層455‧‧‧metal layer
460a‧‧‧線460a‧‧‧line
460b‧‧‧線460b‧‧‧line
460c‧‧‧線460c‧‧‧line
460d‧‧‧線460d‧‧‧line
460e‧‧‧線460e‧‧‧line
460f‧‧‧線460f‧‧‧line
460g‧‧‧線460g‧‧‧line
460h‧‧‧線460h‧‧‧line
460i‧‧‧線460i‧‧‧line
460j‧‧‧線460j‧‧‧line
465a‧‧‧線465a‧‧‧line
465b‧‧‧線465b‧‧‧line
465c‧‧‧線465c‧‧‧line
466a‧‧‧線466a‧‧‧line
466b‧‧‧線466b‧‧‧line
466c‧‧‧線466c‧‧‧line
467a‧‧‧線467a‧‧‧line
467b‧‧‧線467b‧‧‧line
467c‧‧‧線467c‧‧‧line
480‧‧‧LCD面板480‧‧‧LCD panel
490‧‧‧顯示器490‧‧‧ Display
500‧‧‧微LED背光500‧‧‧micro LED backlight
505‧‧‧體積漫射體505‧‧‧ volume diffuser
510‧‧‧透明層510‧‧‧Transparent layer
515a‧‧‧白色微LED515a‧‧‧White Micro LED
515b‧‧‧白色微LED515b‧‧‧White Micro LED
515c‧‧‧白色微LED515c‧‧‧White Micro LED
520‧‧‧間隙520‧‧‧Gap
555‧‧‧反射體層555‧‧‧Reflector layer
560a‧‧‧線560a‧‧‧line
560b‧‧‧線560b‧‧‧line
560c‧‧‧線560c‧‧‧line
560d‧‧‧線560d‧‧‧line
560e‧‧‧線560e‧‧‧line
560f‧‧‧線560f‧‧‧line
560g‧‧‧線560g‧‧‧line
560h‧‧‧線560h‧‧‧line
560i‧‧‧線560i‧‧‧line
560j‧‧‧線560j‧‧‧line
565a‧‧‧線565a‧‧‧line
565b‧‧‧線565b‧‧‧line
565c‧‧‧線565c‧‧‧line
566a‧‧‧線566a‧‧‧line
566b‧‧‧線566b‧‧‧line
566c‧‧‧線566c‧‧‧line
567a‧‧‧線567a‧‧‧line
567b‧‧‧線567b‧‧‧line
567c‧‧‧線567c‧‧‧line
580‧‧‧LCD面板580‧‧‧LCD panel
590‧‧‧顯示器590‧‧‧ Display
600‧‧‧微LED背光600‧‧‧Micro LED Backlight
605‧‧‧體積漫射體605‧‧‧ volume diffuser
610‧‧‧透明層610‧‧‧Transparent layer
615a‧‧‧RGB微LED615a‧‧‧RGB Micro LED
615b‧‧‧RGB微LED615b‧‧‧RGB micro LED
615c‧‧‧RGB微LED615c‧‧‧RGB micro LED
620‧‧‧間隙620‧‧‧Gap
655‧‧‧反射體層655‧‧‧Reflector layer
660a‧‧‧線660a‧‧‧line
660b‧‧‧線660b‧‧‧line
660c‧‧‧線660c‧‧‧line
660d‧‧‧線660d‧‧‧line
660e‧‧‧線660e‧‧‧line
660f‧‧‧線660f‧‧‧line
660g‧‧‧線660g‧‧‧line
660h‧‧‧線660h‧‧‧line
660i‧‧‧線660i‧‧‧line
660j‧‧‧線660j‧‧‧line
665a‧‧‧線665a‧‧‧line
665b‧‧‧線665b‧‧‧line
665c‧‧‧線665c‧‧‧line
666a‧‧‧線666a‧‧‧line
666b‧‧‧線666b‧‧‧line
666c‧‧‧線666c‧‧‧line
667a‧‧‧線667a‧‧‧line
667b‧‧‧線667b‧‧‧line
667c‧‧‧線667c‧‧‧line
680‧‧‧LCD面板680‧‧‧LCD panel
690‧‧‧顯示器690‧‧‧ Display
700‧‧‧微LED背光700‧‧‧micro LED backlight
715a‧‧‧底部啟動RGB微LED715a‧‧‧Activates RGB micro LED at the bottom
715b‧‧‧底部啟動RGB微LED715b‧‧‧Start RGB micro LED at the bottom
715c‧‧‧底部啟動RGB微LED715c‧‧‧Activates RGB micro LED at the bottom
720‧‧‧透明基板720‧‧‧ transparent substrate
755‧‧‧漫反射體755‧‧‧ diffuse reflector
760a‧‧‧線760a‧‧‧line
760b‧‧‧線760b‧‧‧line
760c‧‧‧線760c‧‧‧line
760d‧‧‧線760d‧‧‧line
760e‧‧‧線760e‧‧‧line
760f‧‧‧線760f‧‧‧line
760g‧‧‧線760g‧‧‧line
760h‧‧‧線760h‧‧‧line
760i‧‧‧線760i‧‧‧line
760j‧‧‧線760j‧‧‧line
765a‧‧‧線765a‧‧‧line
765b‧‧‧線765b‧‧‧line
765c‧‧‧線765c‧‧‧line
766a‧‧‧線766a‧‧‧line
766b‧‧‧線766b‧‧‧line
766c‧‧‧線766c‧‧‧line
767a‧‧‧線767a‧‧‧line
767b‧‧‧線767b‧‧‧line
767c‧‧‧線767c‧‧‧line
780‧‧‧LCD面板780‧‧‧LCD panel
790‧‧‧顯示器790‧‧‧ Display
800‧‧‧微LED背光800‧‧‧Micro LED backlight
815a‧‧‧底部啟動藍色微LED815a‧‧‧Start blue micro LED at the bottom
815b‧‧‧底部啟動藍色微LED815b‧‧‧Start blue micro LED at the bottom
815c‧‧‧底部啟動藍色微LED815c‧‧‧Start blue micro LED
820‧‧‧透明基板820‧‧‧Transparent substrate
836‧‧‧反射體構造836‧‧‧Reflector structure
850‧‧‧量子點層850‧‧‧ Quantum Dot Layer
855‧‧‧金屬層855‧‧‧metal layer
860a‧‧‧線860a‧‧‧line
860b‧‧‧線860b‧‧‧line
860c‧‧‧線860c‧‧‧line
860d‧‧‧線860d‧‧‧line
860e‧‧‧線860e‧‧‧line
860f‧‧‧線860f‧‧‧line
860g‧‧‧線860g‧‧‧line
860h‧‧‧線860h‧‧‧line
860i‧‧‧線860i‧‧‧line
860j‧‧‧線860j‧‧‧line
865a‧‧‧線865a‧‧‧line
865b‧‧‧線865b‧‧‧line
865c‧‧‧線865c‧‧‧line
866a‧‧‧線866a‧‧‧line
866b‧‧‧線866b‧‧‧line
866c‧‧‧線866c‧‧‧line
867a‧‧‧線867a‧‧‧line
867b‧‧‧線867b‧‧‧line
867c‧‧‧線867c‧‧‧line
880‧‧‧LCD面板880‧‧‧LCD panel
890‧‧‧顯示器890‧‧‧ Display
895‧‧‧散熱器895‧‧‧ radiator
900‧‧‧流程圖900‧‧‧ flow chart
905‧‧‧方塊905‧‧‧box
910‧‧‧方塊910‧‧‧block
915‧‧‧方塊915‧‧‧box
920‧‧‧方塊920‧‧‧box
925‧‧‧方塊925‧‧‧box
1000‧‧‧流程圖1000‧‧‧flow chart
1005‧‧‧方塊1005‧‧‧block
1010‧‧‧方塊1010‧‧‧box
1015‧‧‧方塊1015‧‧‧box
1020‧‧‧方塊1020‧‧‧box
1040‧‧‧方塊1040‧‧‧box
1050‧‧‧方塊1050‧‧‧box
1055‧‧‧方塊1055‧‧‧box
1100‧‧‧反射式背光顯示器1100‧‧‧ reflective backlight display
1101‧‧‧習知背光顯示器1101‧‧‧Learn Backlit Display
1105a‧‧‧光1105a‧‧‧light
1105b‧‧‧光1105b‧‧‧Light
1106a‧‧‧光1106a‧‧‧light
1106b‧‧‧光1106b‧‧‧light
1110a‧‧‧光1110a‧‧‧light
1110b‧‧‧光1110b‧‧‧light
1115‧‧‧微LED1115‧‧‧Micro LED
1116‧‧‧微LED1116‧‧‧Micro LED
1120‧‧‧背光基板1120‧‧‧Backlight substrate
1121‧‧‧背光基板1121‧‧‧Backlight substrate
1130‧‧‧角度1130‧‧‧angle
1180‧‧‧LCD面板1180‧‧‧LCD panel
1181‧‧‧LCD面板1181‧‧‧LCD Panel
D1‧‧‧總顯示器厚度D1‧‧‧Total display thickness
D2‧‧‧總顯示器厚度D2‧‧‧Total display thickness
D3‧‧‧距離D3‧‧‧distance
D4‧‧‧距離D4‧‧‧distance
W‧‧‧分散寬度W‧‧‧Scatter width
可參考在說明書之剩餘部分中描述之諸圖實現對各個實施例之進一步理解。在諸圖中,貫穿若干圖使用類似元件符號指示類似部件。在一些情況下,由小寫字母組成之子標號與表示多個類似部件中之一者的元件符號相關聯。當提到一元件符號而未說明現有子標號時,其意欲指所有此類多個類似部件。Further understanding of the various embodiments can be achieved with reference to the drawings described in the remainder of the description. In the drawings, similar component symbols are used throughout the several figures to indicate similar components. In some cases, a sub-number composed of lowercase letters is associated with an element symbol representing one of a plurality of similar parts. When referring to an element symbol without describing an existing sub-number, it is intended to refer to all such multiple similar components.
第1a圖示出根據一些實施例之包括區劃分器之微LED背光;FIG. 1a illustrates a micro LED backlight including a zone divider according to some embodiments;
第1b圖至第1i圖示出根據一些實施例之可單獨或組合使用以製造背光的各個處理步驟;1b to 1i illustrate various processing steps that can be used alone or in combination to manufacture a backlight according to some embodiments;
第1j圖示出第1a圖之背光的顯示器;Figure 1j shows the backlit display of Figure 1a;
第2a圖示出根據各個實施例之在無基板區域分離器的情況下形成之另一微LED背光;FIG. 2a illustrates another micro LED backlight formed without a substrate region divider according to various embodiments;
第2b圖示出包括第2a圖之背光的顯示器;Figure 2b shows a display including the backlight of Figure 2a;
第3a圖示出根據各個實施例之使用藍色微LED、紅色及綠色量子點以及體積漫射體之又一微LED背光;FIG. 3a illustrates another micro LED backlight using blue micro LEDs, red and green quantum dots, and a volume diffuser according to various embodiments;
第3b圖示出包括第3a圖之背光的顯示器;Figure 3b shows a display including the backlight of Figure 3a;
第4a圖示出根據一或多個實施例之使用量子點增強膜(QDEF)的又一微LED背光;Figure 4a illustrates yet another micro LED backlight using a quantum dot enhancement film (QDEF) according to one or more embodiments;
第4b圖示出包括第4a圖之背光的顯示器;Figure 4b shows a display including the backlight of Figure 4a;
第5a圖示出根據一些實施例之使用磷光體轉換白色微LED之又一微LED背光;Figure 5a illustrates yet another micro LED backlight using phosphor to convert white micro LEDs according to some embodiments;
第5b圖示出包括第5a圖之背光的顯示器;Figure 5b shows a display including the backlight of Figure 5a;
第6a圖示出根據各個其他實施例之使用紅色/綠色/藍色(Red/Green/Blue; RGB)微LED之又一微LED背光;Figure 6a illustrates yet another micro LED backlight using Red / Green / Blue (RGB) micro LEDs according to various other embodiments;
第6b圖示出包括第6a圖之背光的顯示器;Figure 6b shows a display including the backlight of Figure 6a;
第7a圖示出根據一或多個實施例之使用底部啟動(firing) RGB微LED的又一微LED背光;Figure 7a illustrates yet another micro LED backlight using bottom firing RGB micro LEDs according to one or more embodiments;
第7b圖示出包括第7a圖之背光的顯示器;Figure 7b shows a display including the backlight of Figure 7a;
第8a圖示出根據一些其他實施例之使用底部啟動藍色微LED的又一微LED背光;Figure 8a illustrates yet another micro LED backlight using a bottom-activated blue micro LED according to some other embodiments;
第8b圖示出包括第8a圖之背光的顯示器;Figure 8b shows a display including the backlight of Figure 8a;
第9圖係示出根據各個實施例之用於製造背光顯示器之方法的流程圖;FIG. 9 is a flowchart illustrating a method for manufacturing a backlight display according to various embodiments; FIG.
第10圖係示出根據一些實施例之用於製造背光顯示器之另一方法的流程圖;及FIG. 10 is a flowchart illustrating another method for manufacturing a backlit display according to some embodiments; and
第11圖在根據一些實施例之反射式背光顯示器旁邊示出習知背光顯示器,以證明可使用實施例達成顯示器厚度減小。FIG. 11 shows a conventional backlit display next to a reflective backlit display according to some embodiments to demonstrate that the embodiment can be used to achieve a reduction in display thickness.
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無Domestic hosting information (please note in order of hosting institution, date, and number) None
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無Information on foreign deposits (please note in order of deposit country, institution, date, and number) None
Claims (28)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762549531P | 2017-08-24 | 2017-08-24 | |
US62/549,531 | 2017-08-24 | ||
US201862689980P | 2018-06-26 | 2018-06-26 | |
US62/689,980 | 2018-06-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201921007A true TW201921007A (en) | 2019-06-01 |
TWI799442B TWI799442B (en) | 2023-04-21 |
Family
ID=65439905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107129538A TWI799442B (en) | 2017-08-24 | 2018-08-24 | Systems and methods for high dynamic range microled backlighting |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7370319B2 (en) |
KR (1) | KR20200035316A (en) |
CN (1) | CN111247369A (en) |
TW (1) | TWI799442B (en) |
WO (1) | WO2019040688A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109979958A (en) * | 2019-04-23 | 2019-07-05 | 深圳市华星光电半导体显示技术有限公司 | MicroLED display panel |
CN110908183B (en) * | 2019-11-12 | 2021-07-23 | 惠州市华星光电技术有限公司 | Display device |
WO2023094937A1 (en) * | 2021-11-26 | 2023-06-01 | 株式会社半導体エネルギー研究所 | Display apparatus and electronic device |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4206501A (en) * | 1978-06-12 | 1980-06-03 | Motorola, Inc. | Apparatus and methods for back illuminating a display surface |
JPS63188634U (en) * | 1987-05-27 | 1988-12-02 | ||
JP2004171948A (en) * | 2002-11-20 | 2004-06-17 | Harison Toshiba Lighting Corp | Backlight model |
KR100665005B1 (en) * | 2004-12-30 | 2007-01-09 | 삼성전기주식회사 | Backlight system having leds |
US7481563B2 (en) * | 2006-09-21 | 2009-01-27 | 3M Innovative Properties Company | LED backlight |
KR100900043B1 (en) * | 2007-06-05 | 2009-06-01 | 주식회사 나모텍 | Back-light unit for Liquid Crystal Device |
KR20120114041A (en) * | 2011-04-06 | 2012-10-16 | 하나 마이크론(주) | Method for manufacturing led package having glass cover |
RU2586385C2 (en) * | 2011-09-20 | 2016-06-10 | Конинклейке Филипс Н.В. | Light-emitting module, lamp, lighting device and display device |
KR20140011104A (en) * | 2012-07-17 | 2014-01-28 | 삼성디스플레이 주식회사 | Backlight unit and liquid display device including the same |
US9299887B2 (en) * | 2013-03-15 | 2016-03-29 | Nthdegree Technologies Worldwide Inc. | Ultra-thin printed LED layer removed from substrate |
US9111464B2 (en) * | 2013-06-18 | 2015-08-18 | LuxVue Technology Corporation | LED display with wavelength conversion layer |
JP6153895B2 (en) * | 2013-07-22 | 2017-06-28 | 富士フイルム株式会社 | Liquid crystal display |
US9880341B2 (en) * | 2014-05-15 | 2018-01-30 | Rohinni, LLC | Light diffusion with edge-wrapped light-generating sources |
JP6236412B2 (en) * | 2014-09-30 | 2017-11-22 | 富士フイルム株式会社 | Wavelength conversion member, backlight unit, liquid crystal display device, quantum dot-containing polymerizable composition, and method for producing wavelength conversion member |
GB201420452D0 (en) * | 2014-11-18 | 2014-12-31 | Mled Ltd | Integrated colour led micro-display |
KR102318262B1 (en) * | 2015-03-11 | 2021-10-27 | 삼성디스플레이 주식회사 | Backlight unit and display device comprising the same |
CN104932142A (en) * | 2015-06-10 | 2015-09-23 | 青岛海信电器股份有限公司 | Quantum dot luminescent device and backlight module |
KR102367759B1 (en) * | 2015-06-12 | 2022-02-28 | 삼성전자주식회사 | Back light unit and display apparutus comprising the same |
WO2016209890A1 (en) * | 2015-06-26 | 2016-12-29 | Corning Incorporated | Sealed device comprising quantum dots and methods for making the same |
CN105445994B (en) * | 2015-12-16 | 2019-06-28 | 青岛海信电器股份有限公司 | A kind of light source module, backlight module and display device |
CN108474524B (en) * | 2015-12-25 | 2020-09-25 | 富士胶片株式会社 | Edge-lit backlight unit |
-
2018
- 2018-08-23 KR KR1020207008172A patent/KR20200035316A/en active IP Right Grant
- 2018-08-23 CN CN201880068178.6A patent/CN111247369A/en active Pending
- 2018-08-23 WO PCT/US2018/047637 patent/WO2019040688A1/en active Application Filing
- 2018-08-23 JP JP2020510537A patent/JP7370319B2/en active Active
- 2018-08-24 TW TW107129538A patent/TWI799442B/en active
Also Published As
Publication number | Publication date |
---|---|
KR20200035316A (en) | 2020-04-02 |
CN111247369A (en) | 2020-06-05 |
JP7370319B2 (en) | 2023-10-27 |
WO2019040688A1 (en) | 2019-02-28 |
TWI799442B (en) | 2023-04-21 |
JP2020531904A (en) | 2020-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107883219B (en) | Lighting device | |
CN100529520C (en) | Backlight unit having light guide buffer plate | |
US7934862B2 (en) | UV based color pixel backlight for liquid crystal display | |
EP2067065B1 (en) | Illumination system, luminaire and display device | |
KR102138181B1 (en) | Light device | |
JP2007304553A (en) | Prism sheet, backlight unit having same, and liquid crystal display | |
US20110278617A1 (en) | Light emitting device package | |
TW201921007A (en) | Systems and methods for high dynamic range microLED backlighting | |
JP2006338901A (en) | Illumination device, and display device | |
TW201229634A (en) | Light source device and stereoscopic display | |
CN101922652B (en) | Backlight unit and liquid crystal display device having the same | |
JP2006291064A (en) | Phosphor film, device of illumination and displaying device having the same | |
KR20080063986A (en) | Diffusion sheet for wavelength changing and backlight unit using the same | |
JPWO2011135627A1 (en) | Planar light source device and display device using the same | |
JP2007005111A (en) | Lighting system and display device using it | |
US20200110309A1 (en) | Lighting device and display device | |
JP2017069392A (en) | Device light source | |
US10488706B1 (en) | Backlight module having a substrate, plurality of light sources, diffusion film and brightness enhancement film disposed on the substrate | |
TWI286631B (en) | Compact lighting system and display device | |
US11054698B2 (en) | Backlight module and display device | |
CN214751236U (en) | Display device | |
KR101274687B1 (en) | back light unit and liquid crystal display device using the same | |
CN114063347B (en) | Display device | |
US20100066941A1 (en) | Hybrid lighting panel and lcd system | |
TWI450001B (en) | Backlight unit and method for manufacturing the same |