TW201918740A - Lens and manufacturing method thereof - Google Patents

Lens and manufacturing method thereof Download PDF

Info

Publication number
TW201918740A
TW201918740A TW106139260A TW106139260A TW201918740A TW 201918740 A TW201918740 A TW 201918740A TW 106139260 A TW106139260 A TW 106139260A TW 106139260 A TW106139260 A TW 106139260A TW 201918740 A TW201918740 A TW 201918740A
Authority
TW
Taiwan
Prior art keywords
lens
lenses
group
image
lens group
Prior art date
Application number
TW106139260A
Other languages
Chinese (zh)
Other versions
TWI784986B (en
Inventor
江秉儒
陳信德
王國權
江昇達
Original Assignee
光芒光學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光芒光學股份有限公司 filed Critical 光芒光學股份有限公司
Priority to TW106139260A priority Critical patent/TWI784986B/en
Publication of TW201918740A publication Critical patent/TW201918740A/en
Application granted granted Critical
Publication of TWI784986B publication Critical patent/TWI784986B/en

Links

Abstract

A lens including a first lens group and a second lens group is provided. The first lens group is disposed between a magnified side and a minified side. The second lens group is disposed between the first lens group and the minified side. The lens includes six or less lenses, and at least four of the six or less lenses are aspherical lenses. The field of view of the lens between 100 degrees to 165 degrees, and the second lens group has at least one spherical lens.

Description

鏡頭及其製造方法Lens and its manufacturing method

本發明是有關於一種光學元件及其製造方法,且特別是有關於一種鏡頭及其製造方法。The present invention relates to an optical component and a method of fabricating the same, and more particularly to a lens and a method of fabricating the same.

隨著現代視訊技術的進步,數位攝影機(digital video camera, DVC)及數位相機(digital camera, DC)等影像裝置已被普遍地使用,並被廣泛地應用於各領域中。這些影像裝置中的核心元件之一為鏡頭,其用以將影像清晰地成像於螢幕或是電荷耦合元件(Charge Coupled Device, CCD)上。此外,近年來智慧家庭監視用攝影機有越來越蓬勃發展的趨勢,人們對於薄型化及光學性能的要求也越來越高。要滿足這樣需求的鏡頭,大致上需要具備廣視場角、小型化、薄型化、高解像力、大光圈、低畸變、日夜共焦等特點。With the advancement of modern video technology, video devices such as digital video cameras (DVCs) and digital cameras (DCs) have been widely used and widely used in various fields. One of the core components in these imaging devices is a lens for clearly imaging images onto a screen or a Charge Coupled Device (CCD). In addition, in recent years, smart home surveillance cameras have become more and more prosperous, and people are increasingly demanding thinner and optical performance. To meet the needs of such a lens, it is generally required to have a wide angle of view, miniaturization, thinning, high resolution, large aperture, low distortion, day and night confocal features.

但是在一般的鏡頭中,要達到日夜共焦必須要有切換濾光片裝置,或是增加鏡頭中透鏡的數量,以達到日夜共焦。然而,不論是哪一種方式,都會增加製作成本。此外,在一般的鏡頭中,會採用多個塑膠透鏡以降低成本,但是採用多個塑膠透鏡會有較大的熱飄移(thermal drift)現象,導致光學品質下降。因此,如何製作一個具備上述特點並且可提供良好光學品質的鏡頭,是目前本領域的技術人員的重要課題之一。However, in a general lens, it is necessary to have a switching filter device to achieve day and night confocal, or to increase the number of lenses in the lens to achieve day and night confocal. However, no matter which way, it will increase the production cost. In addition, in a general lens, a plurality of plastic lenses are used to reduce the cost, but the use of a plurality of plastic lenses has a large thermal drift phenomenon, resulting in a decrease in optical quality. Therefore, how to make a lens having the above characteristics and providing good optical quality is one of the important subjects of those skilled in the art.

本發明實施例係關於一種具有日夜共焦及良好的熱飄移表現的鏡頭及其製造方法。Embodiments of the present invention relate to a lens having day and night confocal and good thermal drift performance and a method of fabricating the same.

本發明的一實施例提供一種鏡頭,包括第一透鏡群以及第二透鏡群。第一透鏡群設置在影像放大側與影像縮小側之間。第二透鏡群設置在第一透鏡群與影像縮小側之間。其中,鏡頭包括六個以下的透鏡,此六個以下的透鏡中的至少四者為非球面透鏡。鏡頭的視場角介於100度和165度之間,且第二透鏡群具有至少一球面透鏡。An embodiment of the invention provides a lens including a first lens group and a second lens group. The first lens group is disposed between the image enlargement side and the image reduction side. The second lens group is disposed between the first lens group and the image reduction side. Wherein, the lens comprises six or less lenses, and at least four of the six or less lenses are aspherical lenses. The field of view of the lens is between 100 degrees and 165 degrees, and the second lens group has at least one spherical lens.

基於上述,在本發明的實施例中,鏡頭之設計符合預設的條件標準,因此本發明的實施例之鏡頭可達到廣視場角、小型化、日夜共焦以及低熱飄移,並且提供良好的光學成像品質。Based on the above, in the embodiment of the present invention, the design of the lens conforms to a preset condition standard, and thus the lens of the embodiment of the present invention can achieve a wide angle of view, miniaturization, day and night confocal, and low heat drift, and provides good Optical imaging quality.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

圖1是本發明的一實施例的鏡頭的概要示意圖。請參照圖1,本實施例的鏡頭100包括第一透鏡群110以及第二透鏡群120。第一透鏡群110位於影像放大側OS與影像縮小側IS之間。第二透鏡群120位於第一透鏡群110與影像縮小側IS之間。第一透鏡群110以及第二透鏡群120沿著鏡頭100的光軸A排列。Fig. 1 is a schematic view showing a lens of an embodiment of the present invention. Referring to FIG. 1 , the lens 100 of the present embodiment includes a first lens group 110 and a second lens group 120 . The first lens group 110 is located between the image enlargement side OS and the image reduction side IS. The second lens group 120 is located between the first lens group 110 and the image reduction side IS. The first lens group 110 and the second lens group 120 are arranged along the optical axis A of the lens 100.

鏡頭100包括六個以下的透鏡,此六個以下的透鏡的至少四者為非球面透鏡。在本實施例中,鏡頭100包括六個透鏡,且其中五個為非球面透鏡。如此一來,可減少球差(spherical aberration)、彗差(coma aberration)、像散(astigmatism)、場曲(curvature of field)與畸變(distortion)等現象,且達到高解像之功效。在本實施例中,第一透鏡群110具有負屈光度,且第二透鏡群120具有正屈光度。此外,在本實施例中,鏡頭100包括至少四個塑膠透鏡,且不具有膠合透鏡,而第二透鏡群120具有至少一球面透鏡。The lens 100 includes six or fewer lenses, and at least four of the six or less lenses are aspherical lenses. In the present embodiment, the lens 100 includes six lenses, and five of them are aspherical lenses. In this way, spherical aberration, coma aberration, astigmatism, curvature of field and distortion can be reduced, and the effect of high resolution can be achieved. In the present embodiment, the first lens group 110 has a negative refracting power, and the second lens group 120 has a positive refracting power. Further, in the present embodiment, the lens 100 includes at least four plastic lenses and does not have a cemented lens, and the second lens group 120 has at least one spherical lens.

在本實施例中,第一透鏡群110包括從影像放大側OS往影像縮小側IS依序排列的第一透鏡112、第二透鏡114以及第三透鏡116,且第二透鏡群120包括從影像放大側OS往影像縮小側IS依序排列的第四透鏡122、第五透鏡124以及第六透鏡126。其中,第一透鏡112、第二透鏡114、第三透鏡116、第四透鏡122以及第五透鏡124為非球面透鏡。在本實施例中,第一透鏡112至第六透鏡126的屈光度依序分別為負、負、正、正、負、正。In this embodiment, the first lens group 110 includes a first lens 112, a second lens 114, and a third lens 116 that are sequentially arranged from the image enlargement side OS to the image reduction side IS, and the second lens group 120 includes the slave image. The fourth lens 122, the fifth lens 124, and the sixth lens 126 are sequentially arranged on the magnification side OS toward the image reduction side IS. The first lens 112, the second lens 114, the third lens 116, the fourth lens 122, and the fifth lens 124 are aspherical lenses. In the present embodiment, the diopter of the first lens 112 to the sixth lens 126 are negative, negative, positive, positive, negative, and positive, respectively.

在本實施例中,第一透鏡112為一雙凹透鏡,第二透鏡114為具有一朝向影像放大側OS之凹面的一負彎月形透鏡(negative meniscus lens),第三透鏡116為具有一朝向影像放大側OS之凸面的一正彎月形透鏡(positive meniscus lens),第四透鏡122為一雙凸透鏡(biconvex lens),第五透鏡124為一雙凹透鏡(biconcave lens),第六透鏡126為一雙凸透鏡。In this embodiment, the first lens 112 is a double concave lens, and the second lens 114 is a negative meniscus lens having a concave surface facing the image magnification side OS, and the third lens 116 has a orientation. a positive meniscus lens of the convex surface of the image magnifying side OS, the fourth lens 122 is a biconvex lens, the fifth lens 124 is a biconcave lens, and the sixth lens 126 is a biconcave lens. A lenticular lens.

此外,在本實施例中,鏡頭100還包括孔徑光闌(aperture stop)S、濾光元件130以及玻璃蓋140。孔徑光闌S設置於第一透鏡群110的第三透鏡116與第二透鏡群120的第四透鏡122之間。濾光元件130設置在第二透鏡群120的第六透鏡126與影像縮小側IS之間。玻璃蓋140設置在濾光元件130與位在影像縮小側IS的成像面150之間。Further, in the present embodiment, the lens 100 further includes an aperture stop S, a filter element 130, and a glass cover 140. The aperture stop S is disposed between the third lens 116 of the first lens group 110 and the fourth lens 122 of the second lens group 120. The filter element 130 is disposed between the sixth lens 126 of the second lens group 120 and the image reduction side IS. The glass cover 140 is disposed between the filter element 130 and the imaging surface 150 positioned on the image reduction side IS.

在本實施例中,鏡頭100符合100度≦FOV≦165度的條件,其中FOV為鏡頭100的視場角(field of view, FOV),例如是在成像面150的對角線方向上的視場角。如此一來,符合上述條件的鏡頭100,可確保其光學成像品質,並具有良好的光學特性。In the present embodiment, the lens 100 conforms to the condition of 100 degrees ≦ FOV ≦ 165 degrees, wherein the FOV is the field of view (FOV) of the lens 100, for example, in the diagonal direction of the imaging surface 150. Field angle. In this way, the lens 100 meeting the above conditions can ensure the optical imaging quality and have good optical characteristics.

以下表1內容將舉出圖1所繪示的鏡頭100中關於各個透鏡具體的數據資料。 (表1) The contents of Table 1 below will show the specific data of each lens in the lens 100 shown in FIG. (Table 1)

在表1中,間距指得是在兩相鄰的表面之間沿著鏡頭100之光軸A的直線距離。例如表面S1的間距是位於表面S1與表面S2之間且沿著光軸A的直線距離。註解欄中各透鏡相應的厚度、折射率及阿貝數需參照同一列中對應的間距、折射率及阿貝數的數值。此外,在表1中,表面S1與表面S2為第一透鏡112的兩個表面。表面S3與表面S4為第二透鏡114的兩個表面…等依此類推。表面S7為孔徑光欄S。表面S14與表面S15為濾光元件130的兩個表面。表面S16與表面S17為玻璃蓋140的兩個表面。表面S18是成像面150。In Table 1, the pitch refers to the linear distance between the two adjacent surfaces along the optical axis A of the lens 100. For example, the pitch of the surface S1 is a linear distance between the surface S1 and the surface S2 and along the optical axis A. The corresponding thickness, refractive index and Abbe number of each lens in the annotation column should refer to the corresponding spacing, refractive index and Abbe number in the same column. Further, in Table 1, the surface S1 and the surface S2 are the two surfaces of the first lens 112. The surface S3 and the surface S4 are the two surfaces of the second lens 114, etc. and so on. The surface S7 is an aperture stop S. Surface S14 and surface S15 are the two surfaces of filter element 130. The surface S16 and the surface S17 are the two surfaces of the glass cover 140. The surface S18 is an imaging surface 150.

在本實施例中,鏡頭100的表面S1、S2、S3、S4、S5、S6、S8、S9、S10以及S11為非球面表面,且能藉由以下方程式(1)來表述:(1)In the present embodiment, the surfaces S1, S2, S3, S4, S5, S6, S8, S9, S10, and S11 of the lens 100 are aspherical surfaces, and can be expressed by the following equation (1): (1)

在方程式中,Z為光軸A方向的偏移量(sag),且c為一密切球面(osculating sphere)之半徑的倒數,即接近光軸A之曲率半徑(例如是表1中表面S1、S2、S3、S4、S5、S6、S8、S9、S10以及S11的曲率半徑)的倒數。K為一圓錐係數(conic),r為一非球面高度,且A2 到 A16 為非球面係數(aspheric coefficient)。在本實施例中,係數K與A2 皆為零。以下表2將列出表面S1、S2、S3、S4、S5、S6、S8、S9、S10以及S11的非球面參數值。 (表2) In the equation, Z is the offset (sag) in the direction of the optical axis A, and c is the reciprocal of the radius of an osculating sphere, that is, the radius of curvature close to the optical axis A (for example, the surface S1 in Table 1) The reciprocal of the radius of curvature of S2, S3, S4, S5, S6, S8, S9, S10, and S11. K is a conic coefficient, r is an aspherical height, and A 2 to A 16 are aspheric coefficients. In this embodiment, the coefficients K and A 2 are both zero. Table 2 below will list the aspheric parameter values of the surfaces S1, S2, S3, S4, S5, S6, S8, S9, S10, and S11. (Table 2)

在本實施例的鏡頭100中,鏡頭總長(total track length, TTL,S1到S18在光軸上的距離)= 15.9毫米。有效焦距(EFL)= 2.00毫米。光圈值(F-Number, Fno)= 2.0。視場角FOV= 140度。In the lens 100 of the present embodiment, the total track length (TTL, the distance of S1 to S18 on the optical axis) = 15.9 mm. Effective focal length (EFL) = 2.00 mm. Aperture value (F-Number, Fno) = 2.0. The field of view angle FOV = 140 degrees.

圖2至圖6為圖1的鏡頭的成像光學模擬數據圖。請參照圖2至圖6,其中,圖2為鏡頭100在日間時的光學傳遞函數曲線圖(modulation transfer function, MTF),其橫軸為每週期/毫米(mm)之空間頻率(spatial frequency in cycles per millimeter),縱軸為光學轉移函數的模數(modulus of the optical transfer function)。在本實施例中,鏡頭100在日間下所顯示出的光學轉移函數曲線在標準範圍內,如圖2所顯示。2 to 6 are diagrams of imaging optical simulation data of the lens of Fig. 1. Please refer to FIG. 2 to FIG. 6 , wherein FIG. 2 is an optical transfer function ( MTF) of the lens 100 during the daytime, and the horizontal axis is the spatial frequency per cycle/mm (spatial frequency in Cycles per millimeter), the vertical axis is the modulus of the optical transfer function. In the present embodiment, the optical transfer function curve displayed by the lens 100 during the day is within the standard range, as shown in FIG.

圖3為鏡頭100在夜間時對像高為3.088毫米內的光學傳遞函數曲線圖,其橫軸為空間頻率,而縱軸為光學轉移函數的模數。在本實施例中,鏡頭100在夜間下所顯示出的光學轉移函數曲線在標準範圍內,如圖3所顯示。由此可驗證,在本實施例中,鏡頭100可使用較少的鏡片且無需額外動作切換紅外濾光片,也無需使用玻璃膠合光學元件即可達到日夜共焦且具有良好的日間及夜間的光學成像品質。3 is a graph of the optical transfer function of the lens 100 at an image height of 3.088 mm at night, with the horizontal axis being the spatial frequency and the vertical axis being the modulus of the optical transfer function. In the present embodiment, the optical transfer function curve displayed by the lens 100 at night is within the standard range, as shown in FIG. It can be verified that in the embodiment, the lens 100 can use fewer lenses and no need to switch the infrared filter without additional action, and can achieve day and night confocal without good use of glass bonding optical elements and has good daytime and nighttime. Optical imaging quality.

圖4、圖5以及圖6分別為鏡頭100在溫度為攝氏20度、-20度以及80度的情況下,對不同像高的光學傳遞函數曲線圖,其橫軸為空間頻率,而縱軸為光學轉移函數的模數,T代表在子午方向的曲線,S代表在弧矢方向的曲線,而「TS」後面的數值代表像高,其中像高在0.0000 mm時的子午方向的曲線與弧矢方像的曲線重合。在本實施例中,鏡頭100在溫度為20度時且在空間頻率為63 lp/mm時及像高為3.088 mm內的光學轉移函數的模數大於 60%,在溫度為-20度時且在空間頻率為63 lp/mm時及像高為3.088 mm內的光學轉移函數的模數大於 60%,以及在溫度為-20度時且在空間頻率為63 lp/mm時及像高為3.088 mm內的光學轉移函數的模數大於60%,如圖4至圖6所顯示。在空間頻率為63 lp/mm下-20度到80度有良好的光學效能,換句話說,本實施例的鏡頭100在溫度從攝氏-20度至80度變化時具有低熱飄移及良好的光學成像品質。4, FIG. 5 and FIG. 6 are graphs of optical transfer functions of the lens 100 for different image heights at temperatures of 20 degrees Celsius, -20 degrees, and 80 degrees, respectively, the horizontal axis of which is the spatial frequency, and the vertical axis. For the modulus of the optical transfer function, T represents the curve in the meridional direction, S represents the curve in the sagittal direction, and the value after "TS" represents the image height, where the curve and arc in the meridional direction at an image height of 0.0000 mm The curves of the sagittal image coincide. In the present embodiment, the modulus of the optical transfer function of the lens 100 at a temperature of 20 degrees and at a spatial frequency of 63 lp/mm and an image height of 3.088 mm is greater than 60% at a temperature of -20 degrees. The modulus of the optical transfer function at a spatial frequency of 63 lp/mm and an image height of 3.088 mm is greater than 60%, and at a temperature of -20 degrees and at a spatial frequency of 63 lp/mm and an image height of 3.088 The modulus of the optical transfer function in mm is greater than 60%, as shown in Figures 4-6. Good optical performance at -20 degrees to 80 degrees at a spatial frequency of 63 lp/mm. In other words, the lens 100 of the present embodiment has low heat transfer and good optics when the temperature changes from -20 degrees Celsius to 80 degrees Celsius. Imaging quality.

圖7為本發明另一實施例的鏡頭的概要示意圖。請參照圖7,本實施例的鏡頭200類似於圖1中的鏡頭100,兩者的不同之處在於,在本實施例中,鏡頭200中的第二透鏡群220包括一阿貝數大於70的透鏡。具體而言,第二透鏡群220中最靠近第一透鏡群210的透鏡(即第四透鏡122)的阿貝數大於70。如此一來,可有效降低可見光到紅外光波長之光線的色差並具有良好的光學特性,且鏡頭200可達成紅外光的焦點位置與可見光的焦點位置同時實質相同的功效。FIG. 7 is a schematic diagram of a lens according to another embodiment of the present invention. Referring to FIG. 7 , the lens 200 of the present embodiment is similar to the lens 100 of FIG. 1 . The difference between the two is that in the embodiment, the second lens group 220 in the lens 200 includes an Abbe number greater than 70. Lens. Specifically, the Abbe number of the lens closest to the first lens group 210 in the second lens group 220 (ie, the fourth lens 122) is greater than 70. In this way, the chromatic aberration of the light of the visible light to the infrared light wavelength can be effectively reduced and the optical characteristics are good, and the lens 200 can achieve the effect that the focus position of the infrared light and the focus position of the visible light are substantially the same.

具體而言,與圖1中的鏡頭100不同之處在於,在本實施例中,第一透鏡212為具有一朝向影像放大側OS之凸面的一負彎月形透鏡,第二透鏡214為一雙凹透鏡,第三透鏡216為一雙凸透鏡。其中,第一透鏡212、第二透鏡214、第三透鏡216、第五透鏡124以及第六透鏡126為非球面透鏡。Specifically, the difference from the lens 100 in FIG. 1 is that, in the embodiment, the first lens 212 is a negative meniscus lens having a convex surface facing the image magnification side OS, and the second lens 214 is a The double concave lens, the third lens 216 is a lenticular lens. The first lens 212, the second lens 214, the third lens 216, the fifth lens 124, and the sixth lens 126 are aspherical lenses.

以下表3內容將舉出圖7所繪示的鏡頭200中關於各個透鏡具體的數據資料。 (表3) The contents of Table 3 below will show the specific data of each lens in the lens 200 shown in FIG. (table 3)

表3的註解欄中所記載的表面S1至表面S18的含意,以及所記載的間距、折射率及阿貝數與同一列中對應的間距、折射率及阿貝數的數值的參照方式相同於表1的參照方式,於此不再贅述。The meanings of the surface S1 to the surface S18 described in the comment column of Table 3, and the described pitch, refractive index, and Abbe number are the same as those of the corresponding pitch, refractive index, and Abbe number in the same column. The reference mode of Table 1 will not be repeated here.

在本實施例中,鏡頭200的表面S1、S2、S3、S4、S5、S6、S10、S11、S12以及S13為非球面表面,且能藉由上述方程式(1)來表述。其中,在本實施例中,係數A2 與A12 為零。以下表4將列出表面S1、S2、S3、S4、S5、S6、S10、S11、S12以及S13的非球面參數值。 (表4) In the present embodiment, the surfaces S1, S2, S3, S4, S5, S6, S10, S11, S12, and S13 of the lens 200 are aspherical surfaces, and can be expressed by the above equation (1). Among them, in the present embodiment, the coefficients A 2 and A 12 are zero. Table 4 below will list the aspheric parameter values of the surfaces S1, S2, S3, S4, S5, S6, S10, S11, S12, and S13. (Table 4)

在本實施例的鏡頭200中,鏡頭總長16.1毫米。有效焦距1.85毫米。光圈值2.0。視場角140度。In the lens 200 of the present embodiment, the total length of the lens is 16.1 mm. The effective focal length is 1.85 mm. The aperture value is 2.0. The field of view is 140 degrees.

圖8為本發明另一實施例的鏡頭的概要示意圖。請參照圖8,本實施例的鏡頭300類似於圖7的鏡頭200,兩者之間的差異在於,鏡頭300的第一透鏡群310中透鏡的數量為兩個,第二透鏡群320中透鏡的數量為三個。具體而言,在本實施例中,鏡頭300包括五個透鏡。FIG. 8 is a schematic diagram of a lens according to another embodiment of the present invention. Referring to FIG. 8 , the lens 300 of the present embodiment is similar to the lens 200 of FIG. 7 . The difference between the two is that the number of lenses in the first lens group 310 of the lens 300 is two, and the lens in the second lens group 320 is The number is three. Specifically, in the present embodiment, the lens 300 includes five lenses.

具體而言,與圖2中的鏡頭200不同之處在於,在本實施例中,第一透鏡群310包括從影像放大側OS往影像縮小側IS依序排列的第一透鏡212以及第二透鏡314,且第二透鏡群320包括從影像放大側OS往影像縮小側IS依序排列的第三透鏡322、第四透鏡324以及第五透鏡326。Specifically, the difference from the lens 200 in FIG. 2 is that, in the embodiment, the first lens group 310 includes the first lens 212 and the second lens which are sequentially arranged from the image enlargement side OS to the image reduction side IS. 314, and the second lens group 320 includes a third lens 322, a fourth lens 324, and a fifth lens 326 which are sequentially arranged from the image enlargement side OS to the image reduction side IS.

詳細而言,在本實施例中,第二透鏡314為具有一朝向影像放大側OS之凹面的一正彎月形透鏡,第三透鏡322為一雙凸透鏡,第四透鏡324為具有一朝向影像放大側OS之凸面的一負彎月形透鏡,第五透鏡326為一雙凸透鏡。其中,第一透鏡212、第二透鏡314、第四透鏡324以及第五透鏡326為非球面透鏡。在本實施例中,第一透鏡212至第五透鏡326的屈光度依序分別為負、正、正、負、正。In detail, in the embodiment, the second lens 314 is a positive meniscus lens having a concave surface facing the image magnification side OS, the third lens 322 is a lenticular lens, and the fourth lens 324 has an orientation image. A negative meniscus lens that magnifies the convex surface of the side OS, and the fifth lens 326 is a lenticular lens. The first lens 212, the second lens 314, the fourth lens 324, and the fifth lens 326 are aspherical lenses. In the present embodiment, the diopter of the first lens 212 to the fifth lens 326 are negative, positive, positive, negative, and positive, respectively.

以下表5內容將舉出圖8所繪示的鏡頭300中關於各個透鏡具體的數據資料。 (表5) The contents of Table 3 below will show the specific data about each lens in the lens 300 shown in FIG. (table 5)

在表5中,表面S5為孔徑光欄S。而其在表5中註解欄中所記載的表面S1至表面S16的含意,以及所記載的間距、折射率及阿貝數與同一列中對應的間距、折射率及阿貝數的數值的參照方式相同於表1的參照方式,於此不再贅述。In Table 5, the surface S5 is the aperture stop S. Further, the meanings of the surfaces S1 to S16 described in the column of the table in Table 5, and the values of the pitches, refractive indices, and Abbe numbers described in the same column, the corresponding pitches, refractive indices, and Abbe numbers in the same column are referred to. The manner is the same as that of Table 1, and will not be described here.

在本實施例中,鏡頭300的表面S1、S2、S3、S4、S8、S9、S10以及S11為非球面表面,且能藉由上述方程式(1)來表述。其中,在本實施例中,係數A2 為零。以下表6將列出表面S1、S2、S3、S4、S8、S9、S10以及S11的非球面參數值。 (表6) In the present embodiment, the surfaces S1, S2, S3, S4, S8, S9, S10, and S11 of the lens 300 are aspherical surfaces, and can be expressed by the above equation (1). Among them, in the present embodiment, the coefficient A 2 is zero. Table 6 below will list the aspheric parameter values of the surfaces S1, S2, S3, S4, S8, S9, S10, and S11. (Table 6)

在本實施例的鏡頭300中,鏡頭總長 16.1毫米。有效焦距1.92毫米。光圈值2.0。視場角140度。鏡頭200、300均類似於圖1中的鏡頭100,可使用較少的鏡片且無需額外動作切換紅外濾光片,也無需使用玻璃膠合光學元件即可達到良好的日間及夜間的光學成像品質,意即,鏡頭200、300均可達到日夜共焦。此外,鏡頭200、300也具有低熱飄移及良好的光學成像品質。In the lens 300 of the present embodiment, the total length of the lens is 16.1 mm. The effective focal length is 1.92 mm. The aperture value is 2.0. The field of view is 140 degrees. The lenses 200, 300 are similar to the lens 100 of FIG. 1, and can use fewer lenses and no additional action to switch the infrared filter, and can achieve good daytime and nighttime optical imaging quality without using glass bonding optical components. That is to say, the lenses 200, 300 can reach day and night confocal. In addition, the lenses 200, 300 also have low heat transfer and good optical imaging quality.

圖9為本發明一實施例的鏡頭的製造方法的流程圖。請參考圖9,在本實施例中,所述鏡頭的製造方法至少可以應用於圖1的鏡頭100、圖7的鏡頭200或圖8的鏡頭300。以下說明將以應用於圖1的鏡頭100為例,但本發明並不以此為限。在本實施例的鏡頭的製造方法中,在步驟S900中,提供一鏡筒。在步驟S910中,將第一透鏡群110置入並固定於鏡筒內。在步驟S920中,將第二透鏡群120置入並固定於鏡筒內,以完成鏡頭100的製造。Fig. 9 is a flow chart showing a method of manufacturing a lens according to an embodiment of the present invention. Referring to FIG. 9, in the present embodiment, the manufacturing method of the lens can be applied to at least the lens 100 of FIG. 1, the lens 200 of FIG. 7, or the lens 300 of FIG. The following description will be made by taking the lens 100 of FIG. 1 as an example, but the invention is not limited thereto. In the manufacturing method of the lens of this embodiment, in step S900, a lens barrel is provided. In step S910, the first lens group 110 is placed and fixed in the lens barrel. In step S920, the second lens group 120 is placed and fixed in the lens barrel to complete the manufacture of the lens 100.

綜上所述,在本發明的範例實施例中,鏡頭之設計符合預設的條件標準,因此本發明的實施例之鏡頭可達到廣視場角、小型化、日夜共焦以及低熱飄移,並且提供良好的光學成像品質。In summary, in the exemplary embodiment of the present invention, the design of the lens conforms to a preset condition standard, and thus the lens of the embodiment of the present invention can achieve a wide angle of view, miniaturization, day and night confocal, and low heat drift, and Provides good optical imaging quality.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100、200、300‧‧‧鏡頭100, 200, 300‧‧‧ lens

110、210、310‧‧‧第一透鏡群110, 210, 310‧‧‧ first lens group

112、212‧‧‧第一透鏡112, 212‧‧‧ first lens

114、214、314‧‧‧第二透鏡114, 214, 314‧‧‧ second lens

116、216、322‧‧‧第三透鏡116, 216, 322‧‧‧ third lens

120、220、320‧‧‧第二透鏡群120, 220, 320‧‧‧ second lens group

122、324‧‧‧第四透鏡122, 324‧‧‧ fourth lens

124、326‧‧‧第五透鏡124, 326‧‧‧ fifth lens

126‧‧‧第六透鏡126‧‧‧ sixth lens

130‧‧‧濾光元件130‧‧‧Filter elements

140‧‧‧玻璃蓋140‧‧‧glass cover

150‧‧‧成像面150‧‧‧ imaging surface

A‧‧‧光軸A‧‧‧ optical axis

OS‧‧‧影像放大側OS‧‧‧ image magnification side

IS‧‧‧影像縮小側IS‧‧‧Image reduction side

S‧‧‧孔徑光闌S‧‧‧ aperture diaphragm

S1~S18‧‧‧表面S1~S18‧‧‧ surface

圖1為本發明一實施例的鏡頭的概要示意圖。 圖2至圖6為圖1的鏡頭的成像光學模擬數據圖。 圖7為本發明另一實施例的鏡頭的概要示意圖。 圖8為本發明另一實施例的鏡頭的概要示意圖。 圖9為本發明一實施例的鏡頭的製造方法的流程圖。FIG. 1 is a schematic diagram of a lens according to an embodiment of the present invention. 2 to 6 are diagrams of imaging optical simulation data of the lens of Fig. 1. FIG. 7 is a schematic diagram of a lens according to another embodiment of the present invention. FIG. 8 is a schematic diagram of a lens according to another embodiment of the present invention. Fig. 9 is a flow chart showing a method of manufacturing a lens according to an embodiment of the present invention.

Claims (12)

一種鏡頭,包括: 一第一透鏡群,設置在一影像放大側與一影像縮小側之間;以及 一第二透鏡群,設置在該第一透鏡群與該影像縮小側之間, 其中,該鏡頭包括六個以下的透鏡,該六個以下的透鏡中的至少四者為非球面透鏡,該鏡頭的視場角介於100度和165度之間,且該第二透鏡群具有至少一球面透鏡。A lens comprising: a first lens group disposed between an image magnification side and an image reduction side; and a second lens group disposed between the first lens group and the image reduction side, wherein the lens The lens includes six or less lenses, at least four of the six or lower lenses being aspherical lenses having an angle of view between 100 degrees and 165 degrees, and the second lens group having at least one spherical surface lens. 一種鏡頭,包括: 一第一透鏡群,設置在一影像放大側與一影像縮小側之間;以及 一第二透鏡群,設置在該第一透鏡群與該影像縮小側之間, 其中,該鏡頭包括六個以下的透鏡,該六個以下的透鏡中的至少四者為非球面透鏡,該鏡頭的視場角介於100度和165度之間,且該第二透鏡群包括一阿貝數大於70的透鏡。A lens comprising: a first lens group disposed between an image magnification side and an image reduction side; and a second lens group disposed between the first lens group and the image reduction side, wherein the lens The lens includes six or less lenses, at least four of the six or less lenses are aspherical lenses, the angle of view of the lens is between 100 degrees and 165 degrees, and the second lens group includes an abe A lens with a number greater than 70. 如申請專利範圍第1至2項中任一項所述的鏡頭,其中該鏡頭還包括一孔徑光闌,設置在該第一透鏡群與該第二透鏡群之間。The lens of any one of claims 1 to 2, wherein the lens further comprises an aperture stop disposed between the first lens group and the second lens group. 如申請專利範圍第1至2項中任一項所述的鏡頭,其中該第一透鏡群具有負屈光度,且該第二透鏡群具有正屈光度。The lens of any one of claims 1 to 2, wherein the first lens group has a negative refracting power and the second lens group has a positive refracting power. 如申請專利範圍第1至2項中任一項所述的鏡頭,其中該第一透鏡群包括從該影像放大側往該影像縮小側依序排列的一第一透鏡、一第二透鏡以及一第三透鏡,該第二透鏡群包括從該影像放大側往該影像縮小側依序排列的一第四透鏡、一第五透鏡以及一第六透鏡,且該第四透鏡以及該第五透鏡為非球面透鏡。The lens of any one of claims 1 to 2, wherein the first lens group comprises a first lens, a second lens and a first order from the image enlargement side to the image reduction side. a third lens, the second lens group includes a fourth lens, a fifth lens and a sixth lens arranged in sequence from the image enlargement side to the image reduction side, and the fourth lens and the fifth lens are Aspherical lens. 如申請專利範圍第5項所述的鏡頭,其中該鏡頭還滿足下列條件之一:(1)該第一透鏡至該第六透鏡的屈光度依序分別為負、負、正、正、負、正;(2)該第一透鏡、該第二透鏡以及該第三透鏡為非球面透鏡。The lens of claim 5, wherein the lens further satisfies one of the following conditions: (1) the diopter of the first lens to the sixth lens are negative, negative, positive, positive, negative, respectively. (2) The first lens, the second lens, and the third lens are aspherical lenses. 如申請專利範圍第1至2項中任一項所述的鏡頭,其中該鏡頭還滿足下列條件之一:(1)包括至少四個塑膠透鏡,且該鏡頭中不具有膠合透鏡;(2)該第二透鏡群中最靠近該第一透鏡群的透鏡的阿貝數大於70。The lens of any one of claims 1 to 2, wherein the lens further satisfies one of the following conditions: (1) includes at least four plastic lenses, and the lens does not have a cemented lens; (2) The Abbe number of the lens closest to the first lens group among the second lens groups is greater than 70. 如申請專利範圍第2項所述的鏡頭,其中該鏡頭中透鏡的數量為六個,其中由該影像放大側至該影像縮小側數過來的第四個透鏡為球面透鏡,且最靠近該影像縮小側的透鏡為非球面透鏡。The lens of claim 2, wherein the number of lenses in the lens is six, and wherein the fourth lens from the image enlargement side to the image reduction side is a spherical lens and is closest to the image. The lens on the reduction side is an aspherical lens. 如申請專利範圍第2項所述的鏡頭,其中該第一透鏡群中透鏡的數量為兩個,該第二透鏡群中透鏡的數量為三個。The lens of claim 2, wherein the number of lenses in the first lens group is two, and the number of lenses in the second lens group is three. 如申請專利範圍第9項所述的鏡頭,其中該第一透鏡群包括從該影像放大側往該影像縮小側依序排列的一第一透鏡以及一第二透鏡,該第二透鏡群包括從該影像放大側往該影像縮小側依序排列的一第三透鏡、一第四透鏡以及一第五透鏡,其中該第四透鏡以及該第五透鏡為非球面透鏡。The lens of claim 9, wherein the first lens group comprises a first lens and a second lens arranged in sequence from the image enlargement side to the image reduction side, the second lens group comprising The image magnifying side is a third lens, a fourth lens and a fifth lens arranged in sequence on the image reducing side, wherein the fourth lens and the fifth lens are aspherical lenses. 如申請專利範圍第10項所述的鏡頭,其中該鏡頭還滿足下列條件之一:(1)該第一透鏡至該第五透鏡的屈光度依序分別為負、正、正、負、正;(2)該第一透鏡以及該第二透鏡為非球面透鏡。The lens of claim 10, wherein the lens further satisfies one of the following conditions: (1) the diopter of the first lens to the fifth lens are negative, positive, positive, negative, and positive, respectively; (2) The first lens and the second lens are aspherical lenses. 一種鏡頭的製造方法,包括: 提供一鏡筒; 將一第一透鏡群置入並固定於該鏡筒內;以及 將一第二透鏡群置入並固定於該鏡筒內,其中,該鏡頭包括六個以下的透鏡,該六個以下的透鏡中的至少四者為非球面透鏡,該鏡頭的視場角介於100度和165度之間,且該第二透鏡群具有至少一球面透鏡。A lens manufacturing method comprising: providing a lens barrel; placing and fixing a first lens group in the lens barrel; and placing and fixing a second lens group in the lens barrel, wherein the lens Including six or less lenses, at least four of the six or lower lenses are aspherical lenses having an angle of view between 100 degrees and 165 degrees, and the second lens group has at least one spherical lens .
TW106139260A 2017-11-14 2017-11-14 Lens and manufacturing method thereof TWI784986B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106139260A TWI784986B (en) 2017-11-14 2017-11-14 Lens and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106139260A TWI784986B (en) 2017-11-14 2017-11-14 Lens and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201918740A true TW201918740A (en) 2019-05-16
TWI784986B TWI784986B (en) 2022-12-01

Family

ID=67347567

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106139260A TWI784986B (en) 2017-11-14 2017-11-14 Lens and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI784986B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI764259B (en) * 2020-06-09 2022-05-11 鴻海精密工業股份有限公司 Optical lens and electronic device with the optical lens

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101834729B1 (en) * 2016-05-04 2018-03-06 주식회사 코렌 Wide angle lens and imaging device having the same
TWI589924B (en) * 2016-05-17 2017-07-01 Kinko Optical Co Limited Wide-angle six-slice lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI764259B (en) * 2020-06-09 2022-05-11 鴻海精密工業股份有限公司 Optical lens and electronic device with the optical lens

Also Published As

Publication number Publication date
TWI784986B (en) 2022-12-01

Similar Documents

Publication Publication Date Title
TWI528049B (en) Fixed-focus lens
WO2021047222A1 (en) Wide-angle imaging lens
JP5041924B2 (en) Zoom lens
TWI533018B (en) Fixed-focus lens
JP7152590B2 (en) Optical Imaging Lenses and Imaging Equipment
TW201715268A (en) Image capturing lens system, image capturing apparatus and electronic device
TWI660193B (en) Optical lens
KR20230042450A (en) Optical imaging system
CN110161664B (en) Image pickup optical lens
JP2018025794A (en) Optical lens
TWI796312B (en) Lens and fabrication method thereof
TWI664469B (en) Fixed-focus lens
TW201441661A (en) Wide-angle lens
TWI634346B (en) Imaging lens and camera module
US10564398B2 (en) Lens and manufacturing method thereof
KR20130013513A (en) Zoom lens and photographing device having the same
TWI784986B (en) Lens and manufacturing method thereof
KR20230024955A (en) Optical system
TWI664441B (en) Wide-angle lens
TWI663425B (en) Optical lens
TWI617832B (en) Image capturing lens system, image capturing apparatus and electronic device
CN210142231U (en) Fisheye lens
KR20150060398A (en) Zoom lens and photographing apparatus having the same
TWI617833B (en) Image capturing lens system, image capturing apparatus and electronic device
TW202307506A (en) Imaging lens