TW201918556A - Methods and compositions for cellular reprogramming - Google Patents

Methods and compositions for cellular reprogramming Download PDF

Info

Publication number
TW201918556A
TW201918556A TW106138094A TW106138094A TW201918556A TW 201918556 A TW201918556 A TW 201918556A TW 106138094 A TW106138094 A TW 106138094A TW 106138094 A TW106138094 A TW 106138094A TW 201918556 A TW201918556 A TW 201918556A
Authority
TW
Taiwan
Prior art keywords
cell
gene
nucleic acid
cells
type
Prior art date
Application number
TW106138094A
Other languages
Chinese (zh)
Inventor
康 張
侯睿
李�根
Original Assignee
開曼群島商優美佳生物技術有限公司
美國加利福尼亞大學董事會
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 開曼群島商優美佳生物技術有限公司, 美國加利福尼亞大學董事會 filed Critical 開曼群島商優美佳生物技術有限公司
Priority to TW106138094A priority Critical patent/TW201918556A/en
Publication of TW201918556A publication Critical patent/TW201918556A/en

Links

Abstract

Disclosed herein are methods and pharmaceutical compositions for the treatment of retinitis pigmentosa, macular degeneration and other retinal conditions by interfering with expression of genes, such as those encoding photoreceptor cell-specific nuclear receptor and neural retina-specific leucine zipper protein, in cells of the eye. These methods and compositions employ nucleic acid based therapies.

Description

用於細胞重編程之方法及組合物Method and composition for cell reprogramming

基因療法(將核酸傳遞至患者之細胞以治療病況)已經預期及測試達數十年,並且取得不同的成功。經治療之病況通常為晚期疾病(例如癌症、白血病)以及極致衰弱的疾病(例如嚴重聯合免疫缺陷)。Gene therapy (delivering nucleic acids to cells of patients to treat conditions) has been expected and tested for decades and has achieved varying degrees of success. The conditions to be treated are usually advanced diseases (such as cancer, leukemia) and extremely debilitating diseases (such as severe combined immunodeficiency).

本文中揭示將細胞自第一細胞類型重編程為第二細胞類型之方法,其包含使細胞與以下接觸:與基因靶位點雜交之第一嚮導RNA,其中該基因編碼有助於該細胞之細胞類型特異性功能的蛋白質;及使基因之股在靶位點處裂解之Cas核酸酶,其中裂解鏈修飾基因之表現使得細胞可不再執行細胞類型特異性功能,藉此將該細胞重編程為第二細胞類型。基因可包含突變。第一細胞類型可對突變敏感,且其中第二細胞類型為抗突變之細胞類型。突變可僅在第一細胞類型中產生不利影響。不利影響可選自衰老、細胞凋亡、分化缺乏及異常細胞增殖。基因可編碼轉錄因子。第一細胞類型及第二細胞類型可為密切相關的終末分化成熟細胞類型。重編程可在活體內發生。重編程可在活體外或離體發生。細胞可為胰臟、心臟、大腦、眼睛、腸道、結腸、肌肉、神經系統、前列腺或乳房之細胞。細胞可為有絲分裂後細胞。細胞可為眼睛中之細胞。細胞可為視網膜細胞。視網膜細胞可為視桿細胞。細胞類型特異性功能可為夜間視覺或彩色視覺。基因可選自NRL、NR2E3、GNAT1、ROR β、OTX2、CRX及THRB。基因可選自NRL及NR2E3。第一細胞類型可為視桿細胞,且第二細胞類型可為視錐細胞。視錐細胞可具有個體之光視覺。第一細胞類型可為視桿細胞且第二細胞類型可為多能細胞。第一細胞類型可為視桿細胞,且第二細胞類型可為多能視網膜祖細胞。細胞可為癌細胞。功能可選自異常細胞增殖、癌轉移以及腫瘤血管形成。第一細胞類型可為結腸癌細胞,且第二細胞類型可為良性腸細胞或結腸細胞。基因可選自APC、MYH1、MYH2、MYH3、MLH1、MSH2、MSH6、PMS2、EPCAM、POLE1、POLD1、NTHL1、BMPR1A、SMAD4、PTEN及STK11。第一細胞類型可為惡性B細胞,且第二細胞類型可為良性巨噬細胞。基因可選自C-MYC、CCND1、BCL2、BCL6、TP53、CDKN2A及CD19。細胞可為神經元。細胞可為中間神經元。中間神經元可為水平細胞。第一細胞類型可產生選自澱粉狀蛋白β、tau蛋白及其組合之至少一種蛋白質,且第二細胞類型可不產生蛋白質或產生比第一細胞類型更少的蛋白質。第一細胞類型可為神經元,且第二細胞類型可為膠細胞。基因可選自APP及MAPT。第一細胞類型產生α突觸核蛋白。第一細胞類型可為膠細胞,且第二細胞類型可為產生神經元之多巴胺。基因可選自SNCA、LRRK2、PARK2、PARK7及PINK1。基因可為α突觸核蛋白(SNCA)。第二細胞類型可選自多巴胺激導性神經元及多巴胺激導性祖細胞。第一細胞類型可為非多巴胺激導性神經元或膠細胞。 本文中進一步揭示使用重編程細胞治療有需要個體之病況之方法,其中重編程細胞藉由使細胞與以下接觸而產生:與基因靶位點雜交之第一嚮導RNA,其中基因編碼有助於細胞之細胞類型特異性功能之蛋白質;及使基因之股在靶位點處裂解之Cas核酸酶,其中裂解鏈修飾基因之表現使得細胞可不再執行細胞類型特異性功能,藉此將該細胞重編程為第二細胞類型。重編程細胞可對於個體而言可為自體性的。病況可包含視網膜變性。病況可選自黃斑變性、色素性視網膜炎及青光眼。病況可為色素性視網膜炎。病況可為癌症。癌症可為結腸癌或乳癌。病況可為神經退化性病況。病況可選自帕金森氏症(Parkinson's Disease)及阿茲海默氏症(Alzheimer's Disease)。 本文中揭示治療病況之方法,其包含向有需要之個體投與:與第一類型之細胞中之基因靶位點雜交的第一嚮導RNA,其中基因編碼有助於第一類型之細胞之第一功能的蛋白質;及使基因之股在靶位點處裂解之Cas核酸酶,其中裂解鏈修飾基因之表現使得第一類型之細胞自第一類型之細胞轉換為第二類型之細胞,其中第二類型之細胞之所得存在或增多改良病況。修飾基因之表現可包含將第一類型之細胞之基因表現降低至少約90%。修飾基因之表現可包含編輯該基因,其中該編輯導致不自基因產生蛋白質或自基因產生非功能性蛋白質。病況可為眼部病況,且第一類型之細胞可為第一類型之眼細胞,且第二類型之細胞為第二類型之眼細胞。可在第一類型之眼細胞中而非第二類型之眼細胞中執行功能。第二類型之眼細胞可執行第二功能,其中第二功能可不由第一類型之眼細胞執行。第一類型之眼細胞可為視桿細胞,且第二類型之眼細胞可為視錐細胞。眼部病況可為視網膜變性、色素性視網膜炎或黃斑變性。基因可選自NR2E3及NRL。方法可包含將視桿細胞重編程為視錐細胞或將視桿細胞重編程為多能視網膜祖細胞。眼部病況可為青光眼,且第二類型之眼細胞可為視網膜神經節細胞。第一細胞類型可為穆勒膠細胞。基因可為ATOH7。基因可為編碼BRN-3蛋白質(分別為BRN3A、BRN3B、BRN3C)之POU4F基因(POU4F1、POU4F2或POU4F3)。基因可為Islet1,亦被稱作ISL1。基因可為編碼p16之CDKN2A。基因可為Six6。方法可包含向選自載體、脂質體及核糖核蛋白之運載工具投與編碼Cas核酸酶及嚮導RNA之至少一種聚核苷酸。方法可包含使細胞與第二嚮導RNA接觸。方法可包含投與第二嚮導RNA。方法可包含在基因中引入新穎剪接位點。引入新穎的剪接位點可導致將外顯子或其部分自基因之寫碼序列移除。外顯子可包含基因突變。突變可僅在第一細胞類型中產生不利影響。不利影響可選自衰老、細胞凋亡、分化缺乏及異常細胞增殖。基因可編碼轉錄因子。第一類型之細胞可對突變敏感,且第二類型之細胞可抗突變。方法可包含將新穎外顯子引入至基因。方法可包含將至少一個核苷酸引入至基因。方法可包含將新穎外顯子引入至基因。 本文中進一步揭示包含Cas核酸酶或編碼Cas核酸酶之聚核苷酸、第一嚮導RNA及第二嚮導RNA的系統,其中第一嚮導RNA以基因之至少第一區域之第一位點5'之Cas9裂解為目標,且第二嚮導RNA以基因之第一區域之第二位點3'之Cas9裂解為目標,藉此切除該基因之區域。第一嚮導RNA可以至少第一外顯子之第一位點5'之Cas9裂解為目標,且第二嚮導RNA以至少第一外顯子之第二位點3'之Cas9裂解為目標,藉此切除至少第一外顯子。該系統可包含供體聚核苷酸,其中供體聚核苷酸可插入於第一位點與第二位點之間。供體聚核苷酸可為在供體外顯子之5'端及3'端處包含剪接位點之供體外顯子。供體聚核苷酸可包含野生型序列。基因可選自NRL及NR2E3。第一嚮導RNA及/或第二嚮導RNA可將Cas9蛋白質靶向至包含SEQ ID NO.:1-4中之任一者的序列。 本文中揭示包含Cas核酸酶或編碼Cas核酸酶之聚核苷酸、第一嚮導RNA及第二嚮導RNA的套組,其中第一嚮導RNA以基因之至少第一區域之第一位點5'之Cas9裂解為目標,且第二嚮導RNA以基因之第一區域之第二位點3'之Cas9裂解為目標,藉此切除該基因之區域。第一嚮導RNA可以至少第一外顯子之第一位點5'之Cas9裂解為目標,且第二嚮導RNA可以至少第一外顯子之第二位點3'之Cas9裂解為目標,藉此切除至少第一外顯子。該套組可包含供體聚核苷酸,其中供體核酸可插入於第一位點與第二位點之間。供體聚核苷酸可為在供體外顯子之5'端及3'端處包含剪接位點之供體外顯子。供體聚核苷酸可包含野生型序列。基因可選自NRL及NR2E3。第一嚮導RNA及/或第二嚮導RNA可將Cas9蛋白質靶向至包含SEQ ID NO.:1-4中之任一者的序列。 本文中進一步揭示用於治療個體之眼部病況的醫藥組合物,其包含:Cas核酸酶或編碼Cas核酸酶之聚核苷酸;及與選自NRL基因及NR2E3基因之基因之一部分互補的至少一個嚮導RNA。聚核苷酸可編碼Cas蛋白質,且至少一個嚮導RNA存在於至少一個病毒載體中。編碼Cas蛋白質的聚核苷酸或至少一個嚮導RNA存在於脂質體中。至少一個嚮導RNA可將Cas蛋白質靶向至包含SEQ ID NO.:1-4中之任一者的序列。醫藥組合物可調配為使用滴眼管投藥之液體。醫藥組合物可調配為用於玻璃體內投藥之液體。 本文中揭示編輯細胞中之基因之方法,其包含使該細胞與以下接觸:與基因之靶位點雜交之第一嚮導RNA;使基因之股在靶位點處裂解之Cas核酸酶;及供體核酸。供體核酸可經由非同源末端連接插入至基因中。細胞可為有絲分裂後細胞。基因可為Mertk基因。細胞可為個體之眼睛之視網膜中的細胞。 本文中進一步揭示治療個體之視網膜變性之方法,其包含使個體之視網膜與以下接觸:與基因之靶位點雜交之第一嚮導RNA;使基因之股在靶位點處裂解之Cas核酸酶;及供體核酸,其中該供體核酸經由非同源末端連接插入至基因中。視網膜變性可為色素性視網膜炎。基因可為Mertk基因。 本文中揭示治療個體之β地中海貧血之方法,其包含使個體之造血幹細胞/祖細胞與以下接觸:與血紅蛋白基因之靶位點雜交之第一嚮導RNA;使血紅蛋白基因之股在靶位點處裂解之Cas核酸酶;及供體核酸,其中該供體核酸經由非同源末端連接插入至該基因中。供體核酸可代替包含CD41/42突變之血紅蛋白基因之一部分。 本文中揭示治療個體之癌症之方法,其包含使個體之T細胞與以下接觸:與編碼免疫檢查點抑制因子之基因之靶位點雜交的第一嚮導RNA;及使基因之股在靶位點處裂解之Cas核酸酶。方法可包含使T細胞與供體核酸相接觸,其中供體核酸經由非同源末端連接插入至基因中。基因可為編碼計劃性細胞死亡蛋白質1 (PD-1)之PDCD1。癌症可為轉移性癌症。癌症可為轉移性卵巢癌、轉移性黑素瘤、轉移性非小細胞肺癌或轉移性腎細胞癌。 本文中進一步揭示治療個體之癌症之方法,其包含使個體之癌細胞與以下接觸:與編碼免疫檢查點抑制因子配位體之基因之靶位點雜交的第一嚮導RNA;及使基因之股在靶位點處裂解之Cas核酸酶。基因可為編碼計劃性死亡的配位體1 (PD-L1)之CD274,亦稱為PDCD1LG1。基因可為PDCD1LG2或計劃性死亡的配位體2 (PD-L2)。方法可包含使腫瘤細胞與供體核酸接觸,其中供體核酸經由非同源末端連接插入至基因中。癌症可為轉移性癌症。癌症可為轉移性卵巢癌、轉移性黑素瘤、轉移性非小細胞肺癌或轉移性腎細胞癌。Disclosed herein are methods of reprogramming a cell from a first cell type to a second cell type comprising contacting the cell with a first guide RNA that hybridizes to a target site of the gene, wherein the gene encodes a cell that facilitates the cell a cell type-specific functional protein; and a Cas nuclease that cleaves a strand of the gene at a target site, wherein the expression of the cleavage chain-modified gene allows the cell to no longer perform cell type-specific functions, thereby reprogramming the cell to Second cell type. The gene may comprise a mutation. The first cell type can be sensitive to mutations, and wherein the second cell type is an anti-mutated cell type. Mutations can only have an adverse effect in the first cell type. Adverse effects can be selected from senescence, apoptosis, lack of differentiation, and abnormal cell proliferation. The gene encodes a transcription factor. The first cell type and the second cell type may be closely related terminally differentiated mature cell types. Reprogramming can occur in vivo. Reprogramming can occur in vitro or ex vivo. The cells can be cells of the pancreas, heart, brain, eyes, intestines, colon, muscles, nervous system, prostate or breast. The cell can be a cell after mitosis. The cells can be cells in the eye. The cells can be retinal cells. The retinal cells can be rod cells. Cell type-specific functions can be night vision or color vision. The gene may be selected from the group consisting of NRL, NR2E3, GNAT1, ROR beta, OTX2, CRX and THRB. The gene may be selected from the group consisting of NRL and NR2E3. The first cell type can be a rod cell and the second cell type can be a cone cell. Cones can have individual light vision. The first cell type can be a rod cell and the second cell type can be a pluripotent cell. The first cell type can be a rod cell, and the second cell type can be a pluripotent retinal progenitor cell. The cells can be cancer cells. The function may be selected from abnormal cell proliferation, cancer metastasis, and tumor angiogenesis. The first cell type can be a colon cancer cell, and the second cell type can be a benign intestinal cell or a colon cell. The gene may be selected from the group consisting of APC, MYH1, MYH2, MYH3, MLH1, MSH2, MSH6, PMS2, EPCAM, POLE1, POLD1, NTHL1, BMPR1A, SMAD4, PTEN and STK11. The first cell type can be a malignant B cell, and the second cell type can be a benign macrophage. The gene may be selected from the group consisting of C-MYC, CCND1, BCL2, BCL6, TP53, CDKN2A, and CD19. The cells can be neurons. The cells can be interneurons. The interneurons can be horizontal cells. The first cell type can produce at least one protein selected from the group consisting of amyloid beta, tau protein, and combinations thereof, and the second cell type can produce no protein or produce less protein than the first cell type. The first cell type can be a neuron, and the second cell type can be a gel cell. The gene can be selected from APP and MAPT. The first cell type produces alpha synuclein. The first cell type can be a gel cell, and the second cell type can be a dopamine that produces neurons. The gene may be selected from the group consisting of SNCA, LRRK2, PARK2, PARK7 and PINK1. The gene can be alpha synuclein (SNCA). The second cell type can be selected from the group consisting of dopamine-exciting neurons and dopamine-exciting progenitor cells. The first cell type can be a non-dopamine-exciting neuron or a gelatinous cell. Further disclosed herein is the use of reprogrammed cells to treat a condition in a subject in need thereof, wherein the reprogrammed cells are produced by contacting the cells with: a first guide RNA that hybridizes to a target site of the gene, wherein the gene encoding contributes to the cell a cell type-specific function protein; and a Cas nuclease that cleaves a gene strand at a target site, wherein the cleavage chain-modified gene is expressed such that the cell can no longer perform cell type-specific functions, thereby reprogramming the cell For the second cell type. Reprogrammed cells can be autologous to an individual. The condition may include retinal degeneration. The condition may be selected from the group consisting of macular degeneration, retinitis pigmentosa, and glaucoma. The condition may be retinitis pigmentosa. The condition can be cancer. The cancer can be colon cancer or breast cancer. The condition can be a neurodegenerative condition. The condition may be selected from Parkinson's Disease and Alzheimer's Disease. Disclosed herein are methods of treating a condition comprising administering to a subject in need thereof: a first guide RNA that hybridizes to a target site of a gene in a cell of a first type, wherein the gene encodes a cell that facilitates the first type of cell a functional protein; and a Cas nuclease that cleaves a strand of the gene at a target site, wherein the cleavage chain-modified gene is such that the first type of cell is converted from the first type of cell to the second type of cell, wherein The resulting production of two types of cells presents or increases the improved condition. Characterizing the modified gene can comprise reducing gene expression of the first type of cell by at least about 90%. Characterizing the modified gene can include editing the gene, wherein the editing results in a protein not being produced from the gene or a non-functional protein being produced from the gene. The condition may be an ocular condition, and the first type of cells may be the first type of ocular cells and the second type of cells are the second type of ocular cells. Function can be performed in the first type of eye cells rather than the second type of eye cells. The second type of ocular cells can perform a second function, wherein the second function can be performed by the first type of ocular cells. The first type of ocular cells can be rod cells, and the second type of ocular cells can be cone cells. The ocular condition can be retinal degeneration, retinitis pigmentosa or macular degeneration. The gene may be selected from the group consisting of NR2E3 and NRL. Methods can include reprogramming rod cells into cone cells or reprogramming rod cells into pluripotent retinal progenitor cells. The ocular condition can be glaucoma, and the second type of ocular cells can be retinal ganglion cells. The first cell type can be a Mueller gelatin cell. The gene can be ATOH7. The gene may be the POU4F gene (POU4F1, POU4F2 or POU4F3) encoding the BRN-3 protein (BRN3A, BRN3B, BRN3C, respectively). The gene can be Islet1, also known as ISL1. The gene may be CDKN2A encoding p16. The gene can be Six6. The method can comprise administering to a vehicle selected from the group consisting of a vector, a liposome, and a ribonucleoprotein, at least one polynucleotide encoding a Cas nuclease and a guide RNA. The method can comprise contacting the cell with a second guide RNA. The method can comprise administering a second guide RNA. The method can comprise introducing a novel splice site in the gene. Introduction of novel splice sites can result in the removal of exons or portions thereof from the gene coding sequence. An exon can contain a genetic mutation. Mutations can only have an adverse effect in the first cell type. Adverse effects can be selected from senescence, apoptosis, lack of differentiation, and abnormal cell proliferation. The gene encodes a transcription factor. Cells of the first type are sensitive to mutations and cells of the second type are resistant to mutations. The method can comprise introducing a novel exon into the gene. The method can comprise introducing at least one nucleotide to the gene. The method can comprise introducing a novel exon into the gene. Further disclosed herein is a system comprising a Cas nuclease or a polynucleotide encoding a Cas nuclease, a first guide RNA, and a second guide RNA, wherein the first guide RNA is 5' of the first site of at least the first region of the gene The Cas9 cleavage is targeted, and the second guide RNA targets the Cas9 cleavage of the second site 3' of the first region of the gene, thereby excising the region of the gene. The first guide RNA can cleave at least the first site 5' of Cas9 of the first exon, and the second guide RNA targets the Cas9 cleavage of at least the second site 3' of the first exon, This excises at least the first exon. The system can comprise a donor polynucleotide, wherein the donor polynucleotide can be inserted between the first site and the second site. The donor polynucleotide can be an in vitro exon that contains a splice site at the 5' and 3' ends of the in vitro exon. The donor polynucleotide can comprise a wild type sequence. The gene may be selected from the group consisting of NRL and NR2E3. The first guide RNA and/or the second guide RNA can target the Cas9 protein to a sequence comprising any of SEQ ID NO.: 1-4. Disclosed herein is a kit comprising a Cas nuclease or a polynucleotide encoding a Cas nuclease, a first guide RNA, and a second guide RNA, wherein the first guide RNA is 5' of the first site of at least the first region of the gene The Cas9 cleavage is targeted, and the second guide RNA targets the Cas9 cleavage of the second site 3' of the first region of the gene, thereby excising the region of the gene. The first guide RNA can be targeted to at least the first site 5' of Cas9 of the first exon, and the second guide RNA can be targeted by at least the second site 3' of Cas9 of the first exon, This excises at least the first exon. The kit can comprise a donor polynucleotide, wherein the donor nucleic acid can be inserted between the first site and the second site. The donor polynucleotide can be an in vitro exon that contains a splice site at the 5' and 3' ends of the in vitro exon. The donor polynucleotide can comprise a wild type sequence. The gene may be selected from the group consisting of NRL and NR2E3. The first guide RNA and/or the second guide RNA can target the Cas9 protein to a sequence comprising any of SEQ ID NO.: 1-4. Further disclosed herein are pharmaceutical compositions for treating an ocular condition in an individual comprising: a Cas nuclease or a polynucleotide encoding a Cas nuclease; and at least a portion complementary to a portion of a gene selected from the NRL gene and the NR2E3 gene A guide RNA. The polynucleotide may encode a Cas protein and at least one guide RNA is present in at least one viral vector. A polynucleotide encoding a Cas protein or at least one guide RNA is present in the liposome. At least one guide RNA can target the Cas protein to a sequence comprising any of SEQ ID NO.: 1-4. The pharmaceutical composition can be formulated as a liquid to be administered using an eye dropper. The pharmaceutical composition can be formulated as a liquid for intravitreal administration. Disclosed herein is a method of editing a gene in a cell, the method comprising: contacting the cell with: a first guide RNA that hybridizes to a target site of the gene; a Cas nuclease that cleaves the strand of the gene at the target site; Body nucleic acid. The donor nucleic acid can be inserted into the gene via a non-homologous end joining. The cell can be a cell after mitosis. The gene can be the Mertk gene. The cell can be a cell in the retina of the individual's eye. Further disclosed herein is a method of treating retinal degeneration in an individual comprising contacting the retina of the individual with: a first guide RNA that hybridizes to a target site of the gene; a Cas nuclease that cleaves the strand of the gene at the target site; And a donor nucleic acid, wherein the donor nucleic acid is inserted into the gene via a non-homologous end joining. Retinal degeneration can be retinitis pigmentosa. The gene can be the Mertk gene. Disclosed herein is a method of treating beta thalassemia in an individual comprising contacting an individual's hematopoietic stem/progenitor cells with: a first guide RNA that hybridizes to a target site of a hemoglobin gene; and a strand of the hemoglobin gene at a target site a cleavage Cas nuclease; and a donor nucleic acid, wherein the donor nucleic acid is inserted into the gene via a non-homologous end joining. The donor nucleic acid can replace a portion of the hemoglobin gene comprising the CD41/42 mutation. Disclosed herein are methods of treating cancer in an individual comprising contacting an individual's T cells with a first guide RNA that hybridizes to a target site of a gene encoding an immunological checkpoint inhibitor; and causing the gene to be at a target site The cleavage Cas nuclease. The method can comprise contacting a T cell with a donor nucleic acid, wherein the donor nucleic acid is inserted into the gene via a non-homologous end joining. The gene may be PDCD1 encoding the planned cell death protein 1 (PD-1). The cancer can be a metastatic cancer. The cancer can be metastatic ovarian cancer, metastatic melanoma, metastatic non-small cell lung cancer or metastatic renal cell carcinoma. Further disclosed herein are methods of treating cancer in an individual comprising contacting a cancer cell of the individual with a first guide RNA that hybridizes to a target site of a gene encoding an immunological checkpoint inhibitor ligand; A Cas nuclease that cleaves at a target site. The gene may be CD274, also known as PDCD1LG1, which encodes a programmed death ligand 1 (PD-L1). The gene can be PDCD1LG2 or a planned death ligand 2 (PD-L2). The method can comprise contacting a tumor cell with a donor nucleic acid, wherein the donor nucleic acid is inserted into the gene via a non-homologous end joining. The cancer can be a metastatic cancer. The cancer can be metastatic ovarian cancer, metastatic melanoma, metastatic non-small cell lung cancer or metastatic renal cell carcinoma.

序列表 本申請案含有序列表,該序列表已以ASCII格式以電子方式提交且以全文引用的方式併入本文中。創建於2017年10月31日的該ASCII複本命名為49697-713-SEQ.txt且為4.31 KB大小。 基因療法展示有很大希望用於治療許多人類疾病。然而,當前技術之一個主要缺點在於其最多僅可針對特定突變或單個基因,這使得基因療法難以應用於較大患者群。類似地,使用內源性或自體幹細胞之組織的修復及再生表示再生醫學之重要目標。然而,此方法受起始細胞具有正常基因組成及功能之要求阻礙,在許多情況下其係不可實行的,因為自體細胞具有基因療法意圖克服之基因突變。本文中提供克服細胞再編程之上述挑戰之方法,該細胞編程將對突變敏感之細胞類型轉換成抗同一突變之功能上相關的細胞類型,因此保護組織及功能。此方法是基於假定1)突變通常僅在特定細胞類型中產生不利影響;2)轉錄因子之組合使得能夠確定細胞命運,及3)存在允許在密切相關之終末分化之成熟細胞類型(諸如胰臟、心肌及神經細胞)之間進行活體內直接轉換的發育可塑性。此外,遠相關細胞亦可藉由發育相關轉錄因子之適當組合在活體內直接轉換。 本文中提供基於成簇規律間隔短回文重複-Cas9 (CRISPR-Cas9)利用同源非依賴性靶向整合(HITI)策略之方法。此等方法提供分裂及非分裂細胞兩者之有效靶向基因嵌入。此等方法可在活體外及活體內執行。此等方法提供產後哺乳動物之有絲分裂後細胞(例如大腦)中之目標轉基因插入。 色素性視網膜炎RP為眼睛之最常見退化性疾病中的一種,影響全世界超過一百萬患者。其可由超過200個基因之諸多突變引起。RP的特徵在於具有原發性桿狀感光體死亡及變性,接著為繼發性視錐細胞死亡。視桿細胞決定因素NRL之大量基因剔除將成年視桿細胞重編程為錐狀細胞,使其抗桿狀感光體上之RP特異性基因之突變之效應,且因此防止繼發性視錐細胞缺失。NRL充當視桿細胞與視錐細胞之間的主導轉換基因,並且活化主要下游轉錄因子NR2E3。NRL及NR2E3共同用於活化桿狀特異性基因轉錄網路且控制視桿細胞分化及命運。NRL或NR2E2之功能缺失將視桿細胞重編程為視錐細胞命運。此系統提供證明療法可得以發展之概念之機會,其中細胞自對突變敏感之彼等細胞重編程為抗突變之彼等細胞。 本文中提供用於治療包含基因之靶向失活之病況的方法,該基因含有對突變敏感(例如對於具有該細胞之個體不正常或有毒)之細胞類型之突變。本文中提供此等方法之實例,包括用於藉由使用CRISPR/Cas9之腺相關病毒(AAV)傳遞不靶向活化視網膜中之NRL或NR2E3使用活體內視桿細胞至視錐細胞重編程治療RP及其他視網膜病況的方法(見(例如)實例12)。實例展現視桿細胞至視錐細胞特異性細胞命運可藉由具有隨之而來的視網膜感光體預留及視覺功能急救的桿狀感光體細胞命運之不活化而重編程。此等結果指出基因及突變獨立之新穎治療方法且對於遺傳疾病療法可具有廣泛意義。治療性平台 本文中提供治療個體之遺傳性病況之方法,其包含向個體之第一細胞類型之細胞投與本文中所揭示之修飾基因在第一細胞中之表現的治療劑,其中該基因編碼具有特定針對第一細胞類型之功能的蛋白質。修飾基因之表現可導致將細胞自第一細胞類型重編程為第二細胞類型。藉助於非限制性實例,遺傳性病況可為色素性視網膜炎,該基因可選自NRL及NR2E3,且治療劑可為編碼靶向基因之Cas核酸酶及嚮導RNA之病毒。方法可包含向視網膜細胞(諸如桿狀感光體細胞,在本文中亦被稱作「視桿細胞」)投與治療劑。方法可導致將視桿細胞重編程為視錐細胞,挽救視網膜變性及恢復視網膜功能。因此,第一細胞類型可為視桿細胞,且第二細胞類型為視錐細胞(見(例如)實例13)。儘管視桿細胞至視錐細胞重編程可導致視桿細胞數目損失及可能的隨之而來的夜盲,個體可願意忍受夜盲。 本文中提供將細胞自第一細胞類型重編程至第二細胞類型之方法,其包含使該細胞同與基因靶位點雜交之嚮導RNA相接觸,其中該基因編碼有助於該細胞之細胞類型特異性功能的蛋白質;及使基因之股在靶位點處裂解之Cas核酸酶,其中裂解鏈修飾基因之表現使得細胞可不再執行細胞類型特異性功能,藉此將該細胞重編程至第二細胞類型。 如本文所使用之術語「重編程」係指基因改變細胞中之至少一個基因以將該細胞自第一細胞類型轉換成第二細胞類型。第一細胞類型可為第二細胞類型之更分化形式或反之亦然。第一細胞類型可在功能上與第二細胞類型相關。舉例而言,第一細胞類型及第二細胞類型可提供與視覺相關之功能。亦藉助於非限制性實例,第一細胞類型及第二細胞類型可提供與大腦活動、神經元活動、肌肉活動、免疫活性、感測活動、心臟血管活動、細胞增殖、細胞衰老及細胞細胞凋亡相關之功能。基因更改該基因可包含使該基因沉默,藉此抑制由基因編碼之蛋白質之產生。使基因沉默可包含將無意義突變引入該基因中以產生非功能性蛋白質。可藉由使用基因編輯以建立人造剪接變異而引入無意義突變,其中人造剪接變異缺少至少一個外顯子或其部分。 如本文所使用之術語「細胞類型特異性功能」係指特定針對細胞類型之功能。在一些情況下,該功能僅特定針對單個細胞類型。舉例而言,細胞類型特異性功能可為光視覺,且單細胞類型為錐狀感光體細胞。在一些情況下,功能特定針對細胞之子集。舉例而言,細胞類型特異性功能可通常為視覺,且細胞之子集可為感光體細胞,諸如視桿細胞、視錐細胞及感光性視網膜神經節細胞。 術語「第一細胞類型」及「第二細胞類型」在本文中僅用以在緊接著使用其之上下文中將一種細胞類型與另一種進行區分。本文中所揭示之方法或組合物決不應受限於其相對於本申請案之一個部分在本申請案中之另一部分中之次序。 本文中所揭示之第一細胞類型可對突變敏感。「對突變敏感」意謂彼細胞中之基因之突變將針對彼細胞產生功能性效應。本文中所揭示之第二細胞類型可抗突變。「抗突變」意謂彼細胞中之基因之突變將不針對彼細胞產生任何功能性效應,或彼細胞中之基因中之突變將產生可接受的功能性效應,對細胞存在之個體無毒,或對於細胞存在之個體具有少至沒有後果之功能性效應。舉例而言,抗突變之細胞類型可為不表現基因或表現可忽略量之基因之細胞類型。抗突變之細胞類型可為表現基因之細胞類型,但彼細胞類型中之基因之功能性作用並不受突變影響。對突變敏感之細胞類型執行細胞類型特異性功能,其中細胞類型特異性功能由可具有突變之基因之表現調節或控制。當突變發生於基因中時,細胞類型特異性功能喪失或改變。本文中所揭示之方法包含編輯基因,使得將第一細胞類型(對突變敏感)重編程為第二細胞類型(抗突變)。 本文中提供治療視網膜變性之方法。視網膜變性包含多種疾病,諸如色素性視網膜炎、黃斑變性及青光眼。方法可包含將視網膜細胞自桿狀感光體細胞類型重編程為錐狀感光體細胞類型,包含使視網膜細胞與以下接觸:與本文中所揭示之基因之靶位點雜交之嚮導RNA,其中該基因編碼有助於細胞之夜間或色彩視覺功能之蛋白質;及使基因之股在靶位點處裂解之Cas核酸酶,其中裂解鏈修飾基因之表現使得視網膜細胞可不再執行夜間或色彩視覺功能,藉此將視網膜細胞重編程為錐狀感光體細胞類型。錐狀感光體細胞類型可能夠向個體提供光視覺。基因可選自NRL、NR2E3、GNAT1、ROR β、OTX2、CRX及THRB。基因可為NRL。基因可為NR2E3。 本文中提供治療視網膜變性之方法。視網膜變性包含多種疾病,諸如色素性視網膜炎、黃斑變性及青光眼。方法可包含將視網膜細胞自第一細胞類型重編程為第二細胞類型。第一細胞類型可為視桿細胞。第一細胞類型可為除視桿細胞或視錐細胞外的細胞。第一細胞類型可為神經元。第一細胞類型可為中間神經元。第一細胞類型可為神經元幹細胞或神經元前驅體細胞(具有分化成神經元細胞之能力的多能或多能性細胞)。使用諸如中間神經元之細胞或除視桿細胞外之細胞之優勢在於此等方法可用於將視線提供至已經完全缺失視桿細胞及視錐細胞受體兩者之末期RP患者。第二細胞類型可為視錐細胞。第二細胞類型可為中間細胞。中間細胞可為已經如本文中所描述之重編程之細胞(例如,經Cas核酸酶及嚮導RNA或RNAi治療)。中間細胞可為視桿細胞,其中視桿細胞基因表現已經下調。視桿細胞基因表現之下調可減小視桿細胞特異性突變之效應。如本文所使用之「視桿細胞特異性突變」通常係指影響視桿細胞功能及表現型之基因之突變。換言之,視桿細胞可對視桿細胞細胞突變敏感。此類細胞可提供組織結構載體以保持正常架構及功能。此等細胞亦可分泌對維持內因性視錐細胞細胞之生長及存活關鍵的營養因子。 方法可包含將視網膜細胞自桿狀感光體細胞類型重編程為多能細胞類型,包含使視網膜細胞與以下接觸:與本文中所揭示之基因之靶位點雜交之嚮導RNA,其中該基因編碼有助於細胞之夜間或色彩視覺功能之蛋白質;及使基因之股在靶位點處裂解之Cas核酸酶,其中裂解鏈修飾基因之表現使得視網膜細胞可不再執行夜間或色彩視覺功能,藉此將視網膜細胞重編程為多能細胞類型。多能細胞類型可為多能視網膜祖細胞,意指當放置於視網膜中及/或經受視網膜之環境刺激時可能發育成視桿細胞或視錐細胞之細胞。多能細胞類型可為介於視錐細胞與視桿細胞中間的細胞類型。介於視錐細胞與視桿細胞中間之細胞類型可為視網膜神經節多能細胞。在正常視網膜發育過程中,視網膜神經節多能細胞將分化成視錐細胞或視桿細胞。基因可選自NRL、NR2E3、GNAT1、ROR β、OTX2、CRX及THRB。基因可為NRL。基因可為NR2E3。 本文中提供治療癌症之方法。藉助於非限制性實例,癌症可包含結腸癌、B細胞淋巴瘤、神經膠母細胞瘤、視網膜母細胞瘤及乳癌。方法可包含將癌細胞自惡性細胞類型重編程為良性細胞類型,其包含使該癌細胞與以下接觸:與本文中所揭示之基因之靶位點雜交之嚮導RNA,其中基因編碼有助於細胞之增殖之蛋白質;及使基因之股在靶位點處裂解之Cas核酸酶,其中裂解該鏈修飾基因之表現使得癌細胞可不再異常激增,藉此將癌細胞重編程為良性細胞類型。藉助於非限制性實例,第一細胞類型可為結腸癌細胞,第二細胞類型可為良性腸細胞或良性結腸細胞,且基因可選自APC、MYH1、MYH2、MYH3、MLH1、MSH2、MSH6、PMS2、EPCAM、POLE1、POLD1、NTHL1、BMPR1A、SMAD4、PTEN及STK11。並且,藉助於非限制性實例,第一細胞類型可為惡性B細胞,第二細胞類型可為良性巨噬細胞,且基因可為PU.1、CD19、CD20、CD34、CD38、CD45或CD78。第一細胞類型可為惡性B細胞,第二細胞類型可為良性巨噬細胞,且基因可為C-MYC、CCND1、BCL2、BCL6、TP53、CDKN2A、CREBBP或EP300。第二細胞類型可比第一細胞類型表現更高CD68、CD11b、F480、Cd11c或Ly6g之RNA/蛋白質含量。亦藉助於非限制性實例,第一細胞類型可為雌激素受體正及/或Her2正乳癌細胞,第二細胞類型可為雌激素受體負及/或雌激素受體負乳癌細胞,且基因可選自雌激素受體基因、Her2基因及其組合。 本文中所揭示之治療癌症之方法可包含修飾該基因使得癌細胞失去轉移之能力。方法可包含修飾該基因使得癌細胞失去促進腫瘤血管形成之能力。RNA 干擾 ( RNAi ) 本文中提供投與能夠經由RNA干擾抑制基因在細胞中之表現之反義寡核苷酸的方法。抑制該基因可導致細胞自第一細胞類型轉換為第二細胞類型。第一細胞類型或細胞類型可為本文中所揭示之任何細胞類型。在一些實施例中,反義寡核苷酸包含藉由天然產生之DNA酶提供對分解或退化之抗性之修飾。在一些實施例中,修飾為使用固相胺基磷酸酯方法在其合成期間對反義寡核苷酸之磷酸二酯主鏈之修飾。此將有效地顯現對反義寡核苷酸最低效的DNA酶形式。 在一些實施例中,反義寡核苷酸包含在兩種方法中最有效地促進或增強反義寡核苷酸之攝取的遞送系統。在一些實施例中,遞送系統包含易於由人類細胞吸收之脂質體或脂質容器。在一些實施例中,遞送系統為由tat 蛋白質介導之系統,該系統允許經由細胞膜容易地傳送類似寡核苷酸之大分子。 在一些實施例中,反義寡核苷酸為短髮夾RNA (shRNA)。此等RNA鏈藉由以由相關基因產生之mRNA為目標而使基因沉默。在一些實施例中,shRNA可經由電腦軟體自訂設計且使用設計模板商業地製造。在一些實施例中,使用細菌質體、細菌DNA之環形鏈或攜帶病毒載體之病毒來遞送shRNA。 在一些實施例中,反義寡核苷酸以由NR2E3基因編碼之RNA為目標。在一些實施例中,反義寡核苷酸以由NRL基因編碼之RNA為目標。在一些實施例中,反義寡核苷酸以由編碼視紫蛋白之基因編碼的RNA為目標。在一些實施例中,反義寡核苷酸以由視紫質基因編碼之RNA為目標。 在一些實施例中,siRNA之長度在約18個核苷酸與約30個核苷酸之間。在一些實施例中,siRNA之長度為18個核苷酸。在一些實施例中,siRNA之長度為19個核苷酸。在一些實施例中,siRNA之長度為20個核苷酸。在一些實施例中,siRNA之長度為21個核苷酸。在一些實施例中,siRNA之長度為22個核苷酸。在一些實施例中,siRNA之長度為23個核苷酸。在一些實施例中,siRNA之長度為24個核苷酸。在一些實施例中,siRNA之長度為25個核苷酸。基因編輯 本文中提供用於基因編輯細胞中之基因之方法,其中基因編輯導致細胞自第一細胞類型轉換為第二細胞類型。藉助於非限制性實例,方法可用於治療視網膜病況。本文中進一步提供細胞,其中細胞中之基因由本文中所揭示之方法修飾。藉助於非限制性實例,細胞為視網膜之細胞,亦被稱作視網膜細胞。在一些實施例中,本文中所揭示之方法及細胞利用基因組編輯來修改細胞中之靶基因,以用於治療視網膜病況。在一些實施例中,本文中所揭示之方法及細胞利用核酸酶或核酸酶系統。在一些實施例中,核酸酶系統包含定點核酸酶。合適的核酸酶包括但不限於:CRISPR相關聯(Cas)蛋白質或Cas核酸酶,其包括I型CRISPR相關聯(Cas)多肽、II型CRISPR相關聯(Cas)多肽、III型CRISPR相關聯(Cas)多肽、IV型CRISPR相關聯(Cas)多肽、V型CRISPR相關聯(Cas)多肽及VI型CRISPR相關聯(Cas)多肽;鋅指核酸酶(ZFN);轉錄活化因子樣效應物核酸酶(transcription activator-like effector nucleases,TALEN);大範圍核酸酶;RNA結合蛋白(RBP);CRISPR相關聯RNA結合蛋白;重組酶;翻轉酶;轉位酶;阿爾古(Argonaute)蛋白質;其任何衍生物;其任何變體;及其任何片段。在一些實施例中,本文中所揭示之定點核酸酶可經修飾以便產生能夠在不切割之情況下位點特異性結合靶序列的催化死亡之核酸酶,藉此阻斷轉錄並減小靶基因表現。 在一些實施例中,本文中所揭示之方法及細胞利用核酸嚮導之核酸酶系統。在一些實施例中,本文中所揭示之方法及細胞將成簇規律間隔短回文重複序列(CRISPR)、CRISPR相關聯(Cas)蛋白質系統用於修飾核酸分子。在一些實施例中,本文中所揭示之CRISPR/Cas系統包含Cas核酸酶及嚮導RNA。在一些實施例中,本文中所揭示之CRISPR/Cas系統包含Cas核酸酶、嚮導RNA及修復模板。嚮導RNA將Cas核酸酶引導至靶序列,其中Cas核酸酶裂解或鏈裂該靶序列,藉此產生裂解位點。在一些實施例中,Cas核酸酶產生經由非同源末端連接(NHEJ)修復之雙鏈斷裂(DSB)。然而,在一些實施例中,非介導或非引導NHEJ介導之DSB修復引起產生非所要後果之開放閱讀框架之破裂。為了避開此等問題,在一些實施例中,考慮到最終編輯之基因序列之對照,本文中所揭示之方法包含待插入於裂解位點處之修復模板之用途。修復模板之此用途可被稱為同源定向修復(HDR)。在一些實施例中,本文中所揭示之方法及細胞利用同源非依賴性靶向整合(HITI)。HITI可允許分裂及未分裂細胞兩者中之活體外有效靶向基因嵌入,且更重要地,允許活體內目標轉基因插入於產後哺乳動物之有絲分裂後細胞(例如大腦)。 在一些實施例中,修復模板包含對應於靶基因之野生型序列。在一些實施例中,修復模板包含待傳遞至裂解位點之所要序列。在一些實施例中,所要序列並不是野生型序列。在一些實施例中,所要序列等同於除一或多個經編輯核苷酸之外的靶序列以校正或更改靶基因之表現/活性。舉例而言,所要序列可包含相較於含有單核苷酸多形現象之靶序列之單核苷酸差異,其中單個核苷酸差異為對將野生型表現/活性或所改變表現/活性復原至靶基因之單核苷酸多態性之核苷酸的取代。 任何合適之CRISPR/Cas系統可用於本文中所揭示之方法及組合物。CRISPR/Cas系統可稱為使用多種定名系統。例示性命名系統提供於Makarova,K.S.等人之「An updated evolutionary classification of CRISPR-Cas systems」Nat Rev Microbiol(2015) 13:722至736及Shmakov,S.等人之「Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems」Mol Cell(2015) 60:1至13。CRISPR/Cas系統可為I型、II型、III型、IV型、V型、VI型系統或任何其他合適之CRISPR/Cas系統。如本文所使用之CRISPR/Cas系統可為1類、2類或任何其他適當分類之CRISPR/Cas系統。1類CRISPR/Cas系統可使用多個Cas蛋白質之複合物以影響調節。1類CRISPR/Cas系統可包含例如I型(例如,I、IA、IB、IC、ID、IE、IF、IU)、III型(例如,III、IIIA、IIIB、IIIC、IIID)及IV型(例如,IV、IVA、IVB) CRISPR/Cas型。2類CRISPR/Cas系統可使用單個大Cas蛋白質以影響調節。2類CRISPR/Cas系統可包含例如II型(例如,II、IIA、IIB)及V型CRISPR/Cas型。CRISPR系統可彼此互補,及/或可反式提供功能單元以促進CRISPR基因座靶向。 Cas蛋白質可為I型、II型、III型、IV型、V型或VI型Cas蛋白質。Cas蛋白質可包含一或多個結構域。結構域之非限制性實例包括嚮導核酸識別及/或結合結構域、核酸酶結構域(例如DNA酶或RNA酶結構域、RuvC、HNH)、DNA結合結構域、RNA結合結構域、解螺旋酶結構域、蛋白質-蛋白質相互作用結構域及二聚結構域。嚮導核酸識別及/或結合結構域可與嚮導核酸相互作用。核酸酶結構域可包含用於核酸裂解之催化活性。核酸酶結構域可不具有催化活性以防止核酸裂解。Cas蛋白質可為稠合至其他蛋白質或多肽之嵌合Cas蛋白質。Cas蛋白質可為各種Cas蛋白質之嵌合體,例如,包含來自不同Cas蛋白質之結構域。 Cas蛋白質之非限制性實例包括c2c1、C2c2、c2c3、Casl、CaslB、Cas2、Cas3、Cas4、Cas5、Cas5e (CasD)、Cas6、Cas6e、Cas6f、Cas7、Cas8a、Cas8al、Cas8a2、Cas8b、Cas8c、Cas9(Csnl或Csxl2)、Cas10、Cas10d、CaslO、CaslOd、CasF、CasG、CasH、Cpf1、Csyl、Csy2、Csy3、Csel (CasA)、Cse2 (CasB)、Cse3 (CASE)、Cse4 (CasC)、Cscl、Csc2、Csa5、Csn2、Csm2、Csm3、Csm4、Csm5、Csm6、Cmrl、Cmr3、Cmr4、Cmr5、Cmr6、Csbl、Csb2、Csb3、Csxl7、Csxl4、CsxlO、Csxl6、CsaX、Csx3、Csxl、Csxl5、Csfl、Csf2、Csf3、Csf4及Cul966,及其同系物或經修飾形式。 Cas蛋白質可來自任何合適之生物體。非限制性實例包括化膿性鏈球菌、嗜熱鏈球菌、鏈球菌屬、金黃色葡萄球菌、達松維爾擬諾卡氏菌(Nocardiopsis dassonvillei)、原始鏈黴菌、產綠色鏈黴菌、產綠色鏈黴菌、粉紅鏈孢囊菌、粉紅鏈孢囊菌、嗜酸嗜熱菌、假蕈狀芽孢桿菌、砷還原芽孢桿菌、西伯利亞微小桿菌、戴白氏乳桿菌、唾液乳桿菌、海洋微顫菌、伯克霍爾德氏細菌、耐降解極低單孢菌、單孢菌屬、海洋固氮藍藻、藍桿藻屬、銅綠微囊藻屬、綠膿桿菌、藍細菌屬、阿拉伯糖醋鹽桿菌、嗜熱細菌、農桿菌菌株、金礦菌、肉毒梭菌、艱難梭菌、大芬戈爾德菌、嗜熱鹽鹼厭氧菌屬、丙酸降解菌、嗜酸硫桿菌、嗜酸氧化亞鐵硫桿菌、酒色異著色菌屬、海桿菌屬、亞硝化球菌、亞硝化桿菌、河豚毒素假交替單胞菌屬、消旋纖線桿菌、伊夫氏甲烷鹽菌、多變魚腥藻、泡沫節球藻、念珠藻屬、極大節旋藻、鈍頂節旋藻、鈍頂節旋藻屬、鞘絲藻屬、原型微鞘藻、顫藻屬、不動桿菌屬、非洲高熱桿菌、海洋藍細菌、沙氏纖毛菌及新兇手弗朗西斯氏菌。在一些態樣中,生物體為化膿性鏈球菌(S. pyogenes)。在一些態樣中,生物體為金黃色葡萄球菌(S. aureus)。在一些態樣中,生物體為嗜熱鏈球菌(S. thermophilus)。 Cas蛋白質可來源於多種細菌物種,包括但不限於:非典型範永氏球菌、具核梭桿菌、齦溝產線菌、抗口臭致病菌、靈巧糞球菌、齒垢密螺旋體、杜爾登尼嗜腖菌、光岡索烴桿菌、變異鏈球菌、無害李氏菌、偽中間葡萄球菌、腸道胺基酸球菌屬、齒齦歐氏菌、北原酒球菌、兩岐雙岐桿菌、鼠李糖乳桿菌、加氏乳桿菌、大芬戈爾德菌、移動黴漿菌、雞敗血性黴漿菌、綿羊肺炎黴漿菌、犬黴漿菌、滑液囊黴漿菌、直腸真桿菌、嗜熱鏈球菌、細長真桿菌、棒狀乳桿菌亞種、多營養泥桿菌、白色瘤胃球菌、阿克馬薩費馬辛拉菌、解纖維熱酸菌、龍根雙叉桿菌、齒雙叉桿菌、白喉棒狀桿菌、微小艾盧微菌、碳源硝化桿菌、球螺旋菌、產琥珀酸絲狀桿菌亞種、脆弱擬桿菌、黃褐二氧化碳嗜纖維菌屬、沼澤紅假單胞菌屬、彩虹普雷沃菌、棲瘤胃普雷沃菌、柱狀黃桿菌、少食胞菌、深紅紅螺菌、海洋候選桿菌、愛勝蚓蟲腎桿菌屬、丁香羅爾斯頓菌、斯波玫瑰桿菌、固氮螺旋菌屬、漢堡硝化桿菌、慢生根瘤菌屬、產琥珀酸沃廉菌屬、空腸彎曲桿菌亞種、鼬鼠螺旋桿菌、蠟樣芽胞桿菌、伊部勒斯食酸菌屬、產氣莢膜梭菌、食清潔劑細小棒菌、腸道羅斯氏菌、奈瑟氏腦膜炎菌、多殺性巴氏桿菌亞種、華德薩特菌、變形桿菌、嗜肺性退伍軍人桿菌、人糞便帕薩特菌、產琥珀酸沃廉菌屬及新兇手弗朗西斯氏菌。在此情況下,術語「衍生」定義為自天然產生之多種細菌物種修飾以保持天然產生之多種細菌物種之相當大部分或相當大同源性。相當大部分可為至少10個連續核苷酸,至少20個連續核苷酸,至少30個連續核苷酸,至少40個連續核苷酸,至少50個連續核苷酸,至少60個連續核苷酸,至少70個連續核苷酸,至少80個連續核苷酸,至少90個連續核苷酸或至少100個連續核苷酸。相當大同源性可為至少50%同源,至少60%同源,至少70%同源,至少80%同源,至少90%同源,或至少95%同源。所衍生物種可經修飾,同時保持天然產生之變體之活性。 在一些實施例中,藉由本文中所描述之方法及細胞所利用之CRISPR/Cas系統為II型CRISPR系統。在一些實施例中,II型CRISPR系統包含修復模板以修飾核酸分子。II型CRISPR系統已描述於細菌化膿性鏈球菌中,其中Cas9及兩個非編碼小RNA (前crRNA及tracrRNA (反活化CRISPR RNA))共同用於以序列特異性方式靶向及降低相關核酸分子(見Jinek等人「A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity」,科學337(6096):816至821 (2012年8月,電子版2012年6月28日))。在一些實施例中,兩個非編碼小RNA經連接以建立單個核酸分子,被稱作嚮導RNA。 在一些實施例中,本文中所揭示之方法及細胞用途嚮導核酸。嚮導核酸係指可與另一核酸雜交之核酸。嚮導核酸可為RNA。嚮導核酸可為DNA。為DNA之嚮導核酸可比嚮導RNA更穩定。嚮導核酸可經編程以鍵結到尤其核酸位點之序列。待靶向之核酸或靶核酸可包含核苷酸。嚮導核酸可包含核苷酸。靶核酸之一部分可與嚮導核酸之一部分互補。嚮導核酸可包含聚核苷酸鏈且可被稱作「單個嚮導核酸」(亦即「單個嚮導核酸」)。嚮導核酸可包含兩個聚核苷酸鏈且可被稱作「雙嚮導核酸」(亦即「雙嚮導核酸」)。若未特別指出,術語「嚮導核酸」為包括性的,參考單個嚮導核酸及雙嚮導核酸。 嚮導核酸可包含可被稱作「嚮導片段」或「嚮導序列」之片段。嚮導核酸可包含可被稱作「蛋白質結合片段」或「蛋白質結合序列」之片段。 嚮導核酸可包含一或多個修飾(例如,鹼基修飾、主鏈修飾)以提供具有新的或增強型特徵(例如改良之穩定性)之核酸。嚮導核酸可包含核酸親和力標籤。嚮導核酸可包含核苷。核苷可為鹼基-糖組合。核苷之鹼基部分可為雜環鹼基。兩個最常見類別之此類雜環鹼基為嘌呤及嘧啶。核苷酸可為進一步包含共價鏈接到核苷之糖部分之磷酸基團的核苷。對於包括呋喃戊醣基糖之彼等核苷,磷酸基團可鏈接到糖之2'、3'或5'羥基部分。在形成嚮導核酸中,磷酸基團可將相鄰核苷共價鏈結至彼此以形成線性聚合化合物。之後,此線性聚合化合物之相應末端可進一步鍵合以形成環形化合物;然而,線性化合物通常為合適的。另外,線性化合物可具有內部核苷酸鹼基互補性,且可因此以完全或部分產生雙鏈化合物之方式摺疊。在嚮導核酸內,磷酸基團通常被稱作形成嚮導核酸之核苷間主鏈。嚮導核酸之鍵或主鏈可為3'至5'磷酸二酯鍵。 嚮導核酸可包含經修飾主鏈及/或經修飾核苷間鍵。經修飾主鏈可包含將保留主鏈中之磷原子的彼等主鏈及並不具有主鏈中之磷原子的彼等主鏈。 其中含有磷原子之合適的經修飾嚮導核酸主鏈可包括(例如)硫代磷酸酯、對掌性硫代磷酸酯、二硫代磷酸酯、磷酸三酯、胺基烷基磷酸三酯、甲基膦酸酯及諸如3'-伸烷基膦酸酯、5'-伸烷基膦酸酯之其他烷基膦酸酯、對掌性膦酸酯、亞膦酸酯、包括3'-胺基磷酸酯及胺基烷基胺基磷酸酯之胺基磷酸酯、二胺基磷酸酯、硫羰基胺基磷酸酯、硫羰基烷基膦酸酯、硫羰基烷基磷酸三酯、硒代磷酸鹽及具有正常3'-5'鍵、2'-5'鍵類似物之硼烷磷酸酯,及具有反相極性之彼等磷酸脂,其中一或多個核苷酸間鍵為3'至3'、5'至5'或2'至2'鍵。具有反相極性之合適的嚮導核酸可在3'-最大程度核苷酸間鍵處包含單個3'至3'鍵(亦即核鹼基缺失或在其適當位置具有羥基之單個反相核苷殘留物)。亦可包括各種鹽(例如,氯化鉀或氯化鈉)、混合鹽及自由酸形式。 嚮導核酸可包含一或多個硫代磷酸酯及/或雜原子核苷間鍵,特定而言-CH2-NH-O-CH2-、-CH2-N(CH3)-O-CH2-(亦即亞甲基(甲基亞胺基)或MMI主鏈)、-CH2-O-N(CH3)-CH2-、-CH2-N(CH3)-N(CH3)-CH2-及-O-N(CH3)-CH2-CH2-(其中原生磷酸二酯核苷酸間鍵表示為-O-P(=O)(OH)-O-CH2-)。 嚮導核酸可包含嗎啉基主鏈結構。舉例而言,嚮導核酸可包含6員嗎啉基環,而不是核糖環。在此等實施例中之一些中,二胺基磷酸酯或其他非磷酸二酯核苷間鍵代替磷酸二酯鍵。 嚮導核酸可包含由短鏈烷基或環烷基核苷間鍵、混合雜原子及烷基或環烷基核苷間鍵或一或多個短鏈雜原子或雜環核苷間鍵形成之聚核苷酸主鏈。此等主鏈可包括具有(N-嗎啉基)鍵(部分由核苷之糖部分形成);矽氧烷主鏈;硫基、亞碸及碸主鏈;甲醯基及硫代甲醯基主鏈;亞甲基甲醯基及硫代甲醯基主鏈;核乙醯基主鏈;含有烯烴之主鏈;胺基磺酸酯主鏈;亞甲基亞胺基及亞甲基肼基主鏈;磺酸酯及磺醯胺主鏈;醯胺主鏈;及具有混合N、O、S及CH2組成部分之彼等主鏈。 嚮導核酸可包含核酸模擬物。術語「模擬物」意欲包括其中僅呋喃醣環或呋喃醣環及核苷酸間鍵兩者被非呋喃醣基團替換的聚核苷酸,僅呋喃醣環之替代物亦可被稱作糖替代物。雜環鹼基部分或經修飾雜環鹼基部分可維持以用於與適合之靶核酸雜交。一個此類核酸可為肽核酸(PNA)。在PNA中,聚核苷酸之糖主鏈可由含有醯胺之主鏈替換,特定而言胺基乙基甘胺酸主鏈。核苷酸可保留且直接或間接結合至主鏈之醯胺部分的氮雜氮原子。PNA化合物中之主鏈可包含為PNA產生含有醯胺之主鏈的兩個或多於兩個鍵聯胺基乙基甘胺酸單元。雜環鹼基部分可直接或間接結合至主鏈之醯胺部分的氮雜氮原子。 嚮導核酸可包含具有連接至嗎啉基環之雜環鹼基之鍵聯嗎啉基單元(亦即嗎啉基核酸)。鍵聯基團c可鍵結嗎啉基核酸中之嗎啉基單體單元。非離子嗎啉基基寡聚化合物可與細胞蛋白質更少非所要相互作用。嗎啉基類聚核苷酸可為嚮導核酸之非離子模擬物。嗎啉基類內之多種化合物可使用不同鍵聯基團連接。另一種類之聚核苷酸模擬物可被稱為環己烯基核酸(CeNA)。通常存在於核酸分子中之呋喃醣環可由環己烯基環替換。CeNA DMT保護之胺基磷酸酯單體可經製備及用於使用胺基磷酸酯化學方法之寡聚化合物合成。CeNA單體併入核酸鏈可增大DNA/RNA混合體之穩定性。CeNA寡腺苷酸可與和原生複合物類似穩定性之核酸補體形成複合物。另一修飾可包括其中2'-羥基鍵聯至糖環之4'碳原子藉此形成2'-C、4'-C-甲醛鍵藉此形成雙環糖部分之鎖核酸(LNA)。鍵可為基團橋接2'氧原子及4'碳原子之亞甲基(-CH2-),其中n為1或2。LNA及LNA類似物可顯示與互補核酸的極高雙鏈體熱穩定性(Tm=+3至+10℃),穩定性朝向3'-核酸外切酶分解及良好可溶性特性。 嚮導核酸可包含一或多個取代糖部分。合適的聚核苷酸可包含選自以下之糖取代基:OH;F;O-、S-或N-烷基;O-、S-或N-烯基;O-、S-或N-炔基;或O-烷基-O-烷基,其中烷基、烯基及炔基可為經取代或未經取代之C1至C10烷基或C2至C10烯基及炔基。尤其合適的為O((CH2)nO) mCH3、O(CH2)nOCH3、O(CH2)nNH2、O(CH2)nCH3、O(CH2)nONH2及O(CH2)nON((CH2)nCH3)2,其中n及m為自1至約10。糖取代基可選自:C1至C10低碳數烷基、經取代低碳數烷基、烯基、炔基、烷芳基、芳烷基、O-烷芳基或O-芳烷基、SH、SCH3、OCN、Cl、Br、CN、CF3、OCF3、SOCH3、SO2CH3、ONO2、NO2、N3、NH2、雜環烷基、雜環烷芳基、胺基烷胺基、聚烷基胺基、經取代矽烷基、RNA裂解基團、報導基團、嵌入劑、用於改良嚮導核酸之藥代動力學特性之基團,或用於改良嚮導核酸之藥力學特性之基團,及具有類似特性之其他取代基。合適之修飾可包括2'-甲氧基乙氧基(2'-O-CH2 CH2OCH3,亦稱為2'-O-(2-甲氧基乙基)或2'-MOE,亦即烷氧基烷氧基)。其他合適之修飾可包括2'-二甲基胺基氧基乙氧基,(亦即O(CH2)2ON(CH3)2基團,亦稱為2'-DMAOE),及2'-二甲基胺基乙氧基乙氧基(亦稱為2'-O-二甲基-胺基-乙氧基-乙基或2'-DMAEOE),亦即,2'-O-CH2-O-CH2-N(CH3)2。 其他合適之糖取代基可包括甲氧基(-O-CH3)、胺基丙氧基(--O CH2 CH2 CH2NH2)、烯丙基(-CH2-CH=CH2)、-O-烯丙基(--O--CH2-CH=CH2)及氟基(F)。2'-糖取代基可處於阿糖(上)位置或核糖(下)位置。合適之2'-阿糖修飾為2'-F。類似修飾亦可在寡聚化合物上之其他位置完成,特定而言,3'終端核苷上或2'-5'鍵聯核苷酸之糖之3'位置及5'終端核苷酸之5'位置。寡聚化合物亦可具有糖模擬物(諸如環丁基部分)而不是呋喃戊醣基糖。 嚮導核酸亦可包括核鹼基(常常被簡單地稱作「鹼基」)修飾或取代基。如本文所使用,「未修飾」或「天然」核鹼基可包括嘌呤鹼基,(例如腺嘌呤(A)及鳥嘌呤(G)),及嘧啶鹼基(例如胸(腺)嘧啶(T)、胞嘧啶(C)及尿嘧啶(U))。經修飾之核鹼基可包括其他合成及天然核鹼基,諸如5-甲基胞嘧啶(5-me-C)、5-羥基甲基胞嘧啶、黃嘌呤、次黃嘌呤、2-胺基腺嘌呤、腺嘌呤及鳥嘌呤之6-甲基及其他烷基衍生物、腺嘌呤及鳥嘌呤之2-丙基及其他烷基衍生物、2-硫尿嘧啶、2-硫胸腺嘧啶及2-硫胞嘧啶、5-鹵基尿嘧啶及胞嘧啶、5-丙炔基(-C=C-CH3)尿嘧啶及胞嘧啶及嘧啶鹼基之其他炔基衍生物、6-偶氮尿嘧啶、胞嘧啶及胸腺嘧啶、5-尿嘧啶(假尿嘧啶)、4-硫尿嘧啶、8-鹵基、8-胺基、8-硫醇、8-硫代烷基、8-羥基及其他8-取代之腺嘌呤及鳥嘌呤、5-鹵基(特定而言,5-溴、5-三氟甲基及其他5-取代之尿嘧啶及胞嘧啶)、7-甲基鳥嘌呤及7-甲基腺嘌呤、2-F-腺嘌呤、2-胺基腺嘌呤、8-氮鳥嘌呤及8-氮雜腺嘌呤、7-去氮鳥嘌呤及7-去氮雜腺嘌呤及3-去氮鳥嘌呤及3-去氮雜腺嘌呤。經修飾核鹼基可包括三環嘧啶,諸如啡噁嗪胞嘧啶核苷(1H-嘧啶并(5,4-b)(1,4)苯并噁嗪-2(3H)-酮)、啡噻嗪胞嘧啶核苷(1H-嘧啶并(5,4-b)(1,4)苯并噻嗪-2(3H)-酮);G-夾,諸如經取代啡噁嗪胞嘧啶核苷(例如9-(2-胺基乙氧基)-H-嘧啶并(5,4-(b)(1,4)苯并噁嗪-2(3H)-酮)、氮雜芴胞嘧啶核苷(2H-嘧啶并(4,5-b)吲哚-2-酮)、吡啶并吲哚胞嘧啶核苷(氫(3',2':4,5)吡咯并(2,3-d)嘧啶-2-酮)。 雜環鹼基部分可包括其中嘌呤或嘧啶鹼基經其他雜環替換之彼等鹼基,例如,7-去氮-腺嘌呤、7-去氮鳥苷、2-氨基吡啶及2-吡啶酮。核鹼基可用於增大聚核苷酸化合物之結合親和力。此等核鹼基包括5位經取代之嘧啶、6-氮雜嘧啶及N-2、N-6及O-6位經取代之嘌呤,包括2-胺基丙基腺嘌呤、5-丙炔基尿嘧啶及5-丙炔基胞嘧啶。5-甲基胞嘧啶取代基可將核酸雙鏈穩定性增大0.6-1.2℃且可為合適之鹼基取代基(例如,當與2'-O-甲氧基乙基糖修飾結合時)。 嚮導核酸之修飾可包含將嚮導核酸化學鍵合至可增強嚮導核酸之活性、細胞分佈或細胞攝取的一或多個部分或共軛物。此等部分或共軛物可包括共價鍵結至諸如第一羥基或第二羥基之官能基的共軛基團。共軛基團可包括但不限於:嵌入劑、報導分子、多元胺、聚醯胺、聚乙二醇、聚醚、增強寡聚物之藥力學特性之基團及可增強寡聚物之藥代動力學特性之基團。共軛基團可包括但不限於:膽固醇、脂質、磷脂、生物素、吩嗪、葉酸、啡啶、蒽醌、吖啶、螢光素、若丹明、香豆素及染料。增強藥力學特性之基團包括改良攝取,增強對分解之抗性及/或使用靶核酸加強序列特異性雜交的基團。可增強藥物動力學特性之基團包括改良核酸之攝取、分佈、代謝或分泌之基團。共軛部分可包括(但不限於)脂質部分,諸如膽固醇部分、膽酸、硫醚(例如己基-S-三苯甲基硫醇)、硫代膽固醇、脂族鏈(例如十二烷二醇或十一基殘基)、磷脂(例如二-十六烷基-外消旋-甘油或三乙銨1,2-二-O-十六烷基-外消旋-丙三氧基-3-H-磷酸鹽)、多元胺或聚乙二醇鏈或金剛烷乙酸;軟脂基部分;或十八基胺或己基胺基-羰基-羥膽固醇部分。 修飾可包括「蛋白質轉導域」或PTD (亦即細胞穿透肽(CPP))。PTD可指代多肽、聚核苷酸、碳水化合物或促進穿過脂質雙層、微胞、細胞膜、胞器膜或囊泡膜之有機或無機化合物。PTD可連接至另一分子,該另一分子可在小極性分子至較大大分子及/或奈米粒子範圍內,且可有助於分子穿過膜,例如自胞外空間進入胞內空間,或胞溶質至胞器內。PTD可共價鍵連至多肽之胺基端。PTD可共價鍵連至多肽之羧基端。PTD可共價鍵連至核酸。例示性PTD可包括(但不限於)最小肽蛋白質轉導域;包含足以引導進入細胞之多個精胺酸(例如3、4、5、6、7、8、9、10或10至50個精胺酸)之聚精胺酸序列、VP22結構域、果蠅觸角足突變蛋白質轉導域、截短人降鈣素肽、聚離胺酸及運輸蛋白、自3個精胺酸殘基至50個精胺酸殘基之精胺酸均聚物。PTD可為可活化CPP (ACPP)。ACPP可包含經由可裂解連接體連接至匹配的聚陰離子(例如Glu9或「E9」)之多陽離子CPP (例如Arg9或「R9」),這可將淨電荷減小至接近零且從而抑制黏著力且攝入細胞中。連接體裂解之後,聚陰離子可釋放,局部揭露聚精胺酸及其固有黏附性,因此「活化」ACPP以穿過膜。 本發明提供可引導相關聯多肽(例如定點多肽)至靶核酸內之特定靶序列之活動的嚮導核酸。嚮導核酸可包含核苷酸。嚮導核酸可為RNA。嚮導核酸可為DNA。嚮導核酸可包含單個嚮導核酸。嚮導核酸可包含間隔體延伸及/或tracrRNA延伸。間隔體延伸及/或tracrRNA延伸可包含貢獻嚮導核酸額外功能性(例如穩定性)的要素。在一些實施例中,間隔體延伸及tracrRNA延伸為視情況選用之。嚮導核酸可包含間隔體序列。間隔體序列可包含與目標核酸序列雜交之序列。間隔體序列可為嚮導核酸之可變部分。間隔體序列之序列可經基因工程改造以與目標核酸序列雜交。CRISPR重複(亦即在此例示性實施例中稱為最小CRISPR重複)可包含可與tracrRNA序列(亦即在此例示性實施例中稱為最小tracrRNA序列)雜交之核苷酸。最小CRISPR重複及最小tracrRNA序列可互動,該互動分子包含鹼基對雙鏈結構。總之,最小CRISPR重複及最小tracrRNA序列可有助於結合至定點多肽。最小CRISPR重複及最小tracrRNA序列可鍵連在一起以通過單個嚮導連接體形成髮夾結構。3'tracrRNA序列可包含原型間隔體相鄰主結構識別序列。3'tracrRNA序列可與tracrRNA序列之一部分相同或類似。在一些實施例中,3'tracrRNA序列可包含一或多個髮夾。 在一些實施例中,嚮導核酸可包含單個嚮導核酸。嚮導核酸可包含間隔體序列。間隔體序列可包含可與目標核酸序列雜交之序列。間隔體序列可為嚮導核酸之可變部分。間隔體序列可為第一雙鏈之5'。第一雙鏈可包含最小CRISPR重複與最小tracrRNA序列之間的雜交區域。第一雙鏈可間雜有凸出部分。凸出部分可包含不成對的核苷酸。凸出部分可有助於定點多肽對嚮導核酸之補充。凸出部分可跟隨有第一干細胞。第一干細胞可包含連接最小CRISPR重複及最小tracrRNA序列之連接體序列。第一雙鏈之3'端處之最末一對核苷酸可連接到第二連接體序列。第二連接體可包含P結構域。第二連接體可將第一雙鏈鍵合至中tracrRNA。在一些實施例中,中tracrRNA可包含一或多個髮夾區域。舉例而言,中tracrRNA可包含第二幹細胞及第三幹細胞。 在一些實施例中,嚮導核酸可包含雙嚮導核酸結構。類似於單個嚮導核酸結構,雙嚮導核酸結構可包含間隔體延伸、間隔體、最小CRISPR重複、最小tracrRNA序列、3'tracrRNA序列及tracrRNA延伸。然而,雙嚮導核酸可不包含單個嚮導連接體。實際上,最小CRISPR重複序列可包含可與CRISPR重複之部分類似或相同之3'CRISPR重複序列。類似地,最小tracrRNA序列可包含可與tracrRNA之部分類似或相同之5'tracrRNA序列。雙嚮導RNA可經由最小CRISPR重複及最小tracrRNA序列雜交在一起。 在一些實施例中,第一片段(亦即嚮導片段)可包含間隔體延伸及間隔體。嚮導核酸可經由以上所提及之嚮導片段將結合多肽嚮導至靶核酸內之特定核苷酸序列。 在一些實施例中,第二片段(亦即蛋白質結合片段)可包含最小CRISPR重複、最小tracrRNA序列、3'tracrRNA序列及/或tracrRNA延伸序列。嚮導核酸之蛋白質結合片段可與定點多肽互動。嚮導核酸之蛋白質結合片段可包含可彼此雜交之核苷酸之兩個延伸部。蛋白質結合片段之核苷酸可雜交以形成雙股核酸雙鏈。雙股核酸雙鏈可為RNA。雙股核酸雙鏈可為DNA。 在一些情況下,嚮導核酸按5'至3'之次序可包含間隔體延伸、間隔體、最小CRISPR重複、單個嚮導連接體、最小tracrRNA、3'tracrRNA序列及tracrRNA延伸。在一些情況下,嚮導核酸可按任何次序包含tracrRNA延伸、3'tracrRNA序列、最小tracrRNA、單個嚮導連接體、最小CRISPR重複、間隔體及間隔體延伸。 嚮導核酸及定點多肽可形成複合物。嚮導核酸可藉由包含可與靶核酸之序列雜交的核苷酸序列向複合物提供目標特定性。換言之,定點多肽可藉助其與嚮導核酸之至少蛋白質結合片段相關聯而引導至核酸序列。嚮導核酸可引導Cas9蛋白質之活性。嚮導核酸可引導酶未起作用之Cas9蛋白質之活性。 本發明之方法可提供遺傳修飾之細胞。遺傳修飾之細胞可包含外源性嚮導核酸及/或包含編碼嚮導核酸之核苷酸序列的外源性核酸。間隔體延伸序列 間隔體延伸序列可提供穩定性及/或提供嚮導核酸之修飾之位置。間隔體延伸序列可具有約1個核苷酸至約400個核苷酸之長度。間隔體延伸序列可具有超過1、5、10、15、20、25、30、35、40、45、50、60、70、80、90、100、120、140、160、180、200、220、240、260、280、300、320、340、360、380、40、1000、2000、3000、4000、5000、6000、或7000或更多個核苷酸之長度。間隔體延伸序列可具有小於1、5、10、15、20、25、30、35、40、45、50、60、70、80、90、100、120、140、160、180、200、220、240、260、280、300、320、340、360、380、400、1000、2000、3000、4000、5000、6000、7000或更多個核苷酸之長度。間隔體延伸序列之長度可小於10個核苷酸。間隔體延伸序列之長度可在10至30個核苷酸之間。間隔體延伸序列之長度可在30至70個核苷酸之間。 間隔體延伸序列可包含部分(例如穩定性控制序列、內切核糖核酸酶結合序列、核糖核酸酶)。部分可影響核酸靶向之RNA之穩定性。部分可為轉錄終止子片段(亦即轉錄終止序列)。嚮導核酸之部分可具有約10個核苷酸至約100個核苷酸,約10個核苷酸(nt)至約20 nt,約20 nt至約30 nt,約30 nt至約40 nt,約40 nt至約50 nt,約50 nt至約60 nt,約60 nt至約70 nt,約70 nt至約80 nt,約80 nt至約90 nt,或約90 nt至約100 nt,約15個核苷酸(nt)至約80 nt,約15 nt至約50 nt,約15 nt至約40 nt,約15 nt至約30 nt或約15 nt至約25 nt之總長度。部分可為可在真核細胞中起作用之部分。在一些情況下,部分可為可在原核細胞中起作用之部分。部分可為可在真核細胞及原核細胞兩者中起作用之部分。 合適部分之非限制性實例可包括:5'帽(例如7-甲基鳥苷酸帽(m7 G))、核糖開關序列(例如以允許藉由蛋白質及蛋白質複合物之調節之穩定性及/或調節之可行性)、形成dsRNA雙鏈(亦即髮夾)之序列、將RNA靶向至亞細胞位置(例如細胞核、粒線體、葉綠體及類似者)之序列、提供追蹤之修飾或序列(例如至螢光分子之直接共軛、至促進螢光檢測之部分之共軛、允許螢光檢測之序列等),提供用於蛋白質(例如對DNA起作用之蛋白質,包括轉錄活化因子、轉錄抑制因子、DNA甲基轉移酶、DNA去甲基酶、組蛋白乙醯轉移酶、組蛋白去乙醯基酶及類似者)之結合位點之修飾或序列,提供增大、減小及/或可控制穩定性之修飾或序列,或其任何組合。間隔體延伸序列可包含引物結合位點、分子索引(例如條形碼序列)。間隔體延伸序列可包含核酸親和標籤。間隔體 嚮導核酸之嚮導片段可包含可與靶核酸中之序列雜交之核苷酸序列(例如間隔體)。嚮導核酸之間隔體可以序列特異方式經由雜交 (亦即鹼基配對)與靶核酸互動。由此,間隔體之核苷酸序列可變化且可判定靶核酸內的嚮導核酸與靶核酸互動的位置。 間隔體序列可與位於間隔體相鄰主結構(PAM)之5'位置的靶核酸雜交。不同生物體可包含不同PAM序列。舉例而言,在化膿性鏈球菌中,PAM可為包含序列5'-XRR-3'之靶核酸中之序列,其中R可為A或G,其中X為任何核苷酸,且X為由間隔體序列靶向之目標核酸序列之3'。 目標核酸序列可為20個核苷酸。靶核酸可小於20個核苷酸。靶核酸可為至少5、10、15、16、17、18、19、20、21、22、23、24、25、30或更多個核苷酸。靶核酸可至多為5、10、15、16、17、18、19、20、21、22、23、24、25、30或更多個核苷酸。目標核酸序列可為20個鹼基,且接著為PAM之第一核苷酸之5'。舉例而言,在包含5'-NNNNNNNNNNNNNNNNNNNNXRR-3'之序列中,靶核酸可為對應於N'之序列,其中N為任何核苷酸。 可與靶核酸雜交之間隔體之嚮導序列可具有至少約6 nt之長度。舉例而言,可雜交靶核酸之間隔體序列可具有至少約6 nt、至少約10 nt、至少約15 nt、至少約18 nt、至少約19 nt、至少約20 nt、至少約25 nt、至少約30 nt、至少約35 nt或至少約40 nt、約6 nt至約80 nt、約6 nt至約50 nt、約6 nt至約45 nt、約6 nt至約40 nt、約6 nt至約35 nt、約6 nt至約30 nt、約6 nt至約25 nt、約6 nt至約20 nt,約6 nt至約19 nt、約10 nt至約50 nt、約10 nt至約45 nt、約10 nt至約40 nt、約10 nt至約35 nt、約10 nt至約30 nt、約10 nt至約25 nt、約10 nt至約20 nt、約10 nt至約19 nt、約19 nt至約25 nt、約19 nt至約30 nt、約19 nt至約35 nt、約19 nt至約40 nt、約19 nt至約45 nt、約19 nt至約50 nt、約19 nt至約60 nt、約20 nt至約25 nt、約20 nt至約30 nt、約20 nt至約35 nt、約20 nt至約40 nt、約20 nt至約45 nt、約20 nt至約50 nt、或約20 nt至約60 nt之長度。在一些情況下,可雜交靶核酸之間隔體序列之長度可為20個核苷酸。可雜交靶核酸之間隔體之長度可為19個核苷酸。 間隔體序列與靶核酸之間的百分比互補性可為至少約30%、至少約40%、至少約50%、至少約60%、至少約65%、至少約70%、至少約75%、至少約80%、至少約85%、至少約90%、至少約95%、至少約97%、至少約98%、至少約99%或100%。間隔體序列與靶核酸之間的百分比互補可為至多約30%、至多約40%、至多約50%、至多約60%、至多約65%、至多約70%、至多約75%、至多約80%、至多約85%、至多約90%、至多約95%、至多約97%、至多約98%、至多約99%或100%。在一些情況下,間隔體序列與靶核酸之間的百分比互補性可100%超越靶核酸之互補股之靶序列之六個相鄰5'-最大程度核苷酸。在一些情況下,間隔體序列與靶核酸之間的百分比互補性可至少60%超越約20個連續核苷酸。在一些情況下,間隔體序列與靶核酸之間的百分比互補性可100%超越靶核酸之互補股之靶序列之十四個相鄰5'-最大程度核苷酸,且低到0%超過剩餘者。在此情況下,間隔體序列之長度可考慮為14個核苷酸。在一些情況下,間隔體序列與靶核酸之間的百分比互補性可100%超越靶核酸之互補股之靶序列之六個相鄰5'-最大程度核苷酸且低到0%超越剩餘者。在此情況下,間隔體序列之長度可考慮為6個核苷酸。靶核酸可超過約50%、60%、70%、80%、90%或100%與crRNA之種源區域互補。靶核酸可小於約50%、60%、70%、80%、90%或100%與crRNA之種源區域互補。 嚮導核酸之間隔體片段可經修飾(例如藉由遺傳性基因工程改造)以與靶核酸內之任何所要序列雜交。舉例而言,間隔體可經基因工程改造(例如經設計編程)以與包含於癌症、細胞生長、DNA複寫、DNA修復、HLA基因、細胞表面蛋白質、T細胞受體、免疫球蛋白總科基因、腫瘤抑制基因、微RNA基因、長非編碼RNA基因、轉錄因子、珠蛋白、病毒蛋白、粒線體基因及其類似物中之靶核酸中之序列雜交。 可使用電腦程式(例如機器可讀碼)識別間隔體序列。電腦程式可使用諸如預測熔融溫度、二級結構岩層及預測退火溫度、序列一致性、基因組上下文、染色體可及性、% GC、基因組出現率之頻率、甲基化狀態、SNP之存在及類似者之變數。最小 CRISPR 重複序列 最小CRISPR重複序列可為與參考CRISPR重複序列(例如來自化膿性鏈球菌之crRNA)至少約30%、40%、50%、60%、65%、70%、75%、80%、85%、90%、95%或100%序列一致性及/或序列同源性之序列。最小CRISPR重複序列可為與參考CRISPR重複序列(例如來自化膿性鏈球菌之crRNA)具有至多約30%、40%、50%、60%、65%、70%、75%、80%、85%、90%、95%或100%序列一致性及/或序列同源性之序列。最小CRISPR重複可包含可與最小tracrRNA序列雜交之核苷酸。最小CRISPR重複及最小tracrRNA序列可形成成鹼基對雙鏈結構。總之,最小CRISPR重複及最小tracrRNA序列可有助於結合至定點多肽。最小CRISPR重複序列之部分可與最小tracrRNA序列雜交。最小CRISPR重複序列之部分可至少約30%、40%、50%、60%、65%、70%、75%、80%、85%、90%、95%或100%與最小tracrRNA序列互補。最小CRISPR重複序列之部分可至多約30%、40%、50%、60%、65%、70%、75%、80%、85%、90%、95%、或100%與最小tracrRNA序列互補。 最小CRISPR重複序列可具有約6個核苷酸至約100個核苷酸之長度。舉例而言,最小CRISPR重複序列可具有約6個核苷酸(nt)至約50 nt,約6 nt至約40 nt,約6 nt至約30 nt,約6 nt至約25 nt,約6 nt至約20 nt,約6 nt至約15 nt,約8 nt至約40 nt,約8 nt至約30 nt,約8 nt至約25 nt,約8 nt至約20 nt或約8 nt至約15 nt,約15 nt至約100 nt,約15 nt至約80 nt,約15 nt至約50 nt,約15 nt至約40 nt,約15 nt至約30 nt或約15 nt至約25 nt之長度。在一些實施例中,最小CRISPR重複序列之長度約為12個核苷酸。 最小CRISPR重複序列可跨越至少6、7或8個連續核苷酸之一段至少約60%等同於參考最小CRISPR重複序列(例如來自化膿性鏈球菌之野生型crRNA)。最小CRISPR重複序列可跨越至少6、7或8個連續核苷酸之一段至少約60%等同於參考最小CRISPR重複序列(例如來自化膿性鏈球菌之野生型crRNA)。舉例而言,最小CRISPR重複序列可跨越至少6、7或8個連續核苷酸之一段與參考最小CRISPR重複序列至少約65%相同,至少約70%相同,至少約75%相同,至少約80%相同,至少約85%相同,至少約90%相同,至少約95%相同,至少約98%相同,至少約99%相同或100%相同。最小 tracrRNA 序列 最小tracrRNA序列可為具有與參考tracrRNA序列(例如來自化膿性鏈球菌之野生型tracrRNA)至少約30%、40%、50%、60%、65%、70%、75%、80%、85%、90%、95%或100%序列一致性及/或序列同源性的序列。最小tracrRNA序列可為具有與參考tracrRNA序列(例如來自化膿性鏈球菌之野生型tracrRNA)至多約30%、40%、50%、60%、65%、70%、75%、80%、85%、90%、95%或100%序列一致性及/或序列同源性的序列。最小tracrRNA序列可包含可與最小CRISPR重複序列雜交之核苷酸。最小tracrRNA序列及最小CRISPR重複序列可形成成鹼基對雙鏈結構。總之,最小tracrRNA序列及最小CRISPR重複可有助於結合至定點多肽。最小tracrRNA序列之部分可與最小CRISPR重複序列雜交。最小tracrRNA序列之部分可約30%、40%、50%、60%、65%、70%、75%、80%、85%、90%、95%、或100%與最小CRISPR重複序列互補。 最小tracrRNA序列可具有約6個核苷酸至約100個核苷酸之長度。舉例而言,最小tracrRNA序列可具有約6個核苷酸(nt)至約50個nt,約6個nt至約40個nt,約6個nt至約30個nt,約6個nt至約25個nt,約6個nt至約20個nt,約6個nt至約15個nt,約8個nt至約40個nt,約8個nt至約30個nt,約8個nt至約25個nt,約8個nt至約20個nt或約8個nt至約15個nt,約15個nt至約100個nt,約15個nt至約80個nt,約15個nt至約50個nt,約15個nt至約40個nt,約15個nt至約30個nt或約15個nt至約25個nt之長度。在一些實施例中,最小tracrRNA序列之長度約為14個核苷酸。 最小值tracrRNA序列可跨越至少6、7或8個連續核苷酸之一段與參考最小tracrRNA(例如來自化膿性鏈球菌之野生型tracrRNA)序列至少約60%相同。最小值tracrRNA序列可跨越至少6、7或8個連續核苷酸之一段與參考最小tracrRNA(例如來自化膿性鏈球菌之野生型tracrRNA)序列至少約60%相同。舉例而言,最小tracrRNA序列可跨越至少6、7或8個連續核苷酸之一段與參考最小tracrRNA序列至少約65%相同、至少約70%相同、至少約75%相同、至少約80%相同、至少約85%相同、至少約90%相同、至少約95%相同、至少約98%相同、至少約99%相同或100%相同。 最小CRISPR RNA與最小tracrRNA之間的雙鏈可包含雙螺旋狀物。雙鏈之第一股之第一鹼基可為鳥嘌呤。雙鏈之第一股之第一鹼基可為腺嘌呤。最小CRISPR RNA與最小tracrRNA之間的雙鏈可包含至少約1、2、3、4、5、6、7、8、9或10或更多個核苷酸。最小CRISPR RNA與最小tracrRNA之間的雙鏈可包含至多約1、2、3、4、5、6、7、8、9或10或更多個核苷酸。 雙鏈可包含失配。雙鏈可包含至少約1、2、3、4或5或失配。雙鏈可包含至多約1、2、3、4或5或失配。在一些情況下,雙鏈包含不超過2個失配。凸出部分 凸出部分可指代雙鏈內由最小CRISPR重複及最小tracrRNA序列組成之核苷酸之不成對區域。凸出部分在結合至定點多肽中可為重要的。凸出部分可在雙鏈之一側上包含不成對的5'-XXXY-3'及在雙鏈之另一側上包含不成對的核苷酸區域,其中X為任何嘌呤及Y可為可與相反鏈上之核苷酸形成擺動對之核苷酸。 舉例而言,凸出部分可包含凸出部分之最小CRISPR重複股上之不成對嘌呤(例如腺嘌呤)。在一些實施例中,凸出部分可包含凸出部分之最小tracrRNA序列股之不成對5'-AAGY-3',其中Y可為可與最小CRISPR重複鏈上之核苷酸形成擺動對之核苷酸。 雙鏈之第一側(例如最小CRISPR重複側)上之凸出部分可包含至少1、2、3、4或5或更多個不成對核苷酸。雙鏈之第一側(例如最小CRISPR重複側)上之凸出部分可包含至多1、2、3、4或5或更多個不成對核苷酸。雙鏈之第一側(例如最小CRISPR重複側)上之凸出部分可包含1個不成對核苷酸。 雙鏈之第二側(例如雙鏈之最小tracrRNA序列側)上之凸出部分可包含至少1、2、3、4、5、6、7、8、9或10或更多個不成對核苷酸。雙鏈之第二側(例如雙鏈之最小tracrRNA序列側)上凸出部分可包含至多1、2、3、4、5、6、7、8、9或10或更多個不成對核苷酸。雙鏈之第二側(例如,雙鏈之最小tracrRNA序列側)上之凸出部分可包含4個不成對核苷酸。 雙鏈之各股上之不成對核苷酸之不同數字之區域可一起成對。舉例而言,凸出部分可包含來自第一股之5個不成對核苷酸及來自第二股之1個不成對核苷酸。凸出部分可包含來自第一股之4個不成對核苷酸及來自第二股之1個不成對核苷酸。凸出部分可包含來自第一股之3個不成對核苷酸及來自第二股之1個不成對核苷酸。凸出部分可包含來自第一股之2個不成對核苷酸及來自第二股之1個不成對核苷酸。凸出部分可包含來自第一股之1個不成對核苷酸及來自第二股之1個不成對核苷酸。凸出部分可包含來自第一股之1個不成對核苷酸及來自第二股之2個不成對核苷酸。凸出部分可包含來自第一股之1個不成對核苷酸及來自第二股之3個不成對核苷酸。凸出部分可包含來自第一股之1個不成對核苷酸及來自第二股之4個不成對核苷酸。凸出部分可包含來自第一股之1個不成對核苷酸及來自第二股之5個不成對核苷酸。 在一些情況下,凸出部分可包含至少一個擺動對。在一些情況下,凸出部分可包含至多一個擺動對。凸出部分序列可包含至少一個嘌呤核苷酸。凸出部分序列可包含至少3個嘌呤核苷酸。凸出部分序列可包含至少5個嘌呤核苷酸。凸出部分序列可包含至少一個鳥嘌呤核苷酸。凸出部分序列可包含至少一個腺嘌呤核苷酸。P - 結構域 ( P - DOMAIN ) P-結構域可指代可識別靶核酸中之原型間隔體相鄰主結構(PAM)之嚮導核酸之區域。P-結構域可與靶核酸中之PAM雜交。由此,P-結構域可包含與PAM互補之序列。P-結構域可位於3'至最小tracrRNA序列。P-結構域可定位於3'tracrRNA序列(亦即中tracrRNA序列)內。 p開始最小CRISPR重複及最小tracrRNA序列雙鏈中之最末成對之核苷酸之至少約1、2、3、4、5、6、7、8、9、10、15或20或更多個核苷酸3'。P-結構域可開始最小CRISPR重複及最小tracrRNA序列雙鏈中之最末成對之核苷酸之至多約1、2、3、4、5、6、7、8、9或10或更多個核苷酸3'。 P-結構域可包含至少約1、2、3、4、5、6、7、8、9、10、15或20或更多個連續核苷酸。P-結構域可包含至多約1、2、3、4、5、6、7、8、9、10、15或20或更多個連續核苷酸。 在一些情況下,P-結構域可包含CC二核苷酸(亦即兩個連續胞嘧啶核苷酸)。CC二核苷酸可與PAM之GG二核苷酸互動,其中PAM包含5'-XGG-3'序列。 P-結構域可為定位於3'tracrRNA序列(亦即中tracrRNA序列)中之核苷酸序列。P-結構域可包含雙鏈核苷酸(例如一起髮夾雜交型中之核苷酸)。舉例而言,P-結構域可包含與3'tracrRNA序列(亦即中tracrRNA序列)之髮夾雙鏈中之GG二核苷酸雜交之CC二核苷酸。P-結構域之活性(例如嚮導核酸之靶向靶核酸之能力)可由P-DOMAIN之雜交狀態調節。舉例而言,若P-結構域經雜交,則嚮導核酸可不識別其目標。若P-結構域經雜交,則嚮導核酸可識別其目標。 P-結構域可與定點多肽內之P-結構域互動區域互動。P-結構域可與定點多肽中之富含精胺酸之鹼性貼片互動。P-結構域互動區域可與PAM序列互動。P-結構域可包含幹細胞環。P-結構域可包含凸出部分。 3'tracrRNA序列 3'tracrRNA序列可為具有與參考tracrRNA序列(例如來自化膿性鏈球菌之tracrRNA)至少約30%、40%、50%、60%、65%、70%、75%、80%、85%、90%、95%或100%序列一致性及/或序列同源性之序列。3'tracrRNA序列可為具有與參考tracrRNA序列(例如來自化膿性鏈球菌之野生型tracrRNA)至多約30%、40%、50%、60%、65%、70%、75%、80%、85%、90%、95%或100%序列一致性及/或序列同源性的序列。 3'tracrRNA序列可具有約6個核苷酸至約100個核苷酸之長度。舉例而言,3'tracrRNA序列可具有約6個核苷酸(nt)至約50個nt,約6個nt至約40個nt,約6個nt至約30個nt,約6個nt至約25個nt,約6個nt至約20個nt,約6個nt至約15個nt,約8個nt至約40個nt,約8個nt至約30個nt,約8個nt至約25個nt,約8個nt至約20個nt或約8個nt至約15個nt,約15個nt至約100個nt,約15個nt至約80個nt,約15個nt至約50個nt,約15個nt至約40個nt,約15個nt至約30個nt或約15個nt至約25個nt之長度。在一些實施例中,3'tracrRNA序列之長度約為14個核苷酸。 3'tracrRNA序列可跨越至少6、7或8個連續核苷酸之一段與參考3'tracrRNA(例如來自化膿性鏈球菌之野生型3'tracrRNA)序列至少約60%相同。舉例而言,3'tracrRNA序列可跨越至少6、7或8個連續核苷酸之一段與參考3'tracrRNA序列(例如來自化膿性鏈球菌之野生型3'tracrRNA序列)至少約60%相同、至少約65%相同、至少約70%相同、至少約75%相同、至少約80%相同、至少約85%相同、至少約90%相同、至少約95%相同、至少約98%相同、至少約99%相同或100%相同。 3'tracrRNA序列可包含超過一個雙鏈區域(例如髮夾雜交區域)。3'tracrRNA序列可包含兩個雙鏈區域。 3'tracrRNA序列亦可被稱作中tracrRNA。中tracrRNA序列可包含幹細胞環結構。換言之,中tracrRNA序列可包含與第二幹細胞或第三幹細胞不同之髮夾。中tracrRNA(亦即3'tracrRNA)中之幹細胞環結構可包含至少1、2、3、4、5、6、7、8、9、10、15或20或更多個核苷酸。中tracrRNA(亦即3'tracrRNA)中之幹細胞環結構可包含至多1、2、3、4、5、6、7、8、9或10或更多個核苷酸。幹細胞環結構可包含功能性部分。舉例而言,幹細胞環結構可包含適體、核糖核酸酶、蛋白質互動髮夾、CRISPR陣列、內含子及外顯子。幹細胞環結構可包含至少約1、2、3、4或5或更多個功能性部分。幹細胞環結構可包含至多約1、2、3、4或5或更多個功能性部分。 中tracrRNA序列中之髮夾可包含P-結構域。P-結構域可包含髮夾中之雙鏈區域。tracrRNA 延伸序列 tracrRNA延伸序列可提供穩定性及/或提供嚮導核酸之修飾之位置。tracrRNA延伸序列可具有約1個核苷酸至約400個核苷酸之長度。tracrRNA延伸序列可具有超過1、5、10、15、20、25、30、35、40、45、50、60、70、80、90、100、120、140、160、180、200、220、240、260、280、300、320、340、360、380、400或更多個核苷酸之長度。tracrRNA延伸序列可具有約20至約5000或更多個核苷酸之長度。tracrRNA延伸序列可具有超過1000個核苷酸之長度。tracrRNA延伸序列可具有小於1、5、10、15、20、25、30、35、40、45、50、60、70、80、90、100、120、140、160、180、200、220、240、260、280、300、320、340、360、380、400個核苷酸之長度。tracrRNA延伸序列可具有小於1000個核苷酸之長度。tracrRNA延伸序列之長度可小於10個核苷酸。tracrRNA延伸序列之長度可在10至30個核苷酸之間。tracrRNA延伸序列之長度可在30至70個核苷酸之間。 tracrRNA延伸序列可包含部分(例如穩定性控制序列核糖核酸酶、內切核糖核酸酶結合序列)。部分可影響核酸靶向RNA之穩定性。部分可為轉錄終止子片段(亦即轉錄終止序列)。嚮導核酸之部分可具有約10個核苷酸至約100個核苷酸,約10個核苷酸(nt)至約20個nt,約20個nt至約30個nt,約30個nt至約40個nt,約40個nt至約50個nt,約50個nt至約60個nt,約60個nt至約70個nt,約70個nt至約80個nt,約80個nt至約90個nt,或約90個nt至約100個nt,約15個核苷酸(nt)至約80個nt,約15個nt至約50個nt,約15個nt至約40個nt,約15個nt至約30個nt或約15個nt至約25個nt之總長度。部分可為可在真核細胞中起作用之部分。在一些情況下,部分可為可在原核細胞中起作用之部分。部分可為可在真核細胞及原核細胞兩者中起作用之部分。 合適之tracrRNA延伸部分之非限制性實例包括:3'聚腺苷尾、核糖轉換序列(例如以允許藉由蛋白質及蛋白質複合物之調節之穩定性及/或調節之可行性)、形成dsRNA雙鏈(亦即髮夾)之序列、將RNA靶向至亞細胞位置(例如細胞核、粒線體、葉綠體及類似者)之序列、提供追蹤之修飾或序列(例如至螢光分子之直接共軛、至促進螢光檢測之部分之共軛、允許螢光檢測之序列等),提供用於蛋白質(例如對DNA起作用之蛋白質,包括轉錄活化因子、轉錄抑制因子、DNA甲基轉移酶、DNA去甲基酶、組蛋白乙醯轉移酶、組蛋白去乙醯基酶及類似者)之結合位點之修飾或序列,提供增大、減小及/或可控制穩定性之修飾或序列,或其任何組合。tracrRNA延伸序列可包含引物結合位點、分子索引(例如條形碼序列)。在本發明之一些實施例中,tracrRNA延伸序列可包含一或多個親和力標記。單個嚮導核酸 嚮導核酸可為單個嚮導核酸。單個嚮導核酸可為RNA。單個嚮導核酸可包含最小CRISPR重複序列與最小tracrRNA序列之間可被稱作單個嚮導連接體序列之連接體。 單個嚮導核酸之單個嚮導連接體可具有約3個核苷酸至約100個核苷酸之長度。舉例而言,連接體可具有約3個核苷酸(nt)至約90個nt,約3個nt至約80個nt,約3個nt至約70個nt,約3個nt至約60個nt,約3個nt至約50個nt,約3個nt至約40個nt,約3個nt至約30個nt,約3個nt至約20個nt或約3個nt至約10個nt之長度。舉例而言,連接體可具有約3個nt至約5個nt,約5個nt至約10個nt,約10個nt至約15個nt,約15個nt至約20個nt,約20個nt至約25個nt,約25個nt至約30個nt,約30個nt至約35個nt,約35個nt至約40個nt,約40個nt至約50個nt,約50個nt至約60個nt,約60個nt至約70個nt,約70個nt至約80個nt,約80個nt至約90個nt,或約90個nt至約100個nt之長度。在一些實施例中,單個嚮導核酸之連接體在4至40個核苷酸之間。連接體可具有至少約100、500、1000、1500、2000、2500、3000、3500、4000、4500、5000、5500、6000、6500或7000或更多個核苷酸之長度。連接體可具有至多約100、500、1000、1500、2000、2500、3000、3500、4000、4500、5000、5500、6000、6500或7000或更多個核苷酸之長度。 連接體序列可包含功能性部分。舉例而言,連接體序列可包含適體、核糖核酸酶、蛋白質互動髮夾、CRISPR陣列、內含子及外顯子。連接體序列可包含至少約1、2、3、4或5或更多個功能性部分。連接體序列可包含至多約1、2、3、4或5或更多個功能性部分。 在一些實施例中,單個嚮導連接器可將最小CRISPR重複之3'端連接至最小tracrRNA序列之5'端。可替代地,單個嚮導連接器可將tracrRNA序列之3'端連接至最小CRISPR重複之5'端。也就是說,單個嚮導核酸可包含鍵聯至3'蛋白質結合片段之5'DNA結合片段。單個嚮導核酸可包含鍵聯至3'DNA結合片段之5'蛋白質結合片段。 嚮導核酸可包含長度自10至5000個核苷酸之間隔體延伸序列;長度自12至30個核苷酸之間隔體序列,其中間隔體至少50%與靶核酸互補;最小CRISPR重複包含跨越6、7或8個連續核苷酸與來自原核生物(例如化膿性鏈球菌)或噬菌體之crRNA至少60%相同且其中最小CRISPR重複之長度為5至30個核苷酸;最小tracrRNA序列包含跨越6、7或8個連續核苷酸與來自細菌(例如化膿性鏈球菌)之tracrRNA至少60%相同且其中最小tracrRNA序列之長度為5至30個核苷酸;連接最小CRISPR重複與最小tracrRNA且包含自3至5000個核苷酸之長度的連接體序列;包含跨越6、7或8個連續核苷酸與來自原核生物(例如化膿性鏈球菌)或噬菌體之tracrRNA至少60%相同之3'tracrRNA且其中3'tracrRNA包含自10至20個核苷酸之長度,且包含雙鏈區域;及/或包含10至5000個核苷酸長度之tracrRNA延伸,或其任何組合。此嚮導核酸可稱為單個嚮導核酸。 嚮導核酸可包含自10至5000個核苷酸長度之間隔體延伸序列;12至30個核苷酸長度之間隔體序列,其中間隔體至少50%與靶核酸互補;雙鏈包含1)包含跨越6個連續核苷酸與來自原核生物(例如化膿性鏈球菌)或噬菌體之crRNA至少60%相同之最小CRISPR重複且其中最小CRISPR重複之長度為5至30個核苷酸,2)包含跨越6個連續核苷酸與來自細菌(例如化膿性鏈球菌)之tracrRNA至少60%相同之最小tracrRNA序列且其中最小tracrRNA序列之長度為5至30個核苷酸,及3)凸出部分,其中該凸出部分包含雙鏈之最小CRISPR重複鏈上之至少3個不成對核苷酸及雙鏈之最小tracrRNA序列鏈上之至少1個不成對核苷酸;連接最小CRISPR重複與最小tracrRNA之連接體序列且包含自3至5000個核苷酸之長度;包含跨越6個連續核苷酸與來自原核生物(例如化膿性鏈球菌)或噬菌體之tracrRNA至少60%相同之3'tracrRNA,其中該3'tracrRNA包含自10至20個核苷酸之長度且包含雙鏈區域;自包含最小CRISPR重複及最小tracrRNA之雙鏈下游1至5個核苷酸開始之P-結構域包含1至10個核苷酸,包含可與靶核酸中之原型間隔體相鄰主結構雜交之序列,可形成髮夾,且定位於3'tracrRNA區域中;及/或包含10至5000個核苷酸之長度之tracrRNA延伸,或其任何組合。雙嚮導核酸 嚮導核酸可為雙嚮導核酸。雙嚮導核酸可為RNA。雙嚮導核酸可包含兩個獨立核酸分子(亦即聚核苷酸)。雙嚮導核酸之兩個核酸分子中之各者可包含可彼此雜交之一段核苷酸使得兩個核酸分子之互補核苷酸雜交以形成蛋白質結合片段之雙鏈雙鏈。若未另列出,則參看單分子嚮導核酸及分子嚮導核酸兩者,術語「嚮導核酸」可為包括性的。 雙嚮導核酸可包含1)包含自10至5000個核苷酸長度之間隔體延伸序列;12至30個核苷酸長度之間隔體序列,其中間隔體至少50%與靶核酸互補;及包含跨越6個連續核苷酸與來自原核生物(例如化膿性鏈球菌)或噬菌體之crRNA至少60%相同之最小CRISPR重複且其中最小CRISPR重複之長度為5至30個核苷酸;及2)雙嚮導核酸之第二核酸分子可包含最小tracrRNA序列,該最小tracrRNA序列包含跨越6個連續核苷酸與來自原核生物(例如化膿性鏈球菌)或噬菌體之tracrRNA至少60%相同且其中最小tracrRNA序列之長度為5至30個核苷酸;包含跨越6個連續核苷酸與來自細菌(例如化膿性鏈球菌)之tracrRNA至少60%相同之3'tracrRNA且其中該3'tracrRNA包含自10至20個核苷酸之長度,且包含雙鏈區域;及/或包含10至5000個核苷酸長度之tracrRNA延伸,或其任何組合。 在一些情況下,雙嚮導核酸可包含1)包含10至5000個核苷酸長度之間隔體延伸序列之第一核酸分子;12至30個核苷酸長度之間隔體序列,其中間隔體至少50%與靶核酸互補;包含跨越6個連續核苷酸與原核生物(例如化膿性鏈球菌)或噬菌體之crRNA至少60%相同之最小CRISPR重複且其中最小CRISPR重複之長度為5至30個核苷酸,及凸出部分之至少3個不成對核苷酸;及2)雙嚮導核酸之第二核酸分子可包含最小tracrRNA序列,該最小tracrRNA序列包含跨越6個連續核苷酸與來自原核生物(例如化膿性鏈球菌)或噬菌體之tracrRNA至少60%相同且其中最小tracrRNA序列之長度為5至30個核苷酸及凸出部分之至少1個不成對核苷酸,其中凸出部分之1個不成對核苷酸定位於與最小CRISPR重複之3個不成對核苷酸相同之凸出部分中;包含跨越6個連續核苷酸與來自原核生物(例如化膿性鏈球菌)或噬菌體之tracrRNA至少60%相同之3'tracrRNA且其中3'tracrRNA包含10至20個核苷酸之長度,且包含雙鏈區域;自包含最小CRISPR重複及最小tracrRNA之雙鏈下游1至5個核苷酸開始的P-結構域包含1至10個核苷酸,包含可與靶核酸中之原型間隔體相鄰主結構雜交之序列,可形成髮夾,且定位於3'tracrRNA區域中;及/或包含10至5000個核苷酸長度之tracrRNA延伸,或其任何組合。嚮導核酸及定點多肽之複合物 嚮導核酸可與定點多肽(例如核酸嚮導之核酸酶,Cas9)互動,藉此形成複合物。嚮導核酸可將定點多肽嚮導一靶核酸。 在一些實施例中,嚮導核酸可經基因工程改造使得複合物(例如包含定點多肽及嚮導核酸)可在定點多肽之裂解位點外結合。在此情形下,靶核酸可不與複合物互動,且可切除靶核酸(例如不含複合物)。 在一些實施例中,嚮導核酸可經基因工程改造使得複合物可在定點多肽之裂解位點內部結合。在此情形下,靶核酸可與複合物互動,且可結合靶核酸(例如結合至複合物)。 本發明之任何嚮導核酸、本發明之定點多肽、效應子蛋白質、經多工遺傳性靶向劑、供體聚核苷酸、串疊型融合蛋白質、報告子要素、相關基因要素、必須執行本發明之方法之實施例之分裂系統及/或任何核酸或蛋白質分子之組分可重組、純化及/或隔離。 在一些實施例中,方法包含使用CRISPR/Cas系統修飾核酸分子之突變。在一些實施例中,突變為取代、插入或刪除。在一些實施例中,突變為單核苷酸多態性。 在一些情況下,靶序列之長度在10至30個核苷酸之間。在一些情況下,靶序列之長度在15至30個核苷酸之間。在一些情況下,靶序列之長度為約11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29或30個核苷酸。在一些情況下,靶序列之長度為約15、16、17、18、19、20、21或22個核苷酸。 在一些情況下,CRISPR/Cas系統利用Cas9酶或其變體。在一些實施例中,本文中所揭示之方法及細胞利用編碼Cas9酶或其變體之聚核苷酸。在一些實施例中,Cas9為具有兩個主動切割位點之雙鏈核酸酶,雙螺旋狀物之各鏈各一個。在一些情況下,Cas9酶或其變體產生雙鏈斷裂。在一些實施例中,Cas9酶為野生型Cas9酶。在一些實施例中,Cas9酶為天然產生之變型或突變型野生型Cas9酶或化膿性鏈球菌Cas9酶。變體可為與野生型Cas9酶部分同源,同時維持Cas9核酸酶活性之酶。變體可為僅包含野生型Cas9酶之一部分,同時維持Cas9核酸酶活性之酶。在一些實施例中,野生型Cas9酶為化膿性鏈球菌(化膿性鏈球菌) Cas9酶。在一些實施例中,野生型Cas9酶由胺基酸序列給定GenBank ID AKP81606.1表示。在一些實施例中,變體與胺基酸序列給定GenBank ID AKP81606.1至少約95%同源。在一些實施例中,變體與胺基酸序列給定GenBank ID AKP81606.1至少約90%同源。在一些實施例中,變體與胺基酸序列給定GenBank ID AKP81606.1至少約80%同源。在一些實施例中,變體與胺基酸序列給定GenBank ID AKP81606.1至少約70%同源。在一些情況下,Cas9酶為最佳化Cas9酶,自用於本文所述之細胞中之最佳表現及/或活性之野生型Cas9酶修飾。在一些實施例中,Cas9酶為經修飾Cas9酶,其中經修飾Cas9酶包含如本文中所描述之Cas9酶或其變體及額外胺基酸序列。作為非限制性實例,額外胺基酸序列可向Cas9酶或其變體提供額外活性、穩定性或識別標籤/條碼。 天然產生之化膿性鏈球菌Cas9酶裂解DNA以產生雙鏈斷裂。在一些實施例中,本文中所揭示之Cas9酶充當Cas9切口酶,其中Cas9切口酶為已經修飾以鏈裂靶序列,產生單股斷裂之Cas9酶。在一些實施例中,本文所揭示之方法包含使用具有靶向該靶序列之超過一個嚮導RNA的Cas9切口酶以分解靶序列處之交錯模式中之各DNA鏈的用途。在一些實施例中,使用具有Cas9切口酶之兩個嚮導RNA可增大本文中所揭示之CRISPR/Cas系統之目標特異性。在一些實施例中,使用兩個或多於兩個嚮導RNA可導致產生基因組刪除。在一些實施例中,基因組刪除為約5個核苷酸至約50,000個核苷酸之刪除。在一些實施例中,基因組刪除為約5個核苷酸至約1,000個核苷酸之刪除。在一些實施例中,本文所揭示之方法包含使用複數個嚮導RNA。在一些實施例中,該複數個嚮導RNA以單個基因為目標。在一些實施例中,該複數個嚮導RNA以複數個基因為目標。 在一些情況下,用於靶序列之嚮導RNA之特異性為約80%、85%、90%、95%、96%、97%、98%、99%或更高。在一些情況下,嚮導RNA具有小於約20%、15%、10%、5%、3%、1%或更小偏離目標結合速率。 在一些實施例中,與靶序列雜交之嚮導RNA之特異性具有與靶序列約95%、98%、99%、99.5%或100%序列互補性。在一些情況下,雜交為高嚴格的雜交病況。 在一些實施例中,嚮導RNA將核酸酶靶向至編碼類神經視網膜白胺酸拉鏈(NRL)蛋白質之基因。在一些實施例中,嚮導RNA包含與NRL編碼基因之靶序列雜交之序列。在一些實施例中,靶序列選自SEQ ID NOS:1-2。在一些實施例中,靶序列與選自SEQ ID NOS:1-2之序列至少90%同源。在一些實施例中,靶序列與選自SEQ ID NOS:1-2之序列至少約80%同源。在一些實施例中,靶序列與選自SEQ ID NOS:1-2之序列至少約85%同源。在一些實施例中,靶序列與選自SEQ ID NOS:1-2之序列至少約90%同源。在一些實施例中,靶序列與選自SEQ ID NOS:1-2之序列至少約95%同源。 在一些實施例中,嚮導RNA將核酸酶靶向至編碼核受體子族2基團E成員3 (NR2E3)蛋白質之基因。在一些實施例中,嚮導RNA包含與NR2E3編碼基因之靶序列雜交之序列。在一些實施例中,靶序列選自SEQ ID NOS:3-4。在一些實施例中,靶序列與選自SEQ ID NOS:3-4之序列至少90%同源。在一些實施例中,靶序列與選自SEQ ID NOS:3-4之序列至少約80%同源。在一些實施例中,靶序列與選自SEQ ID NOS:3-4之序列至少約85%同源。在一些實施例中,靶序列與選自SEQ ID NOS:3-4之序列至少約90%同源。在一些實施例中,靶序列與選自SEQ ID NOS:3-4之序列至少約95%同源。DNA 嚮導之 核酸酶 在一些實施例中,本文中所揭示之方法及細胞利用核酸嚮導之核酸酶系統。在一些實施例中,本文中所揭示之方法及細胞使用DNA嚮導之核酸酶系統。在一些實施例中,本文中所揭示之方法及細胞使用阿爾古系統(Argonaute system)。 阿爾古蛋白質可為可連接至靶核酸之多肽。阿爾古蛋白質可為核酸酶。阿爾古蛋白質可為真核、原核或古細菌阿爾古蛋白質。阿爾古蛋白質可為原核阿爾古蛋白質(pArgonaute)。pArgonaute可來源於古菌。pArgonaute可來源於細菌。細菌可選自嗜熱性細菌及嗜溫性細菌。細菌或古菌可選自風產液菌、銅綠綠微藻、梭菌屬、微小桿菌屬、有機溶劑耐受菌、鹽幾何菌屬、鹽紅菌屬、固氮弧菌屬、嗜熱棲熱菌、聚球藍細菌屬、細長聚球藻及嗜熱性藍綠菌 或其任何組合。細菌可為嗜熱性細菌。細菌可為風產液菌 。嗜熱性細菌可為嗜熱棲熱菌 (T . 嗜熱 ) (Tt阿爾古)。阿爾古可來自嗜熱棲熱菌。 阿爾古可來自細長聚球藻 。p阿爾古可為野生型p阿爾古一變體p阿爾古。 在一些實施例中,本發明之阿爾古為I型原核阿爾古(pAgo)。在一些實施例中,I型原核阿爾古攜帶DNA核酸靶向核酸。在一些實施例中,DNA核酸靶向核酸以雙鏈DNA (dsDNA)之一個鏈為目標以產生dsDNA之鏈裂或斷裂。在一些實施例中,鏈裂或斷裂觸發宿主DNA修復。在一些實施例中,宿主DNA修復為非同源末端接合(NHEJ)或同源引導再結合(HDR)。在一些實施例中,dsDNA係選自基因組、染色體及質體。在一些實施例中,I型原核阿爾古為長I型原核阿爾古。在一些實施例中,長I型原核阿爾古具有N-PAZ-MID-PIWI結構域架構。在一些實施例中,長I型原核阿爾古具有催化活性PIWI結構域。在一些實施例中,長I型原核阿爾古具有由天冬氨酸鹽-麩胺酸-天冬氨酸鹽-天冬氨酸鹽/組胺酸(DEDX)編碼之觸媒四合子。在一些實施例中,觸媒四合子結合一或多個Mg+離子。在一些實施例中,觸媒四合子不結合Mg+離子。在一些實施例中,觸媒四合子結合一或多個Mn+離子。在一些實施例中,催化活性PIWI結構域在適中溫度下最活躍。在一些實施例中,適中溫度為約25℃至約45℃。在一些實施例中,適中溫度為約37℃。在一些實施例中,I型原核阿爾古錨定DNA嚮導之5'磷酸末端。在一些實施例中,DNA嚮導在其5'末端處具有去氧胞嘧啶。在一些實施例中,I型原核阿爾古為嗜熱棲熱菌Ago (TtAgo)。在一些實施例中,I型原核阿爾古為細長聚球藻Ago (SeAgo)。 在一些實施例中,原核阿爾古為II型pAgo。在一些實施例中,II型原核阿爾古攜帶RNA核酸靶向核酸。在一些實施例中,RNA核酸靶向核酸以雙鏈DNA (dsDNA)之一個鏈為目標以產生dsDNA之鏈裂或斷裂。在一些實施例中,鏈裂或斷裂觸發宿主DNA修復。在一些實施例中,宿主DNA修復為非同源末端接合(NHEJ)或同源引導再結合(HDR)。在一些實施例中,dsDNA係選自基因組、染色體及質體。在一些實施例中,II型原核阿爾古係選自長II型原核阿爾古及短II型原核阿爾古。在一些實施例中,長II型原核阿爾古具有N-PAZ-MID-PIWI結構域架構。在一些實施例中,長II型原核阿爾古不具有N-PAZ-MID-PIWI結構域架構。在一些實施例中,短II型原核阿爾古具有MID及PIWI結構域,但不具有PAZ結構域。在一些實施例中,短II型pAgo具有PAZ結構域之類比。在一些實施例中,II型pAgo不具有催化活性PIWI結構域。在一些實施例中,II型pAgo不具有由天冬氨酸鹽-麩胺酸-天冬氨酸鹽-天冬氨酸鹽/組胺酸(DEDX)編碼之觸媒四合子。在一些實施例中,編碼II型原核阿爾古之基因與編碼核酸酶、解螺旋酶或其組合之一或多個基因集群。核酸酶或解螺旋酶可為天然設計或其結構域。在一些實施例中,核酸酶係選自Sir2、RE1及TIR。在一些實施例中,II型pAgo錨定RNA嚮導之5'磷酸末端。在一些實施例中,RNA嚮導在其5'末端處具有尿嘧啶。在一些實施例中,II型原核阿爾古為類球紅細菌阿爾古(RsAgo)。 在一些實施例中,pAgos對可攜帶RNA及/或DNA核酸靶向核酸。I型pAgo可攜帶RNA核酸靶向核酸,各自能夠靶向雙鏈DNA之一個鏈以在雙鏈DNA中產生雙鏈斷裂。在一些實施例中,pAgo對包含兩個I型pAgo。在一些實施例中,pAgo對包含兩個II型pAgo。在一些實施例中,pAgo對包含I型pAgo及II型pAgo。 阿爾古蛋白質可由嚮導核酸靶向靶核酸序列。 嚮導核酸可為單鏈或雙鏈。嚮導核酸可為DNA、RNA或DNA/RNA混合型。嚮導核酸可包含經化學修飾之核苷酸。 嚮導核酸可與目標聚核苷酸之有義鏈或反義鏈雜交。 嚮導核酸可具有5'修飾。5'修飾可為磷酸化、甲基化、羥甲基化作用、乙醯化、泛素化或類泛素化。5'修飾可為磷酸化。 嚮導核酸之長度可為10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49或50個核苷酸或鹼基對。在一些實例中,嚮導核酸之長度可小於10個核苷酸或鹼基對。在一些實例中,嚮導核酸之長度可超過50個核苷酸或鹼基對。 嚮導核酸可為嚮導DNA (gDNA)。gDNA可具有5'磷酸化末端。gDNA可為單鏈或雙鏈。gDNA之長度可為10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49或50個核苷酸或鹼基對。在一些實例中,gDNA之長度可小於10個核苷酸。在一些實例中,gDNA之長度可超過50個核苷酸。多工 本文中揭示用於經多工基因組工程改造之方法、組合物、系統及/或套組。在本發明之一些實施例中,定點多肽可包含嚮導核酸,藉此形成複合物。複合物可與靶核酸接觸。靶核酸可由複合物裂解及/或修飾。本發明之方法、組合物、系統及/或套組可用於快速、有效及/或同時修飾多個目標核酸。可使用如本文中所描述之定點多肽(例如Cas9)、嚮導核酸及定點多肽與嚮導核酸之複合物中之任一者執行該方法。 本發明之定點核酸酶可以任何組合形式組合。舉例而言,多個CRISPR/Cas核酸酶可用於靶向不同靶序列或相同目標之不同片段。在另一實例中,Cas9及阿爾古可組合使用以靶向不同目標或相同目標之不同部分。在一些實施例中,定點核酸酶可與多個不同嚮導核酸使用以同時靶向多個不同序列。 核酸(例如嚮導核酸)可融合至非天然序列(例如部分、內切核糖核酸酶結合序列、核糖核酸酶),藉此形成核酸模組。核酸模組(例如包含融合至非天然序列之核酸)可以串疊形式共軛,藉此形成經多工遺傳性靶向劑(例如聚模組,例如陣列)。經多工遺傳性靶向劑可包含RNA。經多工遺傳性靶向劑可與一或多個核糖核酸內切酶接觸。核糖核酸內切酶可連接到非天然序列。結合內切核糖核酸酶可在由非天然序列定義之規定位置處裂解經多工遺傳性靶向劑之核酸模組。裂解可處理(例如釋放)個體核酸模組。在一些實施例中,經處理核酸模組可包含非天然序列之所有、一些或無非天然序列。經處理核酸模組可與定點多肽結合,藉此形成複合物。複合物可靶向至靶核酸。靶核酸可由複合物裂解及/或修飾。 經多工遺傳性靶向劑可用於同時修飾多個目標核酸,及/或以化學計量計數。經多工遺傳性靶向劑可為如本文中以串疊形式描述之任何核酸靶向核酸。經多工遺傳性靶向劑可指代包含一或多個核酸模組之連續核酸分子。核酸模組可包含核酸及非天然序列(例如,部分、內切核糖核酸酶結合序列、核糖核酸酶)。核酸可為非編碼RNA,諸如微RNA (miRNA)、短干擾RNA (siRNA)、長非編碼RNA (lncRNA或lincRNA)、內源性siRNA (內-siRNA)、piwi互動RNA (piRNA)、反式作用短干擾RNA (tasiRNA)、重複相關聯較小干擾性RNA (rasiRNA)、小核仁RNA (snoRNA)、小核RNA (snRNA)、轉移RNA (tRNA)及核糖體RNA (rRNA)或其任何組合。核酸可為編碼RNA (例如mRNA)。核酸可為任何類型之RNA。在一些實施例中,核酸可為核酸靶向核酸。 非天然序列可位於核酸模組之3'端處。非天然序列可位於核酸模組之5'端處。非天然序列可位於核酸模組之3'端及5'端兩者處。非天然序列可包含可結合至內切核糖核酸酶之序列(例如內切核糖核酸酶結合序列)。非天然序列可為特別由內切核糖核酸酶(例如核糖核酸酶T1裂解不成對的G鹼基,核糖核酸酶T2裂解As之3'端,核糖核酸酶U2裂解不成對的A鹼基之3'端)識別之序列的序列。非天然序列可為結構上由內切核糖核酸酶識別之序列(例如髮夾結構,單鏈-雙鏈交接點(例如Drosha)識別髮夾內之單鏈-雙鏈接合點)。非天然序列可包含可結合至CRISPR系統內切核糖核酸酶(例如Csy4、Cas5及/或Cas6蛋白質)之序列。 在一些實施例中,其中非天然序列包含內切核糖核酸酶結合序列,核酸模組可與相同內切核糖核酸酶結合。核酸模組可不包含相同內切核糖核酸酶結合序列。核酸模組可包含不同內切核糖核酸酶結合序列。不同內切核糖核酸酶結合序列可與相同內切核糖核酸酶結合。在一些實施例中,核酸模組可與不同核糖核酸內切酶結合。 部分可包含核糖核酸酶。核糖核酸酶可自身裂解,藉此釋放經多工遺傳性靶向劑之各模組。合適之核酶可包括肽基轉移23S rRNA、RnaseP、第I族內含子、第II族內含子、GIR1分歧核糖核酸酶、先導酶、髮夾核酶、錘頭狀核酶、HDV核酶、CPEB3核酶、VS核酶、glmS核糖核酸酶、CoTC核糖核酸酶、合成核酶。 經多工遺傳性靶向劑之核酸模組之核酸可相同。核酸模組可相差1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50或更多個核苷酸。舉例而言,不同核酸模組可在核酸模組之間隔體區域中不同,藉此將核酸模組靶向至不同靶核酸。在一些情況下,不同核酸模組在核酸模組之間隔體區域中可不同,但仍靶向相同靶核酸。核酸模組可靶向相同靶核酸。核酸模組可靶向一或多個靶核酸。 核酸模組可包含可允許核酸模組之適合之轉譯或擴增的調節序列。舉例而言,核酸模組可包含啟動子、TATA框、增強要素、轉錄末端要素、核糖體結合位點、3'未轉譯區域、5'未轉譯區域、5'帽序列、3'聚腺苷醯化序列、RNA穩定性要素及類似者。編碼經設計嚮導核酸之核酸及 / 或核酸嚮導核酸酶 本發明提供包含編碼本發明之嚮導核酸、本發明之核酸嚮導核酸酶、效應子蛋白質、供體聚核苷酸、經多工遺傳性靶向劑、串疊型融合多肽、報告子要素、相關基因要素、執行本發明之方法的實施例所必要的分裂系統及/或任何核酸或蛋白質分子之組分的核苷酸序列之核酸。在一些實施例中,編碼本發明之嚮導核酸、本發明之核酸嚮導核酸酶、效應子蛋白質、供體聚核苷酸、經多工遺傳性靶向劑、串疊型融合多肽、報告子要素、相關基因要素、執行本發明之方法的實施例所必要的分裂系統及/或任何核酸或蛋白質分子之組分的核酸可為載體(例如重組表現載體)。 在一些實施例中,重組表現載體可為病毒構建體(例如重組腺相關病毒構建體)、重組腺病毒構建體、重組慢病毒構建體、重組反轉錄病毒構建體等。 合適之表現載體可包括(但不限於)病毒載體(例如基於痘瘡病毒、脊髓灰白質炎病毒、腺病毒、腺相關病毒、SV40、單純疱疹病毒、人類免疫不全病毒之病毒載體,反轉錄病毒載體(例如鼠類白血病病毒、脾壞死病毒,及來源於諸如勞斯(Rous)肉瘤病毒、哈維(Harvey)肉瘤病毒、鳥白血病性病毒、慢病毒、人類免疫不全病毒、骨髓增生肉瘤病毒及乳房腫瘤病毒之反轉錄病毒的載體),植物載體(例如T-DNA載體)及類似者。以下載體可藉由實例之方式提供,對於真核宿主細胞:pXT1、pSG5、pSVK3、pBPV、pMSG及pSVLSV40 (Pharmacia)。只要其他載體與宿主細胞相容,則可使用其他載體。 在一些情況下,載體可為經線性化載體。經線性化載體可包含核酸酶(例如Cas9或阿爾古)及/或嚮導核酸。經線性化載體可不是環形質體。經線性化載體可包含雙鏈斷裂。經線性化載體可包含編碼螢光蛋白(例如橙色螢光蛋白(OFP))之序列。經線性化載體可包含編碼抗原(例如CD4)之序列。經線性化載體可在編碼經設計核酸靶向核酸之一部分之載體的區域中經線性化(例如剪切)。舉例而言,經線性化載體可在經設計核酸靶向核酸之5'區域中經線性化(例如剪切)。經線性化載體可在經設計核酸靶向核酸之3'區域中經線性化(例如剪切)。在一些情況下,經線性化載體或閉合超螺旋載體包含編碼核酸酶(例如Cas9或阿爾古)之序列、驅動編碼核酸酶之序列之表現的啟動子(例如CMV啟動子)、編碼標記之序列、編碼親和力標籤之序列、編碼嚮導核酸之一部分之序列,驅動編碼嚮導核酸之一部分之序列之表現的啟動子及編碼可選標記(例如安比西林(ampicillin))之序列或其任何組合。 載體可包含轉錄及/或轉譯控制要素。取決於所利用之宿主/載體系統,多個合適之轉錄及轉譯控制要素(包括構成性及誘導性啟動子、轉錄增強要素、轉錄終止子等)中之任一者可用於表現載體中。 在一些實施例中,編碼本發明之嚮導核酸、本發明之核酸酶、效應子蛋白質、供體聚核苷酸、經多工遺傳性靶向劑、串疊型融合多肽、報告子要素、相關基因要素、執行本發明之方法之實施例所必要的分裂系統及/或任何核酸或蛋白質分子之組分的核苷酸序列可以操作方式連接到控制要素(例如轉錄控制要素),諸如啟動子。轉錄控制要素可在真核細胞(例如哺乳動物細胞)及/或原核細胞(例如細菌或古細菌細胞)中具功能性。在一些實施例中,編碼本發明之經設計嚮導核酸、本發明之核酸嚮導核酸酶(例如Cas9或阿爾古)、效應子蛋白質、供體聚核苷酸、經多工遺傳性靶向劑、串疊型融合多肽、報告子要素、相關基因要素、執行本發明之方法的實施例所必要的分裂系統及/或任何核酸或蛋白質分子之組分的核苷酸序列可以操作方式連接到多個控制要素。至多個控制要素之可操作鍵可允許原核細胞或真核細胞中編碼本發明之嚮導核酸、本發明之核酸嚮導核酸酶、效應子蛋白質、供體聚核苷酸、報告子要素、相關基因要素、執行本發明之方法之實施例所必要的分裂系統及/或任何核酸或蛋白質分子之組分之核苷酸序列之表現。 合適之真核啟動子(亦即在真核細胞中具功能性之啟動子)之非限制性實例可包括來自以下之彼等:早期巨細胞病毒(CMV)、單純疱疹病毒(HSV)胸苷激酶、早期及晚期SV40、來自反轉錄病毒之長終端重複(LTRs)、人延長因子-1啟動子(EF1)、包含融合至雞β-啟動子(CAG)之巨細胞病毒(CMV)增強子之混合型構建體、鼠類幹細胞病毒啟動子(MSCV)、磷酸甘油酸激酶-1基因座啟動子(PGK)及小鼠金屬硫蛋白-I。啟動子可為真菌啟動子。啟動子可為植物啟動子。可發現植物啟動子之資料庫(例如,PlantProm)。表現載體亦可含有用於轉譯起始及轉錄終止之核糖體結合位點。表現載體亦可包括用於擴增表現之適合之序列。表現載體亦可包括編碼融合至阿爾古之非天然標記(例如6xHis標籤(SEQ ID NO:5)、紅血球凝集素標籤、綠色螢光蛋白等)因此產生融合蛋白質之核苷酸序列。 在一些實施例中,核苷酸序列或編碼本發明之嚮導核酸、本發明之核酸嚮導核酸酶(例如Cas9或阿爾古)、效應子蛋白質、供體聚核苷酸、經多工遺傳性靶向劑、串疊型融合多肽、報告子要素、相關基因要素、執行本發明之方法的實施例所必要的分裂系統及/或任何核酸或蛋白質分子之組分的序列可以操作方式連接到可誘導啟動子(例如熱休克啟動子、四環素調節之啟動子、類固醇調節之啟動子、金屬調節之啟動子、雌激素受體調節之啟動子等)。在一些實施例中,編碼本發明之嚮導核酸、本發明之核酸嚮導核酸酶、效應子蛋白質、供體聚核苷酸、經多工遺傳性靶向劑、串疊型融合多肽、報告子要素、相關基因要素、執行本發明之方法的實施例所必要的分裂系統及/或任何核酸或蛋白質分子之組分的核苷酸序列可以操作方式連接到構成性啟動子(例如CMV啟動子、UBC啟動子)。在一些實施例中,核苷酸序列可以操作方式連接到空間受限及/或時間受限之啟動子(例如組織特異性啟動子、細胞類型特異性啟動子等)。 在一些實施例中,核苷酸序列或編碼本發明之嚮導核酸、本發明之核酸嚮導核酸酶(例如Cas9或阿爾古)、效應子蛋白質、供體聚核苷酸、經多工遺傳性靶向劑、串疊型融合多肽、報告子要素、相關基因要素、執行本發明之方法之實施例所必要的分裂系統及/或任何核酸或蛋白質分子之組分的序列可封裝於用於傳遞至細胞之生物隔間中或其表面上。生物隔間可包括(但不限於)病毒(慢病毒、腺病毒)、奈米球、脂質體、量子點、奈米粒子、聚乙二醇粒子、水凝膠及膠微胞。 本發明之複合物、多肽及核酸之引入細胞中可藉由以下發生:病毒或噬菌體感染、轉染、共軛、原生質體融合、脂質體轉染、電致孔、磷酸鈣沈澱、聚乙二亞胺(PEI)介導之轉染、DEAE-聚葡萄糖介導之轉染、脂質體介導之轉染、顆粒槍技術、磷酸鈣沈澱、直接微注射、奈米粒子介導之核酸傳遞及類似者。密碼子 - 最佳化 本文中所揭示之編碼核酸嚮導之核酸酶(例如Cas9或阿爾古)之聚核苷酸可經密碼子最佳化。此最佳化類型可必然伴有外來衍生之突變(例如重組)DNA以在編碼相同蛋白質時模仿既定宿主生物體或細胞之密碼子優選項。因此,密碼子可改變,但經編碼蛋白質保持不變。舉例而言,若既定靶細胞為人類細胞,則人類經密碼子最佳化之聚核苷酸Cas9可用於產生合適的Cas9。作為另一非限制性實例,若既定宿主細胞是小鼠細胞,則編碼Cas9之小鼠經密碼子最佳化聚核苷酸可為合適之Cas9。編碼CRISPR/Cas蛋白質之聚核苷酸可為針對許多相關宿主細胞最佳化之密碼子。編碼阿爾古之聚核苷酸可為針對許多相關宿主細胞最佳化之密碼子。宿主細胞可為選自任何生物體之細胞(例如細菌細胞、古細菌細胞、單細胞真核生物體之細胞、植物細胞、藻類細胞(例如布朗葡萄藻、萊茵衣藻、海洋富油微擬球藻、蛋白核小球藻、展枝馬尾藻及其類似物)、真菌細胞(例如酵母細胞)、動物細胞、來自無脊椎動物(例如果蠅、刺胞動物、棘皮動物、線蟲等)之細胞、來自脊椎動物動物(例如魚、兩棲動物、爬蟲、鳥、哺乳動物)之細胞、來自哺乳動物(例如豬、母牛、山羊、綿羊、嚙齒動物、大鼠、小鼠、非人類靈長類、人類等)之細胞等。密碼子最佳化可並非所需要的。在一些情況下密碼子最佳化可為較佳的。傳遞 本發明之定點核酸酶可在細胞內以內源性或重組方式表現。定點核酸酶可在染色體上,染色體外,或在質體、合成染色體或人造染色體上編碼。或者或另外,定點核酸酶可經提供或傳遞至細胞作為多肽或編碼多肽之mRNA。在此等實例中,多肽或mRNA可通過此項技術中已知之標準機制傳遞,諸如通過使用細胞可穿透肽、奈米粒子、病毒粒子、病毒傳遞系統或其他非病毒傳遞系統。 或者或另外,本文中所揭示之嚮導核酸可藉由細胞內之遺傳性或游離型DNA提供。嚮導核酸可自細胞內之RNA或mRNA反轉錄。嚮導核酸可提供或傳遞至表現對應定點核酸酶之細胞。或者或另外,嚮導核酸可與定點核酸酶同時或連續提供或傳遞。嚮導核酸可使用此項技術中已知之標準DNA或RNA產生技術化學合成、組裝或以其他方式產生。或者或另外,嚮導核酸可裂解、釋放或以其他方式來源於基因組DNA、游離型DNA分子、經分離之核酸分子、或任何其他核酸分子源。小分子抑制劑 在一些實施例中,治療劑為小分子抑制劑。小分子抑制劑可沒有聚核苷酸。小分子抑制劑可沒有肽。在一些實施例中,小分子抑制劑直接結合至係關於pl6a打斷其功能之表現之蛋白質或結構。大體而言,小分子抑制劑容易穿過細胞膜且可不需要額外修飾來輔助其細胞攝取。基因目標 本文中提供使用CRISPR/Cas系統編輯本文中所揭示之基因之方法。本發明進一步提供使自本文中所揭示之基因表現之RNA與反股寡核苷酸接觸,藉此更改由基因編碼之蛋白質之產生的方法。本發明進一步提供編輯本文中所揭示之基因或修飾本文中所揭示之基因之表現的方法。在一些實施例中,編輯基因或修飾該基因之表現包含減小基因之表現,減小基因之產物之表現(例如RNA蛋白質),減小基因之產物之活性或其組合。 在一些實施例中,基因編碼核受體。在一些實施例中,基因編碼白胺酸拉鏈蛋白質。在一些實施例中,基因編碼視紫蛋白。在一些實施例中,基因編碼G偶合蛋白質受體。在一些實施例中,基因為腫瘤抑制基因。在一些實施例中,基因編碼促使細胞衰老之蛋白質。在一些實施例中,基因編碼促使細胞凋亡之蛋白質。在一些實施例中,基因編碼促使細胞分化之蛋白質。在一些實施例中,基因編碼抑制細胞增殖之蛋白質。在一些實施例中,基因編碼抑制細胞存活之蛋白質。 在一些實施例中,基因之特徵在於具有本文中提供之序列識別符(SEQ ID NO)之序列。在一些實施例中,基因之特徵在於具有與本文中提供之序列識別符(SEQ ID NO)之同源性至與其同源之序列。當在本文中使用術語「同源」、「同源性」或「百分比同源性」時用以相對於參考序列描述胺基酸序列或核酸序列可使用由Karlin及Altschul (Proc.Natl.Acad.Sci.USA 87:2264-2268,1990,修改為Proc.Natl.Acad.Sci.USA 90:5873-5877,1993)描述至式判定。此類式併入至Altschul等人(J.Mol.Biol.215:403-410,1990)之鹼基局部比對檢索工具(BLAST)程式中。截至本申請案之申請日,可使用BLAST之最近形式判定序列之百分比同源性。 本文中所揭示之基因中之任一者可為人類基因。基因可編碼由血球表現之蛋白質。基因可編碼血紅蛋白。基因可編碼在人類個體之眼睛之細胞上表現之蛋白質。借助於非限制性實例,基因可編碼G蛋白質偶合之受體(GPCR)。GPCR可選自編碼視紫蛋白(例如視紫質)或轉導(例如GNAT1)之基因。亦借助於非限制性實例,基因可編碼白胺酸拉鏈蛋白質。基因可為類神經視網膜特異性白胺酸拉鏈基因(Nrl)基因。基因可編碼Nrl蛋白質。基因可包含SEQ ID NO.:1或SEQ ID NO.:2之至少10個連續核苷酸。並且,借助於非限制性實例,基因可編碼核受體。基因可為感光體細胞特異性核受體(PNR)基因。基因可編碼PNR蛋白質。PNR亦被稱作NR2E3 (核受體子族2,E族,成員3)。基因可包含SEQ ID NO.:3或SEQ ID NO.:4之至少10個連續核苷酸。基因可為Mertk基因。基因可為包括視網膜母細胞瘤基因、athonal7基因、Pax6基因之其他經眼基因。 本文中提供包含修飾本文中所揭示之細胞中之本文中所揭示之基因之方法。基因可為非經眼基因,且細胞可為非經眼細胞。借助於非限制性實例,基因可為UMOD、TMEM174、SLC22A8、SLC12A1、SLC34A1、SLC22A12、SLC22A2、MCCD1、AQP2、SLC7A13、KCNJ1、SLC22A6 Pax3 Pax3,且細胞可為腎臟細胞。借助於非限制性實例,基因可為PNLIPRP1、SYCN、PRSS1、CTRB2、CELA2A、CTRB1、CELA3A、CELA3B、CTRC、CPA1、PNLIP或CPB1,且細胞可為胰臟細胞。借助於非限制性實例,基因可為GFAP、OPALIN、OLIG2、GRIN1、OMG、SLC17A7、C1orf61、CREG2、NEUROD6、ZDHHC22、VSTM2B或PMP2,且細胞可為大腦細胞。借助於非限制性實例,基因可編碼免疫檢查點抑制因子,且細胞可為T細胞。借助於非限制性實例,基因可編碼PD-1,且細胞可為T細胞。基因可編碼PD-L1或PD-L2,且細胞可為腫瘤細胞。細胞 本文中提供修飾由本文中所揭示之細胞表現之核酸分子之方法。本發明進一步提供修飾由本文中所揭示之細胞表現之核酸分子之表現及/或活性的方法。在一些實施例中,方法包含修飾核酸分子或其表現/活性,其中核酸分子存在於活體內細胞中。在一些實施例中,方法包含修飾核酸分子或其表現/活性,其中核酸分子存在於活體外細胞中。在一些實施例中,方法包含修飾核酸分子或其表現/活性,其中核酸分子存在於活體外細胞中。在一些實施例中,方法包含修飾核酸分子或其表現/活性,其中核酸分子存在於原位細胞中。 在一些實施例中,細胞為視網膜細胞。在一些實施例中,細胞為感光體細胞。在一些實施例中,感光體細胞為視桿細胞。在一些實施例中,感光體細胞為視錐細胞。在一些實施例中,感光體細胞為感光性視網膜神經節細胞。在一些實施例中,細胞為視神經細胞。在一些實施例中,細胞為神經節細胞。在一些實施例中,細胞為無軸突神經細胞。在一些實施例中,細胞為視網膜神經節細胞。 在一些實施例中,細胞已從經受處理隔離。在一些實施例中,細胞為幹細胞。在一些實施例中,細胞為臍帶血幹細胞。在一些實施例中,細胞為血細胞。在一些實施例中,細胞為造血幹細胞。在一些實施例中,細胞為造血多能細胞。在一些實施例中,細胞為癌細胞。在一些實施例中,細胞為上皮細胞。在一些實施例中,細胞為腸細胞。在一些實施例中,細胞為多能細胞。在一些實施例中,細胞為多能細胞。在一些實施例中,細胞為誘導多能幹細胞(iPSC)。在一些實施例中,iPSC來源於神經細胞。在一些實施例中,iPSC來源於眼細胞。在一些實施例中,細胞為分化成視網膜神經節細胞或其多能祖細胞之iPSC。醫藥組合物及投藥模式 本文中揭示用於治療視網膜變性病況之醫藥組合物,其包含本文所述之抑制基因表現及蛋白質活性之治療劑。 在一些實施例中,醫藥組合物為用於投藥至眼睛之調配物。在一些實施例中,用於投藥至眼睛之調配物包含增稠劑、界面活性劑、濕潤劑、鹼基成份、載體、賦形劑或使其適用於投藥至眼睛之鹽。在一些實施例中,用於投藥至眼睛之調配物具有使其適用於投藥至眼睛之pH、鹽或滲性。用於投藥至眼睛之調配物之此等態樣經描述於本文中。在一些實施例中,醫藥組合物為眼用製劑。醫藥組合物可包含增稠劑以便延長醫藥組合物與眼睛之接觸時間。在一些實施例中,增稠劑係選自聚乙烯醇、聚乙二醇、甲基纖維素、羧甲基纖維素及其組合。在一些實施例中,增稠劑經過濾及殺菌。 本文中所揭示之醫藥組合物可包含用於眼睛之藥學上可接受之載劑、醫藥學上可接受之賦形劑或醫藥上可接受之鹽。用於其眼睛之醫藥學上可接受之載劑、醫藥學上可接受之賦形劑及醫藥上可接受鹽之非限制性實例包括玻尿酸、硼酸、氯化鈣、過硼酸鈉、膦酸、氯化鉀、氯化鎂、硼酸鈉、磷酸鈉及氯化鈉。 本文中所揭示之醫藥組合物應與淚腺分泌物具有等張性。在一些實施例中,醫藥組合物具有自0.5%至2% NaCl之滲性。在一些實施例中,醫藥組合物包含等張媒劑。借助於非限制性實例,等張媒劑可包含硼酸或單鹼磷酸鈉。 在一些實施例中,醫藥組合物具有約3至約8之pH值。在一些實施例中,醫藥組合物具有約3至約7之pH值。在一些實施例中,醫藥組合物具有約4至約7之pH值。當投藥時,此pH範圍外之醫藥組合物可刺激眼睛或在眼睛中形成顆粒。 在一些實施例中,本文中所揭示之醫藥組合物包含界面活性劑或濕潤劑。本文中所揭示之醫藥組合物中所採用之界面活性劑之非限制性實例為白藜蘆醇氯化物、聚山梨醇酯20、聚山梨醇酯80及丁二酸二辛基鈉磺酯。 在一些實施例中,本文中所揭示之醫藥組合物包含防止已經打開盛放醫藥組合物之容器之後微生物污染之防腐劑。在一些實施例中,防腐劑係選自苯紮氯銨、氯丁醇、苯汞基醋酸、氯己定醋酸及苯汞基硝酸鹽。 在一些實施例中,醫藥組合物(例如乳液或軟膏)包含鹼基成份。鹼基成份可選自氯化鈉、酸性碳酸鈉、硼酸、硼砂、硫酸鋅、鏈烷烴及蠟或脂肪物質。在一些實施例中,醫藥組合物為乳液。在一些實施例中,乳液以粉末或凍乾產物形式(亦即)在使用之前即刻復水而提供至個體(或投與乳液之個體)。 直接將醫藥組合物投藥至眼睛可避免治療劑在除眼睛外之位置之任何非所要偏離目標之影響。舉例而言,經靜脈內或全身性投與醫藥組合物可導致抑制除眼睛之彼等細胞外之細胞中的基因表現,其中抑制該基因可具有不利之影響。 在一些實施例中,醫藥組合物包含編碼本文中所揭示之核酸分子(例如shRNA、嚮導RNA、編碼聚核苷酸之核酸酶)中之任一者的聚核苷酸載體。在一些實施例中,聚核苷酸載體為表現載體。在一些實施例中,聚核苷酸載體為病毒載體。在一些實施例中,醫藥組合物包含病毒,其中該病毒將載體及/或核酸分子傳遞至個體之細胞。在一些具體實例中,病毒為反轉錄病毒。在一些具體實例中,病毒為慢病毒。在一些實施例中,病毒為腺相關病毒(AAV)。在一些實施例中,AAV係選自血清型1、2、5、7、8及9。在一些實施例中,AAV為AAV血清型2。在一些實施例中,AAV為AAV血清型8。 由於免疫系統之最小刺激及其長年提供未分裂視網膜細胞中之表現之能力,AAV可特別適用於本文所揭示之方法。AAV可能夠轉導視網膜內之多個細胞類型。在一些實施例中,方法包含AAV之玻璃體內投藥(例如注射於眼睛之玻璃體液中)。在一些實施例中,方法包含AAV之視網膜下投藥(例如注射於視網膜下部)。 在一些實施例中,本文中所揭示之方法及組合物包含AAV載體中之外源可調節啟動子系統。借助於非限制性實例,外源可調節啟動子系統可為四環素誘導性表現系統。 本文中所揭示之醫藥組合物可進一步包括一或多種醫藥上可接受之鹽、賦形劑或媒劑。本發明醫藥組合物中使用之醫藥學上可接受之鹽、賦形劑或媒劑包括載劑、賦形劑、稀釋劑、抗氧化劑、防腐劑、著色劑、調味及稀釋劑、乳化劑、懸浮劑、溶劑、填充劑、增積劑、緩衝液、運載工具、張力劑、共溶劑、濕潤劑、錯合劑、緩衝劑、抗微生物劑及界面活性劑。 中性緩衝生理鹽水或與血清白蛋白混合之生理鹽水可為例示性適合之媒劑。醫藥組合物可包括諸如抗壞血酸之抗氧化劑、低分子量多肽、蛋白質(諸如血清白蛋白、明膠或免疫球蛋白)、諸如聚乙烯吡咯啶酮之親水性聚合物、諸如甘胺酸、麩醯胺酸、天冬醯胺、精胺酸或離胺酸之氨基酸、單糖、雙糖及包括葡萄糖、甘露糖或糊精之其他碳水化合物、諸如EDTA之螯合劑、諸如甘露醇或山梨醇之糖醇、諸如鈉之成鹽反離子、及/或諸如妥文(Tween)、普朗尼克(pluronics)或聚乙二醇(PEG)之非離子界面活性劑。亦借助於實例,合適的滲性增強劑包括鹼金屬鹵化物(較佳地鈉或氯化鉀)、甘露醇、山梨醇及類似者。合適之防腐劑包括苯紮氯銨、硫柳汞、苯乙基乙醇、對羥基苯甲酸甲酯、對羥基苯甲酸丙酯、氯己定、山梨酸及類似者。過氧化氫亦可被用作防腐劑。合適之共溶劑包括丙三醇、丙二醇及PEG。合適之錯合劑包括咖啡鹼、聚乙烯吡咯啶酮、β-環糊精或羥基-丙基-β-環糊精。合適之界面活性劑或潤濕劑包括脫水山梨糖醇酯、諸如聚山梨醇酯80之聚山梨醇酯、緩血酸胺、卵磷脂、膽固醇、泰洛沙泊及類似者。緩衝劑可為習知緩衝液,諸如醋酸、硼酸鹽、檸檬酸、磷酸、碳酸氫鹽或參HCl。醋酸緩衝液可為約pH 4至pH 5.5,且參緩衝液可為約pH 7至pH 8.5。額外藥劑闡述於Mack Publishing Company之Remington's Pharmaceutical Sciences,第18版,A.R.Gennaro編,1990中。 組合物可呈液體形式或呈凍乾或冷凍乾燥形式且可包括一或多種凍乾保護劑、賦形劑、界面活性劑、高分子量結構添加劑及/或增積劑(參見例如美國專利第6,685,940、6,566,329及6,372,716號)。在一個實施例中,包括凍乾保護劑,該凍乾保護劑為諸如蔗糖、乳糖或海藻糖之非還原糖。通常包括凍乾保護劑量使得在復水之後,儘管所得調配物將為等張的,但高滲或稍微低滲之調配物亦可為合適的。另外,凍乾保護劑之量應足以防止在凍乾之後蛋白質之不可接受之量之分解及/或聚集。凍乾前調配物中之糖(例如蔗糖、乳糖、海藻糖)之例示性凍乾保護劑濃度約為10 mM至約400 mM。在另一實施例中,包括界面活性劑,諸如非離子界面活性劑及離子界面活性劑,諸如聚山梨醇酯(例如聚山梨醇酯20、聚山梨醇酯80);泊洛沙姆(例如泊洛沙姆188);聚(乙二醇)苯醚(例如曲拉通(Triton));十二烷基硫酸鈉(SDS);月桂基硫酸鈉;辛基鈉糖苷;十二基-、肉豆蔻基-、亞油醇基-或十八烷醯-磺基甜菜鹼;十二基-、肉豆蔻基-、亞油醇基-或十八烷醯-肌胺酸;亞油醇基、肉豆蔻基-或鯨蠟基-甜菜鹼;月桂醯胺丙基-、椰油醯胺丙基-、亞油醯胺基丙基-、肉豆蔻醯胺基丙基-、棕櫚醯胺丙基-或異硬脂醯胺丙基-甜菜鹼(例如月桂醯胺丙基);肉豆蔻醯胺基丙基-、棕櫚醯胺丙基-或異硬脂醯胺丙基-二甲胺;甲基鈉椰油醯基-或甲基二鈉碌-牛磺酸鹽;MONAQUAT™系列(Mona Industries,Inc.,Paterson,N.J.)、聚乙二醇、聚丙二醇、及伸乙二醇與丙二醇之共聚物(例如普朗尼克(Pluronics),PF68等)。可存在於凍乾前調配物中之例示性界面活性劑量約為0.001%至0.5%。高分子量結構添加劑(例如填充劑、黏合劑)可包括(例如)阿拉伯膠、白蛋白、褐藻酸、磷酸鈣(二鹼基的)、纖維素、羧基甲基纖維素、羧基甲基纖維素鈉、羥基乙基纖維素、羥基丙基纖維素、羥基丙基甲基纖維素、微晶纖維素、聚葡萄糖、糊精、葡萄糖結合劑、蔗糖、甲基纖維素、預膠凝化澱粉、硫酸鈣、直鏈澱粉、甘胺酸、膨潤土、麥芽糖、山梨醇、乙基纖維素、磷酸氫二鈉、磷酸二鈉、焦亞硫酸二鈉、聚乙烯醇、明膠、葡萄糖、瓜爾豆膠、液態葡萄糖、可壓縮糖、矽酸鎂鋁、麥芽糊精、聚氧化乙烯、聚甲基丙烯酸酯、聚維酮、海藻酸鈉、黃蓍微晶纖維素、澱粉及玉米蛋白。高分子量結構添加劑之例示性濃度為0.1 wt%至10 wt%。在其他實施例中,可包括增積劑(例如甘露醇、甘胺酸)。 組合物可適於非經腸投藥。例示性組合物適合於藉由可供熟習此項技術者使用的任何路徑注射或輸注至動物中,諸如關節內、皮下、靜脈內、肌肉內、腹膜內、腦內(腦實質內)、腦室內、肌肉內、眼內、動脈內或病灶內途徑。非經腸調配物通常為無菌、無熱原質的等張水溶液,其視情況含有醫藥學上可接受之防腐劑。 非水性溶劑之實例為丙二醇、聚乙二醇、諸如橄欖油之植物油、及諸如油酸乙酯之可注射有機酯。水性載劑包括水、醇溶液/水溶液、乳液或懸浮液,包括生理鹽水及緩衝介質。非經腸媒劑包括氯化鈉溶液、林格氏右旋糖(Ringer's dextrose)、右旋糖及氯化鈉、乳酸化林格氏液或不揮發性油。靜脈內媒劑包括流體及營養補充劑、電解質補充劑(諸如基於林格氏右旋糖的彼等物),及其類似物。亦可存在防腐劑及其他添加劑,諸如抗微生物劑、抗氧化劑、螯合劑、惰性氣體及其類似物。通常見Remington's Pharmaceutical Science第16版,Mack編,1980。 本文所述之組合物可以在特定局部環境中提供產物(例如藥團、儲集式作用)的局域濃度及/或增加穩定性或半衰期的方式調配成供控制或維持傳送。組合物可包含本文中所揭示之多肽、核酸或載體與諸如聚乳酸、聚乙醇酸等之聚合性化合物之粒子製劑之調配物,以及諸如以下之藥劑:可生物降解基質、可注射微球體、微膠囊粒子、微膠囊、生物溶蝕性粒子珠粒、脂質體及提供活性劑之控制或持續釋放、接著可以儲槽式注射傳遞的可植入傳遞裝置。用於調配此類持久或可控傳遞之裝置的技術為吾人所知,且多種聚合物已經得到發展且用於藥物之控制釋放及傳遞。此類聚合物通常為可生物降解及生物相容的。由於包含於截獲生物活性蛋白質藥劑中之輕度及水性病況,包括藉由對映異構聚合物或多肽片段之錯合形成之彼等聚合物水凝膠及具有溫度或pH敏感特性之水凝膠可希望用於提供藥物儲存效應。參見例如WO 93/15722中之用於傳遞醫藥組合物之控制釋放多孔聚合性微米粒子之說明。 為此目的之合適材料可包括聚乳酸交酯(見(例如)美國專利第3,773,919號),聚-(a-羥基羧酸),諸如聚-D-(-)-3-羥基丁酸(EP 133,988A),L-麩胺酸及γ乙基-L麩胺酸之共聚物(Sidman等人,生物聚合物,22:547至556 (1983)),聚(2-羥基乙基-甲基丙烯酸脂) (Langer等人,J.Biomed.Mater.Res.,15:167至277(1981),及Langer,Chem.Tech,12:98至105 (1982)),乙烯乙酸乙烯酯或聚-D(-)-3-羥基丁酸。其他可生物降解聚合物包括聚(內酯)、聚(縮醛)、聚(原酸酯)及聚(原碳酸酯)。持續釋放組合物亦可包括可藉由此項技術中已知之若干方法中之任一者製備之脂質體(見(例如)Eppstein等人,Proc.Natl.Acad.Sci.美國,82:3688至92 (1985))。載體自身或其分解產物應在靶組織中為無毒的且不應進一步加重病況。這可由目標病症之動物模式中之例行篩選來判定,或者當此類模型不可用時由正常動物中之例行篩選判定。 適用於肌肉內、皮下瘤周或靜脈內注射之調配物可包括生理學上可接受之無菌水性或非水性溶液、分散液、懸浮液或乳劑及供復原成為無菌可注射溶液或分散液用之無菌粉末。適合水性及非水性載劑、稀釋劑、溶劑或媒劑之實例包括水、乙醇、多元醇(丙二醇、聚乙二醇、甘油、十六醇聚氧乙烯醚及其類似物)、其適合混合物、植物油(諸如橄欖油)及可注射有機酯,諸如油酸乙酯。可例如藉由使用包衣(諸如卵磷脂)、在分散液之情況下藉由維持所需粒徑及藉由使用界面活性劑來維持適當流動性。適於皮下注射之調配物亦可含有視情況選用之諸如防腐劑、潤濕劑、乳化劑及分配劑之添加劑。 對於靜脈內注射,活性劑可視情況可於水溶液中調配,較佳於生理學上相容之緩衝劑(諸如漢克氏溶液(Hank's solution)、林格氏溶液(Ringer's solution)或生理食鹽水緩衝液)中進行調配。 非經腸注射視情況包括快速注射或持續輸注。在一些實施例中,用於注射之調配物視情況呈單位劑型,例如安瓿或多劑量容器中,其中添加有防腐劑。本文中所描述之醫藥組合物可呈於油性或水性媒劑中之無菌懸浮液、溶液或乳劑的適用於非經腸注射之形式,且含有調配劑,諸如懸浮劑、穩定劑及/或分散劑。用於非經腸投與之醫藥調配物包括水可溶形式之活性劑之水溶液。另外,懸浮液視情況製備為合適之含油注射懸浮液。 替代地或另外,組合物可經由植入至膜、海綿或其他適合之材料之影響區域中而局部投藥,在該膜、海綿或其他適合之材料上本文中所揭示之治療劑已經被吸收或囊封。當使用植入裝置時,裝置可植入任何合適之組織或器官中,且本文中所揭示之治療劑、核酸或載體之傳遞可經由藥團或經由連續投藥或經由使用連續輸液之導管直接通過該裝置。 本文中所揭示之包含治療劑之某些調配物可經口投藥。以此方式投藥之調配物可用或不用通常用於混配固體劑型(諸如錠劑及膠囊)之彼等載劑來調配。舉例而言,膠囊可經設計以使調配物之活性部分在胃腸道之某處釋放,此時生物可用性最大化且到達全身前的降解最小化。可包括額外藥劑以促進選擇性黏合劑之吸收。亦可使用稀釋劑、調味劑、低熔點蠟、植物油、潤滑劑、懸浮劑、錠劑崩解劑及黏合劑。 取決於既定投藥途徑、傳遞格式及所要劑量,可考慮到本發明及調配技術之常識來判定合適及/或較佳醫藥調配物。無論投藥之方式如何,可根據患者體重、體表區域或器官大小計算有效劑量。 用於判定用於治療涉及本文所述之調配物中之各者之適合之劑量的運算之進一步改進例行在此項技術中製成且在此項技術中例行執行之任務之範圍內。適當劑量可經由使用適當劑量反應資料來確定。 「醫藥學上可接受」可指代由聯邦或州政府之監管機構核准或可核准,或在美國藥典或用於動物(包括人類)之其他一般公認藥典中列出。 「醫藥學上可接受之鹽」可指代醫藥學上可接受且具有母體化合物之所需藥理學活性的化合物之鹽。 「醫藥學上可接受之賦形劑、載劑或佐劑」可指代可與本發明之至少一個抗體一起投藥給個體且當以足以傳遞治療量之化合物之劑量投藥時不破壞該藥劑之藥理學活性且無毒性的賦形劑、載劑或佐劑。 「醫藥學上可接受之媒劑」可指代與本發明之至少一個抗體一起投藥之稀釋劑、佐劑、賦形劑或載劑。 在一些實施例中,醫藥組合物針對可注射投藥調配。在一些實施例中,方法包含注入醫藥組合物。在一些實施例中,方法包含經眼內注射投與液體形式之醫藥組合物。在一些實施例中,方法包含經眼周注射投與液體形式之醫藥組合物。在一些實施例中,方法包含經由玻璃體內注射投與液體形式之醫藥組合物。儘管此等投藥模式之一些可並不對個體具有吸引力(例如玻璃體內注射),但其在眼睛之穿透屏障處可為最有效的,且相較於提供便利性及低可購性之滴眼劑,治療劑可最不可能被淚液或眨眼洗掉。 在一些實施例中,方法包含全身性投與醫藥調配物。在一些實施例中,治療劑為聚核苷酸載體,其中聚核苷酸載體包含嚮導RNA、反股寡核苷酸或Cas編碼聚核苷酸。聚核苷酸載體可包含用於以細胞特異性方式驅動載體之核酸分子之表現之條件啟動子。借助於非限制性實例,條件啟動子可驅動僅在視網膜神經節細胞中之表現或僅驅動在視網膜神經節細胞中具有功能效應之含量的表現。 在一些實施例中,醫藥組合物針對非可注射投藥調配。在一些實施例中,醫藥組合物針對表面投藥調配。借助於非限制性實例,核酸分子可懸浮於適用於滴入眼睛之生理食鹽水溶液或緩衝液中。 在一些實施例中,醫藥組合物可調配為滴眼劑、凝膠、乳液、軟膏、懸浮液或乳狀液。在一些實施例中,醫藥組合物經調配為諸如經眼植入物之固態製劑。舉例而言,經眼植入物可經形成或形狀類似於在一段時間釋放醫藥組合物之隱形眼鏡,有效地傳遞延長釋放之調配物。凝膠或軟膏可應用於眼瞼下或眼瞼內部或眼角中。 在一些實施例中,方法可包含在睡眠之前或個體可保持眼睛閉合一段時間之前立即投與醫藥組合物。在一些實施例中,方法包含指示個體保持其眼睛閉合或在投與醫藥組合物之後使用眼罩(例如繃帶、膠帶、貼片)保持眼睛閉合持續至少1分鐘、至少5分鐘、至少10分鐘、至少15分鐘、至少20分鐘、至少30分鐘、至少1小時、至少2小時、至少4小時或至少8小時。方法可包含指示個體在投與醫藥組合物之後保持其眼睛閉合1分鐘至8小時。方法可包含指示個體在投與醫藥組合物之後保持其眼睛閉合1分鐘至2小時。方法可包含指示個體在投與醫藥組合物之後保持其眼睛閉合1分鐘至30分鐘。 在一些實施例中,方法包含僅在治療青光眼時向個體投與醫藥組合物。在一些實施例中,方法包含第一次治療青光眼及第二次治療青光眼時投與醫藥組合物。第一次及第二次可藉由一小時至十二小時範圍內之時段分開。第一次及第二次可藉由一天至一週範圍之時段分開。第一次及第二次可藉由一週至一個月範圍內之時段分開。在一些實施例中,方法包含每天、每週、每月或每年向個體投與醫藥組合物。在一些實施例中,方法可包含最初積極治療,逐漸變成保守治療。借助於非限制性實例,方法可包含最初注射醫藥組合物,接著使用以滴眼劑形式投藥之醫藥組合物保守治療。並且,借助於非限制性實例,方法可包含最初每週投與醫藥組合物之注射液約1週至約20週,接著經由每兩個月至十二個月注射或表面投藥而投與醫藥組合物。 在一些實施例中,治療劑為小分子抑制劑,且醫藥組合物經調配用於經口投藥。套組 / 系統 本文中提供包含Cas核酸酶或編碼Cas核酸酶之聚核苷酸、第一嚮導RNA及第二嚮導RNA之套組及系統。Cas核酸酶及第一/第二嚮導RNA可為本文中所揭示之彼等核酸酶及RNA中之任一者。第一嚮導RNA可以基因之至少第一區域之第一位點5'之Cas9裂解為目標及第二嚮導RNA可以基因之第一區域之第二位點3'之Cas9裂解為目標,藉此切除基因之區域,在下文被稱作切除區域。區域可包含外顯子。區域可包含外顯子之一部分。區域可包含外顯子之約1%至約100%。區域可包含外顯子之約2%至約100%。區域可包含外顯子之約5%至約100%。區域可包含外顯子之約5%至約99%。區域可包含外顯子之約1%至約90%。區域可包含外顯子之約5%至約90%。區域可包含外顯子之約10%至約100%。區域可包含外顯子之約10%至約90%。區域可包含外顯子之約15%至約100%。區域可包含外顯子之約15%至約85%。區域可包含外顯子之約20%至約80%。區域可基本上由外顯子組成。區域可包含超過一個外顯子。區域可包含內含子或其部分。外顯子或內含子之部分可為至少約1個核苷酸。外顯子或內含子之部分可為至少約5個核苷酸。外顯子或內含子之部分可為至少約10個核苷酸。 本文中提供包含本文中所揭示之供體聚核苷酸之套組及系統。供體聚核苷酸可包含與插入第一位點與第二位點之間相容之末端。供體聚核苷酸可為在供體外顯子之5'端及3'端處包含剪接位點之供體外顯子。供體聚核苷酸可包含在供體外顯子之5'端及3'端處包含剪接位點之供體外顯子。剪接位點允許外顯子包括於基因之開放閱讀框架中,且因此剪接位點將確保供體外顯子在相關細胞中經轉錄。供體聚核苷酸可包含野生型序列。供體聚核苷酸可與切除區域同源。供體聚核苷酸可與切除區域至少約99%同源。供體聚核苷酸可與切除區域至少約95%同源。供體聚核苷酸可與切除區域至少約90%同源。供體聚核苷酸可與切除區域至少約85%同源。供體聚核苷酸可與切除區域至少約80%同源。供體聚核苷酸可等同於切除區域,不同之處在於供體聚核苷酸包含野生型序列,其中切除區域包含突變。在一些情況下,供體聚核苷酸並不類似於切除區域。供體聚核苷酸可與切除區域小於約90%同源。供體聚核苷酸可與切除區域小於約80%同源。供體聚核苷酸可與切除區域小於約70%同源。供體聚核苷酸可與切除區域小於約60%同源。供體聚核苷酸可與切除區域小於約50%同源。供體聚核苷酸可與切除區域小於約40%同源。供體聚核苷酸可與切除區域小於約30%同源。供體聚核苷酸可與切除區域小於約20%同源。供體聚核苷酸可與切除區域小於約10%同源。供體聚核苷酸可與切除區域小於約8%同源。供體聚核苷酸可與切除區域小於至少約5%同源。供體聚核苷酸可與切除區域小於至少約2%同源。 本文中提供用於治療眼睛病況之套組及系統,其包含靶向選自NRL及NR2E3之基因中之序列之至少一個嚮導RNA。第一嚮導RNA及/或第二嚮導RNA可將Cas9蛋白質靶向至包含SEQ ID NO.:1-4中之任一者之序列。第一嚮導RNA及/或第二嚮導RNA可將Cas9蛋白質靶向至與SEQ ID NO.:1-4中之任一者至少90%同源之序列。某些術語 除非另有定義,否則本文所用之所有技術及科學術語均具有與熟習所主張之主題所屬技術者通常所瞭解相同之含義。應理解,前述一般描述及以下實例僅具例示性及解釋性且不限制所主張之任何標的物。在本申請案中,除非另外明確陳述,否則單數之使用包括複數。必須指出,除非上下文另有明確規定,否則如本說明書及隨附申請專利範圍中所使用,單數形式「一(a)」、「一(an)」及「該」包括複數個指示物。在本申請案中,除非另外陳述,否則使用「或」意謂「及/或」。此外,使用術語「包含(including)」以及其他形式,諸如「包含(include)」、「包含(includes)」及「包含(included)」,不具限制性。 如本文所使用,範圍及量可表示為「約」特定值或範圍。約亦包括準確量。舉例而言,「約5 µL」意謂「約5 µL」及亦「5 µL」。一般而言,術語「約」包括將預期在實驗誤差內的量。術語「約」包括在所提供值之10%以下至10%以上內的值。舉例而言,「約50%」意謂「在45%與55%」之間。並且,借助於實例,「約30」意謂「27與33之間」。 本文中所用之部分標題僅出於組織目的而不應理解為限制所述主題。 如本文所用,術語「個體(individual(s))」、「個體(subject(s))」及「患者」意謂任何哺乳動物。在一些實施例中,哺乳動物為人類。在一些實施例中,哺乳動物為非人類。 術語「統計顯著」或「顯著」係指統計顯著性且通常意謂比標記之正常濃度低兩個標準差(2 SD)或低於標記濃度的兩個標準差(2 SD)。術語係指存在差異的統計學證據。其定義為當虛無假設實際上為真時,作出拒絕虛無假設之決定的機率。往往使用p值作出決定。p值小於0.05視為統計學上顯著的。 如本文所用,術語「治療(treating)」及「治療(treatment)」係指向個體投與有效量的組合物,使得個體之疾病之至少一種症狀減少或疾病改善,例如有益或所要臨床結果。出於本發明之目的,有益或所要臨床結果包括(但不限於)一或多種症狀緩解、疾病程度減輕、疾病狀態穩定(亦即不惡化)、疾病進展延遲或減緩、疾病狀態改善或緩和,及緩解(部分或完全),不論可偵測或不可偵測。或者,若疾病之進展減緩或停止,則治療為「有效的」。需要治療者包括已診斷患有疾病或病狀者,以及由於遺傳敏感性或導致疾病或病狀的其他因素(作為非限制性實例,諸如個體之體重、膳食及健康,其為可導致個體可能出現糖尿病之因素)而可能出現疾病或病狀者。需要治療者亦包括需要醫學或外科關注、照護或管理的個體。 無需進一步詳細描述,咸信熟習此項技術者可使用前文描述最大程度地利用本發明。以下實例僅具說明性,且無論如何不以任何方式限制本發明之其餘部分。實例 本文中所描述之實例及實施例係僅出於說明之目的,且並不意欲限制本文中提供之申請專利範圍之範疇。本領域熟習此項技術者提出之各種修改或改變包括於本申請案之精神及範圍及所附申請專利範圍之範疇內。實例 1. 活體外使用兩個嚮導 RNA CRISPR - Cas9 靶向 為測試治療RP及保護視覺功能之CRISPR-CAS9基細胞重編程策略,採用兩個AAV載體,一個表現Cas9,且另一個攜載靶向NRL或NR2E3基因之gRNA(見 1A )。為構建雙gRNA表現載體,使用pAAV-U6 gRNA-EF1a mCherry。兩個20bp gRNA序列分別次選殖至載體中。用於此研究之CRISPR/Cas9靶序列(下劃線示出之20 bp目標及3 bp PAM序列)在下文展示為:用於NRL阻斷基因表現之GAGCCTTCTGAGGGCCGATCTGG (SEQ ID NO.1)及GTATGGTGTGGAGCCCAACGAGG ( SEQ ID NO.2),用於NR2E3阻斷基因表現之GGCCTGGCACTGATTGCGATGGG (SEQ ID NO.3)及AGGCCTGGCACTGATTGCGATGG (SEQ ID NO.4)。由相同基因中之兩個gRNA同時靶向兩個位點之靶向及不活化效率與單個gRNA之靶向及不活化效率相對評定。使用裂解不匹配雙鏈DNA模板之T7E1核酸酶分析來測試小鼠纖維母細胞中之基因阻斷基因表現效率。兩個gRNA系統之阻斷基因表現效率具有比由單個嚮導RNA系統之表現高得多的編輯效率(見 1B 及圖 1C )。因此,雙靶向基因剔除策略用於所有後續活體內實驗。實例 2 . 活體內使用兩個嚮導 RNA CRISPR - Cas9 靶向 編碼Cas 9之AAV及靶向NRL基因之兩個嚮導RNA經由在P0(產後第7天)處視網膜下注射傳遞至WT小鼠。簡要地,麻醉小鼠之眼睛擴張,且在使用剖析顯微鏡直接觀測下,1µl AAV混合物使用玻璃微量吸管(內部直徑50~75µm)及泵顯微注射裝置(Picospritzer III;Parker Hannifin公司)通過小切口注射入視網膜下腔中。藉由創建小視網膜下流體氣泡注意到成功注射。該研究中不包括顯示視網膜損壞(諸如出血)之任何小鼠。P30小鼠經處死用於組織學。視網膜經分段凍結,且經染色用於視錐細胞標記,包括抗小鼠視錐細胞抑制蛋白(mCAR)抗體及抗媒介波長視紫蛋白(M-視紫蛋白)抗體。mCherry亦成像為標記以由AAV載體標記轉導區域及細胞。結果示出AAV8-Cas9+AAV8-NRL gRNA1-mCherry可不誘發任何表現型,表明單個gRNA1不能夠有效地引入基因組序列破裂。根據活體外T7E1分析,觀測到命運轉換表現型在活體內具有兩個gRNA。在對照視網膜中,視錐細胞核駐留在ONL之頂層,而視桿細胞細胞核填充ONL之剩餘部分(見 3A )。觀測到視網膜經轉導具有AAV8-Cas9+AAV8-NRL gRNA2+3-mCherry,且下外核層(ONL)中存在多個mCAR+細胞(見 3B )。下ONL層處之額外mCAR+細胞具有正常視桿細胞外片段(見 3B )。左邊未注射對照視網膜中未觀測到下ONL層處之額外mCAR+細胞。量化展示AAV8-Cas9+AAV8-NRL gRNA2+3-mCherry共注射基團中之下ONL層處額外mCAR+細胞之顯著增多( 3D )。使用M-視紫蛋白抗體染色亦示出此等細胞表現另一視錐細胞特異性基因Opn1mw ( 3C ),表明錐狀基因表現程式之可行性。實例 3 . 具有編碼靶向 NRL NR2E3 Cas9 / CRISPR 系統之 AAV 視網膜色素性 ( RP ) 模型小鼠之視網膜下注射。 為了測試將視桿細胞變性成視錐細胞之部分轉換足以急救視網膜變性及恢復視網膜功能之假定,在P0處將AAV-gRNA/Cas9注射入RD10小鼠中之視網膜下腔。RD10小鼠為人類中之具有快速桿狀感光體變性之常染色體隱性RP之模型。RD10小鼠攜帶桿狀-磷酸二酯酶(PDE)基因之自發突變,導致在P18左右開始快速視桿細胞變性。視桿細胞變性在產後60天內與細胞變性同時完成。因為感光體變性不與視網膜顯影重疊,且光反應可在出生之後記錄約一個月,RD10小鼠比其他RD模型(諸如rd1突變體)模仿典型人類RP更接近。 產後第7至8週之間執行分析。為了判定此AAV-gRNA/Cas9治療對視網膜之生理功能之效應,測試視網膜電圖描記(ERG)反應以量測視桿細胞(暗視,進行暗視ERG但又不分析資料)及視錐細胞(亮光)之電活性。在注射之後的第6週(P50)執行ERG測試。經AAV-gRNA/Cas9處理之所有眼睛顯現顯著改良之亮光b波值,表明增強型視錐細胞功能(見 5B )。此等結果顯示AAV-gRNA/Cas9治療急救之感光體變性且保護視網膜視覺功能。 DNA分析揭露注射AAV-gRNA/Cas9眼睛中之正確阻斷基因表現(見 2C )。另外,AAV-gRNA/Cas9注射導致與未注射對照相比ONL厚度之顯著改良之保持(見 4C )。不同於ONL中僅具有1至2個(或稀疏分佈之)感光體細胞核之未處理眼睛,存在3至5個ONL層,指示AAV-gRNA/Cas9治療預防了感光體細胞變性。定量RT-PCR(qRT-PCR)用於量測桿狀及錐狀感光體基因之相對表現量(見 5C )。此等分析示出視錐細胞特異性基因之增大之表現。 值得注意地,在經治療眼睛中觀測到ONL厚度之顯著增大。引起關注地,ONL中之許多細胞的確不表現視桿細胞或視錐細胞標記,表明其可已經重編程為中間細胞命運。所觀測急救效應之一個額外或替代性解釋為此等中間細胞下調視桿細胞特異性基因,因此再現其對由視桿細胞特異性基因突變所引起之死亡/變性的抗性。此等中間細胞可已經維持正常組織結構完整性,且分泌對於內因性視錐細胞存活重要的營養因子。因此視覺功能獲得可已經部分歸因於現有視錐細胞中之急救效應,而不是將視桿細胞重編程為視錐細胞命運。實例 4 . 具有用於治療 β 地中海貧血之 Cas 介導之同源性引導修復之靶向血紅蛋白基因突變 β地中海貧血為減小血紅蛋白(Hb)之產生的血液病症。Hb編碼基因中已知為CD41/42 (-TCTT)之突變係與此病症相關聯。此基因之修復可具有用於患有此病症之個體之治療效果。 為了專門以來源於患者之造血幹細胞/祖細胞(HSPC)中之同源及異質CD41/42突變兩者為目標,選擇位於突變位點處之兩個CRISPR/Cas9靶序列。接著使用螢光素酶分析基於單鏈退火原理(SSA)測試特異性及效率。SSA為當定向於同一方向中之兩個重複序列之間完成雙鏈麵包時開始的程序。藉由將野生型及CD41/42突變序列放置於兩個部分重複之螢光素酶表現卡匣之間,在特異切割由CRISPR/Cas9系統介導時活化螢光素酶表現。gRNA-1及gRNA-2兩者示出適當特異性,且gRNA-2含有較高效率( 6A )。選擇gRNA-2以供進一步HSPC編輯。接下來,測試不同Cas9格式與單鏈寡去氧核苷酸(ssODN)之編輯效率。HDR介導之編輯由HDR特異PCR及液滴式數位PCR兩者評定。在Cas9 mRNA及兩個Cas9 RNP中,Cas9 RNP-2示出最高HDR效率( 6B )。使用Cas9 RNP-2設計及篩選七個不對稱ssODN,在該等ssODN中,ssODN-111/37得到最高HSPC編輯效率( 6B 左及圖 6C )。質體。 為構建gRNA表現載體,使用pX330 (Addgene,42230)。兩個突變特異性靶序列如先前所描述分別次選殖至載體中。用於此研究之CRISPR/Cas9靶序列(使用下劃線示出之20 bp目標及3 bp PAM序列)在下文中展示為:gRNA-1:GGCTGCTGGTGGTCTACCCTTGG (SEQ ID NO.:6);gRNA-2:GGTAGACCACCAGCAGCCTAAGG (SEQ ID NO.:7)。購買用於Cas9之活體外轉錄之質體。螢光素酶分析。 為選擇突變特異性gRNA,野生型及CD41/42突變序列經合成且分別選殖入pGL4-SSA中。pX330-gRNA-Cas9、pGL4-SSA-HBB及pGL4-hRluc共轉染成293T細胞。使用雙螢光素酶報告子分析系統執行螢光素酶分析。活體外轉錄。 使用引物擴增gRNA -2之活體外轉錄之模板:gRNA-2-F:TAATACGACTCACTATAGGGACCCAGAGGTTGAGTCCTT (SEQ ID NO.:8)及gRNA-F:AAAAGCACCGACTCGGTGCC (SEQ ID NO.:9);質體MLM 3639經線性化且接著用於Cas9活體外轉錄。gRNA及Cas9經活體外轉錄、純化且用於HSPC電致孔。Cas9 RNP 之。 為了使用Cas9 RNP電致孔20 ml 細胞懸浮液(100,000細胞),藉由向Cas9緩衝液中添加1.2莫耳過剩gRNA而製備5ml gRNA溶液。將含有100 pmol Cas9之另一5 ml溶液緩慢添加至gRNA溶液,且在與靶細胞混合之前在室溫下保溫>10分鐘。患者導出之 CD34 + HSPC 之隔離及培養。 來自具有CD41/42突變之患者之低溫保藏之運動末梢血液PBMC用於HSPC隔離及培養。患者導出之 CD34 + HSPC 中之 HBB 編輯。 為了編輯患者導出之HSPC,在使用Cas9 mRNA或Cas9 RNP電致孔之前兩天如先前所描述隔離及培養HSPC。100,000 HSPC成球粒且再懸浮於20 ml龍沙(Lonza) P3溶液中,且與10 ml Cas9 RNP及1 ml 100 M ssODN模板或相同莫耳之Cas9 mRNA、gRNA及1 ml 100 M ssODN模板之混合。此混合物經電致孔、基因分型及用於紅細胞系分化。經編輯細胞之基因分型。 使用HDR特異性正向引物及通用反向引物HDR-F:CCCAGAGGTTCTTCGAATCC (SEQ ID NO.:10)通用R:TCATTCGTCTGTTTCCCATTC (SEQ ID NO.:11)。執行HDR特異性PCR。BstBI (NEB,R0519)約束消化亦用於評定HDR介導之編輯:關於CD41/42突變之區域首先擴增且接著用BstBI消化用於突變至HDR編輯。CD41/42突變之HDR介導之編輯亦由以下評定:液滴式數位PCR (ddPCR,QX200,拜耳雷德實驗室,公司) HBB-F:CTGCCTATTGGTCTATTTTCC (SEQ ID NO.:12);HBB-R:ACTCAGTGTGGCAAAGGTG (SEQ ID NO.:13);探測供體:6-FAM/CCCAGAGGTTCTTCGAATCCTTTG/BHQ1 (SEQ ID NO.:14);探測突變:HEX/CTTGGACCC AGAGGTTGAGTCC/BHQ1 (SEQ ID NO.:15)。流式細胞量測術。 針對LSR細胞分析器 (BD Biosciences)分析隔離及電致孔之後的HSPC之純度及線性。靶向深度測序。 使用CRISPR設計工具搜索頂部12個預測偏離目標位點。目標區域及可能的偏離目標區域使用自HSPC DNA擴增且用於庫構造。擴增基因組區域之引子列出如下:HBB-F:TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTGCCTATTGGTCTATTTTCC (SEQ ID NO.:16);HBB-R:GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACTCAGTGTGGCAAAGGTG (SEQ ID NO.:17)。來自第一步驟之下一PCR擴增子使用Ampure珠粒(Beckman Coulter)純化,且接著經受第二環形PCR以附接樣本特異性條碼。經純化PCR產物以相等比率合併以供用於使用Illumina MiSeq之對端測序。原始讀段映射至小鼠參考基因組mm9。針對如先前所描述之插入及刪除(插入刪除)事件及最大可能估計(MLE)計算來分析高品質讀段(分數>30)。由於對插入刪除之下一代測序分析無法檢測較大大小之刪除及插入事件,低估了上文所展示之CRISPR-Cas9靶向效率及活性。實例 5 . 用於活體內視網膜變性之同源性獨立靶向整合 ( HITI ) 基因替代物療法 皇家醫師學會(RCS)大鼠為廣泛使用之被稱作色素性視網膜炎之遺傳性視網膜變性之動物模型,該色素性視網膜炎為人類失明之常見原因。Mertk 基因(具有自內含子1至外顯子2之1.9 kb刪除)中之同型接合突變導致視網膜色素上皮(RPE)之有缺陷的吞噬細胞功能,伴隨著隨之而來的RPE及覆蓋感光體變性及失明( 7A )。RCS大鼠中之視網膜變性可由形態及視覺功能測試經由視網膜電圖描記(ERG)評估。感光體外核層(ONL)變性中之形態變化早在產後第16天(P16)呈現於RCS大鼠中。為了恢復眼睛中之Mertk 基因之視網膜功能,產生可將Mertk 之外顯子2之功能性拷貝經由HITI (AAV-rMertk-HITI)插入內含子1之AAV載體。針對對比,亦產生HDR AAV載體以恢復刪除之1.9 bp區域(AAV-rMertk-HDR) ( 7B )。產後第3週將AAV注射入大鼠眼睛中,且在第7至8週分析( 7C )。自DNA分析,偵測到AAV注射眼睛中之正確DNA基因嵌入( 7D 及圖 8 )。與未處理及HDR-AAV對照相比較,HITI-AAV注射導致Mertk mRNA表現量之顯著增大且較好地保持ONL厚度( 7E 7F )。H&E染色確認注射眼睛中之提高之感光體ONL。相比之下,未處理及HDR-AAV處理之眼睛在ONL中僅具有一個-兩個或稀疏分佈之感光體細胞體。HITI-AAV中亦觀測到MERTK蛋白質表現,單不在HDR-AAV注射之眼睛中( 7G )。為了判定對視網膜生理功能之治療效果,在注射之後第4週(P50)測試ERG反應以量測視桿細胞及視錐細胞功能之電活性(10 Hz閃爍)。簡言之,使用1%表面托品醯胺擴張深度麻醉之小鼠之眼睛。一個主動鏡頭電極放置在各角膜上,皮下放置之地面針頭電極在尾部,且皮下參考電極在頭部,大約在眼睛之間。使用氙氣燈在Ganzfeld槽中傳遞光模擬,且使用來自Diagnosys之軟件處理結果。亮光ERG公開執行:在30 cd/m2 之背景光下進行光調適10分鐘之後,視錐細胞反應由具有10 cd/m2 之低背景光之34 cds/m2 閃光引發,且信號自50掃平均化。用HITI-AAV治療之所有眼睛呈現顯著改良ERG b波反應( 7H )。類似地,量測視錐細胞反應之10 Hz閃爍值經顯著改良且比未處理眼睛之閃爍值高超過4倍( 7I )。此等結果顯示AAV-HITI治療能夠急救及保護RCS大鼠模型中之視網膜視覺功能。實例 6 . 具有編碼靶向結腸癌細胞之 Cas9 / CRISPR 系統之 AAV 腹膜內注射液 編碼Cas 9及靶向攜帶驅動結腸癌之突變的基因的兩個嚮導RNA的一或多個病毒經腹膜內注射入患有結腸癌之個體中。基因為APC。可替代地,基因為MYH1、MYH2、MYH3、MLH1、MSH2、MSH6、PMS2、EPCAM、POLE1、POLD1、NTHL1、BMPR1A、SMAD4、PTEN或STK11。在四週後獲得結腸活檢且與或自使用病毒治療之前的個體的結腸活檢相比較。相較於治療之前獲得之活檢樣本之數目,治療之後獲得的活檢樣本中之結腸癌細胞之數目更少,且小腸細胞更多。得出結論,結腸癌細胞已經重編程為良性小腸細胞。實例 7 . 具有編碼靶向淋巴瘤細胞之 Cas9 / CRISPR 系統之 AAV 靜脈內注射液 編碼Cas 9及靶向攜帶驅動B細胞淋巴瘤之突變的基因的兩個嚮導RNA的一或多個病毒經靜脈內注射入患有B細胞淋巴瘤之個體中。基因為C-MYC。替代地,基因為CCND1、BCL2、BCL6、TP53、CDKN2A或CD19。在四週後獲得血液樣本且與或自使用病毒治療之前之個體的血液樣本相比較。相較於治療之前獲得之血液樣本之數目,治療之後獲得之血液樣本中之B細胞數目更少,且巨噬細胞更多。得出結論,B細胞淋巴瘤細胞已經重編程為良性巨噬細胞。實例 8 . 用於免疫療法之具有編碼靶向 T 細胞 Cas9 / CRISPR 系統之 AAV 靜脈內注射液 編碼Cas 9及靶向PD-1及/或PD-L1核查點抑制因子編碼基因之兩個嚮導RNA一或多個病毒經靜脈內注射入患有轉移性黑素瘤之患者中。可替代地,患者患有諸如轉移性卵巢癌、轉移性腎細胞癌或非小細胞肺癌之另一種癌症。T細胞被感染病毒,且PD-1編碼基因未經活化,使得T細胞數目及反應最大化。患者之表現PD-L1之癌細胞亦經感染,且PD-L1亦未活化,減小T細胞活化及細胞激素產生之PD-L1禁止,這通常向癌細胞提供免疫逸出。實例 9 . 分裂 Cas9 傳遞平台 下文執行影響活體內視桿細胞至視錐細胞重編程之視網膜中之NRL之CRISPR/Cas9介導之靶向不活化。腺相關病毒係針對由於其輕度免疫反應、長期轉殖基因表現及有利的安全分佈之基因轉移所選擇。為了克服其限制封裝能力,使用分裂Cas9系統。化膿性鏈球菌Cas9(SpCas9)蛋白質使用分裂內含肽分裂成兩個部分。各SpCas9部分融合至其對應分裂內含肽部分。共表現之後,全SpCas9蛋白質經復水。藉由以此方式利用兩個AAV載體(見 9 ),各載體之殘餘封裝能力容納大範圍之基因組工程改造功能性,包括經由單個或雙gRNA傳遞之多重靶向及亦用於原位療法之AAV-CRISPR-Cas9介導之靶向活體內基因抑制。實例 10 . 使用一或兩個 gRNA 雙載體傳遞之有效性 針對靶向NRL之Cas9及gRNA之傳遞評定雙AAV載體方法。設計靶向NRL之一或兩個gRNA之構建體以便判定對於相同基因兩個gRNA,靶向兩個位點是否具有比單個gRNA更高之靶向效率。 10A 中使用帶下劃線之PAM序列展示靶序列。此外,為了避免AAV中之重複序列,藉此損害載體穩定性及病毒滴定,使用人類U6啟動子及小鼠U6啟動子獨立驅動各gRNA。採用額外非同源tracrRNA。標準T7核酸內切酶1用於量化小鼠胚胎纖維母細胞(MEF)中之基因編輯速率。MEF經共轉染有分裂Cas9-Nrl載體,且使用基因組DNA進行T7E1分析( 10B )。箭頭指示藉由對於由基因組編輯所引起之異雙螺旋DNA特定之T7E1酶產生之裂解DNA。自切口頻帶強度比總頻帶強度之比例計算突變頻率。使用雙gRNA靶向策略在單個gRNA方法中改良基因靶向效率。實例 11 . KRAB 轉錄抑制因子包括於雙載體系統中 通過使用KRAB轉錄抑制因子實現轉錄干擾。建造於實例10中描述之雙AAV載體系統上,KRAB轉錄抑制因子藉由融合KRAB抑制因子結構域至Cas9蛋白質序列之N端而併入至分裂Cas9系統( 11 )。這產生無疤痕及可能之基因療法之可逆方法,其中由於Cas9核酸酶活性之不活化而將突變誘發之風險減到最小。實例 12 . 野生型及 NRL - GFP 小鼠中之視桿細胞至視錐細胞重編程 靶向NRL之AAV-gRNA/Cas9或AAV-gRNA/KRAB-dCas9在產後第7天(p7)注射至野生型小鼠中之視網膜下腔中且在P30處處死以用於組織學( 12A )。針對轉導效率評估AAV2蛋白殼及酪胺酸突變型Y444F兩者。Y444F突變型載體示出AA2階段之增強型視網膜轉導且用於後續研究。視網膜經閃凍、分段及染色用於視錐細胞標記,包括視錐細胞抑制蛋白(mCAR)及媒介波長視紫蛋白 (M-視紫蛋白)。如染色部分及使用細胞分析中所示( 12B 至圖 12D ),重編程感光體表現型經發現具有Cas9-gRNA。相較於野生型對照,ONL中顯像視錐細胞特異性表現。定量RT-PCR (qRT-PCR)用於量測重編程視網膜及對照中之視桿細胞及視錐細胞基因之相對表現量。存在視桿細胞特異性基因之下調,同時視錐細胞特異性基因之上調( 12E ) 轉殖基因NRL-GFP小鼠(其中所有桿狀感光體細胞經標記)經視網膜下注射有如所描述之AAV-NRL gRNA/Cas9 ( 12F )。mCAR正細胞之數目之顯著增大及同時Nrl-GFP+ 桿狀感光體之減小為可見的( 12G 及圖 12H )。許多形態錐狀細胞在內核層之內態樣中為值得注意的,使人聯想到野生型視網膜中之水平細胞(HC) ( 12I )。另外,偵測到此等細胞表現視錐細胞標記m-CAR及HC標記鈣合蛋白兩者( 12J ),指示水平細胞亦保持經歷錐狀細胞重編程之可能性。得出結論,視桿細胞已經重編程為錐狀細胞。實例 13 靶向rd10小鼠中之NRL,該小鼠為用於常染色體隱性RP之模型。此等rd10小鼠攜帶桿狀-磷酸二酯酶基因之自發突變,且呈現在P18左右開始之快速視桿細胞變性。在P60處,視桿細胞不再可見,伴隨的係錐狀感光體變性。為了評估視桿細胞至視錐細胞之轉換是否足以逆轉視網膜變性及急救視覺功能,AAV-gRNA/Cas9或AAV-gRNA/KRAB-dCas9在P7處注射至rd10小鼠中。對視錐細胞生理功能及視力之此類治療效果由量測視網膜電圖描記(ERG)反應及光學動力眼球震顫(OKN)判定以量化在注射之後第6週(P60)之錐狀感光體活性(明視覺反應)及視力( 13A )。藉由簡要地在虛擬實境腔室中創建包圍平台之四個電腦監測器而量測OKN,測試動物放置於該平台上。在允許動物適應測試病況之後,覆蓋有垂直正弦波光柵之虛擬圓柱投影至監測器上。虛擬條圓柱設定為最高對比度(100%,黑色0,白色255,自上方250 cd/m2 照明),條之數目始於每篩檢4個(2個黑色及2個白色)。測試以以速度13開始順時針旋轉1分鐘,接著逆時針旋轉1分鐘。定位於動物上方之視訊攝影機允許不偏觀測者追蹤及記錄頭部移動。資料是藉由週期/程度(c/d)來量測且表達為平均值±S.D.,在使用t-測試統計分析之對比下。將p值<0.05視為統計顯著的。經AAV-gRNA/Cas9或KRAB-dCas9處理之所有眼睛具有改良之視錐細胞功能及視覺功能,如由亮光b波值及清晰度之顯著改良而指示( 13B 13 C )。此外,根據視覺功能之改良之發現,在對AAV-NRL gRNA/Cas9或KRAB-dCAS9處理之rd10視網膜之組織學分析上觀測到多個mCAR正細胞及M-視紫蛋白正細胞( 13D 13 G )。儘管未處理眼睛在ONL中僅具有稀疏分佈之感光體細胞核,AAV-gRNA/ Cas9或AAV-gRNA/KRAB-dCas9處理之眼睛具有3至5個ONL層( 13D ),指示治療預防感光體變性且保留ONL。實例 14 晚期 / 末期疾病中之錐狀細胞之產生 AAV-gRNA/Cas9或AAV-gRNA/KRAB-dCas9在P60 ( 14A )處經視網膜下注射至rd10小鼠中,在該小鼠中不存在存活感光體及非可記錄ERG。經AAV-gRNA/Cas9或AAV-gRNA/KRAB-dCas9處理之所有眼睛具有改良之視錐細胞功能及視覺功能,如由亮光b波值及視力( 14B 14C )之顯著改良以及多個視錐細胞mCAR正細胞之同時增大所指示。在新生兒及成年rd10小鼠中之經AAV-gRNA/Cas9或AAV-gRNA/KRAB-dCas9處理之所有眼睛中觀測到視錐細胞Opsin+ 細胞之相當大部分中之共局域化鈣合蛋白表現( 14D )。得出結論,中間神經元至視錐細胞重編程可在應用於晚期/末期RP基因療法,在晚期/末期時,桿狀及錐狀感光體已經實質上變形及損耗。實例 15 . 3 個月內 恢復 olf FvB 視網膜變性小鼠之視網膜功能 具有用於編碼cGMP磷酸二酯酶(PDE)之B次單元之Pde6brd1 的同型接合突變的FVB/N小鼠展示可遺傳常染色體隱性視網膜變性,該變性之特徵在於在p35處,桿狀感光體之快速初始缺失及錐狀感光體之後續缺失。此類小鼠在P60(圖15A )處經視網膜下注射有AAV-gRNA/KRAB-dCAS9。如先前實例中一樣執行組織學分析。AAV-gRNA/KRAB-dCAS9處理之視網膜示出具有顯著改良之亮光b波值及視力之mCAR+ 細胞之出現,展示改良之視覺功能( 15B 15C )。得出結論,本文所述之CRISPR/Cas-9介導之細胞重編程為基因及突變獨立型療法。 Sequence table This application contains a Sequence Listing which has been submitted electronically in ASCII format and is incorporated herein by reference in its entirety. The ASCII copy created on October 31, 2017 is named 49697-713-SEQ.txt and is 4.31 KB in size. Gene therapy displays have great promise for treating many human diseases. However, one of the major drawbacks of current technology is that it can only target a specific mutation or a single gene at most, which makes gene therapy difficult to apply to a larger patient population. Similarly, repair and regeneration of tissues using endogenous or autologous stem cells represents an important goal of regenerative medicine. However, this method is hindered by the requirement that the starting cells have normal gene composition and function, and in many cases it is not practicable because the autologous cells have genetic mutations that the gene therapy intends to overcome. Provided herein are methods for overcoming the above-described challenges of cell reprogramming, which convert a cell type susceptible to mutation into a functionally related cell type that is resistant to the same mutation, thereby protecting tissue and function. This method is based on the assumption that 1) mutations usually only have an adverse effect on specific cell types; 2) the combination of transcription factors enables determination of cell fate, and 3) the presence of mature cell types (such as pancreas) that allow differentiation at closely related terminals Developmental plasticity between direct conversion in vivo, between myocardium and nerve cells. In addition, distantly related cells can also be directly transformed in vivo by appropriate combinations of developmentally related transcription factors. A method based on clustering regular interval palindrome-Cas9 (CRISPR-Cas9) using a homology-independent targeted integration (HITI) strategy is provided herein. These methods provide efficient targeted gene insertion of both split and non-dividing cells. These methods can be performed in vitro and in vivo. These methods provide targeted transgene insertions in post-mitotic cells (eg, the brain) of postpartum mammals. Retinitis pigmentosa is one of the most common degenerative diseases of the eye, affecting more than one million patients worldwide. It can be caused by many mutations in more than 200 genes. RP is characterized by the death and degeneration of primary rod-shaped photoreceptors followed by secondary cone death. Rod cell determinant A large number of gene knockouts of NRL reprogram adult rod cells into cone cells, which counteract the effects of mutations in RP-specific genes on rod-shaped photoreceptors, and thus prevent secondary cone deletions . NRL acts as the dominant switch gene between rod cells and cone cells and activates the major downstream transcription factor NR2E3. NRL and NR2E3 are used together to activate rod-specific gene transcription networks and control rod cell differentiation and fate. Loss of function of NRL or NR2E2 reprograms rod cells into cone fate. This system provides an opportunity to demonstrate the concept that therapy can be developed, in which cells are reprogrammed from cells that are sensitive to mutations to their anti-mutation cells. Provided herein are methods for treating a condition comprising targeted inactivation of a gene comprising a mutation in a cell type that is susceptible to mutation (eg, abnormal or toxic to an individual having the cell). Examples of such methods are provided herein, including for the treatment of RP using in vivo rod-to-cone reprogramming by targeting NRL or NR2E3 in a non-targeted activated retina by using CRISPR/Cas9 adeno-associated virus (AAV). And other methods of retinal conditions (see, for example, Example 12). The example demonstrates that rod-to-cone-specific cell fate can be reprogrammed by the inactivation of the rod-shaped photoreceptor cell fate with consequent retinal photoreceptor reservation and visual function first aid. These results point to novel therapeutic approaches that are independent of genes and mutations and can have broad implications for genetic disease therapies.Therapeutic platform Provided herein are methods of treating a hereditary condition in an individual comprising administering to a cell of a first cell type of the subject a therapeutic agent that exhibits the expression of a modified gene disclosed herein in a first cell, wherein the gene encoding has a specific A protein of the function of the first cell type. The performance of the modified gene can result in reprogramming the cell from the first cell type to the second cell type. By way of non-limiting example, the hereditary condition may be retinitis pigmentosa, the gene may be selected from the group consisting of NRL and NR2E3, and the therapeutic agent may be a virus encoding a Cas nuclease of a targeted gene and a guide RNA. The method can comprise administering a therapeutic agent to a retinal cell, such as a rod-shaped photoreceptor cell, also referred to herein as a "rod cell." The method can result in reprogramming rods into cones, saving retinal degeneration and restoring retinal function. Thus, the first cell type can be a rod cell and the second cell type is a cone cell (see, eg, Example 13). Although rod-to-cone reprogramming can result in loss of rod count and possible subsequent night blindness, individuals may be willing to endure night blindness. Provided herein are methods of reprogramming a cell from a first cell type to a second cell type comprising contacting the cell with a guide RNA that hybridizes to a target site of the gene, wherein the gene encodes a cell type that contributes to the cell a protein that specifically functions; and a Cas nuclease that cleaves a strand of the gene at a target site, wherein the expression of the cleavage chain-modified gene allows the cell to no longer perform cell type-specific functions, thereby reprogramming the cell to a second Cell type. The term "reprogramming" as used herein refers to at least one gene in a genetically altered cell to convert the cell from a first cell type to a second cell type. The first cell type can be a more differentiated form of the second cell type or vice versa. The first cell type can be functionally related to the second cell type. For example, the first cell type and the second cell type can provide visually related functions. Also by way of non-limiting example, the first cell type and the second cell type may provide for brain activity, neuronal activity, muscle activity, immune activity, sensory activity, cardiovascular activity, cell proliferation, cellular senescence, and cellular cell death. Death related features. Genetically altering the gene can include silencing the gene, thereby inhibiting the production of the protein encoded by the gene. Silencing a gene can involve introducing a nonsense mutation into the gene to produce a non-functional protein. Insignificant mutations can be introduced by using gene editing to establish artificial splice variants, wherein the artificial splice variant lacks at least one exon or portion thereof. The term "cell type-specific function" as used herein refers to a function specific to a cell type. In some cases, this function is only specific for a single cell type. For example, the cell type specific function can be light vision, and the single cell type is a cone photoreceptor cell. In some cases, the function is specific to a subset of cells. For example, cell type-specific functions can be generally visual, and a subset of cells can be photoreceptor cells, such as rods, cones, and photosensitive retinal ganglion cells. The terms "first cell type" and "second cell type" are used herein only to distinguish one cell type from another in the context in which it is used. The methods or compositions disclosed herein are in no way limited to the order of the one part of the present application in another part of the present application. The first cell type disclosed herein can be sensitive to mutations. "Sensitive to mutation" means that a mutation in a gene in one cell will have a functional effect on the other cell. The second cell type disclosed herein is resistant to mutation. "Anti-mutation" means that a mutation in a gene in the cell will not exert any functional effect on the cell, or that a mutation in the gene in the cell will produce an acceptable functional effect, and is non-toxic to the individual in which the cell is present, or There is little or no functional effect on the individual in which the cell is present. For example, the anti-mutated cell type can be a cell type of a gene that does not exhibit a gene or exhibits a negligible amount. The anti-mutation cell type can be a cell type that expresses a gene, but the functional role of the gene in the cell type is not affected by the mutation. Cell type-specific functions are performed on cell types that are sensitive to mutations, wherein cell type-specific functions are regulated or controlled by the expression of genes that can have mutations. When a mutation occurs in a gene, cell type-specific function is lost or altered. The methods disclosed herein comprise editing a gene such that the first cell type (sensitive to mutation) is reprogrammed to a second cell type (anti-mutation). Methods of treating retinal degeneration are provided herein. Retinal degeneration involves a variety of diseases such as retinitis pigmentosa, macular degeneration and glaucoma. The method can comprise reprogramming retinal cells from a rod-shaped photoreceptor cell type to a cone-shaped photoreceptor cell type, comprising contacting the retinal cell with a guide RNA that hybridizes to a target site of a gene disclosed herein, wherein the gene A protein encoding a protein that contributes to the nighttime or color vision function of the cell; and a Cas nuclease that cleaves the strand of the gene at the target site, wherein the expression of the cleavage chain-modified gene allows the retinal cell to no longer perform nighttime or color vision functions, This reprograms retinal cells into conical photoreceptor cell types. Cone photoreceptor cell types may be capable of providing light vision to an individual. The gene may be selected from the group consisting of NRL, NR2E3, GNAT1, ROR beta, OTX2, CRX and THRB. The gene can be an NRL. The gene can be NR2E3. Methods of treating retinal degeneration are provided herein. Retinal degeneration involves a variety of diseases such as retinitis pigmentosa, macular degeneration and glaucoma. The method can comprise reprogramming retinal cells from a first cell type to a second cell type. The first cell type can be a rod cell. The first cell type can be a cell other than a rod cell or a cone cell. The first cell type can be a neuron. The first cell type can be an interneuron. The first cell type may be a neuronal stem cell or a neuronal precursor cell (a pluripotent or pluripotent cell having the ability to differentiate into a neuronal cell). The advantage of using cells such as interneurons or cells other than rod cells can be used to provide a line of sight to patients with terminal RP who have completely lost both rod and cone receptors. The second cell type can be a cone cell. The second cell type can be an intermediate cell. The intermediate cell can be a cell that has been reprogrammed as described herein (eg, treated with Cas nuclease and guide RNA or RNAi). The intermediate cell can be a rod cell in which the rod cell gene expression has been downregulated. Down-regulation of rod cell gene expression reduces the effect of rod-specific mutations. As used herein, "rod-specific mutation" generally refers to a mutation in a gene that affects the function and phenotype of a rod. In other words, rod cells can be sensitive to rod cell mutations. Such cells can provide a tissue structure carrier to maintain normal architecture and function. These cells also secrete nutrient factors that are critical for maintaining the growth and survival of endogenous cone cells. The method can comprise reprogramming retinal cells from a rod-shaped photoreceptor cell type to a pluripotent cell type comprising contacting the retinal cell with a guide RNA that hybridizes to a target site of a gene disclosed herein, wherein the gene is encoded a protein that contributes to the nighttime or color vision function of the cell; and a Cas nuclease that cleaves the strand of the gene at the target site, wherein the expression of the cleavage chain-modified gene allows the retinal cell to no longer perform nighttime or color vision functions, thereby Retinal cells are reprogrammed into pluripotent cell types. The pluripotent cell type may be a pluripotent retinal progenitor cell, meaning cells that may develop into rods or cones when placed in the retina and/or subjected to environmental stimulation of the retina. The pluripotent cell type can be a cell type intermediate between cone cells and rod cells. The cell type between the cone cells and the rod cells may be a retinal ganglion pluripotent cell. During normal retinal development, retinal ganglion pluripotent cells will differentiate into cones or rods. The gene may be selected from the group consisting of NRL, NR2E3, GNAT1, ROR beta, OTX2, CRX and THRB. The gene can be an NRL. The gene can be NR2E3. Methods of treating cancer are provided herein. By way of non-limiting example, the cancer can comprise colon cancer, B cell lymphoma, glioblastoma, retinoblastoma, and breast cancer. The method can comprise reprogramming a cancer cell from a malignant cell type to a benign cell type comprising contacting the cancer cell with a guide RNA that hybridizes to a target site of a gene disclosed herein, wherein the gene encoding contributes to the cell a proliferating protein; and a Cas nuclease that cleaves a strand of the gene at a target site, wherein cleavage of the strand-modified gene allows the cancer cell to no longer abruptly augment, thereby reprogramming the cancer cell into a benign cell type. By way of non-limiting example, the first cell type may be a colon cancer cell, the second cell type may be a benign intestinal cell or a benign colon cell, and the gene may be selected from the group consisting of APC, MYH1, MYH2, MYH3, MLH1, MSH2, MSH6, PMS2, EPCAM, POLE1, POLD1, NTHL1, BMPR1A, SMAD4, PTEN and STK11. Also, by way of non-limiting example, the first cell type can be a malignant B cell, the second cell type can be a benign macrophage, and the gene can be PU.1, CD19, CD20, CD34, CD38, CD45 or CD78. The first cell type may be a malignant B cell, the second cell type may be a benign macrophage, and the gene may be C-MYC, CCND1, BCL2, BCL6, TP53, CDKN2A, CREBBP or EP300. The second cell type can exhibit a higher RNA/protein content of CD68, CD11b, F480, Cd11c or Ly6g than the first cell type. Also by way of non-limiting example, the first cell type may be an estrogen receptor positive and/or Her2 positive breast cancer cell, and the second cell type may be an estrogen receptor negative and/or estrogen receptor negative breast cancer cell, and The gene may be selected from the group consisting of an estrogen receptor gene, a Her2 gene, and combinations thereof. The method of treating cancer disclosed herein can comprise modifying the gene such that the cancer cell loses its ability to metastasize. The method can comprise modifying the gene such that the cancer cell loses its ability to promote tumor angiogenesis.RNA interference ( RNAi ) Provided herein are methods of administering an antisense oligonucleotide capable of inhibiting the expression of a gene in a cell via RNA interference. Inhibition of this gene can result in the conversion of cells from a first cell type to a second cell type. The first cell type or cell type can be any of the cell types disclosed herein. In some embodiments, an antisense oligonucleotide comprises a modification that provides resistance to decomposition or degradation by a naturally occurring DNase. In some embodiments, the modification is to modify the phosphodiester backbone of the antisense oligonucleotide during its synthesis using a solid phase amino phosphate method. This will effectively visualize the least efficient DNase form of the antisense oligonucleotide. In some embodiments, an antisense oligonucleotide comprises a delivery system that most effectively promotes or enhances uptake of an antisense oligonucleotide in both methods. In some embodiments, the delivery system comprises a liposome or lipid container that is readily absorbed by human cells. In some embodiments, the delivery system isTat A protein-mediated system that allows the transfer of macromolecules resembling oligonucleotides via cell membranes. In some embodiments, the antisense oligonucleotide is a short hairpin RNA (shRNA). These RNA strands silence the gene by targeting the mRNA produced by the relevant gene. In some embodiments, shRNAs can be custom designed via computer software and manufactured commercially using design templates. In some embodiments, the shRNA is delivered using a bacterial plastid, a circular strand of bacterial DNA, or a virus carrying a viral vector. In some embodiments, the antisense oligonucleotide targets the RNA encoded by the NR2E3 gene. In some embodiments, the antisense oligonucleotide targets an RNA encoded by the NRL gene. In some embodiments, the antisense oligonucleotide targets an RNA encoded by a gene encoding a puroferrin. In some embodiments, the antisense oligonucleotide targets an RNA encoded by a rhodopsin gene. In some embodiments, the siRNA is between about 18 nucleotides and about 30 nucleotides in length. In some embodiments, the siRNA is 18 nucleotides in length. In some embodiments, the siRNA is 19 nucleotides in length. In some embodiments, the siRNA is 20 nucleotides in length. In some embodiments, the siRNA is 21 nucleotides in length. In some embodiments, the siRNA is 22 nucleotides in length. In some embodiments, the siRNA is 23 nucleotides in length. In some embodiments, the siRNA is 24 nucleotides in length. In some embodiments, the siRNA is 25 nucleotides in length.Gene editing Provided herein are methods for genetically editing genes in a cell, wherein gene editing results in the conversion of cells from a first cell type to a second cell type. By way of non-limiting example, the method can be used to treat retinal conditions. Further provided herein are cells wherein the genes in the cells are modified by the methods disclosed herein. By way of non-limiting example, the cells are cells of the retina, also known as retinal cells. In some embodiments, the methods and cells disclosed herein utilize genomic editing to modify a target gene in a cell for use in treating a retinal condition. In some embodiments, the methods and cells disclosed herein utilize a nuclease or nuclease system. In some embodiments, the nuclease system comprises a site-directed nuclease. Suitable nucleases include, but are not limited to, CRISPR-associated (Cas) proteins or Cas nucleases, including type I CRISPR-associated (Cas) polypeptides, type II CRISPR-associated (Cas) polypeptides, and type III CRISPR-associated (Cas) a polypeptide, a Type IV CRISPR-associated (Cas) polypeptide, a Type V CRISPR-associated (Cas) polypeptide, and a Type VI CRISPR-associated (Cas) polypeptide; a zinc finger nuclease (ZFN); a transcriptional activator-like effector nuclease ( Transcription activator-like effector nucleases, TALEN); meganuclease; RNA-binding protein (RBP); CRISPR-associated RNA-binding protein; recombinase; turnover enzyme; transposase; Argonaute protein; Any variant thereof; and any fragment thereof. In some embodiments, the site-directed nucleases disclosed herein can be modified to produce a catalytic nuclease capable of site-specific binding to a target sequence without cleavage, thereby blocking transcription and reducing target gene expression. . In some embodiments, the methods and cells disclosed herein utilize a nucleic acid-guided nuclease system. In some embodiments, the methods and cells disclosed herein will cluster a regularly spaced short palindromic repeat (CRISPR), CRISPR associated (Cas) protein system for modifying nucleic acid molecules. In some embodiments, the CRISPR/Cas system disclosed herein comprises a Cas nuclease and a guide RNA. In some embodiments, the CRISPR/Cas system disclosed herein comprises a Cas nuclease, a guide RNA, and a repair template. The guide RNA directs the Cas nuclease to a target sequence in which the Cas nuclease cleaves or strands the target sequence, thereby generating a cleavage site. In some embodiments, the Cas nuclease produces a double strand break (DSB) repaired via a non-homologous end joining (NHEJ). However, in some embodiments, non-mediated or non-directed NHEJ-mediated DSB repair results in a disruption of the open reading frame that produces undesirable consequences. In order to circumvent these problems, in some embodiments, the methods disclosed herein comprise the use of a prosthetic template to be inserted at a cleavage site, taking into account a control of the final edited gene sequence. This use of the repair template can be referred to as homology directed repair (HDR). In some embodiments, the methods and cells disclosed herein utilize homologous independent targeted integration (HITI). HITI may allow for efficient local targeting of gene insertion in both dividing and non-dividing cells and, more importantly, allowing in vivo insertion of a target transgene into post-mitotic cells (eg, the brain) of a postpartum mammal. In some embodiments, the repair template comprises a wild type sequence corresponding to the target gene. In some embodiments, the repair template comprises the desired sequence to be delivered to the cleavage site. In some embodiments, the desired sequence is not a wild type sequence. In some embodiments, the desired sequence is equivalent to a target sequence other than one or more edited nucleotides to correct or alter the performance/activity of the target gene. For example, the desired sequence may comprise a single nucleotide difference compared to a target sequence comprising a single nucleotide polymorphism, wherein the single nucleotide difference is for restoring wild-type performance/activity or altered performance/activity Substitution of nucleotides to single nucleotide polymorphisms of the target gene. Any suitable CRISPR/Cas system can be used in the methods and compositions disclosed herein. The CRISPR/Cas system can be referred to as using a variety of named systems. An exemplary naming system is provided by Makarova, KS et al., "An updated evolutionary classification of CRISPR-Cas systems", Nat Rev Microbiol (2015) 13:722 to 736, and Shmakov, S. et al., "Discovery and Functional Characterization of Diverse Class". 2 CRISPR-Cas Systems" Mol Cell (2015) 60:1 to 13. The CRISPR/Cas system can be a Type I, Type II, Type III, Type IV, Type V, Type VI system or any other suitable CRISPR/Cas system. The CRISPR/Cas system as used herein may be a Class 1, Class 2 or any other suitable classification of the CRISPR/Cas system. Class 1 CRISPR/Cas systems can use multiple complexes of Cas proteins to effect modulation. Class 1 CRISPR/Cas systems may include, for example, Type I (eg, I, IA, IB, IC, ID, IE, IF, IU), Type III (eg, III, IIIA, IIIB, IIIC, IIID) and Type IV ( For example, IV, IVA, IVB) CRISPR/Cas type. The Class 2 CRISPR/Cas system can use a single large Cas protein to affect regulation. Class 2 CRISPR/Cas systems can include, for example, Type II (eg, II, IIA, IIB) and Type V CRISPR/Cas. The CRISPR systems can complement each other and/or can provide functional units in reverse to facilitate CRISPR locus targeting. The Cas protein may be a Type I, Type II, Type III, Type IV, Form V or Type VI Cas protein. A Cas protein can comprise one or more domains. Non-limiting examples of domains include a guide nucleic acid recognition and/or binding domain, a nuclease domain (eg, DNase or RNase domain, RuvC, HNH), a DNA binding domain, an RNA binding domain, a helicase Domains, protein-protein interaction domains, and dimeric domains. The guide nucleic acid recognition and/or binding domain can interact with the guide nucleic acid. The nuclease domain can comprise catalytic activity for nucleic acid cleavage. The nuclease domain may have no catalytic activity to prevent nucleic acid cleavage. The Cas protein can be a chimeric Cas protein fused to other proteins or polypeptides. The Cas protein can be a chimera of various Cas proteins, for example, comprising domains from different Cas proteins. Non-limiting examples of Cas proteins include c2c1, C2c2, c2c3, Casl, CaslB, Cas2, Cas3, Cas4, Cas5, Cas5e (CasD), Cas6, Cas6e, Cas6f, Cas7, Cas8a, Cas8al, Cas8a2, Cas8b, Cas8c, Cas9 (Csnl or Csxl2), Cas10, Cas10d, Cas10, CaslOd, CasF, CasG, CasH, Cpf1, Csyl, Csy2, Csy3, Csel (CasA), Cse2 (CasB), Cse3 (CASE), Cse4 (CasC), Cscl, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmrl, Cmr3, Cmr4, Cmr5, Cmr6, Csbl, Csb2, Csb3, Csxl7, Csxl4, CsxlO, Csxl6, CsaX, Csx3, Csxl, Csxl5, Csfl, Csf2, Csf3, Csf4 and Cul966, and homologs or modified forms thereof. The Cas protein can be from any suitable organism. Non-limiting examples include Streptococcus pyogenes, Streptococcus thermophilus, Streptococcus, Staphylococcus aureus, Nocardiopsis dassonvillei, Streptomyces streptomyces, Streptomyces lividans, Streptomyces lividans , Streptomyces faecalis, Streptomyces faecalis, Thermophilic acidophilus, Pseudomonas aeruginosa, Bacillus arsenic, Microbacterium siberia, Lactobacillus brevis, Lactobacillus salivarius, Marine microscopy, Bo Klebst's bacteria, resistance to degradation of Pseudomonas, monosporium, marine nitrogen-fixing cyanobacteria, cyanobacteria, microcystis, Pseudomonas aeruginosa, cyanobacteria, Arabidopsis Thermobacteria, Agrobacterium strain, gold ore, Clostridium botulinum, Clostridium difficile, Daphnegold, thermophilic saline-base anaerobic bacteria, propionic acid-degrading bacteria, Thiobacillus acidophilus, eosinophilic Thiobacillus, Alternaria, Lactobacillus, Nitrosococcus, Nitrosomonas, Tetrodotoxin, Alternaria, Vibrio cholerae, Yves Methane, and Rhododendron Bubble nodules, Nostoc, great festival Algae, Anopheles sinensis, Rhizoctonia solani, Cercospora, Prototheca sphaeroides, Vibrio, Acinetobacter, Alcalibur, Marine cyanobacteria, C. serrata and new murderer Francis bacteria. In some aspects, the organism is S. pyogenes. In some aspects, the organism is S. aureus. In some aspects, the organism is S. thermophilus. Cas protein can be derived from a variety of bacterial species, including but not limited to: atypical vannamei, Fusobacterium nucleatum, gingival line bacteria, resistance to bad breath pathogenic bacteria, faecal faecal bacteria, Treponema pallidum, Durden E.coli, G. glabrata, Streptococcus mutans, Escherichia coli, Pseudo-Streptococcus, Enteric acid genus, Escherichia coli, Bacillus subtilis, Bifidobacterium bifidum, rhamnose Lactobacillus, Lactobacillus gargle, Daphnegold, Micrococcus, Mycoplasma gallisepticum, Mycoplasma pneumoniae, Canine mold, Candida albicans, Proteus urtica, addiction Streptococcus thermophilus, Lactobacillus sphaeroides, Lactobacillus bulgaricus subsp., multi-nutrition bacillus, white rumen cocci, Akemasa femazina, fibrinolytic acid, B. rhizogenes, Bifidobacterium Corynebacterium diphtheriae, Micro-Eulimococcus, Nitrobacter oxysporum, Spirulina, Subspecies of Mycobacterium succinogenes, Bacteroides fragilis, Chloasophila genus, Rhodopseudomonas, Rainbow Prevobacter, rumen prion, columnar yellow rod , less cytobacteria, Rhodospirillum rubrum, marine candidate bacillus, Aphis sinensis, A. serrata, R. serrata, A. serrata, Nitrogen faecalis, slow-growing Rhizobium, amber Phytophthora, Campylobacter jejuni, Vibrio cholerae, Bacillus cereus, Isolates, Clostridium perfringens, food cleaner, Corynebacterium sinensis, Neisseria meningitidis, subfamily of Pasteurella multocida, Wald'sactate, Proteus, Legionella vulgaris, human feces Passat, succinic acid-producing genus and new murderer Francis . In this context, the term "derived" is defined as a modification from a variety of naturally occurring bacterial species to maintain a substantial portion or substantial homology of the various bacterial species naturally produced. A substantial portion may be at least 10 contiguous nucleotides, at least 20 contiguous nucleotides, at least 30 contiguous nucleotides, at least 40 contiguous nucleotides, at least 50 contiguous nucleotides, at least 60 contiguous nucleuses Glycosidic acid, at least 70 contiguous nucleotides, at least 80 contiguous nucleotides, at least 90 contiguous nucleotides or at least 100 contiguous nucleotides. A substantial homology can be at least 50% homology, at least 60% homology, at least 70% homology, at least 80% homology, at least 90% homology, or at least 95% homology. The derivative species can be modified while retaining the activity of the naturally occurring variant. In some embodiments, the CRISPR/Cas system utilized by the methods and cells described herein is a Type II CRISPR system. In some embodiments, a Type II CRISPR system comprises a repair template to modify a nucleic acid molecule. The Type II CRISPR system has been described in S. pyogenes, in which Cas9 and two non-coding small RNAs (pre-crRNA and tracrRNA (anti-activated CRISPR RNA)) are used together to target and reduce related nucleic acid molecules in a sequence-specific manner. (See Jinke et al., "A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity", Science 337 (6096): 816 to 821 (August 2012, electronic version June 28, 2012)). In some embodiments, two non-coding small RNAs are ligated to create a single nucleic acid molecule, referred to as a guide RNA. In some embodiments, the methods and cell use guide nucleic acids disclosed herein. A guide nucleic acid refers to a nucleic acid that can hybridize to another nucleic acid. The guide nucleic acid can be RNA. The guide nucleic acid can be DNA. The guide nucleic acid for DNA can be more stable than the guide RNA. The guide nucleic acid can be programmed to bind to a sequence of particular nucleic acid sites. The nucleic acid or target nucleic acid to be targeted may comprise nucleotides. The guide nucleic acid can comprise nucleotides. A portion of the target nucleic acid can be partially complementary to one of the guide nucleic acids. The guide nucleic acid can comprise a polynucleotide chain and can be referred to as a "single guide nucleic acid" (ie, "single guide nucleic acid"). The guide nucleic acid can comprise two polynucleotide strands and can be referred to as a "dual-guided nucleic acid" (ie, a "dual-guided nucleic acid"). Unless otherwise indicated, the term "guide nucleic acid" is inclusive and refers to a single guide nucleic acid and a dual guide nucleic acid. The wizard nucleic acid can contain fragments that can be referred to as "wizard fragments" or "wizard sequences." The guide nucleic acid can comprise a fragment that can be referred to as a "protein binding fragment" or a "protein binding sequence." The guide nucleic acid can comprise one or more modifications (eg, base modifications, backbone modifications) to provide nucleic acids with new or enhanced characteristics (eg, improved stability). The guide nucleic acid can comprise a nucleic acid affinity tag. The guide nucleic acid can comprise a nucleoside. The nucleoside can be a base-sugar combination. The base portion of the nucleoside may be a heterocyclic base. The two most common classes of such heterocyclic bases are purines and pyrimidines. The nucleotide may be a nucleoside further comprising a phosphate group covalently linked to the sugar moiety of the nucleoside. For nucleosides including furanosylose, the phosphate group can be linked to the 2', 3' or 5' hydroxyl moiety of the sugar. In forming a guide nucleic acid, a phosphate group can covalently link adjacent nucleosides to each other to form a linear polymeric compound. Thereafter, the corresponding ends of the linear polymeric compound can be further bonded to form a cyclic compound; however, linear compounds are generally suitable. Additionally, linear compounds can have internal nucleotide base complementarity and can thus be folded in such a way as to completely or partially produce a double-stranded compound. Within a guide nucleic acid, a phosphate group is often referred to as an internucleoside backbone that forms a guide nucleic acid. The bond or backbone of the guide nucleic acid can be a 3' to 5' phosphodiester bond. The guide nucleic acid can comprise a modified backbone and/or a modified internucleoside linkage. The modified backbone may comprise those backbones that will retain the phosphorus atoms in the backbone and those backbones that do not have a phosphorus atom in the backbone. Suitable modified guide nucleic acid backbones containing a phosphorus atom may include, for example, phosphorothioate, palmitic phosphorothioate, phosphorodithioate, phosphotriester, aminoalkyl phosphate, A Phosphonates and other alkylphosphonates such as 3'-alkylphenylphosphonates, 5'-alkylphenylphosphonates, palmitic phosphonates, phosphonites, including 3'-amines Amino phosphates of amino phosphates and aminoalkylamino phosphates, diamino phosphates, thiocarbonylamino phosphates, thiocarbonylalkylphosphonates, thiocarbonylalkyl phosphates, selenophosphates a salt and a borane phosphate having a normal 3'-5' bond, a 2'-5' bond analog, and a phosphate having a reverse polarity, wherein one or more internucleotide linkages are 3' to 3', 5' to 5' or 2' to 2' bond. A suitable guide nucleic acid having a reverse polarity can comprise a single 3' to 3' bond at the 3'-maximum internucleotide linkage (ie, a single reverse nucleoside with a nucleobase deletion or a hydroxyl group at its proper position) the remains). Various salts (for example, potassium chloride or sodium chloride), mixed salts, and free acid forms may also be included. The guide nucleic acid may comprise one or more phosphorothioate and/or heteroatonucleotide linkages, in particular -CH2-NH-O-CH2-, -CH2-N(CH3)-O-CH2- (ie, sub- Methyl (methylimido) or MMI backbone), -CH2-ON(CH3)-CH2-, -CH2-N(CH3)-N(CH3)-CH2- and -ON(CH3)-CH2- CH2- (wherein the primary phosphodiester internucleotide linkage is represented by -OP(=O)(OH)-O-CH2-). The guide nucleic acid can comprise a morpholino backbone structure. For example, the guide nucleic acid can comprise a 6 member morpholino ring instead of a ribose ring. In some of these embodiments, a diamine phosphate or other non-phosphodiester internucleoside linkage is substituted for the phosphodiester linkage. The guide nucleic acid may comprise a short chain alkyl or cycloalkyl internucleoside linkage, a mixed heteroatom and an alkyl or cycloalkyl internucleoside linkage or one or more short chain heteroatoms or heterocyclic internucleoside linkages. Polynucleotide backbone. Such backbones may include (N-morpholinyl) linkages (partially formed by nucleoside sugar moieties); oxirane backbones; thio, anthracene and oxime backbones; formazan and thioformamidine Base chain; methylene methyl thiol and thiomethanyl backbone; core thiol backbone; backbone containing olefin; amine sulfonate backbone; methylene imino group and methylene a thiol backbone; a sulfonate and a sulfonamide backbone; a guanamine backbone; and a backbone having a mixture of N, O, S and CH2 moieties. The guide nucleic acid can comprise a nucleic acid mimetic. The term "mimetic" is intended to include a polynucleotide in which only the furanose ring or the furanose ring and the internucleotide bond are replaced by a non-furanose group, and the substitute of only the furanose ring may also be referred to as a sugar. substitution. The heterocyclic base moiety or modified heterocyclic base moiety can be maintained for hybridization to a suitable target nucleic acid. One such nucleic acid can be a peptide nucleic acid (PNA). In PNA, the sugar backbone of the polynucleotide can be replaced by a backbone containing a guanamine, specifically an aminoethylglycine backbone. Nucleotides may retain and bind directly or indirectly to the aza nitrogen atom of the guanamine moiety of the backbone. The backbone of the PNA compound can comprise two or more than two linked amine ethylglycine units that produce a guanamine containing backbone for the PNA. The heterocyclic base moiety may be bonded directly or indirectly to the aza nitrogen atom of the guanamine moiety of the backbone. The guide nucleic acid can comprise a linked morpholino unit (ie, a morpholinyl nucleic acid) having a heterocyclic base attached to a morpholinyl ring. The linking group c can bond a morpholino monomer unit in the morpholino nucleic acid. Nonionic morpholino oligomeric compounds can interact less with cellular proteins. The morpholinyl-like polynucleotide can be a non-ionic mimetic of a guide nucleic acid. A wide variety of compounds within the morpholinyl group can be attached using different linking groups. Another type of polynucleotide mimetic can be referred to as cyclohexenyl nucleic acid (CeNA). The furanose ring normally present in the nucleic acid molecule can be replaced by a cyclohexenyl ring. CeNA DMT protected amino phosphate monomers can be prepared and synthesized for use in oligomeric compounds using amino phosphate chemistry. The incorporation of CeNA monomers into the nucleic acid strand increases the stability of the DNA/RNA hybrid. CeNA oligoadenylate forms a complex with a nucleic acid complement that is similar in stability to the native complex. Another modification may include a locked nucleic acid (LNA) in which a 2'-hydroxyl bond is bonded to the 4' carbon atom of the sugar ring thereby forming a 2'-C, 4'-C-formaldehyde bond thereby forming a bicyclic sugar moiety. The bond may be a group bridging a 2' oxygen atom and a methylene group (-CH2-) of a 4' carbon atom, wherein n is 1 or 2. LNA and LNA analogs can exhibit very high duplex thermostability with complementary nucleic acids (Tm = +3 to +10 °C) with stability towards 3'-exonuclease breakdown and good solubility characteristics. The guide nucleic acid can comprise one or more substituted sugar moieties. Suitable polynucleotides may comprise a sugar substituent selected from the group consisting of OH; F; O-, S- or N-alkyl; O-, S- or N-alkenyl; O-, S- or N- Or alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl groups may be substituted or unsubstituted C1 to C10 alkyl or C2 to C10 alkenyl and alkynyl. Particularly suitable are O((CH2)nO) mCH3, O(CH2)nOCH3, O(CH2)nNH2, O(CH2)nCH3, O(CH2)nONH2 and O(CH2)nON((CH2)nCH3)2, Wherein n and m are from 1 to about 10. The sugar substituent may be selected from a C1 to C10 lower alkyl group, a substituted lower alkyl group, an alkenyl group, an alkynyl group, an alkylaryl group, an aralkyl group, an O-alkylaryl group or an O-aralkyl group. SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3, SO2CH3, ONO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkylaryl, aminoalkylamine, polyalkylamine a substituted decyl group, an RNA cleavage group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of a guide nucleic acid, or a group for improving the pharmacodynamic properties of a guide nucleic acid, and the like Other substituents of the property. Suitable modifications may include 2'-methoxyethoxy (2'-O-CH2 CH2OCH3, also known as 2'-O-(2-methoxyethyl) or 2'-MOE, ie alkoxy Alkoxy group). Other suitable modifications may include 2'-dimethylaminooxyethoxy, (i.e., O(CH2)2ON(CH3)2 group, also known as 2'-DMAOE), and 2'-dimethyl Alkyl ethoxyethoxy (also known as 2'-O-dimethyl-amino-ethoxy-ethyl or 2'-DMAEOE), ie, 2'-O-CH2-O- CH2-N(CH3)2. Other suitable sugar substituents may include methoxy (-O-CH3), amine propoxy (--OCH2CH2CH2NH2), allyl (-CH2-CH=CH2), -O-allyl (--O--CH2-CH=CH2) and a fluorine group (F). The 2'-saccharide substituent can be in the arabin (upper) position or the ribose (lower) position. A suitable 2'-arabinose is modified to 2'-F. Similar modifications can be made at other positions on the oligomeric compound, specifically, the 3' position of the 3' terminal nucleoside or the 2'-5' linkage nucleotide and the 5' terminal nucleotide 5 'position. The oligomeric compound may also have a sugar mimetic (such as a cyclobutyl moiety) rather than a pentose saccharide. The guide nucleic acid can also include nucleobase (often referred to simply as "base") modifications or substituents. As used herein, "unmodified" or "natural" nucleobases may include purine bases (eg, adenine (A) and guanine (G)), and pyrimidine bases (eg, thoracic (adenosine) pyrimidine (T). ), cytosine (C) and uracil (U)). Modified nucleobases may include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5-hydroxymethylcytosine, xanthine, hypoxanthine, 2-amino 6-methyl and other alkyl derivatives of adenine, adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymidine and 2 -thiocytosine, 5-halouracil and cytosine, 5-propynyl (-C=C-CH3) uracil and other alkynyl derivatives of cytosine and pyrimidine bases, 6-azouracil , cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxy and others 8-substituted adenine and guanine, 5-halo (specifically, 5-bromo, 5-trifluoromethyl and other 5-substituted uracil and cytosine), 7-methylguanine and 7 - methyl adenine, 2-F-adenine, 2-amino adenine, 8-azaguanine and 8-azadenine, 7-azepineguanine and 7-deazadenine and 3- Denitrifying guanine and 3-deaza adenine. Modified nucleobases may include tricyclic pyrimidines, such as phenoxazine cytidine (1H-pyrimido(5,4-b)(1,4)benzoxazine-2(3H)-one), brown Thiazinium cytidine (1H-pyrimido(5,4-b)(1,4)benzothiazin-2(3H)-one); G-clip, such as substituted pyridoxine cytidine (eg 9-(2-aminoethoxy)-H-pyrimido(5,4-(b)(1,4)benzoxazine-2(3H)-one), azaindole nucleus Glycosides (2H-pyrimido(4,5-b)indol-2-one), pyridopyrene nucleosides (hydrogen (3',2':4,5)pyrrolo(2,3-d Pyrimidine-2-one). The heterocyclic base moiety may include such a base in which the purine or pyrimidine base is replaced by another heterocycle, for example, 7-deaza-adenine, 7-deazaguanosine, 2 -Aminopyridine and 2-pyridone. Nucleobases can be used to increase the binding affinity of polynucleotide compounds. These nucleobases include 5-substituted pyrimidines, 6-azapyrimidines, and N-2, N- 6 and O-6 substituted oximes, including 2-aminopropyl adenine, 5-propynyl uracil and 5-propynyl cytosine. 5-methylcytosine substituents can doublet the nucleic acid The stability is increased by 0.6-1.2 ° C and may be a suitable base substituent (for example, when with 2'- When the O-methoxyethyl sugar is modified to bind.) The modification of the guide nucleic acid can comprise chemically bonding the guide nucleic acid to one or more portions or conjugates that enhance the activity, cell distribution or cellular uptake of the guide nucleic acid. The moiety or conjugate may comprise a conjugated group covalently bonded to a functional group such as a first hydroxyl group or a second hydroxyl group. The conjugate group may include, but is not limited to, an intercalating agent, a reporter molecule, a polyamine, a polyfluorene. Amine, polyethylene glycol, polyether, a group that enhances the pharmacodynamic properties of the oligomer, and a group that enhances the pharmacokinetic properties of the oligomer. Conjugation groups can include, but are not limited to, cholesterol, lipids , phospholipids, biotin, phenazine, folic acid, phenanthridine, anthraquinone, acridine, luciferin, rhodamine, coumarin, and dyes. Groups that enhance the mechanical properties of the drug include improved uptake and enhanced resistance to decomposition. And/or a group that enhances sequence-specific hybridization using a target nucleic acid. Groups that enhance pharmacokinetic properties include groups that improve the uptake, distribution, metabolism, or secretion of nucleic acids. Conjugated moieties can include, but are not limited to, a lipid moiety, such as a cholesterol moiety, Cholic acid, thioether (eg hexyl-S-trityl mercaptan), thiocholesterol, aliphatic chain (eg dodecanediol or undecyl residue), phospholipid (eg di-hexadecyl) - racemic-glycerol or triethylammonium 1,2-di-O-hexadecyl-racemic-propanetriethoxy-3-H-phosphate), polyamine or polyethylene glycol chain or diamond An alkanoic acid; a soft lipid moiety; or an octadecylamine or a hexylamino-carbonyl-hydroxycholesterol moiety. Modifications may include a "protein transduction domain" or a PTD (ie, a cell penetrating peptide (CPP)). PTD may refer to Generation of polypeptides, polynucleotides, carbohydrates or organic or inorganic compounds that promote through lipid bilayers, micelles, cell membranes, organelle membranes or vesicle membranes. The PTD can be attached to another molecule that can range from a small polar molecule to a larger macromolecule and/or nanoparticle, and can help the molecule to pass through the membrane, for example, from the extracellular space into the intracellular space, Or cytosol to the organelle. The PTD can be covalently linked to the amine end of the polypeptide. PTD can be covalently linked to the carboxy terminus of the polypeptide. The PTD can be covalently linked to the nucleic acid. An exemplary PTD can include, but is not limited to, a minimal peptide protein transduction domain; comprising a plurality of arginine sufficient to direct access to the cell (eg, 3, 4, 5, 6, 7, 8, 9, 10, or 10 to 50 The arginine sequence of arginine, the VP22 domain, the Drosophila antennal mutated protein transduction domain, the truncated human calcitonin peptide, the polylysine and the transport protein, from the three arginine residues A arginine homopolymer of 50 arginine residues. The PTD can be an activatable CPP (ACPP). ACPP may comprise a polycationic CPP (eg, Arg9 or "R9") attached to a matching polyanion (eg, Glu9 or "E9") via a cleavable linker, which reduces the net charge to near zero and thereby inhibits adhesion And in the cells. Upon cleavage of the linker, the polyanion can be released, partially exposing the polyarginine and its inherent adhesion, thereby "activating" the ACPP to pass through the membrane. The invention provides a guide nucleic acid that directs the activity of an associated polypeptide (eg, a site-directed polypeptide) to a particular target sequence within a target nucleic acid. The guide nucleic acid can comprise nucleotides. The guide nucleic acid can be RNA. The guide nucleic acid can be DNA. The guide nucleic acid can comprise a single guide nucleic acid. The guide nucleic acid can comprise a gap extension and/or a tracrRNA extension. The spacer extension and/or tracrRNA extension can comprise elements that contribute to the additional functionality (eg, stability) of the guide nucleic acid. In some embodiments, the spacer extension and tracrRNA extension are selected as appropriate. The guide nucleic acid can comprise a spacer sequence. The spacer sequence can comprise a sequence that hybridizes to the target nucleic acid sequence. The spacer sequence can be a variable portion of the guide nucleic acid. The sequence of the spacer sequence can be genetically engineered to hybridize to the target nucleic acid sequence. A CRISPR repeat (also referred to as a minimal CRISPR repeat in this exemplary embodiment) can comprise a nucleotide that can hybridize to a tracrRNA sequence (ie, referred to as a minimal tracrRNA sequence in this exemplary embodiment). The minimal CRISPR repeat and the minimal tracrRNA sequence are interactive, and the interacting molecule comprises a base pair double stranded structure. In summary, minimal CRISPR repeats and minimal tracrRNA sequences can facilitate binding to site-directed polypeptides. The minimal CRISPR repeat and minimal tracrRNA sequences can be linked together to form a hairpin structure through a single guide linker. The 3' tracrRNA sequence can comprise a protospacer adjacent major structure recognition sequence. The 3' tracrRNA sequence may be identical or similar to one of the tracrRNA sequences. In some embodiments, the 3' tracrRNA sequence can comprise one or more hairpins. In some embodiments, the guide nucleic acid can comprise a single guide nucleic acid. The guide nucleic acid can comprise a spacer sequence. The spacer sequence can comprise a sequence that can hybridize to the target nucleic acid sequence. The spacer sequence can be a variable portion of the guide nucleic acid. The spacer sequence can be 5' of the first duplex. The first duplex can comprise a region of hybridization between the smallest CRISPR repeat and the minimal tracrRNA sequence. The first double chain may have a convex portion interposed therebetween. The bulging portion may comprise unpaired nucleotides. The bulging portion can aid in the addition of the site-directed polypeptide to the guide nucleic acid. The bulging portion can be followed by the first stem cell. The first stem cell can comprise a linker sequence that joins a minimal CRISPR repeat and a minimal tracrRNA sequence. The last pair of nucleotides at the 3' end of the first duplex can be ligated to the second linker sequence. The second linker can comprise a P domain. The second linker can bond the first double strand to the middle tracrRNA. In some embodiments, the medium tracrRNA can comprise one or more hairpin regions. For example, the medium tracrRNA can comprise a second stem cell and a third stem cell. In some embodiments, the guide nucleic acid can comprise a dual guide nucleic acid structure. Similar to a single guide nucleic acid construct, the dual guide nucleic acid construct can comprise a spacer extension, a spacer, a minimal CRISPR repeat, a minimal tracrRNA sequence, a 3' tracrRNA sequence, and a tracrRNA extension. However, the dual guide nucleic acid may not contain a single guide linker. In fact, the minimal CRISPR repeat can comprise a 3' CRISPR repeat that can be similar or identical to a portion of the CRISPR repeat. Similarly, the minimal tracrRNA sequence can comprise a 5' tracrRNA sequence that can be similar or identical to a portion of a tracrRNA. The bi-guided RNA can be hybridized together via minimal CRISPR repeats and minimal tracrRNA sequences. In some embodiments, the first segment (ie, the guide segment) can include a spacer extension and a spacer. The guide nucleic acid can direct the binding polypeptide to a particular nucleotide sequence within the target nucleic acid via a guide fragment as mentioned above. In some embodiments, the second fragment (ie, the protein-binding fragment) can comprise a minimal CRISPR repeat, a minimal tracrRNA sequence, a 3' tracrRNA sequence, and/or a tracrRNA extension sequence. The protein binding fragment of the guide nucleic acid can interact with the site-directed polypeptide. The protein-binding fragment of the guide nucleic acid can comprise two extensions of nucleotides that can hybridize to each other. The nucleotides of the protein-binding fragment can hybridize to form a double-stranded nucleic acid duplex. The double stranded nucleic acid duplex can be RNA. The double stranded nucleic acid duplex can be DNA. In some cases, the guide nucleic acid can comprise a spacer extension, a spacer, a minimal CRISPR repeat, a single guide linker, a minimal tracrRNA, a 3' tracrRNA sequence, and a tracrRNA extension in the order 5' to 3'. In some cases, the guide nucleic acid can comprise a tracrRNA extension, a 3' tracrRNA sequence, a minimal tracrRNA, a single guide linker, a minimal CRISPR repeat, a spacer, and a spacer extension in any order. The guide nucleic acid and the site-directed polypeptide can form a complex. The guide nucleic acid can provide a target specificity to the complex by a nucleotide sequence comprising a sequence that hybridizes to the target nucleic acid. In other words, a site-directed polypeptide can be directed to a nucleic acid sequence by virtue of its association with at least a protein-binding fragment of a guide nucleic acid. The guide nucleic acid can direct the activity of the Cas9 protein. The guide nucleic acid can direct the activity of the Cas9 protein to which the enzyme is not functioning. The methods of the invention can provide genetically modified cells. The genetically modified cell can comprise an exogenous guide nucleic acid and/or an exogenous nucleic acid comprising a nucleotide sequence encoding a guide nucleic acid.Spacer extension sequence The spacer extension sequence can provide stability and/or provide a location for modification of the guide nucleic acid. The spacer extension sequence can have a length of from about 1 nucleotide to about 400 nucleotides. The spacer extension sequence can have more than 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 220 , 240, 260, 280, 300, 320, 340, 360, 380, 40, 1000, 2000, 3000, 4000, 5000, 6000, or 7000 or more nucleotides in length. The spacer extension sequence can have less than 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 220 The length of 240, 260, 280, 300, 320, 340, 360, 380, 400, 1000, 2000, 3000, 4000, 5000, 6000, 7000 or more nucleotides. The spacer extension sequence can be less than 10 nucleotides in length. The spacer extension sequence can be between 10 and 30 nucleotides in length. The spacer extension sequence can be between 30 and 70 nucleotides in length. The spacer extension sequence can comprise a portion (eg, a stability control sequence, an endonuclease binding sequence, a ribonuclease). Part of it can affect the stability of RNA targeted by nucleic acids. A portion may be a transcription terminator fragment (i.e., a transcription termination sequence). The portion of the guide nucleic acid can have from about 10 nucleotides to about 100 nucleotides, from about 10 nucleotides (nt) to about 20 nt, from about 20 nt to about 30 nt, from about 30 nt to about 40 nt, From about 40 nt to about 50 nt, from about 50 nt to about 60 nt, from about 60 nt to about 70 nt, from about 70 nt to about 80 nt, from about 80 nt to about 90 nt, or from about 90 nt to about 100 nt, about 15 nucleotides (nt) to about 80 nt, about 15 nt to about 50 nt, about 15 nt to about 40 nt, about 15 nt to about 30 nt or about 15 nt to about 25 nt in total length. Some may be part that can function in eukaryotic cells. In some cases, a portion may be a moiety that can function in prokaryotic cells. Some may be part that can function in both eukaryotic and prokaryotic cells. Non-limiting examples of suitable moieties can include: a 5' cap (eg, a 7-methylguanylic acid cap (m7G)), a riboswitch sequence (eg, to allow stability through regulation of protein and protein complexes and/or Or the feasibility of regulation), the formation of a sequence of dsRNA duplexes (ie, hairpins), targeting of RNA to subcellular locations (eg, nucleus, mitochondria, chloroplasts, and the like), providing traced modifications or sequences (eg, direct conjugation to fluorescent molecules, conjugation to portions that facilitate fluorescence detection, sequences that allow for fluorescent detection, etc.), for proteins (eg, proteins that act on DNA, including transcriptional activators, transcription) Modifications or sequences of binding sites for inhibitors, DNA methyltransferases, DNA demethylases, histone acetyltransferases, histone deacetylases, and the like, providing increase, decrease, and/or Alternatively, the modification or sequence of stability, or any combination thereof, can be controlled. The spacer extension sequence can comprise a primer binding site, a molecular index (eg, a barcode sequence). The spacer extension sequence can comprise a nucleic acid affinity tag.Spacer The guide fragment of the guide nucleic acid can comprise a nucleotide sequence (e.g., a spacer) that can hybridize to a sequence in the target nucleic acid. The spacers of the guide nucleic acid can interact with the target nucleic acid via hybridization (i.e., base pairing) in a sequence-specific manner. Thus, the nucleotide sequence of the spacer can be varied and the position at which the guide nucleic acid within the target nucleic acid interacts with the target nucleic acid can be determined. The spacer sequence can hybridize to a target nucleic acid located 5' to the adjacent major structure (PAM) of the spacer. Different organisms can contain different PAM sequences. For example, in S. pyogenes, the PAM can be a sequence in a target nucleic acid comprising the sequence 5'-XRR-3', wherein R can be A or G, wherein X is any nucleotide and X is 3' of the target nucleic acid sequence targeted by the spacer sequence. The target nucleic acid sequence can be 20 nucleotides. The target nucleic acid can be less than 20 nucleotides. The target nucleic acid can be at least 5, 10, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30 or more nucleotides. The target nucleic acid can be up to 5, 10, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30 or more nucleotides. The target nucleic acid sequence can be 20 bases and is followed by 5' of the first nucleotide of the PAM. For example, in a sequence comprising 5'-NNNNNNNNNNNNNNNNNNNNXRR-3', the target nucleic acid can be a sequence corresponding to N', wherein N is any nucleotide. The guide sequence of the spacer that can hybridize to the target nucleic acid can have a length of at least about 6 nt. For example, a spacer sequence that can hybridize to a target nucleic acid can have at least about 6 nt, at least about 10 nt, at least about 15 nt, at least about 18 nt, at least about 19 nt, at least about 20 nt, at least about 25 nt, at least About 30 nt, at least about 35 nt or at least about 40 nt, about 6 nt to about 80 nt, about 6 nt to about 50 nt, about 6 nt to about 45 nt, about 6 nt to about 40 nt, about 6 nt to About 35 nt, about 6 nt to about 30 nt, about 6 nt to about 25 nt, about 6 nt to about 20 nt, about 6 nt to about 19 nt, about 10 nt to about 50 nt, about 10 nt to about 45 Nt, from about 10 nt to about 40 nt, from about 10 nt to about 35 nt, from about 10 nt to about 30 nt, from about 10 nt to about 25 nt, from about 10 nt to about 20 nt, from about 10 nt to about 19 nt, From about 19 nt to about 25 nt, from about 19 nt to about 30 nt, from about 19 nt to about 35 nt, from about 19 nt to about 40 nt, from about 19 nt to about 45 nt, from about 19 nt to about 50 nt, about 19 Nt to about 60 nt, about 20 nt to about 25 nt, about 20 nt to about 30 nt, about 20 nt to about 35 nt, about 20 nt to about 40 nt, about 20 nt to about 45 nt, about 20 nt to A length of about 50 nt, or about 20 nt to about 60 nt. In some cases, the spacer sequence that can hybridize to the target nucleic acid can be 20 nucleotides in length. The spacer of the hybridizable target nucleic acid can be 19 nucleotides in length. The percentage complementarity between the spacer sequence and the target nucleic acid can be at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least About 80%, at least about 85%, at least about 90%, at least about 95%, at least about 97%, at least about 98%, at least about 99%, or 100%. The percentage complementarity between the spacer sequence and the target nucleic acid can be up to about 30%, up to about 40%, up to about 50%, up to about 60%, up to about 65%, up to about 70%, up to about 75%, up to about 80%, up to about 85%, up to about 90%, up to about 95%, up to about 97%, up to about 98%, up to about 99% or 100%. In some cases, the percent complementarity between the spacer sequence and the target nucleic acid can be 100% beyond the six adjacent 5'-maximum nucleotides of the target sequence of the complementary strand of the target nucleic acid. In some cases, the percent complementarity between the spacer sequence and the target nucleic acid can exceed at least 60% beyond about 20 contiguous nucleotides. In some cases, the percent complementarity between the spacer sequence and the target nucleic acid can be 100% over the fourteen adjacent 5'-maximum nucleotides of the target sequence of the complementary strand of the target nucleic acid, and as low as 0% over The rest. In this case, the length of the spacer sequence can be considered to be 14 nucleotides. In some cases, the percent complementarity between the spacer sequence and the target nucleic acid can be 100% beyond the six adjacent 5'-maximum nucleotides of the target sequence of the complementary strand of the target nucleic acid and as low as 0% beyond the remainder . In this case, the length of the spacer sequence can be considered to be 6 nucleotides. The target nucleic acid can be more than about 50%, 60%, 70%, 80%, 90% or 100% complementary to the provenance region of the crRNA. The target nucleic acid can be less than about 50%, 60%, 70%, 80%, 90%, or 100% complementary to the source region of the crRNA. The spacer fragment of the guide nucleic acid can be modified (eg, by genetic engineering) to hybridize to any desired sequence within the target nucleic acid. For example, a spacer can be genetically engineered (eg, designed to be programmed) to be included in cancer, cell growth, DNA replication, DNA repair, HLA genes, cell surface proteins, T cell receptors, immunoglobulin genes Sequence hybridization in a target nucleic acid in a tumor suppressor gene, a microRNA gene, a long non-coding RNA gene, a transcription factor, a globin, a viral protein, a mitochondrial gene, and the like. The spacer sequence can be identified using a computer program such as a machine readable code. Computer programs such as predictive melting temperature, secondary structural rock formation and predicted annealing temperature, sequence identity, genomic context, chromosome accessibility, % GC, frequency of genomic occurrence, methylation status, presence of SNPs, and the like Variables.Minimum CRISPR Repeat sequence The minimal CRISPR repeat may be at least about 30%, 40%, 50%, 60%, 65%, 70%, 75%, 80%, 85%, with reference to a CRISPR repeat (eg, a crRNA from S. pyogenes), Sequence of 90%, 95% or 100% sequence identity and/or sequence homology. The minimal CRISPR repeat may be up to about 30%, 40%, 50%, 60%, 65%, 70%, 75%, 80%, 85% with reference to a CRISPR repeat (eg, a crRNA from S. pyogenes). a sequence of 90%, 95% or 100% sequence identity and/or sequence homology. The minimal CRISPR repeat can comprise a nucleotide that can hybridize to the minimal tracrRNA sequence. The minimal CRISPR repeat and the minimal tracrRNA sequence can be formed into a base pair double stranded structure. In summary, minimal CRISPR repeats and minimal tracrRNA sequences can facilitate binding to site-directed polypeptides. Portions of the minimal CRISPR repeat can hybridize to the minimal tracrRNA sequence. Portions of the minimal CRISPR repeat may be at least about 30%, 40%, 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or 100% complementary to the minimal tracrRNA sequence. A portion of the minimal CRISPR repeat can be up to about 30%, 40%, 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% complementary to the minimal tracrRNA sequence . The minimal CRISPR repeat can have a length of from about 6 nucleotides to about 100 nucleotides. For example, a minimal CRISPR repeat can have from about 6 nucleotides (nt) to about 50 nt, from about 6 nt to about 40 nt, from about 6 nt to about 30 nt, from about 6 nt to about 25 nt, about 6 Nt to about 20 nt, about 6 nt to about 15 nt, about 8 nt to about 40 nt, about 8 nt to about 30 nt, about 8 nt to about 25 nt, about 8 nt to about 20 nt or about 8 nt to Approximately 15 nt, about 15 nt to about 100 nt, about 15 nt to about 80 nt, about 15 nt to about 50 nt, about 15 nt to about 40 nt, about 15 nt to about 30 nt or about 15 nt to about 25 The length of nt. In some embodiments, the minimum CRISPR repeat is about 12 nucleotides in length. The minimal CRISPR repeat may span at least about 60% of a segment of at least 6, 7, or 8 contiguous nucleotides identical to a reference minimal CRISPR repeat (eg, wild-type crRNA from S. pyogenes). The minimal CRISPR repeat may span at least about 60% of a segment of at least 6, 7, or 8 contiguous nucleotides identical to a reference minimal CRISPR repeat (eg, wild-type crRNA from S. pyogenes). For example, a minimal CRISPR repeat can span at least about 65% of a reference minimum CRISPR repeat, spanning at least about 6, 7 or 8 contiguous nucleotides, at least about 70% identical, at least about 75% identical, at least about 80 % identical, at least about 85% identical, at least about 90% identical, at least about 95% identical, at least about 98% identical, at least about 99% identical or 100% identical.Minimum tracrRNA sequence The minimal tracrRNA sequence can be at least about 30%, 40%, 50%, 60%, 65%, 70%, 75%, 80%, 85% with a reference tracrRNA sequence (eg, wild type tracrRNA from S. pyogenes). , 90%, 95% or 100% sequence identity and/or sequence homology. The minimal tracrRNA sequence can be up to about 30%, 40%, 50%, 60%, 65%, 70%, 75%, 80%, 85% with a reference tracrRNA sequence (eg, wild-type tracrRNA from S. pyogenes). , 90%, 95% or 100% sequence identity and/or sequence homology. The minimal tracrRNA sequence can comprise nucleotides that hybridize to the smallest CRISPR repeat. The minimal tracrRNA sequence and the minimal CRISPR repeat can form a base pair double stranded structure. In summary, minimal tracrRNA sequences and minimal CRISPR repeats can aid in binding to site-directed polypeptides. Portions of the minimal tracrRNA sequence can hybridize to the minimal CRISPR repeat. A portion of the minimal tracrRNA sequence can be about 30%, 40%, 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% complementary to the minimal CRISPR repeat. The minimal tracrRNA sequence can have a length of from about 6 nucleotides to about 100 nucleotides. For example, a minimal tracrRNA sequence can have from about 6 nucleotides (nt) to about 50 nt, from about 6 nt to about 40 nt, from about 6 nt to about 30 nt, from about 6 nt to about 25 nt, about 6 nt to about 20 nt, about 6 nt to about 15 nt, about 8 nt to about 40 nt, about 8 nt to about 30 nt, about 8 nt to about 25 nt, about 8 nt to about 20 nt or about 8 nt to about 15 nt, about 15 nt to about 100 nt, about 15 nt to about 80 nt, about 15 nt to about 50 nt, about 15 nt to about 40 nt, about 15 nt to about 30 nt or about 15 nt to about 25 nt in length. In some embodiments, the minimal tracrRNA sequence is about 14 nucleotides in length. The minimal tracrRNA sequence can be at least about 60% identical to a reference minimal tracrRNA (eg, a wild-type tracrRNA from S. pyogenes) sequence spanning at least one of six, seven or eight contiguous nucleotides. The minimal tracrRNA sequence can be at least about 60% identical to a reference minimal tracrRNA (eg, a wild-type tracrRNA from S. pyogenes) sequence spanning at least one of six, seven or eight contiguous nucleotides. For example, a minimal tracrRNA sequence can span at least about 65% of a reference minimum tracrRNA sequence, at least about 70% identical, at least about 75% identical, at least about 80% identical across at least 6, 7, or 8 contiguous nucleotides. At least about 85% identical, at least about 90% identical, at least about 95% identical, at least about 98% identical, at least about 99% identical, or 100% identical. The double strand between the minimal CRISPR RNA and the minimal tracrRNA may comprise a double helix. The first base of the first strand of the double strand can be guanine. The first base of the first strand of the double strand can be adenine. The double strand between the minimal CRISPR RNA and the minimal tracrRNA can comprise at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more nucleotides. The double strand between the minimal CRISPR RNA and the minimal tracrRNA can comprise up to about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more nucleotides. Double strands can contain mismatches. The double strand can comprise at least about 1, 2, 3, 4 or 5 or a mismatch. The double strand can comprise up to about 1, 2, 3, 4 or 5 or a mismatch. In some cases, the double strand contains no more than 2 mismatches.Protruding part A bulge can refer to an unpaired region of a nucleotide consisting of a minimal CRISPR repeat and a minimal tracrRNA sequence within a double strand. The bulging moiety can be important in binding to a site-directed polypeptide. The bulging moiety may comprise an unpaired 5'-XXXY-3' on one side of the double strand and an unpaired nucleotide region on the other side of the double strand, wherein X is any 嘌呤 and Y may be A nucleotide that forms a wobble pair with a nucleotide on the opposite strand. For example, the bulging portion may comprise an unpaired 嘌呤 (eg, adenine) on the smallest CRISPR repeating strand of the bulging portion. In some embodiments, the bulging portion can comprise an unpaired 5'-AAGY-3' of the minimal tracrRNA sequence strand of the bulge, wherein Y can be a nucleus that can form a oscillating pair with the nucleotides on the minimal CRISPR repeat strand Glycosylate. The bulging portion on the first side of the double strand (eg, the smallest CRISPR repeating side) can comprise at least 1, 2, 3, 4, or 5 or more unpaired nucleotides. The bulging portion on the first side of the double strand (eg, the smallest CRISPR repeating side) can comprise up to 1, 2, 3, 4, or 5 or more unpaired nucleotides. The bulging portion on the first side of the double strand (e.g., the smallest CRISPR repeating side) can comprise one unpaired nucleotide. The bulging portion on the second side of the double strand (eg, the smallest tracrRNA sequence side of the double strand) may comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more unpaired nuclei Glycosylate. The bulge on the second side of the double strand (eg, the smallest tracrRNA sequence side of the double strand) may comprise up to 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more unpaired nucleosides acid. The bulge on the second side of the double strand (eg, the smallest tracrRNA sequence side of the double strand) can comprise 4 unpaired nucleotides. The regions of different numbers of unpaired nucleotides on each strand of the double strand can be paired together. For example, the bulging portion can comprise 5 unpaired nucleotides from the first strand and 1 unpaired nucleotide from the second strand. The bulging portion may comprise 4 unpaired nucleotides from the first strand and 1 unpaired nucleotide from the second strand. The bulging portion may comprise 3 unpaired nucleotides from the first strand and 1 unpaired nucleotide from the second strand. The bulging portion may comprise 2 unpaired nucleotides from the first strand and 1 unpaired nucleotide from the second strand. The bulging portion may comprise one unpaired nucleotide from the first strand and one unpaired nucleotide from the second strand. The bulging portion may comprise one unpaired nucleotide from the first strand and two unpaired nucleotides from the second strand. The bulging portion may comprise one unpaired nucleotide from the first strand and three unpaired nucleotides from the second strand. The bulging portion may comprise one unpaired nucleotide from the first strand and four unpaired nucleotides from the second strand. The bulging portion may comprise one unpaired nucleotide from the first strand and five unpaired nucleotides from the second strand. In some cases, the raised portion can include at least one wobble pair. In some cases, the raised portion can include at most one swing pair. The bulging portion sequence can comprise at least one purine nucleotide. The bulging portion sequence can comprise at least 3 purine nucleotides. The bulging portion sequence can comprise at least 5 purine nucleotides. The bulging portion sequence can comprise at least one guanine nucleotide. The bulging portion sequence can comprise at least one adenine nucleotide.P - Domain ( P - DOMAIN ) A P-domain can refer to a region of a guide nucleic acid that recognizes a protospacer adjacent major structure (PAM) in a target nucleic acid. The P-domain can hybridize to the PAM in the target nucleic acid. Thus, the P-domain can comprise a sequence that is complementary to the PAM. The P-domain can be located from the 3' to the smallest tracrRNA sequence. The P-domain can be localized within the 3' tracrRNA sequence (ie, the middle tracrRNA sequence). p starts at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, or 20 or more of the smallest pair of nucleotides in the smallest CRISPR repeat and the smallest tracrRNA sequence duplex Nucleotides 3'. The P-domain can initiate at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more of the smallest CRISPR repeat and the last pair of nucleotides in the smallest tracrRNA sequence duplex Nucleotides 3'. The P-domain may comprise at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, or 20 or more contiguous nucleotides. The P-domain may comprise up to about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, or 20 or more contiguous nucleotides. In some cases, the P-domain can comprise a CC dinucleotide (ie, two consecutive cytosine nucleotides). The CC dinucleotide can interact with the GG dinucleotide of the PAM, wherein the PAM comprises a 5'-XGG-3' sequence. The P-domain can be a nucleotide sequence located in a 3' tracrRNA sequence (ie, a middle tracrRNA sequence). The P-domain may comprise double-stranded nucleotides (eg, nucleotides in a hairpin hybridization type together). For example, the P-domain can comprise a CC dinucleotide that hybridizes to a GG dinucleotide in a hairpin duplex of a 3' tracrRNA sequence (ie, a middle tracrRNA sequence). The activity of the P-domain (e.g., the ability of the guide nucleic acid to target the target nucleic acid) can be modulated by the hybridization state of P-DOMAIN. For example, if the P-domain is crossed, the guide nucleic acid may not recognize its target. If the P-domain is crossed, the guide nucleic acid can recognize its target. The P-domain interacts with the P-domain interaction region within the site-directed polypeptide. The P-domain interacts with a arginine-rich alkaline patch in a site-directed polypeptide. The P-domain interaction region can interact with the PAM sequence. The P-domain can comprise a stem cell loop. The P-domain can comprise a bulge. The 3' tracrRNA sequence 3' tracrRNA sequence can be at least about 30%, 40%, 50%, 60%, 65%, 70%, 75%, 80% with a reference tracrRNA sequence (eg, tracrRNA from S. pyogenes). , 85%, 90%, 95% or 100% sequence identity and/or sequence homology. The 3' tracrRNA sequence can be up to about 30%, 40%, 50%, 60%, 65%, 70%, 75%, 80%, 85 with a reference tracrRNA sequence (eg, wild-type tracrRNA from S. pyogenes). %, 90%, 95% or 100% sequence identity and/or sequence homology. The 3' tracrRNA sequence can have a length of from about 6 nucleotides to about 100 nucleotides. For example, a 3' tracrRNA sequence can have from about 6 nucleotides (nt) to about 50 nt, from about 6 nt to about 40 nt, from about 6 nt to about 30 nt, about 6 nt to About 25 nt, about 6 nt to about 20 nt, about 6 nt to about 15 nt, about 8 nt to about 40 nt, about 8 nt to about 30 nt, about 8 nt to About 25 nt, about 8 nt to about 20 nt or about 8 nt to about 15 nt, about 15 nt to about 100 nt, about 15 nt to about 80 nt, about 15 nt to About 50 nt, about 15 nt to about 40 nt, about 15 nt to about 30 nt or about 15 nt to about 25 nt in length. In some embodiments, the 3' tracrRNA sequence is about 14 nucleotides in length. The 3' tracrRNA sequence can be at least about 60% identical to a reference 3' tracrRNA (eg, a wild type 3' tracrRNA from S. pyogenes) sequence spanning at least one of six, seven or eight contiguous nucleotides. For example, a 3' tracrRNA sequence can span at least about 60% of a reference 3' tracrRNA sequence (eg, a wild type 3' tracrRNA sequence from S. pyogenes) across at least 6, 7 or 8 contiguous nucleotides, At least about 65% identical, at least about 70% identical, at least about 75% identical, at least about 80% identical, at least about 85% identical, at least about 90% identical, at least about 95% identical, at least about 98% identical, at least about 99% identical or 100% identical. The 3' tracrRNA sequence can comprise more than one double-stranded region (eg, a hairpin hybridization region). The 3' tracrRNA sequence can comprise two double stranded regions. The 3' tracrRNA sequence can also be referred to as a middle tracrRNA. The medium tracrRNA sequence can comprise a stem cell loop structure. In other words, the medium tracrRNA sequence can comprise a hair clip that is different from the second stem cell or the third stem cell. The stem cell loop structure in the middle tracrRNA (i.e., 3' tracrRNA) can comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, or 20 or more nucleotides. The stem cell loop structure in the middle tracrRNA (i.e., 3' tracrRNA) can comprise up to 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more nucleotides. The stem cell loop structure can comprise a functional moiety. For example, a stem cell loop structure can comprise an aptamer, a ribonuclease, a protein interaction hairpin, a CRISPR array, an intron, and an exon. The stem cell loop structure can comprise at least about 1, 2, 3, 4 or 5 or more functional moieties. The stem cell loop structure can comprise up to about 1, 2, 3, 4 or 5 or more functional moieties. The hairpin in the middle tracrRNA sequence may comprise a P-domain. The P-domain can comprise a double-stranded region in the hairpin.tracrRNA Extended sequence The tracrRNA extension sequence provides stability and/or provides a location for modification of the guide nucleic acid. The tracrRNA extension sequence can have a length of from about 1 nucleotide to about 400 nucleotides. The tracrRNA extension sequence can have more than 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400 or more nucleotides in length. The tracrRNA extension sequence can have a length of from about 20 to about 5,000 or more nucleotides. The tracrRNA extension sequence can have a length of more than 1000 nucleotides. The tracrRNA extension sequence can have less than 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400 nucleotides in length. The tracrRNA extension sequence can have a length of less than 1000 nucleotides. The tracrRNA extension sequence can be less than 10 nucleotides in length. The tracrRNA extension sequence can be between 10 and 30 nucleotides in length. The tracrRNA extension sequence can be between 30 and 70 nucleotides in length. The tracrRNA extension sequence may comprise a portion (eg, a stability control sequence ribonuclease, an endoribonuclease binding sequence). Part of it can affect the stability of nucleic acid targeting RNA. A portion may be a transcription terminator fragment (i.e., a transcription termination sequence). The portion of the guide nucleic acid can have from about 10 nucleotides to about 100 nucleotides, from about 10 nucleotides (nt) to about 20 nt, from about 20 nt to about 30 nt, about 30 nt to About 40 nt, about 40 nt to about 50 nt, about 50 nt to about 60 nt, about 60 nt to about 70 nt, about 70 nt to about 80 nt, about 80 nt to About 90 nt, or about 90 nt to about 100 nt, about 15 nucleotides (nt) to about 80 nt, about 15 nt to about 50 nt, about 15 nt to about 40 nt A total length of from about 15 nt to about 30 nt or from about 15 nt to about 25 nt. Some may be part that can function in eukaryotic cells. In some cases, a portion may be a moiety that can function in prokaryotic cells. Some may be part that can function in both eukaryotic and prokaryotic cells. Non-limiting examples of suitable tracrRNA extensions include: 3' polyadenosine tails, ribose switching sequences (eg, to allow for stability and/or regulation of regulation by protein and protein complexes), formation of dsRNA pairs a sequence of strands (ie, hairpins), sequences that target RNA to subcellular locations (eg, nucleus, mitochondria, chloroplasts, and the like), provide tracking modifications or sequences (eg, direct conjugation to fluorescent molecules) , to conjugates that promote fluorescence detection, sequences that allow fluorescence detection, etc.), for proteins (eg, proteins that act on DNA, including transcriptional activators, transcriptional repressors, DNA methyltransferases, DNA) Modifications or sequences of binding sites for demethylase, histone acetyltransferase, histone deacetylase, and the like, providing modifications, or sequences that increase, decrease, and/or control stability, Or any combination thereof. A tracrRNA extension sequence can comprise a primer binding site, a molecular index (eg, a barcode sequence). In some embodiments of the invention, the tracrRNA extension sequence may comprise one or more affinity markers.Single guide nucleic acid The guide nucleic acid can be a single guide nucleic acid. A single guide nucleic acid can be RNA. A single guide nucleic acid can comprise a linker between a minimal CRISPR repeat and a minimal tracrRNA sequence that can be referred to as a single guide linker sequence. A single guide linker of a single guide nucleic acid can have a length of from about 3 nucleotides to about 100 nucleotides. For example, a linker can have from about 3 nucleotides (nt) to about 90 nt, from about 3 nt to about 80 nt, from about 3 nt to about 70 nt, from about 3 nt to about 60. Nt, about 3 nt to about 50 nt, about 3 nt to about 40 nt, about 3 nt to about 30 nt, about 3 nt to about 20 nt or about 3 nt to about 10 The length of nt. For example, a linker can have from about 3 nt to about 5 nt, from about 5 nt to about 10 nt, from about 10 nt to about 15 nt, from about 15 nt to about 20 nt, about 20 From nt to about 25 nt, about 25 nt to about 30 nt, about 30 nt to about 35 nt, about 35 nt to about 40 nt, about 40 nt to about 50 nt, about 50 From nt to about 60 nt, from about 60 nt to about 70 nt, from about 70 nt to about 80 nt, from about 80 nt to about 90 nt, or from about 90 nt to about 100 nt in length . In some embodiments, the linker of a single guide nucleic acid is between 4 and 40 nucleotides. The linker can have a length of at least about 100, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500 or 7000 or more nucleotides. The linker can have a length of up to about 100, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500 or 7000 or more nucleotides. A linker sequence can include a functional moiety. For example, a linker sequence can comprise an aptamer, a ribonuclease, a protein interaction hairpin, a CRISPR array, an intron, and an exon. The linker sequence can comprise at least about 1, 2, 3, 4 or 5 or more functional moieties. The linker sequence can comprise up to about 1, 2, 3, 4 or 5 or more functional moieties. In some embodiments, a single guide connector can link the 3' end of the minimal CRISPR repeat to the 5' end of the minimal tracrRNA sequence. Alternatively, a single guide connector can link the 3' end of the tracrRNA sequence to the 5' end of the minimal CRISPR repeat. That is, a single guide nucleic acid can comprise a 5' DNA-binding fragment linked to a 3' protein-binding fragment. A single guide nucleic acid can comprise a 5' protein-binding fragment linked to a 3' DNA-binding fragment. The guide nucleic acid may comprise a spacer extension sequence of from 10 to 5000 nucleotides in length; a spacer sequence of from 12 to 30 nucleotides in length, wherein at least 50% of the spacer is complementary to the target nucleic acid; the minimum CRISPR repeat comprises a span of 6 , 7 or 8 contiguous nucleotides are at least 60% identical to a crRNA from a prokaryote (eg, S. pyogenes) or phage and wherein the smallest CRISPR repeat is 5 to 30 nucleotides in length; the smallest tracrRNA sequence comprises 6 , 7 or 8 contiguous nucleotides are at least 60% identical to tracrRNA from bacteria (eg, S. pyogenes) and wherein the smallest tracrRNA sequence is 5 to 30 nucleotides in length; ligated minimal CRISPR repeats with minimal tracrRNA and a linker sequence of from 3 to 5000 nucleotides in length; comprising a 3' tracrRNA that is at least 60% identical to a tracrRNA from a prokaryote (eg, S. pyogenes) or phage across 6, 7, or 8 contiguous nucleotides And wherein the 3' tracrRNA comprises a length from 10 to 20 nucleotides and comprises a double stranded region; and/or comprises a tracrRNA extension of 10 to 5000 nucleotides in length, or any combination thereof. This guide nucleic acid can be referred to as a single guide nucleic acid. The guide nucleic acid may comprise a spacer extension sequence from 10 to 5000 nucleotides in length; a spacer sequence of 12 to 30 nucleotides in length, wherein at least 50% of the spacer is complementary to the target nucleic acid; the double strand comprises 1) 6 consecutive nucleotides are at least 60% identical to the smallest CRISPR repeat from a prokaryotic (eg, S. pyogenes) or phage crRNA and wherein the smallest CRISPR repeat is 5 to 30 nucleotides in length, 2) contains a span of 6 a contiguous nucleotide having a minimum tracrRNA sequence that is at least 60% identical to a tracrRNA from a bacterium (eg, S. pyogenes) and wherein the smallest tracrRNA sequence is 5 to 30 nucleotides in length, and 3) a bulge, wherein The bulging portion comprises at least 3 unpaired nucleotides on the smallest CRISPR repeating strand of the double strand and at least 1 unpaired nucleotide in the minimal tracrRNA sequence strand of the double strand; the linker connecting the minimal CRISPR repeat with the smallest tracrRNA a sequence comprising from 3 to 5000 nucleotides in length; comprising a 3' tracrRNA that is at least 60% identical to a tracrRNA from a prokaryote (eg, S. pyogenes) or a phage across 6 contiguous nucleotides, wherein the 3' tracrRNA Containing a length from 10 to 20 nucleotides and comprising a double-stranded region; the P-domain from 1 to 5 nucleotides downstream of the double strand comprising the smallest CRISPR repeat and the smallest tracrRNA comprises 1 to 10 nucleotides , comprising a sequence that hybridizes to a proximal host adjacent to the protospacer in the target nucleic acid, can form a hairpin, and is positioned in the 3' tracrRNA region; and/or comprises a tracrRNA extension of 10 to 5000 nucleotides in length, Or any combination thereof.Double-guided nucleic acid The guide nucleic acid can be a dual guide nucleic acid. The dual guide nucleic acid can be RNA. A dual guide nucleic acid can comprise two separate nucleic acid molecules (ie, a polynucleotide). Each of the two nucleic acid molecules of the dual-guide nucleic acid can comprise a double-stranded duplex that can hybridize to one of the nucleotides of the nucleic acid such that the complementary nucleotides of the two nucleic acid molecules hybridize to form a protein-binding fragment. If not listed, reference is made to both single molecule guided nucleic acids and molecularly guided nucleic acids, and the term "guide nucleic acid" can be inclusive. A bi-guided nucleic acid can comprise 1) a spacer extension sequence comprising from 10 to 5000 nucleotides in length; a spacer sequence of 12 to 30 nucleotides in length, wherein at least 50% of the spacer is complementary to the target nucleic acid; 6 consecutive nucleotides are at least 60% identical to the smallest CRISPR repeat from a prokaryotic (eg, Streptococcus pyogenes) or phage crRNA and wherein the minimum CRISPR repeat is 5 to 30 nucleotides in length; and 2) double guide The second nucleic acid molecule of the nucleic acid can comprise a minimal tracrRNA sequence comprising at least 60% identical to the tracrRNA from a prokaryote (eg, S. pyogenes) or phage spanning 6 consecutive nucleotides and wherein the length of the smallest tracrRNA sequence is 5 to 30 nucleotides; comprising a 3' tracrRNA that is at least 60% identical to a tracrRNA from a bacterium (eg, S. pyogenes) spanning 6 consecutive nucleotides and wherein the 3' tracrRNA comprises from 10 to 20 nucleuses The length of the nucleotide, and comprising a double-stranded region; and/or a tracrRNA extension comprising a length of 10 to 5000 nucleotides, or any combination thereof. In some cases, the dual guide nucleic acid can comprise 1) a first nucleic acid molecule comprising a spacer extension of 10 to 5000 nucleotides in length; a spacer sequence of 12 to 30 nucleotides in length, wherein the spacer is at least 50 % is complementary to the target nucleic acid; comprises a minimum CRISPR repeat that is at least 60% identical to a nucleic acid of a prokaryote (eg, S. pyogenes) or phage spanning 6 consecutive nucleotides and wherein the smallest CRISPR repeat is 5 to 30 nucleosides in length Acid, and at least 3 unpaired nucleotides of the bulge; and 2) the second nucleic acid molecule of the double-guided nucleic acid can comprise a minimal tracrRNA sequence comprising spanning 6 contiguous nucleotides and from a prokaryote ( For example, Streptococcus pyogenes or phage tracrRNA is at least 60% identical and wherein the smallest tracrRNA sequence is 5 to 30 nucleotides in length and at least one unpaired nucleotide of the bulge, wherein one of the bulges Unpaired nucleotides are located in the same bulge as the three unpaired nucleotides of the smallest CRISPR repeat; contain tracrR spanning 6 contiguous nucleotides from prokaryotes (eg, S. pyogenes) or phage NA is at least 60% identical to the 3' tracrRNA and wherein the 3' tracrRNA comprises a length of 10 to 20 nucleotides and comprises a double-stranded region; from 1 to 5 nucleotides downstream of the double strand comprising the smallest CRISPR repeat and the smallest tracrRNA The initial P-domain comprises from 1 to 10 nucleotides, comprising a sequence that hybridizes to a proximal host adjacent to the protospacer in the target nucleic acid, can form a hairpin, and is positioned in the 3' tracrRNA region; and/or A tracrRNA extension comprising 10 to 5000 nucleotides in length, or any combination thereof.Guided nucleic acid and complex of peptides The guide nucleic acid can interact with a site-directed polypeptide (eg, a nucleic acid-guided nuclease, Cas9), thereby forming a complex. The guide nucleic acid can direct the targeted polypeptide to a target nucleic acid. In some embodiments, the guide nucleic acid can be genetically engineered such that the complex (eg, comprising a site-directed polypeptide and a guide nucleic acid) can bind outside of the cleavage site of the site-directed polypeptide. In this case, the target nucleic acid may not interact with the complex and the target nucleic acid may be excised (eg, without the complex). In some embodiments, the guide nucleic acid can be genetically engineered such that the complex can bind within the cleavage site of the site-directed polypeptide. In this case, the target nucleic acid can interact with the complex and can bind to the target nucleic acid (eg, to the complex). Any of the guide nucleic acids of the present invention, the site-directed polypeptides of the present invention, effector proteins, multiplexed genetic targeting agents, donor polynucleotides, tandem fusion proteins, reporter elements, related genetic elements, must be executed The components of the cleavage system and/or any nucleic acid or protein molecule of embodiments of the methods of the invention may be recombined, purified, and/or isolated. In some embodiments, the methods comprise modifying a mutation of a nucleic acid molecule using a CRISPR/Cas system. In some embodiments, the mutation is a substitution, insertion or deletion. In some embodiments, the mutation is a single nucleotide polymorphism. In some cases, the target sequence is between 10 and 30 nucleotides in length. In some cases, the target sequence is between 15 and 30 nucleotides in length. In some cases, the length of the target sequence is about 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30. Nucleotides. In some cases, the target sequence is about 15, 16, 17, 18, 19, 20, 21 or 22 nucleotides in length. In some cases, the CRISPR/Cas system utilizes the Cas9 enzyme or a variant thereof. In some embodiments, the methods and cells disclosed herein utilize a polynucleotide encoding a Cas9 enzyme or a variant thereof. In some embodiments, Cas9 is a double-stranded nuclease having two active cleavage sites, one for each strand of the double helix. In some cases, the Cas9 enzyme or variant thereof produces a double-strand break. In some embodiments, the Cas9 enzyme is a wild type Cas9 enzyme. In some embodiments, the Cas9 enzyme is a naturally occurring variant or a mutant wild-type Cas9 enzyme or a Streptococcus pyogenes Cas9 enzyme. The variant may be an enzyme that is partially homologous to the wild-type Cas9 enzyme while maintaining Cas9 nuclease activity. The variant may be an enzyme comprising only a portion of the wild-type Cas9 enzyme while maintaining Cas9 nuclease activity. In some embodiments, the wild type Cas9 enzyme is a Streptococcus pyogenes (S. pyogenes) Cas9 enzyme. In some embodiments, the wild type Cas9 enzyme is represented by the amino acid sequence given GenBank ID AKP81606.1. In some embodiments, the variant is at least about 95% homologous to the amino acid sequence given GenBank ID AKP81606.1. In some embodiments, the variant is at least about 90% homologous to the amino acid sequence given GenBank ID AKP81606.1. In some embodiments, the variant is at least about 80% homologous to the amino acid sequence given GenBank ID AKP81606.1. In some embodiments, the variant is at least about 70% homologous to the amino acid sequence given GenBank ID AKP81606.1. In some cases, the Cas9 enzyme is a wild type Cas9 enzyme modification that optimizes the Cas9 enzyme from the best performance and/or activity used in the cells described herein. In some embodiments, the Cas9 enzyme is a modified Cas9 enzyme, wherein the modified Cas9 enzyme comprises a Cas9 enzyme or variant thereof and an additional amino acid sequence as described herein. As a non-limiting example, the additional amino acid sequence can provide additional activity, stability or recognition tag/barcode to the Cas9 enzyme or variant thereof. The naturally occurring S. pyogenes Cas9 enzyme cleaves the DNA to create a double-strand break. In some embodiments, the Cas9 enzyme disclosed herein acts as a Cas9 nickase, wherein the Cas9 nickase is a Cas9 enzyme that has been modified to cleave the target sequence to produce a single strand break. In some embodiments, the methods disclosed herein comprise the use of a Cas9 nickase having more than one guide RNA targeting the target sequence to decompose each DNA strand in the staggered pattern at the target sequence. In some embodiments, the use of two guide RNAs with a Cas9 nickase can increase the target specificity of the CRISPR/Cas system disclosed herein. In some embodiments, the use of two or more than two guide RNAs can result in the generation of a genome deletion. In some embodiments, the genome deletion is a deletion of from about 5 nucleotides to about 50,000 nucleotides. In some embodiments, the genome deletion is a deletion of from about 5 nucleotides to about 1,000 nucleotides. In some embodiments, the methods disclosed herein comprise the use of a plurality of guide RNAs. In some embodiments, the plurality of guide RNAs target a single gene. In some embodiments, the plurality of guide RNAs target a plurality of genes. In some cases, the specificity of the guide RNA for the target sequence is about 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or higher. In some cases, the guide RNA has a target binding rate of less than about 20%, 15%, 10%, 5%, 3%, 1%, or less. In some embodiments, the specificity of the guide RNA that hybridizes to the target sequence has about 95%, 98%, 99%, 99.5%, or 100% sequence complementarity to the target sequence. In some cases, the hybridization is a highly stringent hybridization condition. In some embodiments, the guide RNA targets a nuclease to a gene encoding a neuroretinogenic leucine zipper (NRL) protein. In some embodiments, the guide RNA comprises a sequence that hybridizes to a target sequence of an NRL-encoding gene. In some embodiments, the target sequence is selected from the group consisting of SEQ ID NOS: 1-2. In some embodiments, the target sequence is at least 90% homologous to a sequence selected from the group consisting of SEQ ID NOS: 1-2. In some embodiments, the target sequence is at least about 80% homologous to a sequence selected from the group consisting of SEQ ID NOS: 1-2. In some embodiments, the target sequence is at least about 85% homologous to a sequence selected from the group consisting of SEQ ID NOS: 1-2. In some embodiments, the target sequence is at least about 90% homologous to a sequence selected from the group consisting of SEQ ID NOS: 1-2. In some embodiments, the target sequence is at least about 95% homologous to a sequence selected from the group consisting of SEQ ID NOS: 1-2. In some embodiments, the guide RNA targets a nuclease to a gene encoding a nuclear receptor subfamily 2 group E member 3 (NR2E3) protein. In some embodiments, the guide RNA comprises a sequence that hybridizes to a target sequence of the NR2E3 encoding gene. In some embodiments, the target sequence is selected from the group consisting of SEQ ID NOS: 3-4. In some embodiments, the target sequence is at least 90% homologous to a sequence selected from the group consisting of SEQ ID NOS: 3-4. In some embodiments, the target sequence is at least about 80% homologous to a sequence selected from the group consisting of SEQ ID NOS: 3-4. In some embodiments, the target sequence is at least about 85% homologous to a sequence selected from the group consisting of SEQ ID NOS: 3-4. In some embodiments, the target sequence is at least about 90% homologous to a sequence selected from the group consisting of SEQ ID NOS: 3-4. In some embodiments, the target sequence is at least about 95% homologous to a sequence selected from the group consisting of SEQ ID NOS: 3-4.DNA Guide Nuclease In some embodiments, the methods and cells disclosed herein utilize a nucleic acid-guided nuclease system. In some embodiments, the methods and cells disclosed herein use a DNA-guided nuclease system. In some embodiments, the methods and cells disclosed herein use an Argonaute system. The Argu protein can be a polypeptide that can be linked to a target nucleic acid. The Argu protein can be a nuclease. The Argu protein can be a eukaryotic, prokaryotic or archaeal Algu protein. The Argu protein can be a prokaryotic alpha protein (pArgonaute). pArgonaute can be derived from archaea. pArgonaute can be derived from bacteria. The bacteria may be selected from thermophilic bacteria and mesophilic bacteria. Bacteria or archaea can be selectedAeolian liquid bacteria, apatite green microalgae, Clostridium, Microbacterium, organic solvent tolerant bacteria, salt genus, genus Rhizobacter, Azotobacter, Thermophilic genus, Synechococcus , Synechococcus and Thermophilic Blue-green Or any combination thereof. The bacteria can be thermophilic bacteria. Bacteria can beWind-producing bacteria . Thermophilic bacteria can beThermophilic bacterium (T . Thermophilic ) (Tt Algu). Alcoco comes fromThermophilic bacteria. Alcoco comes fromSynechococcus . P-argu can be a wild-type p-argu-one variant p-argu. In some embodiments, the Arguin of the invention is a type I prokaryotic alpha (pAgo). In some embodiments, the progenitor nuclear type I ancient alpha carries a DNA nucleic acid targeting nucleic acid. In some embodiments, the DNA nucleic acid targeting nucleic acid targets a strand of double stranded DNA (dsDNA) to produce strand breaks or breaks in dsDNA. In some embodiments, strand disruption or cleavage triggers host DNA repair. In some embodiments, the host DNA repair is non-homologous end joining (NHEJ) or homologous guided recombination (HDR). In some embodiments, the dsDNA is selected from the group consisting of a genome, a chromosome, and a plastid. In some embodiments, the progenitor nuclear type I ancient is a long type I prokaryotic Algu. In some embodiments, the long type I prokaryotic alpha has an N-PAZ-MID-PIWI domain architecture. In some embodiments, the long Form I prokaryotic Algu has a catalytically active PIWI domain. In some embodiments, the long Form I prokaryotic Algu has a catalytic tetramer encoded by aspartate-glutamic acid-aspartate-aspartate/histamine (DEDX). In some embodiments, the catalyst tetrazygous combines one or more Mg+ ions. In some embodiments, the catalyst tetrazygote does not bind to Mg+ ions. In some embodiments, the catalyst tetrazygote combines one or more Mn+ ions. In some embodiments, the catalytically active PIWI domain is most active at moderate temperatures. In some embodiments, the moderate temperature is from about 25 °C to about 45 °C. In some embodiments, the moderate temperature is about 37 °C. In some embodiments, the type I prokaryotic Algu anchors the 5' phosphate end of the DNA guide. In some embodiments, the DNA guide has deoxycytosine at its 5' end. In some embodiments, the progenitor nuclear type I ancient is A. thermophilus Ago (TtAgo). In some embodiments, the progenitor genus of the type I is Alcohol Ago (SeAgo). In some embodiments, the prokaryotic Alguy is type II pAgo. In some embodiments, the Type II prokaryotic Alguq carries an RNA nucleic acid targeting nucleic acid. In some embodiments, the RNA nucleic acid targeting nucleic acid targets a strand of double stranded DNA (dsDNA) to produce strand breaks or breaks in dsDNA. In some embodiments, strand disruption or cleavage triggers host DNA repair. In some embodiments, the host DNA repair is non-homologous end joining (NHEJ) or homologous guided recombination (HDR). In some embodiments, the dsDNA is selected from the group consisting of a genome, a chromosome, and a plastid. In some embodiments, the progenitor nuclear alpha system is selected from the group consisting of a pro-nuclear pro-nucleus Algu and a short-type pro-nuclear algu. In some embodiments, the long Form II prokaryotic Algu has an N-PAZ-MID-PIWI domain architecture. In some embodiments, the long Form II prokaryotic Alguchi does not have an N-PAZ-MID-PIWI domain architecture. In some embodiments, the short type II prokaryotic Algu has a MID and a PIWI domain, but does not have a PAZ domain. In some embodiments, the short type II pAgo has an analogy of the PAZ domain. In some embodiments, the Type II pAgo does not have a catalytically active PIWI domain. In some embodiments, the Type II pAgo does not have a catalytic tetramer encoded by aspartate-glutamic acid-aspartate-aspartate/histamine (DEDX). In some embodiments, the gene encoding a type II prokaryotic Algu and one or more gene clusters encoding a nuclease, a helicase, or a combination thereof. The nuclease or helicase can be a natural design or a domain thereof. In some embodiments, the nuclease is selected from the group consisting of Sir2, RE1, and TIR. In some embodiments, the type II pAgo anchors the 5' phosphate end of the RNA guide. In some embodiments, the RNA guide has uracil at its 5' end. In some embodiments, the progenitor of the type II progenitor is Arcobacteria, R. ago. In some embodiments, the pAgos pair can carry RNA and/or DNA nucleic acid targeting nucleic acids. Type I pAgo can carry RNA nucleic acid targeting nucleic acids, each capable of targeting one strand of double stranded DNA to create double strand breaks in double stranded DNA. In some embodiments, the pAgo pair comprises two type I pAgos. In some embodiments, the pAgo pair comprises two Type II pAgos. In some embodiments, the pAgo pair comprises a type I pAgo and a type II pAgo. The Argu protein can be targeted to the target nucleic acid sequence by a guide nucleic acid. The guide nucleic acid can be single stranded or double stranded. The guide nucleic acid can be a DNA, RNA or DNA/RNA hybrid. The guide nucleic acid can comprise a chemically modified nucleotide. The guide nucleic acid can hybridize to the sense strand or the antisense strand of the polynucleotide of interest. The guide nucleic acid can have a 5' modification. The 5' modification can be phosphorylation, methylation, methylolation, acetylation, ubiquitination or ubiquitination. The 5' modification can be phosphorylated. The length of the guide nucleic acid can be 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50 nucleotides or base pairs. In some examples, the guide nucleic acid can be less than 10 nucleotides or base pairs in length. In some examples, the guide nucleic acid can be more than 50 nucleotides or base pairs in length. The guide nucleic acid can be a guide DNA (gDNA). The gDNA can have a 5' phosphorylated end. The gDNA can be single stranded or double stranded. The length of the gDNA can be 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 , 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50 nucleotides or base pairs. In some examples, the length of the gDNA can be less than 10 nucleotides. In some examples, the length of the gDNA can exceed 50 nucleotides.Multiplex Methods, compositions, systems, and/or kits for multiplexed genome engineering are disclosed herein. In some embodiments of the invention, the site-directed polypeptide may comprise a guide nucleic acid, thereby forming a complex. The complex can be contacted with a target nucleic acid. The target nucleic acid can be cleaved and/or modified by the complex. The methods, compositions, systems, and/or kits of the invention can be used to rapidly, efficiently, and/or simultaneously modify a plurality of target nucleic acids. The method can be performed using any of a site-directed polypeptide (e.g., Cas9), a guide nucleic acid, and a complex of a site-directed polypeptide and a guide nucleic acid as described herein. The site-directed nucleases of the invention may be combined in any combination. For example, multiple CRISPR/Cas nucleases can be used to target different target sequences or different fragments of the same target. In another example, Cas9 and Alcoa can be used in combination to target different targets or different portions of the same target. In some embodiments, a site-directed nuclease can be used with a plurality of different guide nucleic acids to simultaneously target multiple different sequences. A nucleic acid (eg, a guide nucleic acid) can be fused to a non-native sequence (eg, a partial, endonuclease-binding sequence, ribonuclease), thereby forming a nucleic acid module. Nucleic acid modules (eg, comprising nucleic acids fused to a non-native sequence) can be conjugated in tandem form, thereby forming a multiplexed genetic targeting agent (eg, a poly-module, such as an array). The multiplexed genetic targeting agent can comprise RNA. The multiplexed genetic targeting agent can be contacted with one or more endoribonucleases. Endoribonucleases can be ligated to non-native sequences. The endonuclease ribonuclease can cleave the nucleic acid module of the multiplexed genetic targeting agent at a defined position defined by the non-native sequence. Lysis can treat (eg, release) individual nucleic acid modules. In some embodiments, the processed nucleic acid module can comprise all, some, or none of the non-native sequences of the non-native sequences. The processed nucleic acid module can be combined with a site-directed polypeptide to form a complex. The complex can be targeted to a target nucleic acid. The target nucleic acid can be cleaved and/or modified by the complex. A multiplexed genetic targeting agent can be used to simultaneously modify multiple target nucleic acids, and/or to be stoichiometrically counted. The multiplexed genetic targeting agent can be any nucleic acid targeting nucleic acid as described herein in tandem. A multiplexed genetic targeting agent can refer to a contiguous nucleic acid molecule comprising one or more nucleic acid modules. Nucleic acid modules can comprise nucleic acids and non-native sequences (eg, partial, endoribonuclease binding sequences, ribonucleases). The nucleic acid can be a non-coding RNA such as a microRNA (miRNA), a short interfering RNA (siRNA), a long non-coding RNA (lncRNA or lincRNA), an endogenous siRNA (internal-siRNA), a piwi interactive RNA (piRNA), trans Short interfering RNA (tasiRNA), repetitive associated small interfering RNA (rasiRNA), small nucleolar RNA (snoRNA), small nuclear RNA (snRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA) or any combination. The nucleic acid can be an encoding RNA (eg, an mRNA). The nucleic acid can be any type of RNA. In some embodiments, the nucleic acid can be a nucleic acid targeting nucleic acid. The non-native sequence can be located at the 3' end of the nucleic acid module. The non-native sequence can be located at the 5' end of the nucleic acid module. The non-native sequence can be located at both the 3' end and the 5' end of the nucleic acid module. The non-native sequence can comprise a sequence that binds to an endoribonuclease (eg, an endoribonuclease binding sequence). The non-native sequence may be specifically an endo-ribonuclease (for example, ribonuclease T1 cleaves an unpaired G base, ribonuclease T2 cleaves the 3' end of As, and ribonuclease U2 cleaves an unpaired A base 3 The sequence of the sequence identified by the 'end'. The non-native sequence can be a sequence structurally recognized by an endoribonuclease (eg, a hairpin structure, a single-stranded double-stranded junction (eg, Drosha) recognizes a single-stranded-double-link junction within a hairpin). The non-native sequence may comprise a sequence that binds to a CRISPR system endoribonuclease (eg, Csy4, Cas5 and/or Cas6 protein). In some embodiments, wherein the non-native sequence comprises an endoribonuclease binding sequence, the nucleic acid module can bind to the same endoribonuclease. The nucleic acid module may not comprise the same endoribonuclease binding sequence. The nucleic acid module can comprise different endoribonuclease binding sequences. Different endoribonuclease binding sequences can bind to the same endoribonuclease. In some embodiments, the nucleic acid module can bind to a different endonuclease. A portion may comprise a ribonuclease. Ribonuclease cleaves itself, thereby releasing the modules of the multiplexed genetic targeting agent. Suitable ribozymes may include peptidyl transfer 23S rRNA, RnaseP, Group I intron, Group II intron, GIR1 divergent ribonuclease, lead enzyme, hairpin ribozyme, hammerhead ribozyme, HDV nucleus Enzyme, CPEB3 ribozyme, VS ribozyme, glmS ribonuclease, CoTC ribonuclease, synthetic ribozyme. The nucleic acid of the nucleic acid module of the multiplexed genetic targeting agent can be the same. The nucleic acid modules can differ by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more nucleotides. For example, different nucleic acid modules can be different in the spacer region of the nucleic acid module, thereby targeting the nucleic acid module to different target nucleic acids. In some cases, different nucleic acid modules may differ in the spacer region of the nucleic acid module, but still target the same target nucleic acid. The nucleic acid module can target the same target nucleic acid. The nucleic acid module can target one or more target nucleic acids. The nucleic acid module can comprise regulatory sequences that permit suitable translation or amplification of the nucleic acid module. For example, a nucleic acid module can comprise a promoter, a TATA box, an enhancer element, a transcriptional end element, a ribosome binding site, a 3' untranslated region, a 5' untranslated region, a 5' cap sequence, a 3' polyadenosine Deuterated sequences, RNA stability elements and the like.a nucleic acid encoding a design guide nucleic acid and / Nucleic acid guide nuclease The invention provides a nucleic acid encoding the invention, a nucleic acid guide nuclease of the invention, an effector protein, a donor polynucleotide, a multiplexed genetic targeting agent, a tandem fusion polypeptide, a reporter element, and a correlation A genetic element, a nucleic acid of a nucleotide sequence of a component of a cleavage system and/or any nucleic acid or protein molecule necessary to carry out an embodiment of the method of the invention. In some embodiments, a guide nucleic acid encoding the invention, a nucleic acid guide nuclease of the invention, an effector protein, a donor polynucleotide, a multiplexed genetic targeting agent, a tandem fusion polypeptide, a reporter element The nucleic acid of a relevant gene element, a cleavage system and/or a component of any nucleic acid or protein molecule necessary for carrying out an embodiment of the method of the invention may be a vector (eg, a recombinant expression vector). In some embodiments, the recombinant expression vector can be a viral construct (eg, a recombinant adeno-associated virus construct), a recombinant adenoviral construct, a recombinant lentiviral construct, a recombinant retroviral construct, and the like. Suitable expression vectors can include, but are not limited to, viral vectors (eg, viral vectors based on acne virus, poliovirus, adenovirus, adeno-associated virus, SV40, herpes simplex virus, human immunodeficiency virus, retroviral vector) (eg murine leukemia virus, spleen necrosis virus, and from sources such as Rous sarcoma virus, Harvey sarcoma virus, avian leukemia virus, lentivirus, human immunodeficiency virus, myeloproliferative sarcoma virus and breast Vectors for retroviruses of tumor viruses), plant vectors (eg T-DNA vectors) and the like. The following vectors can be provided by way of example for eukaryotic host cells: pXT1, pSG5, pSVK3, pBPV, pMSG and pSVLSV40 (Pharmacia). Other vectors may be used as long as the other vectors are compatible with the host cell. In some cases, the vector may be a linearized vector. The linearized vector may comprise a nuclease (eg Cas9 or Algu) and/or The guide nucleic acid. The linearized vector may not be a circular plastid. The linearized vector may comprise a double-strand break. The linearized vector may comprise a coded fluorescent light. A sequence of a protein (eg, orange fluorescent protein (OFP). The linearized vector may comprise a sequence encoding an antigen (eg, CD4). The linearized vector may be in a region encoding a vector of a portion of the designed nucleic acid targeting nucleic acid. Linearization (eg, cleavage). For example, a linearized vector can be linearized (eg, cleaved) in the 5' region of a designed nucleic acid targeting nucleic acid. The linearized vector can be designed to target nucleic acids in a nucleic acid. Linearization (eg, cleavage) in the 3' region. In some cases, the linearized vector or the closed supercoiled vector comprises a sequence encoding a nuclease (eg, Cas9 or Algu), driving the expression of the sequence encoding the nuclease Promoter (eg, CMV promoter), a sequence encoding a marker, a sequence encoding an affinity tag, a sequence encoding a portion of a guide nucleic acid, a promoter that drives expression of a sequence encoding a portion of a guide nucleic acid, and a coding selectable marker (eg, Ambi Sequence of any of ampicillin or any combination thereof. The vector may contain transcriptional and/or translational control elements. Depending on the host/vector system utilized, multiple suitable transcriptions and translations Any of the elements (including constitutive and inducible promoters, transcription enhancing elements, transcriptional terminators, etc.) can be used in the expression vector. In some embodiments, the guide nucleic acid encoding the invention, the nuclease of the invention , an effector protein, a donor polynucleotide, a multiplexed genetic targeting agent, a tandem fusion polypeptide, a reporter element, a related gene element, a split system necessary to carry out an embodiment of the method of the invention and/or Or the nucleotide sequence of a component of any nucleic acid or protein molecule can be operably linked to a control element (eg, a transcriptional control element), such as a promoter. The transcriptional control element can be in a eukaryotic cell (eg, a mammalian cell) and/or a prokaryotic Functional in a cell, such as a bacterial or archaeal cell. In some embodiments, a design-guided nucleic acid encoding the invention, a nucleic acid-guided nuclease of the invention (eg, Cas9 or Algu), an effector protein, a donor Polynucleotides, multiplexed genetic targeting agents, tandem fusion polypeptides, reporter elements, related gene elements, and embodiments necessary to perform the methods of the invention Cracking system and / or any nucleotide sequence or a nucleic acid molecule of the protein components can be operatively connected to a plurality of control elements. An operable bond to a plurality of control elements may allow for the encoding of a guide nucleic acid of the present invention, a nucleic acid guide nuclease of the present invention, an effector protein, a donor polynucleotide, a reporter element, and a related gene element in a prokaryotic or eukaryotic cell. The performance of the nucleotide sequence of the components of the cleavage system and/or any nucleic acid or protein molecule necessary to carry out the embodiments of the methods of the invention. Non-limiting examples of suitable eukaryotic promoters (i.e., promoters that are functional in eukaryotic cells) can include those from the following: early cytomegalovirus (CMV), herpes simplex virus (HSV) thymidine Kinase, early and late SV40, long terminal repeats (LTRs) from retrovirus, human elongation factor-1 promoter (EF1), cytomegalovirus (CMV) enhancer containing fusion to chicken β-promoter (CAG) The mixed construct, the murine stem cell virus promoter (MSCV), the phosphoglycerate kinase-1 locus promoter (PGK), and the mouse metallothionein-I. The promoter can be a fungal promoter. The promoter can be a plant promoter. A database of plant promoters can be found (for example, PlantProm). The expression vector may also contain a ribosome binding site for translation initiation and transcription termination. The performance vector can also include sequences suitable for amplifying the performance. The expression vector can also include a nucleotide sequence that encodes a non-natural marker fused to Argo (eg, a 6xHis tag (SEQ ID NO: 5), a hemagglutinin tag, a green fluorescent protein, etc.) thereby producing a fusion protein. In some embodiments, a nucleotide sequence or a guide nucleic acid encoding the same, a nucleic acid guide nuclease of the invention (eg, Cas9 or Algu), an effector protein, a donor polynucleotide, a multiplexed genetic target Sequences of components, fractional fusion polypeptides, reporter elements, related gene elements, cleavage systems necessary for performing embodiments of the methods of the invention, and/or components of any nucleic acid or protein molecule can be operably linked to inducible Promoters (eg, heat shock promoters, tetracycline-regulated promoters, steroid-regulated promoters, metal-regulated promoters, estrogen receptor-regulated promoters, etc.). In some embodiments, a guide nucleic acid encoding the invention, a nucleic acid guide nuclease of the invention, an effector protein, a donor polynucleotide, a multiplexed genetic targeting agent, a tandem fusion polypeptide, a reporter element The nucleotide sequence of the relevant gene element, the cleavage system necessary for carrying out the embodiment of the method of the invention and/or the components of any nucleic acid or protein molecule can be operably linked to a constitutive promoter (eg CMV promoter, UBC) Promoter). In some embodiments, the nucleotide sequence can be operably linked to a space-constrained and/or time-limited promoter (eg, a tissue-specific promoter, a cell type-specific promoter, etc.). In some embodiments, a nucleotide sequence or a guide nucleic acid encoding the same, a nucleic acid guide nuclease of the invention (eg, Cas9 or Algu), an effector protein, a donor polynucleotide, a multiplexed genetic target Sequences of components, fractional fusion polypeptides, reporter elements, related gene elements, cleavage systems necessary for performing embodiments of the methods of the invention, and/or components of any nucleic acid or protein molecule may be packaged for delivery to In the biological compartment of the cell or on its surface. Biological compartments can include, but are not limited to, viruses (lentiviruses, adenoviruses), nanospheres, liposomes, quantum dots, nanoparticles, polyethylene glycol particles, hydrogels, and micelles. Introduction of the complexes, polypeptides and nucleic acids of the present invention into cells can occur by viral or phage infection, transfection, conjugation, protoplast fusion, lipofection, electroporation, calcium phosphate precipitation, polyethylene. Imine (PEI)-mediated transfection, DEAE-polydextrose-mediated transfection, liposome-mediated transfection, particle gun technology, calcium phosphate precipitation, direct microinjection, nanoparticle-mediated nucleic acid delivery Similar.a - optimization The polynucleotides encoding the nucleic acid-guided nucleases (e.g., Cas9 or Algu) disclosed herein can be codon-optimized. This type of optimization may necessarily be accompanied by a foreignly derived mutant (e.g., recombinant) DNA to mimic the codon preferences of a given host organism or cell when encoding the same protein. Thus, the codon can be altered, but the encoded protein remains unchanged. For example, if the intended target cell is a human cell, the human codon-optimized polynucleotide Cas9 can be used to generate a suitable Cas9. As another non-limiting example, if the established host cell is a mouse cell, the codon-optimized polynucleotide encoding the Cas9 mouse can be a suitable Cas9. A polynucleotide encoding a CRISPR/Cas protein can be a codon optimized for a number of related host cells. The polynucleotide encoding alpha is a codon optimized for many relevant host cells. The host cell may be a cell selected from any organism (eg, bacterial cells, archaeal cells, cells of single-cell eukaryotes, plant cells, algae cells (eg, brown grape algae, C. reinhardtii, marine oil-rich microspheres) Algae, Chlorella pyrenoidosa, S. cerevisiae and its analogues), fungal cells (eg yeast cells), animal cells, cells from invertebrates (eg flies, cnidaria, echinoderms, nematodes, etc.) Cells from vertebrate animals (eg, fish, amphibians, reptiles, birds, mammals), from mammals (eg, pigs, cows, goats, sheep, rodents, rats, mice, non-human primates) Codon optimization, etc. Codon optimization may not be desirable. Codon optimization may be preferred in some cases.transfer The site-directed nucleases of the invention can be expressed endogenously or recombinantly in a cell. The site-directed nuclease can be encoded on a chromosome, extrachromosomally, or on a plastid, synthetic chromosome or artificial chromosome. Alternatively or additionally, the site-directed nuclease can be provided or delivered to the cell as a polypeptide or mRNA encoding the polypeptide. In such instances, the polypeptide or mRNA can be delivered by standard mechanisms known in the art, such as by the use of cell-penetrating peptides, nanoparticles, virions, viral delivery systems, or other non-viral delivery systems. Alternatively or additionally, the guide nucleic acids disclosed herein can be provided by genetic or episomal DNA within the cell. The guide nucleic acid can be reverse transcribed from RNA or mRNA within the cell. The guide nucleic acid can be provided or delivered to a cell that exhibits a corresponding site-directed nuclease. Alternatively or additionally, the guide nucleic acid can be provided or delivered simultaneously or sequentially with the site-directed nuclease. The guide nucleic acid can be chemically synthesized, assembled, or otherwise produced using standard DNA or RNA production techniques known in the art. Alternatively or additionally, the guide nucleic acid can be cleaved, released or otherwise derived from genomic DNA, episomal DNA molecules, isolated nucleic acid molecules, or any other source of nucleic acid molecules.Small molecule inhibitor In some embodiments, the therapeutic agent is a small molecule inhibitor. Small molecule inhibitors may be free of polynucleotides. Small molecule inhibitors may be free of peptides. In some embodiments, the small molecule inhibitor binds directly to a protein or structure that is disrupted by the function of pl6a. In general, small molecule inhibitors readily cross the cell membrane and may not require additional modification to aid in their cellular uptake.Gene target Methods for editing the genes disclosed herein using the CRISPR/Cas system are provided herein. The invention further provides methods of contacting RNA expressed by a gene disclosed herein with a counter-oligonucleotide, thereby altering the production of a protein encoded by the gene. The invention further provides methods of editing the genes disclosed herein or modifying the expression of the genes disclosed herein. In some embodiments, editing the gene or modifying the expression of the gene comprises reducing the performance of the gene, reducing the performance of the product of the gene (eg, an RNA protein), reducing the activity of the product of the gene, or a combination thereof. In some embodiments, the gene encodes a nuclear receptor. In some embodiments, the gene encodes a leucine zipper protein. In some embodiments, the gene encodes a flaviprotein. In some embodiments, the gene encodes a G-coupled protein receptor. In some embodiments, the gene is a tumor suppressor gene. In some embodiments, the gene encodes a protein that promotes cellular senescence. In some embodiments, the gene encodes a protein that promotes apoptosis. In some embodiments, the gene encodes a protein that promotes cell differentiation. In some embodiments, the gene encodes a protein that inhibits cell proliferation. In some embodiments, the gene encodes a protein that inhibits cell survival. In some embodiments, the gene is characterized by a sequence having the sequence identifier (SEQ ID NO) provided herein. In some embodiments, the gene is characterized by having a sequence homologous to the sequence identifier (SEQ ID NO) provided herein to a sequence homologous thereto. When the terms "homologous", "homology" or "percent homology" are used herein to describe amino acid sequences or nucleic acid sequences relative to a reference sequence, Karlin and Altschul (Proc. Natl. Acad) can be used. .Sci. USA 87: 2264-2268, 1990, modified to Proc. Natl. Acad. Sci. USA 90: 5873-5877, 1993). Such a formula is incorporated into the Base Local Alignment Search Tool (BLAST) program of Altschul et al. (J. Mol. Biol. 215: 403-410, 1990). As of the filing date of this application, the nearest form of BLAST can be used to determine the percent homology of the sequence. Any of the genes disclosed herein can be a human gene. A gene encodes a protein expressed by a blood cell. The gene encodes hemoglobin. A gene encodes a protein that is expressed on cells of the eye of a human individual. By way of non-limiting example, a gene can encode a G protein coupled receptor (GPCR). The GPCR can be selected from genes encoding a flaviprotein (eg, rhodopsin) or transduction (eg, GNAT1). Also by way of non-limiting example, the gene may encode a leucine zipper protein. The gene may be a neuroretin-specific leucine zipper gene (Nrl) gene. The gene encodes the Nrl protein. The gene may comprise at least 10 contiguous nucleotides of SEQ ID NO.: 1 or SEQ ID NO.: 2. Also, by way of non-limiting example, a gene can encode a nuclear receptor. The gene may be a photoreceptor cell-specific nuclear receptor (PNR) gene. The gene encodes a PNR protein. PNR is also known as NR2E3 (nuclear receptor subfamily 2, E, member 3). The gene may comprise at least 10 contiguous nucleotides of SEQ ID NO.: 3 or SEQ ID NO.: 4. The gene can be the Mertk gene. The gene may be other ocular genes including the retinoblastoma gene, the athonal7 gene, and the Pax6 gene. Provided herein are methods comprising modifying a gene disclosed herein in a cell disclosed herein. The gene can be a non-ocular gene and the cell can be a non-ocular cell. By way of non-limiting example, the genes may be UMOD, TMEM174, SLC22A8, SLC12A1, SLC34A1, SLC22A12, SLC22A2, MCCD1, AQP2, SLC7A13, KCNJ1, SLC22A6 Pax3 Pax3, and the cells may be kidney cells. By way of non-limiting example, the gene may be PNLIPRP1, SYCN, PRSS1, CTRB2, CELA2A, CTRB1, CELA3A, CELA3B, CTRC, CPA1, PNLIP or CPB1, and the cells may be pancreatic cells. By way of non-limiting example, the gene may be GFAP, OPALIN, OLIG2, GRIN1, OMG, SLC17A7, C1orf61, CREG2, NEUROD6, ZDHHC22, VSTM2B or PMP2, and the cells may be brain cells. By way of non-limiting example, the gene may encode an immune checkpoint inhibitor and the cell may be a T cell. By way of non-limiting example, the gene may encode PD-1 and the cell may be a T cell. The gene may encode PD-L1 or PD-L2, and the cell may be a tumor cell.cell Methods of modifying nucleic acid molecules that are expressed by the cells disclosed herein are provided herein. The invention further provides methods of modifying the expression and/or activity of a nucleic acid molecule expressed by the cells disclosed herein. In some embodiments, the methods comprise modifying a nucleic acid molecule or its expression/activity, wherein the nucleic acid molecule is present in a cell in vivo. In some embodiments, the methods comprise modifying a nucleic acid molecule or its expression/activity, wherein the nucleic acid molecule is present in a living cell. In some embodiments, the methods comprise modifying a nucleic acid molecule or its expression/activity, wherein the nucleic acid molecule is present in a living cell. In some embodiments, a method comprises modifying a nucleic acid molecule or its expression/activity, wherein the nucleic acid molecule is present in an in situ cell. In some embodiments, the cell is a retinal cell. In some embodiments, the cells are photoreceptor cells. In some embodiments, the photoreceptor cells are rod cells. In some embodiments, the photoreceptor cells are cone cells. In some embodiments, the photoreceptor cells are photosensitive retinal ganglion cells. In some embodiments, the cell is an optic nerve cell. In some embodiments, the cell is a ganglion cell. In some embodiments, the cell is an axonal nerve cell. In some embodiments, the cell is a retinal ganglion cell. In some embodiments, the cells have been isolated from the treatment. In some embodiments, the cells are stem cells. In some embodiments, the cell is a cord blood stem cell. In some embodiments, the cells are blood cells. In some embodiments, the cells are hematopoietic stem cells. In some embodiments, the cell is a hematopoietic pluripotent cell. In some embodiments, the cells are cancer cells. In some embodiments, the cells are epithelial cells. In some embodiments, the cells are intestinal cells. In some embodiments, the cell is a pluripotent cell. In some embodiments, the cell is a pluripotent cell. In some embodiments, the cell is an induced pluripotent stem cell (iPSC). In some embodiments, the iPSC is derived from a neural cell. In some embodiments, the iPSC is derived from an ocular cell. In some embodiments, the cell is an iPSC that differentiates into retinal ganglion cells or pluripotent progenitor cells thereof.Pharmaceutical composition and mode of administration Disclosed herein are pharmaceutical compositions for treating conditions of retinal degeneration comprising a therapeutic agent for inhibiting gene expression and protein activity as described herein. In some embodiments, the pharmaceutical composition is a formulation for administration to the eye. In some embodiments, the formulation for administration to the eye comprises a thickening agent, a surfactant, a humectant, a base component, a carrier, an excipient, or a salt suitable for administration to the eye. In some embodiments, the formulation for administration to the eye has a pH, salt or osmotic properties that renders it suitable for administration to the eye. This aspect of the formulation for administration to the eye is described herein. In some embodiments, the pharmaceutical composition is an ophthalmic formulation. The pharmaceutical compositions may contain a thickening agent to extend the contact time of the pharmaceutical composition with the eye. In some embodiments, the thickening agent is selected from the group consisting of polyvinyl alcohol, polyethylene glycol, methyl cellulose, carboxymethyl cellulose, and combinations thereof. In some embodiments, the thickening agent is filtered and sterilized. The pharmaceutical compositions disclosed herein may comprise a pharmaceutically acceptable carrier for the eye, a pharmaceutically acceptable excipient or a pharmaceutically acceptable salt. Non-limiting examples of pharmaceutically acceptable carriers, pharmaceutically acceptable excipients, and pharmaceutically acceptable salts for use in the eye include hyaluronic acid, boric acid, calcium chloride, sodium perborate, phosphonic acid, Potassium chloride, magnesium chloride, sodium borate, sodium phosphate and sodium chloride. The pharmaceutical compositions disclosed herein should be isotonic with lacrimal secretions. In some embodiments, the pharmaceutical composition has a permeability from 0.5% to 2% NaCl. In some embodiments, the pharmaceutical composition comprises an isotonic vehicle. By way of non-limiting example, the isotonic vehicle can comprise boric acid or monobasic sodium phosphate. In some embodiments, the pharmaceutical composition has a pH of from about 3 to about 8. In some embodiments, the pharmaceutical composition has a pH of from about 3 to about 7. In some embodiments, the pharmaceutical composition has a pH of from about 4 to about 7. Pharmaceutical compositions outside this pH range can irritate the eye or form granules in the eye when administered. In some embodiments, the pharmaceutical compositions disclosed herein comprise a surfactant or a humectant. Non-limiting examples of surfactants employed in the pharmaceutical compositions disclosed herein are resveratrol chloride, polysorbate 20, polysorbate 80, and sodium dioctyl succinate. In some embodiments, the pharmaceutical compositions disclosed herein comprise a preservative that prevents microbial contamination after the container holding the pharmaceutical composition has been opened. In some embodiments, the preservative is selected from the group consisting of benzalkonium chloride, chlorobutanol, phenylmercuric acetate, chlorhexidine acetate, and phenylmercury nitrate. In some embodiments, a pharmaceutical composition (eg, an emulsion or ointment) comprises a base component. The base component can be selected from the group consisting of sodium chloride, acidic sodium carbonate, boric acid, borax, zinc sulfate, paraffins, and waxes or fatty materials. In some embodiments, the pharmaceutical composition is an emulsion. In some embodiments, the emulsion is provided to the individual (or the individual administering the emulsion) in the form of a powder or lyophilized product (i.e., reconstituted immediately prior to use). Direct administration of the pharmaceutical composition to the eye avoids any undesirable deviation of the therapeutic agent from the target at locations other than the eye. For example, intravenous or systemic administration of a pharmaceutical composition can result in inhibition of gene expression in cells other than the cells of the eye, wherein inhibition of the gene can have adverse effects. In some embodiments, a pharmaceutical composition comprises a polynucleotide vector encoding any of the nucleic acid molecules disclosed herein (eg, shRNA, guide RNA, nuclease encoding a polynucleotide). In some embodiments, the polynucleotide vector is an expression vector. In some embodiments, the polynucleotide vector is a viral vector. In some embodiments, a pharmaceutical composition comprises a virus, wherein the virus delivers the vector and/or nucleic acid molecule to a cell of the individual. In some embodiments, the virus is a retrovirus. In some embodiments, the virus is a lentivirus. In some embodiments, the virus is an adeno-associated virus (AAV). In some embodiments, the AAV line is selected from the group consisting of serotypes 1, 2, 5, 7, 8, and 9. In some embodiments, the AAV is AAV serotype 2. In some embodiments, the AAV is AAV serotype 8. AAV is particularly useful in the methods disclosed herein due to the minimal stimulation of the immune system and its ability to provide performance in undivided retinal cells for many years. AAV can be capable of transducing multiple cell types within the retina. In some embodiments, the method comprises intravitreal administration of AAV (eg, injection into the vitreous humor of the eye). In some embodiments, the method comprises subretinal administration of AAV (eg, injection into the lower portion of the retina). In some embodiments, the methods and compositions disclosed herein comprise an exogenously regulatable promoter system in an AAV vector. By way of non-limiting example, the exogenously regulatable promoter system can be a tetracycline-inducible expression system. The pharmaceutical compositions disclosed herein may further comprise one or more pharmaceutically acceptable salts, excipients or vehicles. The pharmaceutically acceptable salts, excipients or vehicles used in the pharmaceutical compositions of the present invention include carriers, excipients, diluents, antioxidants, preservatives, coloring agents, flavoring and diluents, emulsifiers, Suspending agents, solvents, fillers, accumulating agents, buffers, vehicles, tonicity agents, cosolvents, wetting agents, complexing agents, buffers, antimicrobial agents, and surfactants. Neutral buffered saline or physiological saline mixed with serum albumin may be an exemplary suitable vehicle. Pharmaceutical compositions may include antioxidants such as ascorbic acid, low molecular weight polypeptides, proteins such as serum albumin, gelatin or immunoglobulins, hydrophilic polymers such as polyvinylpyrrolidone, such as glycine, glutamic acid , aspartame, arginine or lysine amino acids, monosaccharides, disaccharides and other carbohydrates including glucose, mannose or dextrin, chelating agents such as EDTA, sugar alcohols such as mannitol or sorbitol For example, sodium salt counterions, and/or nonionic surfactants such as Tween, pluronics or polyethylene glycol (PEG). Also by way of example, suitable osmotic enhancers include alkali metal halides (preferably sodium or potassium chloride), mannitol, sorbitol, and the like. Suitable preservatives include benzalkonium chloride, thimerosal, phenethylethanol, methyl paraben, propyl paraben, chlorhexidine, sorbic acid, and the like. Hydrogen peroxide can also be used as a preservative. Suitable cosolvents include glycerol, propylene glycol, and PEG. Suitable complexing agents include caffeine, polyvinylpyrrolidone, beta-cyclodextrin or hydroxy-propyl-beta-cyclodextrin. Suitable surfactants or wetting agents include sorbitan esters, polysorbates such as polysorbate 80, tromethamine, lecithin, cholesterol, tyloxapol and the like. The buffer may be a conventional buffer such as acetic acid, borate, citric acid, phosphoric acid, bicarbonate or HCl. The acetate buffer can be from about pH 4 to pH 5.5, and the reference buffer can be from about pH 7 to pH 8.5. Additional agents are described in Remington's Pharmaceutical Sciences, 18th Ed., A.R. Gennaro, ed., Mack Publishing Company, 1990. The composition may be in liquid form or in lyophilized or lyophilized form and may include one or more lyoprotectants, excipients, surfactants, high molecular weight structural additives, and/or accumulators (see, for example, U.S. Patent No. 6,685,940 6,566,329 and 6,372,716). In one embodiment, a lyoprotectant is included, the lyoprotectant being a non-reducing sugar such as sucrose, lactose or trehalose. The lyophilized protective dose is typically included such that after reconstitution, although the resulting formulation will be isotonic, a hypertonic or slightly hypotonic formulation may also be suitable. Additionally, the amount of lyoprotectant should be sufficient to prevent decomposition and/or aggregation of unacceptable amounts of protein after lyophilization. An exemplary lyoprotectant concentration of sugar (e.g., sucrose, lactose, trehalose) in the lyophilized formulation is from about 10 mM to about 400 mM. In another embodiment, a surfactant such as a nonionic surfactant and an ionic surfactant such as a polysorbate (eg, polysorbate 20, polysorbate 80); a poloxamer (eg, Poloxamer 188); poly(ethylene glycol) phenyl ether (such as Triton); sodium dodecyl sulfate (SDS); sodium lauryl sulfate; octyl sodium glycoside; Myristyl-, linoleo- or octadecane-sulfobetaine; dodecyl-, myristyl-, linoleyl- or octadecyl-creatinine; linoleic acid , myristyl- or cetyl-betaine; lauryl propyl-, cocoamidopropyl-, linoleylpropyl-, myristylpropyl-, palmitosine-propyl Base- or isostearyl propylamino-betaine (eg, lauric acid propyl); myristylpropyl-, palmitosylpropyl- or isostearylamine-dimethylamine; Methyl sodium cocoyl- or methyl disodium-taurate; MONAQUATTM series (Mona Industries, Inc., Paterson, NJ), polyethylene glycol, polypropylene glycol, and ethylene glycol and propylene glycol Copolymer (eg Pluroni) Cs), PF68, etc.). Exemplary interfacial surfactants that may be present in the pre-lyophilized formulation are from about 0.001% to about 0.5%. High molecular weight structural additives (eg, fillers, binders) may include, for example, gum arabic, albumin, alginic acid, calcium phosphate (two bases), cellulose, carboxymethyl cellulose, sodium carboxymethyl cellulose. , hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, microcrystalline cellulose, polydextrose, dextrin, glucose binder, sucrose, methyl cellulose, pregelatinized starch, sulfuric acid Calcium, amylose, glycine, bentonite, maltose, sorbitol, ethyl cellulose, disodium hydrogen phosphate, disodium phosphate, disodium pyrosulfite, polyvinyl alcohol, gelatin, glucose, guar gum, Liquid glucose, compressible sugar, magnesium aluminum silicate, maltodextrin, polyethylene oxide, polymethacrylate, povidone, sodium alginate, xanthine microcrystalline cellulose, starch and zein. An exemplary concentration of the high molecular weight structural additive is from 0.1 wt% to 10 wt%. In other embodiments, an accumulating agent (eg, mannitol, glycine) may be included. The composition may be suitable for parenteral administration. Exemplary compositions are suitable for injection or infusion into an animal by any route available to those skilled in the art, such as intra-articular, subcutaneous, intravenous, intramuscular, intraperitoneal, intracerebral (intracerebral parenchyma), ventricles. Internal, intramuscular, intraocular, intraarterial or intralesional routes. Parenteral formulations are typically sterile, pyrogen-free isotonic aqueous solutions, optionally containing a pharmaceutically acceptable preservative. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including physiological saline and buffered media. Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's or fixed oils. Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers (such as those based on Ringer's dextrose), and the like. Preservatives and other additives may also be present such as antimicrobials, antioxidants, chelating agents, inert gases, and the like. See generally, Remington's Pharmaceutical Science, 16th Edition, Mack, ed., 1980. The compositions described herein can be formulated for control or maintenance delivery in a manner that provides a localized concentration of product (e.g., bolus, reservoir effect) and/or increased stability or half-life in a particular local environment. The composition may comprise a formulation of a polypeptide, nucleic acid or carrier disclosed herein with a particle formulation of a polymeric compound such as polylactic acid, polyglycolic acid, and the like, and agents such as biodegradable matrices, injectable microspheres, Microcapsule particles, microcapsules, bioerodible particle beads, liposomes, and implantable delivery devices that provide controlled or sustained release of the active agent, which can then be delivered by reservoir injection. Techniques for formulating such devices for sustained or controlled delivery are known, and a variety of polymers have been developed and used for controlled release and delivery of drugs. Such polymers are generally biodegradable and biocompatible. Due to the mild and aqueous conditions contained in the bioactive protein capture agent, including their polymer hydrogels formed by the mismatch of enantiomeric polymers or polypeptide fragments and water condensation with temperature or pH sensitive properties Gum may be desirable to provide a drug storage effect. See, for example, the description of controlled release porous polymeric microparticles for delivery of pharmaceutical compositions in WO 93/15722. Suitable materials for this purpose may include polylactide (see, for example, U.S. Patent No. 3,773,919), poly-(a-hydroxycarboxylic acid), such as poly-D-(-)-3-hydroxybutyric acid (EP). 133,988A), a copolymer of L-glutamic acid and γ-ethyl-L glutamic acid (Sidman et al., Biopolymers, 22: 547 to 556 (1983)), poly(2-hydroxyethyl-methyl) Acrylate) (Langer et al, J. Biomed. Mater. Res., 15: 167 to 277 (1981), and Langer, Chem. Tech, 12: 98 to 105 (1982)), ethylene vinyl acetate or poly- D(-)-3-hydroxybutyric acid. Other biodegradable polymers include poly(lactone), poly(acetal), poly(orthoester), and poly(orthocarbonate). Sustained-release compositions can also include liposomes that can be prepared by any of a number of methods known in the art (see, for example, Eppstein et al, Proc. Natl. Acad. Sci., USA, 82:3688) 92 (1985)). The carrier itself or its decomposition products should be non-toxic in the target tissue and should not further aggravate the condition. This can be determined by routine screening in animal models of the target disorder, or by routine screening in normal animals when such models are not available. Formulations suitable for intramuscular, subcutaneous, or intratumoral injection may include physiologically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions and solutions for reconstitution into sterile injectable solutions or dispersions Sterile powder. Examples of suitable aqueous and non-aqueous vehicles, diluents, solvents or vehicles include water, ethanol, polyols (propylene glycol, polyethylene glycol, glycerol, cetyl polyoxyethylene ether and the like), suitable mixtures thereof , vegetable oils (such as olive oil) and injectable organic esters such as ethyl oleate. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Formulations suitable for subcutaneous injection may also contain, if desired, additives such as preservatives, wetting agents, emulsifying agents and dispersing agents. For intravenous injection, the active agent may optionally be formulated in an aqueous solution, preferably in a physiologically compatible buffer (such as Hank's solution, Ringer's solution, or physiological saline buffer). Formulated in liquid). Parenteral injections include rapid injections or continuous infusions. In some embodiments, the formulation for injection is optionally presented in unit dosage form, such as an ampule or multi-dose container, with a preservative added thereto. The pharmaceutical compositions described herein may be in the form of a sterile suspension, solution or emulsion in an oily or aqueous vehicle suitable for parenteral injection, and contain a formulation such as a suspension, stabilizer and/or dispersion. Agent. Pharmaceutical formulations for parenteral administration include aqueous solutions of the active agents in water soluble form. Alternatively, the suspension is prepared as a suitable oil-containing injection suspension as appropriate. Alternatively or additionally, the composition may be administered topically via implantation into the affected area of a film, sponge or other suitable material on which the therapeutic agents disclosed herein have been absorbed or Encapsulated. When an implant device is used, the device can be implanted into any suitable tissue or organ, and delivery of the therapeutic agent, nucleic acid or vector disclosed herein can be directly via a bolus or via continuous administration or via a catheter using continuous infusion. The device. Certain formulations comprising a therapeutic agent disclosed herein can be administered orally. Formulations for administration in this manner may or may not be formulated with such carriers which are normally used in admixture with solid dosage forms such as tablets and capsules. For example, the capsule can be designed to release the active portion of the formulation somewhere in the gastrointestinal tract, where bioavailability is maximized and degradation to the body is minimized. Additional agents may be included to promote absorption of the selective adhesive. Diluents, flavoring agents, low melting waxes, vegetable oils, lubricants, suspending agents, tablet disintegrating agents and binders can also be used. Depending on the intended route of administration, the mode of delivery, and the desired dosage, the general knowledge of the present invention and formulation techniques can be considered to determine suitable and/or preferred pharmaceutical formulations. Regardless of the manner in which the drug is administered, the effective dose can be calculated based on the patient's weight, body surface area, or organ size. Further modifications of the operations used to determine suitable dosages for treating each of the formulations described herein are within the skill of the art and are within the scope of routine tasks performed in the art. The appropriate dose can be determined by using appropriate dose response data. "Pharmaceutically acceptable" may mean approved or approved by a federal or state regulatory agency, or listed in the US Pharmacopoeia or other generally recognized pharmacopeia for animals, including humans. "Pharmaceutically acceptable salt" may refer to a salt of a compound that is pharmaceutically acceptable and which possesses the desired pharmacological activity of the parent compound. "Pharmaceutically acceptable excipient, carrier or adjuvant" can mean that it can be administered to an individual with at least one antibody of the invention and does not destroy the agent when administered at a dose sufficient to deliver a therapeutic amount of the compound. A pharmacologically active and non-toxic excipient, carrier or adjuvant. "Pharmaceutically acceptable vehicle" can refer to a diluent, adjuvant, excipient or carrier that is administered with at least one antibody of the invention. In some embodiments, the pharmaceutical composition is formulated for injectable administration. In some embodiments, the method comprises injecting a pharmaceutical composition. In some embodiments, the methods comprise administering a pharmaceutical composition in liquid form via intraocular injection. In some embodiments, the method comprises administering a pharmaceutical composition in liquid form via intraocular injection. In some embodiments, the methods comprise administering a pharmaceutical composition in liquid form via intravitreal injection. Although some of these modes of administration may not be attractive to the individual (eg, intravitreal injection), they may be most effective at the penetrating barrier of the eye and are comparable to providing convenience and low availability. Eye drops, therapeutic agents are the least likely to be washed away by tears or blinks. In some embodiments, the methods comprise systemically administering a pharmaceutical formulation. In some embodiments, the therapeutic agent is a polynucleotide vector, wherein the polynucleotide vector comprises a guide RNA, an anti-strand oligonucleotide, or a Cas coding polynucleotide. A polynucleotide vector can comprise a conditional promoter for the expression of a nucleic acid molecule that drives a vector in a cell-specific manner. By way of a non-limiting example, a conditional promoter can drive the expression of only the retinal ganglion cells or only the expression of a functional effect in retinal ganglion cells. In some embodiments, the pharmaceutical composition is formulated for non-injectable administration. In some embodiments, the pharmaceutical composition is formulated for topical administration. By way of non-limiting example, the nucleic acid molecule can be suspended in a physiological saline solution or buffer suitable for instillation into the eye. In some embodiments, the pharmaceutical compositions can be formulated as eye drops, gels, lotions, ointments, suspensions or emulsions. In some embodiments, the pharmaceutical composition is formulated into a solid formulation such as an ocular implant. For example, an ocular implant can be formed into a shape that is similar to a contact lens that releases a pharmaceutical composition over a period of time, effectively delivering an extended release formulation. Gels or ointments can be applied under the eyelids or inside the eyelids or in the corners of the eyes. In some embodiments, the method can include administering the pharmaceutical composition immediately prior to sleep or immediately before the individual can keep the eye closed for a period of time. In some embodiments, the method comprises instructing the individual to keep their eyes closed or to use an eye patch (eg, bandage, tape, patch) to maintain eye closure for at least 1 minute, at least 5 minutes, at least 10 minutes, at least after administration of the pharmaceutical composition. 15 minutes, at least 20 minutes, at least 30 minutes, at least 1 hour, at least 2 hours, at least 4 hours, or at least 8 hours. The method can comprise instructing the individual to keep their eyes closed for 1 minute to 8 hours after administration of the pharmaceutical composition. The method can comprise instructing the individual to keep their eyes closed for 1 minute to 2 hours after administration of the pharmaceutical composition. The method can comprise instructing the individual to keep their eyes closed for 1 minute to 30 minutes after administration of the pharmaceutical composition. In some embodiments, the method comprises administering to the individual a pharmaceutical composition only when treating glaucoma. In some embodiments, the method comprises administering a pharmaceutical composition for the first treatment of glaucoma and the second treatment of glaucoma. The first and second time can be separated by a period of one hour to twelve hours. The first and second time can be separated by a period of one day to one week. The first and second time can be separated by a period of one week to one month. In some embodiments, the methods comprise administering to the individual a pharmaceutical composition on a daily, weekly, monthly or yearly basis. In some embodiments, the method can include an initial aggressive treatment that gradually becomes a conservative treatment. By way of non-limiting example, the method can comprise injecting a pharmaceutical composition initially, followed by conservative treatment with a pharmaceutical composition administered as an eye drop. Also, by way of non-limiting example, the method can comprise administering an injection of the pharmaceutical composition initially for about 1 week to about 20 weeks, followed by administration of the pharmaceutical combination via injection or topical administration every two months to twelve months. Things. In some embodiments, the therapeutic agent is a small molecule inhibitor and the pharmaceutical composition is formulated for oral administration.Set / system Provided herein are kits and systems comprising a Cas nuclease or a polynucleotide encoding a Cas nuclease, a first guide RNA, and a second guide RNA. The Cas nuclease and the first/second guide RNA can be any of the nucleases and RNAs disclosed herein. The first guide RNA can cleave the Cas9 of the first site 5' of the first region of the gene into the target and the second guide RNA can cleave the Cas9 of the second site 3' of the first region of the gene, thereby excising The region of the gene, hereinafter referred to as the excised region. Regions can contain exons. A region can contain a portion of an exon. The region may comprise from about 1% to about 100% of the exon. The region may comprise from about 2% to about 100% of the exon. The region may comprise from about 5% to about 100% of the exon. The region may comprise from about 5% to about 99% of the exon. The region may comprise from about 1% to about 90% of the exon. The region may comprise from about 5% to about 90% of the exon. The region may comprise from about 10% to about 100% of the exon. The region may comprise from about 10% to about 90% of the exon. The region may comprise from about 15% to about 100% of the exon. The region may comprise from about 15% to about 85% of the exon. The region may comprise from about 20% to about 80% of the exon. The region can consist essentially of exons. A region can contain more than one exon. The region may contain introns or parts thereof. The portion of the exon or intron can be at least about 1 nucleotide. The portion of the exon or intron can be at least about 5 nucleotides. The portion of the exon or intron can be at least about 10 nucleotides. Kits and systems comprising the donor polynucleotides disclosed herein are provided herein. The donor polynucleotide can comprise an end that is compatible with insertion between the first site and the second site. The donor polynucleotide can be an in vitro exon that contains a splice site at the 5' and 3' ends of the in vitro exon. The donor polynucleotide may comprise an in vitro exon comprising a splice site at the 5' end and the 3' end of the in vitro exon. The splice site allows exons to be included in the open reading frame of the gene, and thus the splice site will ensure that the in vitro exon is transcribed in the relevant cell. The donor polynucleotide can comprise a wild type sequence. The donor polynucleotide can be homologous to the excised region. The donor polynucleotide can be at least about 99% homologous to the excised region. The donor polynucleotide can be at least about 95% homologous to the excised region. The donor polynucleotide can be at least about 90% homologous to the excised region. The donor polynucleotide can be at least about 85% homologous to the excised region. The donor polynucleotide can be at least about 80% homologous to the excised region. The donor polynucleotide can be identical to the excised region, except that the donor polynucleotide comprises a wild type sequence, wherein the excised region comprises a mutation. In some cases, the donor polynucleotide is not similar to the excised region. The donor polynucleotide can be less than about 90% homologous to the excised region. The donor polynucleotide can be less than about 80% homologous to the excised region. The donor polynucleotide can be less than about 70% homologous to the excised region. The donor polynucleotide can be less than about 60% homologous to the excised region. The donor polynucleotide can be less than about 50% homologous to the excised region. The donor polynucleotide can be less than about 40% homologous to the excised region. The donor polynucleotide can be less than about 30% homologous to the excised region. The donor polynucleotide can be less than about 20% homologous to the excised region. The donor polynucleotide can be less than about 10% homologous to the excised region. The donor polynucleotide can be less than about 8% homologous to the excised region. The donor polynucleotide can be less than at least about 5% homologous to the excised region. The donor polynucleotide can be less than at least about 2% homologous to the excised region. Provided herein are kits and systems for treating an ocular condition comprising at least one guide RNA that targets a sequence selected from the group consisting of NRL and NR2E3. The first guide RNA and/or the second guide RNA can target the Cas9 protein to a sequence comprising any of SEQ ID NO.: 1-4. The first guide RNA and/or the second guide RNA can target the Cas9 protein to a sequence that is at least 90% homologous to any of SEQ ID NO.: 1-4.Certain terms All technical and scientific terms used herein have the same meaning as commonly understood by the skilled artisan of the claimed subject matter, unless otherwise defined. It is to be understood that the foregoing general description and the claims In the present application, the use of the singular includes the plural unless otherwise specified. It must be noted that the singular forms "a", "an", "the" In this application, the use of "or" means "and/or" unless stated otherwise. In addition, the use of the term "including" and other forms, such as "include", "includes" and "included", is not limiting. As used herein, ranges and quantities may be expressed as "about" a particular value or range. The appointment also includes the exact amount. For example, "about 5 μL" means "about 5 μL" and also "5 μL". In general, the term "about" includes the amount that would be expected to be within experimental error. The term "about" includes values below 10% to 10% of the value provided. For example, "about 50%" means "between 45% and 55%". And, by way of example, "about 30" means "between 27 and 33." Portions of the headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter. As used herein, the terms "individual (s)", "subject (s)", and "patient" mean any mammal. In some embodiments, the mammal is a human. In some embodiments, the mammal is non-human. The term "statistically significant" or "significant" refers to statistical significance and generally means two standard deviations (2 SD) below the normal concentration of the marker or two standard deviations (2 SD) below the marker concentration. The term refers to statistical evidence of the difference. It is defined as the probability of making a decision to reject a null hypothesis when the null hypothesis is actually true. The p value is often used to make a decision. A p value of less than 0.05 was considered to be statistically significant. As used herein, the terms "treating" and "treatment" refer to an individual administering an effective amount of a composition such that at least one symptom of the disease of the individual is reduced or the disease is ameliorated, such as a beneficial or desired clinical outcome. For the purposes of the present invention, beneficial or desired clinical outcomes include, but are not limited to, one or more symptom relief, reduced disease severity, stable disease state (ie, no deterioration), delayed or slowed progression of disease, improvement or mitigation of disease states, And mitigation (partial or complete), whether detectable or undetectable. Alternatively, if the progression of the disease slows or stops, the treatment is "effective." Those in need of treatment include those who have been diagnosed with the disease or condition, as well as other factors due to genetic sensitivities or diseases or conditions (as non-limiting examples, such as the weight, diet, and health of the individual, which may result in the individual being Those who have diabetes or a disease may develop a disease or condition. Those in need of treatment also include individuals who require medical or surgical attention, care or management. Without further elaboration, it will be apparent to those skilled in the art that the invention may The following examples are illustrative only and are not intended to limit the remainder of the invention in any way.Instance The examples and embodiments described herein are for illustrative purposes only and are not intended to limit the scope of the claims. Various modifications and variations are apparent to those skilled in the art and are included within the scope of the scope of the invention.Instance 1. Use two guides in vitro RNA It CRISPR - Cas9 Targeting To test the CRISPR-CAS9-based cell reprogramming strategy for the treatment of RP and protection of visual function, two AAV vectors were used, one for Cas9 and the other for gRNA targeting NRL or NR2E3 (seeFigure 1A ). To construct a dual gRNA expression vector, pAAV-U6 gRNA-EF1a mCherry was used. Two 20 bp gRNA sequences were separately subcultured into the vector. The CRISPR/Cas9 target sequence used for this study (underlined 20 bp target and 3 bp PAM sequence) is shown below: GAGCCTTCTGAGGGCCGATC for NRL blocking gene expressionTGG (SEQ ID NO. 1) and GTATGGTGTGGAGCCCAACGAGG ( SEQ ID NO. 2), GGCCTGGCACTGATTGCGAT for NR2E3 blocking gene expressionGGG (SEQ ID NO. 3) and AGGCCTGGCACTGATTGCGATGG (SEQ ID NO. 4). The targeting and inactivation efficiencies of simultaneously targeting two sites from two gRNAs in the same gene are assessed relative to the targeting and inactivation efficiencies of a single gRNA. The gene blocking gene expression efficiency in mouse fibroblasts was tested using a T7E1 nuclease assay that cleaves a mismatched double-stranded DNA template. Blocking gene expression efficiency of two gRNA systems has much higher editing efficiency than performance by a single guide RNA system (seeFigure 1B And map 1C ). Therefore, the dual-targeted gene knockout strategy was used for all subsequent in vivo experiments.Instance 2 . Use two guides in vivo RNA It CRISPR - Cas9 Targeting Two guide RNAs encoding AAV of Cas9 and targeting the NRL gene were delivered to WT mice via subretinal injection at P0 (day 7 postpartum). Briefly, the eyes of the anesthetized mice were dilated, and 1 μl of the AAV mixture was passed through a small incision using a glass micropipette (internal diameter 50-75 μm) and a pump microinjector (Picospritzer III; Parker Hannifin) under direct observation using a dissection microscope. Injection into the subretinal space. Successful injections were noted by creating small subretinal fluid bubbles. Any mice showing retinal damage (such as bleeding) were not included in the study. P30 mice were sacrificed for histology. The retina is segmentally frozen and stained for use as a cone marker, including an anti-mouse cone inhibitor protein (mCAR) antibody and an anti-mediated wavelength opsin (M-diapoprotein) antibody. mCherry is also imaged as a marker to label the transduction region and cells by the AAV vector. The results show that AAV8-Cas9+AAV8-NRL gRNA1-mCherry may not induce any phenotype, indicating that a single gRNA1 is not able to efficiently introduce genomic sequence rupture. According to the in vitro T7E1 analysis, it was observed that the fate conversion phenotype has two gRNAs in vivo. In the control retina, the cone nucleus resides on the top of the ONL, while the rod cell nucleus fills the rest of the ONL (seeFigure 3A ). Retinal transduction was observed to have AAV8-Cas9+AAV8-NRL gRNA2+3-mCherry, and multiple mCAR+ cells were present in the lower outer nuclear layer (ONL) (seeFigure 3B ). Additional mCAR+ cells at the lower ONL layer have normal rod extracellular fragments (seeFigure 3B ). No additional mCAR+ cells at the lower ONL layer were observed in the uninjected control retina on the left. Quantitative display of a significant increase in additional mCAR+ cells at the lower ONL layer in the AAV8-Cas9+AAV8-NRL gRNA2+3-mCherry co-injection group (Figure 3D ). Staining with M-diazein antibody also showed that these cells exhibited another cone-specific gene Opn1mw (Figure 3C ), indicating the feasibility of the cone gene expression program.Instance 3 . Coding targeting NRL or NR2E3 It Cas9 / CRISPR Systematic AAV of Retinal pigmentation ( RP ) Subretinal injection of model mice. To test the hypothesis that denaturation of rod cells into cones was sufficient to rescue retinal degeneration and restore retinal function, AAV-gRNA/Cas9 was injected into the subretinal space of RD10 mice at P0. RD10 mice are models of autosomal recessive RP with rapid rod-shaped photoreceptor degeneration in humans. RD10 mice carry spontaneous mutations in the rod-phosphodiesterase (PDE) gene, leading to rapid rod degeneration beginning at around P18. Rod cell degeneration is completed simultaneously with cell degeneration within 60 days postpartum. Since photoreceptor denaturation does not overlap with retinal development, and photoreaction can be recorded for about one month after birth, RD10 mice mimic the typical human RP more closely than other RD models, such as rd1 mutants. The analysis was performed between the 7th and 8th week after delivery. To determine the effect of this AAV-gRNA/Cas9 treatment on the physiological function of the retina, an electroretinogram (ERG) response was tested to measure rod cells (dignified, esoteric ERG but not analyzed) and cones (light) electrical activity. The ERG test was performed at week 6 (P50) after the injection. All eyes treated with AAV-gRNA/Cas9 showed significantly improved bright b-wave values indicating enhanced cone function (seeFigure 5B ). These results show that AAV-gRNA/Cas9 treats the photoreceptor of the first aid and denatures and protects the retinal visual function. DNA analysis reveals the correct blockade of gene expression in injected AAV-gRNA/Cas9 eyes (seeFigure 2C ). In addition, AAV-gRNA/Cas9 injection resulted in significant improvement in ONL thickness compared to uninjected controls (seeFigure 4C ). Unlike untreated eyes in the ONL having only 1 to 2 (or sparsely distributed) photoreceptor nuclei, there are 3 to 5 ONL layers, indicating that AAV-gRNA/Cas9 treatment prevents photoreceptor cell degeneration. Quantitative RT-PCR (qRT-PCR) for measuring the relative amount of rod and cone photoreceptor genes (seeFigure 5C ). These analyses show an increase in the performance of cone-specific genes. Notably, a significant increase in ONL thickness was observed in the treated eye. Of interest, many of the cells in the ONL do not exhibit rod or cone markers, indicating that they can have been reprogrammed to intermediate cell fate. An additional or alternative explanation for the observed first aid effect is that such intermediate cells down-regulate rod-specific genes and thus reproduce their resistance to death/denaturation caused by rod-specific gene mutations. These intermediate cells may have maintained normal tissue structural integrity and secrete trophic factors important for the survival of endogenous cone cells. Thus visual function acquisition may have been partially attributed to the first aid effect in existing cone cells, rather than reprogramming rod cells to cone fate.Instance 4 . With treatment β Thalassemia Cas Targeted homology-guided repair of targeted hemoglobin gene mutations Beta thalassemia is a blood disorder that reduces the production of hemoglobin (Hb). A mutation known as CD41/42 (-TCTT) in the Hb encoding gene is associated with this condition. Repair of this gene can have a therapeutic effect for an individual having this condition. To specifically target both homologous and heterologous CD41/42 mutations in patient-derived hematopoietic stem/progenitor cells (HSPCs), two CRISPR/Cas9 target sequences located at the mutation site were selected. The specificity and efficiency were then tested based on the single-strand annealing principle (SSA) using luciferase assay. SSA is the procedure that begins when a double-stranded bread is completed between two repeating sequences in the same direction. The luciferase expression was activated by specific cleavage by the CRISPR/Cas9 system by placing the wild type and CD41/42 mutant sequences between two partially repeating luciferase expression cassettes. Both gRNA-1 and gRNA-2 show appropriate specificity, and gRNA-2 contains higher efficiency (Figure 6A ). gRNA-2 was selected for further HSPC editing. Next, the editing efficiency of different Cas9 formats and single-stranded oligodeoxynucleotides (ssODN) was tested. HDR-mediated editing was assessed by both HDR-specific PCR and drop-wise digital PCR. Among Cas9 mRNA and two Cas9 RNPs, Cas9 RNP-2 showed the highest HDR efficiency (Figure 6B , left ). Seven asymmetric ssODNs were designed and screened using Cas9 RNP-2, in which ssODN-111/37 achieved the highest HSPC editing efficiency (Figure 6B , Left and figure 6C ).Platinum. To construct a gRNA expression vector, pX330 (Addgene, 42230) was used. Two mutation-specific target sequences were separately sub-selected into the vector as previously described. The CRISPR/Cas9 target sequence used in this study (using the 20 bp target and the 3 bp PAM sequence shown underlined) is shown below as: gRNA-1: GGCTGCTGGTGGTCTACCCTTGG (SEQ ID NO.: 6); gRNA-2: GGTAGACCACCAGCAGCCTAAGG (SEQ ID NO.: 7). Purchase plastids for in vitro transcription of Cas9.Luciferase assay. To select for mutation-specific gRNA, wild-type and CD41/42 mutant sequences were synthesized and separately cloned into pGL4-SSA. pX330-gRNA-Cas9, pGL4-SSA-HBB and pGL4-hRluc were co-transfected into 293T cells. Luciferase assays were performed using a dual luciferase reporter assay system.In vitro transcription. A template for in vitro transcription of gRNA-2 was amplified using primers: gRNA-2-F: TAATACGACTCACTATAGGGACCCAGAGGTTGAGTCCTT (SEQ ID NO.: 8) and gRNA-F: AAAAGCACCGACTCGGTGCC (SEQ ID NO.: 9); plastid MLM 3639 was linear And then used for in vitro transcription of Cas9. gRNA and Cas9 were in vitro transcribed, purified and used for HSPC electroporation.Cas9 RNP It. To use a Cas9 RNP electroporation 20 ml cell suspension (100,000 cells), a 5 ml gRNA solution was prepared by adding 1.2 mol excess gRNA to Cas9 buffer. Another 5 ml solution containing 100 pmol of Cas9 was slowly added to the gRNA solution and incubated at room temperature for > 10 minutes before mixing with the target cells.Patient derived CD34 + HSPC Isolation and cultivation. The cryopreserved motor peripheral blood PBMC from patients with CD41/42 mutations were used for HSPC isolation and culture.Patient derived CD34 + HSPC In the middle HBB edit. To edit patient-derived HSPCs, HSPCs were isolated and cultured two days prior to the use of Cas9 mRNA or Cas9 RNP electroporation as previously described. 100,000 HSPC pellets and resuspended in 20 ml Lonza P3 solution with 10 ml Cas9 RNP and 1 ml 100 M ssODN template or the same molar Cas9 mRNA, gRNA and 1 ml 100 M ssODN template mixing. This mixture is electroporated, genotyped and used for differentiation of erythroid cells.Edited cells for genotyping. HDR-specific forward primer and universal reverse primer HDR-F: CCCAGAGGTTCTTCGAATCC (SEQ ID NO.: 10) universal R: TCATTCGTCTGTTTCCCATTC (SEQ ID NO.: 11) was used. Perform HDR-specific PCR. BstBI (NEB, R0519) constrained digestion was also used to assess HDR-mediated editing: the region for CD41/42 mutation was first amplified and then digested with BstBI for mutation to HDR editing. The HDR-mediated editing of the CD41/42 mutation was also assessed by Droplet Digital PCR (ddPCR, QX200, Bayer Reid Laboratories, Inc.) HBB-F: CTGCCTATTGGTCTATTTTCC (SEQ ID NO.: 12); HBB-R :ACTCAGTGTGGCAAAGGTG (SEQ ID NO.: 13); probe donor: 6-FAM/CCCAGAGGTTCTTCGAATCCTTTG/BHQ1 (SEQ ID NO.: 14); probe mutation: HEX/CTTGGACCC AGAGGTTGAGTCC/BHQ1 (SEQ ID NO.: 15).Flow cytometry. The purity and linearity of HSPC after isolation and electroporation were analyzed for LSR cell analyzer (BD Biosciences).Target deep sequencing. Use the CRISPR design tool to search for the top 12 predicted off-target sites. The target region and possible off-target regions were amplified from HSPC DNA and used for library construction. The primers for amplifying the genomic region are listed as follows: HBB-F: TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTGCCTATTGGTCTATTTTCC (SEQ ID NO.: 16); HBB-R: GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACTCAGTGTGGCAAAGGTG (SEQ ID NO.: 17). A PCR amplicon from the first step was purified using Ampure beads (Beckman Coulter) and then subjected to a second circular PCR to attach a sample specific barcode. The purified PCR products were combined at equal ratios for sequencing with the opposite end of Illumina MiSeq. The original reads are mapped to the mouse reference genome mm9. Analyze high quality reads (score > 30) for insert and delete (insert delete) events and maximum possible estimate (MLE) calculations as previously described. The CRISPR-Cas9 targeting efficiency and activity demonstrated above was underestimated due to the inability to detect larger deletions and insertion events for next generation sequencing analysis of insertion deletions.Instance 5 . Homology independent targeting integration for in vivo retinal degeneration ( HITI ) Gene replacement therapy The Royal Society of Physicians (RCS) rats are widely used animal models of hereditary retinal degeneration called retinitis pigmentosa, a common cause of blindness in humans.Mertk A homozygous mutation in a gene (with a 1.9 kb deletion from intron 1 to exon 2) results in defective phagocytic function of the retinal pigment epithelium (RPE), accompanied by subsequent RPE and photoreceptor Transgender and blindnessFigure 7A ). Retinal degeneration in RCS rats can be assessed by electroretinogram (ERG) by morphological and visual function tests. Morphological changes in photoreceptor in vitro nuclear layer (ONL) degeneration were presented in RCS rats as early as day 16 postpartum (P16). In order to restore the eyesMertk Gene retinal function, can produceMertk A functional copy of exon 2 was inserted into the AAV vector of intron 1 via HITI (AAV-rMertk-HITI). For comparison, an HDR AAV vector is also generated to recover the deleted 1.9 bp region (AAV-rMertk-HDR) (Figure 7B ). AAV was injected into the rat eye at 3 weeks postpartum and analyzed at weeks 7-8 (Figure 7C ). From DNA analysis, detection of correct DNA gene insertion in AAV injected eyes (Figure 7D And map 8 ). HITI-AAV injection resulted in comparison with untreated and HDR-AAV camerasMertk The amount of mRNA expression is significantly increased and the ONL thickness is well maintained (Figure 7E and Figure 7F ). H&E staining confirmed the increased photoreceptor ONL in the injected eye. In contrast, untreated and HDR-AAV treated eyes have only one-two or sparsely distributed photoreceptor cell bodies in the ONL. MERTK protein expression was also observed in HITI-AAV, not in the eyes of HDR-AAV injections (Figure 7G ). To determine the therapeutic effect on the physiological function of the retina, the ERG response was tested at week 4 (P50) after injection to measure the electrical activity (10 Hz scintillation) of rod and cone function. Briefly, 1% surface tropamide was used to dilate the eyes of deeply anesthetized mice. An active lens electrode is placed on each cornea, the ground needle electrode placed subcutaneously is at the tail, and the subcutaneous reference electrode is at the head, approximately between the eyes. Light simulations were carried out in a Ganzfeld tank using a xenon lamp and the results were processed using software from Diagnosys. Bright ERG public execution: at 30 cd/m2 The cone reaction was 10 cd/m after 10 minutes of light adaptation under background light.2 34 cds/m of low background light2 The flash is triggered and the signal is averaged from 50 sweeps. All eyes treated with HITI-AAV showed a significantly improved ERG b wave response (Figure 7H ). Similarly, the 10 Hz scintillation value of the measured cone response was significantly improved and was more than 4 times higher than the unscrolled eye.Figure 7I ). These results show that AAV-HITI treatment can provide first aid and protect retinal visual function in the RCS rat model.Instance 6 . Having a coded targeting colon cancer cell Cas9 / CRISPR Systematic AAV of Intraperitoneal injection One or more viruses encoding Cas9 and two guide RNAs that target a gene carrying a mutation that drives colon cancer are injected intraperitoneally into an individual with colon cancer. The gene is APC. Alternatively, the genes are MYH1, MYH2, MYH3, MLH1, MSH2, MSH6, PMS2, EPCAM, POLE1, POLD1, NTHL1, BMPR1A, SMAD4, PTEN or STK11. A colon biopsy is obtained after four weeks and compared to or from a colon biopsy of an individual prior to treatment with the virus. The number of colon cancer cells in the biopsy samples obtained after treatment was less and the intestinal cells were more numerous than the number of biopsy samples obtained prior to treatment. It is concluded that colon cancer cells have been reprogrammed into benign small intestinal cells.Instance 7 . Having a targeted lymphoma cell Cas9 / CRISPR Systematic AAV of Intravenous injection One or more viruses encoding Cas9 and two guide RNAs that target a gene carrying a mutation that drives a B cell lymphoma are injected intravenously into an individual with a B cell lymphoma. The gene is C-MYC. Alternatively, the gene is CCND1, BCL2, BCL6, TP53, CDKN2A or CD19. A blood sample is obtained after four weeks and compared to or from a blood sample of an individual prior to treatment with the virus. The number of B cells in the blood sample obtained after treatment is less and there are more macrophages than the number of blood samples obtained before treatment. It is concluded that B cell lymphoma cells have been reprogrammed to benign macrophages.Instance 8 . Coding targeting for immunotherapy T cell It Cas9 / CRISPR Systematic AAV of Intravenous injection Two guide RNAs encoding Cas 9 and targeting PD-1 and/or PD-L1 checkpoint inhibitor encoding genes are injected intravenously into patients with metastatic melanoma. Alternatively, the patient has another cancer such as metastatic ovarian cancer, metastatic renal cell carcinoma or non-small cell lung cancer. T cells are infected with the virus, and the PD-1 encoding gene is not activated, maximizing the number and response of T cells. The patient's PD-L1 cancer cells are also infected, and PD-L1 is also not activated, and PD-L1, which reduces T cell activation and cytokine production, is banned, which usually provides immune escape to cancer cells.Instance 9 . Split Cas9 Delivery platform The CRISPR/Cas9-mediated targeting inactivation affecting NRL in the retina of in vivo rod cells to cone reprogramming is performed below. Adeno-associated virus is selected for gene transfer due to its mild immune response, long-term transgenic gene expression, and favorable safe distribution. To overcome its limited packaging capabilities, a split Cas9 system was used. The S. pyogenes Cas9 (SpCas9) protein is split into two parts using a split intein. Each SpCas9 moiety is fused to its corresponding split intein portion. After total performance, the entire SpCas9 protein was rehydrated. By using two AAV vectors in this way (seeFigure 9 The residual encapsulation capacity of each vector accommodates a wide range of genomic engineering functionality, including multiple targeting via single or dual gRNA delivery and AAV-CRISPR-Cas9-mediated targeting of in vivo genes for in situ therapy. inhibition.Instance 10 . Use one or two gRNA It Dual carrier delivery effectiveness The dual AAV vector method was evaluated for the delivery of Cas9 and gRNA targeting NRL. A construct that targets one or two gRNAs of NRL is designed to determine whether targeting two sites has a higher targeting efficiency than a single gRNA for two gRNAs of the same gene.Figure 10A The underlined PAM sequence is used to display the target sequence. Furthermore, in order to avoid repetitive sequences in AAV, thereby impairing vector stability and virus titration, each gRNA was independently driven using the human U6 promoter and the mouse U6 promoter. Additional non-homologous tracrRNA was employed. Standard T7 Endonuclease 1 was used to quantify the rate of gene editing in mouse embryonic fibroblasts (MEF). MEF was co-transfected with a split Cas9-Nrl vector and genomic DNA was used for T7E1 analysis (Figure 10B ). Arrows indicate lytic DNA produced by the T7E1 enzyme specific for heteroduplex DNA caused by genome editing. The mutation frequency is calculated from the ratio of the slit band intensity to the total band intensity. Gene targeting efficiency is improved in a single gRNA approach using a dual gRNA targeting strategy.Instance 11 . KRAB Transcriptional repressors are included in the dual vector system Transcriptional interference is achieved by the use of KRAB transcriptional repressors. Constructed on the bis-AAV vector system described in Example 10, the KRAB transcriptional repressor was incorporated into the split Cas9 system by fusing the KRAB inhibitor domain to the N-terminus of the Cas9 protein sequence (Figure 11 ). This produces a reversible method of scar-free and possibly gene therapy in which the risk of mutation induction is minimized due to the inactivation of Cas9 nuclease activity.Instance 12 . Wild type and NRL - GFP Reprogramming of rod cells to cones in mice AAV-gRNA/Cas9 or AAV-gRNA/KRAB-dCas9 targeting NRL was injected into the subretinal space of wild-type mice on day 7 postpartum (p7) and sacrificed at P30 for histology (Figure 12A ). Both the AAV2 protein shell and the tyrosine mutant Y444F were evaluated for transduction efficiency. The Y444F mutant vector shows enhanced retinal transduction at the AA2 stage and was used for subsequent studies. The retina is flash frozen, segmented, and stained for use in cone markers, including cone inhibitory protein (mCAR) and vector wavelength opsin (M-diazonin). As shown in the staining section and in the cell analysis (Figure 12B To map 12D The reprogrammed photoreceptor phenotype was found to have Cas9-gRNA. The cones were specifically expressed in ONL compared to the wild type control. Quantitative RT-PCR (qRT-PCR) was used to measure the relative amount of rod and cone genes in reprogrammed retina and controls. There is a down-regulation of the rod-specific gene, and the cone-specific gene is up-regulated (Figure 12E ). Transgenic NRL-GFP mice in which all rod-shaped photoreceptor cells are labeled are injected subretinally with AAV-NRL gRNA/Cas9 as described (Figure 12F ). Significant increase in the number of mCAR positive cells and simultaneous Nrl-GFP+ The reduction of the rod-shaped photoreceptor is visible (Figure 12G And map 12H ). Many morphological cone cells are noteworthy in the inner layer of the inner nuclear layer, reminiscent of horizontal cells (HC) in the wild-type retina (Figure 12I ). In addition, it was detected that these cells exhibited both cone-labeled m-CAR and HC-labeled cadherin (Figure 12J ), indicating that the horizontal cells also remain subject to the possibility of cone cell reprogramming. It is concluded that rod cells have been reprogrammed into cone cells.Instance 13 Targeting NRL in rd10 mice, which is a model for autosomal recessive RP. These rd10 mice carry spontaneous mutations in the rod-phosphodiesterase gene and exhibit rapid rod cell degeneration beginning around P18. At P60, the rod cells are no longer visible and the accompanying cone-shaped photoreceptors are denatured. To assess whether rod-to-cone conversion is sufficient to reverse retinal degeneration and first aid visual function, AAV-gRNA/Cas9 or AAV-gRNA/KRAB-dCas9 was injected into rd10 mice at P7. Such therapeutic effects on cone physiological functions and visual acuity were determined by measuring electroretinogram (ERG) response and optical dynamic nystagmus (OKN) to quantify cone photoreceptor activity at week 6 (P60) after injection. (Ming visual response) and vision (Figure 13A ). The OKN is measured by briefly creating four computer monitors surrounding the platform in the virtual reality chamber on which the test animals are placed. After allowing the animal to adapt to the test condition, a virtual cylinder covered with a vertical sinusoidal grating is projected onto the monitor. The virtual bar cylinder is set to the highest contrast (100%, black 0, white 255, 250 cd/m from above)2 Lighting), the number of bars starts at 4 per screening (2 black and 2 white). The test was started with a speed 13 starting clockwise for 1 minute followed by a counterclockwise rotation for 1 minute. A video camera positioned above the animal allows the observer to track and record head movements without bias. Data were quantified by cycle/degree (c/d) and expressed as mean ± S.D., using a t-test statistical analysis. A p value <0.05 was considered statistically significant. All eyes treated with AAV-gRNA/Cas9 or KRAB-dCas9 have improved cone function and visual function, as indicated by a significant improvement in brightness b-wavelength and sharpness (Figure 13B to Figure 13 C ). In addition, based on the improvement of visual function, multiple mCAR positive cells and M-fluoresesin positive cells were observed on histological analysis of AAV-NRL gRNA/Cas9 or KRAB-dCAS9 treated rd10 retina (Figure 13D to Figure 13 G ). Although the untreated eye has only a sparsely distributed photoreceptor nuclei in the ONL, the AAV-gRNA/Cas9 or AAV-gRNA/KRAB-dCas9 treated eyes have 3 to 5 ONL layers (Figure 13D ), indicating that the treatment prevents photoreceptor degeneration and retains ONL.Instance 14 Late / Production of cone cells in terminal diseases AAV-gRNA/Cas9 or AAV-gRNA/KRAB-dCas9 in P60 (Figure 14A ) Subretinal injection into rd10 mice in which no viable photoreceptors and non-recordable ERG were present. All eyes treated with AAV-gRNA/Cas9 or AAV-gRNA/KRAB-dCas9 have improved cone function and visual function, such as by b-wave value and vision (Figure 14B to Figure 14C Significant improvement and indication of simultaneous increase in multiple cone cell mCAR positive cells. Cones Opsin was observed in all eyes treated with AAV-gRNA/Cas9 or AAV-gRNA/KRAB-dCas9 in neonates and adult rd10 mice+ Colocalized calculin expression in a significant portion of cells (Figure 14D ). It is concluded that interneuron-to-cone reprogramming can be applied to late/end stage RP gene therapy, and rod and cone photoreceptors have been substantially deformed and depleted at late/end stage.Instance 15 . in 3 Within months restore Olf FvB Retinal function in retinal degeneration mice Has a B-order unit for encoding cGMP phosphodiesterase (PDE)Pde6b rd1 The homozygous mutant FVB/N mice display hereditary autosomal recessive retinal degeneration characterized by a rapid initial deletion of the rod-shaped photoreceptor at p35 and subsequent deletion of the conical photoreceptor. Such mice are in P60 (figure15A ) AAV-gRNA/KRAB-dCAS9 was injected subretinally. Histological analysis was performed as in the previous examples. AAV-gRNA/KRAB-dCAS9 treated retina shows mCAR with significantly improved brightness b-wave value and vision+ The emergence of cells, showing improved visual function (Figure 15B to Figure 15C ). It was concluded that the CRISPR/Cas-9 mediated cell reprogramming described herein is a gene and mutation independent therapy.

本發明之各種態樣在所附申請專利範圍中細緻地闡述。將參考闡述利用本發明原理之例示性實施例及其附圖的以下詳細描述來獲得對本發明之特徵及優勢的較佳理解: 1A 展示腺相關病毒(AAV)載體、編碼靶向NRL基因之兩個嚮導RNA的頂部載體、編碼靶向NR2E3基因之兩個嚮導RNA的中間載體及編碼Cas9之底部載體。 1B 展示在T7E1分析中使用兩個嚮導RNA 靶向NRL基因(自左邊起第6泳道)比使用單個嚮導RNA靶向NRL基因(自左邊起第5泳道)更有效。 1C 展示在T7E1分析中使用兩個嚮導RNA靶向NR2E3基因(自左邊起第6泳道)比使用單個嚮導RNA靶向NRL基因(自左邊起第5泳道)更有效。 2 展示投與Cas9及嚮導RNA並分析其病毒介導傳遞以治療色素性視網膜炎(RP)之代表性示意圖。 3A 展示使用產生Cas9及Nrl嚮導RNA之病毒(上圖)治療之小鼠對比使用對照病毒(下列)治療之小鼠的視網膜中之細胞核(DAPI)、視錐細胞(mCAR)及病毒表現(mCherry)之染色。 3B 展示視錐細胞(mCAR)之染色之放大視圖(相對於 3A )。 3C 展示視錐細胞(M-視紫蛋白)之染色之放大視圖(相對於 3A )。 3D 展示使用產生Cas9及Nrl嚮導RNA之病毒治療之小鼠對比使用對照病毒治療之小鼠的視網膜之下外核層(ONL)中之mCAR正細胞之量化。 圖3E 展示使用產生Cas9及Nrl嚮導RNA之病毒治療之小鼠對比使用對照病毒治療之小鼠的視網膜中之mCAR正細胞之量化,考慮包括先前存在之視錐細胞加新編程之視錐細胞的所有mCAR正視錐細胞。 4 展示野生型小鼠、使用對照病毒治療之具有RP的小鼠及使用產生Cas 9及Nrl嚮導RNA或NR2E3嚮導RNA之病毒治療之具有RP的小鼠之外核層(ONL)厚度之量化。 5A 經由視網膜電圖描記(ERG)展示使用Cas9/gRNA治療RP之小鼠(上圖)優於使用對照病毒治療之類似小鼠(下圖)之改良視覺。 5B 展示未注射小鼠、AAV-gRNA注射小鼠及AAV-Cas9加AAV-gRNA注射小鼠中之亮光ERG b波振幅之量化。 6A 展示針對CD41/42特異性gRNA選擇之螢光素酶分析。 6B 展示Cas9 mRNA及Cas9RNP介導之HBB編輯(左邊)與使用Cas9 RNP-2之不同ssODN之篩檢(右邊)的對比。 6C 展示使用ssODN(111/37)對HDR介導之編輯之液滴式數位PCR分析。 7A 展示野生型及RCS大鼠兩者中之Mertk 基因之示意性表示。五邊形,Cas9/gRNA靶向序列,五邊形內黑線,Cas9裂解位點。 7B 展示Mertk 基因校正AAV載體之示意圖。包括包圍內含子之外顯子2被Cas9/gRNA靶向序列包夾且藉由HITI在Mertk 之內含子1內成一體。AAV經血清型8封裝。黑色半箭頭指示PCR引物對以驗證正確的基因嵌入。 7C 展示用於RCS大鼠中之Mertk 基因校正之實驗設計之示意圖。AAV-Cas9及AAV-rMertk-HITI或AAV AAV-rMertk-HDR在第3週藉由視網膜下注射局部傳遞至RCS大鼠且在第7至8週經分析。 7D 藉由PCR展示AAV-Cas9及AAV-rMertk-HITI注射的眼睛中之正確基因嵌入之驗證。 7E 藉由RT-PCR展示AAV注射之眼睛中之相對Mertk mRNA表現。所有條形圖之動物之數目:RCS大鼠n=8,正常大鼠n=8,AAV-Cas9+AAV-rMertk-HITI治療組n=6且AAV-Cas9+AAV-rMertk-HDR治療n=3。 7F 展示視網膜形態,該視網膜形態展示AAV注射的眼睛中之感光體急救。相較於未經治療及經AAV-HDR治療之僅具有極薄ONL (見方括號)之RCS眼睛,觀測到感光體外核層(ONL)之增加的保存。比例尺,20微米。 7G 展示改良之視桿細胞及視錐細胞混合反應(左,波形式;右,量化條),表明AAV-Cas9及AAV-rMertk-HITI注射之眼睛中之改良的b-波值。所有條形圖之動物之數目:RCS大鼠n=8,正常大鼠n=8,AAV-Cas9+AAV-rMertk-HITI治療組n=8及AAV-Cas9+AAV-rMertk-HDR治療n=6。 7H 展示AAV-Cas9及AAV-rMertk-HITI注射之眼睛中之改良的10 Hz閃爍視錐細胞反應。所有條形圖之動物之數目:RCS大鼠n=8,正常大鼠n=8,AAV-Cas9+AAV-rMertk-HITI治療組n=8及AAV-Cas9+AAV-rMertk-HDR治療n=6。*P<0.05,斯圖登氏t檢驗。 8 展示功能性外顯子2至Mertk 基因之Cas9介導之復原之示意性表示。 9 展示用於分裂Cas9 Nrl基因組編輯之AAV載體構造之示意性表示。 10A 列出用於Nrl阻斷基因表現及抑制之靶序列。PAM序列為帶下劃線的。 10B 為小鼠胚胎纖維母細胞中之Nrl gRNA之T7E1分析。圖式按出現之次序分別揭示SEQ ID NO 1至2及18至19。 11 展示用於分裂KRAB-dCas9 Nrl基因抑制之AAV構造之示意性表示。 12A 至圖 12E 表明在經AAV-Nrl gRNA/分裂Cas9或AAV-Nrl gRNA/分裂Cas9治療之正常小鼠視網膜中使用對細胞之免疫螢光分析的由CRISPR/Cas9阻斷基因表現或抑制策略介導之野生型小鼠中的視桿細胞至視錐細胞細胞重編程。視紫質,綠色;DAPI,藍色。 12A 展示用於編輯或抑制野生型小鼠中之NRL之實驗設計。小鼠在P7處經治療且在P30處分析。 12B 展示對mCAR+ 細胞(染成紅色)之分析。 12C 展示對M-Opsin+ 細胞(染成紅色)之分析。 12D 展示總mCAR+ 及M-Opsin+ 細胞之量化。結果展示為平均值±s.e.m.(*p,0.05,斯圖登氏t檢驗)。 12E 展示對經治療野生型視網膜中之視桿細胞及視錐細胞特異性標記之RT-qPCR分析。來自各群組之RNA從整個視網膜組織中提取。結果展示為平均值±s.e.m.(*p,0.05,斯圖登氏t檢驗)。 12F 至圖 12H 表明使用AAV-Nrl gRNA/分裂Cas9或AAV-Nrl gRNA/分裂Cas9的由CRISPR/Cas9阻斷基因表現及抑制策略介導之NRL-GFP小鼠中之視桿細胞至視錐細胞細胞重編程。 12F 展示用於編輯或抑制NRL-GFP小鼠中之NRL之實驗設計。小鼠在P7處經治療且在P30處分析。 12G 展示對來自在P7處經治療且在P30處採集之小鼠的mCAR+ 細胞之免疫螢光分析。GFP,綠色;mCAR,紅色;DAPI,藍色。 12H 展示mCAR+ 細胞之量化。結果展示為平均值± s.e.m.(*p<0.05,斯圖登氏t檢驗)。 12I 展示經Nrl gRNA/分裂Cas9治療之野生型視網膜中之mCAR+ 細胞之解剖位置。箭頭指示下ONL及上INL處異位定位之mCAR+ 細胞。 12J 展示對經AAV-Nrl-gRNA/分裂Cas9或AAV-Nrl-gRNA/分裂KRAB dCas9處理之野生型小鼠中之Calbindin+ 及mCAR+ 細胞之免疫螢光分析。Calbinden,綠色;mCAAR,紅色;DAPI,藍色。箭頭指示Calbindin+ /mCAR+ 細胞。 13A 13G 表明使用AAV-Nrl gRNA/分裂Cas9或AAV-Nrl gRNA/分裂Cas9挽救視網膜變性小鼠中之視網膜功能之CRISPR/Cas9阻斷基因表現或抑制策略。 13A 展示用於NRL rd 10小鼠之編輯或表現之實驗設計。小鼠在P7處經治療且在P60處分析。視桿細胞變性在P18左右開始,幾天後視錐細胞變性。P60未偵測到視桿細胞及最小視錐細胞活性。 13B 展示注射及未注射rd10小鼠中之b-波振幅之量化(n=3,結果展示為平均值±s.e.m.,*p<0.05,成對斯圖登氏t檢驗)及注射及未注射rd10小鼠之視力(n=3,結果展示為平均值±s.e.m.,*p<0.05,斯圖登氏t檢驗)。 13C 展示代表性ERG波記錄,該等代表性ERG波記錄展示注射AAV-Nrl gRNA/分裂Cas9或AAV-Nrl gRNA/分裂Cas9之眼睛中之改良的視錐細胞反應。 13D 展示對經治療視網膜中之mCAR+ 細胞之免疫螢光分析。視紫質,綠色;mCAR,紅色;DAPI,藍色。 13E 展示經治療視網膜中之mCAR+ 細胞(平均值±s.e.m.,*p<0.05,斯圖登氏t檢驗)及ONL厚度(平均值±s.e.m.,*p<0.05)之量化。 13F 展示對經治療視網膜中之M-Opsin+ 細胞之免疫螢光分析。視紫質,綠色;M-視紫蛋白,紅色;DAPI,藍色。 13G 展示經治療視網膜中之M-Opsin+ 細胞之量化。結果展示為平均值±s.e.m.(*p<0.05,斯圖登氏t檢驗)。 圖14A 至圖14C 展現使用AAV-Nrl gRNA/分裂Cas9或AAV-Nrl gRNA/分裂Cas9重啟3個月大視網膜變性小鼠中之視網膜功能之CRISPR/CAS9阻斷基因表現及抑制策略。小鼠在P90處經治療且在P130處分析。在P90處在Rd10小鼠中未偵測到視桿細胞或視錐細胞活性。圖14A 展示用於編輯或抑制Rd10小鼠中之NRL之實驗設計。 14B 展示對經治療視網膜中之mCAR+ 細胞之免疫螢光分析。視紫質,綠色;mCAR,紅色;DAPI,藍色。 14C 展示經rd10治療視網膜中之mCAR+ 細胞(*p<0.05,斯圖登氏t檢驗)、ONL厚度(*p<0.05)、b-波振幅(n=3,*p<0.05,成對斯圖登氏t檢驗)及視力(n=3,*p<0.05,斯圖登氏t檢驗)之量化。 14D 展示對經AAV-Nrl gRNA/分裂Cas9或AAV-Nrl gRNA/分裂Cas9治療之經治療成蟲視網膜變性小鼠中之Calbindin+ 及Opsin+ 細胞之免疫螢光分析,表明視網膜變性小鼠中之水平細胞至視錐細胞細胞重編程。Rd10小鼠在3個月時經治療且在6週後採集(P130)。鈣合蛋白,紅色;視紫蛋白,綠色;DAPI,藍色。箭頭指示Calbindin+ /Opsin+ 細胞。 15A 15C 展現使用AAV-Nrl gRNA/分裂Cas9或AAV-Nrl gRNA/分裂Cas9重啟3個月大FvB視網膜變性小鼠中之視網膜功能之CRISPR/CAS9阻斷基因表現及抑制策略。小鼠在P90處經治療且在P130處分析。 15A 展示用於編輯或抑制FvB小鼠中之NRL之實驗設計。 15B 展示對經治療視網膜中之mCAR+ 細胞之免疫螢光分析。視紫質,綠色;mCAR,紅色;DAPI,藍色。 15C 展示經rd10處理視網膜中之mCAR+ 細胞(*p<0.05,斯圖登氏t檢驗)、ONL厚度(*p<0.05)、b-波振幅(n=3,*p<0.05,成對斯圖登氏t檢驗)及視力(n=3,*p<0.05,斯圖登氏t檢驗)之量化。所有結果展示為平均值±s.e.m。Various aspects of the invention are set forth in detail in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by the following detailed description of exemplary embodiments of the invention and the accompanying drawings . FIG. 1A shows an adeno-associated virus (AAV) vector, encoding a targeted NRL gene. The top vector of the two guide RNAs, the intermediate vector encoding the two guide RNAs targeting the NR2E3 gene, and the bottom vector encoding Cas9. Figure IB shows that targeting the NRL gene (lane 6 from the left) using two guide RNAs in the T7E1 assay is more efficient than targeting the NRL gene with a single guide RNA (lane 5 from the left). Figure 1C shows that targeting the NR2E3 gene (lane 6 from the left) using two guide RNAs in the T7E1 assay is more efficient than targeting the NRL gene with a single guide RNA (lane 5 from the left). Figure 2 shows a representative schematic representation of administration of Cas9 and guide RNA and analysis of their viral-mediated delivery to treat retinitis pigmentosa (RP). Figure 3A shows the nuclei (DAPI), cones (mCAR) and viral manifestations in the retina of mice treated with a virus that produces Cas9 and Nrl guide RNA (top panel) versus mice treated with a control virus (below) ( mCherry) staining. Figure 3B shows an enlarged view of the staining of cone cells (mCAR) (relative to Figure 3A ). Figure 3C shows an enlarged view of the staining of cone cells (M-Rayoptin) (relative to Figure 3A ). Figure 3D shows quantification of mCAR positive cells in the subretinal outer nuclear layer (ONL) of mice treated with virus producing Cas9 and Nrl guide RNA compared to mice treated with control virus. Figure 3E shows quantification of mCAR positive cells in the retina of mice treated with virus producing Cas9 and Nrl guide RNA compared to mice treated with control virus, considering the inclusion of pre-existing cones plus newly programmed cones All mCAR front cone cells. Figure 4 shows quantification of extranuclear layer (ONL) thickness in wild-type mice, RP-treated mice treated with control virus, and RP-treated mice treated with virus producing Cas 9 and Nrl guide RNA or NR2E3 guide RNA. . Figure 5A shows, via electroretinogram (ERG), improved Vision in mice treated with Cas9/gRNA for RP (top panel) over similar mice treated with control virus (bottom panel). Figure 5B shows quantification of the brightness ERG b wave amplitude in uninjected mice, AAV-gRNA injected mice, and AAV-Cas9 plus AAV-gRNA injected mice. Figure 6A shows luciferase assays for CD41/42 specific gRNA selection. Figure 6B shows a comparison of Cas9 mRNA and Cas9 RNP mediated HBB editing (left) versus screening of ssODN using Cas9 RNP-2 (right). Figure 6C shows a drop-wise digital PCR analysis of HDR-mediated editing using ssODN (111/37). Figure 7A shows a schematic representation of the Mertk gene in both wild-type and RCS rats. Pentagon, Cas9/gRNA targeting sequence, black line inside the pentagon, Cas9 cleavage site. Figure 7B shows a schematic of the Mertk gene-corrected AAV vector. Exon 2, including the intron, is sandwiched by the Cas9/gRNA targeting sequence and integrated into the intron 1 of Mertk by HITI. AAV is encapsulated in serotype 8. The black half arrow indicates the PCR primer pair to verify correct gene insertion. Figure 7C shows a schematic of an experimental design for Mertk gene correction in RCS rats. AAV-Cas9 and AAV-rMertk-HITI or AAV AAV-rMertk-HDR were locally delivered to RCS rats by subretinal injection at week 3 and analyzed at 7 to 8 weeks. Figure 7D demonstrates the correct gene insertion in the eyes of AAV-Cas9 and AAV-rMertk-HITI injections by PCR. Figure 7E shows the relative Merkt mRNA expression in the eyes of AAV injection by RT-PCR. Number of animals in all bar graphs: n=8 for RCS rats, n=8 for normal rats, n=6 for AAV-Cas9+AAV-rMertk-HITI treatment group and AAV-Cas9+AAV-rMertk-HDR treatment n= 3. Figure 7F shows the morphology of the retina showing the photoreceptor first aid in the eyes of AAV injection. Increased preservation of the photoreceptor outer nuclear layer (ONL) was observed compared to untreated and AAV-HDR treated RCS eyes with only very thin ONL (see square brackets). Scale bar, 20 microns. Figure 7G shows a modified rod cell and cone mixing reaction (left, wave form; right, quantified bars) showing improved b-wave values in the eyes of AAV-Cas9 and AAV-rMertk-HITI injections. Number of animals in all bar graphs: RCS rat n=8, normal rat n=8, AAV-Cas9+AAV-rMertk-HITI treatment group n=8 and AAV-Cas9+AAV-rMertk-HDR treatment n= 6. Figure 7H shows a modified 10 Hz scintillation cone reaction in the eyes of AAV-Cas9 and AAV-rMertk-HITI injections. Number of animals in all bar graphs: RCS rat n=8, normal rat n=8, AAV-Cas9+AAV-rMertk-HITI treatment group n=8 and AAV-Cas9+AAV-rMertk-HDR treatment n= 6. *P < 0.05, Stutton's t test. Figure 8 shows a schematic representation of Cas9-mediated restoration of functional exon 2 to Mertk genes. Figure 9 shows a schematic representation of an AAV vector construct for cleavage of the Cas9 Nrl genome. Figure 10A lists target sequences for Nrl blocking gene expression and inhibition. The PAM sequence is underlined. Figure 10B is a T7E1 analysis of Nrl gRNA in mouse embryonic fibroblasts. The schema reveals SEQ ID NOS 1 through 2 and 18 through 19, respectively, in order of appearance. Figure 11 shows a schematic representation of the AAV construct used to cleave the KRAB-dCas9 Nrl gene inhibition. Figure 12A to Figure 12E show CRISPR/Cas9 blocking gene expression or inhibition strategies using immunofluorescence assays for cells in normal mouse retinas treated with AAV-Nrl gRNA/dis division Cas9 or AAV-Nrl gRNA/dis division Cas9 Alignment of rod-to-cone cell reprogramming in wild-type mice. Rhodopsin, green; DAPI, blue. Figure 12A shows an experimental design for editing or inhibiting NRL in wild type mice. Mice were treated at P7 and analyzed at P30. Figure 12B shows an analysis of mCAR + cells (stained in red). Figure 12C shows an analysis of M-Opsin + cells (stained in red). Figure 12D shows quantification of total mCAR + and M-Opsin + cells. Results are shown as mean ± sem (*p, 0.05, Studen's t-test). Figure 12E shows RT-qPCR analysis of rod- and cone-specific markers in treated wild-type retina. RNA from each group was extracted from the entire retinal tissue. Results are shown as mean ± sem (*p, 0.05, Studen's t-test). Figure 12F to Figure 12H show rod-to-cone in NRL-GFP mice mediated by CRISPR/Cas9 blocking gene expression and inhibition strategy using AAV-Nrl gRNA/split Cas9 or AAV-Nrl gRNA/split Cas9 Cellular cell reprogramming. Figure 12F shows an experimental design for editing or inhibiting NRL in NRL-GFP mice. Mice were treated at P7 and analyzed at P30. Figure 12G shows immunofluorescence analysis of mCAR + cells from mice treated at P7 and collected at P30. GFP, green; mCAR, red; DAPI, blue. Figure 12H shows quantification of mCAR + cells. Results are shown as mean ± sem (*p < 0.05, Studen's t-test). Figure 12I shows the anatomical location of mCAR + cells in wild-type retina treated with Nrl gRNA/disrupted Cas9. Arrows indicate mCAR + cells that were ectopically located at the ONL and upper INL. Figure 12J shows immunofluorescence analysis of Calbindin + and mCAR + cells in wild-type mice treated with AAV-Nrl-gRNA/dividing Cas9 or AAV-Nrl-gRNA/dividing KRAB dCas9. Calbinden, green; mCAAR, red; DAPI, blue. The arrow indicates Calbindin + /mCAR + cells. 13A to 13G show the use of AAV-Nrl gRNA / or split Cas9 AAV-Nrl gRNA / split Cas9 saving of retinal degeneration mouse retinal function of CRISPR / Cas9 block gene expression or suppression strategy. Figure 13A shows an experimental design for editing or performance of NRL rd 10 mice. Mice were treated at P7 and analyzed at P60. Degeneration of rod cells begins around P18, and cones degenerate after a few days. P60 did not detect rod cell and minimal cone activity. Figure 13B shows quantification of b-wave amplitude in injected and uninjected rd10 mice (n=3, results are shown as mean ± sem, *p < 0.05, paired Studen's t-test) and injected and not injected Vision of rd10 mice (n=3, results are shown as mean ± sem, *p < 0.05, Studen's t-test). Figure 13C shows representative ERG wave records showing improved cone response in the eyes injected with AAV-Nrl gRNA/split Cas9 or AAV-Nrl gRNA/split Cas9. Figure 13D shows immunofluorescence analysis of mCAR + cells in treated retina. Rhodopsin, green; mCAR, red; DAPI, blue. Figure 13E shows quantification of mCAR + cells (mean ± sem, *p < 0.05, Studen's t-test) and ONL thickness (mean ± sem, * p < 0.05) in treated retina. Figure 13F shows immunofluorescence analysis of M-Opsin + cells in treated retina. Rhodopsin, green; M-diaphorin, red; DAPI, blue. Figure 13G shows quantification of M-Opsin + cells in treated retina. Results are shown as mean ± sem (*p < 0.05, Studen's t-test). Figures 14A- 14C show CRISPR/CAS9 blocking gene expression and inhibition strategies for reactivation of retinal function in 3 month old retinal degeneration mice using AAV-Nrl gRNA/dis division Cas9 or AAV-Nrl gRNA/dis division Cas9. Mice were treated at P90 and analyzed at P130. No rod or cone activity was detected in the Rh10 mice at P90. Figure 14A shows an experimental design for editing or inhibiting NRL in Rd10 mice. Figure 14B shows immunofluorescence analysis of mCAR + cells in treated retina. Rhodopsin, green; mCAR, red; DAPI, blue. Figure 14C shows mCAR + cells in the retina treated with rd10 (*p<0.05, Studen's t-test), ONL thickness (*p<0.05), b-wave amplitude (n=3, *p<0.05, Quantification of Stutton's t test) and visual acuity (n=3, *p<0.05, Stewart's t test). Figure 14D shows immunofluorescence analysis of Calbindin + and Opsin + cells in treated adult retinal degeneration mice treated with AAV-Nrl gRNA/dis division Cas9 or AAV-Nrl gRNA/dis division Cas9, indicating that in retinal degeneration mice Horizontal cell to cone cell reprogramming. Rd10 mice were treated at 3 months and collected after 6 weeks (P130). Calpain, red; opsin, green; DAPI, blue. The arrow indicates Calbindin + /Opsin + cells. 15A to 15C show the use of AAV-Nrl gRNA / or split Cas9 AAV-Nrl gRNA / restart split Cas9 retinal functions at 3 months of FvB mouse retinal degeneration CRISPR / CAS9 block gene expression and suppression strategies. Mice were treated at P90 and analyzed at P130. Figure 15A shows an experimental design for editing or inhibiting NRL in FvB mice. Figure 15B shows immunofluorescence analysis of mCAR + cells in treated retina. Rhodopsin, green; mCAR, red; DAPI, blue. Figure 15C shows mCAR + cells in the retina treated with rd10 (*p<0.05, Studen's t-test), ONL thickness (*p<0.05), b-wave amplitude (n=3, *p<0.05, Quantification of Stutton's t test) and visual acuity (n=3, *p<0.05, Stewart's t test). All results are shown as mean ± sem.

Claims (115)

一種將細胞自第一細胞類型重編程為第二細胞類型之方法,其包含使該細胞與以下接觸: a) 與基因之靶位點雜交之第一嚮導RNA,其中該基因編碼有助於該細胞之細胞類型特異性功能之蛋白質;及 b) 使該基因之股在該靶位點處裂解之Cas核酸酶, 其中使該股裂解修飾該基因之表現使得該細胞可不再執行該細胞類型特異性功能,藉此將該細胞重編程為該第二細胞類型。A method of reprogramming a cell from a first cell type to a second cell type comprising contacting the cell with: a) a first guide RNA that hybridizes to a target site of the gene, wherein the gene encoding facilitates the a cell type-specific functional protein of the cell; and b) a Cas nuclease that cleaves the strand of the gene at the target site, wherein cleavage of the strand modifies the gene such that the cell can no longer perform the cell type specific Sexual function whereby the cell is reprogrammed to the second cell type. 如請求項1之方法,其中該基因包含突變。The method of claim 1, wherein the gene comprises a mutation. 如請求項2之方法,其中該第一細胞類型對該突變敏感,且其中該第二細胞類型為抗該突變之細胞類型。The method of claim 2, wherein the first cell type is sensitive to the mutation, and wherein the second cell type is a cell type that is resistant to the mutation. 如請求項2之方法,其中該突變僅在該第一細胞類型中產生不利影響。The method of claim 2, wherein the mutation only has an adverse effect in the first cell type. 如請求項4之方法,其中該不利影響係選自衰老、細胞凋亡、分化缺乏及異常細胞增殖。The method of claim 4, wherein the adverse effect is selected from the group consisting of aging, apoptosis, lack of differentiation, and abnormal cell proliferation. 如請求項1至5中任一項之方法,其中該基因編碼轉錄因子。The method of any one of claims 1 to 5, wherein the gene encodes a transcription factor. 如請求項1至5中任一項之方法,其中該第一細胞類型及該第二細胞類型為密切相關之終末分化成熟細胞類型。The method of any one of claims 1 to 5, wherein the first cell type and the second cell type are closely related terminally differentiated mature cell types. 如請求項1至5中任一項之方法,其中該重編程在活體內發生。The method of any one of claims 1 to 5, wherein the reprogramming occurs in vivo. 如請求項1至5中任一項之方法,其中該重編程在活體外或離體發生。The method of any one of claims 1 to 5, wherein the reprogramming occurs in vitro or ex vivo. 如請求項1至5中任一項之方法,其中該細胞為胰臟、心臟、大腦、眼睛、腸道、結腸、肌肉、神經系統、前列腺或乳房之細胞。The method of any one of claims 1 to 5, wherein the cell is a cell of the pancreas, heart, brain, eye, intestine, colon, muscle, nervous system, prostate or breast. 如請求項1至5中任一項之方法,其中該細胞為有絲分裂後細胞。The method of any one of claims 1 to 5, wherein the cell is a mitotic cell. 如請求項1至5中任一項之方法,其中該細胞為眼睛中之細胞。The method of any one of claims 1 to 5, wherein the cell is a cell in the eye. 如請求項12之方法,其中該細胞為視網膜細胞。The method of claim 12, wherein the cell is a retinal cell. 如請求項13之方法,其中該視網膜細胞為視桿細胞。The method of claim 13, wherein the retinal cells are rod cells. 如請求項14之方法,其中該細胞類型特異性功能為夜間視覺或色彩視覺。The method of claim 14, wherein the cell type-specific function is night vision or color vision. 如請求項12之方法,其中該基因係選自NRL、NR2E3、GNAT1、ROR β、OTX2、CRX及THRB。The method of claim 12, wherein the gene is selected from the group consisting of NRL, NR2E3, GNAT1, ROR beta, OTX2, CRX, and THRB. 如請求項12之方法,其中該基因係選自NRL及NR2E3。The method of claim 12, wherein the gene is selected from the group consisting of NRL and NR2E3. 如請求項12之方法,其中該第一細胞類型為視桿細胞。The method of claim 12, wherein the first cell type is a rod cell. 如請求項12之方法,其中該第一細胞類型為中間神經元。The method of claim 12, wherein the first cell type is an interneuron. 如請求項12之方法,其中該第二細胞類型為視錐細胞。The method of claim 12, wherein the second cell type is a cone cell. 如請求項12之方法,其中該第二細胞類型為中間細胞。The method of claim 12, wherein the second cell type is an intermediate cell. 如請求項12之方法,其中該第一細胞類型為視桿細胞,且該第二細胞類型為視錐細胞。The method of claim 12, wherein the first cell type is a rod cell and the second cell type is a cone cell. 如請求項22之方法,其中該視錐細胞具有個體之光視覺。The method of claim 22, wherein the cone has an individual's light vision. 如請求項12之方法,其中該第一細胞類型為視桿細胞,且該第二細胞類型為多能細胞。The method of claim 12, wherein the first cell type is a rod cell and the second cell type is a pluripotent cell. 如請求項12之方法,其中該第一細胞類型為視桿細胞,且該第二細胞類型為多能視網膜祖細胞。The method of claim 12, wherein the first cell type is a rod cell and the second cell type is a pluripotent retinal progenitor cell. 如請求項1之方法,其中該細胞為癌細胞。The method of claim 1, wherein the cell is a cancer cell. 如請求項26之方法,其中該功能係選自異常細胞增殖、癌轉移及腫瘤血管形成。The method of claim 26, wherein the function is selected from the group consisting of abnormal cell proliferation, cancer metastasis, and tumor angiogenesis. 如請求項26之方法,其中該第一細胞類型為結腸癌細胞,且該第二細胞類型為良性腸細胞或結腸細胞。The method of claim 26, wherein the first cell type is colon cancer cells and the second cell type is benign intestinal cells or colon cells. 如請求項28之方法,其中該基因係選自APC、MYH1、MYH2、MYH3、MLH1、MSH2、MSH6、PMS2、EPCAM、POLE1、POLD1、NTHL1、BMPR1A、SMAD4、PTEN及STK11。The method of claim 28, wherein the gene is selected from the group consisting of APC, MYH1, MYH2, MYH3, MLH1, MSH2, MSH6, PMS2, EPCAM, POLE1, POLD1, NTHL1, BMPR1A, SMAD4, PTEN, and STK11. 如請求項26之方法,其中該第一細胞類型為惡性B細胞,且該第二細胞類型為良性巨噬細胞。The method of claim 26, wherein the first cell type is a malignant B cell and the second cell type is a benign macrophage. 如請求項30之方法,其中該基因係選自C-MYC、CCND1、BCL2、BCL6、TP53、CDKN2A及CD19。The method of claim 30, wherein the gene is selected from the group consisting of C-MYC, CCND1, BCL2, BCL6, TP53, CDKN2A, and CD19. 如請求項1之方法,其中該細胞為神經元。The method of claim 1, wherein the cell is a neuron. 如請求項32之方法,其中該第一細胞類型產生選自澱粉狀蛋白β、tau蛋白及其組合之至少一種蛋白質,且該第二細胞類型不產生該蛋白質或產生比該第一細胞類型更少的該蛋白質。The method of claim 32, wherein the first cell type produces at least one protein selected from the group consisting of amyloid beta, tau protein, and combinations thereof, and the second cell type does not produce the protein or produces more than the first cell type Less of this protein. 如請求項33之方法,其中該第一細胞類型為神經元,且該第二細胞類型為膠細胞。The method of claim 33, wherein the first cell type is a neuron and the second cell type is a gel cell. 如請求項33之方法,其中該基因係選自APP及MAPT。The method of claim 33, wherein the gene is selected from the group consisting of APP and MAPT. 如請求項32之方法,其中該第一細胞類型產生α突觸核蛋白。The method of claim 32, wherein the first cell type produces alpha synuclein. 如請求項36之方法,其中該第一細胞類型為膠細胞,且該第二細胞類型為產生多巴胺之神經元。The method of claim 36, wherein the first cell type is a gel cell and the second cell type is a dopamine-producing neuron. 如請求項36之方法,其中該基因係選自SNCA、LRRK2、PARK2、PARK7及PINK1。The method of claim 36, wherein the gene is selected from the group consisting of SNCA, LRRK2, PARK2, PARK7, and PINK1. 如請求項36之方法,其中該基因為α突觸核蛋白(SNCA)。The method of claim 36, wherein the gene is alpha synuclein (SNCA). 如請求項36之方法,其中該第二細胞類型係選自多巴胺激導性神經元及多巴胺激導性祖細胞。The method of claim 36, wherein the second cell type is selected from the group consisting of dopamine-exciting neurons and dopamine-exciting progenitor cells. 如請求項35之方法,其中該第一細胞類型為非多巴胺激導性神經元或膠細胞。The method of claim 35, wherein the first cell type is a non-dopamine-exciting neuron or a gel cell. 一種使用重編程細胞治療有需要個體之病況之方法,其中該重編程細胞藉由請求項1之方法產生。A method of treating a condition in an individual in need of a reprogrammed cell, wherein the reprogrammed cell is produced by the method of claim 1. 如請求項42之方法,其中該重編程細胞對於個體而言係自體的。The method of claim 42, wherein the reprogrammed cell is autologous to the individual. 如請求項42之方法,其中該病況包含視網膜變性。The method of claim 42, wherein the condition comprises retinal degeneration. 如請求項44之方法,其中該病況係選自黃斑變性、色素性視網膜炎及青光眼。The method of claim 44, wherein the condition is selected from the group consisting of macular degeneration, retinitis pigmentosa, and glaucoma. 如請求項44之方法,其中該病況為色素性視網膜炎。The method of claim 44, wherein the condition is retinitis pigmentosa. 如請求項42之方法,其中該病況為癌症。The method of claim 42, wherein the condition is cancer. 如請求項47之方法,其中該癌症為結腸癌或乳癌。The method of claim 47, wherein the cancer is colon cancer or breast cancer. 如請求項42之方法,其中該病況為神經退化性病況。The method of claim 42, wherein the condition is a neurodegenerative condition. 如請求項49之方法,其中該病況係選自帕金森氏症(Parkinson's Disease)及阿茲海默氏症(Alzheimer's Disease)。The method of claim 49, wherein the condition is selected from Parkinson's Disease and Alzheimer's Disease. 一種治療病況之方法,其包含向有需要之個體投與: a) 與第一類型之細胞中之基因之靶位點雜交的第一嚮導RNA,其中該基因編碼有助於該第一類型之細胞之第一功能的蛋白質;及 b) 使該基因之股在該靶位點處裂解之Cas核酸酶, 其中裂解該鏈修飾該基因之表現使得該第一類型之細胞自第一類型之細胞轉換為第二類型之細胞,其中該第二類型之細胞之所得存在或增多改良該病況。A method of treating a condition comprising administering to an individual in need thereof: a) a first guide RNA that hybridizes to a target site of a gene in a cell of a first type, wherein the gene encoding contributes to the first type a first functional protein of the cell; and b) a Cas nuclease that cleaves the strand of the gene at the target site, wherein cleavage of the strand modifies the gene such that the first type of cell is from the first type of cell Conversion to a second type of cell wherein the resulting presence or increase of cells of the second type improves the condition. 如請求項51之方法,其中修飾該基因之表現包含將該第一類型之細胞中之該基因的表現降低至少約90%。The method of claim 51, wherein modifying the gene comprises reducing the performance of the gene in the first type of cell by at least about 90%. 如請求項51之方法,其中修飾該基因之表現包含編輯該基因,其中該編輯導致不自該基因產生蛋白質或自該基因產生非功能性蛋白質。The method of claim 51, wherein modifying the gene comprises editing the gene, wherein the editing results in no protein being produced from the gene or a non-functional protein being produced from the gene. 如請求項51至53中任一項之方法,其中該病況為眼部病況,且該第一類型之細胞為第一類型之眼細胞,且該第二類型之細胞為第二類型之眼細胞。The method of any one of claims 51 to 53, wherein the condition is an ocular condition, and the first type of cells are the first type of ocular cells, and the second type of cells are the second type of ocular cells . 如請求項54之方法,其中該功能在該第一類型之眼細胞中而非該第二類型之眼細胞中執行。The method of claim 54, wherein the function is performed in the first type of eye cells rather than the second type of eye cells. 如請求項54之方法,其中該第二類型之眼細胞執行第二功能,其中該第二功能並不由該第一類型之眼細胞執行。The method of claim 54, wherein the second type of ocular cells perform a second function, wherein the second function is not performed by the first type of ocular cells. 如請求項54之方法,其中該第一類型之眼細胞為視桿細胞,且該第二類型之眼細胞為視錐細胞。The method of claim 54, wherein the first type of ocular cells are rod cells, and the second type of ocular cells are cone cells. 如請求項54之方法,其中該眼部病況為視網膜變性、色素性視網膜炎或黃斑變性。The method of claim 54, wherein the ocular condition is retinal degeneration, retinitis pigmentosa, or macular degeneration. 如請求項57之方法,其中該基因係選自NR2E3及NRL。The method of claim 57, wherein the gene is selected from the group consisting of NR2E3 and NRL. 如請求項59之方法,其包含將視桿細胞重編程為視錐細胞或將視桿細胞重編程為多能視網膜祖細胞。The method of claim 59, which comprises reprogramming rod cells into cone cells or reprogramming rod cells into pluripotent retinal progenitor cells. 如請求項54之方法,其中該眼部病況為青光眼,且該第二類型之眼細胞為視網膜神經節細胞。The method of claim 54, wherein the ocular condition is glaucoma and the second type of ocular cells are retinal ganglion cells. 如請求項61之方法,其中該第一細胞類型為穆勒(muller)膠細胞。The method of claim 61, wherein the first cell type is a muller gel cell. 如請求項62之方法,其中該基因為ATOH7、POU4F基因或Islet1。The method of claim 62, wherein the gene is ATOH7, POU4F gene or Islet1. 如請求項58之方法,其中該基因係選自CDKN2A及Six6。The method of claim 58, wherein the gene is selected from the group consisting of CDKN2A and Six6. 如請求項51之方法,其包含向選自載體、脂質體及核糖核蛋白之運載工具投與編碼該Cas核酸酶及該嚮導RNA之至少一種聚核苷酸。The method of claim 51, which comprises administering to the vehicle selected from the group consisting of a vector, a liposome, and a ribonucleoprotein, at least one polynucleotide encoding the Cas nuclease and the guide RNA. 如請求項51之方法,其包含使該細胞與第二嚮導RNA接觸。The method of claim 51, comprising contacting the cell with a second guide RNA. 如請求項51之方法,其包含投與第二嚮導RNA。The method of claim 51, comprising administering a second guide RNA. 如請求項66或67之方法,其包含在該基因中引入新穎剪接位點。The method of claim 66 or 67, which comprises introducing a novel splice site in the gene. 如68之方法,其中該新穎剪接位點導致將外顯子或其部分自該基因之編碼序列移除。The method of 68, wherein the novel splice site results in the removal of the exon or portion thereof from the coding sequence of the gene. 如請求項69之方法,其中該外顯子包含該基因之突變。The method of claim 69, wherein the exon comprises a mutation in the gene. 如請求項70之方法,其中該突變僅在該第一細胞類型中產生不利影響。The method of claim 70, wherein the mutation only adversely affects the first cell type. 如請求項71之方法,其中該不利影響係選自衰老、細胞凋亡、分化缺乏及異常細胞增殖。The method of claim 71, wherein the adverse effect is selected from the group consisting of aging, apoptosis, lack of differentiation, and abnormal cell proliferation. 如請求項68之方法,其中該基因編碼轉錄因子。The method of claim 68, wherein the gene encodes a transcription factor. 如請求項68之方法,其中該第一類型之細胞對該突變敏感,且該第二類型之細胞抗該突變。The method of claim 68, wherein the cell of the first type is sensitive to the mutation and the cell of the second type is resistant to the mutation. 如請求項69之方法,其包含將新穎外顯子引入至該基因。The method of claim 69, which comprises introducing a novel exon to the gene. 如請求項51至75中任一項之方法,其包含將至少一個核苷酸引入至該基因。The method of any one of claims 51 to 75, which comprises introducing at least one nucleotide to the gene. 如請求項76之方法,其包含將新穎外顯子引入至該基因。The method of claim 76, which comprises introducing a novel exon to the gene. 一種包含Cas核酸酶或編碼該Cas核酸酶之聚核苷酸、第一嚮導RNA及第二嚮導RNA之系統,其中該第一嚮導RNA以基因之至少第一區域之第一位點5'的Cas9裂解為目標,且該第二嚮導RNA以該基因之該第一區域之第二位點3'的Cas9裂解為目標,藉此切除該基因之該區域。A system comprising a Cas nuclease or a polynucleotide encoding the Cas nuclease, a first guide RNA, and a second guide RNA, wherein the first guide RNA is 5' of the first site of at least a first region of the gene Cas9 cleavage is targeted, and the second guide RNA targets the Cas9 cleavage of the second site 3' of the first region of the gene, thereby excising the region of the gene. 如請求項78之系統,其中該第一嚮導RNA以至少第一外顯子之第一位點5'的Cas9裂解為目標,且該第二嚮導RNA以至少該第一外顯子之第二位點3'的Cas9裂解為目標,藉此切除該至少第一外顯子。The system of claim 78, wherein the first guide RNA targets Cas9 cleavage of at least a first site 5' of the first exon, and the second guide RNA is at least a second of the first exon The Cas9 at position 3' is cleaved to target, thereby excising the at least first exon. 如請求項79之系統,其包含供體聚核苷酸,其中該供體聚核苷酸可插入該第一位點與該第二位點之間。The system of claim 79, comprising a donor polynucleotide, wherein the donor polynucleotide is insertable between the first site and the second site. 如請求項80之系統,其中該供體聚核苷酸為供體外顯子,其在該供體外顯子之5'端及3'端處包含剪接位點。The system of claim 80, wherein the donor polynucleotide is an in vitro exon, comprising a splice site at the 5' and 3' ends of the donor exon. 如請求項80之系統,其中該供體聚核苷酸包含野生型序列。The system of claim 80, wherein the donor polynucleotide comprises a wild type sequence. 如請求項78之系統,其中該基因係選自NRL及NR2E3。The system of claim 78, wherein the gene is selected from the group consisting of NRL and NR2E3. 如請求項83之系統,其中該第一嚮導RNA及/或該第二嚮導RNA將該Cas9蛋白質靶向至包含SEQ ID NO.:1-4中之任一者的序列。The system of claim 83, wherein the first guide RNA and/or the second guide RNA targets the Cas9 protein to a sequence comprising any one of SEQ ID NO.: 1-4. 一種包含Cas核酸酶或編碼該Cas核酸酶之聚核苷酸、第一嚮導RNA及第二嚮導RNA之套組,其中該第一嚮導RNA以基因之至少第一區域之第一位點5'的Cas9裂解為目標,且該第二嚮導RNA以該基因之該第一區域之第二位點3'的Cas9裂解為目標,藉此切除該基因之該區域。A kit comprising a Cas nuclease or a polynucleotide encoding the Cas nuclease, a first guide RNA, and a second guide RNA, wherein the first guide RNA is at a first position 5' of at least a first region of the gene The Cas9 cleavage is targeted, and the second guide RNA targets the Cas9 cleavage of the second site 3' of the first region of the gene, thereby excising the region of the gene. 如請求項85之套組,其中該第一嚮導RNA以至少第一外顯子之第一位點5'的Cas9裂解為目標,且該第二嚮導RNA以至少該第一外顯子之第二位點3'的Cas9裂解為目標,藉此切除該至少第一外顯子。The set of claim 85, wherein the first guide RNA targets Cas9 cleavage of at least a first site 5' of the first exon, and the second guide RNA is at least the first exon The cleavage of Cas9 at the two-site 3' is targeted, thereby excising the at least first exon. 如請求項86之套組,其包含供體聚核苷酸,其中該供體核酸可插入該第一位點與該第二位點之間。A kit of claim 86, comprising a donor polynucleotide, wherein the donor nucleic acid is insertable between the first site and the second site. 如請求項87之套組,其中該供體聚核苷酸為供體外顯子,其在該供體外顯子之5'端及3'端處包含剪接位點。A kit of claim 87, wherein the donor polynucleotide is an in vitro exon, comprising a splice site at the 5' and 3' ends of the donor exon. 如請求項87之套組,其中該供體聚核苷酸包含野生型序列。A kit of claim 87, wherein the donor polynucleotide comprises a wild type sequence. 如請求項85之套組,其中該基因係選自NRL及NR2E3。A kit of claim 85, wherein the gene is selected from the group consisting of NRL and NR2E3. 如請求項85之套組,其中該第一嚮導RNA及/或該第二嚮導RNA將該Cas9蛋白質靶向至包含SEQ ID NO.:1-4中之任一者的序列。A kit of claim 85, wherein the first guide RNA and/or the second guide RNA targets the Cas9 protein to a sequence comprising any one of SEQ ID NO.: 1-4. 一種用於治療個體之眼部病況之醫藥組合物,其包含: a) Cas核酸酶或編碼該Cas核酸酶之聚核苷酸;及 b) 與選自NRL基因及NR2E3基因之基因的一部分互補的至少一個嚮導RNA。A pharmaceutical composition for treating an ocular condition in an individual, comprising: a) a Cas nuclease or a polynucleotide encoding the Cas nuclease; and b) a complement to a portion of a gene selected from the group consisting of an NRL gene and an NR2E3 gene At least one guide RNA. 如請求項92之醫藥組合物,其中編碼該Cas蛋白質之該聚核苷酸及該至少一個嚮導RNA存在於至少一個病毒載體中。The pharmaceutical composition of claim 92, wherein the polynucleotide encoding the Cas protein and the at least one guide RNA are present in at least one viral vector. 如請求項93之醫藥組合物,其中編碼該Cas蛋白質之該聚核苷酸或該至少一個嚮導RNA存在於脂質體中。The pharmaceutical composition of claim 93, wherein the polynucleotide encoding the Cas protein or the at least one guide RNA is present in the liposome. 如請求項92之醫藥組合物,其中該至少一個嚮導RNA將該Cas蛋白質靶向至包含SEQ ID NO.:1-4中之任一者的序列。The pharmaceutical composition of claim 92, wherein the at least one guide RNA targets the Cas protein to a sequence comprising any one of SEQ ID NO.: 1-4. 如請求項92之醫藥組合物,其中該醫藥組合物經調配為液體以便使用滴眼管投與。The pharmaceutical composition of claim 92, wherein the pharmaceutical composition is formulated as a liquid for administration using an eye dropper. 如請求項92之醫藥組合物,其中該醫藥組合物經調配為液體以便用於玻璃體內投與。The pharmaceutical composition of claim 92, wherein the pharmaceutical composition is formulated as a liquid for intravitreal administration. 一種編輯細胞中之基因之方法,其包含使該細胞與以下接觸 a) 與基因之靶位點雜交之第一嚮導RNA; b) 使該基因之股在該靶位點處裂解之Cas核酸酶; c) 供體核酸。A method of editing a gene in a cell, comprising a first guide RNA that causes the cell to contact a) to hybridize to a target site of the gene; b) a Cas nuclease that cleaves the strand of the gene at the target site c) Donor nucleic acid. 如請求項98之方法,其中該供體核酸經由非同源末端連接插入至該基因中。The method of claim 98, wherein the donor nucleic acid is inserted into the gene via a non-homologous end joining. 如請求項98之方法,其中該細胞為有絲分裂後細胞。The method of claim 98, wherein the cell is a mitotic cell. 如請求項98之方法,其中該基因為Mertk基因。The method of claim 98, wherein the gene is a Mertk gene. 如請求項98之方法,其中該細胞為個體之眼睛之視網膜中之細胞。The method of claim 98, wherein the cell is a cell in the retina of the eye of the individual. 一種治療個體之視網膜變性之方法,其包含使個體之視網膜與以下接觸: a) 與基因之靶位點雜交之第一嚮導RNA; b) 使該基因之股在該靶位點處裂解之Cas核酸酶;及 c) 供體核酸, 其中該供體核酸經由非同源末端連接插入至該基因中。A method of treating retinal degeneration in an individual comprising contacting an individual's retina with: a) a first guide RNA that hybridizes to a target site of the gene; b) a Cas that cleaves the strand of the gene at the target site Nuclease; and c) a donor nucleic acid, wherein the donor nucleic acid is inserted into the gene via a non-homologous end joining. 如請求項103之方法,其中該視網膜變性為色素性視網膜炎。The method of claim 103, wherein the retinal degeneration is retinitis pigmentosa. 如請求項103之方法,其中該基因為Mertk基因。The method of claim 103, wherein the gene is a Mertk gene. 一種治療個體之β地中海貧血之方法,其包含使個體之造血幹細胞/祖細胞與以下接觸: a) 與血紅蛋白基因之靶位點雜交之第一嚮導RNA; b) 使該血紅蛋白基因之股在該靶位點處裂解之Cas核酸酶;及 c) 供體核酸, 其中該供體核酸經由非同源末端連接插入至該基因中。A method of treating beta thalassemia in an individual comprising contacting an individual's hematopoietic stem/progenitor cells with: a) a first guide RNA that hybridizes to a target site of a hemoglobin gene; b) causing the hemoglobin gene to be a Cas nuclease cleaved at the target site; and c) a donor nucleic acid, wherein the donor nucleic acid is inserted into the gene via a non-homologous end joining. 如請求項106之方法,其中該供體核酸代替包含CD41/42突變之該血紅蛋白基因之一部分。The method of claim 106, wherein the donor nucleic acid replaces a portion of the hemoglobin gene comprising a CD41/42 mutation. 一種治療個體之癌症之方法,其包含使個體之T細胞與以下接觸: a) 與編碼免疫檢查點抑制因子之基因之靶位點雜交的第一嚮導RNA;及 b) 使該基因之股在該靶位點處裂解之Cas核酸酶。A method of treating cancer in an individual comprising contacting an individual's T cells with: a) a first guide RNA that hybridizes to a target site of a gene encoding an immunological checkpoint inhibitor; and b) causing the gene to be The Cas nuclease which is cleaved at the target site. 如請求項108之方法,其包含使該T細胞與供體核酸接觸,其中該供體核酸經由非同源末端連接插入至該基因中。The method of claim 108, comprising contacting the T cell with a donor nucleic acid, wherein the donor nucleic acid is inserted into the gene via a non-homologous end joining. 如請求項108之方法,其中該基因編碼PD-1。The method of claim 108, wherein the gene encodes PD-1. 一種治療個體之癌症之方法,其包含使個體之癌細胞與以下接觸: a) 與編碼免疫檢查點抑制因子配位體之基因之靶位點雜交的第一嚮導RNA;及 b) 使該基因之股在該靶位點處裂解之Cas核酸酶。A method of treating cancer in an individual comprising contacting a cancer cell of the individual with: a) a first guide RNA that hybridizes to a target site of a gene encoding an immunological checkpoint inhibitor ligand; and b) causing the gene The Cas nuclease which is cleaved at the target site. 如請求項111之方法,其中該基因編碼PD-L1或PD-L2。The method of claim 111, wherein the gene encodes PD-L1 or PD-L2. 如請求項111或112之方法,其包含使該腫瘤細胞與供體核酸接觸,其中該供體核酸經由非同源末端連接插入至該基因中。The method of claim 111 or 112, comprising contacting the tumor cell with a donor nucleic acid, wherein the donor nucleic acid is inserted into the gene via a non-homologous end joining. 如請求項111至113中任一項之方法,其中該癌症為轉移性癌症。The method of any one of clauses 111 to 113, wherein the cancer is a metastatic cancer. 如請求項114之方法,其中該癌症為轉移性卵巢癌、轉移性黑素瘤、轉移性非小細胞肺癌或轉移性腎細胞癌。The method of claim 114, wherein the cancer is metastatic ovarian cancer, metastatic melanoma, metastatic non-small cell lung cancer, or metastatic renal cell carcinoma.
TW106138094A 2017-11-03 2017-11-03 Methods and compositions for cellular reprogramming TW201918556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106138094A TW201918556A (en) 2017-11-03 2017-11-03 Methods and compositions for cellular reprogramming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106138094A TW201918556A (en) 2017-11-03 2017-11-03 Methods and compositions for cellular reprogramming

Publications (1)

Publication Number Publication Date
TW201918556A true TW201918556A (en) 2019-05-16

Family

ID=67347794

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106138094A TW201918556A (en) 2017-11-03 2017-11-03 Methods and compositions for cellular reprogramming

Country Status (1)

Country Link
TW (1) TW201918556A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826378A (en) * 2020-08-05 2020-10-27 武汉纽福斯生物科技有限公司 Nucleotide sequence for coding human receptor tyrosine kinase Mer and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826378A (en) * 2020-08-05 2020-10-27 武汉纽福斯生物科技有限公司 Nucleotide sequence for coding human receptor tyrosine kinase Mer and application thereof

Similar Documents

Publication Publication Date Title
US20220033792A1 (en) Methods and compositions for cellular reprogramming
US11339410B2 (en) Methods and products for expressing proteins in cells
US11492670B2 (en) Compositions and methods for targeting cancer-specific sequence variations
US20170072025A1 (en) Methods and compositions for the treatment of glaucoma
EP3957735A1 (en) Crispr/cas-related methods and compositions for treating usher syndrome and retinitis pigmentosa
JP2020513783A (en) CRISPR
CA2932439A1 (en) Crispr-cas systems and methods for altering expression of gene products, structural information and inducible modular cas enzymes
US11491208B2 (en) Sequence-specific in vivo cell targeting
US10982216B2 (en) Methods and compositions for enhancing functional myelin production
JP2022547053A (en) universal donor cells
Bloomer et al. CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells
Kumar et al. RNA-targeting strategies as a platform for ocular gene therapy
JP2023527464A (en) Biallelic k-gene knockout of SARM1
TW201918556A (en) Methods and compositions for cellular reprogramming
EP3640334A1 (en) Genome editing system for repeat expansion mutation
WO2020205664A1 (en) Compositions and methods for cellular reprogramming to rescue visual function
US20230175020A1 (en) Compositions and methods for promoting gene editing of cxcr4 gene
WO2024064613A2 (en) Biallelic knockout of hla-e
WO2024064683A2 (en) Biallelic knockout of ciita
WO2024064607A2 (en) Biallelic knockout of tet2
WO2024064633A2 (en) Biallelic knockout of pdcd1
WO2024064623A2 (en) Biallelic knockout of cish
WO2024064606A2 (en) Biallelic knockout of ctla4
WO2013018096A1 (en) Use of integrase for targeted gene expression