TW201916596A - Adjustable signal equalization device and adjustment method thereof - Google Patents

Adjustable signal equalization device and adjustment method thereof Download PDF

Info

Publication number
TW201916596A
TW201916596A TW106134776A TW106134776A TW201916596A TW 201916596 A TW201916596 A TW 201916596A TW 106134776 A TW106134776 A TW 106134776A TW 106134776 A TW106134776 A TW 106134776A TW 201916596 A TW201916596 A TW 201916596A
Authority
TW
Taiwan
Prior art keywords
signal
circuit
detection signal
accumulated value
generate
Prior art date
Application number
TW106134776A
Other languages
Chinese (zh)
Other versions
TWI650950B (en
Inventor
康文柱
陳昱竹
潘辰陽
Original Assignee
創意電子股份有限公司
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 創意電子股份有限公司, 台灣積體電路製造股份有限公司 filed Critical 創意電子股份有限公司
Priority to TW106134776A priority Critical patent/TWI650950B/en
Application granted granted Critical
Publication of TWI650950B publication Critical patent/TWI650950B/en
Publication of TW201916596A publication Critical patent/TW201916596A/en

Links

Abstract

An adjustable signal equalization device includes an equalizer circuitry, an analog-to-digital converter (ADC), a calculation circuitry, and a comparator circuitry. The equalizer circuitry has a transfer function, and processes an input signal based on the transfer function to generate an output signal. The ADC generates a digital signal according to the output signal. The calculation circuitry performs an accumulation according to the first digital signal to generate a first accumulated value and a second accumulated value, and generates a first detection signal and a second detection signal according to the first accumulated value and the second accumulated value. The comparator circuitry compares the first detection signal with the second detection signal to output a control signal to the equalizer circuit if the first detection signal is different from the second detection signal, in order adjust the transfer function.

Description

可調式訊號等化裝置與其調整方法  Adjustable signal equalization device and adjustment method thereof  

本案是有關於一種等化器,且特別是有關於一種可調式訊號等化裝置及其適應性調整方法。 This case is related to an equalizer, and in particular to an adjustable signal equalization device and an adaptive adjustment method thereof.

等化器常用於資料傳輸的介面中,以補償通道衰減以及降低符號間干擾(Inter-symbol interference,ISI)。於一些技術中,等化器可由類比電路實現的偵測機制來調整其轉移函數。然而,於此些技術中,偵測機制容易受到製程、電壓或溫度的變異的影響使得等化器的轉移函數出現誤差。 Equalizers are commonly used in data transfer interfaces to compensate for channel attenuation and reduce inter-symbol interference (ISI). In some techniques, the equalizer can adjust its transfer function by a detection mechanism implemented by the analog circuit. However, in these techniques, the detection mechanism is susceptible to variations in process, voltage, or temperature that cause errors in the transfer function of the equalizer.

或者,在另一些技術中,等化器可由偵測訊號邊緣的偵測機制來調整其轉移函數。然而,於此些技術中,隨著電路操作速度越快或訊號的形式越來越複雜,此偵測機制所需的電路越高而較難以實現。 Alternatively, in other techniques, the equalizer may adjust its transfer function by detecting the edge of the signal. However, in these techniques, as the circuit operates faster or the form of the signal becomes more complex, the higher the circuit required for this detection mechanism, the more difficult it is to implement.

為了解決上述問題,本案的一態樣係於提供一種可調式訊號等化裝置,其包含等化器電路系統、類比至數位轉 換器、計算電路系統以及比較電路系統。等化器電路系統具有一轉移函數,並用以基於轉移函數處理輸入訊號以產生輸出訊號。類比至數位轉換器用以根據該輸出訊號產生第一數位訊號。計算電路系統用以根據該第一數位訊號進行累加以產生第一累加值與第二累加值,並根據該第一累加值以及該第二累加值產生第一偵測訊號與第二偵測訊號。比較電路系統用以比較該第一偵測訊號與該第二偵測訊號,並在該第一偵測訊號不同於該第二偵測訊號時輸出一控制訊號至該等化器電路系統,以調整該轉移函數。 In order to solve the above problems, an aspect of the present invention is to provide an adjustable signal equalization device including an equalizer circuit system, an analog to digital converter, a calculation circuit system, and a comparison circuit system. The equalizer circuitry has a transfer function and is used to process the input signal based on the transfer function to produce an output signal. The analog to digital converter is configured to generate a first digital signal according to the output signal. The calculating circuit system is configured to generate a first accumulated value and a second accumulated value according to the first digital signal, and generate the first detecting signal and the second detecting signal according to the first accumulated value and the second accumulated value . Comparing the first detection signal and the second detection signal, and outputting a control signal to the equalizer circuit when the first detection signal is different from the second detection signal, Adjust the transfer function.

於一些實施例中,該計算電路系統包含第一累加電路、延遲電路以及第二累加電路。第一累加電路用以根據該第一數位訊號進行累加以產生該第一累加值。延遲電路用以延遲該第一數位訊號以產生一第二數位訊號。第二累加電路用以根據該第二數位訊號進行累加以產生該第二累加值。 In some embodiments, the computing circuitry includes a first accumulation circuit, a delay circuit, and a second accumulation circuit. The first accumulating circuit is configured to generate the first accumulated value according to the first digital signal. The delay circuit is configured to delay the first digital signal to generate a second digital signal. The second accumulating circuit is configured to generate the second accumulated value according to the second digital signal.

於一些實施例中,該計算電路系統更包含第一降頻電路以及第二降頻電路。第一降頻電路用以降取樣該第一數位訊號,以產生一第三數位訊號,其中該第一累加電路用以累加該第三數位訊號以產生該第一累加值。第二降頻電路用以降取樣該第二數位訊號,以產生一第四數位訊號,其中該第二累加電路用以累加該第四數位訊號以產生該第二累加值。 In some embodiments, the computing circuit system further includes a first frequency down circuit and a second frequency down circuit. The first frequency down circuit is configured to downsample the first digital signal to generate a third digital signal, wherein the first accumulating circuit is configured to accumulate the third digital signal to generate the first accumulated value. The second frequency reduction circuit is configured to downsample the second digital signal to generate a fourth digital signal, wherein the second accumulation circuit is configured to accumulate the fourth digital signal to generate the second accumulated value.

於一些實施例中,該計算電路系統更包含第一運算電路以及第二運算電路。第一運算電路用以相加該第一累加值以及該第二累加值,以產生該第一偵測訊號。第二運算電路用以相減該第一累加值以及該第二累加值,以產生該第二偵測 訊號。 In some embodiments, the computing circuit system further includes a first operational circuit and a second operational circuit. The first operation circuit is configured to add the first accumulated value and the second accumulated value to generate the first detection signal. The second operation circuit is configured to subtract the first accumulated value and the second accumulated value to generate the second detection signal.

於一些實施例中,其中第一數位訊號之快速傅立葉轉換滿足下式(1): In some embodiments, the fast Fourier transform of the first digital signal satisfies the following equation (1):

其中k=0,1,…,N-1,N為正數並為取樣點數量,WN為N次單位根,其中該第一累加值相當於上式(1)中的多個奇數項次因子的和,且該第二累加值相當於上式(1)中的多個偶數項次因子的和。 Where k=0,1,...,N-1,N is a positive number and is the number of sampling points, W N is the N-th unit root, wherein the first accumulated value is equivalent to multiple odd-numbered lines in the above formula (1) The sum of the factors, and the second accumulated value corresponds to the sum of the plurality of even-numbered sub-factors in the above formula (1).

於一些實施例中,第一偵測訊號在頻域上滿足下式: In some embodiments, the first detection signal satisfies the following equation in the frequency domain:

於一些實施例中,第二偵測訊號在頻域上滿足下式: In some embodiments, the second detection signal satisfies the following equation in the frequency domain:

於一些實施例中,該比較電路系統用以對該第一偵測訊號取絕對值以決定該第一偵測訊號的一第一能量,並對該第二偵測訊號取絕對值以決定該第二偵測訊號的一第二能量,以根據該第一能量與該第二能量之一比較結果輸出該控制訊號。 In some embodiments, the comparison circuit is configured to determine an absolute value of the first detection signal to determine a first energy of the first detection signal, and determine an absolute value of the second detection signal to determine the And a second energy of the second detecting signal, to output the control signal according to the comparison result of the first energy and the second energy.

於一些實施例中,可調式訊號等化裝置更包含放大器。放大器用以放大該輸出訊號,其中該類比至數位轉換器更用以根據放大後的該輸出訊號產生該第一數位訊號。 In some embodiments, the adjustable signal equalization device further includes an amplifier. The amplifier is configured to amplify the output signal, wherein the analog to digital converter is further configured to generate the first digital signal according to the amplified output signal.

本案的一態樣係於提供一種調整方法,其用以調 整等化器電路系統的轉移函數,該調整方法包含下列操作:藉由一類比至數位轉換器轉換該等化器電路系統輸出的一輸出訊號至一第一數位訊號;藉由一計算電路系統根據該第一數位訊號進行累加以產生一第一累加值與一第二累加值,並根據該第一累加值以及該第二累加值產生一第一偵測訊號與一第二偵測訊號;以及藉由一比較電路系統比較該第一偵測訊號與該第二偵測訊號,並在該第一偵測訊號不同於該第二偵測訊號時輸出一控制訊號至該等化器電路系統,以調整該轉移函數。 An aspect of the present invention is to provide an adjustment method for adjusting a transfer function of an equalizer circuit system, the adjustment method comprising the following operation: converting an output of the equalizer circuit system by an analog to digital converter Outputting a signal to a first digit signal; generating, by a computing circuit system, the first accumulated value and the second accumulated value according to the first digital signal, and according to the first accumulated value and the second accumulated value Generating a first detection signal and a second detection signal; and comparing the first detection signal and the second detection signal by a comparison circuit system, and the first detection signal is different from the second A control signal is output to the equalizer circuitry when the signal is detected to adjust the transfer function.

於一些實施例中,產生該第一偵測訊號與該第二偵測訊號包含:藉由該計算電路系統的一第一累加電路根據該第一數位訊號進行累加以產生該第一累加值;藉由該計算電路系統的一延遲電路延遲該第一數位訊號以產生一第二數位訊號;以及藉由該計算電路系統的一第二累加電路根據該第二數位訊號進行累加以產生該第二累加值。 In some embodiments, generating the first detection signal and the second detection signal includes: generating, by the first accumulation circuit of the calculation circuit system, the first accumulated value according to the first digital signal; And delaying the first digital signal by the delay circuit of the computing circuit to generate a second digital signal; and generating, by the second accumulating circuit of the computing circuit, the second digital signal to generate the second Accumulated value.

於一些實施例中,產生該第一偵測訊號與該第二偵測訊號更包含:藉由該計算電路系統的一第一降頻電路降取樣該第一數位訊號,以產生一第三數位訊號,其中該第一累加電路用以累加該第三數位訊號以產生該第一累加值;以及藉由該計算電路系統的一第二降頻電路降取樣該第二數位訊號,以產生一第四數位訊號,其中該第二累加電路用以累加該第四數位訊號以產生該第二累加值。 In some embodiments, generating the first detection signal and the second detection signal further comprises: downsampling the first digital signal by a first frequency reduction circuit of the computing circuit to generate a third digit a signal, wherein the first accumulating circuit is configured to accumulate the third digit signal to generate the first accumulated value; and the second down-converting circuit of the computing circuit system downsamples the second digit signal to generate a first a fourth digit signal, wherein the second accumulation circuit is configured to accumulate the fourth digit signal to generate the second accumulated value.

於一些實施例中,產生該第一偵測訊號與該第二偵測訊號更包含:藉由該計算電路系統的一第一運算電路相加該第一累加值以及該第二累加值,以產生該第一偵測訊號;以 及藉由該計算電路系統的一第二運算電路相減該第一累加值以及該第二累加值,以產生該第二偵測訊號。 In some embodiments, generating the first detection signal and the second detection signal further comprises: adding, by the first operation circuit of the computing circuit system, the first accumulated value and the second accumulated value to Generating the first detection signal; and subtracting the first accumulated value and the second accumulated value by a second operation circuit of the computing circuit to generate the second detection signal.

於一些實施例中,其中第一數位訊號之快速傅立葉轉換滿足下式(1): In some embodiments, the fast Fourier transform of the first digital signal satisfies the following equation (1):

其中k=0,1,…,N-1,N為正數並為取樣點數量,WN為N次單位根,其中該第一累加值相當於上式(1)中的多個奇數項次因子的和,且該第二累加值相當於上式(1)中的多個偶數項次因子的和。 Where k=0,1,...,N-1,N is a positive number and is the number of sampling points, W N is the N-th unit root, wherein the first accumulated value is equivalent to multiple odd-numbered lines in the above formula (1) The sum of the factors, and the second accumulated value corresponds to the sum of the plurality of even-numbered sub-factors in the above formula (1).

於一些實施例中,第一偵測訊號在頻域上滿足下式: In some embodiments, the first detection signal satisfies the following equation in the frequency domain:

於一些實施例中,第二偵測訊號在頻域上滿足下式: In some embodiments, the second detection signal satisfies the following equation in the frequency domain:

綜上所述,本案所提供的可調式訊號等化裝置與其調整方法可藉由簡單的運算以及數位電路實現,以降低電路所需規格並同時降低變異的影響。 In summary, the adjustable signal equalization device and the adjustment method provided by the present invention can be implemented by simple calculation and digital circuit to reduce the required specifications of the circuit and reduce the influence of variation.

100‧‧‧可調式訊號等化裝置 100‧‧‧Adjustable signal equalization device

120‧‧‧等化器電路系統 120‧‧‧ Equalizer circuit system

130‧‧‧類比至數位轉換器 130‧‧‧ Analog to Digital Converter

140‧‧‧計算電路系統 140‧‧‧Computational Circuit System

150‧‧‧比較電路系統 150‧‧‧Comparative Circuit System

VIN‧‧‧輸入訊號 VIN‧‧‧ input signal

VC‧‧‧控制訊號 VC‧‧‧ control signal

VO、VO1‧‧‧輸出訊號 VO, VO1‧‧‧ output signal

VD‧‧‧數位訊號 VD‧‧‧ digital signal

VD1~VD3‧‧‧數位訊號 VD1~VD3‧‧‧ digital signal

125‧‧‧放大器 125‧‧‧Amplifier

A、B‧‧‧偵測訊號 A, B‧‧‧ detection signals

141、142‧‧‧降頻電路 141, 142‧‧‧down frequency circuit

143、144‧‧‧累加電路 143, 144‧‧‧ accumulator circuit

145、146‧‧‧運算電路 145, 146‧‧‧ arithmetic circuits

147‧‧‧延遲電路 147‧‧‧Delay circuit

A1、B1‧‧‧累加值 A1, B1‧‧‧ cumulative value

VIN+、VIN-‧‧‧差動輸入訊號 VIN+, VIN-‧‧‧Differential input signal

VO+、VO-‧‧‧差動輸出訊號 VO+, VO-‧‧‧Differential output signal

M1~M4‧‧‧電晶體 M1~M4‧‧‧O crystal

RS‧‧‧可調電阻 RS‧‧‧ adjustable resistor

CS‧‧‧可調電容 CS‧‧‧ adjustable capacitor

RL1、RL2‧‧‧負載電阻 RL1, RL2‧‧‧ load resistor

VBIAS‧‧‧偏壓 VBIAS‧‧‧ bias

300‧‧‧調整方法 300‧‧‧Adjustment method

S310~S330‧‧‧操作 S310~S330‧‧‧ operation

本案之圖式說明如下:第1圖為根據本案一些實施例所繪示的一種可調式訊號等化裝置的示意圖; 第2A圖為根據本案之一些實施例所繪示的第1圖中等化器電路系統的電路示意圖;第2B圖為根據本案一些實施例繪示第2A圖中等化器電路系統的轉移函數的變化示意圖;以及第3圖為根據本案一些實施例所繪示的一種調整方法的流程圖。 The schematic diagram of the present invention is as follows: FIG. 1 is a schematic diagram of an adjustable signal equalization device according to some embodiments of the present invention; FIG. 2A is a first image intermediateizer according to some embodiments of the present disclosure. Circuit diagram of the circuit system; FIG. 2B is a schematic diagram showing changes of the transfer function of the circuitizer of the sizing device of FIG. 2A according to some embodiments of the present invention; and FIG. 3 is a schematic diagram of an adjustment method according to some embodiments of the present disclosure. flow chart.

關於本文中所使用之『耦接』或『連接』,均可指二或多個元件相互直接作實體或電性接觸,或是相互間接作實體或電性接觸,亦可指二或多個元件相互操作或動作。 "Coupling" or "connecting" as used herein may mean that two or more elements are in direct physical or electrical contact with each other, or indirectly in physical or electrical contact with each other, or two or more The components operate or act on each other.

於本文中,用語『電路系統(circuitry)』泛指包含一或多個電路(circuit)所形成的單一系統。用語『電路』泛指由一或多個電晶體與/或一或多個主被動元件按一定方式連接以處理訊號的物件。 As used herein, the term "circuitry" refers to a single system that includes one or more circuits. The term "circuitry" generally refers to an object that is connected in a manner by one or more transistors and/or one or more active and passive components to process a signal.

參照第1圖,第1圖為根據本案一些實施例所繪示的一種可調式訊號等化裝置100的示意圖。於一些實施例中,可調式訊號等化裝置100可應用於序列器/解序列器(SerDes)的系統中,但本案並不以此為限。 Referring to FIG. 1 , FIG. 1 is a schematic diagram of an adjustable signal equalization device 100 according to some embodiments of the present disclosure. In some embodiments, the adjustable signal equalization device 100 can be applied to a system of a sequencer/deserializer (SerDes), but the present invention is not limited thereto.

於一些實施例中,可調式訊號等化裝置100包含等化器電路系統120、類比至數位轉換器130、計算電路系統140以及比較電路系統150。等化器電路系統120用以根據控制訊號VC調整其內部的轉移函數,並基於此轉移函數處理輸入訊號VIN以產生一輸出訊號VO。輸入訊號VIN可為發射器電 路(未繪示)自一通道(未繪示)傳輸而來的資料或訊號。一般而言,通道的頻率響應為低通函數。換言之,輸入訊號VIN的高頻成分會因為通道衰減。於一些實施例中,為了補償此衰減,等化器電路系統120的轉移函數設置為高通函數(如後第2B圖所示)。於一些實施例中,本文所提及的轉移函數實質上為等化器電路系統120的輸入與輸出之間的頻率響應。 In some embodiments, the tunable signal equalization device 100 includes an equalizer circuitry 120, an analog to digital converter 130, a computing circuitry 140, and a comparison circuitry 150. The equalizer circuit system 120 is configured to adjust its internal transfer function according to the control signal VC, and process the input signal VIN based on the transfer function to generate an output signal VO. The input signal VIN can be a data or signal transmitted from a channel (not shown) by a transmitter circuit (not shown). In general, the frequency response of a channel is a low-pass function. In other words, the high frequency component of the input signal VIN will be attenuated by the channel. In some embodiments, to compensate for this attenuation, the transfer function of the equalizer circuitry 120 is set to a high pass function (as shown in Figure 2B below). In some embodiments, the transfer function referred to herein is substantially the frequency response between the input and output of the equalizer circuitry 120.

類比至數位轉換器130耦接至等化器電路系統120,以根據輸出訊號VO產生數位訊號VD。於一些實施例中,如第1圖所示,可調式訊號等化裝置100更包含放大器125。放大器125用以放大輸出訊號VO以產生輸出訊號VO1,且類比至數位轉換器130用以轉換輸出訊號VO1至數位訊號VD。於一些實施例中,放大器125可由可變增益放大器實現,其中放大器125的增益可依據類比至數位轉換器130的規格(例如輸入電壓範圍)進行調整。 The analog to digital converter 130 is coupled to the equalizer circuit system 120 to generate a digital signal VD based on the output signal VO. In some embodiments, as shown in FIG. 1, the adjustable signal equalization device 100 further includes an amplifier 125. The amplifier 125 is used to amplify the output signal VO to generate the output signal VO1, and the analog to digital converter 130 is used to convert the output signal VO1 to the digital signal VD. In some embodiments, the amplifier 125 can be implemented by a variable gain amplifier, wherein the gain of the amplifier 125 can be adjusted according to analog to the specifications of the digital converter 130 (eg, the input voltage range).

計算電路系統140耦接至類比至數位轉換器130以接收數位訊號VD。計算電路系統140用以基於數位訊號VD進行累加,以產生偵測訊號A以及偵測訊號B。 The computing circuitry 140 is coupled to the analog to digital converter 130 to receive the digital signal VD. The calculation circuit system 140 is configured to accumulate based on the digital signal VD to generate the detection signal A and the detection signal B.

於一些實施例中,計算電路系統140包含多個降頻電路141~142、多個累加電路143~144、多個運算電路145~146以及延遲電路147。 In some embodiments, the computing circuit system 140 includes a plurality of frequency down circuits 141 - 142 , a plurality of accumulation circuits 143 - 144 , a plurality of arithmetic circuits 145 - 146 , and a delay circuit 147 .

降頻電路141用以對數位訊號VD進行降取樣(down sampling),以產生數位訊號VD1。例如,降頻電路141用以將數位訊號VD的取樣率(sample rate)降低兩倍以產生數位訊號VD1。累加電路143耦接至降頻電路141以接收數位訊 號VD1。累加電路143對數位訊號VD1進行累加,以產生累加值A1。 The down-conversion circuit 141 is configured to down-sample the digital signal VD to generate a digital signal VD1. For example, the down-conversion circuit 141 is configured to reduce the sample rate of the digital signal VD by two times to generate the digital signal VD1. The accumulation circuit 143 is coupled to the down conversion circuit 141 to receive the digital signal VD1. The accumulation circuit 143 accumulates the digital signal VD1 to generate an accumulated value A1.

延遲電路147耦接至類比至數位轉換器130以接收數位訊號VD。延遲電路147用以延遲數位訊號VD一預定時間,以產生數位訊號VD2。於一些實施例中,延遲電路147可由積分器或一或多個串聯耦接的反相器實現,但本案並不以此為限。降頻電路142用以對數位訊號VD2進行降取樣,以產生數位訊號VD3。例如,降頻電路142用以將數位訊號VD2的取樣率降低兩倍以產生數位訊號VD3。累加電路144耦接至降頻電路142以接收數位訊號VD3。累加電路144對數位訊號VD3進行累加,以產生累加值B1。於一些實施例中,累加電路143以及累加電路144可由暫存器與/或加法器等邏輯電路實現,但本案並不以此為限。 The delay circuit 147 is coupled to the analog to digital converter 130 to receive the digital signal VD. The delay circuit 147 is configured to delay the digital signal VD for a predetermined time to generate the digital signal VD2. In some embodiments, the delay circuit 147 can be implemented by an integrator or one or more inverters coupled in series, but the present invention is not limited thereto. The down-conversion circuit 142 is configured to downsample the digital signal VD2 to generate a digital signal VD3. For example, the down-conversion circuit 142 is configured to reduce the sampling rate of the digital signal VD2 by two times to generate the digital signal VD3. The accumulation circuit 144 is coupled to the down conversion circuit 142 to receive the digital signal VD3. The accumulation circuit 144 accumulates the digital signal VD3 to generate an accumulated value B1. In some embodiments, the accumulating circuit 143 and the accumulating circuit 144 may be implemented by logic circuits such as a register and/or an adder, but the present invention is not limited thereto.

運算電路145用以相加累加值A1以及累加值B1,以產生偵測訊號A。運算電路146用以相減累加值A1以及累加值B1,以產生偵測訊號B。於一些實施例中,運算電路145以及運算電路146可由加法器實現。 The operation circuit 145 is configured to add the accumulated value A1 and the accumulated value B1 to generate the detection signal A. The operation circuit 146 is configured to subtract the accumulated value A1 and the accumulated value B1 to generate the detection signal B. In some embodiments, the arithmetic circuit 145 and the arithmetic circuit 146 can be implemented by an adder.

以下將以頻域的觀念解釋上述實施例中計算電路系統140的設計概念。若對數位訊號VD採用快速傅立葉轉換可推導出下式,其中N為正數並為取樣點數量,k代表第k個取樣點(亦即對應至具第k個頻率的正弦波),WN為N次單位根: The design concept of the calculation circuit system 140 in the above embodiment will be explained below in the frequency domain concept. If the fast signal Fourier transform is used for the digital signal VD, the following equation can be derived, where N is a positive number and is the number of sampling points, and k represents the kth sampling point (that is, corresponding to the sine wave with the kth frequency), W N is N times unit root:

在上式中,當k=0時,可得出下式(1): In the above formula, when k=0, the following formula (1) can be obtained:

根據式(1)可得知,在頻域中,若將每一筆數位訊號VD累加後,可等效得到數位訊號VD於直流(DC)頻率上的訊號成分。 According to the formula (1), in the frequency domain, if each digital signal VD is accumulated, the signal component of the digital signal VD at the direct current (DC) frequency can be equivalently obtained.

或者,當k=N/2時,X(k)可表示為: Or, when k=N/2, X(k) can be expressed as:

在頻域上,若將連續兩筆數位訊號VD之間的差值累加後,可等效得到上式(2)。相較於上式(1),式(2)顯示出數位訊號VD於高頻率上的訊號成分。 In the frequency domain, if the difference between two consecutive digital signal VDs is added, the above equation (2) can be obtained equivalently. Compared with the above formula (1), the equation (2) shows the signal component of the digital signal VD at a high frequency.

在上式(1)以及式(2)中,可分為偶數項次的因子(亦即x(0),x(2),…等等)以及奇數項次的因子(亦即x(1),x(3),…等等)。於一些實施例中,透過降頻電路141以及累加電路143處理輸入訊號VD後所得到的累加值A1即相當於偶數項次因子的和。換言之,以頻域而言,累加值A1相當於x(0)+x(2)+x(4)+…。 In the above equations (1) and (2), factors that can be divided into even-numbered terms (ie, x(0), x(2), ..., etc.) and factors of odd-order terms (ie, x(1) ), x(3), ..., etc.). In some embodiments, the accumulated value A1 obtained by processing the input signal VD through the down-converting circuit 141 and the accumulating circuit 143 is equivalent to the sum of the even-numbered sub-factors. In other words, in the frequency domain, the accumulated value A1 is equivalent to x(0)+x(2)+x(4)+....

同樣地,於一些實施例中,透過延遲電路147、降頻電路142以及累加電路144處理輸入訊號VD後所得到的累加值B1即相當於奇數項次因子的和。換言之,以頻域而言,累加值B1相當於x(1)+x(3)+x(5)+…。 Similarly, in some embodiments, the accumulated value B1 obtained by processing the input signal VD through the delay circuit 147, the down-conversion circuit 142, and the accumulation circuit 144 is equivalent to the sum of the odd-order factor. In other words, in the frequency domain, the accumulated value B1 is equivalent to x(1)+x(3)+x(5)+....

據此,在頻域上,藉由相加累計值A1與累計值B1所得到的偵測訊號A相當於前述式(1),且藉由相減累計值 A1與累計值B1所得到的偵測訊號B相當於前述式(2)。偵測訊號A關聯於數位訊號VD的低頻成分(即DC頻率),且偵測訊號B關聯於數位訊號VD的高頻成分。如此一來,藉由比較偵測訊號A與偵測訊號B的能量,可得知等化器電路系統120是否有過度等化(over equalization)或等化不足(under equalization)等情形。 Accordingly, in the frequency domain, the detection signal A obtained by adding the cumulative value A1 and the integrated value B1 is equivalent to the above formula (1), and the Detect obtained by subtracting the cumulative value A1 and the cumulative value B1 The test signal B corresponds to the above formula (2). The detection signal A is associated with the low frequency component of the digital signal VD (ie, the DC frequency), and the detection signal B is associated with the high frequency component of the digital signal VD. In this way, by comparing the energy of the detection signal A and the detection signal B, it can be known whether the equalizer circuit system 120 has an over equalization or an under equalization.

繼續參照第1圖,比較電路系統150耦接至計算電路系統140以接收偵測訊號A以及偵測訊號B。比較電路系統150用於計算偵測訊號A的能量以及偵測訊號B的能量,並進一步比較上述兩者的能量以輸出控制訊號VC以調整等化器電路系統120的轉移函數。於一些實施例中,比較電路系統150可對偵測訊號A取絕對值以決定偵測訊號A的能量,並藉由對偵測訊號B取絕對值以決定偵測訊號B的能量,但本案並不依此為限。於一些實施例中,比較電路系統150可由運算電路與比較器實現,以完成上述操作。或者,於一些實施例中,比較電路系統150可由數位處理電路實現,以完成上述操作。上述關於比較電路系統150的實施方式僅為示例,本案並不以此為限。 Continuing to refer to FIG. 1 , the comparison circuit system 150 is coupled to the computing circuit system 140 to receive the detection signal A and the detection signal B. The comparison circuit system 150 is configured to calculate the energy of the detection signal A and the energy of the detection signal B, and further compare the energy of the two to output the control signal VC to adjust the transfer function of the equalizer circuit system 120. In some embodiments, the comparison circuit system 150 can determine the energy of the detection signal A by taking an absolute value of the detection signal A, and determine the energy of the detection signal B by taking an absolute value of the detection signal B, but the case Not limited to this. In some embodiments, comparison circuitry 150 can be implemented by an arithmetic circuit and a comparator to perform the operations described above. Alternatively, in some embodiments, comparison circuitry 150 can be implemented by a digital processing circuit to perform the operations described above. The foregoing embodiment of the comparison circuit system 150 is merely an example, and the present invention is not limited thereto.

舉例而言,當偵測訊號A的能量大於偵測訊號B的能量時,代表低頻訊號的能量大於高頻訊號的能量。於此條件下,可調高等化器電路系統120的轉移函數在高頻的增益,或是降低等化器電路系統120的轉移函數在低頻的增益,以調整等化器電路系統120的等化強度。或者,當偵測訊號B的能量大於偵測訊號A的能量時,代表高頻訊號的能量大於低頻訊號的能量。於此條件下,可調高等化器電路系統120的轉移函 數在低頻的增益,或是降低等化器電路系統120的轉移函數在高頻的增益,以調整等化器電路系統120的等化強度。 For example, when the energy of the detection signal A is greater than the energy of the detection signal B, the energy representing the low frequency signal is greater than the energy of the high frequency signal. Under these conditions, the transfer function of the high equalizer circuit system 120 can be adjusted at a high frequency gain, or the gain of the transfer function of the equalizer circuit system 120 at a low frequency can be reduced to adjust the equalization of the equalizer circuit system 120. strength. Alternatively, when the energy of the detection signal B is greater than the energy of the detection signal A, the energy representing the high frequency signal is greater than the energy of the low frequency signal. Under these conditions, the transfer function of the high equalizer circuit system 120 can be adjusted at a low frequency gain, or the gain of the transfer function of the equalizer circuit system 120 at a high frequency can be reduced to adjust the equalization of the equalizer circuit system 120. strength.

在一些實施例中,計算電路系統140以及比較電路系統150可由微控制器、數位訊號處理電路或特殊應用積體電路(ASIC)實現。上述關於計算電路系統140的設置方式僅為示例,但本案並不以此為限。例如,在其他的一些實施例中,計算電路系統140可根據數位訊號VD直接執行前述式(1)以及式(2)的運算來產生偵測訊號A以及偵測訊號B。 In some embodiments, computing circuitry 140 and comparison circuitry 150 may be implemented by a microcontroller, a digital signal processing circuit, or an application specific integrated circuit (ASIC). The manner of setting the calculation circuit system 140 described above is merely an example, but the present invention is not limited thereto. For example, in some other embodiments, the computing circuit system 140 can directly perform the operations of the foregoing equations (1) and (2) according to the digital signal VD to generate the detection signal A and the detection signal B.

於一些實施例中,可調式訊號等化裝置100更包含一低通濾波器(未繪示)。此低通濾波器耦接於比較電路系統150以及等化器電路系統120之間。於一些實施例中,低通濾波器可在控制訊號VC累積至大於一參考值時才調整等化器電路系統120的轉移函數。如此一來,可避免等化器電路系統120在操作中被過度調整。 In some embodiments, the adjustable signal equalization device 100 further includes a low pass filter (not shown). The low pass filter is coupled between the comparison circuit system 150 and the equalizer circuit system 120. In some embodiments, the low pass filter can adjust the transfer function of the equalizer circuitry 120 when the control signal VC accumulates above a reference value. As such, the equalizer circuitry 120 can be prevented from being over-adjusted during operation.

於一些相關技術中,常利用偵測訊號邊緣的機制來判斷等化器是否有出現過度等化或等化不足。在這些技術中,隨著訊號的形式越來越複雜(例如為PAM4、PAM8編碼等等)或電路操作速度提高,在實現此機制的電路規格要求會越來高。如此,將造成等化器的電路機制的功率過高或電路面積過大等問題。 In some related technologies, the mechanism for detecting the edge of the signal is often used to determine whether the equalizer is excessively equalized or equalized. In these technologies, as the form of the signal becomes more and more complex (for example, PAM4, PAM8 encoding, etc.) or the operating speed of the circuit increases, the circuit specification requirements for implementing this mechanism will become higher. In this way, the power of the circuit mechanism of the equalizer is too high or the circuit area is too large.

相較於上述技術,本案採用頻域的概念來設計計算電路系統140,其中計算電路系統140的操作可由簡單運算(加減法操作)以及數位電路實現。如此一來,計算電路系統140的電路規格可以降低。此外,透過數位訊號處理的方式,比較 電路系統150可藉由計算絕對值的方式來計算能量。如此,可避免使用類比的功率偵測器來計算能量。因此,計算電路系統140以及比較電路系統150受到製程、電壓或溫度變異的影響較低。 In contrast to the above techniques, the present invention employs the concept of frequency domain to design computing circuitry 140, wherein the operation of computing circuitry 140 can be implemented by simple operations (addition and subtraction operations) and digital circuitry. As such, the circuit specifications of the computing circuitry 140 can be reduced. In addition, by means of digital signal processing, the comparison circuitry 150 can calculate the energy by calculating the absolute value. In this way, the analog power detector can be avoided to calculate energy. Therefore, computing circuitry 140 and comparison circuitry 150 are less affected by process, voltage, or temperature variations.

參照第2A圖,第2A圖為根據本案之一些實施例所繪示的第1圖中等化器電路系統120的電路示意圖。於此例中,第1圖中的輸入訊號VIN為一組差動輸入訊號VIN+以及VIN-且第1圖中的輸出訊號VO為一組差動輸出訊號VO+以及VO-。 Referring to FIG. 2A, FIG. 2A is a circuit diagram of the singulator circuit system 120 of FIG. 1 according to some embodiments of the present disclosure. In this example, the input signal VIN in FIG. 1 is a set of differential input signals VIN+ and VIN- and the output signal VO in FIG. 1 is a set of differential output signals VO+ and VO-.

於此例中,等化器電路系統120包含多個電晶體M1~M4、可調電阻RS、可調電容CS以及多個負載電阻RL1~RL2。電晶體M1的第一端耦接至負載電阻RL1,電晶體M1的第二端耦接至電晶體M3的第一端,且電晶體M1的控制端用以接收輸入訊號VIN+。電晶體M2的第一端耦接至負載電阻RL2,電晶體M2的第二端耦接至電晶體M4的第一端,且電晶體M2的控制端用以接收輸入訊號VIN-。電晶體M3以及M4的第二端耦接至地,且電晶體M3以及M4的控制端用以接收偏壓VBIAS。 In this example, the equalizer circuit system 120 includes a plurality of transistors M1 M M4, an adjustable resistor RS, a tunable capacitor CS, and a plurality of load resistors RL1 RL RL2. The first end of the transistor M1 is coupled to the load resistor RL1, the second end of the transistor M1 is coupled to the first end of the transistor M3, and the control end of the transistor M1 is configured to receive the input signal VIN+. The first end of the transistor M2 is coupled to the load resistor RL2, the second end of the transistor M2 is coupled to the first end of the transistor M4, and the control end of the transistor M2 is configured to receive the input signal VIN-. The second ends of the transistors M3 and M4 are coupled to ground, and the control terminals of the transistors M3 and M4 are used to receive the bias voltage VBIAS.

可調電阻RS與可變電容CS並聯耦接於電晶體M1的第二端以及電晶體M2的第二端之間。於一些實施例中,可調電阻RS與可變電容CS中至少一者設置以由第1圖的控制訊號VC控制。例如,於一些實施例中,可變電容CS的容值設為固定,且可調電阻RS的阻值由控制訊號VC調整。於一些實施例中,可調電阻RS的阻值設為固定,且可變電容CS的容值 由控制訊號VC調整。或者,於又一些實施例中,可調電阻RS的阻值與可變電容CS的容值同時由一或多個控制訊號VC調整。 The adjustable resistor RS is coupled in parallel with the variable capacitor CS between the second end of the transistor M1 and the second end of the transistor M2. In some embodiments, at least one of the adjustable resistor RS and the variable capacitor CS is set to be controlled by the control signal VC of FIG. For example, in some embodiments, the capacitance of the variable capacitor CS is set to be fixed, and the resistance of the adjustable resistor RS is adjusted by the control signal VC. In some embodiments, the resistance of the adjustable resistor RS is set to be fixed, and the capacitance of the variable capacitor CS is adjusted by the control signal VC. Alternatively, in still other embodiments, the resistance of the adjustable resistor RS and the capacitance of the variable capacitor CS are simultaneously adjusted by one or more control signals VC.

於一些實施例中,可調電阻RS可由切換式電阻陣列實現。於一些實施例中,可調電阻RS可由壓控電阻實現,其中壓控電阻可由電晶體實現。於一些實施例中,可變電容CS可由切換式電容陣列實現。於一些實施例中,可變電容CS可由壓控電容實現,其中壓控電容可由電晶體實現。上述各元件的實施方式僅為示例,其他各種可適用的實施方式皆為本案所涵蓋的範圍。 In some embodiments, the adjustable resistance RS can be implemented by a switched resistor array. In some embodiments, the adjustable resistance RS can be implemented by a voltage controlled resistor, wherein the voltage controlled resistor can be implemented by a transistor. In some embodiments, the variable capacitance CS can be implemented by a switched capacitor array. In some embodiments, the variable capacitance CS can be implemented by a voltage controlled capacitor, wherein the voltage control capacitor can be implemented by a transistor. The embodiments of the above various elements are merely examples, and other various applicable embodiments are within the scope of the present disclosure.

同時參照第2A圖與第2B圖,第2B圖為根據本案一些實施例繪示第2A圖中等化器電路系統120的轉移函數的變化示意圖。為易於理解,在第2B圖的例子中,可變電阻RS的阻值設置為基於控制訊號VC調整,且可變電容CS的容值設為固定。等化器電路系統120的轉移函數於低頻的增益與可變電阻RS相關。例如,當可變電阻RS的阻值越大,等化器電路系統120的轉移函數於低頻的增益越小。或者,當可變電阻RS的阻值越小,等化器電路系統120的轉移函數於低頻的增益越大。 Referring to FIGS. 2A and 2B, FIG. 2B is a schematic diagram showing changes in the transfer function of the chemist circuit 120 of FIG. 2A according to some embodiments of the present invention. For ease of understanding, in the example of FIG. 2B, the resistance of the variable resistor RS is set to be adjusted based on the control signal VC, and the capacitance of the variable capacitor CS is set to be fixed. The gain of the transfer function of the equalizer circuit system 120 at the low frequency is related to the variable resistance RS. For example, as the resistance of the variable resistor RS is larger, the gain of the transfer function of the equalizer circuit system 120 at the low frequency is smaller. Alternatively, as the resistance of the variable resistor RS is smaller, the gain of the transfer function of the equalizer circuit system 120 at the low frequency is larger.

因此,當偵測訊號A的能量大於偵測訊號B的能量時,代表低頻訊號的能量大於高頻訊號的能量。於此條件下,比較電路系統150可輸出對應的控制訊號VC來調高可變電阻RS的阻值,藉此使等化器電路系統120的轉移函數於低頻的增益變小。 Therefore, when the energy of the detection signal A is greater than the energy of the detection signal B, the energy representing the low frequency signal is greater than the energy of the high frequency signal. Under this condition, the comparison circuit system 150 can output a corresponding control signal VC to increase the resistance of the variable resistor RS, thereby making the gain of the transfer function of the equalizer circuit system 120 low at the low frequency.

或者,當偵測訊號B的能量大於偵測訊號A的能量時,代表高頻訊號的能量大於低頻訊號的能量。於此條件下,比較電路系統150可輸出對應的控制訊號VC來調低可變電阻RS的阻值,藉此使等化器電路系統120的轉移函數於低頻的增益變大。 Alternatively, when the energy of the detection signal B is greater than the energy of the detection signal A, the energy representing the high frequency signal is greater than the energy of the low frequency signal. Under this condition, the comparison circuit system 150 can output a corresponding control signal VC to lower the resistance of the variable resistor RS, thereby increasing the gain of the transfer function of the equalizer circuit system 120 at a low frequency.

上述第2A圖的等化器電路系統120僅為示例,其他類型的等化器電路系統亦為本案所涵蓋的範圍。 The equalizer circuitry 120 of Figure 2A above is merely an example, and other types of equalizer circuitry are also within the scope of this disclosure.

參照第3圖,第3圖為根據本案一些實施例所繪示的一種調整方法300的流程圖。為易於說明,一併參照第1圖與第3圖,以說明可調式訊號等化裝置100的相關操作。於一些實施例中,調整方法300包含操作S310、操作S320以及操作S330。 Referring to FIG. 3, FIG. 3 is a flow chart of an adjustment method 300 according to some embodiments of the present disclosure. For ease of explanation, reference is made to FIGS. 1 and 3 together to explain the related operations of the adjustable signal equalization device 100. In some embodiments, the adjustment method 300 includes an operation S310, an operation S320, and an operation S330.

於操作S310,類比至數位轉換器130轉換等化器電路系統120之輸出至數位訊號VD。例如,如第1圖所示,等化器電路系統120的輸出訊號VO經類比至數位轉換器130轉換為數位訊號VD。 In operation S310, the analog to digital converter 130 converts the output of the equalizer circuit system 120 to the digital signal VD. For example, as shown in FIG. 1, the output signal VO of the equalizer circuitry 120 is converted to a digital signal VD via an analog to digital converter 130.

於操作S320,計算電路系統140處理數位訊號VD,以產生偵測訊號A與偵測訊號B。例如,計算電路系統140可根據第1圖的設置方式產生偵測訊號A與偵測訊號B。或者,計算電路系統140可直接根據前述式(1)與式(2)直接處理數位訊號VD,以產生偵測訊號A與偵測訊號B。 In operation S320, the computing circuitry 140 processes the digital signal VD to generate the detection signal A and the detection signal B. For example, the calculation circuit system 140 can generate the detection signal A and the detection signal B according to the setting manner of FIG. Alternatively, the computing circuit system 140 can directly process the digital signal VD according to the foregoing equations (1) and (2) to generate the detection signal A and the detection signal B.

於操作S330,比較電路系統150計算並比較偵測訊號A與偵測訊號B之能量,以輸出控制訊號VC調整等化器電路系統120的轉移函數。 In operation S330, the comparison circuit system 150 calculates and compares the energy of the detection signal A and the detection signal B to output a transfer function of the control signal VC adjustment equalizer circuit system 120.

例如,如第1圖所示,比較電路系統150可藉由分別對偵測訊號A與偵測訊號B取絕對值,以計算出偵測訊號A的能量以及偵測訊號B的能量。如先前所述,當偵測訊號A的能量大於偵測訊號B的能量時,可調高等化器電路系統120的轉移函數在高頻的增益,或是降低等化器電路系統120的轉移函數在低頻的增益。或者,當偵測訊號B的能量大於偵測訊號A的能量時,可調高等化器電路系統120的轉移函數在低頻的增益,或是降低等化器電路系統120的轉移函數在高頻的增益。 For example, as shown in FIG. 1, the comparison circuit system 150 can calculate the energy of the detection signal A and the energy of the detection signal B by taking absolute values of the detection signal A and the detection signal B, respectively. As previously described, when the energy of the detection signal A is greater than the energy of the detection signal B, the transfer function of the high equalizer circuit system 120 can be adjusted at a high frequency gain, or the transfer function of the equalizer circuit system 120 can be reduced. Gain at low frequencies. Alternatively, when the energy of the detection signal B is greater than the energy of the detection signal A, the transfer function of the high equalizer circuit system 120 can be adjusted at a low frequency gain, or the transfer function of the equalizer circuit system 120 can be lowered at a high frequency. Gain.

上述調整方法300多個步驟僅為示例,並非限定需依照此示例中的順序執行。在不違背本揭示內容的各實施例的操作方式與範圍下,在調整方法300下的各種操作當可適當地增加、替換、省略或以不同順序執行。 The above adjustment method 300 steps are merely examples, and are not limited to be performed in the order in this example. Various operations under the adjustment method 300 may be appropriately added, replaced, omitted, or performed in a different order, without departing from the scope of operation of the embodiments of the present disclosure.

綜上所述,本案所提供的可調式訊號等化裝置與其調整方法可藉由簡單的運算以及數位電路實現,以降低電路所需規格並同時降低製程、電壓、與溫度(PVT)變異對轉移函數的影響。 In summary, the adjustable signal equalization device and its adjustment method provided by the present invention can be realized by simple calculation and digital circuit to reduce the required specifications of the circuit and simultaneously reduce the process, voltage, and temperature (PVT) variation. The effect of the function.

雖然本案已以實施方式揭露如上,然其並非限定本案,任何熟習此技藝者,在不脫離本案之精神和範圍內,當可作各種之更動與潤飾,因此本案之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the case. Anyone who is familiar with the art can make various changes and refinements without departing from the spirit and scope of the case. Therefore, the scope of protection of this case is attached. The scope defined in the scope of application for patent application shall prevail.

Claims (16)

一種可調式訊號等化裝置,包含:一等化器電路系統(circuitry),具有一轉移函數,該等化器電路系統用以基於該轉移函數處理一輸入訊號以產生一輸出訊號;一類比至數位轉換器,用以根據該輸出訊號產生一第一數位訊號;一計算電路系統,用以根據該第一數位訊號進行累加以產生一第一累加值與一第二累加值,並根據該第一累加值以及該第二累加值產生一第一偵測訊號與一第二偵測訊號;以及一比較電路系統,用以比較該第一偵測訊號與該第二偵測訊號,並在該第一偵測訊號不同於該第二偵測訊號時輸出一控制訊號至該等化器電路系統,以調整該轉移函數。  An adjustable signal equalization device comprising: a first equalizer circuit circuit having a transfer function for processing an input signal based on the transfer function to generate an output signal; a digital converter for generating a first digital signal according to the output signal; a computing circuit for generating a first accumulated value and a second accumulated value according to the first digital signal, and according to the first And the second detection signal generates a first detection signal and a second detection signal; and a comparison circuit system for comparing the first detection signal and the second detection signal, and When the first detection signal is different from the second detection signal, a control signal is outputted to the equalizer circuit to adjust the transfer function.   如請求項1所述的可調式訊號等化裝置,其中該計算電路系統包含:一第一累加電路,用以根據該第一數位訊號進行累加以產生該第一累加值;一延遲電路,用以延遲該第一數位訊號以產生一第二數位訊號;以及一第二累加電路,用以根據該第二數位訊號進行累加以產生該第二累加值。  The tunable signal equalization device of claim 1, wherein the computing circuit system comprises: a first accumulating circuit for generating the first accumulated value according to the first digital signal; and a delay circuit for Delaying the first digital signal to generate a second digital signal; and a second accumulating circuit for generating the second accumulated value according to the second digital signal.   如請求項2所述的可調式訊號等化裝置,其中該計算電路系統更包含:一第一降頻電路,用以降取樣該第一數位訊號,以產生一第三數位訊號,其中該第一累加電路用以累加該第三數位訊號以產生該第一累加值;以及一第二降頻電路,用以降取樣該第二數位訊號,以產生一第四數位訊號,其中該第二累加電路用以累加該第四數位訊號以產生該第二累加值。  The tunable signal equalization device of claim 2, wherein the computing circuit system further comprises: a first frequency down circuit for downsampling the first digital signal to generate a third digital signal, wherein the first The accumulating circuit is configured to accumulate the third digit signal to generate the first accumulating value; and a second downconverting circuit is configured to downsample the second digit signal to generate a fourth digit signal, wherein the second accumulating circuit is used The fourth digit signal is accumulated to generate the second accumulated value.   如請求項2所述的可調式訊號等化裝置,其中該計算電路系統更包含:一第一運算電路,用以相加該第一累加值以及該第二累加值,以產生該第一偵測訊號;以及一第二運算電路,用以相減該第一累加值以及該第二累加值,以產生該第二偵測訊號。  The tunable signal equalization device of claim 2, wherein the computing circuit system further comprises: a first operation circuit, configured to add the first accumulated value and the second accumulated value to generate the first Detector And a second operation circuit for subtracting the first accumulated value and the second accumulated value to generate the second detection signal.   如請求項4所述的可調式訊號等化裝置,其中該第一數位訊號之快速傅立葉轉換滿足下式(1): 其中k=0,1,…,N-1,N為正數並為取樣點數量,W N為N次單位根,其中該第一累加值相當於上式(1)中的多個奇數項次因子的和,且該第二累加值相當於上式(1)中的多個偶數項次因子的和。 The adjustable signal equalization device according to claim 4, wherein the fast Fourier transform of the first digital signal satisfies the following formula (1): Where k=0,1,...,N-1,N is a positive number and is the number of sampling points, W N is the N-th unit root, wherein the first accumulated value is equivalent to multiple odd-numbered lines in the above formula (1) The sum of the factors, and the second accumulated value corresponds to the sum of the plurality of even-numbered sub-factors in the above formula (1). 如請求項5所述的可調式訊號等化裝置,其中該第一偵測訊號在頻域上滿足下式: The adjustable signal equalization device according to claim 5, wherein the first detection signal satisfies the following formula in the frequency domain: 如請求項5所述的可調式訊號等化裝置,其中該第二偵測訊號在頻域上滿足下式: The adjustable signal equalization device according to claim 5, wherein the second detection signal satisfies the following formula in the frequency domain: 如請求項1所述的可調式訊號等化裝置,其中該比較電路系統用以對該第一偵測訊號取絕對值以決定該第一偵測訊號的一第一能量,並對該第二偵測訊號取絕對值以決定該第二偵測訊號的一第二能量,以根據該第一能量與該第二能量之一比較結果輸出該控制訊號。  The tunable signal equalization device of claim 1, wherein the comparison circuit is configured to determine an absolute value of the first detection signal to determine a first energy of the first detection signal, and to the second The detection signal takes an absolute value to determine a second energy of the second detection signal to output the control signal according to the comparison result of the first energy and the second energy.   如請求項1所述的可調式訊號等化裝置,更包含:一放大器,用以放大該輸出訊號,其中該類比至數位轉換器更用以根據放大後的該輸出訊號產生該第一數位訊號。  The tunable signal equalization device of claim 1, further comprising: an amplifier for amplifying the output signal, wherein the analog to digital converter is further configured to generate the first digital signal according to the amplified output signal .   一種調整方法,用以調整一等化器電路系統的一轉移函數,該調整方法包含:藉由一類比至數位轉換器轉換該等化器電路系統輸出的 一輸出訊號至一第一數位訊號;藉由一計算電路系統根據該第一數位訊號進行累加以產生一第一累加值與一第二累加值,並根據該第一累加值以及該第二累加值產生一第一偵測訊號與一第二偵測訊號;以及藉由一比較電路系統比較該第一偵測訊號與該第二偵測訊號,並在該第一偵測訊號不同於該第二偵測訊號時輸出一控制訊號至該等化器電路系統,以調整該轉移函數。  An adjustment method for adjusting a transfer function of the equalizer circuit system, the method comprising: converting an output signal output by the equalizer circuit system to a first digital signal by an analog to digital converter; Generating a first accumulated value and a second accumulated value according to the first digital signal by a calculating circuit system, and generating a first detecting signal and a first accumulated value according to the first accumulated value and the second accumulated value a second detection signal; and comparing the first detection signal and the second detection signal by a comparison circuit system, and outputting a control signal when the first detection signal is different from the second detection signal The equalizer circuitry adjusts the transfer function.   如請求項10所述的調整方法,其中產生該第一偵測訊號與該第二偵測訊號包含:藉由該計算電路系統的一第一累加電路根據該第一數位訊號進行累加以產生該第一累加值;藉由該計算電路系統的一延遲電路延遲該第一數位訊號以產生一第二數位訊號;以及藉由該計算電路系統的一第二累加電路根據該第二數位訊號進行累加以產生該第二累加值。  The method of claim 10, wherein the generating the first detection signal and the second detection signal comprises: generating, by the first accumulation circuit of the calculation circuit system, the accumulation according to the first digital signal a first accumulated value; a delay circuit of the computing circuit system delays the first digital signal to generate a second digital signal; and a second accumulating circuit of the computing circuit system accumulates the second digital signal according to the second digital signal To generate the second accumulated value.   如請求項11所述的調整方法,其中產生該第一偵測訊號與該第二偵測訊號更包含:藉由該計算電路系統的一第一降頻電路降取樣該第一數位訊號,以產生一第三數位訊號,其中該第一累加電路用以累加該第三數位訊號以產生該第一累加值;以及藉由該計算電路系統的一第二降頻電路降取樣該第二數位訊號,以產生一第四數位訊號,其中該第二累加電路用以累加該第四數位訊號以產生該第二累加值。  The method of claim 11, wherein the generating the first detection signal and the second detection signal further comprises: downsampling the first digital signal by a first frequency reduction circuit of the computing circuit system to Generating a third digit signal, wherein the first accumulating circuit is configured to accumulate the third digit signal to generate the first accumulating value; and downsampling the second digit signal by using a second downconverting circuit of the computing circuitry And generating a fourth digit signal, wherein the second accumulating circuit is configured to accumulate the fourth digit signal to generate the second accumulated value.   如請求項10所述的調整方法,其中產生該第一偵測訊號與該第二偵測訊號更包含:藉由該計算電路系統的一第一運算電路相加該第一累加值以及該第二累加值,以產生該第一偵測訊號;以及藉由該計算電路系統的一第二運算電路相減該第一累加值以及該第二累加值,以產生該第二偵測訊號。  The method of claim 10, wherein the generating the first detection signal and the second detection signal further comprises: adding the first accumulated value and the first by a first operational circuit of the computing circuit system And accumulating the first detection signal; and subtracting the first accumulated value and the second accumulated value by a second operation circuit of the computing circuit to generate the second detection signal.   如請求項13所述的調整方法,其中該第一數位訊號之快速傅立葉轉換滿足下式(1): 其中k=0,1,…,N-1,N為正數並為取樣點數量,W N為N次單位根,其中該第一累加值相當於上式(1)中的多個奇數項次因子的和,且該第二累加值相當於上式(1)中的多個偶數項次因子的和。 The adjustment method of claim 13, wherein the fast Fourier transform of the first digital signal satisfies the following formula (1): Where k=0,1,...,N-1,N is a positive number and is the number of sampling points, W N is the N-th unit root, wherein the first accumulated value is equivalent to multiple odd-numbered lines in the above formula (1) The sum of the factors, and the second accumulated value corresponds to the sum of the plurality of even-numbered sub-factors in the above formula (1). 如請求項14所述的調整方法,其中該第一偵測訊號在頻域上滿足下式: The adjustment method of claim 14, wherein the first detection signal satisfies the following formula in the frequency domain: 如請求項14所述的調整方法,其中該第二偵測訊號在頻域上滿足下式: The adjustment method of claim 14, wherein the second detection signal satisfies the following formula in the frequency domain:
TW106134776A 2017-10-11 2017-10-11 Adjustable signal equalization device and adjustment method thereof TWI650950B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106134776A TWI650950B (en) 2017-10-11 2017-10-11 Adjustable signal equalization device and adjustment method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106134776A TWI650950B (en) 2017-10-11 2017-10-11 Adjustable signal equalization device and adjustment method thereof

Publications (2)

Publication Number Publication Date
TWI650950B TWI650950B (en) 2019-02-11
TW201916596A true TW201916596A (en) 2019-04-16

Family

ID=66214003

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106134776A TWI650950B (en) 2017-10-11 2017-10-11 Adjustable signal equalization device and adjustment method thereof

Country Status (1)

Country Link
TW (1) TWI650950B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100527000B1 (en) * 2003-04-10 2005-11-08 한국전자통신연구원 Automatic gain control apparatus capable of compensating dc offset in orthogonal frequency division multipexing and method thereof
US7511652B1 (en) * 2007-12-31 2009-03-31 Industrial Technology Research Institute Comparison device and analog-to-digital converter
US8854750B2 (en) * 2012-07-30 2014-10-07 Lsi Corporation Saturation-based loop control assistance

Also Published As

Publication number Publication date
TWI650950B (en) 2019-02-11

Similar Documents

Publication Publication Date Title
US8649419B2 (en) Method and apparatus for input signal offset compensation
US7321259B1 (en) Programmable logic enabled dynamic offset cancellation
US20130147520A1 (en) Comparator with improved time constant
US20070194960A1 (en) Time-interleaved analog-to-digital converter having timing calibration
TWI425772B (en) Envelope detetor and associated method
US20170099163A1 (en) On-Chip AC Coupled Receiver with Real-Time Linear Baseline-Wander Compensation
US20150103961A1 (en) Digital frequency band detector for clock and data recovery
CN104734645B (en) A kind of method that variable-gain amplification circuit DC maladjustment is eliminated using current DAC
US7068195B1 (en) Accurate sampling technique for ADC
US11374601B2 (en) Interleaving ADC error correction methods for Ethernet PHY
US7697601B2 (en) Equalizers and offset control
CN109660257B (en) Adjustable signal equalization device and adjusting method thereof
TWI650950B (en) Adjustable signal equalization device and adjustment method thereof
US10135393B2 (en) Signal detector including a set of resistors and a collection unit for generating a detection signal
US10554449B1 (en) Baseline wander compensation in SerDes transceivers
TWI663840B (en) Adjusting circuit of adaptive receiving equalizer and communication device using same
Yu et al. A mixed sample-time error calibration technique in time-interleaved ADCs
US9083377B2 (en) Analog-to-digital converter
WO2021104382A1 (en) Baseline drift elimination apparatus and receiver
JP4394970B2 (en) Signal measurement using a programmable gain amplifier
US20180048396A1 (en) System, apparatus, and method for at least mitigating a signal reflection
CN112491429B (en) Communication receiving device and clock data recovery method
CN203039646U (en) High-performance operational amplifier
TWI554041B (en) Binary signal detection based on non-uniform adc
KR101811614B1 (en) Compensation circuit for differential signal and controlling method thereof