TW201915953A - Redundant point detection method for point cloud data attachment capable of effectively reducing the data storage cost and increasing the data transmission efficiency and computation efficiency - Google Patents

Redundant point detection method for point cloud data attachment capable of effectively reducing the data storage cost and increasing the data transmission efficiency and computation efficiency Download PDF

Info

Publication number
TW201915953A
TW201915953A TW106131674A TW106131674A TW201915953A TW 201915953 A TW201915953 A TW 201915953A TW 106131674 A TW106131674 A TW 106131674A TW 106131674 A TW106131674 A TW 106131674A TW 201915953 A TW201915953 A TW 201915953A
Authority
TW
Taiwan
Prior art keywords
point cloud
data
cloud data
simplified
point
Prior art date
Application number
TW106131674A
Other languages
Chinese (zh)
Other versions
TWI625700B (en
Inventor
黃文輝
胡博期
林治中
吳佳祥
Original Assignee
財團法人金屬工業研究發展中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人金屬工業研究發展中心 filed Critical 財團法人金屬工業研究發展中心
Priority to TW106131674A priority Critical patent/TWI625700B/en
Priority to CN201810347829.7A priority patent/CN109508141B/en
Application granted granted Critical
Publication of TWI625700B publication Critical patent/TWI625700B/en
Publication of TW201915953A publication Critical patent/TW201915953A/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/0626Reducing size or complexity of storage systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/061Improving I/O performance
    • G06F3/0613Improving I/O performance in relation to throughput
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0638Organizing or formatting or addressing of data
    • G06F3/064Management of blocks
    • G06F3/0641De-duplication techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Image Processing (AREA)
  • Image Generation (AREA)

Abstract

Provided is a redundant point detection method for point cloud data attachment, which is performed by a data processing device. The method comprises: receiving the first and second point cloud data with a continuous relationship from a scanner; performing down-sampling on the first and second point cloud data to generate the first and second simplified point cloud data, respectively; establishing a three-dimensional point cloud index structure of the first simplified point cloud data for searching each data point in the second simplified point cloud data so as to correspond to each data point of the first simplified point cloud data; establishing an optimized conversion matrix, such that, after the second simplified point cloud data is converted through the optimized conversion matrix, there is a minimum distance between the tangent planes of two data points corresponding to the first and second simplified point cloud data; and determining the two data points to be the redundant data points when the minimum distance is smaller than a judgment value.

Description

用於點雲資料貼合之冗餘點偵測方法Redundant point detection method for point cloud data bonding

本創作是有關一種用於點雲資料貼合之冗餘點偵測方法,特別是指將兩筆具有點雲(point cloud)資料進行貼合時,偵測出該兩點雲資料之重複冗餘點的方法。This creation is about a redundant point detection method for point cloud data bonding, especially when two points with point cloud data are combined, and the duplicate redundant point data is detected. The rest of the method.

習知點雲資料掃描系統係利用移動中一掃描器對一目標物進行連續掃描,其中,每掃描一次可得到一筆點雲資料,該點雲資料包含複數資料點,每一資料點包含有三維座標資訊以供建構該目標物的影像。所以,在進行快速掃描取像時,在短時間內可產生多筆點雲資料,每一筆點雲資料的三維座標資訊係以每秒數十到數百筆的速度進入掃描系統。The conventional point cloud data scanning system uses a moving scanner to continuously scan a target object. Among them, each scan can obtain a point cloud data, the point cloud data contains a plurality of data points, and each data point contains a three-dimensional The coordinate information is used to construct an image of the target. Therefore, when performing fast scanning and acquisition, multiple point cloud data can be generated in a short time. The three-dimensional coordinate information of each point cloud data enters the scanning system at a speed of tens to hundreds of strokes per second.

舉例來說,請參考圖8A,掃描器先後產生一第一點雲資料41與一第二點雲資料42,請參考圖8B,掃描系統可根據該兩點雲資料41、42的重複區域40將該兩點雲資料41、42彼此貼合,其中,該第一點雲資料41的邊界410落在第二點雲資料42的範圍內,相對的,該第二點雲資料42的邊界420落在第一點雲資料41的範圍內,該兩邊界410、420之間即為該重複區域40。請參考圖8C與圖8D,掃描器接著產生一第三點雲資料43,掃描系統係將貼合後的第一、第二點雲資料41、42再貼合該第三點雲資料43。依此類推,請參考圖8E,掃描系統可再接收一第四點雲資料44或再依序接收更多筆點雲資料,以進一步進行貼合。For example, please refer to FIG. 8A, the scanner successively generates a first point cloud data 41 and a second point cloud data 42. Please refer to FIG. 8B. The scanning system may refer to the repeating area 40 of the two point cloud data 41 and 42. The two point cloud data 41 and 42 are adhered to each other, wherein the boundary 410 of the first point cloud data 41 falls within the range of the second point cloud data 42. In contrast, the boundary 420 of the second point cloud data 42 If it falls within the range of the first point cloud data 41, the repeated area 40 is between the two boundaries 410 and 420. Please refer to FIG. 8C and FIG. 8D, the scanner then generates a third point cloud data 43, and the scanning system then pastes the first and second point cloud data 41, 42 after the third point cloud data 43 is pasted. By analogy, please refer to FIG. 8E. The scanning system may receive a fourth point cloud data 44 or sequentially receive more point cloud data in order to further fit.

如前所述,該掃描系統係根據兩相鄰的點雲資料的重複區域而將該兩點雲資料串接貼合,整體來看,當完成掃描該目標物的掃描後,在不同的點雲資料之間,其重複區域資料點的重複性高,不但提升資料儲存的成本,也影響點雲資料的傳輸效率以及計算效率。As mentioned above, the scanning system is based on the overlapping areas of two adjacent point cloud data, and the two point cloud data are connected and connected in series. As a whole, after the scan of the target object is completed, the points are at different points. Between cloud data, the repeatability of data points in its repeated regions is high, which not only increases the cost of data storage, but also affects the transmission efficiency and calculation efficiency of point cloud data.

有鑒於此,本創作之主要目的是提供一種用於點雲資料貼合之冗餘點偵測方法,用以偵測貼合之點雲資料的重複冗餘點,當排除重複的冗餘點,即可有效降低資料儲存的成本,也提升資料的傳輸效率以及計算效率。In view of this, the main purpose of this creation is to provide a redundant point detection method for point cloud data bonding, which is used to detect the repeated redundant points of the bonded point cloud data. When eliminating redundant points , Which can effectively reduce the cost of data storage, and also improve data transmission efficiency and calculation efficiency.

本創作用於點雲資料貼合之冗餘點偵測方法,係於一資料處理裝置執行,該資料處理裝置連線一掃描器以接收點雲資料,該方法包含: 接收具有連續關係的一第一點雲資料與一第二點雲資料; 對該第一點雲資料與該第二點雲資料進行縮減取樣,以分別成為一第一簡化點雲資料與一第二簡化點雲資料; 建立該第一簡化點雲資料的三維點雲索引結構,供搜尋該第二簡化點雲資料中的各資料點以對應於該第一簡化點雲資料的各資料點; 建立一最佳化轉換矩陣,使該第二簡化點雲資料透過該最佳化轉換矩陣的轉換後,該第一簡化點雲資料與該第二簡化點雲資料之對應的兩筆資料點的切平面之間具有一最小距離; 判斷該最小距離是否小於一判斷值;若是,則所述兩筆資料點為冗餘的資料點;若否,回到「建立該第一簡化點雲資料的三維點雲索引結構,供搜尋該第二點雲資料中的各資料點以對應於該第一簡化點雲資料的各資料點」的步驟,以進行該最佳化轉換矩陣的疊代運算。This method is a redundant point detection method for point cloud data bonding, which is executed on a data processing device. The data processing device is connected to a scanner to receive point cloud data. The method includes: receiving a continuous relationship First point cloud data and a second point cloud data; downsampling the first point cloud data and the second point cloud data to become a first simplified point cloud data and a second simplified point cloud data, respectively; Establishing a three-dimensional point cloud index structure of the first simplified point cloud data for searching each data point in the second simplified point cloud data to correspond to each data point of the first simplified point cloud data; establishing an optimized transformation Matrix, after the second simplified point cloud data is transformed by the optimized transformation matrix, a tangent plane between the two simplified data points corresponding to the first simplified point cloud data and the second simplified point cloud data has a Minimum distance; judging whether the minimum distance is less than a judgment value; if yes, the two data points are redundant data points; if not, returning to "establishing a three-dimensional point cloud index structure of the first simplified point cloud data, for The step of searching each of the second data each data point in the point cloud data corresponding to the first data point of the point cloud simplified "to iterate the calculation of optimum conversion matrix.

根據本創作的偵測方法,是將兩筆簡化點雲資料當中重複的冗餘資料點偵測出來,所述冗餘資料點代表該兩簡化點雲資料所掃描到的重疊區域的資料點,因此,在應用上可排除任一筆簡化點雲資料的冗餘資料點,讓不同點雲資料之間重複的資料點不會重複儲存及運算,降低資料的吞吐量,故能有效降低資料儲存的成本,也提升資料的傳輸效率以及計算效率。According to the detection method of this creation, duplicate redundant data points in two simplified point cloud data are detected, and the redundant data points represent data points in the overlapping area scanned by the two simplified point cloud data. Therefore, any redundant data points that simplify the point cloud data can be eliminated in the application, so that duplicate data points between different point cloud data will not be repeatedly stored and calculated, reducing the data throughput, so it can effectively reduce the data storage. Cost also improves data transmission efficiency and calculation efficiency.

請參考圖1,執行本創作偵測方法的系統包含有一掃描器10與一資料處理裝置20。該掃描器10可採用結構光(structured light)掃描技術對一目標物進行掃描以取得一筆點雲(point cloud)資料,該點雲資料包含複數資料點,該等資料點可構成目標物的圖像,其中每一個資料點可包含亮度資訊、深度資訊(range image)以及三維空間參數,三維空間參數可包含各資料點的x軸旋轉索引值(yaw)、x座標、與x軸的夾角(α)、y軸旋轉索引值(pitch)、y座標、與y軸的夾角(β)、z軸旋轉索引值(roll)、z座標、與z軸的夾角(γ)…等。該資料處理裝置20可為電腦,但不以此為限,該資料處理裝置20連線該掃描器10,以接收該掃描器10所拍攝的點雲資料。Please refer to FIG. 1, a system for performing the creative detection method includes a scanner 10 and a data processing device 20. The scanner 10 can scan a target object using structured light scanning technology to obtain a point cloud data. The point cloud data includes a plurality of data points, and these data points can form a map of the target object. For example, each data point may include brightness information, depth information (range image), and three-dimensional space parameters. The three-dimensional space parameters may include the x-axis rotation index value (yaw), x-coordinates, and the angle between the x-axis ( α), y-axis rotation index (pitch), y-coordinate, angle (β) with y-axis, z-axis rotation index (roll), z-coordinate, angle (γ) with z-axis, etc. The data processing device 20 may be a computer, but is not limited thereto. The data processing device 20 is connected to the scanner 10 to receive point cloud data captured by the scanner 10.

需說明的是,本創作偵測方法的實施例是以口內掃描系統為例說明,但不以此為限,本創作偵測方法亦可應用於其它類型的三維重建系統,舉例來說,本創作可應用於各產業領域的三維檢測、快速成形與三維列印…等。It should be noted that the embodiment of the creative detection method is described using an intra-oral scanning system as an example, but it is not limited thereto. The creative detection method can also be applied to other types of 3D reconstruction systems. For example, This creation can be applied to 3D inspection, rapid prototyping and 3D printing in various industrial fields ...

首先簡要說明本創作偵測方法的整體架構流程,首先,該掃描器10沿著一軌跡移動,在移動的同時,該掃描器10對一目標物連續掃描,其中,每掃描一次可產生一筆點雲資料,故連續掃描可產生多筆點雲資料,並由該資料處理裝置20接收該等點雲資料。請參考圖2A,考慮先後掃描到的第一點雲資料與第二點雲資料,由於掃描器10是在行進間連續掃描,所以該兩點雲資料的內容並非完全吻合,但有彼此重複的部分,該資料處理裝置20可調整第二點雲資料的方位以供正確貼合於第一點雲資料。為了調整第二點雲資料的方位,本創作建立第一點雲資料的三維點雲索引結構,根據該三維點雲索引結構,可供初步得到該兩點雲資料之間各資料點的對應關係。接著,本創作經過數次疊代運算後產生一最佳化轉換矩陣,供該第二點雲資料通過該最佳化轉換矩陣的轉換以貼合於第一點雲資料。經過貼合後,該兩點雲資料彼此重複的部分已大致重疊,故能在該兩點雲資料之重疊處偵測出重複的冗餘資料點。First, the overall architecture and flow of the creative detection method will be briefly explained. First, the scanner 10 moves along a trajectory. While moving, the scanner 10 continuously scans an object, wherein each scan can generate a point Cloud data, so continuous scanning can generate multiple point cloud data, and the data processing device 20 receives the point cloud data. Please refer to Figure 2A, consider the first point cloud data scanned successively And second point cloud data Since the scanner 10 scans continuously during travel, the two point cloud data , The content of is not completely consistent, but there are parts that overlap with each other. The data processing device 20 can adjust the second point cloud data. For correct fit to the first point cloud data . To adjust the second point cloud data Position, this creation establishes the first point cloud data 3D point cloud index structure. According to the 3D point cloud index structure, the two point cloud data can be obtained initially. , Correspondence between data points. Then, after several iterations in this creation, an optimized transformation matrix is generated for the second point cloud data. Fitting to the first point cloud data through the transformation of this optimized transformation matrix . After fitting, the two point cloud data , The overlapping parts have roughly overlapped, so the data in the two point clouds can be , Duplicate redundant data points were detected at the overlap.

以下詳細說明本創作的技術手段,請配合參考圖3,本創作偵測方法的實施例包含以下步驟:The following describes the technical methods of this creation in detail. Please refer to FIG. 3 for reference. The embodiment of the detection method of this creation includes the following steps:

步驟S1:掃描目標物Step S1: Scan the target

該掃描器10可為手持式掃描器或固定式掃描器,以手持式掃描器為例,牙科醫師將掃描器10伸入患者的口腔內以進行牙齒的拍攝作業,當該掃描器10沿著患者牙體表面移動並掃描時,可得到數筆具有連續關係的牙體點雲資料。為了說明,請參考圖2A,本創作以該掃描器10在行進間連續拍攝以得到第一點雲資料與第二點雲資料為例,因為該兩點雲資料是在該掃描器10移動的狀態下所連續掃描的,故該第一點雲資料與該第二點雲資料分別對應於不同的口腔內位置。The scanner 10 may be a hand-held scanner or a fixed scanner. Taking the hand-held scanner as an example, a dentist extends the scanner 10 into a patient's mouth to perform a tooth photographing operation. When the scanner 10 moves along the scanner 10 When the patient's tooth surface is moved and scanned, several tooth point cloud data with continuous relationship can be obtained. For illustration, please refer to FIG. 2A. In this work, the scanner 10 is used to continuously shoot during travel to obtain the first point cloud data. And second point cloud data For example, because the two point cloud data , The first point cloud data is continuously scanned while the scanner 10 is moving. And the second point cloud data Corresponds to different intraoral locations.

步驟S2:縮減取樣(Down-sampling)Step S2: Down-sampling

該資料處理裝置20接收該第一點雲資料與該第二點雲資料,其中,該資料處理裝置20可採用均勻取樣,係根據一取樣週期擷取並儲存該第一點雲資料與該第二點雲資料的資料點。舉例來說,當該第一點雲資料具有N筆資料點,該取樣週期可為每n筆資料點取一筆資料點,則該第一點雲資料經過縮減取樣後僅包含N/n筆資料點,故取樣後的資料點數量低於取樣前的資料點數量,藉此有效初步降低資料傳輸量及運算量。The data processing device 20 receives the first point cloud data And the second point cloud data Among them, the data processing device 20 may adopt uniform sampling, which acquires and stores the first point cloud data according to a sampling period. And the second point cloud data Data points. For example, when the first point cloud data With N data points, the sampling period can take one data point for every n data points, then the first point cloud data After downsampling, only N / n data points are included, so the number of data points after sampling is lower than the number of data points before sampling, thereby effectively reducing the amount of data transmission and calculation.

為了說明,經過縮減取樣後的點雲資料稱為簡化點雲資料,所以,請參考圖2B、圖4與圖5,該第一點雲資料經縮減取樣後成為第一簡化點雲資料,該第二點雲資料經縮減取樣後成為第二簡化點雲資料For illustration, the point cloud data after downsampling is called simplified point cloud data, so please refer to FIG. 2B, FIG. 4 and FIG. 5. This first point cloud data Become the first simplified point cloud data after downsampling , The second point cloud data Reduced sampling becomes second simplified point cloud data .

步驟S3:建立三維點雲索引結構Step S3: establishing a three-dimensional point cloud index structure

為了提升資料點的搜尋效率,本創作係建立該第一簡化點雲資料的三維點雲索引結構,供搜尋該第二簡化點雲資料中的各資料點以對應於該第一簡化點雲資料的各資料點,本創作建立該三維點雲索引結構之目的,是要在該第一簡化點雲資料中快速搜尋到一資料點pi ,使該資料點pi 與第二簡化點雲資料中的一資料點qj 最接近,本創作實施例是以k-d樹(k-dimensional tree)建立三維點雲索引結構,惟透過k-d樹建立點雲資料的三維點雲索引結構是所屬技術領域的通常知識,僅簡單說明如下。In order to improve the search efficiency of data points, the author created the first simplified point cloud data. 3D point cloud index structure for searching the second simplified point cloud data Each data point in the corresponding to the first simplified point cloud data The purpose of creating the three-dimensional point cloud index structure in this creation is to simplify the point cloud data in the first place. Quickly search for a data point p i in the data point p i and the second simplified point cloud data One of the data points q j is the closest. In this creative embodiment, a k-dimensional tree is used to establish a three-dimensional point cloud index structure. However, using a kd tree to establish a three-dimensional point cloud index structure of point cloud data belongs to the technical field. The general knowledge is only briefly explained as follows.

首先以一維的情況下說明,假設第一簡化點雲資料與第二簡化點雲資料的維度是一個維度,透過二元搜尋法(binary search),可對第一簡化點雲資料的所有資料點pi 根據其座標值進行排序以建立一維點雲索引結構。因為是以一個維度為例,所以第一簡化點雲資料排序後的資料點pi 在數線展開後,讓第二簡化點雲資料的資料點qj 逐個與排序在中位(middle element)的資料點pi 比較,使第二簡化點雲資料中的每一個資料點qj 都能搜尋到與第一簡化點雲資料中最接近的資料點piFirst explain in a one-dimensional case, assuming the first simplified point cloud data And second simplified point cloud data The dimension of is a dimension. Through binary search, the first simplified point cloud data can be All data points p i are sorted according to their coordinate values to establish a one-dimensional point cloud index structure. Because one dimension is taken as an example, the first point cloud data is simplified. After the sorted data points p i are expanded on the number line, let the second simplified point cloud data The data points q j are compared with the data points p i sorted in the middle element one by one, so that the second simplified point cloud data Every data point in q j can be searched with the first simplified point cloud data The closest data point p i in .

若第一簡化點雲資料與第二簡化點雲資料的維度是三個維度,則將前述之k-d樹推廣於建立本創作的三維點雲索引結構。首先,對第一簡化點雲資料所有資料點pi 根據其座標值進行排序以建立三維點雲索引結構,此結構包含如圖6A所示的根節點(root node)RN,該根節點RN包含第一簡化點雲資料的所有資料點pi ,請參考圖6B,邊界盒(bounding box)BB儲存所有資料點pi ,該邊界盒BB由資料點pi 的座標在x、y與z三維度的最大值與最小值決定,也就是第一簡化點雲資料在三軸座標系統的資料範圍,根節點RN之下每一層的節點皆代表該節點涵蓋點雲的資料範圍,節點內記錄其三維邊界盒BB、左右子節點的指標、作為判斷依據的切割維度(cut dimension)與切割值(cut value),以及包含的資料點,不失一般性,若沿著Z軸找到根節點RN對應的三維點雲Z座標的中位數m1,請參考圖6D,則以此中位數m1建立的平面Plane1(即:z=m1的平面)將邊界盒BB空間切分成兩份空間,該兩份空間分別對應到圖6C所示的兩個節點SN;接著重複以上切割空間的步驟,亦即對目前最底層的節點,例如圖6C底層的兩個節點SN,各自沿著Y軸找到中位數m2、m3,如圖6F所示,中位數m2、m3各自有一個切割平面Plane2(即:y=m2的平面)與Plane3(即:y=m3的平面),這兩個切割平面Plane2、Plane3又將平面Plane1分出的兩空間各自切成兩塊,若此時平面Plane2、Plane3切割之後的空間只剩一個三維點,則停止切割,且此時各切割後的空間對應的節點為圖6E所示的葉節點(leaf node)LN,也就是葉節點LN只包含一個資料點,而為搜尋的終點。若切割後空間內不只有一個三維點,則繼續沿著X軸切割,這樣的切割步驟將重複執行直到空間內只剩一個三維點為止。If the first simplified point cloud data And second simplified point cloud data The dimension of is three dimensions, then the aforementioned kd tree is generalized to establish the three-dimensional point cloud index structure of this creation. First, for the first simplified point cloud data, All data points p i are sorted according to their coordinate values to establish a three-dimensional point cloud index structure. This structure includes a root node RN as shown in FIG. 6A. The root node RN contains the first simplified point cloud data. For all data points p i , please refer to FIG. 6B. A bounding box BB stores all data points p i . The bounding box BB is determined by the coordinates of the data points p i at the maximum and minimum three-dimensional dimensions of x, y, and z. Value determination, which is the first simplified point cloud data In the data range of the three-axis coordinate system, each node below the root node RN represents the data range of the point cloud covered by the node. The node records its three-dimensional bounding box BB, the indicators of the left and right child nodes, and the cutting dimension as the basis for judgment. (cut dimension) and cut value, as well as the included data points, without loss of generality, if the median m1 of the three-dimensional point cloud Z coordinate corresponding to the root node RN is found along the Z axis, please refer to FIG. 6D, Then the plane Plane1 (ie, the plane of z = m1) created by the median m1 cuts the bounding box BB space into two spaces, which correspond to the two nodes SN shown in FIG. 6C; then repeat The above step of cutting the space, that is, for the lowest node at present, for example, the two nodes SN at the bottom of FIG. 6C, respectively, find the median m2 and m3 along the Y axis, as shown in FIG. 6F, the median m2 and m3 Each has a cutting plane Plane2 (that is, a plane of y = m2) and Plane3 (that is, a plane of y = m3). These two cutting planes Plane2 and Plane3 cut the two spaces divided by the plane Plane1 into two pieces. If at this time there is only one space left after the plane Plane2 and Plane3 are cut For dimension points, cutting is stopped. At this time, the nodes corresponding to the cut spaces are the leaf nodes LN shown in FIG. 6E, that is, the leaf nodes LN contain only one data point, and are the end points of the search. If there is more than one 3D point in the space after cutting, continue to cut along the X axis. Such cutting steps will be repeated until there is only one 3D point in the space.

步驟S4:建立初始轉換矩陣Step S4: Establish the initial transformation matrix

在直角座標系統下,本創作利用初始x軸夾角a’、初始y軸夾角b’、初始z軸夾角g’、初始x軸位移tx’、初始y軸位移ty’與初始z軸位移tz’建立一4x4的初始轉換矩陣,表示如下: Under the Cartesian coordinate system, this creation uses the initial x-axis angle a ', the initial y-axis angle b', the initial z-axis angle g ', the initial x-axis displacement tx', the initial y-axis displacement ty ', and the initial z-axis displacement tz'. Build a 4x4 initial transformation matrix , Expressed as follows:

其中為初始旋轉矩陣,為初始位移矩陣,分別表示如下: among them Is the initial rotation matrix, Are the initial displacement matrices, which are expressed as follows:

本創作實施例中,初始x軸夾角a’、初始y軸夾角b’、初始z軸夾角g’、初始x軸位移tx’、初始y軸位移ty’與初始z軸位移tz’可分別為0,但不以此為限。In this creative embodiment, the initial x-axis included angle a ', the initial y-axis included angle b', the initial z-axis included angle g ', the initial x-axis displacement tx', the initial y-axis displacement ty ', and the initial z-axis displacement tz' can be respectively 0, but not limited to this.

步驟S5:搜尋對應資料點Step S5: Search for corresponding data points

此步驟的目的是對第二簡化點雲資料的所有資料點qj ,在第一簡化點雲資料中找到較接近的資料點pi ,以建立兩資料點pi 、qj 的對應關係。根據步驟S3的三維點雲索引結構,搜尋時比較查詢資料點qj 與所在節點範圍判斷要往哪一邊的子節點移動,並持續追蹤k-d樹直到最底層的葉節點為止。The purpose of this step is to simplify the second point cloud data. All data points q j in the first simplified point cloud data The closer data point p i is found in to establish the correspondence between the two data points p i and q j . According to the three-dimensional point cloud index structure of step S3, the query data point q j is compared with the range of the node to determine which side child node to move during the search, and the kd tree is continuously tracked until the lowest leaf node.

首次完成此步驟後,第一簡化點雲資料的各資料點pi 可初步對應到第二簡化點雲資料的各資料點qj 。請參考圖3,在此先說明步驟S5~S7為疊代運算的步驟,每一次疊代運算可產生一個最佳化轉換矩陣,考慮目前為第k次疊代運算,而第k-1次為前一次的疊代運算,而經過第k-1次疊代運算再回到步驟S5時,第一簡化點雲資料的各資料點pi 可對應到透過第k-1最佳化轉換矩陣轉換後之第二簡化點雲資料的各資料點qj 。其中k=1時,該第k-1最佳轉換矩陣即為初始轉換矩陣After completing this step for the first time, the first simplified point cloud data Each data point p i can be preliminarily corresponded to the second simplified point cloud data Each data point q j . Please refer to FIG. 3, and it is explained here that steps S5 to S7 are the steps of the iteration operation. Each iteration operation can generate an optimized transformation matrix. Considering that it is the kth iteration operation, and Is the previous iteration operation, and after k-1 iteration operation returns to step S5, the first simplified point cloud data Each data point p i can correspond to the transformation through the k-1th optimal transformation matrix Second simplified point cloud data Each data point q j . When k = 1, the k-1st optimal transformation matrix is the initial transformation matrix .

步驟S6:建立最佳化轉換矩陣Step S6: Establish an optimized transformation matrix

經前述步驟S5後,若第一簡化點雲資料具有一資料點d i ,第二簡化點雲資料具有對應的一資料點s i ,亦即該資料點s i 是步驟S5中所搜尋到透過第k-1最佳化轉換矩陣轉換後之第二簡化點雲資料的資料點,在步驟S6中,各資料點s i 經過一轉換矩陣後成為資料點,該資料點與資料點d i 建立一向量,其中,當該轉換矩陣是一最佳化轉換矩陣,則資料點d i 的切平面與該資料點的切平面之間具有一最小距離,該最小距離可以由該向量在資料點d i 切平面法向量n i 的投影來決定,該最佳化轉換矩陣的通式可表示如下: After the foregoing step S5, if the first simplified point cloud data Having a data point d i, a second point cloud data simplification Has a corresponding data point s i , that is, the data point s i is the k-1 optimized transformation matrix searched in step S5 Second simplified point cloud data after conversion Data points, in step S6, each data point s i becomes a data point after passing through a transformation matrix. , The data point Establish data points and a vector d i, wherein, when the transformation matrix is a matrix converter Optimizer Tangent plane, the point information d i and the data point There is a minimum distance between the tangent planes of. The minimum distance can be determined by the projection of the vector on the data point d i tangent plane normal vector n i . The general formula of the optimized transformation matrix can be expressed as follows:

其中: among them:

上式中,是位移矩陣,是旋轉矩陣,分別表示如下:,其中: In the above formula, Is the displacement matrix, Are rotation matrices, which are expressed as follows: ; ,among them:

tx、ty與tz分別為x軸位移、y軸位移與z軸位移,本創作利用線性解逼近手段,假設三軸夾角趨近於0,亦即x軸夾角,y軸夾角,z軸夾角,則,則該旋轉矩陣變成,表示如下: tx, ty, and tz are the x-axis displacement, y-axis displacement, and z-axis displacement, respectively. This creation uses a linear solution approach, assuming that the angle between the three axes approaches 0, that is, the angle between the x axes , Y-axis angle , Z-axis angle ,then , , , , , , Then the rotation matrix become , Expressed as follows:

該轉換矩陣成為,表示如下: The transformation matrix become , Expressed as follows:

將此轉換代入該最佳化轉換矩陣,使該最佳化轉換矩陣成為,表示如下: Substitute this transformation into the optimized transformation matrix To make the optimized transformation matrix become , Expressed as follows:

則其中第i項都可用線性展開,表示如下: Then the ith term can be linearly expanded, which is expressed as follows:

所以,所有i項的線性展開可以形成一個線性系統:So, the linear expansion of all i terms can form a linear system:

其中: ,其中: among them: ,among them:

then

亦即,可使上式之具有最小值的參數向量x (包含α、β、γ、tx 、ty 、tz 等六個轉換參數)是最佳化轉換參數,其分別表示為αopt 、βopt 、γopt 、txopt 、tyopt 、tzopt ,其表示如下: That is, the above formula can be made The parameter vector x with the minimum value (including six conversion parameters such as α, β, γ, t x , t y , t z ) is an optimized conversion parameter, which is expressed as α opt , β opt , γ opt , t xopt , t yopt , t zopt , which are represented as follows:

其中,該等最佳化轉換參數αopt 、βopt 、γopt 、txopt 、tyopt 、tzopt 可利用擬返(pseudo inverse)運算而得。Among these, the optimized conversion parameters α opt , β opt , γ opt , t xopt , tyopt , t zopt can be obtained by using a pseudo inverse operation.

最後,根據該該等最佳化轉換參數αopt 、βopt 、γopt 、txopt 、tyopt 、tzopt 套用至前述的旋轉矩陣Rk 與位移矩陣Tk ,即得到該最佳化轉換矩陣,此為更新的最佳化轉換矩陣,表示如下: Finally, according to the optimized conversion parameters α opt , β opt , γ opt , t xopt , t yopt , t zopt and applied to the aforementioned rotation matrix R k and displacement matrix T k , the optimized conversion matrix is obtained. This is the updated optimized transformation matrix, which is expressed as follows:

所以,本創作之第二簡化點雲資料透過更新的最佳化轉換矩陣的轉換後成為,可使第一簡化點雲資料與轉換後的第二簡化點雲資料之對應的兩筆資料點的切平面之間具有一最小距離。Therefore, the second simplified point cloud data of this creation Optimized transformation matrix with updates After conversion becomes Can make the first simplified point cloud data And second simplified point cloud data after conversion There is a minimum distance between the corresponding tangent planes of the two data points.

步驟S7:收斂評估Step S7: Convergence evaluation

前述步驟S5到此步驟S7為疊代過程,步驟7評估疊代是否符合一收斂條件,若符合該收斂條件,表示該兩筆簡化點雲資料已可透過該更新的最佳化轉換矩陣貼合完成;反之,若未符合收斂條件,則利用更新的最佳化轉換矩陣回復執行步驟S5~S7,以再次更新最佳化轉換矩陣以供進行收斂評估,直到收斂為止。The foregoing steps S5 to S7 are iterative processes. Step 7 evaluates whether the iterations meet a convergence condition. If the convergence conditions are met, the two simplified point cloud data are indicated. , The updated optimized transformation matrix is now available Fitting is completed; otherwise, if the convergence conditions are not met, the updated optimized transformation matrix is used Reply and execute steps S5 to S7 to update the optimized transformation matrix again for convergence evaluation until convergence.

需說明的是,每當再次回到步驟S5時,是讓該第一簡化點雲資料的各資料點利用步驟S3的該三維點雲索引結構,搜尋出透過前一次之最佳化轉換矩陣(即:第k-1最佳化轉換矩陣)轉換後之第二簡化點雲資料的對應資料點;而在步驟S6中,所使用的該轉換矩陣M 係前一次的最佳化轉換矩陣,亦即利用第k-1最佳化轉換矩陣再次產生新的一筆更新的最佳化轉換矩陣(即:第k最佳化轉換矩陣),再計算出該第一簡化點雲資料與透過第k最佳化轉換矩陣轉換後的第二簡化點雲資料之間,對應的兩筆資料點的切平面之間的該最小距離,依此類推。It should be noted that whenever returning to step S5 again, the first simplified point cloud data Each data point uses the three-dimensional point cloud index structure of step S3 to search for the second simplified point cloud data transformed by the previous optimized transformation matrix (ie, the k-1th optimized transformation matrix). Corresponding data points; and in step S6, the transformation matrix M used is the previous optimization transformation matrix, that is, the k-1th optimization transformation matrix is used to generate a new update optimization again. Transformation matrix (ie, the k-th optimized transformation matrix), and then calculate the corresponding two pieces of data between the first simplified point cloud data and the second simplified point cloud data transformed by the k-th optimized transformation matrix The minimum distance between the points' tangent planes, and so on.

關於收斂條件的判斷,說明如後。在步驟S6產生的結果是該最小距離,假設為第k次疊代後,兩資料點d i s i 之間的該最小距離具有一最大誤差值ek ,表示如下: The determination of the convergence condition will be described later. The result produced in step S6 is the minimum distance, assuming After the kth iteration, the minimum distance between the two data points d i , s i has a maximum error value e k , which is expressed as follows:

則收斂條件係以第k次與第k-1次的最大誤差值來判斷,本創作的收斂條件是,其中te 為預設的一判斷值,若疊代多次仍未能收斂,則有可能因疊代次數過多產生運算瓶頸,所以本創作可設定一疊代上限次數,當該資料處理裝置20判斷出疊代次數達到該疊代上限次數時,將停止疊代,並將已估計的多組轉換中有最小誤差的一組作為最佳轉換矩陣。The convergence condition is judged by the maximum error value of the kth and k-1th times. The convergence condition of this creation is , Where t e is a preset judgment value. If iterations fail to converge for many times, it may cause a bottleneck due to too many iterations. Therefore, this creation can set an upper limit of iterations. When the data processing device 20 When it is determined that the number of iterations reaches the upper limit number of iterations, the iteration is stopped, and the group with the smallest error in the estimated multiple sets of conversions is used as the optimal conversion matrix.

步驟S8:標記冗餘點Step S8: Mark redundant points

冗餘點為該兩簡化點雲資料重覆取像的資料點,請參考圖2C與圖7,貼合後應重疊在一起而產生一重疊區域30,第一簡化點雲資料的邊界31落入該第二簡化點雲資料的範圍中,且第二簡化點雲資料的邊界32落入該第一簡化點雲資料的範圍中,該兩簡化點雲資料的圖案特徵已大致重疊。但因牙體表面經過數位掃描,實際上兩筆資料重覆區域的資料點未必會有完全相同的座標值,本創作利用下式判斷條件對應之資料點之間的最小距離來評估是否為冗餘點: Redundant points are the two simplified point cloud data , For the data points of repeated acquisition, please refer to FIG. 2C and FIG. 7. After overlapping, they should overlap to create an overlapping area 30. The first simplified point cloud data Boundary 31 falls into this second simplified point cloud data And the second simplified point cloud data Boundary 32 falls into the first simplified point cloud data In the range, the two simplified point cloud data , The pattern features have roughly overlapped. However, because the surface of the tooth has been digitally scanned, in fact, the data points in the overlap area of the two data may not have exactly the same coordinate values. In this creation, the minimum distance between the data points corresponding to the conditions is used to evaluate whether it is redundant. Remaining points:

其中tR 為預設的判斷值,本創作將符合上式條件的資料點d is i 作為該兩簡化點雲資料之重複的冗餘資料點。其中,由於步驟S5已建立兩資料點d is i 的對應關係,故可以直接根據座標資訊計算該兩資料點d is i 之間的距離,以供判斷該距離是否低於該判斷值tRAmong them, t R is a preset judgment value, and the data points d i and s i that meet the conditions of the above formula are used as the two simplified point cloud data. , Duplicate redundant data points. Among them, since the corresponding relationship between the two data points d i and s i has been established in step S5, the distance between the two data points d i and s i can be directly calculated based on the coordinate information for judging whether the distance is lower than the judgment The value t R.

綜上所述,本創作偵測出冗餘點後,應用上可將冗餘點進行排除,進而有效降低資料儲存成本,以及進一步優化資料傳輸效率與資料運算效率。再者,本創作透過縮減取樣、三維索引結構、線性逼近等技術手段,也能有效降低資料量,以及提升運算速度。In summary, after detecting the redundant points in this creation, the redundant points can be excluded from the application, which can effectively reduce the data storage cost and further optimize the data transmission efficiency and data operation efficiency. In addition, this creation can also effectively reduce the amount of data and increase the speed of calculation through technical methods such as downsampling, three-dimensional index structure, and linear approximation.

10‧‧‧掃描器10‧‧‧ Scanner

20‧‧‧資料處理裝置20‧‧‧Data Processing Device

30‧‧‧重疊區域30‧‧‧ overlapping area

31‧‧‧邊界31‧‧‧ border

32‧‧‧邊界32‧‧‧ border

P‧‧‧第一點雲資料P‧‧‧First point cloud data

‧‧‧第一簡化點雲資料 ‧‧‧The first simplified point cloud data

Q‧‧‧第二點雲資料Q‧‧‧Second point cloud data

‧‧‧第二簡化點雲資料 ‧‧‧Second simplified point cloud data

RN‧‧‧根節點RN‧‧‧root node

BB‧‧‧邊界盒BB‧‧‧Bounding Box

SN‧‧‧節點SN‧‧‧node

LN‧‧‧葉節點LN‧‧‧ Leaf Node

40‧‧‧重複區域40‧‧‧ repeat area

41‧‧‧第一點雲資料41‧‧‧First point cloud data

410‧‧‧邊界410‧‧‧ border

42‧‧‧第二點雲資料42‧‧‧Second point cloud data

420‧‧‧邊界420‧‧‧ border

43‧‧‧第三點雲資料43‧‧‧ third point cloud data

44‧‧‧第四點雲資料44‧‧‧ Fourth point cloud data

圖1:實施本創作偵測方法之系統的實施例的方塊示意圖。 圖2A~圖2C:本創作實施例將第一點雲資料與第二點雲資料彼此貼合的示意圖。 圖3:本創作偵測方法之實施例的流程示意圖。 圖4:第一簡化點雲資料的示意圖。 圖5:第二簡化點雲資料的示意圖。 圖6A~圖6F:本創作產生三維點雲索引結構的示意圖。 圖7:將圖4與圖5之簡化點雲資料彼此貼合的示意圖。 圖8A~圖8E:習知將多筆點雲資料串接貼合的示意圖。FIG. 1 is a block diagram of an embodiment of a system for implementing the creative detection method. FIG. 2A to FIG. 2C are schematic diagrams of bonding the first point cloud data and the second point cloud data to each other in this creative embodiment. FIG. 3 is a schematic flowchart of an embodiment of the creative detection method. Figure 4: Schematic of the first simplified point cloud data. Figure 5: Schematic of the second simplified point cloud data. 6A ~ 6F: Schematic diagrams of the three-dimensional point cloud index structure generated by this creation. FIG. 7 is a schematic diagram of attaching the simplified point cloud data of FIG. 4 and FIG. 5 to each other. 8A-8E are schematic diagrams of conventionally connecting and combining multiple point cloud data in series.

Claims (5)

一種用於點雲資料貼合之冗餘點偵測方法,係於一資料處理裝置執行,該資料處理裝置連線一掃描器以接收點雲資料,該方法包含: 接收具有連續關係的一第一點雲資料與一第二點雲資料; 對該第一點雲資料與該第二點雲資料進行縮減取樣,以分別成為一第一簡化點雲資料與一第二簡化點雲資料; 建立該第一簡化點雲資料的三維點雲索引結構,供搜尋該第二簡化點雲資料中的各資料點以對應於該第一簡化點雲資料的各資料點; 建立一最佳化轉換矩陣,使該第二簡化點雲資料透過該最佳化轉換矩陣的轉換後,該第一簡化點雲資料與該第二簡化點雲資料之對應的兩筆資料點的切平面之間具有一最小距離; 判斷該最小距離是否小於一判斷值;若是,則所述兩筆資料點為冗餘的資料點;若否,回到「建立該第一簡化點雲資料的三維點雲索引結構,供搜尋該第二點雲資料中的各資料點以對應於該第一簡化點雲資料的各資料點」的步驟,以進行該最佳化轉換矩陣的疊代運算。A redundant point detection method for point cloud data bonding is performed by a data processing device. The data processing device is connected to a scanner to receive point cloud data. The method includes: receiving a first One point cloud data and one second point cloud data; downsampling the first point cloud data and the second point cloud data to become a first simplified point cloud data and a second simplified point cloud data, respectively; A three-dimensional point cloud index structure of the first simplified point cloud data for searching each data point in the second simplified point cloud data to correspond to each data point of the first simplified point cloud data; establishing an optimized transformation matrix , After the second simplified point cloud data is transformed by the optimized transformation matrix, there is a minimum between the tangent planes of two data points corresponding to the first simplified point cloud data and the second simplified point cloud data. Distance; judging whether the minimum distance is less than a judgment value; if yes, the two data points are redundant data points; if not, return to "establish the three-dimensional point cloud index structure of the first simplified point cloud data for Search Each step of each data point of the second data in the point cloud data corresponding to the first data point of the point cloud simplified "to iterate the calculation of optimum conversion matrix. 如請求項1所述之用於點雲資料貼合之冗餘點偵測方法,該最佳化轉換矩陣表示如下:其中 k:疊代次數;Rk :旋轉矩陣;Tk :位移矩陣; αopt 、βopt 、γopt 、txopt 、tyopt 、tzopt :最佳化轉換參數。The redundant point detection method for point cloud data bonding as described in claim 1, the optimized transformation matrix Represented as follows: Where k is the number of iterations; R k is a rotation matrix; T k is a displacement matrix; α opt , β opt , γ opt , t xopt , t yopt , t zopt : optimize conversion parameters. 如請求項2所述之用於點雲資料貼合之冗餘點偵測方法,進一步判斷該第一簡化點雲資料與該第二簡化點雲資料之對應的兩筆資料點的最大誤差值是否符合一收斂條件;若否,重新計算該最佳化轉換矩陣,直到符合該收斂條件; 該收斂條件表示如下:其中 ek :根據第k次最佳轉換矩陣得到的最大誤差值,d i 是該第一簡化點雲資料的資料點,s i 是該第二簡化點雲資料之對應的資料點; ek-1 :根據第k-1次最佳轉換矩陣得到的最大誤差值;te :判斷值。According to the redundant point detection method for point cloud data bonding described in claim 2, further determine the maximum error value of the two data points corresponding to the first simplified point cloud data and the second simplified point cloud data. Whether it meets a convergence condition; if not, recalculate the optimization transformation matrix until it meets the convergence condition; the convergence condition is expressed as follows: Where e k : the maximum error value obtained according to the k-th best conversion matrix, , D i is the data point of the first simplified point cloud data, and s i is the corresponding data point of the second simplified point cloud data; e k-1 : the maximum error obtained according to the k-1th best conversion matrix Value; t e : judgment value. 如請求項3所述之用於點雲資料貼合之冗餘點偵測方法,於判斷該最小距離是否小於該判斷值的步驟中,是以下式判斷該最小距離是否為冗餘點:其中,tR 為一判斷值。According to the redundant point detection method for point cloud data bonding described in claim 3, in the step of determining whether the minimum distance is less than the judgment value, the following formula is used to determine whether the minimum distance is a redundant point: Among them, t R is a judgment value. 如請求項4所述之用於點雲資料貼合之冗餘點偵測方法,利用線性解逼近手段建立該最佳化轉換矩陣。According to the redundant point detection method for point cloud data fitting described in claim 4, a linear solution approximation method is used to establish the optimized transformation matrix.
TW106131674A 2017-09-15 2017-09-15 Redundant point detection method for point cloud data bonding TWI625700B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW106131674A TWI625700B (en) 2017-09-15 2017-09-15 Redundant point detection method for point cloud data bonding
CN201810347829.7A CN109508141B (en) 2017-09-15 2018-04-18 Redundant point detection method for point cloud data fitting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106131674A TWI625700B (en) 2017-09-15 2017-09-15 Redundant point detection method for point cloud data bonding

Publications (2)

Publication Number Publication Date
TWI625700B TWI625700B (en) 2018-06-01
TW201915953A true TW201915953A (en) 2019-04-16

Family

ID=63255703

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106131674A TWI625700B (en) 2017-09-15 2017-09-15 Redundant point detection method for point cloud data bonding

Country Status (2)

Country Link
CN (1) CN109508141B (en)
TW (1) TWI625700B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11288493B2 (en) 2020-02-25 2022-03-29 Raytheon Company Point cloud registration with error propagation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112417965B (en) * 2020-10-21 2021-09-14 湖北亿咖通科技有限公司 Laser point cloud processing method, electronic device and storage medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101236660A (en) * 2008-03-06 2008-08-06 张利群 Three-dimensional scanners and its three-dimensional model reconfiguration method
CN102607459B (en) * 2012-03-06 2014-11-19 中国矿业大学(北京) Splicing method and splicing device of Lidar measurement data
CN104794687A (en) * 2014-01-20 2015-07-22 鸿富锦精密工业(深圳)有限公司 Point clouds simplifying system and method
TWI589275B (en) * 2015-11-20 2017-07-01 Metal Ind Res & Dev Ct 3D dental arch fitting method
CN105654422A (en) * 2015-12-23 2016-06-08 北京观著信息技术有限公司 Point cloud registration method and system
CN105989604A (en) * 2016-02-18 2016-10-05 合肥工业大学 Target object three-dimensional color point cloud generation method based on KINECT

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11288493B2 (en) 2020-02-25 2022-03-29 Raytheon Company Point cloud registration with error propagation
TWI775320B (en) * 2020-02-25 2022-08-21 美商雷神公司 Point cloud registration with error propagation

Also Published As

Publication number Publication date
TWI625700B (en) 2018-06-01
CN109508141A (en) 2019-03-22
CN109508141B (en) 2022-02-18

Similar Documents

Publication Publication Date Title
CN106845515B (en) Robot target identification and pose reconstruction method based on virtual sample deep learning
CN105160702B (en) The stereopsis dense Stereo Matching method and system aided in based on LiDAR point cloud
CN111347426B (en) Mechanical arm accurate placement track planning method based on 3D vision
US20090160852A1 (en) System and method for measuring a three-dimensional object
CN113741426B (en) Robot machining path planning method based on local point cloud curve fitting
CN114419147A (en) Rescue robot intelligent remote human-computer interaction control method and system
CN110223345A (en) Distribution line manipulating object position and orientation estimation method based on cloud
CN105654483A (en) Three-dimensional point cloud full-automatic registration method
CN107564065B (en) The measuring method of man-machine minimum range under a kind of Collaborative environment
CN110480075A (en) Curve surface of workpiece outline compensation system and method and medium based on point cloud data
CN115032648B (en) Three-dimensional target identification and positioning method based on laser radar dense point cloud
TWI625700B (en) Redundant point detection method for point cloud data bonding
CN113706710A (en) Virtual point multi-source point cloud fusion method and system based on FPFH (field programmable gate flash) feature difference
CN103413357A (en) Construction method for forming square benchmark grid surface through point cloud
WO2020130085A1 (en) Three-dimensional position/attitude recognition device and method
Wu et al. Viewpoint planning for freeform surface inspection using plane structured light scanners
CN106803266A (en) A kind of hull complexity outside plate point cloud costal line extracting method and device
CN1773555A (en) Sparse grid-oriented three-dimensional foot type fast acquiring method based on standard foot deformation
CN116612235A (en) Multi-view geometric unmanned aerial vehicle image three-dimensional reconstruction method and storage medium
Zhou et al. 3d lane detection from front or surround-view using joint-modeling & matching
CN116476070B (en) Method for adjusting scanning measurement path of large-scale barrel part local characteristic robot
CN113409227B (en) Point cloud picture repairing method and device, electronic equipment and storage medium
Sheng CAD-based robot motion planning for* inspection in manufacturing
CN115205356B (en) Binocular stereo vision-based quick debugging method for practical training platform
JP2019053597A (en) Selection device, method and program