TW201914787A - Robot with a variable number of arbors and control method thereof - Google Patents

Robot with a variable number of arbors and control method thereof Download PDF

Info

Publication number
TW201914787A
TW201914787A TW107108370A TW107108370A TW201914787A TW 201914787 A TW201914787 A TW 201914787A TW 107108370 A TW107108370 A TW 107108370A TW 107108370 A TW107108370 A TW 107108370A TW 201914787 A TW201914787 A TW 201914787A
Authority
TW
Taiwan
Prior art keywords
axis
robot
arm
variable
rotation mode
Prior art date
Application number
TW107108370A
Other languages
Chinese (zh)
Other versions
TWI698315B (en
Inventor
何佳航
何代水
Original Assignee
英華達股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英華達股份有限公司 filed Critical 英華達股份有限公司
Publication of TW201914787A publication Critical patent/TW201914787A/en
Application granted granted Critical
Publication of TWI698315B publication Critical patent/TWI698315B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

A robot with a variable number of arbors and a control method thereof are provided. The robot includes a base, a first joint arm and N robotic arms. One end of the first joint arm is connected to the base. When N is 1, one end of the robotic arm is connected to another end of the first joint arm in a manner as to be rotatable around the yaw axis or the pitch axis by a joint portion. When N is larger than 1, one end of one of the robotic arms is detachably connected to an adjacent robotic arm in a manner as to be rotatable around the yaw axis or the pitch axis by a joint portion. Driving units including multiple drivers and multiple motors are deposited in the base, the first robot arm and the robot arm. The drivers drive the motors to rotate.

Description

可變軸數的機器人及其控制方法Robot with variable number of axes and control method thereof

本發明涉及機器人控制領域,具體地說,涉及一種可變軸數的機器人及其控制方法。The invention relates to the field of robot control, in particular to a robot with a variable number of axes and a control method thereof.

目前市場上主要的機器人包括兩類:SCARA機器人和6R機器人。The main robots currently on the market include two types: SCARA robots and 6R robots.

SCARA機器人,即平面關節型機器人,是一種應用於裝配作業的機器人手臂。與一般關節型機器人不同,關節型機器人只在平面上具有良好的靈活性,而在平面垂直的方向具有很高的剛性,因此非常適合垂直方向的裝配作業,它在裝配、搬運等作業中可以實現很快的速度和較高的頻率。SCARA robot, which is a flat articulated robot, is a robot arm used in assembly operations. Different from general articulated robots, articulated robots only have good flexibility on the plane, but have high rigidity in the direction perpendicular to the plane, so they are very suitable for vertical assembly operations. It can be used in assembly and handling operations. Achieve fast speeds and higher frequencies.

6R機器人,即具有六個轉動關節的機器人,比四軸機械手多兩個關節,因此有更多的自由度,可以拿起水平面上任意朝向的部件,一般應用在裝配、弧焊、點焊、噴塗、點膠、拾取及包裝等領域。6R robot, that is, a robot with six rotating joints, has two more joints than a four-axis manipulator, so it has more degrees of freedom. It can pick up parts in any orientation on the horizontal plane. It is generally used in assembly, arc welding, and spot welding. , Spraying, dispensing, picking and packaging.

SCARA機器人與6R機器人分別具有以下優缺點:SCARA robot and 6R robot have the following advantages and disadvantages:

SCARA機器人結構輕便、回應快,但是存在無法執行立體動作,整體結構佈局不夠緊湊的缺陷,由於其具有特定的形狀,決定了其工作範圍類似於一個扇形區域,複雜的工作區域實際中還需另外加入一個機器人配合操作,這不僅造成了操作精度的損失,而且使得裝配成本大大提升,因此不完全適合3C產業大批量、高精度裝配作業。The SCARA robot has a light structure and a fast response, but it has the disadvantages that it cannot perform three-dimensional movements and the overall structure layout is not compact enough. Because of its specific shape, its working range is similar to a fan-shaped area. In practice, complex working areas require additional Adding a robot to cooperate with the operation not only causes a loss of operation accuracy, but also greatly increases the assembly cost, so it is not completely suitable for the large-scale and high-precision assembly operations of the 3C industry.

傳統機械臂(例如:6R機器人)的缺點是速度慢,價格高,球狀工作範圍受限。再者,六軸機械臂專長是打磨、拋光等大量曲面之應用,使用於3C產業時只需要少量的立體動作,很多結構的優勢無法施展,使用成本高,性價比上沒有優勢。The disadvantages of traditional robotic arms (for example: 6R robot) are slow speed, high price, and limited spherical working range. In addition, the six-axis robotic arm specializes in the application of a large number of curved surfaces such as grinding and polishing. When it is used in the 3C industry, it requires only a small amount of three-dimensional movement.

因此,本發明提供了一種可變軸數的機器人及其控制方法。Therefore, the present invention provides a robot with a variable number of axes and a control method thereof.

針對現有技術中的問題,本發明的目的在於提供可變軸數的機器人及其控制方法,克服了現有技術的困難,提高機器人的剛度,既能快捷的應用於生產活動又能柔性動作角度執行多樣任務,同時整體佈局緊湊,從而更加適於實用,且具有產業上的利用價值。Aiming at the problems in the prior art, the object of the present invention is to provide a robot with a variable number of axes and a control method thereof, which overcomes the difficulties of the prior art, improves the rigidity of the robot, and can be quickly applied to production activities and can be performed with flexible action angles Various tasks and compact overall layout make it more suitable for practical use and has industrial value.

本發明的實施例提供一種可變軸數的機器人,包括:An embodiment of the present invention provides a robot with a variable number of axes, including:

一底座;A base

一第一關節臂,所述第一關節臂的一端連結於所述底座;A first articulated arm, one end of which is connected to the base;

至少N個機械臂,N為非0的自然數,當N=1時,所述機械臂的一端由一關節部以能夠繞橫擺軸或是俯仰軸旋轉的方式或扭轉的方式與所述第一關節臂的另一端連結;當N>1時,任一所述機械臂的一端由一關節部以能夠繞橫擺軸或是俯仰軸旋轉的方式或扭轉的方式與相鄰機械臂可拆卸地連結;At least N robotic arms, N is a non-zero natural number. When N = 1, one end of the robotic arm is connected with the joint by a joint in a manner capable of rotating about the yaw axis or the pitch axis or twisted. The other end of the first articulated arm is connected; when N> 1, one end of any of the robotic arms is connected with an adjacent mechanical arm by a joint part in a manner capable of rotating or twisting about a yaw axis or a pitch axis. Disassemble ground connection

一驅動部,所述驅動部設置於所述底座、所述第一關節臂和所述機械臂內部;所述驅動部包括多個驅動器和多個電機,多個所述驅動器以如下兩種模式驅動多個所述電機轉動。A driving part is provided inside the base, the first articulated arm, and the mechanical arm; the driving part includes a plurality of drivers and a plurality of motors, and the plurality of drivers are in the following two modes A plurality of said motors are driven to rotate.

自由轉動模式:每個所述電機自由轉動;或者Free rotation mode: each said motor is free to rotate; or

水平轉動模式:至少一繞橫擺軸旋轉的所述電機在水平面內旋轉。Horizontal rotation mode: At least one of the motors rotating around a yaw axis rotates in a horizontal plane.

優選地,所述驅動部控制所述機器人的可旋轉軸數可以從一定軸數變化為任意更多的軸或是更少的軸。Preferably, the driving unit controls the number of rotatable axes of the robot to change from a certain number of axes to any more or fewer axes.

優選地,所述機械臂被配置為透過拆卸或拼接至少一個機械臂而改變所述機械臂的總數量。Preferably, the robot arm is configured to change the total number of the robot arms by disassembling or splicing at least one robot arm.

優選地,所述機械臂被配置透過直接拆卸X個機械臂;或拆卸Y個機械臂後拼接Z個機械臂而改變所述機械臂的總數量,其中,X、Y、Z均為常數,且X≤N,Y=N,Z≥1。Preferably, the robotic arm is configured to directly remove X robotic arms; or to disassemble Z robotic arms after disassembling Y robotic arms to change the total number of robotic arms, wherein X, Y, and Z are all constants, And X≤N, Y = N, Z≥1.

優選地,所述機械臂被配置透過拼接U個機械臂;或拆卸Y個機械臂後拼接V個機械臂而改變所述機械臂的總數量,其中,U、Y、V均為常數,且U≥1,Y=N,V≥1。Preferably, the robot arm is configured to change the total number of the robot arms by splicing U robot arms; or splicing V robot arms after disassembling Y robot arms, wherein U, Y, and V are constants, and U≥1, Y = N, V≥1.

優選地,所述第一關節臂包括支撐部和第一關節,所述支撐部的一端連結於所述底座,所述支撐部的另一端連結於所述第一關節。Preferably, the first articulated arm includes a support portion and a first joint, one end of the support portion is connected to the base, and the other end of the support portion is connected to the first joint.

優選地,所述支撐部相對於所述底座扭轉或平移。Preferably, the support portion is twisted or translated relative to the base.

優選地,所述第一關節設有一升降卡爪,所述支撐部設有一升降槽,所述升降卡爪受所述電機驅動在所述升降槽內升降。Preferably, the first joint is provided with a lifting claw, and the supporting portion is provided with a lifting groove, and the lifting claw is driven by the motor to move up and down in the lifting groove.

優選地,可變軸數的機器人包括:Preferably, the variable-axis robot includes:

一第一關節,所述第一關節的第一端連結到所述支撐部,且相對於所述支撐部升降;A first joint, the first end of the first joint is connected to the support portion, and is raised and lowered relative to the support portion;

一第二機械臂,所述第二機械臂的第一端經由一第一關節部以能夠繞橫擺軸旋轉的方式與所述第一關節的第二端連結;A second robotic arm, the first end of the second robotic arm is connected to the second end of the first joint via a first joint part in a manner capable of rotating around a yaw axis;

一第三機械臂,所述第三機械臂的第一端經由一第二關節部以能夠繞橫擺軸旋轉的方式與所述第二機械臂的第二端連結;以及A third robotic arm, the first end of the third robotic arm is connected to the second end of the second robotic arm via a second joint portion so as to be rotatable about a yaw axis; and

一末端操縱部,所述末端操縱部經由一第三關節部以能夠繞橫擺軸旋轉的方式與所述第三機械臂的第二端可拆卸地連結。A terminal manipulating portion is detachably connected to the second end of the third robot arm via a third joint portion so as to be rotatable about a yaw axis.

優選地,可變軸數的機器人包括:Preferably, the variable-axis robot includes:

一第一關節,所述第一關節的第一端連結到所述支撐部,且相對於所述支撐部升降;A first joint, the first end of the first joint is connected to the support portion, and is raised and lowered relative to the support portion;

一第二機械臂,所述第二機械臂的第一端經由一第一關節部以能夠繞橫擺軸旋轉的方式與所述第一關節的第二端連結;A second robotic arm, the first end of the second robotic arm is connected to the second end of the first joint via a first joint part in a manner capable of rotating around a yaw axis;

一第三機械臂,所述第三機械臂的第一端經由一第二關節部以能夠繞橫擺軸旋轉的方式與所述第二機械臂的第二端連結;以及A third robotic arm, the first end of the third robotic arm is connected to the second end of the second robotic arm via a second joint portion so as to be rotatable about a yaw axis; and

一末端操縱部,所述末端操縱部經由一第三關節部以能夠繞俯仰軸旋轉的方式與所述第三機械臂的第二端可拆卸地連結。A terminal manipulating portion is detachably connected to the second end of the third robot arm via a third joint portion so as to be rotatable about a pitch axis.

優選地,可變軸數的機器人包括:Preferably, the variable-axis robot includes:

一第一關節,所述第一關節的第一端連結到所述支撐部,且相對於所述支撐部升降;以及A first joint, a first end of which is connected to the support portion, and is raised and lowered relative to the support portion; and

一第二機械臂,所述第二機械臂的第一端經由一第一關節部以能夠繞橫擺軸旋轉的方式與所述第一關節的第二端連結;以及A second robotic arm, the first end of the second robotic arm is connected to the second end of the first joint via a first joint portion in a manner rotatable about a yaw axis; and

一末端操縱部,所述末端操縱部經由一第三關節部以能夠繞橫擺軸旋轉或者繞俯仰軸旋轉的方式與所述第二機械臂的第二端可拆卸地連結。A terminal manipulating portion is detachably connected to the second end of the second robot arm via a third joint portion so as to be rotatable about a yaw axis or a pitch axis.

優選地,越接近所述第一關節臂的機械臂的水平高度越高,越遠離所述第一關節臂的機械臂的水平高度越低,可變軸數的機器人的多個機械臂整體向重力方向階梯狀下降。Preferably, the horizontal height of the robot arm closer to the first articulated arm is higher, and the horizontal height of the robot arm farther from the first articulated arm is lower, and a plurality of robot arms of the robot with a variable number of axes are generally oriented toward Gravity descends stepwise.

優選地,所述驅動部在所述水平轉動模式中所述機械臂之間的所有關節部的旋轉軸平行於鉛垂方向。Preferably, the rotation axes of all the joint portions of the driving portion between the robot arms in the horizontal rotation mode are parallel to the vertical direction.

優選地,所述驅動部在所述水平轉動模式中,控制所述機械臂之間的所有關節部的電機在水平面內旋轉,以使施加給所述機械臂中最接近第一關節臂的旋轉軸的轉矩最小。Preferably, in the horizontal rotation mode, the driving part controls the motors of all the joint parts between the robot arms to rotate in a horizontal plane, so that the rotation applied to the robot arm closest to the first joint arm is applied. The shaft has the smallest torque.

優選地,所述驅動部在所述自由轉動模式中,控制所述機械臂之間的所有關節部的電機自由轉動,以使施加給所述機械臂中最接近第一關節臂的旋轉軸的轉矩最小。Preferably, in the free rotation mode, the driving part controls the motors of all the joint parts between the robot arms to rotate freely, so that the ones applied to the rotation axis of the robot arm closest to the first joint arm The torque is minimal.

本發明的實施例還提供一種可變軸數的機器人的控制方法,採用上述的可變軸數的機器人,所述控制方法以下控制模式中的任意一種進行所述驅動器的驅動控制:An embodiment of the present invention also provides a control method of a variable-axis number robot. The above-mentioned variable-axis number robot is used. The control method performs driving control of the driver in any one of the following control modes:

軸座標控制模式;Axis coordinate control mode;

末端DH矩陣控制模式;End DH matrix control mode;

基於坐標軸的運動控制模式;以及Axis-based motion control mode; and

末端點到點的控制模式。End-to-end control mode.

優選地,所述控制方法為軸座標控制模式,包括以下步驟:Preferably, the control method is an axis coordinate control mode and includes the following steps:

預存自由轉動模式的狀態參數以及水平轉動模式的狀態參數;Pre-store state parameters of free rotation mode and state parameters of horizontal rotation mode;

當被配置為自由轉動模式時,調用自由轉動模式的狀態參數進行控制;When configured in free rotation mode, the state parameters of free rotation mode are called for control;

當被配置為水平轉動模式時,調用水平轉動模式的狀態參數進行控制;When configured in the horizontal rotation mode, the state parameters of the horizontal rotation mode are called for control;

其中,所述調用自由轉動模式的狀態參數進行控制的步驟包括了程式初始化參數、驅動參數初始化、構型參數初始化以及控制介面初始化;Wherein, the step of calling the state parameters of the free rotation mode for control includes program initialization parameters, drive parameter initialization, configuration parameter initialization, and control interface initialization;

所述調用水平轉動模式的狀態參數進行控制的步驟包括了程式初始化參數、驅動參數初始化、構型參數初始化以及控制介面初始化。The steps of calling the state parameters of the horizontal rotation mode for control include program initialization parameters, drive parameter initialization, configuration parameter initialization, and control interface initialization.

優選地,所述自由轉動模式的程式初始化參數包括:自由轉動模式下運行的驅動器個數,以及每個軸的軟體限位、每個軸的品質,質心位置,最大速度,最大加速度以及最大加加速度;Preferably, the program initialization parameters of the free rotation mode include: the number of drives running in the free rotation mode, and software limit of each axis, quality of each axis, centroid position, maximum speed, maximum acceleration, and maximum Jerk

所述水平轉動模式的程式初始化參數包括:水平轉動模式下運行的驅動器個數,以及每個軸的軟體限位、每個軸的品質、質心位置、最大速度、最大加速度以及最大加加速度。The program initialization parameters of the horizontal rotation mode include: the number of drivers running in the horizontal rotation mode, and software limits of each axis, the quality of each axis, the position of the center of mass, the maximum speed, the maximum acceleration, and the maximum jerk.

本發明所提供的可變軸數的機器人及其控制方法提高機器人的剛度,既能快捷的應用於生產活動又能柔性動作角度執行多樣任務,同時整體佈局緊湊,從而更加適於實用,且具有產業上的利用價值。The variable-axis robot and the control method provided by the present invention improve the rigidity of the robot, which can be quickly applied to production activities and can perform various tasks with flexible action angles. At the same time, the overall layout is compact, so it is more suitable for practical use, and has Industrial use value.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下:In order to have a better understanding of the above and other aspects of the present invention, the following specific examples are described in detail below in conjunction with the accompanying drawings:

現在將參考附圖更全面地描述示例實施方式。然而,實施例實施方式能夠以多種形式實施,且不應被理解為限於在此闡述的實施方式;相反,提供這些實施方式使得本發明將全面和完整,並將實施例實施方式的構思全面地傳達給本領域的技術人員。在圖中相同的附圖標記表示相同或類似的結構,因而將省略對它們的重複描述。Example embodiments will now be described more fully with reference to the accompanying drawings. However, the example embodiments can be implemented in various forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that the present invention will be comprehensive and complete, and the concept of the example embodiments will be comprehensive Communicate to those skilled in the art. The same reference numerals in the drawings denote the same or similar structures, and their repeated description will be omitted.

第1圖是本發明的一種可變軸數的機器人的示意圖。第2圖是本發明的另一種可變軸數的機器人的示意圖。如第1圖和第2圖所示,本發明的可變軸數的機器人,包括:一底座1、一第一關節臂17、至少N個機械臂15以及一驅動部。所述第一關節臂17的一端連結於所述底座1。至少N個機械臂15,N為非0的自然數,當N=1時,所述機械臂15的一端由一關節部以能夠繞橫擺軸或是俯仰軸旋轉的方式或扭轉的方式與所述第一關節臂17的另一端連結(見第1圖)。當N>1時,任一所述機械臂15的一端由一關節部以能夠繞橫擺軸或是俯仰軸旋轉的方式或扭轉的方式與相鄰機械臂15可拆卸地連結(見第2圖)。所述驅動部(圖中未示出)設置於所述底座1、所述第一關節臂17和所述機械臂15內部。所述驅動部包括多個驅動器(圖中未示出)和多個電機(圖中未示出),多個所述驅動器以如下兩種模式驅動多個所述電機轉動。自由轉動模式:每個所述電機自由轉動。或者水平轉動模式:至少一繞橫擺軸旋轉的所述電機在水平面內旋轉。本發明中的水平轉動模式中能夠進行繞橫擺軸的旋轉或扭轉,所以可以提高機器人的剛度,而自由轉動模式能夠實現柔性動作角度執行多樣任務,同時整體佈局緊湊,從而更加適於實用,且具有產業上的利用價值。FIG. 1 is a schematic diagram of a variable-axis number robot according to the present invention. Fig. 2 is a schematic diagram of another variable-axis number robot of the present invention. As shown in FIGS. 1 and 2, the variable-axis robot of the present invention includes a base 1, a first articulated arm 17, at least N robot arms 15, and a driving unit. One end of the first articulated arm 17 is connected to the base 1. At least N robotic arms 15 where N is a non-zero natural number. When N = 1, one end of the robotic arm 15 is connected by a joint in a manner capable of rotating or twisting about a yaw axis or a pitch axis. The other end of the first articulated arm 17 is connected (see FIG. 1). When N> 1, one end of any one of the robot arms 15 is detachably connected to the adjacent robot arm 15 by a joint portion in a manner capable of rotating about the yaw axis or the pitch axis or torsion (see Section 2). Figure). The driving portion (not shown) is disposed inside the base 1, the first articulated arm 17, and the mechanical arm 15. The driving unit includes a plurality of drivers (not shown in the figure) and a plurality of motors (not shown in the figure). The plurality of drives drives the plurality of motors to rotate in the following two modes. Free rotation mode: each said motor is free to rotate. Or horizontal rotation mode: at least one of the motors rotating around a yaw axis rotates in a horizontal plane. The horizontal rotation mode in the present invention can rotate or twist around the yaw axis, so the rigidity of the robot can be improved, while the free rotation mode can realize flexible operation angles to perform various tasks, and the overall layout is compact, which is more suitable for practical use. And has industrial use value.

對比第1圖和第2圖可知,所述驅動部控制所述機器人的可旋轉軸數可以從一定軸數變化為任意更多的軸或是更少的軸。本發明中的機械臂15的總數量可以是任意的,可以根據實際的工況需求,透過拆卸或拼接機械臂,以改變機械臂15的數量,但不以此為限。Comparing FIG. 1 and FIG. 2, it can be seen that the number of rotatable axes controlled by the driving unit of the robot can be changed from a certain number of axes to any more or fewer axes. The total number of the robot arms 15 in the present invention may be arbitrary, and the number of the robot arms 15 may be changed by disassembling or splicing the robot arms according to the actual working conditions, but it is not limited thereto.

在一個優選實施例中,所述機械臂被配置為透過拆卸或拼接至少一個機械臂而改變所述機械臂的總數量。例如:先拆除現有的所有機械臂,或者拆除幾個機械臂以後又新增加幾個機械臂等等,但不以此為限。In a preferred embodiment, the robotic arm is configured to change the total number of the robotic arms by disassembling or splicing at least one robotic arm. For example: remove all the existing robotic arms first, or add several new robotic arms after removing a few robotic arms, etc., but not limited to this.

在一個優選實施例中,本發明中改變機械臂的總數量的結構變化為:所述機械臂被配置透過直接拆卸X個機械臂;或拆卸Y個機械臂後拼接Z個機械臂而改變所述機械臂的總數量,其中,X、Y、Z均為常數,且X≤N,Y=N,Z≥1,但不以此為限。In a preferred embodiment, the structural change that changes the total number of robot arms in the present invention is: the robot arms are configured by directly disassembling X robot arms; or disassembling Z robot arms after disassembling Y robot arms to change The total number of robot arms is described, where X, Y, and Z are all constants, and X≤N, Y = N, and Z≥1, but not limited to this.

在一個優選實施例中,本發明中改變機械臂的總數量的結構變化為:所述機械臂被配置透過拼接U個機械臂;或拆卸Y個機械臂後拼接V個機械臂而改變所述機械臂的總數量,其中,U、Y、V均為常數,且U≥1,Y=N,V≥1,但不以此為限。In a preferred embodiment, the structural change that changes the total number of robot arms in the present invention is: the robot arms are configured to be spliced by U robot arms; or V robot arms are spliced after disassembling Y robot arms to change the The total number of robot arms, where U, Y, and V are all constants, and U≥1, Y = N, and V≥1, but not limited to this.

在實際的生產使用中,通常會在機器人的最末端的機械臂配置為進行操作的末端操縱部,以便進行具體操作。以下例舉幾個具體的可變軸數的機器人,來揭示本發明的實現原理:In actual production use, the robot arm at the end of the robot is usually configured as an end manipulator for operation in order to perform specific operations. The following are examples of several robots with variable number of axes to reveal the implementation principle of the present invention:

第3圖是本發明的可變軸數的機器人的立體圖。如第3圖所示,本發明的一種可變軸數的機器人,包括:一底座1、一第一關節臂、一多關節臂、一末端操縱部10以及一驅動部。支撐部2相對於底座1旋轉。第一關節臂包括一支撐部2以及一第一關節4。第一關節4設有一升降卡爪3,支撐部2設有一升降槽11,升降卡爪3受驅動器驅動在升降槽11內升降。多關節臂的第一端連結到第一關節4,第一關節4相對於支撐部2升降,所示多關節臂包括端對端相互連結的多根機械臂以及連接機械臂之間的關節部,機械臂的一端由一關節部以能夠繞橫擺軸旋轉的方式與另一機械臂的另一端連結,但不以此為限。末端操縱部10經由一第三關節部12以能夠繞橫擺軸旋轉的方式與多關節臂的第二端可拆卸地連結。本發明中的末端操縱部10可以是現有的或是未來發明的任意一種功能操縱部。第三關節部12的轉軸平行於鉛垂面,能夠進行水平旋轉,但不以此為限。本實施例中,多關節臂主要包括:一第二機械臂6、一第三機械臂8以及一第一關節部5,但不以此為限。第二機械臂6的第一端經由一第一關節部5以能夠繞橫擺軸旋轉的方式與第一關節4的第二端連結。第三機械臂8的第一端經由一第二關節部7以能夠繞橫擺軸旋轉的方式與第二機械臂6的第二端連結,第三機械臂8的第二端與第三關節部12連結。本實施例中,可變軸數的機器人的底座1、支撐部2、機械臂、末端操縱部10之間分別設置了水平旋轉軸J1、垂直升降軸Z2、水平旋轉軸J3、水平旋轉軸J4、扭轉旋轉軸J5以及水平旋轉軸J6。驅動部包括分別設置於關節部、支撐部2與底座1之間、多關節臂的第一端與支撐部2之間的多個驅動器和多個電機,多個所述驅動器以如下兩種模式驅動多個所述電機轉動(自由轉動模式和水平轉動模式)。FIG. 3 is a perspective view of a variable-axis robot according to the present invention. As shown in FIG. 3, a robot with a variable number of axes according to the present invention includes a base 1, a first articulated arm, a multi-articulated arm, a terminal manipulation portion 10, and a driving portion. The support portion 2 is rotated relative to the base 1. The first articulated arm includes a support portion 2 and a first joint 4. The first joint 4 is provided with a lifting claw 3, the supporting portion 2 is provided with a lifting groove 11, and the lifting claw 3 is driven by the driver to lift and lower in the lifting groove 11. The first end of the multi-articulated arm is connected to the first joint 4, and the first joint 4 is raised and lowered relative to the support portion 2. The illustrated multi-articulated arm includes a plurality of robotic arms connected to each other end-to-end and a joint portion connecting the robotic arms. One end of the robotic arm is connected to the other end of the other robotic arm by a joint part in a manner capable of rotating around the yaw axis, but not limited thereto. The end effector 10 is detachably connected to the second end of the multi-articulated arm via a third joint portion 12 so as to be rotatable about a yaw axis. The end manipulating portion 10 in the present invention may be any function manipulating portion existing or invented in the future. The rotation axis of the third joint portion 12 is parallel to the vertical plane and can be rotated horizontally, but is not limited thereto. In this embodiment, the multi-articulated arm mainly includes: a second robot arm 6, a third robot arm 8, and a first joint portion 5, but it is not limited thereto. A first end of the second robot arm 6 is connected to a second end of the first joint 4 via a first joint portion 5 so as to be rotatable about a yaw axis. The first end of the third robot arm 8 is connected to the second end of the second robot arm 6 via a second joint portion 7 so as to be rotatable about a yaw axis, and the second end of the third robot arm 8 and the third joint Department 12 is connected. In this embodiment, a horizontal rotation axis J1, a vertical lifting axis Z2, a horizontal rotation axis J3, and a horizontal rotation axis J4 are respectively provided between the base 1, the support portion 2, the robot arm, and the end manipulating portion 10 of the variable-axis robot. Twist the rotation axis J5 and the horizontal rotation axis J6. The driving part includes a plurality of drives and a plurality of motors respectively disposed between the joint part, the support part 2 and the base 1, and between the first end of the multi-articulated arm and the support part 2. The plurality of drives are in the following two modes A plurality of said motors are driven to rotate (free rotation mode and horizontal rotation mode).

自由轉動模式為每個電機自由轉動,每一個關節部都具有充分的自由度。而水平轉動模式為至少一繞橫擺軸旋轉或扭轉的電機在水平面內旋轉,其餘電機不工作。驅動部在水平轉動模式中多關節臂的所有關節部的旋轉軸平行於鉛垂方向。水平轉動模式中,所有繞俯仰軸旋轉或是升降軸升降的電機停止工作,從而提高機器人獲得垂直方向上的剛度。The free rotation mode allows each motor to rotate freely, and each joint has a sufficient degree of freedom. The horizontal rotation mode is that at least one motor that rotates or twists around the yaw axis rotates in the horizontal plane, and the other motors do not work. In the horizontal rotation mode, the rotation axes of all the articulated parts of the articulated arm are parallel to the vertical direction. In the horizontal rotation mode, all the motors that rotate about the pitch axis or the lifting axis stop working, thereby improving the rigidity of the robot in the vertical direction.

在一個變化例中,本發明的可變軸數的機器人可以根據使用場景和技術要求變換機器人的軸數和結構。例如透過對當前的可變軸數的機器人組裝新的機械臂,或是拆卸當前的機械臂,來增減多關節臂的機械臂之間的轉軸的總數,但不以此為限。In a variant, the variable-axis robot of the present invention can change the number and structure of the robot's axes according to the use scene and technical requirements. For example, by assembling a new robot arm with a current variable-axis robot, or disassembling the current robot arm, the total number of rotation axes between the robot arms of the multi-joint arm is increased or decreased, but not limited thereto.

而且,本發明的軸數變化還可以透過另一種方案來實現:根據性能要求,比如工作範圍、定位精准度等,機器人的軸數可以從一定軸數變化為任意更多軸或者更少的軸。本發明的軸數可以切換為更多軸或者更少軸,比如:在現有5軸情況下,可以切換為6軸、7軸等更多軸,也可以切換為4軸、3軸等更少軸。本發明的軸切換的方式可以是多樣的,比如:現有5軸切換為6軸時,可以是直接在在現有5軸的基礎上添加第6軸,也可以切換第5軸後,添加新的結構的第5、6軸,實現5軸模式向6軸模式的切換。在此基礎上,透過拆卸或是組裝機械臂或關節部來對本發明中的旋轉軸的數量進行增減的技術方案也落在本發明的保護範圍之內。Moreover, the change in the number of axes of the present invention can also be achieved through another solution: according to performance requirements, such as working range, positioning accuracy, etc., the number of axes of the robot can be changed from a certain number of axes to any more or fewer axes . The number of axes of the present invention can be switched to more or fewer axes, for example, in the case of the existing 5-axis, it can be switched to more axes such as 6-axis, 7-axis, etc., or it can be switched to 4-axis, 3-axis, etc. axis. The axis switching method of the present invention can be various. For example, when the existing 5 axis is switched to 6 axis, it can be directly added to the existing 5 axis, or a new axis can be added after switching the 5th axis. The 5th and 6th axis of the structure realizes the switch from the 5-axis mode to the 6-axis mode. On this basis, the technical solution of increasing or decreasing the number of rotating shafts in the present invention by disassembling or assembling a robot arm or a joint part also falls within the protection scope of the present invention.

本發明的可變軸數的機器人可以根據實際機械手臂使用時特定動作的需要,可以變換某一軸或者某幾軸的結構。本發明的切換軸的選擇可以是多樣的,比如:現有5軸切換為6軸時,添加的第6軸結構可以不唯一,第6軸可以是水平軸或是垂直軸。而且,本發明的軸數可以不變,其中特定軸結構可以切換為不同結構的軸,比如:現有6軸,第5、6軸分別是橫擺結構、俯仰結構或扭轉結構中的任意一種結構,且第5、6軸的結構不同,切換後,可以將第5、6軸切換為相同結構的5、6軸,但不以此為限。在此基礎上,透過拆卸或是組裝機械臂或關節部來對本發明中的旋轉軸的方向進行改變的技術方案也落在本發明的保護範圍之內。The variable-axis robot of the present invention can change the structure of a certain axis or a certain number of axes according to the needs of a specific action when an actual mechanical arm is used. The selection of the switching axis of the present invention may be various. For example, when the existing 5 axis is switched to 6 axis, the added 6th axis structure may not be unique, and the 6th axis may be a horizontal axis or a vertical axis. In addition, the number of axes of the present invention can be unchanged, and the specific axis structure can be switched to a different structure axis, for example, the existing 6 axis, and the 5th and 6th axes are any one of a yaw structure, a pitch structure, or a torsion structure, respectively. And the structures of the 5th and 6th axes are different. After switching, the 5th and 6th axes can be switched to the 5th and 6th axes of the same structure, but not limited to this. On this basis, the technical solution of changing the direction of the rotation axis in the present invention by disassembling or assembling a robot arm or a joint part also falls within the protection scope of the present invention.

本發明的自由轉動模式下可變軸數的機器人被配置為六軸模式的機器手臂,相當於傳統的六軸機器人(6R機器人)。水平轉動模式下可變軸數的機器人被配置為四軸模式的機器手臂,相當於SCARA機器人(即平面關節型機器人,SCARA是Selective Compliance Assembly Robot Arm的縮寫,意思是一種應用於裝配作業的機器人手臂。它有3個旋轉關節,最適用於平面定位。)。本發明的可變軸數的機器人擁有SCARA機器人的工業特性:精准度高、速度快,比SCARA機器人自由度更多,靈活性更高。而且,本發明的可變軸數的機器人具有圓柱工作範圍,優於傳統多軸機器人。本發明還可以實現一台機械手臂的不同軸數切換,一台多軸機械手臂的費用可以使用多種模式的功能,應用的靈活性更好。所以,本發明的可變軸數的機器人透過實現機器人軸數的切換和切換軸的結構的改變,可以根據產線的調整,針對產線的需求,改變機器人的軸數,在產線靈活應用,這樣的好處是,本發明的機器人,即平面定位精准,又增加了機器人的自由度,擴大了應用的範圍,多軸變換模式使一台機器人可用於多種領域,大大減少了企業的生產成本。The robot with a variable number of axes in the free rotation mode of the present invention is configured as a robot arm in a six-axis mode, which is equivalent to a conventional six-axis robot (6R robot). A robot with a variable number of axes in the horizontal rotation mode is configured as a four-axis robot arm, which is equivalent to a SCARA robot (that is, a planar articulated robot. SCARA is the abbreviation of Selective Compliance Assembly Robot Arm, which means a robot used in assembly operations. Arm. It has 3 swivel joints, which is best for planar positioning.). The variable-axis robot of the present invention has the industrial characteristics of a SCARA robot: high accuracy, fast speed, more freedom and greater flexibility than a SCARA robot. Moreover, the variable-axis robot of the present invention has a cylindrical working range, which is superior to the conventional multi-axis robot. The invention can also realize the switching of different number of axes of one robotic arm, the cost of one multi-axis robotic arm can use the functions of multiple modes, and the application flexibility is better. Therefore, the variable-axis robot of the present invention can realize the switch of the number of robot axes and the change of the structure of the switched axes, and can be used to flexibly apply the number of robot axes to the needs of the production line according to the production line adjustment This kind of advantage is that the robot of the present invention has precise plane positioning, increases the degree of freedom of the robot, and expands the scope of application. The multi-axis transformation mode enables one robot to be used in various fields, which greatly reduces the production cost of the enterprise. .

當機器人軸數切換時,軸關節電機的驅動器會隨之有相應的變化,軸數的增加減少,使用電機數會隨之增減,與電機匹配的驅動器的個數會隨之增減。當四軸模式與六軸模式切換時,系統的整體構架不變,因為不同模式下運行的驅動電機數不同,因此在切換時,需要改變電機驅動器的運行數。實際操作中,無需改變電路的接線,只透過軟體的程式控制,即可實現軸數切換時電機驅動器運行總數量的改變。When the number of robot axes is switched, the drive of the axis joint motor will change accordingly. As the number of axes increases, the number of motors used will increase or decrease, and the number of drivers matching the motor will increase or decrease accordingly. When the four-axis mode and the six-axis mode are switched, the overall architecture of the system is unchanged, because the number of driving motors running in different modes is different, so when switching, the number of running motor drives needs to be changed. In actual operation, it is not necessary to change the wiring of the circuit, and only through the software program control, the total number of motor drivers can be changed when the number of axes is switched.

為了由於本發明的多關節臂具有多根機械臂,為了降低根機械臂的品質對多關節臂的第一端的拉力效應,多關節臂中越接近其第一端的機械臂的水平高度越高,越接近其第二端的機械臂的水平高度越低。每一級機械臂類似一個下降的臺階,使得多關節臂整體向重力方向階梯狀下降,這種傾斜的階梯下降的姿態有助於分散多關節臂整體品質對的第一端和支撐部2的拉力效應。尤其是在多關節臂包括5根機械臂、8根機械臂的情況下能更有效地增強多關節臂的整體強度,也降低多關節臂的重心。In order that the multi-articulated arm of the present invention has multiple mechanical arms, and in order to reduce the tensile effect of the quality of the root mechanical arm on the first end of the multi-articulated arm, the level of the mechanical arm closer to the first end of the multi-articulated arm is higher , The lower the horizontal height of the robot arm closer to its second end. Each level of the robotic arm is similar to a descending step, so that the overall articulated arm descends stepwise toward the direction of gravity. This inclined step-down posture helps disperse the tension of the first end of the overall quality of the articulated arm and the support 2 effect. Especially when the articulated arm includes 5 robotic arms and 8 robotic arms, the overall strength of the articulated arm can be enhanced more effectively, and the center of gravity of the articulated arm can also be reduced.

在另一個優選實施例中,所述驅動部在所述水平轉動模式中,控制所述機械臂之間的所有關節部的電機在水平面內旋轉,以使施加給所述機械臂中最接近第一關節臂的旋轉軸的轉矩最小。In another preferred embodiment, in the horizontal rotation mode, the driving part controls the motors of all the joints between the robot arms to rotate in a horizontal plane so that the closest to the first The torque of the rotary axis of an articulated arm is the smallest.

在另一個優選實施例中,所述驅動部在所述自由轉動模式中,控制所述機械臂之間的所有關節部的電機自由轉動,以使施加給所述機械臂中最接近第一關節臂的旋轉軸的轉矩最小。In another preferred embodiment, in the free rotation mode, the driving part controls the motors of all joint parts between the robot arms to rotate freely so as to be applied to the robot arm closest to the first joint The rotation axis of the arm has the smallest torque.

第4圖是本發明的另一種可變軸數的機器人的立體圖。如第4圖所示,在本發明的另一種實施例中,末端操縱部10經由一第三關節部9以能夠繞俯仰軸旋轉的方式與多關節臂的第二端連結。第三關節部12的轉軸平行於水平面,能夠進行俯仰旋轉,但不以此為限。本實施例中,可變軸數的機器人的底座1、支撐部2、機械臂、末端操縱部10之間分別設置了水平旋轉軸J1、垂直升降軸Z2、水平旋轉軸J3、水平旋轉軸J4、扭轉旋轉軸J5以及俯仰旋轉軸J6。其他技術特徵如前所示,此處不再贅述。在此基礎上,改變多關節臂兩端的關節臂的旋轉方或是驅動功能的技術方案也落在本發明的保護範圍之內。Fig. 4 is a perspective view of another variable axis number robot according to the present invention. As shown in FIG. 4, in another embodiment of the present invention, the end effector 10 is connected to the second end of the multi-articulated arm via a third joint portion 9 so as to be rotatable about a pitch axis. The rotation axis of the third joint portion 12 is parallel to the horizontal plane and can be pitched and rotated, but is not limited thereto. In this embodiment, a horizontal rotation axis J1, a vertical lifting axis Z2, a horizontal rotation axis J3, and a horizontal rotation axis J4 are respectively provided between the base 1, the support portion 2, the robot arm, and the end manipulating portion 10 of the robot with a variable number of axes. Twist the rotation axis J5 and the pitch rotation axis J6. The other technical features are shown above, and will not be repeated here. On this basis, the technical solution of changing the rotation direction or driving function of the articulated arm at both ends of the multi-articulated arm also falls within the protection scope of the present invention.

第5圖是本發明的再一種可變軸數的機器人的立體圖。如第5圖所示,在本發明的另一種實施例中,多關節臂只包括一第二機械臂6。第二機械臂6的第一端經由一第一關節部5以能夠繞橫擺軸旋轉的方式與第一關節4的第二端連結,第二機械臂6的第二端與第三關節部連結。本實施例中,可變軸數的機器人的底座1、支撐部2、機械臂、末端操縱部10之間分別設置了水平旋轉軸J1、垂直升降軸Z2、水平旋轉軸J3、扭轉旋轉軸J5以及俯仰旋轉軸J6。多關節臂包含的機械臂總數量越小,相對的剛性就越強。在此基礎上,增加或是減少多關節臂的機械臂的總數量的技術方案也落在本發明的保護範圍之內。Fig. 5 is a perspective view of another variable-axis number robot according to the present invention. As shown in FIG. 5, in another embodiment of the present invention, the articulated arm includes only a second robot arm 6. The first end of the second robot arm 6 is connected to the second end of the first joint 4 via a first joint portion 5 so as to be rotatable about the yaw axis, and the second end of the second robot arm 6 and the third joint portion link. In this embodiment, a horizontal rotation axis J1, a vertical lifting axis Z2, a horizontal rotation axis J3, and a torsion rotation axis J5 are respectively provided between the base 1, the support portion 2, the robot arm, and the end manipulating portion 10 of the variable-axis robot. And the pitch rotation axis J6. The smaller the total number of robotic arms contained in the articulated arm, the stronger the relative rigidity. On this basis, the technical solution of increasing or decreasing the total number of robot arms of the multi-articulated arm also falls within the protection scope of the present invention.

本發明還保護一種可變軸數的機器人的控制方法,採用上述的可變軸數的機器人,控制方法以下控制模式中的任意一種進行驅動器的驅動控制:軸座標控制模式、末端DH矩陣控制模式、基於坐標軸的運動控制模式以及末端點到點的控制模式。The invention also protects a control method of a variable-axis robot. The above-mentioned variable-axis robot is used. The control method is to perform drive control of the driver in any of the following control modes: axis coordinate control mode, end DH matrix control mode. , Coordinate axis-based motion control mode and end-to-end control mode.

在軸座標控制模式下,使用者透過修改GUI(圖形化使用者介面)中每個軸關節的參數,以達到控制手臂運行的目的。改變參數的方式包括:1、拖動滑塊使參數逐漸增大;2、直接寫入關節參數。In the axis coordinate control mode, the user can modify the parameters of each axis joint in the GUI (graphical user interface) to control the movement of the arm. The methods of changing parameters include: 1. Drag the slider to gradually increase the parameters; 2. Write the joint parameters directly.

在末端DH矩陣控制模式下,使用者透過直接修改末端DH矩陣中的參數,以達到控制手臂運行的目的。In the terminal DH matrix control mode, the user can directly modify the parameters in the terminal DH matrix to control the movement of the arm.

在基於坐標軸的運動控制模式下使用者透過控制手臂末端沿選定的坐標軸運動(如座標的X軸、Y軸、Z軸),以達到控制手臂運行的目的。In the coordinate axis-based motion control mode, the user can control the movement of the arm by controlling the end of the arm along the selected coordinate axis (such as the X axis, Y axis, and Z axis of the coordinates).

在末端點到點的控制模式中,使用者指定始末點的座標和運動方式(如快速點到點,直線點到點),以達到控制手臂運行的目的。In the end-to-end control mode, the user specifies the coordinates of the start and end points and the movement mode (such as fast point-to-point, straight-line point-to-point) to control the movement of the arm.

以上四種模式都可以在GUI中加入3D model顯示姿態。任意軸數的手臂中包括但不限於全部包括以上四種控制模式,即可能有一種,可能有兩種,可能有三種,可能有四種。GUI介面可能包含一種、兩種或多種控制模式的操作介面。路徑規劃與差補,可以是共用功能,也可以是分別綁定在各模式。The above four modes can add 3D model to the GUI to display the posture. An arm with any number of axes includes, but is not limited to, all of the above four control modes, that is, there may be one, there may be two, there may be three, and there may be four. The GUI interface may include one, two or more control modes. Path planning and difference compensation can be shared functions, or they can be tied to each mode separately.

第6圖是本發明的一種可變軸數的機器人的控制方法的流程圖。如第6圖所示,本實施例中的控制方法為軸座標控制模式,包括以下步驟:FIG. 6 is a flowchart of a method of controlling a variable-axis robot according to the present invention. As shown in FIG. 6, the control method in this embodiment is an axis coordinate control mode, which includes the following steps:

S100、預存自由轉動模式的狀態參數以及水平轉動模式的狀態參數。S100. Pre-store state parameters of the free rotation mode and state parameters of the horizontal rotation mode.

S101、判斷可變軸數的機器人被配置為自由轉動模式還是水平轉動模式,若是自由轉動模式,則執行步驟S102,若是水平轉動模式,則執行步驟S103。S101. Determine whether the robot with a variable number of axes is configured in a free rotation mode or a horizontal rotation mode. If it is a free rotation mode, step S102 is performed, and if it is a horizontal rotation mode, step S103 is performed.

S102、當被配置為自由轉動模式時,調用自由轉動模式的狀態參數進行控制。S102. When the free rotation mode is configured, state parameters of the free rotation mode are called for control.

S103、當被配置為水平轉動模式時,調用水平轉動模式的狀態參數進行控制。S103. When the horizontal rotation mode is configured, state parameters of the horizontal rotation mode are called for control.

其中,調用自由轉動模式的狀態參數進行控制的步驟包括了程式初始化參數、驅動參數初始化、構型參數初始化以及控制介面初始化。The steps of calling the state parameters of the free rotation mode for control include program initialization parameters, drive parameter initialization, configuration parameter initialization, and control interface initialization.

調用水平轉動模式的狀態參數進行控制的步驟包括了程式初始化參數、驅動參數初始化、構型參數初始化以及控制介面初始化。The steps of calling the state parameters of the horizontal rotation mode for control include program initialization parameters, drive parameter initialization, configuration parameter initialization, and control interface initialization.

優選地,自由轉動模式的程式初始化參數包括:自由轉動模式下運行的驅動器個數,以及每個軸的軟體限位、每個軸的品質、質心位置、最大速度、最大加速度以及最大加加速度,但不以此為限。Preferably, the program initialization parameters of the free rotation mode include: the number of drives running in the free rotation mode, and the software limit of each axis, the quality of each axis, the position of the center of mass, the maximum speed, the maximum acceleration, and the maximum jerk , But not limited to this.

水平轉動模式的程式初始化參數包括:水平轉動模式下運行的驅動器個數,以及每個軸的軟體限位、每個軸的品質、質心位置、最大速度、最大加速度以及最大加加速度,但不以此為限。The program initialization parameters of the horizontal rotation mode include: the number of drives running in the horizontal rotation mode, and the software limit of each axis, the quality of each axis, the position of the center of mass, the maximum speed, the maximum acceleration, and the maximum jerk, but not This is the limit.

在一個實施例中,用戶透過修改GUI中每個軸關節的參數,以達到控制手臂運行的目的。改變參數的方式包括:1.拖動滑塊使參數逐漸增大;2.直接寫入關節參數。當四六軸發生切換時,軟體將進行初始化,然後依次進行軟體參數初始化、驅動器參數初始化、構型參數初始化以及GUI初始化。In one embodiment, the user can modify the parameters of each axis joint in the GUI to control the movement of the arm. The methods of changing parameters include: 1. Drag the slider to gradually increase the parameters; 2. Write the joint parameters directly. When the four or six axes are switched, the software will be initialized, and then the software parameter initialization, driver parameter initialization, configuration parameter initialization, and GUI initialization will be performed in this order.

軟體參數初始化:當確定設定的軸數和機械構型一致時,軟體的參數將根據此時的軸數進行初始化。初始化的參數包括主控驅動的驅動器個數(在六軸模式下,驅動器個數為六個;四軸模式下,驅動器個數為四個),每個軸的軟體限位,即關節的運動範圍,當超過這個範圍時將發生警報,自動停機;每個軸的品質,質心位置,最大速度,最大加速度和最大加加速度。Software parameter initialization: When it is determined that the set number of axes is consistent with the mechanical configuration, the software parameters will be initialized according to the number of axes at this time. Initialized parameters include the number of drives controlled by the master (in six-axis mode, the number of drives is six; in four-axis mode, the number of drives is four), the software limit of each axis, that is, the motion of the joint Range. When exceeding this range, an alarm will occur and the machine will automatically stop; the mass of each axis, the center of mass position, the maximum speed, the maximum acceleration and the maximum jerk.

驅動器參數初始化:在軟體參數初始化階段設定哪些軸關節參與機械臂的運轉,而軸關節的運轉控制的實現依靠驅動器和電機。而由於每個關節的重量、長度、質心位置、速度的不同,其驅動器參數也不同。並且由於功率問題,驅動器和電機通常是一一對應,因此當電機更換(包括品牌、型號和功率)導致驅動器的變更,無論是替代還是新增,在軟體部分的處理方式保持一致,均為重新對驅動器參數進行設置。該參數的設置包括:驅動器內部參數和通訊方式等。因此,正確的驅動器參數設置是保證設備正常運行必不可少的一部分。在四六軸切換的實施例中,手臂四軸狀態和六軸狀態的重量,質心等參數都有所不同,因此需要對驅動器參數依據不同狀態而進行初始化。驅動器中需要設定的主要參數包括:慣量比、位置環增益、速度比例增益、速度積分時間常數、速度前饋增益、轉矩前饋增益等。Driver parameter initialization: During the software parameter initialization stage, which axis joints are involved in the operation of the robot arm, and the implementation of the axis joint operation control depends on the driver and the motor. Because of the different weight, length, centroid position, and speed of each joint, its drive parameters are also different. And because of the power problem, the driver and the motor usually have a one-to-one correspondence. Therefore, when the motor is replaced (including the brand, model, and power), the driver is changed. Whether it is a replacement or a new one, the processing in the software part remains the same. Set the drive parameters. The setting of this parameter includes: internal parameters of the driver and communication method. Therefore, correct driver parameter setting is an essential part to ensure the normal operation of the device. In the embodiment of switching between four and six axes, parameters such as the weight of the four-axis state and the six-axis state of the arm are different, so the driver parameters need to be initialized according to different states. The main parameters to be set in the driver include: inertia ratio, position loop gain, speed proportional gain, speed integral time constant, speed feedforward gain, torque feedforward gain, etc.

構型參數初始化:構型參數包括每個軸關節的長度、高度、X軸上的偏轉角度、Z軸上的偏轉角度,以對應算出該構型下的DH矩陣,該DH矩陣包含手臂末端的姿態和在空間的位置座標。至此,該構型的手臂的模型在控制器中搭建完畢。Configuration parameter initialization: The configuration parameters include the length and height of each axis joint, the deflection angle on the X axis, and the deflection angle on the Z axis to calculate the DH matrix corresponding to the configuration. The DH matrix contains the end of the arm. Posture and position coordinates in space. At this point, the model of the arm of this configuration is set up in the controller.

GUI初始化:以第3步中完成的手臂構型為基礎,進行GUI介面的初始化,該手臂構型將會顯示在GUI介面中。完成以上步驟後,即可以開始對手臂本體進行控制,使其在空間中運動。例如:第7圖是本發明的可變軸數的機器人在六軸模式下的軟體介面示意圖。如第7圖所示,可以在六軸模式下的軟體介面21中調整各軸的參數,並且在機器人模型演示視窗22中直觀地到即時演示的結果。第8圖是本發明的可變軸數的機器人在四軸模式下的軟體介面示意圖。如第8圖所示,可以在四軸模式下的軟體介面23中調整各軸的參數,並且在機器人模型演示視窗24中直觀地到即時演示的結果。GUI initialization: Based on the arm configuration completed in step 3, initialize the GUI interface. The arm configuration will be displayed in the GUI interface. After completing the above steps, you can start controlling the arm body to make it move in space. For example, Fig. 7 is a schematic diagram of the software interface of the variable-axis robot of the present invention in a six-axis mode. As shown in FIG. 7, the parameters of each axis can be adjusted in the software interface 21 in the six-axis mode, and the results of the instant demonstration are intuitively displayed in the robot model demonstration window 22. FIG. 8 is a schematic diagram of a software interface of the variable-axis robot of the present invention in a four-axis mode. As shown in FIG. 8, the parameters of each axis can be adjusted in the software interface 23 in the four-axis mode, and the result of the instant demonstration is intuitively displayed in the robot model demonstration window 24.

綜上,本發明所提供的可變軸數的機器人及其控制方法提高機器人的剛度,既能快捷的應用於生產活動又能柔性動作角度執行多樣任務,同時整體佈局緊湊,從而更加適於實用,且具有產業上的利用價值。In summary, the variable-axis robot and its control method provided by the present invention improve the rigidity of the robot, which can be quickly applied to production activities and can perform various tasks with flexible action angles. At the same time, the overall layout is compact, which is more suitable for practical applications. , And has industrial use value.

以上內容是結合具體的優選實施方式對本發明所作的進一步詳細說明,不能認定本發明的具體實施只局限於這些說明。對於本發明所屬技術領域的普通技術人員來說,在不脫離本發明構思的前提下,還可以做出若干簡單推演或替換,都應當視為屬於本發明的保護範圍。The above is a further detailed description of the present invention in combination with specific preferred embodiments, and it cannot be considered that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field to which the present invention pertains, without deviating from the concept of the present invention, several simple deductions or replacements can be made, which should all be regarded as belonging to the protection scope of the present invention.

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。In summary, although the present invention has been disclosed as above with the embodiments, it is not intended to limit the present invention. Those with ordinary knowledge in the technical field to which the present invention pertains can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be determined by the scope of the attached patent application.

1‧‧‧底座1‧‧‧ base

2‧‧‧支撐部2‧‧‧ support

3‧‧‧升降卡爪3‧‧‧ Lifting claw

4‧‧‧第一關節4‧‧‧ first joint

5‧‧‧第一關節部5‧‧‧ first joint

6‧‧‧第二機械臂6‧‧‧Second robot arm

7‧‧‧第二關節部7‧‧‧second joint

8‧‧‧第三機械臂8‧‧‧ third robot arm

9‧‧‧第三關節部9‧‧‧ the third joint

10‧‧‧末端操縱部10‧‧‧ terminal control unit

11‧‧‧升降槽11‧‧‧ Lifting trough

12‧‧‧第三關節部12‧‧‧ the third joint

15‧‧‧機械臂15‧‧‧ robotic arm

16‧‧‧關節部16‧‧‧ Joint

17‧‧‧第一關節臂17‧‧‧The first articulated arm

21‧‧‧六軸模式下的軟體介面21‧‧‧ software interface in six-axis mode

22‧‧‧機器人模型演示視窗22‧‧‧ Robot model demo window

23‧‧‧四軸模式下的軟體介面23‧‧‧ Software interface in four-axis mode

24‧‧‧機器人模型演示視窗24‧‧‧ Robot model demo window

S100~S103‧‧‧流程步驟S100 ~ S103‧‧‧Process steps

J1、J3、J4、J6‧‧‧旋轉軸J1, J3, J4, J6‧‧‧rotation shaft

J5‧‧‧扭轉旋轉軸J5‧‧‧Twist rotation axis

Z2‧‧‧垂直升降軸Z2‧‧‧Vertical lifting shaft

透過閱讀參照以下附圖對非限制性實施例所作的詳細描述,本發明的其它特徵、目的和優點將會變得更明顯。 第1圖繪示本發明的一種可變軸數的機器人的示意圖。 第2圖繪示本發明的另一種可變軸數的機器人的示意圖。 第3圖繪示本發明的再一種可變軸數的機器人的立體圖。 第4圖繪示本發明的再一種可變軸數的機器人的立體圖。 第5圖繪示本發明的再一種可變軸數的機器人的立體圖。 第6圖繪示本發明的一種可變軸數的機器人的控制方法的流程圖。 第7圖繪示本發明的可變軸數的機器人在六軸模式下的軟體介面示意圖。 第8圖繪示本發明的可變軸數的機器人在四軸模式下的軟體介面示意圖。Other features, objects, and advantages of the present invention will become more apparent by reading the detailed description of the non-limiting embodiments with reference to the following drawings. FIG. 1 is a schematic diagram of a variable-axis robot according to the present invention. FIG. 2 is a schematic diagram of another variable-axis robot according to the present invention. FIG. 3 is a perspective view of another variable-axis robot according to the present invention. FIG. 4 is a perspective view of another variable-axis robot according to the present invention. FIG. 5 is a perspective view of another variable-axis robot according to the present invention. FIG. 6 is a flowchart of a control method of a variable-axis robot according to the present invention. FIG. 7 is a schematic diagram of a software interface of the variable-axis number robot of the present invention in a six-axis mode. FIG. 8 is a schematic diagram of a software interface of a variable-axis robot of the present invention in a four-axis mode.

Claims (10)

一種可變軸數的機器人,包括: 一底座; 一第一關節臂,所述第一關節臂的一端連結於所述底座; 至少N個機械臂,N為非0的自然數,當N=1時,所述機械臂的一端由一關節部以能夠繞橫擺軸或是俯仰軸旋轉的方式或扭轉的方式與所述第一關節臂的另一端連結;當N>1時,任一所述機械臂的一端由一關節部以能夠繞橫擺軸或是俯仰軸旋轉的方式或扭轉的方式與相鄰機械臂可拆卸地連結;以及 一驅動部,所述驅動部設置於所述底座、所述第一關節臂和所述機械臂內部;所述驅動部包括多個驅動器和多個電機,多個所述驅動器以如下兩種模式驅動多個所述電機轉動; 自由轉動模式:每個所述電機自由轉動;或者 水平轉動模式:至少一繞橫擺軸旋轉的所述電機在水平面內旋轉。A robot with a variable number of axes includes: a base; a first articulated arm, one end of the first articulated arm is connected to the base; at least N robot arms, N is a non-zero natural number, when N = At 1 o'clock, one end of the robotic arm is connected to the other end of the first articulated arm by a joint in a manner capable of rotating or twisting about the yaw axis or the pitch axis; when N> 1, either One end of the robotic arm is detachably connected to an adjacent robotic arm by a joint portion in a manner capable of rotating around a yaw axis or a pitch axis or twisted; and a driving portion provided on the driving portion. The base, the first articulated arm, and the inside of the mechanical arm; the driving part includes a plurality of drivers and a plurality of motors, and the plurality of drivers drive the plurality of motors to rotate in the following two modes; a free rotation mode: Each of the motors can rotate freely; or a horizontal rotation mode: at least one of the motors rotating about a yaw axis rotates in a horizontal plane. 如申請專利範圍第1項所述的可變軸數的機器人,其中所述機械臂被配置為透過拆卸或拼接至少一個機械臂而改變所述機械臂的總數量。The variable-axis-number robot according to item 1 of the scope of patent application, wherein the robot arm is configured to change the total number of the robot arm by disassembling or splicing at least one robot arm. 如申請專利範圍第2項所述的可變軸數的機器人,其中所述機械臂被配置透過直接拆卸X個機械臂;或拆卸Y個機械臂後拼接Z個機械臂而改變所述機械臂的總數量,其中,X、Y、Z均為常數,且X≤N,Y=N,Z≥1。The variable-axis number robot according to item 2 of the patent application scope, wherein the robot arm is configured to directly disassemble X robot arms; or disassemble Y robot arms and then splice Z robot arms to change the robot arm The total number of X, Y, Z are all constants, and X≤N, Y = N, Z≥1. 如申請專利範圍第2項所述的可變軸數的機器人,其中所述機械臂被配置透過拼接U個機械臂;或拆卸Y個機械臂後拼接V個機械臂而改變所述機械臂的總數量,其中,U、Y、V均為常數,且U≥1,Y=N,V≥1。The variable axis number robot according to item 2 of the patent application scope, wherein the robot arm is configured by splicing U robot arms; or disassembling Y robot arms and splicing V robot arms to change the robot arm's The total number, where U, Y, and V are all constants, and U≥1, Y = N, and V≥1. 如申請專利範圍第1項所述的可變軸數的機器人,其中所述第一關節臂包括支撐部和第一關節,所述支撐部的一端連結於所述底座,所述支撐部的另一端連結於所述第一關節。The variable-axis-number robot according to item 1 of the scope of patent application, wherein the first articulated arm includes a support portion and a first joint, one end of the support portion is connected to the base, and the other of the support portion One end is connected to the first joint. 如申請專利範圍第5項所述的可變軸數的機器人,其中所述支撐部相對於所述底座扭轉或平移。The variable-axis-number robot according to item 5 of the patent application scope, wherein the support portion is twisted or translated relative to the base. 如申請專利範圍第5項所述的可變軸數的機器人,其中所述第一關節設有一升降卡爪,所述支撐部設有一升降槽,所述升降卡爪受所述電機驅動在所述升降槽內升降。The variable axis number robot according to item 5 of the scope of patent application, wherein the first joint is provided with a lifting claw, the supporting portion is provided with a lifting groove, and the lifting claw is driven by the motor in the place. Lifting in the lifting tank. 一種可變軸數的機器人的控制方法,採用如申請專利範圍第1項至第7項中任意一項所述的可變軸數的機器人,所述控制方法以下控制模式中的任意一種進行所述驅動部的驅動控制: 軸座標控制模式; 末端DH矩陣控制模式; 基於坐標軸的運動控制模式;以及 末端點到點的控制模式。A control method of a variable-axis number robot adopts a variable-axis number robot as described in any one of items 1 to 7 of a patent application scope, and the control method is performed in any of the following control modes. The drive control of the drive unit is described as: axis coordinate control mode; end DH matrix control mode; coordinate axis-based motion control mode; and end point-to-point control mode. 如申請專利範圍第8項所述的可變軸數的機器人的控制方法,其中所述控制方法為所述軸座標控制模式,包括以下步驟: 預存自由轉動模式的狀態參數以及水平轉動模式的狀態參數; 當被配置為所述自由轉動模式時,調用所述自由轉動模式的所述狀態參數進行控制;以及 當被配置為所述水平轉動模式時,調用所述水平轉動模式的所述狀態參數進行控制; 其中,所述調用所述自由轉動模式的所述狀態參數進行控制的步驟包括了程式初始化參數、驅動參數初始化、構型參數初始化以及控制介面初始化; 所述調用所述水平轉動模式的所述狀態參數進行控制的步驟包括了所述程式初始化參數、所述驅動參數初始化、所述構型參數初始化以及所述控制介面初始化。The method for controlling a robot with a variable number of axes according to item 8 of the scope of patent application, wherein the control method is the axis coordinate control mode and includes the following steps: Pre-store state parameters of the free rotation mode and the state of the horizontal rotation mode Parameters; when configured in the free rotation mode, calling the state parameters of the free rotation mode for control; and when configured in the horizontal rotation mode, calling the state parameters of the horizontal rotation mode Performing control; wherein the step of invoking the state parameter of the free rotation mode for control includes program initialization parameters, driving parameter initialization, configuration parameter initialization, and control interface initialization; and the invoking the horizontal rotation mode The step of controlling the state parameters includes the program initialization parameters, the driving parameter initialization, the configuration parameter initialization, and the control interface initialization. 如申請專利範圍第9項所述的可變軸數的機器人的控制方法,其中所述自由轉動模式的所述程式初始化參數包括:所述自由轉動模式下運行的驅動器個數,以及每個軸的軟體限位、每個軸的品質、質心位置、最大速度、最大加速度以及最大加加速度; 所述水平轉動模式的所述程式初始化參數包括:水平轉動模式下運行的驅動器個數,以及每個軸的軟體限位、每個軸的品質、質心位置、最大速度、最大加速度以及最大加加速度。The method for controlling a robot with a variable number of axes according to item 9 of the scope of patent application, wherein the program initialization parameters of the free rotation mode include: the number of drivers running in the free rotation mode, and each axis Software limit, mass of each axis, center of mass position, maximum speed, maximum acceleration, and maximum jerk; the program initialization parameters of the horizontal rotation mode include: the number of drives running in the horizontal rotation mode, and each Software limit of each axis, mass of each axis, centroid position, maximum speed, maximum acceleration and maximum jerk.
TW107108370A 2017-09-29 2018-03-13 Robot with a variable number of arbors and control method thereof TWI698315B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201710906604.6A CN107520841A (en) 2017-09-29 2017-09-29 The robot and its control method of the variable number of axle
??201710906604.6 2017-09-29
CN201710906604.6 2017-09-29

Publications (2)

Publication Number Publication Date
TW201914787A true TW201914787A (en) 2019-04-16
TWI698315B TWI698315B (en) 2020-07-11

Family

ID=60683869

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107108370A TWI698315B (en) 2017-09-29 2018-03-13 Robot with a variable number of arbors and control method thereof

Country Status (2)

Country Link
CN (1) CN107520841A (en)
TW (1) TWI698315B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108422414A (en) * 2018-05-15 2018-08-21 东莞新友智能科技有限公司 Six articulated robots
CN109531535A (en) * 2018-12-26 2019-03-29 襄阳国铁机电股份有限公司 A kind of high-sided wagon vehicle door disassembling device
CN110695984B (en) * 2019-09-30 2022-12-09 中国船舶重工集团公司第七0七研究所 Large-load horizontal carrying industrial robot
CN112178411B (en) * 2020-09-21 2022-05-31 浙江庚星科技有限公司 Marine ranching monitoring device
CN113733052B (en) * 2021-09-17 2023-07-25 西安交通大学 Omnidirectional mobile robot and control method thereof
CN114083528A (en) * 2021-12-31 2022-02-25 浙江鼎力机械股份有限公司 High-load mechanical arm
CN116175529A (en) * 2022-07-12 2023-05-30 上海奔曜科技有限公司 Seven-axis robot

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3918587A1 (en) * 1988-06-13 1989-12-14 Westinghouse Electric Corp Reconfigurable articulated robot arm
US8655429B2 (en) * 2007-06-29 2014-02-18 Accuray Incorporated Robotic arm for a radiation treatment system
US8126114B2 (en) * 2008-09-12 2012-02-28 Accuray Incorporated Seven or more degrees of freedom robotic manipulator having at least one redundant joint
US8442686B2 (en) * 2011-01-31 2013-05-14 Toyota Jidosha Kabushiki Kaisha Articulated arm robot, control method and control program
CN104786217B (en) * 2014-12-18 2017-01-18 遨博(北京)智能科技有限公司 Variable-freedom-degree modular mechanical arm
CN204505242U (en) * 2015-02-09 2015-07-29 山东星科智能科技股份有限公司 A kind of industrial machinery arm
CN108349089A (en) * 2015-09-11 2018-07-31 生活机器人学股份有限公司 Robot device
CN106181982A (en) * 2016-08-09 2016-12-07 英华达(上海)科技有限公司 multi-axis robot

Also Published As

Publication number Publication date
TWI698315B (en) 2020-07-11
CN107520841A (en) 2017-12-29

Similar Documents

Publication Publication Date Title
TWI698315B (en) Robot with a variable number of arbors and control method thereof
TWI616290B (en) Multiaxial robot of multitasking and operating method thereof
JP5949917B2 (en) Robot system and method of manufacturing processed product
KR102373081B1 (en) Material-handling robot with multiple end-effectors
US20040257021A1 (en) Multiple robot arm tracking and mirror jog
TWI689389B (en) Multiaxial robot
JP2010167515A (en) Multi-axial robot and speed controller for the same
CN107336228B (en) The control device of the robot of the operation program of state of the display comprising additional shaft
JP2006142481A (en) Four degree of freedom parallel robot
JP2004534665A5 (en)
CN111496783B (en) Inverse kinematics solving method for 6R industrial robot
JP2022044794A (en) Robot device
CN104821526A (en) Cable arrangement structure for industrial robot, and industrial robot
JPH08161015A (en) Driving control method for articulated robot
CN107571245B (en) Small-size handling machine of 6 degrees of freedom parallel mechanism of numerical control
JPH04315589A (en) Articulated manipulator having seven degrees of freedom
CN112917479B (en) Approximate pose calculation method and device of five-axis robot and storage medium
US20230035296A1 (en) Method of suppressing vibrations of a robot arm with external objects
JPH0677205B2 (en) Robot control method
CN208246812U (en) A kind of wu-zhi-shan pig
CN111093912B (en) Working device using parallel link mechanism
JP2009148894A (en) Multi-articulated robot
JP4268035B2 (en) Industrial robot and control method thereof
WO2023142724A1 (en) Robotic arm, control method and apparatus for same, robot and storage medium
JP7481941B2 (en) Robots and Robot Systems