TW201913255A - Method for detecting and diagnosing an abnormal process - Google Patents

Method for detecting and diagnosing an abnormal process Download PDF

Info

Publication number
TW201913255A
TW201913255A TW106130869A TW106130869A TW201913255A TW 201913255 A TW201913255 A TW 201913255A TW 106130869 A TW106130869 A TW 106130869A TW 106130869 A TW106130869 A TW 106130869A TW 201913255 A TW201913255 A TW 201913255A
Authority
TW
Taiwan
Prior art keywords
data
target
abnormal
target data
model
Prior art date
Application number
TW106130869A
Other languages
Chinese (zh)
Other versions
TWI639908B (en
Inventor
李銘偉
陳丁碩
張鈞程
Original Assignee
中國鋼鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國鋼鐵股份有限公司 filed Critical 中國鋼鐵股份有限公司
Priority to TW106130869A priority Critical patent/TWI639908B/en
Application granted granted Critical
Publication of TWI639908B publication Critical patent/TWI639908B/en
Publication of TW201913255A publication Critical patent/TW201913255A/en

Links

Landscapes

  • Testing And Monitoring For Control Systems (AREA)

Abstract

A method for detecting and diagnosing an abnormal process is provided. The method incudes a model-building stage and an online-analysis stag. In the model-building stage, at first, a plurality of historic sample data are provided and clustered to obtain a first clustered data model. Then, a normal data threshold value corresponding to each of the data clusters of the first clustered data model is determined in accordance with the historic sample data and the first clustered data model. Thereafter, at least one outlier is removed from each of the data clusters to obtain a second clustered data model. In the online-analysis stage, at first, it is determined if a target data is abnormal in accordance with the second clustered data model and a statistical process control (SPC) method. When it is determined that the target data is abnormal, variance probabilities of data values of the target data are calculated to determine an abnormal process factor.

Description

製程偵錯與診斷方法  Process debugging and diagnosis method  

本發明是有關於一種製程偵錯與診斷方法,且特別是有關於一種可鑑別造成異常製程變因的製程偵錯與診斷方法。 The invention relates to a method for detecting and diagnosing a process, and in particular to a method for detecting and diagnosing a process for causing an abnormal process.

製程的偵錯與診斷係為了儘早發現製程操作的異常問題,並了解造成異常的原因及時間。如此,便可及時對異常的製程進行改善,避免不必要的產品損失與成本的浪費,同時提高產品的品質與良率,發揮製程的最大效能。 The process of debugging and diagnosis is to find out the abnormal operation of the process as early as possible, and to understand the cause and time of the abnormality. In this way, the abnormal process can be improved in time to avoid unnecessary product loss and cost waste, and at the same time improve the quality and yield of the product, and exert the maximum efficiency of the process.

在製程進行的過程中,通常會存在一些不可避免的變異,例如操作條件的改變、外在環境的變化、設備的震動或異常等。為了監測上述變異對製程的影響,目前大多以統計製程管制(statistical process control(SPC)方法來進行製程監測。 During the process of the process, there are usually some unavoidable variations, such as changes in operating conditions, changes in the external environment, vibration or abnormality of the equipment. In order to monitor the impact of the above variation on the process, most of the current process control is carried out by statistical process control (SPC).

然而,單變量SPC基本上只允許一個或單一類型的常態分佈變數,但大部分的製程操作情況通常具有非靜態(Non-stationary)、自關聯性(Auto-correlated)以及交互關聯性(Cross-correlated)等特質,而非個別獨立的製程參數,因此應用單變量SPC來監測製程變異可能會發生誤導 的作用,甚至有許多的錯誤無法偵測到。因此,業界提出了各種多變量製程管制方法來改善單變量SPC的缺點。然而,這些多變量製程管制方法雖然可以監視製程是否產生異常,但卻無法及時辨識製程產生異常的原因。 However, univariate SPC basically only allows one or a single type of normal distribution variable, but most of the process operations usually have non-stationary, auto-correlated, and cross-correlation (Cross- Correlated), rather than individual independent process parameters, so the use of univariate SPC to monitor process variation can be misleading, and even many errors cannot be detected. Therefore, the industry has proposed various multivariate process control methods to improve the shortcomings of single variable SPC. However, although these multivariate process control methods can monitor whether the process is abnormal, they cannot identify the cause of the abnormality in the process.

因此,需要一種製程偵錯與診斷方法來及時辨識製程產生異常的原因。 Therefore, a process debugging and diagnosis method is needed to identify the cause of the abnormality in the process.

本發明的目的是在於提供一種製程偵錯與診斷方法,其不但可監視製程是否產生異常,同時也可及時辨識製程產生異常的原因。 The object of the present invention is to provide a method for detecting and diagnosing a process, which can not only monitor whether a process is abnormal, but also timely identify the cause of an abnormality in the process.

根據上述之目的,此製程偵錯與診斷方法包含模型建立階段以及線上分析階段。在模型建立階段中,首先提供複數筆歷史樣本資料。接著,對歷史樣本資料進行分群,以獲得第一資料分群模型,其中第一資料分群模型包含複數個資料群組。然後,根據歷史樣本資料和第一資料分群模型來決定每一資料群組所對應之正常資料門檻值。接著,根據每一資料群組所對應之正常資料門檻值來將每一資料群組之至少一離群樣本資料移除,以獲得第二資料分群模型。在線上分析階段中,首先,根據第二資料分群模型來判斷目標資料是否為異常資料。接著,當目標資料為異常資料時,利用統計製程管制方法來判斷目標資料是否位於管制範圍內。然後,當目標資料超出管制範圍時,計算目標資料之複數筆資料數值之變異機率。接著,根據變異機率來決定目標資料所對應之至少一個異常製程因子。 According to the above purpose, the process debugging and diagnosis method includes a model establishment phase and an online analysis phase. In the model establishment phase, a plurality of historical sample data are first provided. Next, the historical sample data is grouped to obtain a first data grouping model, wherein the first data grouping model includes a plurality of data groups. Then, based on the historical sample data and the first data grouping model, the normal data threshold corresponding to each data group is determined. Then, at least one outlier sample data of each data group is removed according to a normal data threshold corresponding to each data group to obtain a second data grouping model. In the online analysis phase, first, based on the second data clustering model, it is determined whether the target data is abnormal data. Then, when the target data is abnormal data, the statistical process control method is used to determine whether the target data is within the scope of regulation. Then, when the target data exceeds the scope of control, the probability of variation of the plurality of data values of the target data is calculated. Then, at least one abnormal process factor corresponding to the target data is determined according to the probability of mutation.

根據本發明之一實施例,上述之歷史樣本資料對應至不同的時間點。 According to an embodiment of the invention, the historical sample data described above corresponds to different time points.

根據本發明之又一實施例,其中對歷史樣本資料進行分群之步驟係以K平均演算法(K-means)、K中心點演算法(K-medoids)或高斯混合模型(Gaussian Mixture Model)來進行。 According to still another embodiment of the present invention, the step of grouping the historical sample data is performed by a K-means, a K-medoids, or a Gaussian Mixture Model. get on.

根據本發明之又一實施例,上述決定正常資料門檻值之步驟包含:計算第一資料分群模型之每一資料群組之複數個陰性對數相似度(negative log likelihood;NLL)值;將每一資料群組之NLL值取絕對值,並依大小排序,其中NLL值之最大者位於最上方,該些NLL值之一最小者位於最下方;將取絕對值後之NLL值由最小者往上第95%之一者決定為正常資料門檻值。 According to still another embodiment of the present invention, the step of determining a normal data threshold includes: calculating a plurality of negative log likelihood (NLL) values for each data group of the first data grouping model; The NLL value of the data group is taken as an absolute value and sorted by size. The largest one of the NLL values is at the top, and the smallest one of the NLL values is at the bottom; the NLL value after the absolute value is taken from the smallest one. One of the 95% decided to be the normal data threshold.

根據本發明之又一實施例,上述決定正常資料門檻值之步驟更包含利用S函數(Sigmoid function)來將取絕對值後之NLL值對應至0~1的範圍。 According to still another embodiment of the present invention, the step of determining a normal data threshold further includes using an S function (Sigmoid function) to map the NLL value after the absolute value to a range of 0 to 1.

根據本發明之一實施例,上述根據第二資料分群模型來判斷目標資料是否為異常資料之步驟包含:計算第二資料分群模型之每一資料群組之中心與目標資料之離群距離;以及根據離群距離來判斷目標資料是否為異常資料。 According to an embodiment of the present invention, the step of determining whether the target data is abnormal data according to the second data grouping model comprises: calculating an outlier distance between a center of each data group of the second data grouping model and the target data; According to the outlier distance, it is judged whether the target data is abnormal data.

根據本發明之又一實施例,上述管制範圍係以下列步驟來計算:根據目標資料所對應之目標樣本時間點,往前選取複數個正常目標資料;以及根據正常目標資料來決定管制範圍之範圍上限值以及範圍下限值。 According to still another embodiment of the present invention, the control range is calculated by: selecting a plurality of normal target data according to a target sample time point corresponding to the target data; and determining a range of the control range according to the normal target data. Upper limit and lower limit of range.

根據本發明之又一實施例,上述統計製程管制方法係採用Xbar管制圖來判斷目標資料是否位於管制範圍內。 According to still another embodiment of the present invention, the statistical process control method uses an Xbar control map to determine whether the target data is within the scope of regulation.

根據本發明之又一實施例,上述根據變異機率來決定目標資料所對應之異常製程因子之步驟包含:將資料數值所對應之變異機率依大小排序;從變異機率之最大者開始依序選取至少一個變異機率。根據被選取之變異機率來決定至少一個資料數值;以及決定該至少一個資料數值所對應之至少一製程因子為異常製程因子。 According to still another embodiment of the present invention, the step of determining the abnormal process factor corresponding to the target data according to the mutation probability comprises: sorting the mutation probability corresponding to the data value according to the size; and selecting at least the highest probability of the mutation probability A chance of mutation. Determining at least one data value according to the selected mutation probability; and determining that at least one process factor corresponding to the at least one data value is an abnormal process factor.

100‧‧‧製程偵錯與診斷方法 100‧‧‧Process detection and diagnosis methods

110‧‧‧模型建立階段 110‧‧‧Model establishment phase

111-114‧‧‧步驟 111-114‧‧‧Steps

113a-113c‧‧‧步驟 113a-113c‧‧‧Steps

120‧‧‧線上分析階段 120‧‧‧Online analysis stage

121-125‧‧‧步驟 121-125‧‧‧Steps

121a-121b‧‧‧步驟 121a-121b‧‧‧Steps

122a-122b‧‧‧步驟 122a-122b‧‧‧Steps

124a-124d‧‧‧步驟 124a-124d‧‧‧Steps

200‧‧‧四級空壓機 200‧‧‧four-stage air compressor

210‧‧‧第一級空壓機 210‧‧‧First stage air compressor

220‧‧‧第二級空壓機 220‧‧‧Second stage air compressor

230‧‧‧第三級空壓機 230‧‧‧third-stage air compressor

240‧‧‧第四級空壓機 240‧‧‧Fourth-stage air compressor

P1_in、P1_out、T1_in、T1_out‧‧‧訊號 P1_in, P1_out, T1_in, T1_out‧‧‧ signals

P2_in、P2_out、T2_in、T2_out‧‧‧訊號 P2_in, P2_out, T2_in, T2_out‧‧‧ signals

P3_in、P3_out、T3_in、T3_out‧‧‧訊號 P3_in, P3_out, T3_in, T3_out‧‧‧ signals

P4_in、P4_out、T4_in、T4_out‧‧‧訊號 P4_in, P4_out, T4_in, T4_out‧‧‧ signals

為了更完整了解實施例及其優點,現參照結合所附圖式所做之下列描述,其中:〔圖1〕係繪示根據本發明實施例之製程偵錯與診斷方法的流程示意圖;〔圖2〕係繪示應用製程偵錯與診斷方法之四級空壓機的結構示意圖;〔圖3〕係繪示根據本發明實施例之正常資料門檻值的決定步驟的流程示意圖;〔圖4〕係繪示根據本發明實施例之判斷目標資料是否為異常資料之步驟的流程示意圖;〔圖5〕係繪示根據本發明實施例之SPC監控方法的流程示意圖;以及 〔圖6〕係繪示根據本發明實施例之異常製程因子決定步驟的流程示意圖。 For a more complete understanding of the embodiments and the advantages thereof, the following description is made with reference to the accompanying drawings, wherein: FIG. 1 is a flow chart showing a process debugging and diagnosis method according to an embodiment of the present invention; 2] is a schematic diagram showing the structure of a four-stage air compressor using a process debugging and diagnosis method; [Fig. 3] is a flow chart showing the steps of determining a normal data threshold according to an embodiment of the present invention; [Fig. 4] A flow chart showing the steps of determining whether the target data is abnormal data according to an embodiment of the present invention; [FIG. 5] is a schematic flow chart showing an SPC monitoring method according to an embodiment of the present invention; and FIG. 6 is a schematic diagram A schematic flowchart of an abnormal process factor determining step according to an embodiment of the present invention.

以下仔細討論本發明的實施例。然而,可以理解的是,實施例提供許多可應用的概念,其可實施於各式各樣的特定內容中。所討論、揭示之實施例僅供說明,並非用以限定本發明之範圍。 Embodiments of the invention are discussed in detail below. However, it will be appreciated that the embodiments provide many applicable concepts that can be implemented in a wide variety of specific content. The examples discussed and disclosed are illustrative only and are not intended to limit the scope of the invention.

請同時參照圖1和圖2,圖1係繪示根據本發明實施例之製程偵錯與診斷方法100的流程示意圖,圖2係繪示應用製程偵錯與診斷方法100之四級空壓機200的結構示意圖。本發明實施例之製程偵錯與診斷方法100係用以監控一系統的製程以監視製程是否產生異常,並及時辨識製程產生異常的原因。在本實施例中,製程偵錯與診斷方法100係應用於四級空壓機200,以對其製程進行監視。然而,本發明之實施例並不受限於四級空壓機之應用。製程偵錯與診斷方法100可適用於其他需要監視和錯誤診斷的系統。 Please refer to FIG. 1 and FIG. 2 simultaneously. FIG. 1 is a schematic flow chart of a process debugging and diagnosis method 100 according to an embodiment of the present invention, and FIG. 2 is a schematic diagram of a four-stage air compressor applying the process debugging and diagnosis method 100. Schematic diagram of 200. The process debugging and diagnosis method 100 of the embodiment of the invention is used to monitor the process of a system to monitor whether the process is abnormal, and to identify the cause of the abnormality in the process. In the present embodiment, the process error detection and diagnosis method 100 is applied to the four-stage air compressor 200 to monitor its process. However, embodiments of the invention are not limited to the application of a four-stage air compressor. The process debug and diagnostic method 100 can be applied to other systems that require monitoring and error diagnosis.

如圖2所示,四級空壓機200包含第一級空壓機210、第二級空壓機220、第三級空壓機230以及第四級空壓機240,其中訊號P1_in和P1_out分別對應至第一級空壓機210之輸入氣體流量和輸出氣體流量,而訊號T1_in和T1_out分別對應至第一級空壓機210之輸入氣體溫度和輸出氣體溫度;訊號P2_in和P2_out分別對應至第二級空壓機220之輸入氣體流量和輸出氣體流量,而訊號T2_in和 T2_out分別對應至第二級空壓機220之輸入氣體溫度和輸出氣體溫度;訊號P2_in和P2_out分別對應至第三級空壓機230之輸入氣體流量和輸出氣體流量,而訊號T3_in和T3_out分別對應至第三級空壓機230之輸入氣體溫度和輸出氣體溫度;訊號P4_in和P4_out分別對應至第四級空壓機240之輸入氣體流量和輸出氣體流量,而訊號T4_in和T4_out分別對應至第四級空壓機240之輸入氣體溫度和輸出氣體溫度。 As shown in FIG. 2, the four-stage air compressor 200 includes a first-stage air compressor 210, a second-stage air compressor 220, a third-stage air compressor 230, and a fourth-stage air compressor 240, wherein signals P1_in and P1_out Corresponding to the input gas flow rate and the output gas flow rate of the first stage air compressor 210, respectively, the signals T1_in and T1_out respectively correspond to the input gas temperature and the output gas temperature of the first stage air compressor 210; the signals P2_in and P2_out respectively correspond to The input gas flow rate and the output gas flow rate of the second stage air compressor 220, and the signals T2_in and T2_out respectively correspond to the input gas temperature and the output gas temperature of the second stage air compressor 220; the signals P2_in and P2_out correspond to the third stage, respectively. The input gas flow rate and the output gas flow rate of the air compressor 230, and the signals T3_in and T3_out correspond to the input gas temperature and the output gas temperature of the third-stage air compressor 230, respectively; the signals P4_in and P4_out correspond to the fourth-stage air compressor respectively. The input gas flow rate and the output gas flow rate of 240, and the signals T4_in and T4_out correspond to the input gas temperature and the output gas temperature of the fourth stage air compressor 240, respectively.

請回到圖1,製程偵錯與診斷方法100包含模型建立階段110和線上分析階段120。模型建立階段110係用以建立資料分群模型,而線上分析階段120則用以利用資料分群模型以及統計製程管制(statistical process control;SPC)方法來判斷目標資料是否異常,並找出異常的原因。 Returning to FIG. 1, the process debug and diagnostic method 100 includes a model establishment phase 110 and an online analysis phase 120. The model establishment phase 110 is used to establish a data clustering model, while the online analysis phase 120 is used to determine whether the target data is abnormal by using a data clustering model and a statistical process control (SPC) method, and to find out the cause of the abnormality.

在模型建立階段110中,首先進行步驟111。以提供複數筆歷史樣本資料來做為訓練模型的資料。這些歷史樣本資料係對應至不同的時間點,且每筆歷史樣本資料包含複數筆資料數值。在本實施例中,這些資料數值包含但不受限於前述之16個訊號P1_in、P1_out、T1_in、T1_out、P2_in、P2_out、T2_in、T2_out、P3_in、P3_out、T3_in、T3_out、P4_in、P4_out、T4_in以及T4_out。 In the model establishment phase 110, step 111 is first performed. To provide a plurality of historical sample data as a training model. These historical sample data correspond to different time points, and each historical sample data contains multiple data values. In this embodiment, the data values include, but are not limited to, the foregoing 16 signals P1_in, P1_out, T1_in, T1_out, P2_in, P2_out, T2_in, T2_out, P3_in, P3_out, T3_in, T3_out, P4_in, P4_out, T4_in, and T4_out.

接著,進行步驟112,以對歷史樣本資料進行分群,以將歷史樣本資料分為複數個資料群組,而獲得第一資料分群模型。在本實施例中,步驟112係利用斯混合模型 (Gaussian Mixture Model)來進行歷史樣本資料的分群,但本發明之實施例並不受限於此。在本發明之其他實施例中,可利用K平均演算法(K-means)或K中心點演算法(K-medoids)來進行歷史樣本資料的分群。另外,群組個數可使用Gap Statistics、Silhouette指標等方法來決定群組的個數。 Next, step 112 is performed to group the historical sample data to divide the historical sample data into a plurality of data groups, and obtain the first data grouping model. In the present embodiment, step 112 uses a Gaussian Mixture Model to perform grouping of historical sample data, but embodiments of the present invention are not limited thereto. In other embodiments of the invention, K-means or K-medoids may be utilized to perform grouping of historical sample data. In addition, the number of groups can be determined by methods such as Gap Statistics and Silhouette indicators.

然後,進行步驟113,以根據歷史樣本資料和第一資料分群模型來決定每一資料群組所對應之正常資料門檻值。在本實施例中,假設歷史樣本資料大部分為正常情況,但可能包含一定比例之異常事件,故在此設定正常資料門檻值,以排除異常事件的歷史樣本資料。 Then, step 113 is performed to determine a normal data threshold corresponding to each data group according to the historical sample data and the first data grouping model. In this embodiment, it is assumed that the historical sample data is mostly normal, but may contain a certain proportion of abnormal events, so the normal data threshold is set here to exclude the historical sample data of the abnormal events.

請參照圖3,圖3係繪示根據本發明實施例之正常資料門檻值的決定步驟113的流程示意圖。在步驟113中,首先進行步驟113a,以計算第一資料分群模型之每一資料群組之陰性對數相似度(negative log likelihood;NLL)值。接著,進行步驟113b,以將每一資料群組之NLL值取絕對值,並依大小排序。在本實施例中,上述NLL值中之最大者位於序列最上方,而NLL值中之最小者位於序列最下方,但本發明之實施例並不受限於此。然後,進行步驟113c,以將取絕對值後之NLL值由最小者往上第95%之一者決定為上述之正常資料門檻值。換句話說,在本實施例中,有5%的歷史樣本資料被決定為異常資料。 Please refer to FIG. 3. FIG. 3 is a schematic flowchart diagram of a determining step 113 of a normal data threshold value according to an embodiment of the present invention. In step 113, step 113a is first performed to calculate a negative log likelihood (NLL) value for each data group of the first data clustering model. Next, step 113b is performed to take the NLL value of each data group as an absolute value and sort by size. In this embodiment, the largest of the NLL values is located at the top of the sequence, and the smallest of the NLL values is located at the bottom of the sequence, but embodiments of the present invention are not limited thereto. Then, step 113c is performed to determine the NLL value after taking the absolute value from the smallest one to the 95% of the upper one to the above-mentioned normal data threshold. In other words, in the present embodiment, 5% of the historical sample data is determined as the abnormal data.

考慮到NLL值的數值範圍可能介於正負無窮大之間,對於待測試的目標資料而言可能會出現遠超出訓練資 料的表現範圍。故,在本發明之其他實施例中,將第一資料分群模型所輸出的NLL值對應至0~1之間。在此,利用S函數(Sigmoid function)來將取絕對值後之NLL值對應至0~1的範圍。S函數表示如下: 其中,常數a和c係用以控制S函數IF(x,a,c)的形狀,x為取絕對值後之NLL值。 Considering that the numerical range of NLL values may be between positive and negative infinity, there may be a range of performance far beyond the training data for the target data to be tested. Therefore, in other embodiments of the present invention, the NLL value output by the first data grouping model is corresponding to between 0 and 1. Here, the N-value obtained by taking the absolute value is used to correspond to the range of 0 to 1 by the Sigmoid function. The S function is expressed as follows: Among them, the constants a and c are used to control the shape of the S function IF(x, a, c), and x is the NLL value after taking the absolute value.

請回到圖1,在步驟113後,接著進行步驟114,以根據每一資料群組所對應之正常資料門檻值來將每一資料群組之離群樣本資料移除,以獲得第二資料分群模型。由於本實施例係以95%作為正常資料的門檻,故有5%的歷史樣本資料被決定為離群的樣本資料而被移除。 Please return to FIG. 1. After step 113, proceed to step 114 to remove the outlier sample data of each data group according to the normal data threshold corresponding to each data group to obtain the second data. Group model. Since this embodiment uses 95% as the threshold for normal data, 5% of the historical sample data is determined to be removed from the outlier sample data.

在模型建立階段110完成後,即可利用第二資料分群模型來進行線上分析階段120,以對線上的目標資料進行偵錯與診斷。 After the model establishment phase 110 is completed, the second data clustering model can be used to perform the online analysis phase 120 to debug and diagnose the target data on the line.

在線上分析階段120中,首先進行步驟121,根據第二資料分群模型來判斷目標資料是否為異常資料。請參照圖4,其係繪示根據本發明實施例之判斷目標資料是否為異常資料之步驟121的流程示意圖。在步驟121中,首先進行步驟121a,以計算第二資料分群模型之每一資料群組之中心與目標資料之間的離群距離。例如,目標資料dl之第i個訊號數值(上述之16個訊號的其中一者)偏離中心的距離可表示如下: 其中u q,i 為模型第q個群(Mixture)中心的第i個維度;Σ q,i 為第q個Mixture之共變異矩陣對角線上第i個變異數;距離d l,i 為訊號數值t l,i 到各Mixture中心的第i個維度u q,i 的馬氏距離乘上此Mixture的權重(Weight)之總和。 In the online analysis phase 120, step 121 is first performed to determine whether the target data is abnormal data according to the second data grouping model. Please refer to FIG. 4 , which is a flow chart of the step 121 of determining whether the target data is abnormal data according to an embodiment of the present invention. In step 121, step 121a is first performed to calculate the outlier distance between the center of each data group of the second data grouping model and the target data. For example, the distance from the center of the i-th signal value of the target data dl (one of the above 16 signals) can be expressed as follows: Where u q,i is the i-th dimension of the qth group of the model; Σ q, i is the i-th variation on the diagonal of the co-variation matrix of the qth Mixture; the distance d l,i is the signal The value t l,i to the i-th dimension of each Mixture center u q, the Mahalanobis distance of i multiplied by the weight of this Mixture (Weight) The sum of them.

接著,進行步驟121b,以根據離群距離來判斷目標資料是否為異常資料。在本實施例中,可設定距離的閥值來判斷目標資料是否偏離過大,但本發明的實施例並不受限於此。當離群距離大於距離閥值時,則初步判定目標資料為異常資料。 Next, step 121b is performed to determine whether the target data is abnormal data based on the outlier distance. In the present embodiment, the threshold of the distance can be set to determine whether the target data deviates too much, but the embodiment of the present invention is not limited thereto. When the outlier distance is greater than the distance threshold, the target data is initially determined to be abnormal data.

請回到圖1,在步驟121後,接著進行步驟122,以利用統計製程管制方法(statistical process control;SPC)來判斷目標資料是否位於管制範圍內。在本發明之實施例中,為了避免誤警報發生,本發明之實施例再分別針對各儀表訊號值d l,i ,以SPC方法來進行監控。在本實施例中,步驟121係以SPC Xbar管制圖來進行監控。然而,本發明之實施例並不受限於此。 Returning to FIG. 1, after step 121, step 122 is performed to determine whether the target data is within the scope of regulation by using a statistical process control (SPC). In the embodiment of the present invention, in order to avoid the occurrence of a false alarm, the embodiment of the present invention separately monitors each instrument signal value d l, i by the SPC method. In the present embodiment, step 121 is monitored by the SPC Xbar control map. However, embodiments of the invention are not limited thereto.

請參照圖5,圖5係繪示根據本發明實施例之SPC監控方法的流程示意圖。在步驟122中,首先進行步驟122a,以根據目標資料所對應之時間點,以滾動(rolling)的方式往前選取複數個正常目標資料。 Please refer to FIG. 5. FIG. 5 is a schematic flowchart diagram of an SPC monitoring method according to an embodiment of the present invention. In step 122, step 122a is first performed to select a plurality of normal target data in a rolling manner according to a time point corresponding to the target data.

接著,進行步驟122b,以根據正常目標資料來決定管制範圍之範圍上限值以及範圍下限值。管制範圍之範圍上限值以及範圍下限值係以下列方程式來計算: 其中,UCLl,i為管制上限;LCLl,i為管制下限;的平均值;的標準差;b為Xbar的長度;d l,i,j 為訊號數值t l,i,j 到各Mixture中心的第i個維度和第j個維度的馬氏距離乘上Mixture的權重之總和。 Next, step 122b is performed to determine the range upper limit value and the range lower limit value of the control range based on the normal target data. The upper and lower limits of the scope of control are calculated using the following equations: Among them, UCL l, i is the upper limit of regulation; LCL l, i is the lower limit of regulation; for average of; for Standard deviation; b is the length of Xbar; d l,i,j is the sum of the signal value t l,i,j to the i-th dimension of the center of each Mixture and the Mahalanobis distance of the j-th dimension multiplied by the weight of Mixture .

請回到圖1,當步驟122判定目標資料超出SPC管制範圍時,則進行步驟123,以計算目標資料之資料數值所對應的變異機率。在本實施例中,變異機率的計算方式如下: 其中Pl(i)為變異機率;dl,j為訊號數值tl,j到各Mixture中心的第j個維度的馬氏距離乘上Mixture的權重之總和。 Referring back to FIG. 1, when it is determined in step 122 that the target data exceeds the SPC control range, step 123 is performed to calculate the probability of mutation corresponding to the data value of the target data. In this embodiment, the probability of mutation is calculated as follows: Where P l (i) is the probability of mutation; d l,j is the sum of the signal value t l,j to the jth dimension of the jth dimension of each Mixture center multiplied by the weight of Mixture.

然後,進行步驟124,以根據變異機率來決定目標資料所對應之至少一個異常製程因子。請參照圖6,其係繪示根據本發明實施例之異常製程因子決定步驟的流程 示意圖。在步驟124中,首先進行步驟124a,以將資料數值所對應之變異機率依大小排序。接著,進行步驟124b,以從變異機率中之最大者開始依序選取至少一個變異機率。例如,選取變異機率中之最大者。然後,進行步驟124c,根據被選取之變異機率來選取資料數值。例如,選取最大變異機率所對應之資料數值。接著,進行步驟124d,以將步驟124c所選取之資料數值所對應的製程因子決定為異常製程因子。例如,若步驟124c所選取的資料數值為訊號T1_out的數值,則代表第一級空壓機之輸出氣體溫度有異常,需要對其進行檢測。 Then, step 124 is performed to determine at least one abnormal process factor corresponding to the target data according to the probability of mutation. Please refer to FIG. 6, which is a flow chart showing the steps of determining an abnormal process factor according to an embodiment of the present invention. In step 124, step 124a is first performed to sort the probability of mutation corresponding to the data value by size. Next, step 124b is performed to sequentially select at least one mutation probability from the largest of the mutation probabilities. For example, choose the largest of the mutation probabilities. Then, step 124c is performed to select the data value according to the selected probability of mutation. For example, select the data value corresponding to the maximum mutation probability. Next, step 124d is performed to determine the process factor corresponding to the data value selected in step 124c as the abnormal process factor. For example, if the value of the data selected in step 124c is the value of the signal T1_out, it means that the temperature of the output gas of the first-stage air compressor is abnormal and needs to be detected.

在本發明之其他實施例中,亦可預設一機率閥值來決定所選取的共變異數機率。例如,當共變異數機率超過此機率閥值時,則選取其所對應之資料數值,並將其製程因此決定為異常製程因子。然而,本發明之實施例並不受限於此。 In other embodiments of the invention, a probability threshold may also be preset to determine the probability of the selected covariance. For example, when the probability of the total variability exceeds the probability threshold, the corresponding data value is selected, and the process is determined as an abnormal process factor. However, embodiments of the invention are not limited thereto.

在步驟124結束後,接著進行步驟125以接收下一筆待分析之目標資料,然後回到步驟121。 After the end of step 124, step 125 is followed to receive the next target data to be analyzed, and then returns to step 121.

根據以上所述,本發明實施例應用相似度原理來建立製程/設備的預警模型,以對製程/設備的運行狀態進行即時監測,同時計算製程/設備的運行狀態,如此便能在製程/設備發生異常時,找出異常發生的原因。另外,本發明實施例亦應用了SPC方法來考慮製程/設備的運行狀態,以避免不要的誤警報。 According to the above description, the embodiment of the present invention applies the similarity principle to establish an early warning model of the process/device to perform on-the-spot monitoring of the process state of the process/device, and simultaneously calculate the operating state of the process/device, so that the process/device can be When an exception occurs, find out the cause of the exception. In addition, the embodiment of the present invention also applies the SPC method to consider the operating state of the process/device to avoid unnecessary false alarms.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

Claims (9)

一種製程偵錯與診斷方法,包含:一模型建立階段,包含:提供複數筆歷史樣本資料;對該些歷史樣本資料進行分群,以獲得一第一資料分群模型,其中該第一資料分群模型包含複數個資料群組;根據該些歷史樣本資料和該第一資料分群模型來決定每一該些資料群組所對應之一正常資料門檻值;以及根據每一該些資料群組所對應之該正常資料門檻值來將每一該些資料群組之至少一離群樣本資料移除,以獲得一第二資料分群模型;以及一線上分析階段,用以分析一目標資料,其中該線上分析階段包含:根據第二資料分群模型來判斷該目標資料是否為異常資料;當該目標資料為異常資料時,利用一統計製程管制方法來判斷該目標資料是否位於一管制範圍內;當該目標資料超出該管制範圍時,計算該目標資料之複數筆資料數值之複數個變異機率;以及根據該些變異機率來決定該目標資料所對應之至少一個異常製程因子。  A method for detecting and diagnosing a process includes: a model establishing stage, comprising: providing a plurality of historical sample data; grouping the historical sample data to obtain a first data grouping model, wherein the first data grouping model comprises a plurality of data groups; determining, according to the historical sample data and the first data grouping model, a normal data threshold corresponding to each of the data groups; and corresponding to each of the data groups a normal data threshold to remove at least one outlier sample data of each of the data groups to obtain a second data clustering model; and an online analysis phase for analyzing a target data, wherein the online analysis phase The method comprises: determining whether the target data is abnormal data according to the second data grouping model; and when the target data is abnormal data, using a statistical process control method to determine whether the target data is located within a control range; when the target data exceeds In the scope of the control, the probability of complex mutations of the plurality of data values of the target data is calculated; Variation of the plurality of probability to determine the target data corresponding to at least one anomaly process factor.   如請求項1所述之製程偵錯與診斷方法,其中該些歷史樣本資料對應至不同的時間點。  The process debugging and diagnosis method of claim 1, wherein the historical sample data corresponds to different time points.   如請求項1所述之製程偵錯與診斷方法,其中對該些歷史樣本資料進行分群之該步驟係以K平均演算法(K-means)、K中心點演算法(K-medoids)或高斯混合模型(Gaussian Mixture Model)來進行。  The process debugging and diagnosis method according to claim 1, wherein the step of grouping the historical sample data is performed by K-means, K-medoids or Gaussian. The Gaussian Mixture Model is used.   如請求項1所述之製程偵錯與診斷方法,其中決定每一該些資料群組所對應之該正常資料門檻值之該步驟包含:計算該第一資料分群模型之每一該些資料群組之複數個陰性對數相似度(negative log likelihood;NLL)值:將每一該些資料群組之該些NLL值取絕對值,並依大小排序,其中該些NLL值之一最大者位於最上方,該些NLL值之一最小者位於最下方;以及決定取絕對值後之該些NLL值由該最小者往上第95%之一者為該正常資料門檻值。  The process of detecting and diagnosing the process according to claim 1, wherein the step of determining the normal data threshold corresponding to each of the data groups comprises: calculating each of the data groups of the first data grouping model a plurality of negative log likelihood (NLL) values of the group: the NLL values of each of the data groups are taken as absolute values and sorted by size, wherein one of the NLL values is the largest Above, the smallest of the NLL values is located at the bottom; and the NLL values determined by taking the absolute value are one of the 95% of the lowest ones being the normal data threshold.   如請求項4所述之製程偵錯與診斷方法,其中決定每一該些資料群組所對應之該正常資料門檻值之該步驟更包含:利用S函數(Sigmoid function)來將取絕對值後之該些NLL值對應至0~1的範圍。  The process of detecting and diagnosing the process according to claim 4, wherein the step of determining the normal data threshold corresponding to each of the data groups further comprises: using an S function (Sigmoid function) to take an absolute value. The NLL values correspond to a range of 0~1.   如請求項1所述之製程偵錯與診斷方法,其中根據該第二資料分群模型來判斷該目標資料是否為異常資料之該步驟包含:計算該第二資料分群模型之每一該些資料群組之中心與該目標資料之一離群距離;以及根據該離群距離來判斷該目標資料是否為異常資料。  The process of detecting and diagnosing the method according to claim 1, wherein the step of determining whether the target data is abnormal data according to the second data grouping model comprises: calculating each of the data groups of the second data grouping model The distance between the center of the group and one of the target materials; and determining whether the target data is abnormal according to the distance of the outlier.   如請求項1所述之製程偵錯與診斷方法,其中該管制範圍係以下列步驟來計算:根據該目標資料所對應之一目標樣本時間點,往前選取複數個正常目標資料;以及根據該些正常目標資料來決定該管制範圍之一範圍上限值以及一範圍下限值。  The process debugging and diagnosis method according to claim 1, wherein the control range is calculated by: selecting a plurality of normal target data according to a target sample time point corresponding to the target data; and according to the These normal target data determine the upper limit of one of the scope of the control and the lower limit of a range.   如請求項1所述之製程偵錯與診斷方法,其中該統計製程管制方法係採用Xbar管制圖來判斷該目標資料是否位於該管制範圍內。  The process debugging and diagnosis method according to claim 1, wherein the statistical process control method uses an Xbar control chart to determine whether the target data is within the control range.   如請求項1所述之製程偵錯與診斷方法,其中根據該些變異機率來決定該目標資料所對應之該至少一異常製程因子之該步驟包含:將該些資料數值所對應之該些變異機率依大小排序;從該些變異機率之一最大者開始依序選取至少一個變異機率; 根據被選取之該至少一變異機率來選取至少一個資料數值;以及決定該至少一個資料數值所對應之至少一製程因子為該至少一異常製程因子。  The process of detecting and diagnosing the process according to claim 1, wherein the step of determining the at least one abnormal process factor corresponding to the target data according to the mutation probability comprises: the mutations corresponding to the data values The probability is sorted according to the size; at least one mutation probability is selected in order from the largest one of the mutation probability; at least one data value is selected according to the selected at least one mutation probability; and at least one of the at least one data value is determined A process factor is the at least one abnormal process factor.  
TW106130869A 2017-09-08 2017-09-08 Method for detecting and diagnosing an abnormal process TWI639908B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106130869A TWI639908B (en) 2017-09-08 2017-09-08 Method for detecting and diagnosing an abnormal process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106130869A TWI639908B (en) 2017-09-08 2017-09-08 Method for detecting and diagnosing an abnormal process

Publications (2)

Publication Number Publication Date
TWI639908B TWI639908B (en) 2018-11-01
TW201913255A true TW201913255A (en) 2019-04-01

Family

ID=65034469

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106130869A TWI639908B (en) 2017-09-08 2017-09-08 Method for detecting and diagnosing an abnormal process

Country Status (1)

Country Link
TW (1) TWI639908B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI736999B (en) * 2019-10-07 2021-08-21 財團法人資訊工業策進會 Data analyzing device, data analyzing method and associated quality improvement system
TWI776473B (en) * 2020-04-27 2022-09-01 日商三菱電機股份有限公司 Abnormal diagnosis method, abnormal diagnosis device, and abnormal diagnosis program

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI286785B (en) * 2002-03-29 2007-09-11 Tokyo Electron Ltd Method for interaction with status and control apparatus
TW531823B (en) * 2002-04-02 2003-05-11 Chiuan Kung Technology Co Ltd Multi-variable monitoring method for semiconductor processing
TW200632719A (en) * 2004-09-17 2006-09-16 Mks Instr Inc Multivariate control of semiconductor processes
EP2998894B1 (en) * 2005-07-11 2021-09-08 Brooks Automation, Inc. Intelligent condition monitoring and fault diagnostic system
US7676077B2 (en) * 2005-11-18 2010-03-09 Kla-Tencor Technologies Corp. Methods and systems for utilizing design data in combination with inspection data
TWI400619B (en) * 2008-11-26 2013-07-01 Univ Nat Cheng Kung Product quality fault detection method and real metrolgy data evaluation method
US8607169B2 (en) * 2011-12-28 2013-12-10 Elitetech Technology Co., Ltd. Intelligent defect diagnosis method
TWI463426B (en) * 2012-09-25 2014-12-01 China Steel Corp Integrated Process Monitoring Method and Its System

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI736999B (en) * 2019-10-07 2021-08-21 財團法人資訊工業策進會 Data analyzing device, data analyzing method and associated quality improvement system
TWI776473B (en) * 2020-04-27 2022-09-01 日商三菱電機股份有限公司 Abnormal diagnosis method, abnormal diagnosis device, and abnormal diagnosis program

Also Published As

Publication number Publication date
TWI639908B (en) 2018-11-01

Similar Documents

Publication Publication Date Title
US9122273B2 (en) Failure cause diagnosis system and method
KR101872342B1 (en) Method and device for intelligent fault diagnosis using improved rtc(real-time contrasts) method
JP2002318617A (en) Management method for manufacture process
CN105373894A (en) Inspection data-based power marketing service diagnosis model establishing method and system
CN108491991B (en) Constraint condition analysis system and method based on industrial big data product construction period
KR20030011921A (en) Rotating equipment diagnostic system and adaptive controller
CN112000081B (en) Fault monitoring method and system based on multi-block information extraction and Mahalanobis distance
WO2019209146A1 (en) Method and system for identifying and forecasting the development of faults in equipment
CN109240276B (en) Multi-block PCA fault monitoring method based on fault sensitive principal component selection
WO2023044770A1 (en) Dry pump downtime early warning method and apparatus, electronic device, storage medium, and program
US7529790B1 (en) System and method of data analysis
CN106354125A (en) Method for utilizing block PCA (Principal Component Analysis) to detect fault of chemical process
TWI639908B (en) Method for detecting and diagnosing an abnormal process
CN114997313A (en) Anomaly detection method for ocean online monitoring data
CN116910677A (en) Industrial instrument fault diagnosis method and system
CN107451029A (en) A kind of information processing method and device, equipment
KR102383675B1 (en) Anomaly detection system of time-series data
Wang et al. An artificial immune and incremental learning inspired novel framework for performance pattern identification of complex electromechanical systems
CN117150337A (en) Chemical process fault diagnosis method based on triage system
CN110837953A (en) Automatic abnormal entity positioning analysis method
CN114968647A (en) Monitoring data deep mining method based on fault diagnosis of flash steam compressor unit
CN112270095B (en) Health state assessment method for large-size aluminum alloy part production line
KR100581673B1 (en) Data Classification Method
Yang et al. Fault detection for air conditioner using PCANet
Singh et al. Predicting the remaining useful life of ball bearing under dynamic loading using supervised learning

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees