TW201911939A - Uplink early data transmission - Google Patents

Uplink early data transmission Download PDF

Info

Publication number
TW201911939A
TW201911939A TW107122778A TW107122778A TW201911939A TW 201911939 A TW201911939 A TW 201911939A TW 107122778 A TW107122778 A TW 107122778A TW 107122778 A TW107122778 A TW 107122778A TW 201911939 A TW201911939 A TW 201911939A
Authority
TW
Taiwan
Prior art keywords
base station
data
data communication
rrc
rrc connection
Prior art date
Application number
TW107122778A
Other languages
Chinese (zh)
Inventor
烏梅許 福雅爾
蒙哥辛 丹達
艾柏多 瑞可亞瓦利諾
米傑 桂歐
陸伊斯 陸帕思
塞巴斯蒂安 斯派克
哈利斯 斯西摩波羅斯
彼得 加爾
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/964,523 external-priority patent/US20180324854A1/en
Priority claimed from US16/024,421 external-priority patent/US20180324869A1/en
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW201911939A publication Critical patent/TW201911939A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method of wireless communication by a user equipment (UE) without a radio resource control (RRC) connection to a base station includes receiving system information from the base station and transmitting a data communication to the base station over a control plane without establishing an RRC connection with the base station. A UE in an RRC suspended state may transmit a data communication to the base station over a user plane without resuming an RRC connection with the base station. The data communication may comprise data and UE identity information and/or a cause indication. A base station may indicate resources in the system information for the transmission of the data communication information and receive the data communication over the control plane without establishing an RRC connection with the UE or over a user plane without resuming an RRC connection with an RRC suspended UE.

Description

上行鏈路早期資料傳輸Early uplink data transmission

本申請案是於2018年4月27日提出申請的並且名稱為「Uplink Small Data Transmission For Enhanced Machine-Type-Communication (EMTC) And Internet Of Things (IOT) Communication」的美國申請案第15/964,523號的的部分延續案,該美國申請案主張以下申請的權益:於2017年5月4日提出申請的並且名稱為「Uplink Small Data Transmission For Enhanced Machine-Type-Communication (EMTC) And Internet Of Things (IOT) Communication」的美國臨時專利申請案第 62/501,358號、於2017年8月11日提出申請的並且名稱為「Uplink Early Data Transmission for Cellular Internet of Things Evolved Packet System」的美國臨時申請案第62/544,703號、以及於2018年6月29日提出申請的並且名稱為「Uplink Early Data Transmission」的美國專利申請案第16/024,421號,該等申請案之每一個申請案的內容明確地藉由引用方式整體併入本文。This application was filed on April 27, 2018 and is named `` Uplink Small Data Transmission For Enhanced Machine-Type-Communication (EMTC) And Internet Of Things (IOT) Communication '' U.S. Application No. 15 / 964,523 Part of the continuation of the case, the US application claims the rights of the following applications: the application filed on May 4, 2017 and named "Uplink Small Data Transmission For Enhanced Machine-Type-Communication (EMTC) And Internet Of Things (IOT ) Communication '' US Provisional Patent Application No. 62 / 501,358, filed on August 11, 2017 and named `` Uplink Early Data Transmission for Cellular Internet of Things Evolved Packet System '' US Provisional Application No. 62 / No. 544,703, and the US Patent Application No. 16 / 024,421 filed on June 29, 2018 and named "Uplink Early Data Transmission", the content of each of these applications is expressly cited The way is incorporated as a whole.

大體而言,本揭示內容係關於通訊系統,並且更特定而言,本揭示內容係關於用於增強型機器類型通訊(eMTC)和物聯網路(IoT)通訊的早期上行鏈路資料傳輸。In general, this disclosure relates to communication systems, and more specifically, this disclosure relates to early uplink data transmission for enhanced machine type communication (eMTC) and Internet of Things (IoT) communication.

無線通訊系統被廣泛地部署以提供諸如電話、視訊、資料、訊息傳遞和廣播之類的各種電信服務。典型的無線通訊系統可以採用能夠藉由共享可用的系統資源來支援與多個使用者的通訊的多工存取技術。此種多工存取技術的實例包括分碼多工存取(CDMA)系統、分時多工存取(TDMA)系統、分頻多工存取(FDMA)系統、正交分頻多工存取(OFDMA)系統、單載波分頻多工存取(SC-FDMA)系統以及分時同步分碼多工存取(TD-SCDMA)系統。Wireless communication systems are widely deployed to provide various telecommunication services such as telephone, video, data, messaging and broadcasting. A typical wireless communication system may employ multiplexing access technology that can support communication with multiple users by sharing available system resources. Examples of such multiplexing access technologies include code division multiplexing access (CDMA) systems, time division multiplexing access (TDMA) systems, frequency division multiplexing access (FDMA) systems, orthogonal frequency division multiplexing storage Access (OFDMA) system, single carrier frequency division multiplexing access (SC-FDMA) system and time division synchronization code division multiplexing access (TD-SCDMA) system.

已經在各種電信標準中採用該等多工存取技術以提供公共協定,該協定使得不同的無線設備能夠在城市、國家、地區以及甚至全球層面上進行通訊。一種示例電信標準是5G新無線電(NR)。5G NR是第三代合作夥伴計畫(3GPP)發佈的連續行動寬頻進化的一部分,以滿足與延時、可靠性、安全性、可擴展性(例如,隨著IoT一起)相關聯的新要求和其他要求。5G NR的一些態樣可以基於4G長期進化(LTE)標準。存在對5G NR技術進一步改進的需求。該等改進亦可以適用於其他多工存取技術以及採用該等技術的電信標準。These multiple access technologies have been adopted in various telecommunication standards to provide public agreements that enable different wireless devices to communicate at the city, national, regional, and even global levels. An example telecommunications standard is 5G New Radio (NR). 5G NR is part of the continuous action broadband evolution released by the 3rd Generation Partnership Project (3GPP) to meet the new requirements and latency associated with latency, reliability, security, and scalability (eg, along with IoT) other requirements. Some aspects of 5G NR can be based on the 4G Long Term Evolution (LTE) standard. There is a need for further improvement of 5G NR technology. These improvements can also be applied to other multiple access technologies and telecommunication standards that use these technologies.

機器類型通訊(MTC)通常代表特點在於在很少或沒有人為幹預的情況下在機器之間的自動資料產生、交換、處理和致動的通訊。Machine type communication (MTC) is usually characterized by the communication of automatic data generation, exchange, processing and actuation between machines with little or no human intervention.

IoT是實體設備、運載工具(有時被稱為「連接設備」及/或「智慧設備」)、建築物、以及可以嵌入有以下各項的其他物品的網路互連:電子裝置、軟體、感測器、致動器和使得該等物件能夠收集和交換資料和其他資訊的網路連接。IoT is a network interconnection of physical devices, vehicles (sometimes called "connected devices" and / or "smart devices"), buildings, and other items that can be embedded with: electronic devices, software, Sensors, actuators, and network connections that enable these objects to collect and exchange data and other information.

許多MTC和IoT應用可能涉及對少量資料(例如,一個上行鏈路封包)的相對不頻繁的交換。例如,預期計量、警報等產生少量上行鏈路(UL)資料。類似地,例如查詢、更新的通知、以及到致動器的命令產生小的下行鏈路(DL)資料傳輸。Many MTC and IoT applications may involve relatively infrequent exchanges of small amounts of data (for example, an uplink packet). For example, a small amount of uplink (UL) data is expected to be generated by metering, alarms, etc. Similarly, for example, queries, updated notifications, and commands to actuators produce small downlink (DL) data transmissions.

下文提供了一或多個態樣的簡化概述,以便提供對此種態樣的基本理解。該概述不是對所有預期態樣的詳盡綜述,而且既不意欲辨識所有態樣的關鍵或重要元素,亦不意欲圖示任何或所有態樣的範圍。其唯一目的是以簡化的形式提供一或多個態樣的一些概念,作為稍後提供的更加詳細的描述的前序。The following provides a simplified overview of one or more aspects in order to provide a basic understanding of this aspect. This summary is not an exhaustive overview of all expected aspects, and neither intends to identify key or important elements of all aspects, nor does it intend to illustrate the scope of any or all aspects. Its sole purpose is to provide some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.

當使用者設備處於閒置狀態中時,為了建立或恢復無線電資源控制(RRC)連接,需要大量的管理負擔。因此,對於MTC或IoT應用,可能存在對資源的大量消耗以用於小資料傳輸(例如,1個上行鏈路封包或1個媒體存取控制(MAC)塊)。因此,期望的是,使得在MTC和IoT通訊中使用的資源量最小化。When the user equipment is in an idle state, in order to establish or restore a radio resource control (RRC) connection, a large amount of management burden is required. Therefore, for MTC or IoT applications, there may be a large consumption of resources for small data transmission (eg, 1 uplink packet or 1 media access control (MAC) block). Therefore, it is desirable to minimize the amount of resources used in MTC and IoT communications.

本揭示內容的各態樣涉及減少用於建立或恢復RRC連接以便發送小資料傳輸的管理負擔。當UE的RRC連接處於閒置狀態或暫停狀態中時,需要大量的管理負擔來建立或恢復用於資料傳輸的RRC連接。當資料傳輸是針對MTC或IoT應用時,這可能需要對資源的大量消耗以用於小資料傳輸(例如,1個媒體存取控制(MAC)塊)。例如,在習知技術中,在可以發送資料之前,由UE及/或基地台執行許多通訊步驟以建立RRC連接或恢復RRC連接。此外,在資料傳輸之後,執行另外的步驟來釋放RRC連接。相比之下,本揭示內容的各態樣提供了來自在閒置狀態或暫停狀態中具有RRC連接(而無需轉換到RRC連接狀態)的UE的資料傳輸(例如,上行鏈路資料傳輸)。在沒有執行RRC建立過程的情況下或在沒有恢復RRC連接的情況下的資料傳輸可以被稱為早期資料傳輸(EDT)或RRC無連接模式中的資料傳輸。The various aspects of this disclosure relate to reducing the administrative burden for establishing or restoring RRC connections in order to send small data transfers. When the RRC connection of the UE is in an idle state or a suspended state, a large amount of management burden is required to establish or restore an RRC connection for data transmission. When data transmission is for MTC or IoT applications, this may require a large consumption of resources for small data transmission (eg, 1 media access control (MAC) block). For example, in the conventional technology, before the data can be transmitted, the UE and / or the base station performs many communication steps to establish or restore the RRC connection. In addition, after data transmission, additional steps are performed to release the RRC connection. In contrast, the various aspects of the present disclosure provide data transmission (eg, uplink data transmission) from UEs that have an RRC connection in an idle state or a suspended state (without transitioning to an RRC connected state). Data transmission without performing the RRC establishment procedure or without restoring the RRC connection may be referred to as early data transmission (EDT) or data transmission in RRC connectionless mode.

在本揭示內容的一個態樣中,提供了用於使用者設備(UE)處的無線通訊的方法、電腦可讀取媒體和裝置。該裝置包括記憶體以及耦合到該記憶體的一或多個處理器。該裝置從基地台接收系統資訊,並且在沒有建立與該基地台的RRC連接的情況下,在控制平面上將資料通訊發送給該基地台,其中該資料通訊包括資料以及以下各項中的至少一項:UE身份資訊和原因指示。In one aspect of this disclosure, a method, computer-readable medium, and device for wireless communication at a user equipment (UE) are provided. The device includes a memory and one or more processors coupled to the memory. The device receives system information from the base station and sends data communication to the base station on the control plane without establishing an RRC connection with the base station, where the data communication includes data and at least the following One item: UE identity information and reason indication.

在本揭示內容的另一態樣中,提供了用於基地台處的無線通訊的方法、電腦可讀取媒體和裝置。該裝置包括記憶體以及耦合到該記憶體的一或多個處理器。該裝置在系統資訊中指示資源,並且在沒有建立與該UE的RRC連接的情況下,在控制平面上從UE接收資料通訊,其中該資料通訊包括資料以及以下各項中的至少一項:UE身份資訊和原因指示。In another aspect of the present disclosure, a method, computer-readable medium, and device for wireless communication at a base station are provided. The device includes a memory and one or more processors coupled to the memory. The device indicates resources in the system information and receives data communication from the UE on the control plane without establishing an RRC connection with the UE, where the data communication includes data and at least one of the following: UE Identity information and reason instructions.

在本揭示內容的另一態樣中,提供了用於UE(例如,處於RRC暫停狀態中)處的無線通訊的方法、電腦可讀取媒體和裝置。該裝置包括記憶體以及耦合到該記憶體的一或多個處理器。該裝置從基地台接收系統資訊,並且在沒有恢復與該基地台的RRC連接的情況下,在使用者平面上將資料通訊發送給該基地台,其中該資料通訊包括資料以及以下各項中的至少一項:UE身份資訊和原因指示。In another aspect of the present disclosure, a method, computer-readable medium, and device for wireless communication at a UE (eg, in an RRC suspended state) are provided. The device includes a memory and one or more processors coupled to the memory. The device receives system information from the base station and sends data communications to the base station on the user plane without restoring the RRC connection to the base station, where the data communications include data and the following At least one item: UE identity information and reason indication.

在本揭示內容的一個態樣中,提供了用於基地台處的無線通訊的方法、電腦可讀取媒體和裝置。該裝置包括記憶體以及耦合到該記憶體的一或多個處理器。該裝置在系統資訊中指示資源,並且在沒有恢復與該UE的RRC連接的情況下,在使用者平面上從UE接收資料通訊,其中該資料通訊包括資料以及以下各項中的至少一項:UE身份資訊和原因指示。In one aspect of this disclosure, a method, computer-readable medium, and device for wireless communication at a base station are provided. The device includes a memory and one or more processors coupled to the memory. The device indicates resources in the system information and receives data communication from the UE on the user plane without restoring the RRC connection to the UE, where the data communication includes data and at least one of the following: UE identity information and reason indication.

為了實現前述和相關目的,一或多個態樣包括下文中充分描述並且在申請專利範圍中具體指出的特徵。以下描述和附圖詳細地闡述了一或多個態樣的某些說明性特徵。然而,該等特徵指示可以採用各個態樣的原理的各種方式中的僅一些方式,並且該描述意欲包括所有此種態樣以及其均等物。In order to achieve the foregoing and related objectives, one or more aspects include the features fully described below and specifically pointed out in the scope of the patent application. The following description and drawings set forth certain illustrative features of one or more aspects in detail. However, these characteristics indicate that only some of the various ways in which the principles of each aspect can be adopted, and the description is intended to include all such aspects and their equivalents.

下文結合附圖闡述的詳細描述意欲作為各種配置的描述,而並非意欲表示可以在其中實踐本文所描述的概念的僅有配置。為了提供對各個概念的透徹理解,詳細描述包括特定細節。然而,對於本領域技藝人士將顯而易見的是,可以在沒有該等特定細節的情況下實踐該等概念。在一些實例中,以方塊圖形式圖示熟知的結構和部件,以便避免模糊此種概念。The detailed description set forth below in conjunction with the drawings is intended as a description of various configurations, and is not intended to represent the only configurations in which the concepts described herein can be practiced. To provide a thorough understanding of various concepts, the detailed description includes specific details. However, it will be apparent to those skilled in the art that such concepts can be practiced without such specific details. In some instances, well-known structures and components are illustrated in block diagram form in order to avoid obscuring such concepts.

現在將參照各種裝置和方法來提供電信系統的若干態樣。將藉由各個方塊、部件、電路、過程、演算法等(被統稱為「元素」),在以下的詳細描述中描述並且在附圖中示出該等裝置和方法。該等元素可以使用電子硬體、電腦軟體或其任意組合來實現。至於該等元素是實現為硬體還是軟體,取決於特定的應用和對整個系統所施加的設計約束。Several aspects of the telecommunications system will now be provided with reference to various devices and methods. Such devices and methods will be described in the following detailed description and shown in the drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as "elements"). These elements can be implemented using electronic hardware, computer software, or any combination thereof. Whether these elements are implemented as hardware or software depends on the specific application and design constraints imposed on the overall system.

舉例而言,可以將元素、或元素的任何部分、或元素的任意組合實現為「處理系統」,其包括一或多個處理器。處理器的實例包括:微處理器、微控制器、圖形處理單元(GPU)、中央處理單元(CPU)、應用處理器、數位訊號處理器(DSP)、精簡指令集運算(RISC)處理器、片上系統(SoC)、基頻處理器、現場可程式設計閘陣列(FPGA)、可程式設計邏輯裝置(PLD)、狀態機、閘控邏輯、個別硬體電路、以及被配置為執行貫穿本揭示內容描述的各種功能的其他合適的硬體。處理系統中的一或多個處理器可以執行軟體。無論被稱為軟體、韌體、仲介軟體、微代碼、硬體描述語言還是其他名稱,軟體皆應當被廣義地解釋為意指指令、指令集、代碼、程式碼片段、程式碼、程式、子程式、軟體部件、應用、軟體應用、套裝軟體、常式、子常式、物件、可執行檔、執行的執行緒、程序、函數等。For example, an element, or any part of an element, or any combination of elements can be implemented as a "processing system" that includes one or more processors. Examples of processors include: microprocessors, microcontrollers, graphics processing units (GPUs), central processing units (CPUs), application processors, digital signal processors (DSPs), reduced instruction set arithmetic (RISC) processors, System on chip (SoC), baseband processor, field programmable gate array (FPGA), programmable logic device (PLD), state machine, gate control logic, individual hardware circuits, and configured to execute throughout this disclosure The content describes various functions of other suitable hardware. One or more processors in the processing system can execute software. Whether it is called software, firmware, middleware, microcode, hardware description language, or other names, software should be interpreted broadly to mean instructions, instruction sets, codes, code fragments, code, programs, Programs, software components, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc.

相應地,在一或多個示例實施例中,可以用硬體、軟體或其任意組合來實現所描述的功能。若用軟體來實現,該等功能可以儲存在電腦可讀取媒體上或編碼為電腦可讀取媒體上的一或多個指令或代碼。電腦可讀取媒體包括電腦儲存媒體。儲存媒體可以是能夠由電腦存取的任何可用媒體。藉由舉例而非限制的方式,此種電腦可讀取媒體可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、電子可抹除可程式設計ROM(EEPROM)、光碟儲存、磁碟儲存、其他磁儲存裝置、上述類型的電腦可讀取媒體的組合、或者能夠用於儲存能夠由電腦存取的具有指令或資料結構形式的電腦可執行代碼的任何其他媒體。Accordingly, in one or more exemplary embodiments, the described functions may be implemented in hardware, software, or any combination thereof. If implemented by software, these functions can be stored on the computer-readable medium or encoded as one or more instructions or codes on the computer-readable medium. Computer readable media includes computer storage media. The storage medium may be any available medium that can be accessed by a computer. By way of example and not limitation, such computer-readable media can include random access memory (RAM), read-only memory (ROM), electronically erasable programmable ROM (EEPROM), optical disk storage, Disk storage, other magnetic storage devices, a combination of computer-readable media of the type described above, or any other medium that can be used to store computer-executable code in the form of instructions or data structures that can be accessed by the computer.

本揭示內容的各態樣涉及MTC及/或IoT通訊,其中UE在資料傳輸被發起時處於閒置模式或暫停模式中。當UE在資料傳輸被發起時處於閒置模式或暫停模式中時,傳統技術在資料傳輸之前執行完整的無線電資源控制連接建立程序。針對閒置使用者設備(UE)的完整的無線電資源控制(RRC)連接建立程序涉及隨機存取(RA)程序。RA程序可以用於發起資料傳遞,但是具有大的管理負擔成本和延時。例如,在傳統技術中,RA程序可以包括一系列訊息,該等訊息包括:Msg1(實體隨機存取通道PRACH前序信號)、Msg2(隨機存取請求(RAR))、Msg3(RRC連接請求、RRC連接重建立請求、RRC連接恢復請求等等,這取決於RA程序的原因)、Msg4(早期爭用解決、RRC連接建立等)、以及最後是Msg5(其可以用於UL資料(除非在實際有效負荷傳輸之前要求SR/BSR))。這涉及在實際有效負荷傳輸之前用於UL資料的5個或更多個訊息。對於發送適配一個傳輸區塊大小(TBS)的上行鏈路資料的應用而言,這是大的管理負擔。Various aspects of this disclosure relate to MTC and / or IoT communications, where the UE is in idle mode or suspended mode when data transmission is initiated. When the UE is in an idle mode or a suspended mode when data transmission is initiated, the conventional technology performs a complete radio resource control connection establishment procedure before data transmission. The complete radio resource control (RRC) connection establishment procedure for idle user equipment (UE) involves a random access (RA) procedure. The RA program can be used to initiate data transfer, but it has a large management burden cost and delay. For example, in the conventional technology, the RA procedure may include a series of messages, such messages include: Msg1 (physical random access channel PRACH preamble), Msg2 (random access request (RAR)), Msg3 (RRC connection request RRC connection re-establishment request, RRC connection recovery request, etc., depending on the reason of the RA procedure), Msg4 (early contention resolution, RRC connection establishment, etc.), and finally Msg5 (which can be used for UL data (unless the SR / BSR is required before payload transmission)). This involves 5 or more messages used for UL data before actual payload transmission. For applications that send uplink data that fits in one transport block size (TBS), this is a large administrative burden.

在完成RA程序之後,可以執行DL/UL傳輸。因此,傳統方法在實際有效負荷傳輸(甚至針對非常小及/或不頻繁的有效負荷)之前執行大量的訊息交換。After the RA procedure is completed, DL / UL transmission can be performed. Therefore, the traditional method performs a large amount of message exchange before the actual payload transmission (even for very small and / or infrequent payloads).

為了解決該等和其他問題,本揭示內容的各態樣提供了針對MTC及/或IoT通訊的早期上行鏈路資料傳輸和其他增強。亦即,UL中的資料傳輸可以在例如Msg1或Msg3中發送資料(例如,有效負荷),而不是如在傳統技術中在Msg5或稍後的訊息中排程第一UL資料傳輸。在一些態樣中,該等增強可以適用於控制平面(CP)/使用者平面(UP)蜂巢IoT進化封包系統。藉由針對MTC和IoT為處於閒置或暫停模式中的UE提供早期上行鏈路資料傳輸,可以有益地減小功耗、延時和系統管理負擔。To address these and other issues, the various aspects of this disclosure provide early uplink data transmission and other enhancements for MTC and / or IoT communications. That is, the data transmission in UL can send data (eg, payload) in, for example, Msg1 or Msg3, instead of scheduling the first UL data transmission in Msg5 or later messages as in the conventional technology. In some aspects, these enhancements can be applied to the control plane (CP) / user plane (UP) cellular IoT evolution packet system. By providing early uplink data transmission for UEs in idle or suspended mode for MTC and IoT, it is beneficial to reduce power consumption, delay, and system management burden.

在一個示例態樣中,資料傳輸資訊可以被包括在Msg3中並且被發送給基地台(例如,eNodeB)。如本文中所使用的,資料傳輸可以代表使用者資料。可以在由隨機存取請求(RAR)提供的初始UL授權上執行Msg3的傳輸。Msg3亦可以在沒有非存取層(NAS)訊息(例如,行動性管理訊息)的情況下傳送用於初始存取的NAS UE辨識符。可以使用單獨的Msg3緩衝器來執行Msg3傳輸,Msg3緩衝器可以具有與UL緩衝器相比更高的優先順序。Msg3可以使用混合自動重傳請求(HARQ)。另外,UE媒體存取控制(MAC)層包括HARQ實體,並且可以在UE沒有從基地台接收到MAC層回應的情況下重傳訊息。例如,若UE沒有接收到Msg4(這可能導致爭用解決失敗),則UE(MAC)層可以從閒置狀態重新嘗試存取。In an example aspect, the data transmission information may be included in Msg3 and sent to the base station (eg, eNodeB). As used in this article, data transmission may represent user data. The transmission of Msg3 may be performed on the initial UL grant provided by a random access request (RAR). Msg3 can also send NAS UE identifiers for initial access without non-access layer (NAS) messages (eg, mobile management messages). A separate Msg3 buffer may be used to perform Msg3 transmission, and the Msg3 buffer may have a higher priority than the UL buffer. Msg3 can use hybrid automatic repeat request (HARQ). In addition, the UE Media Access Control (MAC) layer includes HARQ entities, and can retransmit messages without the UE receiving a MAC layer response from the base station. For example, if the UE does not receive Msg4 (which may cause contention resolution to fail), the UE (MAC) layer may retry access from the idle state.

如本文所提供的,RA程序可以被增強為支援Msg3中的UL資料傳輸。在一個實例中,可以將有效負荷(例如,服務資料單元(SDU))作為共用控制通道(CCCH)SDU來包括。As provided herein, the RA procedure can be enhanced to support UL data transmission in Msg3. In one example, the payload (eg, service data unit (SDU)) may be included as a common control channel (CCCH) SDU.

圖1是示出無線通訊系統和存取網路100的實例的圖。無線通訊系統(亦被稱為無線廣域網路(WWAN))包括基地台102、UE 104和進化封包核心(EPC)160。基地台102可以包括巨集細胞(高功率蜂巢基地台)及/或小型細胞(低功率蜂巢基地台)。巨集細胞包括基地台。小型細胞包括毫微微細胞、微微細胞和微細胞。FIG. 1 is a diagram showing an example of a wireless communication system and an access network 100. A wireless communication system (also known as a wireless wide area network (WWAN)) includes a base station 102, a UE 104, and an evolved packet core (EPC) 160. The base station 102 may include macro cells (high power honeycomb base station) and / or small cells (low power honeycomb base station). Macro cells include base stations. Small cells include femtocells, picocells, and microcells.

基地台102(被統稱為進化型通用行動電信系統(UMTS)陸地無線電存取網路(E-UTRAN))經由回載鏈路132(例如,S1介面)與EPC 160以介面方式連接。除了其他功能之外,基地台102亦可以執行以下功能中的一或多個功能:使用者資料的傳輸、無線電通道加密和解密、完整性保護、標頭壓縮、行動性控制功能(例如,交遞、雙重連接)、細胞間干擾協調、連接建立和釋放、負載平衡、針對非存取層(NAS)訊息的分發、NAS節點選擇、同步、無線電存取網路(RAN)共用、多媒體廣播多播服務(MBMS)、用戶和設備追蹤、RAN資訊管理(RIM)、傳呼、定位、以及警告訊息的傳送。基地台102可以經由回載鏈路134(例如,X2介面)來直接或間接地(例如,經由EPC 160)相互通訊。回載鏈路134可以是有線的或無線的。The base station 102 (collectively referred to as the Evolutionary Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN)) is interfaced with the EPC 160 via a backhaul link 132 (eg, S1 interface). In addition to other functions, the base station 102 can also perform one or more of the following functions: user data transmission, radio channel encryption and decryption, integrity protection, header compression, mobile control functions (eg, communication Delivery, dual connection), inter-cell interference coordination, connection establishment and release, load balancing, non-access layer (NAS) message distribution, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcasting Broadcast service (MBMS), user and device tracking, RAN information management (RIM), paging, location, and warning message delivery. The base stations 102 can communicate with each other directly or indirectly (eg, via the EPC 160) via a backhaul link 134 (eg, X2 interface). The backhaul link 134 may be wired or wireless.

基地台102可以與UE 104無線地進行通訊。基地台102之每一個基地台102可以為相應的地理覆蓋區域110提供通訊覆蓋。可以存在重疊的地理覆蓋區域110。例如,小型細胞102'可以具有與一或多個巨集基地台102的覆蓋區域110重疊的覆蓋區域110'。包括小型細胞和巨集細胞兩者的網路可以被稱為異質網路。異質網路亦可以包括家庭進化型節點B(eNB)(HeNB),其可以向被稱為封閉用戶群組(CSG)的受限群組提供服務。基地台102和UE 104之間的通訊鏈路120可以包括從UE 104到基地台102的UL(亦被稱為反向鏈路)傳輸及/或從基地台102到UE 104的DL(亦被稱為前向鏈路)傳輸。通訊鏈路120可以使用多輸入多輸出(MIMO)天線技術,其包括空間多工、波束成形及/或發射分集。通訊鏈路可以是經由一或多個載波的。基地台102/UE 104可以使用用於每個方向上的傳輸的多至總共Yx MHz(x 個分量載波)的載波聚合中分配的每個載波多至Y MHz(例如,5、10、15、20、100 MHz)的頻寬的頻譜。載波可以彼此相鄰或可以彼此不相鄰。載波的分配可以關於DL和UL是不對稱的(例如,與針對UL相比,可以針對DL分配更多或更少的載波)。分量載波可以包括主分量載波和一或多個輔分量載波。主分量載波可以被稱為主細胞(PCell),以及輔分量載波可以被稱為輔細胞(SCell)。The base station 102 can communicate with the UE 104 wirelessly. Each base station 102 of the base station 102 can provide communication coverage for the corresponding geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102 'may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102. A network including both small cells and macro cells can be called a heterogeneous network. The heterogeneous network may also include a family evolved Node B (eNB) (HeNB), which may provide services to a restricted group called a closed user group (CSG). The communication link 120 between the base station 102 and the UE 104 may include UL (also known as reverse link) transmission from the UE 104 to the base station 102 and / or DL (also called Called the forward link) transmission. The communication link 120 may use multiple input multiple output (MIMO) antenna technology, which includes spatial multiplexing, beamforming, and / or transmit diversity. The communication link may be via one or more carrier waves. The base station 102 / UE 104 can use up to a total of Yx MHz ( x component carriers) for each carrier allocated for transmission in each direction up to Y MHz (for example, 5, 10, 15, 20, 100 MHz). The carrier waves may be adjacent to each other or may not be adjacent to each other. The allocation of carriers may be asymmetric with respect to DL and UL (eg, more or fewer carriers may be allocated for DL than for UL). The component carriers may include a primary component carrier and one or more secondary component carriers. The primary component carrier may be called a primary cell (PCell), and the secondary component carrier may be called a secondary cell (SCell).

某些UE 104可以使用設備到設備(D2D)通訊鏈路192來相互通訊。D2D通訊鏈路192可以使用DL/UL WWAN頻譜。D2D通訊鏈路192可以使用一或多個副鏈路通道,例如,實體副鏈路廣播通道(PSBCH)、實體副鏈路發現通道(PSDCH)、實體副鏈路共用通道(PSSCH)和實體副鏈路控制通道(PSCCH)。D2D通訊可以經由多種多樣的無線D2D通訊系統,諸如例如,FlashLinQ、WiMedia、藍芽、ZigBee、基於IEEE 802.11標準的Wi-Fi、LTE或NR。Some UEs 104 may use a device-to-device (D2D) communication link 192 to communicate with each other. The D2D communication link 192 can use DL / UL WWAN spectrum. The D2D communication link 192 may use one or more secondary link channels, for example, a physical secondary link broadcast channel (PSBCH), a physical secondary link discovery channel (PSDCH), a physical secondary link shared channel (PSSCH), and a physical secondary channel Link Control Channel (PSCCH). D2D communication can be via a variety of wireless D2D communication systems, such as, for example, FlashLinQ, WiMedia, Bluetooth, ZigBee, Wi-Fi, LTE, or NR based on the IEEE 802.11 standard.

無線通訊系統亦可以包括Wi-Fi存取點(AP)150,其經由5 GHz免許可頻譜中的通訊鏈路154來與Wi-Fi站(STA)152相通訊。當在免許可頻譜中進行通訊時,STA 152/AP 150可以在進行通訊之前執行閒置通道評估(CCA),以便決定通道是否是可用的。The wireless communication system may also include a Wi-Fi access point (AP) 150, which communicates with a Wi-Fi station (STA) 152 via a communication link 154 in the 5 GHz unlicensed spectrum. When communicating in an unlicensed spectrum, STA 152 / AP 150 can perform an idle channel assessment (CCA) before communicating to determine whether the channel is available.

小型細胞102'可以在經許可及/或免許可頻譜中操作。當在免許可頻譜中操作時,小型細胞102'可以採用NR並且使用與Wi-Fi AP 150所使用的5 GHz免許可頻譜相同的5 GHz免許可頻譜。採用免許可頻譜中的NR的小型細胞102'可以提升覆蓋及/或增加存取網路的容量。The small cell 102 'can operate in a licensed and / or unlicensed spectrum. When operating in an unlicensed spectrum, the small cell 102 'can adopt NR and use the same 5 GHz unlicensed spectrum as the 5 GHz unlicensed spectrum used by the Wi-Fi AP 150. Small cells 102 'that use NR in unlicensed spectrum can increase coverage and / or increase access network capacity.

gNodeB(gNB)180可以在毫米波(mmW)頻率及/或近mmW頻率中操作,以與UE 104進行通訊。當gNB 180在mmW或近mmW頻率中操作時,gNB 180可以被稱為mmW基地台。極高頻(EHF)是RF在電磁頻譜中的一部分。EHF具有30 GHz到300 GHz的範圍並且具有1毫米和10毫米之間的波長。該頻帶中的無線電波可以被稱為毫米波。近mmW可以向下擴展到3 GHz的頻率,具有100毫米的波長。超高頻(SHF)頻帶在3 GHz和30 GHz之間擴展,亦被稱為釐米波。使用mmW/近mmW射頻頻帶的通訊具有極高的路徑損耗和短距離。mmW基地台180可以利用與UE 104的波束成形184來補償極高的路徑損耗和短距離。The gNodeB (gNB) 180 may operate in millimeter wave (mmW) frequency and / or near mmW frequency to communicate with the UE 104. When gNB 180 operates in mmW or near mmW frequency, gNB 180 may be referred to as a mmW base station. Extremely high frequency (EHF) is a part of RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and has a wavelength between 1 mm and 10 mm. The radio waves in this frequency band may be called millimeter waves. Near mmW can be extended down to a frequency of 3 GHz, with a wavelength of 100 mm. The Ultra High Frequency (SHF) frequency band extends between 3 GHz and 30 GHz, also known as centimeter waves. Communication using the mmW / near mmW radio frequency band has extremely high path loss and short distance. The mmW base station 180 can utilize the beamforming 184 with the UE 104 to compensate for extremely high path loss and short distance.

EPC 160可以包括行動性管理實體(MME)162、其他MME 164、服務閘道166、多媒體廣播多播服務(MBMS)閘道168、廣播多播服務中心(BM-SC)170、以及封包資料網路(PDN)閘道172。MME 162可以與家庭用戶伺服器(HSS)174相通訊。MME 162是處理在UE 104和EPC 160之間的訊號傳遞的控制節點。通常,MME 162提供承載和連接管理。所有的使用者網際網路協定(IP)封包經由服務閘道166來傳輸,該服務閘道116本身連接到PDN閘道172。PDN閘道172提供UE IP位址分配以及其他功能。PDN閘道172和BM-SC 170連接到IP服務176。IP服務176可以包括網際網路、網內網路、IP多媒體子系統(IMS)、PS串流服務及/或其他IP服務。BM-SC 170可以提供針對MBMS使用者服務供應和傳送的功能。BM-SC 170可以充當用於內容提供者MBMS傳輸的入口點,可以用於在公共陸地行動網路(PLMN)內授權和發起MBMS承載服務,並且可以用於排程MBMS傳輸。MBMS閘道168可以用於向屬於廣播特定服務的多播廣播單頻網路(MBSFN)區域的基地台102分發MBMS傳輸量,並且可以負責通信期管理(開始/停止)和收集與eMBMS相關的計費資訊。The EPC 160 may include a mobile management entity (MME) 162, other MMEs 164, a service gateway 166, a multimedia broadcast multicast service (MBMS) gateway 168, a broadcast multicast service center (BM-SC) 170, and a packet data network Road (PDN) gate 172. The MME 162 can communicate with the home user server (HSS) 174. The MME 162 is a control node that handles the signal transfer between the UE 104 and the EPC 160. Generally, MME 162 provides bearer and connection management. All user Internet Protocol (IP) packets are transmitted via the service gateway 166, which is itself connected to the PDN gateway 172. PDN gateway 172 provides UE IP address allocation and other functions. The PDN gateway 172 and the BM-SC 170 are connected to the IP service 176. IP services 176 may include the Internet, Intranet, IP Multimedia Subsystem (IMS), PS streaming services, and / or other IP services. BM-SC 170 can provide functions for MBMS user service provision and delivery. BM-SC 170 can serve as an entry point for content provider MBMS transmissions, can be used to authorize and initiate MBMS bearer services within a public land mobile network (PLMN), and can be used to schedule MBMS transmissions. The MBMS gateway 168 can be used to distribute MBMS transmission volume to base stations 102 belonging to the Multicast Broadcast Single Frequency Network (MBSFN) area that broadcast specific services, and can be responsible for communication period management (start / stop) and collection of eMBMS related Billing information.

基地台亦可以被稱為gNB、節點B、進化型節點B(eNB)、存取點、基地台收發機、無線電基地台、無線電收發機、收發機功能單元、基本服務集(BSS)、擴展服務集(ESS)或一些其他適當的術語。基地台102為UE 104提供到EPC 160的存取點。UE 104的實例包括蜂巢式電話、智慧型電話、通信期啟動協定(SIP)電話、膝上型電腦、個人數位助理(PDA)、衛星無線電單元、全球定位系統、多媒體設備、視訊設備、數位音訊播放機(例如,MP3播放機)、照相機、遊戲控制台、平板設備、智慧設備、可穿戴設備、運載工具、電錶、氣泵、大型或小型廚房電器、醫療保健設備、植入物、顯示器或者任何其他相似功能的設備。UE 104中的一些UE 104可以被稱為IoT設備(例如,停車計費表、氣泵、烤麵包機、運載工具、心臟監護器等)。UE 104亦可以被稱為站、行動站、用戶站、行動單元、用戶單元、無線單元、遠端單元、行動設備、無線設備、無線通訊設備、遠端設備、行動用戶站、存取終端、行動終端、無線終端、遠端終端機、手機、使用者代理、行動服務客戶端、客戶端、或一些其他適當的術語。The base station can also be called gNB, Node B, Evolution Node B (eNB), access point, base station transceiver, radio base station, radio transceiver, transceiver functional unit, basic service set (BSS), extension Service Set (ESS) or some other appropriate terminology. The base station 102 provides the UE 104 with an access point to the EPC 160. Examples of UE 104 include cellular phones, smart phones, communication period activation protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radio units, global positioning systems, multimedia devices, video equipment, digital audio Players (for example, MP3 players), cameras, game consoles, tablet devices, smart devices, wearable devices, vehicles, electricity meters, air pumps, large or small kitchen appliances, healthcare equipment, implants, monitors or Other devices with similar functions. Some of the UEs 104 may be referred to as IoT devices (eg, parking meters, air pumps, toasters, vehicles, heart monitors, etc.). UE 104 may also be referred to as a station, mobile station, user station, mobile unit, user unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile user station, access terminal, Mobile terminal, wireless terminal, remote terminal, mobile phone, user agent, mobile service client, client, or some other appropriate terminology.

再次參照圖1,在某些態樣中,UE 104/基地台180可以分別被配置為在沒有建立RRC連接的情況下發送和接收資料通訊資訊(198)。Referring again to FIG. 1, in some aspects, the UE 104 / base station 180 may be configured to send and receive data communication information without establishing an RRC connection (198), respectively.

圖2A是示出DL訊框結構的實例的圖200。圖2B是示出DL訊框結構內的通道的實例的圖230。圖2C是示出UL訊框結構的實例的圖250。圖2D是示出UL訊框結構內的通道的實例的圖280。其他無線通訊技術可以具有不同的訊框結構及/或不同的通道。訊框(10 ms)可以被劃分成10個大小相等的子訊框。每個子訊框可以包括兩個連續的時槽。可以使用資源網格來表示兩個時槽,每個時槽包括一或多個時間併發的資源區塊(RB)(亦被稱為實體RB(PRB))。資源網格被劃分成多個資源元素(RE)。針對普通循環字首,RB可以包含頻域中的12個連續的次載波和時域中的7個連續的符號(對於DL,OFDM符號;對於UL,SC-FDMA符號),總共為84個RE。針對擴展循環字首,RB可以包含頻域中的12個連續的次載波和時域中的6個連續的符號,總共為72個RE。每個RE攜帶的位元數量取決於調制方案。FIG. 2A is a diagram 200 showing an example of a DL frame structure. FIG. 2B is a diagram 230 showing an example of channels in the DL frame structure. 2C is a diagram 250 showing an example of a UL frame structure. FIG. 2D is a diagram 280 showing an example of channels within the UL frame structure. Other wireless communication technologies may have different frame structures and / or different channels. The frame (10 ms) can be divided into 10 equal-sized subframes. Each sub-frame may include two consecutive time slots. A resource grid can be used to represent two time slots, and each time slot includes one or more resource blocks (RBs) (also called physical RBs (PRBs)) that are concurrent in time. The resource grid is divided into multiple resource elements (RE). For an ordinary cyclic prefix, RB can contain 12 consecutive subcarriers in the frequency domain and 7 consecutive symbols in the time domain (for DL, OFDM symbols; for UL, SC-FDMA symbols), a total of 84 REs . For the extended cyclic prefix, the RB may include 12 consecutive subcarriers in the frequency domain and 6 consecutive symbols in the time domain, for a total of 72 REs. The number of bits carried by each RE depends on the modulation scheme.

如圖2A中所示,RE中的一些RE攜帶用於UE處的通道估計的DL參考(引導頻)信號(DL-RS)。DL-RS可以包括特定於細胞的參考信號(CRS)(有時亦被稱為公共RS)、特定於UE的參考信號(UE-RS)和通道狀態資訊參考信號(CSI-RS)。圖2A示出用於天線埠0、1、2和3的CRS(分別被指示為R0 、R1 、R2 和R3 )、用於天線埠5的UE-RS(被指示為R5 )以及用於天線埠15的CSI-RS(被指示為R)。As shown in FIG. 2A, some of the REs carry a DL reference (pilot frequency) signal (DL-RS) for channel estimation at the UE. The DL-RS may include a cell-specific reference signal (CRS) (sometimes referred to as a common RS), a UE-specific reference signal (UE-RS), and a channel status information reference signal (CSI-RS). FIG. 2A shows CRS for antenna ports 0 , 1 , 2 , and 3 (indicated as R 0 , R 1 , R 2, and R 3, respectively ), and UE-RS for antenna port 5 (indicated as R 5 ) And CSI-RS for antenna port 15 (indicated as R).

圖2B示出訊框的DL子訊框內的各種通道的實例。實體控制格式指示符通道(PCFICH)在時槽0的符號0內,並且攜帶指示實體下行鏈路控制通道(PDCCH)是佔用1、2還是3個符號(圖2B示出佔用3個符號的PDCCH)的控制格式指示符(CFI)。PDCCH在一或多個控制通道元素(CCE)內攜帶下行鏈路控制資訊(DCI),每個CCE包括九個RE組(REG),每個REG在一個OFDM符號中包括四個連續的RE。UE可以被配置有亦攜帶DCI的特定於UE的增強型PDCCH(ePDCCH)。ePDCCH可以具有2、4或8個RB對(圖2B圖示兩個RB對,每個子集包括一個RB對)。實體混合自動重傳請求(ARQ)(HARQ)指示符通道(PHICH)亦在時槽0的符號0內,並且攜帶基於實體上行鏈路共用通道(PUSCH)來指示HARQ認可(ACK)/否定ACK(NACK)回饋的HARQ指示符(HI)。主同步通道(PSCH)可以在訊框的子訊框0和5內的時槽0的符號6內。PSCH攜帶被UE 104用來決定子訊框/符號時序和實體層身份的主要同步信號(PSS)。輔同步通道(SSCH)可以在訊框的子訊框0和5內的時槽0的符號5內。SSCH攜帶被UE用來決定實體層細胞身份組號和無線電訊框時序的輔同步信號(SSS)。基於實體層身份和實體層細胞身份組號,UE可以決定實體細胞辨識符(PCI)。基於PCI,UE可以決定上述DL-RS的位置。實體廣播通道(PBCH)(其攜帶主資訊區塊(MIB))可以在邏輯上與PSCH和SSCH封包在一起,以形成同步信號(SS)區塊。MIB提供DL系統頻寬中的RB的數量、PHICH配置和系統訊框號(SFN)。實體下行鏈路共用通道(PDSCH)攜帶使用者資料、不經由PBCH發送的廣播系統資訊(諸如,系統資訊區塊(SIB))以及傳呼訊息。FIG. 2B shows an example of various channels in the DL sub-frame of the frame. The entity control format indicator channel (PCFICH) is in symbol 0 of slot 0, and carries indication whether the physical downlink control channel (PDCCH) occupies 1, 2 or 3 symbols (Figure 2B shows a PDCCH occupying 3 symbols ) Control format indicator (CFI). The PDCCH carries downlink control information (DCI) within one or more control channel elements (CCEs). Each CCE includes nine RE groups (REGs), and each REG includes four consecutive REs in one OFDM symbol. The UE may be configured with a UE-specific enhanced PDCCH (ePDCCH) that also carries DCI. The ePDCCH may have 2, 4, or 8 RB pairs (FIG. 2B illustrates two RB pairs, and each subset includes one RB pair). The entity hybrid automatic repeat request (ARQ) (HARQ) indicator channel (PHICH) is also in symbol 0 of slot 0, and carries the entity uplink shared channel (PUSCH) to indicate HARQ approval (ACK) / negative ACK (NACK) Feedback HARQ indicator (HI). The primary synchronization channel (PSCH) can be in symbol 6 of time slot 0 in subframes 0 and 5 of the frame. The PSCH carries the primary synchronization signal (PSS) used by the UE 104 to determine the subframe / symbol timing and physical layer identity. The secondary synchronization channel (SSCH) can be in symbol 5 of time slot 0 in sub-frames 0 and 5 of the frame. The SSCH carries a secondary synchronization signal (SSS) used by the UE to determine the physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine the physical cell identifier (PCI). Based on PCI, the UE can decide the location of the above DL-RS. The physical broadcast channel (PBCH) (which carries the main information block (MIB)) can be logically packaged with the PSCH and SSCH to form a synchronization signal (SS) block. The MIB provides the number of RBs in the DL system bandwidth, PHICH configuration, and system frame number (SFN). The physical downlink shared channel (PDSCH) carries user data, broadcast system information not sent via the PBCH (such as system information block (SIB)) and paging messages.

如圖2C中所示,RE中的一些RE攜帶用於基地台處的通道估計的解調參考信號(DM-RS)。另外,UE可以在子訊框的最後一個符號中發送探測參考信號(SRS)。SRS可以具有梳齒結構,並且UE可以在梳齒中的一個梳齒上發送SRS。SRS可以被基地台用於通道品質估計,以實現UL上的取決於頻率的排程。As shown in FIG. 2C, some of the REs carry demodulation reference signals (DM-RS) for channel estimation at the base station. In addition, the UE may send a sounding reference signal (SRS) in the last symbol of the subframe. The SRS may have a comb tooth structure, and the UE may transmit the SRS on one of the comb teeth. SRS can be used by the base station for channel quality estimation to achieve frequency-dependent scheduling on the UL.

圖2D示出訊框的UL子訊框內的各種通道的實例。基於實體隨機存取通道(PRACH)配置,PRACH可以在訊框內的一或多個子訊框內。PRACH可以包括子訊框內的六個連續的RB對。PRACH允許UE執行初始系統存取和實現UL同步。實體上行鏈路控制通道(PUCCH)可以位於UL系統頻寬的邊緣上。PUCCH攜帶上行鏈路控制資訊(UCI),諸如,排程請求、通道品質指示符(CQI)、預編碼矩陣指示符(PMI)、秩指示符(RI)和HARQ ACK/NACK回饋。PUSCH攜帶資料,並且可以另外用於攜帶緩衝器狀態報告(BSR)、功率餘量報告(PHR)及/或UCI。FIG. 2D shows examples of various channels in the UL subframe of the frame. Based on the physical random access channel (PRACH) configuration, PRACH can be in one or more sub-frames within the frame. The PRACH may include six consecutive RB pairs in the subframe. PRACH allows the UE to perform initial system access and achieve UL synchronization. The physical uplink control channel (PUCCH) can be located on the edge of the UL system bandwidth. The PUCCH carries uplink control information (UCI), such as scheduling request, channel quality indicator (CQI), precoding matrix indicator (PMI), rank indicator (RI), and HARQ ACK / NACK feedback. PUSCH carries data and can additionally be used to carry buffer status reports (BSR), power headroom reports (PHR) and / or UCI.

圖3是在存取網路中基地台310與UE 350進行通訊的方塊圖。在DL中,可以將來自EPC 160的IP封包提供給控制器/處理器375。控制器/處理器375實現層3和層2功能。層3包括無線電資源控制(RRC)層,以及層2包括封包資料彙聚協定(PDCP)層、無線電鏈路控制(RLC)層和媒體存取控制(MAC)層。控制器/處理器375提供:與以下各項相關聯的RRC層功能:系統資訊(例如,MIB、SIB)的廣播、RRC連接控制(例如,RRC連接傳呼、RRC連接建立、RRC連接修改、以及RRC連接釋放)、無線電存取技術(RAT)間行動性、以及用於UE量測報告的量測配置;與以下各項相關聯PDCP層功能:標頭壓縮/解壓、安全性(加密、解密、完整性保護、完整性驗證)、以及交遞支援功能;與以下各項相關聯的RLC層功能:上層封包資料單元(PDU)的傳輸、經由ARQ的糾錯、RLC服務資料單元(SDU)的串接、分段和重組、RLC資料PDU的重新分段、以及RLC資料PDU的重新排序;及與以下各項相關聯的MAC層功能:邏輯通道和傳輸通道之間的映射、MAC SDU到傳輸區塊(TB)上的多工、MAC SDU從TB的解多工、排程資訊報告、經由HARQ的糾錯、優先順序處置、以及邏輯通道優先化。FIG. 3 is a block diagram of communication between the base station 310 and the UE 350 in the access network. In the DL, the IP packet from the EPC 160 may be provided to the controller / processor 375. The controller / processor 375 implements layer 3 and layer 2 functions. Layer 3 includes a radio resource control (RRC) layer, and layer 2 includes a packet data convergence agreement (PDCP) layer, a radio link control (RLC) layer, and a media access control (MAC) layer. The controller / processor 375 provides: RRC layer functions associated with: broadcasting of system information (eg, MIB, SIB), RRC connection control (eg, RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release), inter-radio access technology (RAT) mobility, and measurement configuration for UE measurement reports; PDCP layer functions associated with: header compression / decompression, security (encryption, decryption) , Integrity protection, integrity verification), and delivery support functions; RLC layer functions associated with the following: upper layer packet data unit (PDU) transmission, error correction via ARQ, RLC service data unit (SDU) Concatenation, segmentation and reassembly, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functions associated with: mapping between logical channels and transmission channels, MAC SDU to Multiplexing on the transmission block (TB), MAC SDU demultiplexing from the TB, scheduling information report, error correction via HARQ, prioritization, and logical channel prioritization.

發送(TX)處理器316和接收(RX)處理器370實現與各種信號處理功能相關聯的層1功能。層1(其包括實體(PHY)層)可以包括傳輸通道上的錯誤偵測、傳輸通道的前向糾錯(FEC)編碼/解碼,交錯、速率匹配、映射到實體通道上、實體通道的調制/解調、以及MIMO天線處理。TX處理器316處理基於各種調制方案(例如,二進位移相鍵控(BPSK)、正交移相鍵控(QPSK)、M-移相鍵控(M-PSK)、M-正交振幅調制(M-QAM))的到信號群集的映射。經編碼且調制的符號隨後可以被拆分成並行的串流。每個串流隨後可以被映射到OFDM次載波,與時域及/或頻域中的參考信號(例如,引導頻)多工,並且隨後使用快速傅裡葉逆變換(IFFT)組合到一起,以產生攜帶時域OFDM符號串流的實體通道。OFDM串流被空間預編碼以產生多個空間串流。來自通道估計器374的通道估計可以用於決定編碼和調制方案,以及用於空間處理。可以根據由UE 350發送的參考信號及/或通道狀況回饋推導通道估計。可以隨後經由單獨的發射器318TX將每一個空間串流提供給不同的天線320。每個發射器318TX可以利用相應的空間串流來對RF載波進行調制以用於傳輸。The transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functions associated with various signal processing functions. Layer 1 (which includes the physical (PHY) layer) may include error detection on the transmission channel, forward error correction (FEC) encoding / decoding of the transmission channel, interleaving, rate matching, mapping onto the physical channel, and modulation of the physical channel / Demodulation and MIMO antenna processing. The TX processor 316 processes based on various modulation schemes (eg, binary shift phase keying (BPSK), quadrature phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)) to the signal cluster mapping. The encoded and modulated symbols can then be split into parallel streams. Each stream can then be mapped to an OFDM sub-carrier, multiplexed with reference signals in the time and / or frequency domain (eg pilot frequency), and then combined using inverse fast Fourier transform (IFFT), To generate a physical channel that carries a stream of time-domain OFDM symbols. The OFDM stream is spatially precoded to produce multiple spatial streams. The channel estimate from the channel estimator 374 can be used to decide the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived based on the reference signal sent by the UE 350 and / or channel status feedback. Each spatial stream can then be provided to a different antenna 320 via a separate transmitter 318TX. Each transmitter 318TX can utilize a corresponding spatial stream to modulate the RF carrier for transmission.

在UE 350處,每個接收器354RX經由其各自的天線352接收信號。每個接收器354RX恢復被調制到RF載波上的資訊,並且將該資訊提供給接收(RX)處理器356。TX處理器368和RX處理器356實現與各種信號處理功能相關聯的層1功能。RX處理器356可以執行對該資訊的空間處理以恢復以UE 350為目的地的任何空間串流。若多個空間串流以UE 350為目的地,則可以由RX處理器356將其組合成單個OFDM符號串流。RX處理器356隨後使用快速傅裡葉變換(FFT)將該OFDM符號串流從時域轉換到頻域。頻域信號包括針對該OFDM信號的每一個次載波的單獨的OFDM符號串流。藉由決定由基地台310發送的最有可能的信號群集點來對每個次載波上的符號和參考信號進行恢復和解調。該等軟決策可以基於由通道估計器358計算的通道估計。該等軟決策隨後被解碼和解交錯以恢復由基地台310最初在實體通道上發送的資料和控制信號。隨後將資料和控制信號提供給控制器/處理器359,控制器/處理器359實現層3和層2功能。At the UE 350, each receiver 354RX receives a signal via its respective antenna 352. Each receiver 354RX recovers the information modulated onto the RF carrier and provides the information to a reception (RX) processor 356. The TX processor 368 and RX processor 356 implement layer 1 functions associated with various signal processing functions. The RX processor 356 can perform spatial processing on the information to restore any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, the RX processor 356 may combine them into a single OFDM symbol stream. The RX processor 356 then converts the OFDM symbol stream from the time domain to the frequency domain using fast Fourier transform (FFT). The frequency domain signal includes a separate stream of OFDM symbols for each subcarrier of the OFDM signal. The symbols and reference signals on each sub-carrier are recovered and demodulated by determining the most likely signal cluster point sent by the base station 310. Such soft decisions may be based on the channel estimates calculated by the channel estimator 358. These soft decisions are then decoded and deinterleaved to recover the data and control signals originally sent by the base station 310 on the physical channel. The data and control signals are then provided to the controller / processor 359, which implements layer 3 and layer 2 functions.

控制器/處理器359可以與儲存程式碼和資料的記憶體360相關聯。記憶體360可以被稱為電腦可讀取媒體。在UL中,控制器/處理器359提供在傳輸通道和邏輯通道之間的解多工、封包重組、解密、標頭解壓縮、以及控制信號處理,以恢復來自EPC 160的IP封包。控制器/處理器359亦負責使用ACK及/或NACK協定來支援HARQ操作的錯誤偵測。The controller / processor 359 may be associated with a memory 360 that stores program codes and data. The memory 360 may be referred to as a computer-readable medium. In UL, the controller / processor 359 provides demultiplexing, packet reassembly, decryption, header decompression, and control signal processing between the transmission channel and the logical channel to recover IP packets from the EPC 160. The controller / processor 359 is also responsible for using ACK and / or NACK protocols to support error detection of HARQ operations.

與結合基地台310進行的DL傳輸所描述的功能類似,控制器/處理器359提供:與以下各項相關聯的RRC層功能:系統資訊(例如,MIB、SIB)擷取、RRC連接、以及量測報告;與以下各項相關聯的PDCP層功能:標頭壓縮/解壓縮、以及安全性(加密、解密、完整性保護、完整性驗證);與以下各項相關聯的RLC層功能:上層PDU的傳輸、經由ARQ的糾錯、RLC SDU的串接、分段和重組、RLC資料PDU的重新分段、以及RLC資料PDU的重新排序;及與以下各項相關聯的MAC層功能:邏輯通道和傳輸通道之間的映射、MAC SDU到TB上的多工、MAC SDU從TB的解多工、排程資訊報告、經由HARQ的糾錯、優先順序處置、以及邏輯通道優先化。Similar to the functions described in connection with DL transmission by base station 310, the controller / processor 359 provides: RRC layer functions associated with: system information (eg, MIB, SIB) acquisition, RRC connection, and Measurement report; PDCP layer functions associated with: header compression / decompression, and security (encryption, decryption, integrity protection, integrity verification); RLC layer functions associated with: Transmission of upper layer PDU, error correction via ARQ, concatenation, segmentation and reassembly of RLC SDU, re-segmentation of RLC data PDU, and reordering of RLC data PDU; and MAC layer functions associated with Mapping between logical channels and transmission channels, MAC SDU to TB multiplexing, MAC SDU demultiplexing from TB, scheduling information reporting, error correction via HARQ, prioritization, and logical channel prioritization.

TX處理器368可以使用由通道估計器358根據由基地台310發送的參考信號或回饋來推導出的通道估計來選擇適當的編碼和調制方案並且促進空間處理。可以經由單獨的發射器354TX將由TX處理器368產生的空間串流提供給不同的天線352。每個發射器354TX可以利用相應的空間串流來對RF載波進行調制,以用於傳輸。The TX processor 368 may use the channel estimates derived by the channel estimator 358 from the reference signal or feedback sent by the base station 310 to select an appropriate coding and modulation scheme and facilitate spatial processing. The spatial stream generated by the TX processor 368 may be provided to different antennas 352 via a separate transmitter 354TX. Each transmitter 354TX can use a corresponding spatial stream to modulate the RF carrier for transmission.

在基地台310處,以與結合UE 350處的接收器功能所描述的方式相類似的方式來處理UL傳輸。每個接收器318RX經由其各自的天線320接收信號。每個接收器318RX恢復被調制到RF載波上的資訊並且將該資訊提供給RX處理器370。At the base station 310, UL transmissions are processed in a manner similar to that described in connection with the receiver function at the UE 350. Each receiver 318RX receives signals via its respective antenna 320. Each receiver 318RX recovers the information modulated onto the RF carrier and provides the information to the RX processor 370.

控制器/處理器375可以與儲存程式碼和資料的記憶體376相關聯。記憶體376可以被稱為電腦可讀取媒體。在UL中,控制器/處理器375提供在傳輸通道和邏輯通道之間的解多工、封包重組、解密、標頭解壓縮、控制信號處理,以恢復來自UE 350的IP封包。可以將來自控制器/處理器375的IP封包提供給EPC 160。控制器/處理器375亦負責使用ACK及/或NACK協定來支援HARQ操作的錯誤偵測。The controller / processor 375 may be associated with a memory 376 that stores code and data. The memory 376 may be referred to as a computer-readable medium. In UL, the controller / processor 375 provides demultiplexing, packet reassembly, decryption, header decompression, and control signal processing between the transmission channel and the logical channel to recover IP packets from the UE 350. The IP packet from the controller / processor 375 may be provided to the EPC 160. The controller / processor 375 is also responsible for using ACK and / or NACK protocols to support error detection of HARQ operations.

在一個示例態樣中,基地台310和UE 350中的一者或兩者可以具有用於允許本文描述的MCT/IoT通訊的邏輯單元、軟體、韌體、配置檔等。In one example aspect, one or both of the base station 310 and the UE 350 may have logic units, software, firmware, configuration files, etc. for allowing the MCT / IoT communication described herein.

圖4是示出根據本揭示內容的各個態樣的通訊系統的圖400。圖4包括節點402和多個UE 404、406。UE 404可以包括MTC UE、IoT UE、頻寬減少低複雜度(BL)UE等。UE 406亦可以包括MTC UE、IoT UE或BL UE,或者UE 406可以以與MTC、IoT、BL不同的方式與基地台進行通訊。節點402可以是巨集節點(例如,基地台)、毫微微節點、微微節點或類似的基地台、行動基地台、中繼器、UE(例如,以同級間或自組織模式與另一個UE進行通訊)、其一部分、及/或在無線網路中傳送控制資料的實質上任何部件。UE 404和UE 406分別可以是行動終端、靜止終端、數據機(或其他系留設備)、其一部分、及/或在無線網路中接收控制資料的實質上任何設備。FIG. 4 is a diagram 400 showing a communication system according to various aspects of the present disclosure. FIG. 4 includes a node 402 and multiple UEs 404, 406. The UE 404 may include MTC UE, IoT UE, bandwidth reduction low complexity (BL) UE, and the like. The UE 406 may also include an MTC UE, IoT UE, or BL UE, or the UE 406 may communicate with the base station in a different manner from MTC, IoT, BL. The node 402 may be a macro node (eg, a base station), a femto node, a pico node, or similar base station, mobile base station, repeater, UE (e.g., in a peer-to-peer or self-organizing mode with another UE Communication), part of it, and / or virtually any component that transmits control data over a wireless network. The UE 404 and the UE 406 may be mobile terminals, stationary terminals, modems (or other tethered devices), a part thereof, and / or substantially any devices that receive control data in a wireless network, respectively.

如圖4所示,UE 404從基地台402接收DL傳輸410,以及將UL傳輸408發送給基地台402。在一個態樣中,DL傳輸410和UL傳輸408可以包括MTC/IoT/BL控制資訊或MTC/IoT/BL資料。UE 406從基地台402接收DL傳輸412,並且將UL傳輸414發送給基地台402。UE 404與基地台402之間的通訊可以包括例如蜂巢IoT(CIoT)進化封包系統(EPS)最佳化程序,其包括在沒有轉換到RRC連接狀態的情況下在隨機存取程序期間的早期資料傳輸。早期資料傳輸可以包括UL及/或DL資料。As shown in FIG. 4, UE 404 receives DL transmission 410 from base station 402 and sends UL transmission 408 to base station 402. In one aspect, DL transmission 410 and UL transmission 408 may include MTC / IoT / BL control information or MTC / IoT / BL data. UE 406 receives DL transmission 412 from base station 402 and sends UL transmission 414 to base station 402. The communication between the UE 404 and the base station 402 may include, for example, a cellular IoT (CIoT) evolution packetization system (EPS) optimization procedure, which includes early data during the random access procedure without transitioning to the RRC connection state transmission. Early data transmission may include UL and / or DL data.

圖5是根據本揭示內容的各態樣的示例撥叫流程圖500。參照圖5,撥叫流程圖500示出UE 502、基地台504、MME 506和SGW 508之間的通訊。UE 502可以包括NB-IoT UE、BL UE、eMTC UE或CE UE。在一些態樣中,UE 502可以處於閒置狀態501(例如,RRC閒置)中。在方塊510中,基地台504可以進行資源決定。基地台決定要由UE 502用於PRACH嘗試的資源。在510處決定的PRACH資源可以包括與早期資料傳輸相關聯的PRACH資源,例如,被分配用於在沒有建立RRC連接的情況下的早期資料傳遞的PRACH資源。例如,基地台可以允許在沒有建立完整的RRC連接的情況下對小資料封包大小(例如,10位元組到50位元組)的傳輸。例如,早期資料傳輸可以包括單個資料封包。與早期資料傳輸相關聯的PRACH資源可以與被基地台分配用於在RRC連接建立之後的資料傳輸的彼等資源不同。另外,針對不同的覆蓋增強(CE)水平,所分配的PRACH資源可以是不同的。因此,為了早期資料傳輸,UE可以針對選擇的增強覆蓋水平,從與早期資料傳遞相關聯的PRACH資源集合中進行選擇。FIG. 5 is an example dialing flowchart 500 according to various aspects of the present disclosure. Referring to FIG. 5, the dialing flowchart 500 shows the communication between the UE 502, the base station 504, the MME 506, and the SGW 508. The UE 502 may include NB-IoT UE, BL UE, eMTC UE or CE UE. In some aspects, the UE 502 may be in an idle state 501 (eg, RRC idle). In block 510, the base station 504 may make a resource decision. The base station determines the resources to be used by the UE 502 for PRACH attempts. The PRACH resources decided at 510 may include PRACH resources associated with early data transmission, for example, PRACH resources allocated for early data transfer without establishing an RRC connection. For example, the base station may allow transmission of small data packet sizes (eg, 10 bytes to 50 bytes) without establishing a complete RRC connection. For example, early data transmission may include a single data packet. The PRACH resources associated with early data transmission may be different from those resources allocated by the base station for data transmission after RRC connection establishment. In addition, for different coverage enhancement (CE) levels, the allocated PRACH resources may be different. Therefore, for early data transmission, the UE may select from the set of PRACH resources associated with the early data transmission for the selected enhanced coverage level.

增強的早期資料傳輸(Tx)模式可以包括在Msg1(例如,具有RACH前序信號的傳輸)中或在Msg3(例如,在RAR之後的傳輸)中傳輸資料,而其他資料傳輸模式可能需要在RRC連接建立之後發送資料。Enhanced early data transmission (Tx) modes can be included in Msg1 (for example, transmission with RACH preamble) or Msg3 (for example, transmission after RAR), while other data transmission modes may require RRC Send the data after the connection is established.

基地台504可以經由系統資訊廣播(SIB)來通告所分配的PRACH資源(512)。如圖5中所示,SIB可以指示用於早期資料傳輸(例如,在RRC連接建立之前或在沒有RRC連接建立的情況下的資料傳遞)的單獨的PRACH資源。另外,SIB通告亦可以指示可以用於早期資料傳輸的傳輸塊大小(TBS),其可以由UE用於進行關於是否使用早期資料傳輸的決定。The base station 504 may announce the allocated PRACH resources via system information broadcasting (SIB) (512). As shown in FIG. 5, the SIB may indicate a separate PRACH resource used for early data transmission (for example, data transfer before RRC connection establishment or without RRC connection establishment). In addition, the SIB announcement can also indicate the transport block size (TBS) that can be used for early data transmission, which can be used by the UE to make a decision about whether to use early data transmission.

在方塊514中,UE 502基於在SIB中所通告的資源和要被發送的資料量來選擇PRACH/NPRACH資源。在一些態樣中,資源選擇可以基於從對應的PRACH池中的隨機選擇或專用分配。UE可以指示關於經由UE對PRACH/NPRACH資源的選擇來執行到網路(例如,基地台504)的早期資料傳遞的意圖。例如,當UE意欲在建立與基地台的RRC連接之前/在沒有建立與基地台的RRC連接的情況下發送資料時,UE可以從被分配用於增強的早期資料傳輸的單獨的池中選擇PRACH資源。UE可以基於要被發送給基地台的資料量來決定是否使用增強的早期資料傳輸來發送資料。例如,當UE具有要被發送給基地台的單個上行鏈路封包(基於對TBS大小的SIB通告,其可以適配在單個MAC塊傳輸中)時,UE可以從被分配用於早期資料傳輸的PRACH資源當中進行選擇。否則,UE可以從其他PRACH資源當中進行選擇。在另一實例中,在與在SIB中提供的資訊進行比較時,UE可以基於要被發送的資料的位元組數量來決定是否執行早期資料傳輸。例如,大小可以限於單個MAC塊。例如,當位元組數量小於50位元組時,UE可以從被分配用於早期資料傳輸的PRACH資源當中進行選擇。否則,UE可以從其他PRACH資源當中進行選擇。因此,對PRACH資源的選擇可以基於要被發送的資料量。In block 514, the UE 502 selects PRACH / NPRACH resources based on the resources advertised in the SIB and the amount of data to be sent. In some aspects, resource selection may be based on random selection or dedicated allocation from the corresponding PRACH pool. The UE may indicate an intention to perform early data transfer to the network (eg, base station 504) via the UE's selection of PRACH / NPRACH resources. For example, when the UE intends to send data before establishing an RRC connection with the base station / without establishing an RRC connection with the base station, the UE may select PRACH from a separate pool allocated for enhanced early data transmission Resources. The UE may decide whether to use enhanced early data transmission to send data based on the amount of data to be sent to the base station. For example, when the UE has a single uplink packet to send to the base station (based on the SIB announcement for the TBS size, which can be adapted in a single MAC block transmission), the UE Choose from PRACH resources. Otherwise, the UE can choose from other PRACH resources. In another example, when comparing with the information provided in the SIB, the UE may decide whether to perform early data transmission based on the number of bytes of data to be transmitted. For example, the size may be limited to a single MAC block. For example, when the number of bytes is less than 50 bytes, the UE may select from PRACH resources allocated for early data transmission. Otherwise, the UE can choose from other PRACH resources. Therefore, the selection of PRACH resources can be based on the amount of data to be sent.

UE 502使用所選擇的PRACH/NPRACH資源,將PRACH前序信號516作為第一通訊訊息發送給基地台504(516)。在一個實例中,PRACH前序信號可以被稱為Msg1。由UE選擇的PRACH/NPRACH前序信號可以基於與早期資料傳輸相關聯的PRACH資源。在一個實例中,UE可以將資料包括在去往基地台的該第一傳輸中。例如,Msg1可以可選地包括PRACH前序信號和NAS PDU。The UE 502 uses the selected PRACH / NPRACH resource to send the PRACH preamble signal 516 as the first communication message to the base station 504 (516). In one example, the PRACH preamble signal may be referred to as Msg1. The PRACH / NPRACH preamble signal selected by the UE may be based on PRACH resources associated with early data transmission. In one example, the UE may include the data in the first transmission to the base station. For example, Msg1 may optionally include a PRACH preamble signal and NAS PDU.

基地台504在第二通訊訊息中將RA回應(RAR)發送給UE(在518處),第二通訊訊息包括針對UE執行早期資料傳輸的上行鏈路授權。在一個實例中,RAR可以被稱為Msg2。在需要在資料傳輸之前建立RRC連接的通訊中,RAR可以包含針對RRC連接建立/重建立/恢復訊息的傳輸的上行鏈路授權。RAR亦可以包括時序提前(TA)(除了臨時C-RNTI等)。為了能夠在建立RRC連接之前實現早期資料傳輸,除了時序提前、臨時C-RNTI、功率控制資訊等中的一項或多項以外,RAR 518亦可以包括針對早期資料傳輸的上行鏈路授權。若沒有包括功率控制資訊,則替代地UE 502可以使用UE在其中決定發射功率的開放迴路功率控制。The base station 504 sends the RA response (RAR) to the UE in the second communication message (at 518), the second communication message includes an uplink authorization for the UE to perform early data transmission. In one example, RAR may be referred to as Msg2. In communications that need to establish an RRC connection before data transmission, the RAR may include an uplink grant for the transmission of RRC connection establishment / re-establishment / recovery messages. RAR may also include timing advance (TA) (except temporary C-RNTI, etc.). To enable early data transmission before establishing an RRC connection, in addition to one or more of timing advance, temporary C-RNTI, power control information, etc., RAR 518 may also include an uplink grant for early data transmission. If no power control information is included, the UE 502 may instead use open loop power control in which the UE determines the transmit power.

在520處,UE 502可以使用在RAR 518中指示的初始UL授權來將資料發送給基地台。在一個實例中,該訊息可以被稱為RRC早期資料請求訊息。在另一個實例中,該訊息可以被稱為RRC無連接請求。可以將有效負荷包括在CCCH上的訊息520(例如,作為CCCH SDU)中。可以將資料作為NAS協定資料單元(PDU)在控制平面上進行發送。在隨機存取程序期間並且在沒有建立RRC連接的情況下執行520處的傳輸。傳輸520被示為去往基地台504的第三通訊訊息,並且可以被稱為Msg3。傳輸520亦可以包括UE標識(UEID)。在一些態樣中,UEID可以包括臨時行動用戶身份(例如,系統架構進化TMSI(S-TMSI))。在一些態樣中,若UE先前已經被暫停,則UEID可以包括恢復ID。如圖5中所示,訊息520亦可以包括對原因的指示。原因可以指示RRC無連接模式。原因可以被稱為「原因碼」,並且在訊息中包括的碼可以指示訊息520是否包括用於在RRC無連接模式中的傳輸的資料。對原因的指示亦可以被稱為建立原因。UE 502可以將來自RAR的功率控制資訊(若被包括在RAR中的話)考慮在內。UE 502可以在該步驟之後啟動爭用解決計時器。例如,可以使用圖3的示例UE 350中的控制器/處理器359來實現爭用解決計時器。與針對需要在資料傳輸之前建立RRC連接的通訊的爭用解決計時器值相比,針對早期資料傳輸的爭用解決計時器值可以是不同的。At 520, the UE 502 may use the initial UL grant indicated in RAR 518 to send the data to the base station. In one example, this message may be referred to as an RRC early data request message. In another example, the message may be called RRC connectionless request. The payload may be included in the message 520 on the CCCH (for example, as a CCCH SDU). Data can be sent on the control plane as a NAS protocol data unit (PDU). The transmission at 520 is performed during the random access procedure and without establishing an RRC connection. Transmission 520 is shown as a third communication message to base station 504, and may be referred to as Msg3. Transmission 520 may also include a UE identification (UEID). In some aspects, the UEID may include a temporary mobile user identity (eg, System Architecture Evolution TMSI (S-TMSI)). In some aspects, if the UE has been previously suspended, the UEID may include a resume ID. As shown in FIG. 5, the message 520 may also include an indication of the cause. The reason may indicate RRC connectionless mode. The cause may be referred to as a "reason code", and the code included in the message may indicate whether the message 520 includes data for transmission in RRC connectionless mode. The indication of the cause may also be referred to as the establishment cause. The UE 502 may take into account the power control information from the RAR (if included in the RAR). The UE 502 may start the contention resolution timer after this step. For example, the controller / processor 359 in the example UE 350 of FIG. 3 may be used to implement a contention resolution timer. The contention resolution timer value for early data transmission can be different compared to the contention resolution timer value for communications that need to establish an RRC connection before data transmission.

訊息520可以包括在單獨的早期資料傳輸緩衝器(例如,其可以被稱為Msg3緩衝器)中儲存的資料。此種緩衝器可以具有與用於RRC連接之後的傳輸的UL緩衝器相比更高的優先順序。The message 520 may include data stored in a separate early data transmission buffer (eg, it may be referred to as an Msg3 buffer). Such a buffer may have a higher priority than a UL buffer used for transmission after RRC connection.

在一些態樣中,訊息520亦可以包括關於RRC無連接早期UL資料傳輸的指示。該指示可以使得基地台504能夠將UE請求在RRC連接建立之前或在RRC連接建立之後的早期資料傳輸進行區分。因此,基地台504可以提供另外的訊息,其包括針對無連接UL傳輸的快速UL授權(例如,在UE沒有轉換到RRC連接狀態的情況下向UE提供UL授權)。UE隨後可以在沒有轉換到RRC連接狀態的情況下利用資料傳遞進行回應。In some aspects, the message 520 may also include an indication of RRC connectionless early UL data transmission. The indication may enable the base station 504 to distinguish the UE's request for early data transmission before the RRC connection is established or after the RRC connection is established. Therefore, the base station 504 may provide additional information, including a fast UL grant for connectionless UL transmission (eg, providing the UE with a UL grant if the UE does not transition to the RRC connected state). The UE can then respond with data transfer without transitioning to the RRC connected state.

此外,在一些態樣中,訊息520可以包括NAS PDU以及關於在UE處另外的UL資料是未決的指示。因此,基地台可以藉由提供針對使用RRC無連接模式的傳輸的另外的UL授權,來對該訊息進行回應。In addition, in some aspects, the message 520 may include a NAS PDU and an indication that additional UL data at the UE is pending. Therefore, the base station can respond to this message by providing additional UL authorization for transmission using RRC connectionless mode.

在522處,基地台基於訊息520中的UE辨識資訊(例如,S-TMSI)來選擇MME 506,並且將NAS PDU轉發給MME 506。基地台504亦可以向MME 506提供關於僅存在一個上行鏈路NAS PDU的指示。這可以例如藉由將原因碼(例如,「RRC無連接模式」)包括在去往MME的訊息522中來完成。At 522, the base station selects the MME 506 based on the UE identification information (eg, S-TMSI) in the message 520, and forwards the NAS PDU to the MME 506. The base station 504 may also provide the MME 506 with an indication that there is only one uplink NAS PDU. This can be done, for example, by including a reason code (eg, "RRC connectionless mode") in the message 522 to the MME.

在524處,若DL資料可用於UE 502,則SGW 508向MME 506提供DL資料,MME 506將DL資料作為NAS PDU轉發給基地台504,以被傳送給UE 502。若基地台504已經指示僅存在一個UL NAS PDU,則作為回應,MME 506可以在轉發任何下行鏈路NAS PDU之後關閉S1應用協定(S1-AP)連接。如所示出的,訊息524可以包括DL NAS PDU和釋放命令。此外,對一個UL NAS PDU的基地台指示亦可以由MME 506用於優先化對UL資料的處理並且加速或優先化由SGW 508進行的DL資料到MME 506的傳輸。At 524, if the DL data is available to the UE 502, the SGW 508 provides the DL data to the MME 506, and the MME 506 forwards the DL data to the base station 504 as a NAS PDU to be transmitted to the UE 502. If the base station 504 has indicated that there is only one UL NAS PDU, in response, the MME 506 may close the S1 application protocol (S1-AP) connection after forwarding any downlink NAS PDU. As shown, the message 524 may include the DL NAS PDU and release command. In addition, the base station indication for a UL NAS PDU can also be used by MME 506 to prioritize the processing of UL data and accelerate or prioritize the transmission of DL data by SGW 508 to MME 506.

在526處,基地台504可以發送用於確認對訊息520中的資料的接收的訊息。在一個實例中,訊息526可以被稱為RRC早期資料完成訊息。在另一個實例中,該訊息可以被稱為RRC無連接確認訊息。在一些實例中,該訊息可以包括UE與基地台之間的第四訊息,並且可以被稱為Msg4。若UE 502接收到訊息526,則其可以認為成功地完成早期資料傳輸並且認為解決了爭用。訊息526可以包括DL NAS PDU。若包括NAS PDU,則NAS可以確認其正在與有效的網路進行通訊。若將DL資料包括在訊息526中,則UE可以利用包括對DL資料的接收的HARQ 528進行回應。若UE沒有從基地台接收到回應(例如,MAC級別回應),則UE可以重傳訊息520。未能在爭用解決計時器內接收回應指示導致UE從閒置狀態重新嘗試存取的爭用解決失敗。若不存在針對UE的DL資料,則訊息526可以僅提供關於UL資料被接收的確認。在訊息526或訊息528之後,UE可以繼續處於RRC閒置狀態530中。因此,可以例如在516或520處在隨機存取程序期間,在沒有建立RRC連接的情況下以及在UE沒有轉換到RRC連接狀態的情況下發送UL資料。At 526, the base station 504 may send a message confirming receipt of the data in the message 520. In one example, the message 526 may be referred to as an RRC early data completion message. In another example, the message may be referred to as an RRC connectionless confirmation message. In some examples, the message may include a fourth message between the UE and the base station, and may be referred to as Msg4. If the UE 502 receives the message 526, it may consider that the early data transmission was successfully completed and that the contention is resolved. The message 526 may include DL NAS PDU. If the NAS PDU is included, the NAS can confirm that it is communicating with a valid network. If the DL data is included in the message 526, the UE may respond with HARQ 528 including the reception of the DL data. If the UE does not receive a response (eg, MAC level response) from the base station, the UE may retransmit the message 520. Failure to receive a response indication within the contention resolution timer causes the contention resolution of the UE to retry access from the idle state to fail. If there is no DL data for the UE, the message 526 may only provide confirmation that the UL data is received. After message 526 or message 528, the UE may continue to be in RRC idle state 530. Therefore, UL data may be sent, for example, during a random access procedure at 516 or 520, without establishing an RRC connection and without the UE transitioning to the RRC connected state.

在一些態樣中,訊息524可能是缺少的(例如,基地台將資料發送給MME 506,但是出於某些原因,MME 506沒有進行回應)。在此種情況下,基地台504可以例如在訊息522之後啟動計時器。在計時器到期時,基地台504可以繼續進行到具有對成功接收訊息520的肯定ACK的訊息526。在另一實例中,基地台504可以在訊息522之後啟動計時器。在此計時器到期時,基地台504可以繼續進行到具有對成功接收訊息520的肯定ACK的訊息526,其具有關於基地台504未能從MME 506接收到ACK的另外的指示。在該實例中,可以由UE 502向協定堆疊的上層指示不存在訊息524中的NAS PDU。在530處,UE返回到閒置。In some aspects, the message 524 may be missing (for example, the base station sends the data to the MME 506, but for some reason, the MME 506 did not respond). In this case, the base station 504 may start a timer after the message 522, for example. When the timer expires, the base station 504 may proceed to the message 526 with a positive ACK for the successful reception of the message 520. In another example, the base station 504 may start a timer after the message 522. When this timer expires, the base station 504 may proceed to the message 526 with a positive ACK for the successful reception of the message 520, which has additional indications that the base station 504 failed to receive an ACK from the MME 506. In this example, the UE 502 may indicate to the upper layer of the protocol stack that there is no NAS PDU in the message 524. At 530, the UE returns to idle.

此外,在一些態樣中,代替確認對來自基地台504的NAS PDU的接收或者除此之外,MME 506亦可以在訊息524中指示UE 502要從閒置狀態轉換到RRC連接狀態,而不是完成RRC無連接傳輸通信期。在此種情況下,可以不立即關閉S1-AP,並且基地台可以在訊息526中將關於轉換到RRC連接狀態(例如,RRC連接建立)的指示發送給UE 502。In addition, in some aspects, instead of confirming the receipt of the NAS PDU from the base station 504 or otherwise, the MME 506 may also indicate in the message 524 that the UE 502 is to transition from the idle state to the RRC connected state instead of completing RRC connectionless transmission communication period. In this case, the S1-AP may not be turned off immediately, and the base station may send an instruction to the UE 502 in the message 526 about transition to the RRC connection state (eg, RRC connection establishment).

在示例撥叫流500中,沒有針對早期資料傳輸建立專用無線電承載(DRB)以及封包資料彙聚協定(PDCP)層和無線電鏈路控制層RLC。這是因為早期資料傳輸可以是在沒有建立RRC連接的情況下並且替代地使用控制平面RRC訊息傳遞來執行的。因此,UE 502保持在RRC_閒置狀態。In the example dialing flow 500, no dedicated radio bearer (DRB) and packet data convergence agreement (PDCP) layer and radio link control layer RLC are established for early data transmission. This is because early data transmission may be performed without establishing an RRC connection and instead using control plane RRC messaging. Therefore, the UE 502 remains in the RRC_idle state.

圖6是示出根據本揭示內容的各態樣的示例撥叫流程圖600。參照圖6,撥叫流程圖600示出UE 602、基地台604、MME 606和SGW 608之間的通訊。UE 602可以包括NB-IoT UE、BL UE、eMTC UE或CE UE。在一些態樣中,UE 602可以處於閒置狀態601(例如,RRC暫停狀態)中。在方塊610中,基地台可以進行資源決定。該決定可以類似於結合圖5中的510所描述的決定。例如,基地台604可以允許在沒有建立完整的RRC連接的情況下(例如,在隨機存取期間,在UE沒有從RRC暫停狀態轉換到RRC連接狀態的情況下)對小資料封包大小(例如,10位元組至50位元組)的傳輸。圖6中的資料傳輸可以是在使用者平面上執行的,而圖5中的資料傳輸可以是在控制平面上執行的。基地台可以決定要由UE 602用於PRACH嘗試的資源。在一些態樣中,基地台604可以為該目的分配PRACH資源。在610處決定的PRACH資源可以包括與增強的早期資料傳輸相關聯的PRACH資源,例如,被分配用於在RRC連接建立之前或在沒有建立RRC連接的情況下的資料傳遞的PRACH資源。與由基地台分配用於在RRC連接建立之後的資料傳輸的彼等PRACH資源相比,被分配用於早期資料傳輸的PRACH資源可以是不同的。另外,針對不同的CE水平,所分配的PRACH資源可以是不同的。因此,對於早期資料傳輸,UE可以針對選擇的增強覆蓋水平來從與早期資料傳遞相關聯的PRACH資源集合中進行選擇。FIG. 6 is an example dialing flowchart 600 illustrating various aspects of the present disclosure. Referring to FIG. 6, a dialing flowchart 600 shows communication between the UE 602, the base station 604, the MME 606, and the SGW 608. UE 602 may include NB-IoT UE, BL UE, eMTC UE or CE UE. In some aspects, the UE 602 may be in an idle state 601 (eg, RRC suspended state). In block 610, the base station may make resource decisions. This decision may be similar to that described in connection with 510 in FIG. 5. For example, the base station 604 may allow a small data packet size (eg, during random access, where the UE does not transition from the RRC suspended state to the RRC connected state) (eg, 10 bytes to 50 bytes) transmission. The data transmission in FIG. 6 may be performed on the user plane, and the data transmission in FIG. 5 may be performed on the control plane. The base station may decide the resources to be used by the UE 602 for PRACH attempts. In some aspects, the base station 604 may allocate PRACH resources for this purpose. The PRACH resources decided at 610 may include PRACH resources associated with enhanced early data transmission, for example, PRACH resources allocated for data transfer before the RRC connection is established or when the RRC connection is not established. The PRACH resources allocated for early data transmission may be different compared to their PRACH resources allocated by the base station for data transmission after RRC connection establishment. In addition, for different CE levels, the allocated PRACH resources may be different. Therefore, for early data transmission, the UE can select from the set of PRACH resources associated with the early data delivery for the selected enhanced coverage level.

在一些態樣中,增強的早期資料傳輸可以包括在Msg1(例如,具有RACH前序信號)中或在Msg3(例如,在RAR之後的傳輸)中傳輸資料,而不是在RRC連接恢復完成之後進行發送。UE可以藉由從被分配用於此種RRC無連接早期資料傳遞的單獨的池中選擇PRACH/NPRACH資源,來向網路(例如,基地台604)指示關於在沒有恢復RRC連接的情況下執行早期資料傳輸的意圖。基地台604可以經由系統資訊廣播(SIB)來通告資源池(612)。In some aspects, the enhanced early data transmission may be included in Msg1 (for example, with RACH preamble signal) or in Msg3 (for example, transmission after RAR) instead of after the RRC connection recovery is completed send. The UE may indicate to the network (e.g., base station 604) about performing the early stage without restoring the RRC connection by selecting PRACH / NPRACH resources from a separate pool allocated for such RRC connectionless early data transfer Intent of data transmission. The base station 604 may announce the resource pool (612) via system information broadcasting (SIB).

在方塊614中,UE 602基於在SIB中所通告的資源和要被發送的資料量來選擇PRACH/NPRACH資源。例如,若要被發送的資料的大小滿足從基地台接收的大小限制,則UE可以從與早期資料傳遞相關聯的池中選擇PRACH/NPRACH資源。如結合圖5中的實例所描述的,UE可以基於要被發送的資料量,來決定是否使用RRC無連接早期資料傳輸來發送上行鏈路資料。因此,若資料的大小超出限制,則UE可以選擇用於執行隨機存取的不同PRACH/NPRACH資源。在一些態樣中,資源選擇可以基於從對應的PRACH池中的隨機選擇或專用分配。In block 614, the UE 602 selects PRACH / NPRACH resources based on the resources advertised in the SIB and the amount of data to be sent. For example, if the size of the data to be transmitted meets the size limit received from the base station, the UE may select PRACH / NPRACH resources from the pool associated with the early data transfer. As described in connection with the example in FIG. 5, the UE can decide whether to use RRC connectionless early data transmission to send uplink data based on the amount of data to be sent. Therefore, if the size of the data exceeds the limit, the UE may select different PRACH / NPRACH resources for performing random access. In some aspects, resource selection may be based on random selection or dedicated allocation from the corresponding PRACH pool.

UE 602在第一通訊訊息中將所選擇的PRACH/NPRACH前序信號發送給基地台604(616)。第一通訊訊息可以被稱為Msg1,並且可以發起早期資料傳輸。由UE選擇的PRACH/NPRACH前序信號可以基於與早期資料傳輸相關聯的PRACH資源。在一個實例中,可以將用於早期傳輸的資料包括在去往基地台的該第一訊息中。The UE 602 sends the selected PRACH / NPRACH preamble signal to the base station 604 in the first communication message (616). The first communication message may be called Msg1, and may initiate early data transmission. The PRACH / NPRACH preamble signal selected by the UE may be based on PRACH resources associated with early data transmission. In one example, the data for early transmission may be included in the first message to the base station.

基地台604在第二通訊訊息(例如,其可以被稱為Msg2)中將RAR發送給UE(在618處)。RAR可以包含針對早期資料傳輸的上行鏈路授權。RAR亦可以包括時序提前(除了臨時C-RNTI等以外)。為了在UE 502沒有恢復RRC連接的情況下實現對資料的傳輸,RAR亦可以包括功率控制資訊。替代地,UE 502可以使用開放迴路功率控制(例如,UE決定發射功率)。The base station 604 sends the RAR to the UE (at 618) in a second communication message (eg, it may be referred to as Msg2). RAR may include uplink grants for early data transmission. RAR may also include timing advance (in addition to temporary C-RNTI, etc.). In order to realize the transmission of data without the UE 502 recovering the RRC connection, the RAR may also include power control information. Alternatively, the UE 502 may use open loop power control (eg, the UE decides to transmit power).

在620處,UE 602可以基於在RAR 618中指示的上行鏈路授權來將資料發送給基地台。可以將資料包括在CCCH上的訊息620中。訊息620可以是去往基地台的第三通訊訊息,並且可以被稱為Msg3。可以將資料作為資料PDU在使用者平面上進行發送。可以在隨機存取程序期間並且在沒有恢復先前暫停的RRC連接的情況下執行620處的傳輸。訊息620可以包括UE辨識符。因為UE處於RRC暫停狀態601中,所以UE辨識符可以包括UE的恢復ID。因為UE 602先前已經被暫停,所以Msg3可以包括與RRC連接恢復請求(其包括UE的恢復ID並且包括應用資料)類似的訊息。該訊息亦可以指示原因,例如,將早期資料傳輸指示為該訊息的原因。此種對原因的指示可以被稱為「恢復原因」或「建立原因」。例如,僅有原因值的子集可以適用於早期資料傳輸。替代地,可以針對資料在訊息620中的早期傳輸來定義新的恢復原因值。若用信號發送了該新原因值,則基地台可以在沒有恢復RRC的情況下將資料轉發給MME 606。替代地,可以定義新訊息來攜帶未加密和加密的有效負荷的組合。At 620, the UE 602 may send the data to the base station based on the uplink grant indicated in the RAR 618. The data can be included in the message 620 on the CCCH. The message 620 may be the third communication message to the base station, and may be called Msg3. Data can be sent on the user plane as a data PDU. The transmission at 620 may be performed during the random access procedure and without resuming the previously suspended RRC connection. The message 620 may include the UE identifier. Because the UE is in the RRC suspended state 601, the UE identifier may include the recovery ID of the UE. Because the UE 602 has been previously suspended, Msg3 may include a message similar to the RRC connection recovery request (which includes the recovery ID of the UE and includes application data). The message may also indicate the cause, for example, indicating early data transmission as the cause of the message. Such an indication of the cause may be referred to as "recovery reason" or "establishment reason". For example, only a subset of cause values may be suitable for early data transmission. Alternatively, a new recovery reason value may be defined for the early transmission of data in the message 620. If the new cause value is signaled, the base station can forward the data to MME 606 without restoring RRC. Alternatively, a new message can be defined to carry a combination of unencrypted and encrypted payload.

UE 602可以將安全性應用於訊息620所攜帶的資料PDU。因此,訊息620亦可以包括認證符記。圖6示出包括被稱為短恢復MAC-I的示例認證符記的訊息。認證符記亦可以被稱為其他名稱。亦可以將完整性應用於整個訊息620。當處於RRC暫停狀態中時,UE 602儲存要用於可以被恢復使用的完整性的安全金鑰。在一些態樣中,UE 602亦可以儲存用於加密的金鑰。因此,可以對上行鏈路和下行鏈路二者上的使用者資料進行加密。可以在暫停期間向UE 602提供下一跳連結計數(NextHopChainingCount)和恢復ID(例如,在601處從先前的通信期提供這二者,或者在634中,提供當前通信期的這二者以用於下一通信期)。The UE 602 may apply security to the data PDU carried by the message 620. Therefore, the message 620 may also include an authentication token. FIG. 6 shows a message including an example authentication token called short recovery MAC-I. The authentication token can also be called other names. Integrity can also be applied to the entire message 620. When in the RRC suspended state, the UE 602 stores a security key to be used for integrity that can be resumed. In some aspects, the UE 602 may also store the key used for encryption. Therefore, user data on both the uplink and downlink can be encrypted. The UE 602 may be provided with the Next Hop Chaining Count (NextHopChainingCount) and the resume ID (for example, at 601 from the previous communication period, or at 634, both of the current communication period may be provided to use In the next communication period).

在一些態樣中,PDU的副本(例如,資料)可以被留在PDCP堆疊中,以便在訊息620的傳輸失敗的情況下進行可能的重複傳輸嘗試。In some aspects, a copy of the PDU (eg, data) may be left in the PDCP stack to make possible repeated transmission attempts if the transmission of the message 620 fails.

UE 602亦可以使用基於在最近的暫停期間(例如,在來自先前RRC連接的RRC連接釋放訊息中)提供的下一跳連結計數的安全參數(在620處)。因此,可以基於計數(諸如,下一跳連結計數)來對資料進行加密。UE 602可以對資料PDU進行加密,並且計算完整性金鑰(例如,在整個RRC無連接恢復請求訊息上)。在一些態樣中,eNodeB基金鑰(KeNB)、針對RRC訊號傳遞的完整性金鑰(KRRCint)、針對RRC的加密金鑰(KRRCenc)或其他安全參數可以用於例如MAC計算和可選的加密。安全參數可以基於先前(例如,在先前暫停期間)提供給UE的資訊。可以在沒有加密的情況下發送恢復ID、恢復原因和短恢復MAC-I。The UE 602 may also use a security parameter (at 620) based on the next-hop connection count provided during the most recent suspension period (eg, in the RRC connection release message from the previous RRC connection). Therefore, the data can be encrypted based on the count (such as the next hop link count). The UE 602 can encrypt the data PDU and calculate the integrity key (for example, on the entire RRC connectionless recovery request message). In some aspects, the eNodeB fund key (KeNB), the integrity key for RRC signal transmission (KRRCint), the encryption key for RRC (KRRCenc), or other security parameters may be used for, for example, MAC calculation and optional encryption . The security parameter may be based on information previously provided to the UE (eg, during a previous suspension). The recovery ID, recovery reason, and short recovery MAC-I can be sent without encryption.

在方塊622處,基地台604可選地對RRC訊息進行解碼,取得UE上下文並且驗證完整性。若成功地驗證完整性,則基地台對資料進行解密。At block 622, the base station 604 optionally decodes the RRC message, obtains the UE context and verifies the integrity. If the integrity is successfully verified, the base station decrypts the data.

在624處,基地台將S1-AP UE上下文恢復請求發送給MME 606,S1-AP UE上下文恢復請求觸發MME 606恢復所暫停的連接。因此,基地台發起S1-AP上下文恢復程序,以恢復S1使用者平面外部介面(S1-U)承載。在一些態樣中,基地台604可以用信號向MME 606通知僅存在一個上行鏈路NAS PDU。這可以例如藉由包括原因碼(例如,「RRC無連接模式」)來完成。該指示亦可以由MME 606用於優先化對UE資料的處理,並且加速或優先化發送對恢復的確認。在626處,MME 606配置/恢復承載,例如,請求S-GW重新啟動用於UE的S1-U承載。在628處,MME將S1-AP UE上下文恢復回應發送給基地台604,以確認對承載的配置和恢復,例如,以向基地台確認UE上下文恢復。At 624, the base station sends an S1-AP UE context recovery request to the MME 606, and the S1-AP UE context recovery request triggers the MME 606 to resume the suspended connection. Therefore, the base station initiates the S1-AP context restoration procedure to restore the S1 user plane external interface (S1-U) bearer. In some aspects, the base station 604 may signal the MME 606 that there is only one uplink NAS PDU. This can be done, for example, by including a reason code (eg, "RRC connectionless mode"). This indication can also be used by MME 606 to prioritize the processing of UE data, and accelerate or prioritize the sending of confirmations for recovery. At 626, the MME 606 configures / resumes the bearer, for example, requests the S-GW to restart the S1-U bearer for the UE. At 628, the MME sends the S1-AP UE context recovery response to the base station 604 to confirm the configuration and recovery of the bearer, for example, to confirm the UE context recovery to the base station.

在一些態樣中,UE上下文可以是可取得的/無法恢復(例如,基地台是新基地台,並且不存在X2介面)。因此,在628處,MME 606可以在上下文恢復回應中指示失敗。In some aspects, the UE context may be available / unrecoverable (for example, the base station is a new base station and there is no X2 interface). Therefore, at 628, the MME 606 may indicate failure in the context recovery response.

在一些態樣中,UE上下文恢復回應可能是缺少的(例如,基地台604將UE上下文恢復請求發送給MME,但是出於各種原因,MME沒有進行回應)。在此種情況下,藉由基地台604發送關於建立/恢復RRC連接的指示,UE 602可以恢復到完整的RRC連接。In some aspects, the UE context recovery response may be missing (for example, the base station 604 sends the UE context recovery request to the MME, but for various reasons, the MME does not respond). In this case, by the base station 604 sending an instruction about establishing / restoring the RRC connection, the UE 602 can restore to the complete RRC connection.

在630處,基地台將資料PDU轉發給SGW 608。類似於結合圖5描述的實例,若下行鏈路資料可用於UE,則S-GW可以在630處接收到上行鏈路資料之後將下行鏈路資料發送給基地台。如圖6中所示,早期資料傳輸可以包括單個上行鏈路資料傳輸(例如,620)。同樣,早期資料傳輸可以包括結合圖6所描述的單個下行鏈路資料傳輸。At 630, the base station forwards the data PDU to SGW 608. Similar to the example described in conjunction with FIG. 5, if the downlink data is available for the UE, the S-GW may send the downlink data to the base station after receiving the uplink data at 630. As shown in FIG. 6, early data transmissions may include a single uplink data transmission (eg, 620). Similarly, early data transmission may include a single downlink data transmission described in connection with FIG. 6.

若僅存在一個UL NAS PDU,則在632處,可以在已經轉發資料之後釋放S1上下文。例如,當沒有預期另外的資料時,可以暫停S1連接,並且可以去啟動S1-U承載。UE可以返回到RRC閒置、暫停狀態。如所示出的,基地台可以發送訊息634,其指示完成早期資料傳輸並且UE可以返回到RRC閒置、暫停狀態638。訊息634可以包括爭用解決訊息。訊息634可以是完整性保護的,並且可以包括計數(諸如,下一跳連結計數)和用於UE的恢復ID。可以對訊息630和634的次序進行調整,以使得在基地台將資料630轉發給SGW之前將確認訊息634發送給UE。If there is only one UL NAS PDU, at 632, the S1 context may be released after the data has been forwarded. For example, when no additional data is expected, the S1 connection can be suspended and the S1-U bearer can be activated. The UE can return to the RRC idle and suspended state. As shown, the base station may send a message 634 indicating that early data transmission is completed and the UE may return to the RRC idle, suspended state 638. The message 634 may include a contention resolution message. The message 634 may be integrity protected, and may include a count (such as a next hop connection count) and a recovery ID for the UE. The order of the messages 630 and 634 can be adjusted so that the confirmation message 634 is sent to the UE before the base station forwards the data 630 to the SGW.

在一些態樣中,在已經針對所接收的存取層(AS)訊息通過AS安全性之後,UE 602可以發送HARQ。In some aspects, after having passed AS security for the received access layer (AS) message, the UE 602 may send HARQ.

在一些態樣中,代替確認對來自基地台604的NAS PDU的接收或者除此之外,MME 606亦可以指示UE 602要從閒置狀態轉換到RRC連接狀態,而不是完成RRC無連接傳輸通信期。在此種情況下,可以不釋放、可以不立即關閉S1上下文,並且基地台可以將關於轉換到RRC連接狀態(例如,RRC連接建立)的指示發送給UE 602。In some aspects, instead of confirming the receipt of the NAS PDU from the base station 604 or otherwise, the MME 606 may also instruct the UE 602 to transition from the idle state to the RRC connected state instead of completing the RRC connectionless transmission communication period . In this case, the S1 context may not be released, or the S1 context may not be immediately closed, and the base station may send an indication to the UE 602 about transition to the RRC connection state (eg, RRC connection establishment).

圖7是用於在沒有到基地台的RRC連接的情況下的早期資料傳輸的無線通訊的方法的流程圖700。UE可以處於RRC閒置狀態中,如結合圖5所描述的。利用虛線示出可選的態樣。該方法可以由UE(例如,UE 104、350、502、602、裝置802/802')來執行。UE可以包括NB-IoT UE、BL UE、eMTC UE或CE UE。7 is a flowchart 700 of a method for wireless communication of early data transmission without an RRC connection to a base station. The UE may be in an RRC idle state, as described in connection with FIG. 5. The dashed line shows the optional aspect. The method may be performed by a UE (eg, UE 104, 350, 502, 602, device 802/802 '). The UE may include NB-IoT UE, BL UE, eMTC UE or CE UE.

在702處,UE從基地台接收SI。圖5和6示出由UE接收的SI 512、612的實例。SI可以向UE指示PRACH資源。PRACH資源可以包括用於早期資料傳輸(例如,在沒有建立RRC連接的情況下發送的資料)的PRACH資源集合。SI亦可以指示可以藉由使用早期資料傳輸來發送的UL資料的最大大小。該等指示可以分別對應於不同NPRACH資源的不同CE水平。At 702, the UE receives SI from the base station. 5 and 6 show examples of SI 512, 612 received by the UE. The SI may indicate the PRACH resource to the UE. The PRACH resource may include a set of PRACH resources used for early data transmission (for example, data sent without establishing an RRC connection). SI can also indicate the maximum size of UL data that can be sent by using early data transmission. Such indications may correspond to different CE levels of different NPRACH resources, respectively.

如在704處所示的,UE可以選擇用於發送資料通訊的RRC連接模式,例如,在活動的RRC連接傳輸模式與RRC無連接傳輸模式之間進行選擇。該選擇可以基於多種因素中的任何因素,該等因素包括要被發送的資料的大小。在706處,UE可以將對用於發送資料通訊的RRC連接模式的指示發送給基地台。該指示可以包括從與早期資料傳遞相關聯的PRACH資源池中對PRACH資源的選擇。PRACH資源可以包括NPRACH。所選擇的PRACH資源亦可以指示關於執行無連接早期資料傳輸的意圖。SI可以是從基地台廣播的,並且可以指示與在UE沒有轉換到RRC連接狀態的情況下的早期資料傳輸相關聯的PRACH資源。UE可以至少部分地基於要在資料通訊中發送的資料量來選擇資源。As shown at 704, the UE may select an RRC connection mode for sending data communications, for example, between an active RRC connection transmission mode and an RRC connectionless transmission mode. The selection can be based on any of a variety of factors, including the size of the material to be sent. At 706, the UE may send an indication of the RRC connection mode used to send the data communication to the base station. The indication may include selection of PRACH resources from the PRACH resource pool associated with early data transfer. The PRACH resource may include NPRACH. The selected PRACH resource may also indicate an intention to perform connectionless early data transmission. The SI may be broadcast from the base station and may indicate PRACH resources associated with early data transmission in the case where the UE has not transitioned to the RRC connected state. The UE may select resources based at least in part on the amount of data to be sent in the data communication.

可以在其中UE沒有建立RRC連接的隨機存取程序期間將資料通訊發送給基地台。在708處,UE可以將隨機存取前序信號發送給基地台。隨機存取前序信號可以基於在706處從與早期資料傳遞相關聯的PRACH資源中的選擇。在710處,UE可以在沒有建立RRC連接的情況下接收針對上行鏈路傳輸的授權。The data communication can be sent to the base station during a random access procedure in which the UE has not established an RRC connection. At 708, the UE may send a random access preamble signal to the base station. The random access preamble signal may be based on a selection at 706 from PRACH resources associated with early data transfer. At 710, the UE may receive an authorization for uplink transmission without establishing an RRC connection.

在712處,UE可以在沒有建立與基地台的RRC連接的情況下,在控制平面上將資料通訊發送給基地台。在712處,可以基於在710處接收的授權來將資料通訊發送給基地台。資料通訊包括資料以及針對資料通訊的原因指示。在一些態樣中,原因指示可以向基地台通知在沒有建立RRC連接的情況下接收在訊息中包括的資料通訊。例如,原因指示可以被稱為原因碼、建立原因等。在一些態樣中,原因指示可以向基地台指示UE意欲在沒有建立RRC連接的情況下執行早期資料傳輸。可以在CCCH上(例如,在NAS訊息中)發送資料通訊。因此,可以在UE沒有轉換到RRC連接狀態的情況下將資料通訊發送給基地台。資料通訊可以包括單個上行鏈路資料傳輸。在單個上行鏈路資料傳輸中包括的資料的大小可以小於基地台所指示的大小限制。資料可以包括在控制平面上發送的NAS PDU,如結合圖5所描述的。At 712, the UE may send the data communication to the base station on the control plane without establishing an RRC connection with the base station. At 712, the data communication can be sent to the base station based on the authorization received at 710. Data communication includes data and instructions for the reasons for data communication. In some aspects, the cause indication may notify the base station to receive the data communication included in the message without establishing an RRC connection. For example, the reason indication may be referred to as a reason code, establishment reason, and so on. In some aspects, the cause indication may indicate to the base station that the UE intends to perform early data transmission without establishing an RRC connection. Data communications can be sent on CCCH (for example, in NAS messages). Therefore, the data communication can be sent to the base station without the UE transitioning to the RRC connected state. Data communication may include a single uplink data transmission. The size of the data included in a single uplink data transmission may be smaller than the size limit indicated by the base station. The data may include NAS PDUs sent on the control plane, as described in connection with FIG. 5.

資料通訊亦可以包括UE身份資訊,例如,用於UE的S-TMSI。The data communication may also include UE identity information, for example, S-TMSI for the UE.

早期資料傳遞亦可以包括從網路接收的少量的下行鏈路資料。因此,在714處,UE可以在沒有建立與基地台的RRC連接的情況下,在控制平面上從基地台接收下行鏈路資料通訊。可以在指示早期資料傳遞完成的RRC訊息中接收下行鏈路資料通訊。UE可以接收單個下行鏈路資料傳輸,例如,如在圖5中所示出的。結合圖5或6描述的另外的態樣可以由UE結合圖7的方法來執行。UE可以在發送及/或接收早期資料傳輸之後,繼續處於RRC閒置狀態中。Early data transfer may also include a small amount of downlink data received from the network. Therefore, at 714, the UE can receive downlink data communications from the base station on the control plane without establishing an RRC connection with the base station. Downlink data communications can be received in RRC messages indicating the completion of early data transfer. The UE may receive a single downlink data transmission, for example, as shown in FIG. 5. The additional aspect described in conjunction with FIG. 5 or 6 may be performed by the UE in conjunction with the method of FIG. 7. The UE may continue to be in the RRC idle state after sending and / or receiving early data transmission.

圖8是示出在示例裝置802中的不同構件/部件之間的資料流的概念性資料流程圖800。該裝置可以是UE(例如,UE 104、350、502、602)。UE可以包括NB-IoT UE、BL UE、eMTC UE或CE UE等。該裝置包括:接收部件804,其用於從基地台850接收下行鏈路通訊;及發送部件806,其用於將上行鏈路通訊發送給基地台850。該裝置包括:系統資訊部件808,其用於從基地台850接收系統資訊;及資料通訊部件810,其用於在沒有建立與基地台的RRC連接的情況下,在控制平面上將資料通訊發送給基地台,其中該資料通訊包括資料以及針對資料通訊的原因指示。該裝置可以包括:RRC模式部件812,其用於選擇用於發送資料通訊的RRC連接模式;及指示部件814,其用於將對用於發送資料通訊的RRC連接模式的指示發送給基地台。該指示可以基於與早期資料傳遞相關聯的PRACH資源。該裝置可以包括:前序信號部件816,其用於將隨機存取前序信號發送給基地台。該裝置可以包括:RAR部件818,其用於從基地台接收RAR,RAR可以包括針對在沒有建立RRC連接的情況下的上行鏈路傳輸的授權。該裝置可以包括:下行鏈路資料部件820,其用於在沒有建立與基地台的RRC連接的情況下,在控制平面上從基地台接收下行鏈路資料通訊。FIG. 8 is a conceptual data flow diagram 800 illustrating the data flow between different components / components in the example device 802. The device may be a UE (eg, UE 104, 350, 502, 602). The UE may include NB-IoT UE, BL UE, eMTC UE or CE UE, etc. The apparatus includes: a receiving unit 804 for receiving downlink communication from the base station 850; and a transmitting unit 806 for transmitting uplink communication to the base station 850. The device includes: a system information component 808 for receiving system information from the base station 850; and a data communication component 810 for transmitting data communication on the control plane without establishing an RRC connection with the base station To the base station, where the data communication includes data and instructions for the reasons for the data communication. The apparatus may include: an RRC mode component 812 for selecting an RRC connection mode for transmitting data communication; and an instruction component 814 for transmitting an indication of the RRC connection mode for transmitting data communication to the base station. The indication may be based on PRACH resources associated with early data transfer. The apparatus may include: a preamble signal part 816 for transmitting a random access preamble signal to the base station. The apparatus may include a RAR component 818 for receiving RAR from the base station, and the RAR may include an authorization for uplink transmission without establishing an RRC connection. The apparatus may include a downlink data component 820 for receiving downlink data communication from the base station on the control plane without establishing an RRC connection with the base station.

該裝置可以包括執行上述圖5、6和7的流程圖中的演算法的方塊之每一個方塊的另外的部件。因此,可以由部件執行上述圖5、6和7的流程圖之每一個方塊,並且該裝置可以包括彼等部件中的一或多個部件。部件可以是專門被配置為執行所述過程/演算法的一或多個硬體部件,由被配置為執行所述過程/演算法的處理器來實現,儲存在電腦可讀取媒體內用於由處理器來實現,或其一些組合。The apparatus may include additional components for each of the blocks executing the algorithm in the flowcharts of FIGS. 5, 6 and 7 described above. Therefore, each block of the flowcharts of FIGS. 5, 6, and 7 described above may be executed by a component, and the device may include one or more of those components. The component may be one or more hardware components specifically configured to execute the process / algorithm, implemented by a processor configured to execute the process / algorithm, and stored in a computer-readable medium for Implemented by a processor, or some combination thereof.

圖9是示出採用處理系統914的裝置902'的硬體實現方式的實例的圖900。可以利用匯流排架構(通常由匯流排924表示)來實現處理系統914。匯流排924可以包括任何數量的互連匯流排和橋接,這取決於處理系統914的特定應用和整體設計約束。匯流排924將包括一或多個處理器及/或硬體部件(由處理器904、部件804、806、808、810、812、814、816、818、820以及電腦可讀取媒體/記憶體906表示)的各種電路連接到一起。匯流排924亦可以將諸如時序源、周邊設備、電壓調節器以及功率管理電路之類的各種其他電路進行連接,其是本領域熟知的,並且因此將不再進行描述。9 is a diagram 900 showing an example of a hardware implementation of a device 902 'employing a processing system 914. The processing system 914 may be implemented using a busbar architecture (typically represented by busbar 924). The bus 924 may include any number of interconnecting buses and bridges, depending on the specific application of the processing system 914 and the overall design constraints. Bus 924 will include one or more processors and / or hardware components (by processor 904, components 804, 806, 808, 810, 812, 814, 816, 818, 820 and computer readable media / memory 906 said) the various circuits are connected together. The bus 924 may also connect various other circuits such as timing sources, peripheral devices, voltage regulators, and power management circuits, which are well known in the art, and therefore will not be described again.

處理系統914可以耦合到收發機910。收發機910耦合到一或多個天線920。收發機910提供用於在傳輸媒體上與各種其他裝置進行通訊的構件。收發機910從一或多個天線920接收信號,從所接收的信號中提取資訊,以及向處理系統914(具體為接收部件804)提供所提取的資訊。另外,收發機910從處理系統914(具體為發送部件810)接收資訊,並且基於所接收的資訊來產生要被應用到一或多個天線920的信號。處理系統914包括耦合到電腦可讀取媒體/記憶體906的處理器904。處理器904負責一般的處理,包括對儲存在電腦可讀取媒體/記憶體906上的軟體的執行。軟體在由處理器904執行時使得處理系統914執行上文針對任何特定裝置所描述的各種功能。電腦可讀取媒體/記憶體906亦可以用於儲存處理器904在執行軟體時所操縱的資料。處理系統914亦包括部件804、806、808、810、812、814、816、818、820中的至少一個。部件可以是在處理器904中運行的、位於/儲存在電腦可讀取媒體/記憶體906中的軟體部件、耦合到處理器904的一或多個硬體部件、或其一些組合。處理系統914可以是基地台310的部件,並且可以包括TX處理器316、RX處理器370以及控制器/處理器375中的至少一個及/或記憶體376。處理系統914可以是UE 350的部件,並且可以包括TX處理器368、RX處理器356以及控制器/處理器359中的至少一個及/或記憶體360。The processing system 914 may be coupled to the transceiver 910. The transceiver 910 is coupled to one or more antennas 920. The transceiver 910 provides means for communicating with various other devices on the transmission medium. The transceiver 910 receives signals from one or more antennas 920, extracts information from the received signals, and provides the extracted information to the processing system 914 (specifically, the receiving unit 804). In addition, the transceiver 910 receives information from the processing system 914 (specifically, the transmitting part 810), and generates a signal to be applied to one or more antennas 920 based on the received information. The processing system 914 includes a processor 904 coupled to a computer-readable medium / memory 906. The processor 904 is responsible for general processing, including the execution of software stored on the computer-readable medium / memory 906. The software, when executed by the processor 904, causes the processing system 914 to perform the various functions described above for any particular device. The computer-readable medium / memory 906 can also be used to store data manipulated by the processor 904 when executing software. The processing system 914 also includes at least one of components 804, 806, 808, 810, 812, 814, 816, 818, 820. The component may be a software component running in the processor 904, located / stored in the computer-readable medium / memory 906, one or more hardware components coupled to the processor 904, or some combination thereof. The processing system 914 may be a component of the base station 310 and may include at least one of the TX processor 316, the RX processor 370, and the controller / processor 375 and / or the memory 376. The processing system 914 may be a component of the UE 350, and may include at least one of the TX processor 368, the RX processor 356, and the controller / processor 359 and / or the memory 360.

在一種配置中,用於無線通訊的裝置802/802'包括:用於從基地台接收系統資訊的構件;用於在沒有建立與基地台的RRC連接的情況下在控制平面上將資料通訊發送給基地台的構件,其中該資料通訊包括資料以及針對資料通訊的原因指示;用於選擇用於發送資料通訊的RRC連接模式的構件;用於將對用於發送資料通訊的RRC連接模式的指示發送給基地台的構件;用於將隨機存取前序信號發送給基地台的構件;用於接收針對在沒有建立RRC連接的情況下的上行鏈路傳輸的授權的構件,其中資料通訊是基於該授權來被發送給基地台的;及用於在沒有建立與基地台的RRC連接的情況下從基地台接收下行鏈路資料通訊的構件。上述構件可以是裝置802的上述構件中的一或多個及/或是裝置802'的被配置為執行由上述構件所記載的功能的處理系統914。如前述,處理系統914可以包括TX處理器368、RX處理器356以及控制器/處理器359。因此,在一種配置中,上述構件可以是被配置為執行上述構件所記載的功能的TX處理器368、RX處理器356以及控制器/處理器359。In one configuration, the device 802/802 'for wireless communication includes: means for receiving system information from the base station; for sending data communication on the control plane without establishing an RRC connection with the base station A component for the base station, where the data communication includes data and an indication of the reason for the data communication; a component for selecting the RRC connection mode used to send the data communication; an instruction to use the RRC connection mode for sending the data communication A component sent to the base station; a component used to send random access preamble signals to the base station; a component used to receive authorization for uplink transmission without establishing an RRC connection, where data communication is based on The authorization is sent to the base station; and means for receiving downlink data communication from the base station without establishing an RRC connection with the base station. The aforementioned components may be one or more of the aforementioned components of the device 802 and / or the processing system 914 of the device 802 'configured to perform the functions recited by the aforementioned components. As previously mentioned, the processing system 914 may include a TX processor 368, an RX processor 356, and a controller / processor 359. Thus, in one configuration, the aforementioned components may be a TX processor 368, an RX processor 356, and a controller / processor 359 configured to perform the functions recited by the aforementioned components.

圖10是用於在沒有到UE的RRC連接的情況下的早期資料接收的無線通訊的方法的流程圖1000。該方法可以由基地台(例如,基地台102、180、310、504、604、850、裝置1102、1102’)執行。利用虛線示出可選的態樣。FIG. 10 is a flowchart 1000 of a method for wireless communication of early data reception without an RRC connection to a UE. The method may be performed by a base station (e.g., base stations 102, 180, 310, 504, 604, 850, devices 1102, 1102 '). The dashed line shows the optional aspect.

在1002處,基地台在系統資訊中指示資源。圖5和6示出由基地台發送的SI 512、612的實例。SI可以向UE指示PRACH資源。PRACH資源可以包括用於早期資料傳輸(例如,在沒有建立RRC連接的情況下發送的資料)的PRACH資源集合。SI亦可以指示可以藉由使用早期資料傳輸來發送的UL資料的最大大小。該等指示可以分別對應於不同NPRACH資源的不同CE水平。At 1002, the base station indicates resources in the system information. 5 and 6 show examples of SI 512, 612 transmitted by the base station. The SI may indicate the PRACH resource to the UE. The PRACH resource may include a set of PRACH resources used for early data transmission (for example, data sent without establishing an RRC connection). SI can also indicate the maximum size of UL data that can be sent by using early data transmission. Such indications may correspond to different CE levels of different NPRACH resources, respectively.

在1012處,基地台在沒有建立與UE的RRC連接的情況下從UE接收資料通訊,其中該資料通訊包括資料和原因指示。原因指示可以向基地台通知在沒有恢復RRC連接的情況下接收在RRC連接恢復訊息中包括的資料通訊。例如,原因指示可以被稱為原因碼、建立原因等。原因指示可以向基地台指示UE意欲在沒有建立RRC連接的情況下執行早期資料傳輸。可以將資料通訊包括在RRC訊息中,該RRC訊息指示關於執行無連接早期資料傳輸的意圖。可以在CCCH上(例如,在NAS訊息中)接收資料通訊。因此,在1014處,可以在沒有建立與UE的RRC連接狀態的情況下(例如,在UE沒有轉換到RRC連接狀態的情況下),從UE接收資料通訊,並且將其轉發給核心網路部件。資料通訊可以包括單個上行鏈路資料傳輸。資料可以包括在控制平面上接收的NAS PDU,如結合圖5所描述的。資料可以包括在使用者平面上接收的資料PDU,如結合圖6所描述的。At 1012, the base station receives data communication from the UE without establishing an RRC connection with the UE, where the data communication includes data and a cause indication. The cause indication may notify the base station to receive the data communication included in the RRC connection recovery message without restoring the RRC connection. For example, the reason indication may be referred to as a reason code, establishment reason, and so on. The cause indication may indicate to the base station that the UE intends to perform early data transmission without establishing an RRC connection. The data communication may be included in an RRC message indicating the intention to perform connectionless early data transmission. Data communications can be received on CCCH (for example, in NAS messages). Therefore, at 1014, the data communication can be received from the UE and forwarded to the core network component without establishing an RRC connection state with the UE (for example, when the UE has not transitioned to the RRC connection state) . Data communication may include a single uplink data transmission. The data may include NAS PDUs received on the control plane, as described in connection with FIG. 5. The data may include data PDUs received on the user plane, as described in connection with FIG. 6.

資料通訊亦可以包括UE身份資訊(例如,當在控制平面上接收資料時,包括S-TMSI;或者當在使用者平面上接收資料時,包括用於UE的恢復ID)。資料通訊亦可以包括認證符記,例如,當在使用者平面上接收資料時。可以在使用者平面上接收資料,例如,當UE從RRC閒置、暫停狀態開始時。在該實例中,可以在RRC連接恢復訊息中接收資料通訊,並且原因指示可以向基地台通知在沒有恢復RRC連接的情況下接收在RRC連接恢復訊息中包括的資料通訊。資料通訊亦可以包括認證符記。Data communication may also include UE identity information (for example, when receiving data on the control plane, including S-TMSI; or when receiving data on the user plane, including the recovery ID for the UE). Data communication may also include authentication tokens, for example, when receiving data on the user plane. Data can be received on the user plane, for example, when the UE starts from the RRC idle, suspended state. In this example, the data communication can be received in the RRC connection recovery message, and the cause indication can notify the base station to receive the data communication included in the RRC connection recovery message without recovering the RRC connection. Data communication can also include authentication tokens.

可以在隨機存取程序期間從UE接收資料通訊,如在圖5和6中的實例中示出的。例如,在1006處,基地台可以基於與早期資料傳遞相關聯的PRACH資源(例如,NPRACH資源),從UE接收隨機存取前序信號。不同的資源可以與不同的CE水平相關聯。作為回應,在1008處,基地台可以將RAR發送給UE,RAR包括針對在沒有建立與UE的RRC連接的情況下的早期資料傳輸的上行鏈路授權。隨後,在1012處,可以基於上行鏈路授權從UE接收資料通訊。Data communications may be received from the UE during the random access procedure, as shown in the examples in FIGS. 5 and 6. For example, at 1006, the base station may receive a random access preamble signal from the UE based on PRACH resources (eg, NPRACH resources) associated with early data transfer. Different resources can be associated with different CE levels. In response, at 1008, the base station may send a RAR to the UE, which includes an uplink grant for early data transmission without establishing an RRC connection with the UE. Subsequently, at 1012, data communications can be received from the UE based on the uplink grant.

早期資料傳遞亦可以包括向UE發送的少量的下行鏈路資料。因此,在1016處,基地台可以在沒有建立與UE的RRC連接的情況下,從基地台發送下行鏈路資料通訊。可以在向UE指示早期資料傳遞完成的RRC訊息中將下行鏈路資料通訊發送給UE。基地台可以發送單個下行鏈路資料傳輸,例如,如在圖5中所示出的。結合圖5或6描述的另外的態樣可以由基地台結合圖10的方法來執行。Early data transfer may also include a small amount of downlink data sent to the UE. Therefore, at 1016, the base station can send downlink data communication from the base station without establishing an RRC connection with the UE. The downlink data communication may be sent to the UE in an RRC message indicating to the UE that early data transfer is complete. The base station may send a single downlink data transmission, for example, as shown in FIG. The additional aspect described in conjunction with FIG. 5 or 6 may be performed by the base station in conjunction with the method of FIG. 10.

圖11是示出示例性裝置1102中的不同構件/部件之間的資料流的概念性資料流程圖1100。該裝置可以是基地台(例如,基地台102、180、310、504、604、850)。該裝置包括:接收部件1104,其用於從UE 1150接收上行鏈路通訊;及下行鏈路部件1106,其用於將下行鏈路通訊發送給UE及/或用於與核心網路1155進行通訊。該裝置包括:SI部件1108,其用於在系統資訊中指示資源;及資料通訊部件1110,其用於在沒有建立與UE的RRC連接的情況下從UE接收資料通訊,其中該資料通訊包括資料和原因指示。該裝置可以包括:前序信號部件1112,其用於基於與早期資料傳遞相關聯的PRACH資源,從UE接收隨機存取前序信號;及RAR部件1114,其用於將隨機存取回應發送給UE,該隨機存取回應包括針對在沒有建立與UE的RRC連接的情況下的早期資料傳輸的上行鏈路授權。該裝置可以包括:核心網路部件1116,其用於在沒有建立與UE的RRC連接的情況下,將資料轉發給核心網路。該裝置可以包括:下行鏈路資料部件1118,其用於在沒有建立與UE的RRC連接的情況下,將下行鏈路資料通訊發送給UE。11 is a conceptual data flow diagram 1100 illustrating the data flow between different components / components in the exemplary device 1102. The device may be a base station (eg, base stations 102, 180, 310, 504, 604, 850). The device includes: a receiving component 1104 for receiving uplink communication from the UE 1150; and a downlink component 1106 for transmitting downlink communication to the UE and / or for communicating with the core network 1155 . The device includes: SI component 1108 for indicating resources in system information; and data communication component 1110 for receiving data communication from the UE without establishing an RRC connection with the UE, wherein the data communication includes data And reason instructions. The apparatus may include: a preamble signal part 1112 for receiving a random access preamble signal from the UE based on PRACH resources associated with early data transfer; and a RAR part 1114 for sending a random access response to UE, the random access response includes an uplink grant for early data transmission without establishing an RRC connection with the UE. The apparatus may include: a core network component 1116, which is used to forward data to the core network without establishing an RRC connection with the UE. The apparatus may include a downlink data component 1118 for transmitting downlink data communication to the UE without establishing an RRC connection with the UE.

該裝置可以包括執行上述圖5、6和10的流程圖中的演算法的方塊之每一個方塊的另外的部件。因此,可以由部件執行上述圖5、6和10的流程圖之每一個方塊,並且該裝置可以包括彼等部件中的一或多個部件。部件可以是專門被配置為執行所述過程/演算法的一或多個硬體部件,由被配置為執行所述過程/演算法的處理器來實現,儲存在電腦可讀取媒體內用於由處理器來實現,或其一些組合。The apparatus may include additional components for each of the blocks executing the algorithm in the flowcharts of FIGS. 5, 6 and 10 described above. Therefore, each block of the flowcharts of FIGS. 5, 6, and 10 described above may be executed by a component, and the device may include one or more of those components. The component may be one or more hardware components specifically configured to execute the process / algorithm, implemented by a processor configured to execute the process / algorithm, and stored in a computer-readable medium for Implemented by a processor, or some combination thereof.

圖12是示出採用處理系統1214的裝置1102'的硬體實現方式的實例的圖1200。可以利用匯流排架構(通常由匯流排1224表示)來實現處理系統1214。匯流排1224可以包括任何數量的互連匯流排和橋接,這取決於處理系統1214的特定應用和整體設計約束。匯流排1224將包括一或多個處理器及/或硬體部件(由處理器1204、部件1104、1106、1108、1110、1112、1114、1116、1118以及電腦可讀取媒體/記憶體1206表示)的各種電路連接到一起。匯流排1224亦可以將諸如時序源、周邊設備、電壓調節器以及功率管理電路之類的各種其他電路連接,其是本領域熟知的,並且因此將不再進行描述。12 is a diagram 1200 showing an example of a hardware implementation of a device 1102 'that employs a processing system 1214. The processing system 1214 may be implemented using a busbar architecture (typically represented by the busbar 1224). The busbar 1224 may include any number of interconnecting busbars and bridges, depending on the specific application of the processing system 1214 and overall design constraints. The bus 1224 will include one or more processors and / or hardware components (represented by the processor 1204, components 1104, 1106, 1108, 1110, 1112, 1114, 1116, 1118 and computer readable media / memory 1206 ) Connect the various circuits together. The bus 1224 may also connect various other circuits such as timing sources, peripheral devices, voltage regulators, and power management circuits, which are well known in the art, and therefore will not be described again.

處理系統1214可以耦合到收發機1210。收發機1210耦合到一或多個天線1220。收發機1210提供用於在傳輸媒體上與各種其他裝置進行通訊的構件。收發機1210從一或多個天線1220接收信號,從所接收的信號中提取資訊,以及向處理系統1214(具體為接收部件1104)提供所提取的資訊。另外,收發機1210從處理系統1214(具體為發送部件1106)接收資訊,並且基於所接收的資訊來產生要被應用到一或多個天線1220的信號。處理系統1214包括耦合到電腦可讀取媒體/記憶體1206的處理器1204。處理器1204負責一般的處理,包括對儲存在電腦可讀取媒體/記憶體1206上的軟體的執行。軟體在由處理器1204執行時使得處理系統1214執行上文針對任何特定裝置所描述的各種功能。電腦可讀取媒體/記憶體1206亦可以用於儲存由處理器1204在執行軟體時所操縱的資料。處理系統1214亦包括部件1104、1106、1108、1110、1112、1114、1116、1118中的至少一個。部件可以是在處理器1204中運行的、位於/儲存在電腦可讀取媒體/記憶體1206中的軟體部件、耦合到處理器1204的一或多個硬體部件、或其一些組合。處理系統1214可以是基地台310的部件,並且可以包括TX處理器316、RX處理器370以及控制器/處理器375中的至少一個及/或記憶體376。The processing system 1214 may be coupled to the transceiver 1210. The transceiver 1210 is coupled to one or more antennas 1220. The transceiver 1210 provides means for communicating with various other devices on the transmission medium. The transceiver 1210 receives signals from one or more antennas 1220, extracts information from the received signals, and provides the extracted information to the processing system 1214 (specifically, the receiving component 1104). In addition, the transceiver 1210 receives information from the processing system 1214 (specifically, the transmitting unit 1106), and generates a signal to be applied to one or more antennas 1220 based on the received information. The processing system 1214 includes a processor 1204 coupled to a computer readable medium / memory 1206. The processor 1204 is responsible for general processing, including the execution of software stored on the computer readable medium / memory 1206. The software, when executed by the processor 1204, causes the processing system 1214 to perform the various functions described above for any particular device. The computer-readable medium / memory 1206 can also be used to store data manipulated by the processor 1204 when executing software. The processing system 1214 also includes at least one of components 1104, 1106, 1108, 1110, 1112, 1114, 1116, 1118. The component may be a software component running in the processor 1204, located / stored in the computer-readable medium / memory 1206, one or more hardware components coupled to the processor 1204, or some combination thereof. The processing system 1214 may be a component of the base station 310 and may include at least one of the TX processor 316, the RX processor 370, and the controller / processor 375 and / or the memory 376.

在一種配置中,用於無線通訊的裝置1102/1102'包括:用於在系統資訊中指示資源的構件;用於在沒有建立與UE的RRC連接的情況下從UE接收資料通訊的構件,其中該資料通訊包括資料和原因指示;用於基於與早期資料傳遞相關聯的PRACH資源來從UE接收隨機存取前序信號的構件;用於將隨機存取回應發送給UE的構件,該隨機存取回應包括針對在沒有建立與UE的RRC連接的情況下的早期資料傳輸的上行鏈路授權;用於在沒有建立與UE的RRC連接的情況下將資料轉發給核心網路的構件;用於在沒有建立與UE的RRC連接的情況下將下行鏈路資料通訊發送給UE的構件。上述構件可以是裝置1102的上述構件中的一或多個及/或是裝置1102'的被配置為執行由上述構件所記載的功能的處理系統1214。如前述,處理系統1214可以包括TX處理器316、RX處理器370以及控制器/處理器375。因此,在一種配置中,上述構件可以是被配置為執行上述構件所記載的功能的TX處理器316、RX處理器370以及控制器/處理器375。In one configuration, the device 1102/1102 'for wireless communication includes: means for indicating resources in system information; means for receiving data communication from the UE without establishing an RRC connection with the UE, wherein The data communication includes data and reason indications; a component for receiving random access preamble signals from the UE based on PRACH resources associated with early data transfer; a component for sending random access responses to the UE, the random storage The response includes an uplink grant for early data transmission without establishing an RRC connection with the UE; a means for forwarding data to the core network without establishing an RRC connection with the UE; A component that transmits downlink data communication to the UE without establishing an RRC connection with the UE. The aforementioned components may be one or more of the aforementioned components of the device 1102 and / or the processing system 1214 of the device 1102 'configured to perform the functions recited by the aforementioned components. As previously mentioned, the processing system 1214 may include a TX processor 316, an RX processor 370, and a controller / processor 375. Thus, in one configuration, the aforementioned components may be a TX processor 316, an RX processor 370, and a controller / processor 375 configured to perform the functions recited by the aforementioned components.

圖13是用於在沒有恢復到基地台的RRC連接的情況下的早期資料傳輸的無線通訊的方法的流程圖1300。例如,UE可以處於RRC暫停狀態中,例如,如結合圖6所描述的。利用虛線示出可選的態樣。該方法可以由UE(例如,UE 104、350、502、602、裝置1402/1402')來執行。UE可以包括NB-IoT UE、BL UE、eMTC UE或CE UE。FIG. 13 is a flowchart 1300 of a method for wireless communication of early data transmission in the case where the RRC connection to the base station is not restored. For example, the UE may be in an RRC suspended state, for example, as described in connection with FIG. 6. The dashed line shows the optional aspect. The method may be performed by a UE (eg, UE 104, 350, 502, 602, device 1402/1402 '). The UE may include NB-IoT UE, BL UE, eMTC UE or CE UE.

在1302處,UE從基地台接收SI。圖6示出由UE接收的SI 612的實例。SI可以向UE指示PRACH資源。PRACH資源可以包括用於早期資料傳輸(例如,在沒有恢復RRC連接的情況下發送的資料)的PRACH資源集合。SI亦可以指示可以藉由使用早期資料傳輸(例如,在沒有恢復RRC連接的情況下,在使用者平面上)來發送的UL資料的最大大小。該等指示可以分別對應於不同NPRACH資源的不同CE水平。At 1302, the UE receives SI from the base station. FIG. 6 shows an example of SI 612 received by the UE. The SI may indicate the PRACH resource to the UE. The PRACH resource may include a set of PRACH resources used for early data transmission (for example, data sent without restoring the RRC connection). The SI can also indicate the maximum size of UL data that can be sent by using early data transmission (for example, on the user plane without restoring the RRC connection). Such indications may correspond to different CE levels of different NPRACH resources, respectively.

如在1304處所示的,UE可以選擇用於發送資料通訊的RRC連接模式,例如,在活動的RRC連接傳輸模式與RRC無連接傳輸模式(其中UE沒有恢復RRC連接)之間進行選擇。該選擇可以基於多種因素中的任何因素,該等因素包括要被發送的資料的大小。在1306處,UE可以將對用於發送資料通訊的RRC連接模式的指示發送給基地台。該指示可以包括從與早期資料傳遞相關聯的PRACH資源池中對PRACH資源的選擇。PRACH資源可以包括NPRACH。所選擇的PRACH資源亦可以指示關於執行無連接早期資料傳輸的意圖。SI可以是從基地台廣播的,並且可以指示與在UE沒有轉換到RRC連接狀態的情況下的早期資料傳輸相關聯的PRACH資源。UE可以至少部分地基於要在資料通訊中發送的資料量來選擇資源。As shown at 1304, the UE may select an RRC connection mode for sending data communications, for example, to select between an active RRC connection transmission mode and an RRC connectionless transmission mode (where the UE does not restore the RRC connection). The selection can be based on any of a variety of factors, including the size of the material to be sent. At 1306, the UE may send an indication to the base station of the RRC connection mode used to send the data communication. The indication may include selection of PRACH resources from the PRACH resource pool associated with early data transfer. The PRACH resource may include NPRACH. The selected PRACH resource may also indicate an intention to perform connectionless early data transmission. The SI may be broadcast from the base station and may indicate PRACH resources associated with early data transmission in the case where the UE has not transitioned to the RRC connected state. The UE may select resources based at least in part on the amount of data to be sent in the data communication.

可以在其中UE沒有恢復RRC連接的隨機存取程序期間將資料通訊發送給基地台。在1308處,UE可以將隨機存取前序信號發送給基地台。隨機存取前序信號可以基於在1306處從與早期資料傳遞相關聯的PRACH資源中的選擇。在1310處,UE可以接收針對在沒有恢復RRC連接的情況下的上行鏈路傳輸的授權。The data communication can be sent to the base station during the random access procedure in which the UE does not restore the RRC connection. At 1308, the UE may send a random access preamble signal to the base station. The random access preamble signal may be based on a selection at 1306 from PRACH resources associated with early data transfer. At 1310, the UE may receive an authorization for uplink transmission without restoring the RRC connection.

在1312處,UE可以在沒有恢復與基地台的RRC連接的情況下,在使用者平面上將資料通訊發送給基地台。在1312處,可以基於在1310處接收的授權來將資料通訊發送給基地台。資料通訊可以包括資料和原因指示。資料通訊可以包括RRC訊息。例如,可以將資料與RRC訊息一起多工在例如同一傳輸中。這可能與圖7中的實例是相反的,在圖7的實例中,資料被包括在RRC訊息中,並且是在控制平面上發送的。在一個實例中,可以將原因指示包括在RRC訊息中。在另一實例中,原因指示可以與RRC訊息是分開的,但是被包括在同一資料通訊傳輸中。RRC訊息可以包括RRC連接恢復請求連同針對資料通訊的原因指示。資料通訊亦可以包括UE ID,其可以被包括在RRC訊息中。因此,可以將使用者資料與包括原因指示及/或UE ID的RRC訊息進行多工處理,並且在使用者平面上在同一傳輸中將其一起發送。在另一實例中,可以將資料和原因包括在RRC訊息中。在一些態樣中,可以將資料與RRC連接恢復訊息一起發送,並且原因指示可以向基地台通知在沒有恢復RRC連接的情況下接收與RRC連接恢復訊息多工的資料。例如,原因指示可以被稱為原因碼、恢復原因等。可以在在CCCH上(例如,在NAS訊息中)發送資料通訊。因此,可以在UE沒有轉換到RRC連接狀態的情況下將資料通訊發送給基地台。資料通訊可以包括單個上行鏈路資料傳輸。在單個上行鏈路資料傳輸中包括的資料的大小可以小於或等於基地台所指示的大小限制。資料可以包括在使用者平面上發送的資料PDU,如結合圖6所描述的。At 1312, the UE can send the data communication to the base station on the user plane without restoring the RRC connection with the base station. At 1312, the data communication can be sent to the base station based on the authorization received at 1310. Data communications can include data and cause indications. The data communication may include RRC messages. For example, data and RRC messages can be multiplexed together in the same transmission, for example. This may be the opposite of the example in FIG. 7, where the data is included in the RRC message and is sent on the control plane. In one example, the cause indication can be included in the RRC message. In another example, the cause indication may be separate from the RRC message, but included in the same data communication transmission. The RRC message may include an RRC connection restoration request together with an indication of the reason for data communication. The data communication may also include the UE ID, which may be included in the RRC message. Therefore, the user data and the RRC message including the cause indication and / or the UE ID can be multiplexed and sent together in the same transmission on the user plane. In another example, the data and reason can be included in the RRC message. In some aspects, the data may be sent together with the RRC connection recovery message, and the cause indication may notify the base station to receive the data multiplexed with the RRC connection recovery message without restoring the RRC connection. For example, the reason indication may be referred to as a reason code, recovery reason, and so on. Data communications can be sent on CCCH (for example, in NAS messages). Therefore, the data communication can be sent to the base station without the UE transitioning to the RRC connected state. Data communication may include a single uplink data transmission. The size of the data included in a single uplink data transmission may be less than or equal to the size limit indicated by the base station. The data may include data PDUs sent on the user plane, as described in connection with FIG. 6.

資料通訊亦可以包括用於UE在使用者平面上發送資料的UE身份資訊(例如,在RRC訊息中包括的恢復ID)。資料通訊亦可以包括認證符記。可以在使用者平面上發送資料,例如,當UE處於RRC閒置、暫停狀態中時。The data communication may also include UE identity information for the UE to send data on the user plane (for example, the recovery ID included in the RRC message). Data communication can also include authentication tokens. Data can be sent on the user plane, for example, when the UE is in RRC idle or suspended state.

早期資料傳遞亦可以包括從網路接收的少量的下行鏈路資料。因此,在1314處,UE可以在沒有恢復與基地台的RRC連接的情況下,在使用者平面上從基地台接收下行鏈路資料通訊。下行鏈路資料通訊可以包括指示早期資料傳遞完成的RRC訊息。UE可以接收單個下行鏈路資料傳輸,例如,如在圖6中所示出的。結合圖5或6描述的另外的態樣可以由UE結合圖13的方法來執行。UE可以在發送及/或接收早期資料傳輸之後,保持在RRC閒置、暫停狀態中。Early data transfer may also include a small amount of downlink data received from the network. Therefore, at 1314, the UE can receive downlink data communications from the base station on the user plane without restoring the RRC connection with the base station. Downlink data communication may include RRC messages indicating the completion of early data transfer. The UE may receive a single downlink data transmission, for example, as shown in FIG. 6. The additional aspect described in conjunction with FIG. 5 or 6 may be performed by the UE in conjunction with the method of FIG. 13. The UE can remain in the RRC idle and suspended state after sending and / or receiving early data transmission.

圖14是示出示例性裝置1402中的不同構件/部件之間的資料流的概念性資料流程圖1400。該裝置可以是處於與基地台1450的RRC暫停狀態中的UE(例如,UE 104、350、502、602)。UE可以包括NB-IoT UE、BL UE、eMTC UE或CE UE等。該裝置包括:接收部件1404,其用於從基地台1450接收下行鏈路通訊;及發送部件1406,其用於將上行鏈路通訊發送給基地台1450。該裝置包括:系統資訊部件1408,其用於從基地台1450接收系統資訊;及資料通訊部件1410,其用於在沒有恢復與基地台的RRC連接的情況下,在使用者平面上將資料通訊發送給基地台,其中該資料通訊包括資料以及針對資料通訊的原因指示。該裝置可以包括:RRC模式部件1412,其用於選擇用於發送資料通訊的RRC連接模式;及指示部件1414,其用於將對用於發送資料通訊的RRC連接模式的指示發送給基地台。該指示可以基於與早期資料傳遞相關聯的PRACH資源。該裝置可以包括:前序信號部件1416,其用於將隨機存取前序信號發送給基地台。該裝置可以包括:RAR部件1418,其用於從基地台接收RAR,RAR可以包括針對在沒有恢復RRC連接的情況下的上行鏈路傳輸的授權。該裝置可以包括:下行鏈路資料部件1420,其用於在沒有建立與基地台的RRC連接的情況下,在使用者平面上從基地台接收下行鏈路資料通訊。該裝置亦可以包括符記部件1422,其被配置為將認證符記與向基地台發送的資料包括在一起。14 is a conceptual data flow diagram 1400 illustrating the data flow between different components / components in the exemplary device 1402. The device may be a UE (eg, UE 104, 350, 502, 602) in an RRC suspended state with the base station 1450. The UE may include NB-IoT UE, BL UE, eMTC UE or CE UE, etc. The apparatus includes: a receiving unit 1404 for receiving downlink communication from the base station 1450; and a transmitting unit 1406 for transmitting uplink communication to the base station 1450. The device includes: a system information component 1408 for receiving system information from the base station 1450; and a data communication component 1410 for communicating data on the user plane without restoring the RRC connection with the base station Sent to the base station, where the data communication includes data and an indication of the reason for the data communication. The apparatus may include: an RRC mode component 1412 for selecting an RRC connection mode for transmitting data communication; and an instruction component 1414 for transmitting an indication of the RRC connection mode for transmitting data communication to the base station. The indication may be based on PRACH resources associated with early data transfer. The apparatus may include: a preamble signal part 1416 for transmitting a random access preamble signal to the base station. The apparatus may include a RAR component 1418 for receiving RAR from the base station, and the RAR may include an authorization for uplink transmission without restoring the RRC connection. The apparatus may include a downlink data component 1420 for receiving downlink data communication from the base station on the user plane without establishing an RRC connection with the base station. The device may also include a token component 1422 configured to include the authentication token and the data sent to the base station.

該裝置可以包括執行上述圖6和圖13以及圖5和圖7的流程圖中的演算法的方塊之每一個方塊的另外的部件。因此,可以由部件執行上述圖5、6、7和13的流程圖之每一個方塊,並且該裝置可以包括彼等部件中的一或多個部件。部件可以是專門被配置為執行所述過程/演算法的一或多個硬體部件,由被配置為執行所述過程/演算法的處理器來實現,儲存在電腦可讀取媒體內用於由處理器來實現,或其一些組合。The apparatus may include additional components for each of the blocks executing the algorithm in the flowcharts of FIGS. 6 and 13 and FIGS. 5 and 7 described above. Therefore, each block of the flowcharts of FIGS. 5, 6, 7 and 13 described above may be executed by a component, and the device may include one or more of those components. The component may be one or more hardware components specifically configured to execute the process / algorithm, implemented by a processor configured to execute the process / algorithm, and stored in a computer-readable medium for Implemented by a processor, or some combination thereof.

圖15是示出採用處理系統1514的裝置1402'的硬體實現方式的實例的圖1500。可以利用匯流排架構(通常由匯流排1524表示)來實現處理系統1514。匯流排1524可以包括任何數量的互連匯流排和橋接,這取決於處理系統1514的特定應用和整體設計約束。匯流排1524將包括一或多個處理器及/或硬體部件(由處理器1504、部件1404、1406、1408、1410、1412、1414、1416、1418、1420、1422以及電腦可讀取媒體/記憶體1506來表示)的各種電路連接到一起。匯流排1524亦可以將諸如時序源、周邊設備、電壓調節器以及功率管理電路之類的各種其他電路連接,其是本領域熟知的,並且因此將不再進行描述。15 is a diagram 1500 showing an example of a hardware implementation of a device 1402 'employing a processing system 1514. The processing system 1514 may be implemented using a busbar architecture (typically represented by the busbar 1524). The bus bar 1524 may include any number of interconnecting bus bars and bridges, depending on the specific application of the processing system 1514 and overall design constraints. Bus 1524 will include one or more processors and / or hardware components (by processor 1504, components 1404, 1406, 1408, 1410, 1412, 1414, 1416, 1418, 1420, 1422, and computer-readable media / Memory 1506 to represent) the various circuits are connected together. The bus 1524 may also connect various other circuits such as timing sources, peripheral devices, voltage regulators, and power management circuits, which are well known in the art, and therefore will not be described again.

處理系統1514可以耦合到收發機1510。收發機1510耦合到一或多個天線1520。收發機1510提供用於在傳輸媒體上與各種其他裝置進行通訊的構件。收發機1510從一或多個天線1520接收信號,從所接收的信號中提取資訊,以及向處理系統1514(具體為接收部件1404)提供所提取的資訊。另外,收發機1510從處理系統1514(具體為發送部件1410)接收資訊,並且基於所接收的資訊來產生要被應用到一或多個天線1520的信號。處理系統1514包括耦合到電腦可讀取媒體/記憶體1506的處理器1504。處理器1504負責一般的處理,包括對儲存在電腦可讀取媒體/記憶體1506上的軟體的執行。軟體在由處理器1504執行時使得處理系統1514執行上文針對任何特定裝置所描述的的各種功能。電腦可讀取媒體/記憶體1506亦可以用於儲存由處理器1504在執行軟體時所操縱的資料。處理系統1514亦包括部件1404、1406、1408、1410、1412、1414、1416、1418、1420、1422中的至少一個。部件可以是在處理器1504中運行的、位於/儲存在電腦可讀取媒體/記憶體1506中的軟體部件、耦合到處理器1504的一或多個硬體部件、或其一些組合。處理系統1514可以是基地台310的部件,並且可以包括TX處理器316、RX處理器370以及控制器/處理器375中的至少一個及/或記憶體376。處理系統1514可以是UE 350的部件,並且可以包括TX處理器368、RX處理器356以及控制器/處理器359中的至少一個及/或記憶體360。The processing system 1514 may be coupled to the transceiver 1510. The transceiver 1510 is coupled to one or more antennas 1520. The transceiver 1510 provides means for communicating with various other devices on the transmission medium. The transceiver 1510 receives signals from one or more antennas 1520, extracts information from the received signals, and provides the extracted information to the processing system 1514 (specifically, the receiving part 1404). In addition, the transceiver 1510 receives information from the processing system 1514 (specifically, the transmitting part 1410), and generates a signal to be applied to one or more antennas 1520 based on the received information. The processing system 1514 includes a processor 1504 coupled to a computer readable medium / memory 1506. The processor 1504 is responsible for general processing, including the execution of software stored on the computer readable medium / memory 1506. The software, when executed by the processor 1504, causes the processing system 1514 to perform the various functions described above for any particular device. The computer-readable medium / memory 1506 can also be used to store data manipulated by the processor 1504 when executing software. The processing system 1514 also includes at least one of components 1404, 1406, 1408, 1410, 1412, 1414, 1416, 1418, 1420, 1422. The component may be a software component running in the processor 1504, located / stored in the computer-readable medium / memory 1506, one or more hardware components coupled to the processor 1504, or some combination thereof. The processing system 1514 may be a component of the base station 310 and may include at least one of the TX processor 316, the RX processor 370, and the controller / processor 375 and / or the memory 376. The processing system 1514 may be a component of the UE 350, and may include at least one of the TX processor 368, the RX processor 356, and the controller / processor 359 and / or the memory 360.

在一種配置中,用於無線通訊的裝置1402/1402'包括:用於在處於RRC暫停狀態中時從基地台接收系統資訊的構件;用於在沒有恢復與基地台的RRC連接的情況下在使用者平面上將資料通訊發送給基地台的構件,其中該資料通訊包括資料以及針對資料通訊的原因指示;用於選擇用於發送資料通訊的RRC連接模式的構件;用於將對用於發送資料通訊的RRC連接模式的指示發送給基地台的構件;用於將隨機存取前序信號發送給基地台的構件;用於接收針對在沒有恢復RRC連接的情況下的上行鏈路傳輸的授權的構件,其中該資料通訊是基於該授權來發送給基地台的;及用於在沒有恢復與基地台的RRC連接的情況下在使用者平面上從基地台接收下行鏈路資料通訊的構件。上述構件可以是裝置1402的上述部件中的一或多個及/或是裝置1402'的被配置為執行由上述構件所記載的功能的處理系統1514。如前述,處理系統1514可以包括TX處理器368、RX處理器356以及控制器/處理器359。因此,在一種配置中,上述構件可以是被配置為執行上述構件所記載的功能的TX處理器368、RX處理器356以及控制器/處理器359。In one configuration, the device 1402/1402 'for wireless communication includes: means for receiving system information from the base station when in the RRC suspended state; for restoring the RRC connection with the base station without The component that sends data communication to the base station on the user plane, where the data communication includes data and an indication of the reason for the data communication; the component used to select the RRC connection mode used to send the data communication; The component that sends the RRC connection mode indication of the data communication to the base station; the component that sends the random access preamble signal to the base station; and it is used to receive authorization for uplink transmission without restoring the RRC connection Component, wherein the data communication is sent to the base station based on the authorization; and a component for receiving downlink data communication from the base station on the user plane without restoring the RRC connection with the base station. The aforementioned component may be one or more of the aforementioned components of the device 1402 and / or the processing system 1514 of the device 1402 'configured to perform the functions recited by the aforementioned component. As previously mentioned, the processing system 1514 may include a TX processor 368, an RX processor 356, and a controller / processor 359. Thus, in one configuration, the aforementioned components may be a TX processor 368, an RX processor 356, and a controller / processor 359 configured to perform the functions recited by the aforementioned components.

圖16是用於在沒有恢復到UE的RRC連接的情況下的早期資料接收的無線通訊的方法的流程圖1600。該方法可以由基地台(例如,基地台102、180、310、504、604、850、裝置1702、1702’)來執行。基地台可以處於RRC暫停狀態中,如結合圖6所描述的。利用虛線示出可選的態樣。FIG. 16 is a flowchart 1600 of a method for wireless communication of early data reception in the case where RRC connection to the UE is not restored. The method may be performed by a base station (e.g., base stations 102, 180, 310, 504, 604, 850, devices 1702, 1702 '). The base station may be in the RRC suspended state, as described in connection with FIG. 6. The dashed line shows the optional aspect.

在1602處,基地台在系統資訊中指示資源。圖6示出由基地台發送的SI 612的實例。SI可以向UE指示PRACH資源。PRACH資源可以包括用於早期資料傳輸(例如,在沒有建立RRC連接的情況下發送的資料)的PRACH資源集合。SI亦可以指示可以藉由使用早期資料傳輸來發送的UL資料的最大大小。該等指示可以分別對應於不同NPRACH資源的不同CE水平。At 1602, the base station indicates the resource in the system information. FIG. 6 shows an example of SI 612 transmitted by the base station. The SI may indicate the PRACH resource to the UE. The PRACH resource may include a set of PRACH resources used for early data transmission (for example, data sent without establishing an RRC connection). SI can also indicate the maximum size of UL data that can be sent by using early data transmission. Such indications may correspond to different CE levels of different NPRACH resources, respectively.

在1612處,基地台在沒有恢復與UE的RRC連接的情況下在使用者平面上從UE接收資料通訊,其中該資料通訊包括資料和原因指示。資料通訊可以包括RRC訊息。例如,資料可以與RRC訊息一起被多工在例如同一傳輸中。在一個實例中,可以將原因指示包括在RRC訊息中。在另一實例中,原因指示可以與RRC訊息是分開的,但是被包括在同一資料通訊傳輸中。RRC訊息可以包括RRC連接恢復請求連同針對資料通訊的原因指示。資料通訊亦可以包括UE ID,例如其可以被包括在RRC訊息中。因此,可以將使用者資料與包括原因指示及/或UE ID的RRC訊息進行多工處理,並且在使用者平面上在同一傳輸中將其一起發送。在另一實例中,可以將資料和原因包括在RRC訊息中。原因指示可以向基地台通知在沒有恢復RRC連接的情況下接收與RRC連接恢復訊息多工的資料。例如,原因指示可以被稱為原因碼、恢復原因等。原因指示可以向基地台指示UE意欲沒有恢復RRC連接的情況下執行早期資料傳輸。可以在單個傳輸中將資料與RRC訊息一起發送(例如,將其多工),RRC訊息指示關於執行無連接早期資料傳輸(例如,在沒有恢復RRC連接的情況下)的意圖。可以在CCCH上(例如,在資料PDU中)接收資料通訊。因此,在1614處,可以在沒有恢復與UE的RRC連接狀態的情況下(例如,在UE沒有從RRC暫停狀態轉換到RRC連接狀態的情況下),從UE接收資料,並且將其轉發給核心網路部件。資料通訊可以包括單個上行鏈路資料傳輸。資料可以包括在使用者平面上接收的資料PDU,如結合圖6所描述的。At 1612, the base station receives the data communication from the UE on the user plane without restoring the RRC connection with the UE, where the data communication includes the data and the cause indication. The data communication may include RRC messages. For example, data can be multiplexed together with RRC messages in, for example, the same transmission. In one example, the cause indication can be included in the RRC message. In another example, the cause indication may be separate from the RRC message, but included in the same data communication transmission. The RRC message may include an RRC connection restoration request together with an indication of the reason for data communication. The data communication may also include the UE ID, for example it may be included in the RRC message. Therefore, the user data and the RRC message including the cause indication and / or the UE ID can be multiplexed and sent together in the same transmission on the user plane. In another example, the data and reason can be included in the RRC message. The reason indication may notify the base station to receive data of multiplexing with the RRC connection recovery message without restoring the RRC connection. For example, the reason indication may be referred to as a reason code, recovery reason, and so on. The cause indication may indicate to the base station that the UE intends to perform early data transmission without restoring the RRC connection. The data can be sent together with the RRC message in a single transmission (for example, to multiplex it), the RRC message indicates an intention to perform connectionless early data transmission (for example, in the case where the RRC connection is not restored). Data communications can be received on the CCCH (for example, in the data PDU). Therefore, at 1614, it is possible to receive data from the UE and forward it to the core without restoring the RRC connection state with the UE (eg, when the UE has not transitioned from the RRC suspended state to the RRC connected state) Network components. Data communication may include a single uplink data transmission. The data may include data PDUs received on the user plane, as described in connection with FIG. 6.

資料通訊(例如,RRC訊息)亦可以包括UE身份資訊,例如,用於UE的恢復ID。資料通訊亦可以包括認證符記,如在圖6中的訊息620中示出的。可以在使用者平面上接收資料,例如,當UE處於RRC閒置、暫停狀態中時。在該實例中,資料通訊可以包括RRC連接恢復訊息,並且原因指示可以向基地台通知在沒有恢復RRC連接的情況下接收與RRC連接恢復訊息一起被包括在資料通訊中的資料。資料通訊亦可以包括認證符記。Data communications (eg, RRC messages) may also include UE identity information, such as the recovery ID used for the UE. The data communication may also include an authentication token, as shown in message 620 in FIG. 6. Data can be received on the user plane, for example, when the UE is in RRC idle or suspended state. In this example, the data communication may include an RRC connection recovery message, and the cause indication may notify the base station to receive data included in the data communication together with the RRC connection recovery message without restoring the RRC connection. Data communication can also include authentication tokens.

可以在隨機存取程序期間從UE接收資料通訊,如在圖5和6二者中的實例中示出的。例如,在1606處,基地台可以基於與早期資料傳遞相關聯的PRACH資源(例如,NPRACH資源)從UE接收隨機存取前序信號。不同的PRACH資源可以與不同的CE水平相關聯。作為回應,在1608處,基地台可以將RAR發送給UE,RAR包括針對在沒有恢復與UE的RRC連接的情況下的早期資料傳輸的上行鏈路授權。隨後,在1612處,可以基於上行鏈路授權從UE接收資料通訊。圖6示出作為傳輸的示例訊息620。Data communications can be received from the UE during the random access procedure, as shown in the examples in both Figures 5 and 6. For example, at 1606, the base station may receive a random access preamble signal from the UE based on PRACH resources (eg, NPRACH resources) associated with early data transfer. Different PRACH resources can be associated with different CE levels. In response, at 1608, the base station can send a RAR to the UE, which includes an uplink grant for early data transmission without restoring the RRC connection with the UE. Subsequently, at 1612, data communications can be received from the UE based on the uplink grant. FIG. 6 shows an example message 620 as a transmission.

早期資料傳遞亦可以包括向UE發送的少量的下行鏈路資料。因此,在1616處,基地台可以在沒有建立與UE的RRC連接的情況下,在使用者平面上從基地台發送下行鏈路資料通訊。可以在向UE指示早期資料傳遞完成的RRC訊息中,將下行鏈路資料通訊發送給UE。基地台可以發送單個下行鏈路資料傳輸,例如,如在圖6中所示出的。結合圖5或6描述的另外的態樣可以由基地台結合圖16的方法來執行。Early data transfer may also include a small amount of downlink data sent to the UE. Therefore, at 1616, the base station can send downlink data communication from the base station on the user plane without establishing an RRC connection with the UE. The downlink data communication may be sent to the UE in an RRC message indicating to the UE that early data transfer is complete. The base station may send a single downlink data transmission, for example, as shown in FIG. 6. Another aspect described in conjunction with FIG. 5 or 6 may be performed by the base station in conjunction with the method of FIG. 16.

圖17是示出示例性裝置1702中的不同構件/部件之間的資料流的概念性資料流程圖1700。該裝置可以是基地台(例如,基地台102、180、310、504、604、850)。該裝置包括:接收部件1704,其用於從UE 1750接收上行鏈路通訊;及下行鏈路部件1706,其用於將下行鏈路通訊發送給UE及/或用於與核心網路1755進行通訊。該裝置包括:SI部件1708,其用於在系統資訊中指示資源;及資料通訊部件1710,其用於在沒有恢復與UE的RRC連接的情況下在使用者平面上從UE接收資料通訊,其中資料通訊包括資料和原因指示。可以將資料通訊包括在來自UE的Msg3中。該裝置可以包括:前序信號部件1712,其用於基於與早期資料傳遞相關聯的PRACH資源,從UE接收隨機存取前序信號;及RAR部件1714,其用於將隨機存取回應發送給UE,該隨機存取回應包括針對在沒有恢復與UE的RRC連接的情況下的早期資料傳輸的上行鏈路授權。該裝置可以包括:核心網路部件1716,其用於在沒有恢復與UE的RRC連接的情況下,將資料轉發給核心網路。該裝置可以包括:下行鏈路資料部件1718,其用於在沒有恢復與UE的RRC連接的情況下,在使用者平面上將下行鏈路資料通訊發送給UE。該裝置可以包括符記部件1720,其用於基於在資料通訊中包括的認證符記來對UE進行認證。17 is a conceptual data flow diagram 1700 showing the data flow between different components / components in the exemplary device 1702. The device may be a base station (eg, base stations 102, 180, 310, 504, 604, 850). The device includes: a receiving part 1704 for receiving uplink communication from the UE 1750; and a downlink part 1706 for sending downlink communication to the UE and / or for communicating with the core network 1755 . The device includes: an SI component 1708 for indicating resources in system information; and a data communication component 1710 for receiving data communication from the UE on the user plane without restoring the RRC connection with the UE, wherein Information communication includes information and instructions for reasons. Data communication can be included in Msg3 from UE. The apparatus may include: a preamble signal part 1712 for receiving a random access preamble signal from the UE based on PRACH resources associated with early data transfer; and a RAR part 1714 for sending a random access response to UE, the random access response includes an uplink grant for early data transmission without restoring the RRC connection with the UE. The apparatus may include a core network component 1716, which is used to forward data to the core network without restoring the RRC connection with the UE. The apparatus may include a downlink data component 1718 for transmitting downlink data communication to the UE on the user plane without restoring the RRC connection with the UE. The apparatus may include a token component 1720 for authenticating the UE based on the authentication token included in the data communication.

該裝置可以包括執行上述圖5、6和10以及16的流程圖中的演算法的方塊之每一個方塊的另外的部件。因此,可以由部件執行上述圖5、6和10以及16的流程圖之每一個方塊,並且該裝置可以包括彼等部件中的一或多個部件。部件可以是專門被配置為執行所述過程/演算法的一或多個硬體部件,由被配置為執行所述過程/演算法的處理器來實現,儲存在電腦可讀取媒體內用於由處理器來實現,或其一些組合。The apparatus may include additional components for each of the blocks executing the algorithm in the flowcharts of FIGS. 5, 6, and 10 and 16 described above. Therefore, each block of the flowcharts of FIGS. 5, 6, and 10 and 16 described above may be executed by a component, and the device may include one or more of those components. The component may be one or more hardware components specifically configured to execute the process / algorithm, implemented by a processor configured to execute the process / algorithm, and stored in a computer-readable medium for Implemented by a processor, or some combination thereof.

圖18是示出採用處理系統1814的裝置1702'的硬體實現方式的實例的圖1800。可以利用匯流排架構(通常由匯流排1824表示)來實現處理系統1814。匯流排1824可以包括任何數量的互連匯流排和橋接,這取決於處理系統1814的特定應用和整體設計約束。匯流排1824將包括一或多個處理器及/或硬體部件(由處理器1804、部件1704、1706、1708、1710、1712、1714、1716、1718、1720以及電腦可讀取媒體/記憶體1806表示)的各種電路連接到一起。匯流排1824亦可以將諸如時序源、周邊設備、電壓調節器以及功率管理電路之類的各種其他電路連接,其是本領域熟知的,並且因此將不再進行描述。18 is a diagram 1800 showing an example of a hardware implementation of a device 1702 'employing a processing system 1814. The processing system 1814 may be implemented using a busbar architecture (typically represented by the busbar 1824). The bus bar 1824 may include any number of interconnecting bus bars and bridges, depending on the specific application of the processing system 1814 and overall design constraints. Bus 1824 will include one or more processors and / or hardware components (by processor 1804, components 1704, 1706, 1708, 1710, 1712, 1714, 1716, 1718, 1720 and computer readable media / memory 1806 indicates) the various circuits are connected together. The bus bar 1824 may also connect various other circuits such as timing sources, peripheral devices, voltage regulators, and power management circuits, which are well known in the art, and therefore will not be described again.

處理系統1814可以耦合到收發機1810。收發機1810耦合到一或多個天線1820。收發機1810提供用於在傳輸媒體上與各種其他裝置進行通訊的構件。收發機1810從一或多個天線1820接收信號,從所接收的信號中提取資訊,以及向處理系統1814(具體為接收部件1704)提供所提取的資訊。另外,收發機1810從處理系統1814(具體為發送部件1706)接收資訊,並且基於所接收的資訊來產生要被應用到一或多個天線1820的信號。處理系統1814包括耦合到電腦可讀取媒體/記憶體1806的處理器1804。處理器1804負責一般的處理,包括對儲存在電腦可讀取媒體/記憶體1806上的軟體的執行。軟體在由處理器1804執行時使得處理系統1814執行上文針對任何特定裝置所描述的的各種功能。電腦可讀取媒體/記憶體1806亦可以用於儲存由處理器1804在執行軟體時所操縱的資料。處理系統1814亦包括部件1704、1706、1708、1710、1712、1714、1716、1718、1720中的至少一個。部件可以是在處理器1804中運行的、位於/儲存在電腦可讀取媒體/記憶體1806中的軟體部件、耦合到處理器1804的一或多個硬體部件、或其一些組合。處理系統1814可以是基地台310的部件,並且可以包括TX處理器316、RX處理器370以及控制器/處理器375中的至少一個及/或記憶體376。The processing system 1814 may be coupled to the transceiver 1810. The transceiver 1810 is coupled to one or more antennas 1820. The transceiver 1810 provides means for communicating with various other devices on the transmission medium. The transceiver 1810 receives signals from one or more antennas 1820, extracts information from the received signals, and provides the extracted information to the processing system 1814 (specifically, the receiving part 1704). In addition, the transceiver 1810 receives information from the processing system 1814 (specifically, the transmitting part 1706), and generates a signal to be applied to one or more antennas 1820 based on the received information. The processing system 1814 includes a processor 1804 coupled to a computer readable medium / memory 1806. The processor 1804 is responsible for general processing, including the execution of software stored on the computer readable medium / memory 1806. The software, when executed by the processor 1804, causes the processing system 1814 to perform the various functions described above for any particular device. The computer-readable medium / memory 1806 can also be used to store data manipulated by the processor 1804 when executing software. The processing system 1814 also includes at least one of components 1704, 1706, 1708, 1710, 1712, 1714, 1716, 1718, 1720. The component may be a software component running in the processor 1804, located / stored in the computer-readable medium / memory 1806, one or more hardware components coupled to the processor 1804, or some combination thereof. The processing system 1814 may be a component of the base station 310 and may include at least one of the TX processor 316, the RX processor 370, and the controller / processor 375 and / or the memory 376.

在一種配置中,用於無線通訊的裝置1702/1702'包括:用於在系統資訊中指示資源的構件;用於在沒有恢復與UE的RRC連接的情況下在使用者平面上從UE接收資料通訊的構件,其中該資料通訊包括資料和原因指示;用於基於與早期資料傳輸相關聯的PRACH資源來從UE接收隨機存取前序信號的構件;用於在沒有恢復與UE的RRC連接的情況下將資料轉發給核心網路的構件;及用於在沒有恢復與UE的RRC連接的情況下,在使用者平面上將下行鏈路資料通訊發送給UE的構件。上述構件可以是裝置1702的上述部件中的一或多個及/或是裝置1702'的被配置為執行由上述構件所記載的功能的處理系統1814。如前述,處理系統1814可以包括TX處理器316、RX處理器370以及控制器/處理器375。因此,在一種配置中,上述構件可以是被配置為執行上述構件所記載的功能的TX處理器316、RX處理器370以及控制器/處理器375。In one configuration, the device 1702/1702 'for wireless communication includes: means for indicating resources in system information; for receiving data from the UE on the user plane without restoring RRC connection with the UE A component for communication, where the data communication includes data and cause indications; a component for receiving random access preamble signals from the UE based on PRACH resources associated with early data transmission; A component that forwards data to the core network in the case; and a component that is used to send downlink data communication to the UE on the user plane without restoring the RRC connection to the UE. The aforementioned component may be one or more of the aforementioned components of the device 1702 and / or the processing system 1814 of the device 1702 'configured to perform the functions recited by the aforementioned component. As previously mentioned, the processing system 1814 may include a TX processor 316, an RX processor 370, and a controller / processor 375. Thus, in one configuration, the aforementioned components may be a TX processor 316, an RX processor 370, and a controller / processor 375 configured to perform the functions recited by the aforementioned components.

應當理解的是,所揭示的過程/流程圖中方塊的特定次序或層次只是對示例方法的說明。應當理解的是,基於設計偏好可以重新排列過程/流程圖中方塊的特定次序或層次。此外,可以合併或省略一些方塊。所附的方法請求項以取樣次序提供了各個方塊的元素,但是並不意味著受限於所提供的特定次序或層次。It should be understood that the specific order or hierarchy of blocks in the disclosed processes / flowcharts is merely illustrative of example methods. It should be understood that the specific order or hierarchy of blocks in the process / flowchart can be rearranged based on design preferences. In addition, some blocks may be merged or omitted. The attached method request items provide the elements of each block in a sampling order, but are not meant to be limited to the specific order or hierarchy provided.

提供前面的描述以使得本領域的任何技藝人士能夠實踐本文描述的各個態樣。對該等態樣的各種修改對於本領域技藝人士而言將是顯而易見的,以及本文所定義的一般原則可以應用到其他態樣。因此,申請專利範圍不意欲受限於本文所示出的態樣,而是符合與申請專利範圍語言相一致的全部範圍,其中除非明確地聲明如此,否則提及單數形式的元素不意欲意指「一個和僅僅一個」,而是「一或多個」。本文使用的詞語「示例性」意指「作為示例、實例或說明」。本文中描述為「示例性」的任何態樣不必被解釋為優選於其他態樣或者比其他態樣有優勢。除非以其他方式明確地聲明,否則術語「一些」指的是一或多個。諸如「A、B或C中的至少一個」、「A、B、或C中的一或多個」、「A、B和C中的至少一個」、「A、B和C中的一或多個」、以及「A、B、C或其任意組合」的組合包括A、B及/或C的任意組合,並且可以包括A的倍數、B的倍數或C的倍數。具體地,諸如「A、B或C中的至少一個」、「A、B、或C中的一或多個」、「A、B和C中的至少一個」、「A、B和C中的一或多個」、以及「A、B、C或其任意組合」的組合可以是僅A、僅B、僅C、A和B、A和C、B和C、或A和B和C,其中任何此種組合可以包含A、B或C中的一或多個成員或數個成員。遍及本揭示內容描述的各個態樣的元素的、對於本領域的一般技藝人士而言已知或者稍後將知的全部結構的和功能的均等物以引用方式明確地併入本文中,以及意欲由申請專利範圍所涵蓋。此外,本文中所揭示的內容中沒有內容是想要奉獻給公眾的,不管此種揭示內容是否明確記載在申請專利範圍中。詞語「模組」、「機制」、「元素」、「設備」等等可能不是詞語「構件」的替代。因此,沒有請求項元素要被解釋為構件加功能,除非元素是明確地使用片語「用於……的構件」來記載的。The foregoing description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be apparent to those skilled in the art, and the general principles defined herein can be applied to other aspects. Therefore, the scope of applying for a patent is not intended to be limited to what is shown in this document, but conforms to the entire scope consistent with the language of the scope of applying for a patent, wherein unless explicitly stated otherwise, the mention of elements in the singular form is not intended to mean "One and only one," but "one or more." The word "exemplary" as used herein means "as an example, instance, or illustration." Any aspect described herein as "exemplary" need not be construed as preferred or advantageous over other aspects. Unless expressly stated otherwise, the term "some" refers to one or more. Such as "at least one of A, B, or C", "one or more of A, B, or C", "at least one of A, B, and C", "one or more of A, B, and C" The combination of "multiple" and "A, B, C, or any combination thereof" includes any combination of A, B, and / or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, such as "at least one of A, B, or C", "one or more of A, B, or C", "at least one of A, B, and C", "in A, B, and C" The combination of "one or more" and "A, B, C or any combination thereof" may be A only, B only, C only, A and B, A and C, B and C, or A and B and C , Where any such combination may include one or more members or several members in A, B, or C. All structural and functional equivalents that are known to those of ordinary skill in the art or that will later be known throughout the elements of the various aspects described in this disclosure are expressly incorporated herein by reference and intended Covered by the scope of patent application. In addition, none of the content disclosed in this article is intended to be dedicated to the public, regardless of whether such disclosure is explicitly recorded in the scope of the patent application. The words "module", "mechanism", "element", "equipment", etc. may not be substitutes for the word "component". Therefore, no request element is to be interpreted as a component plus function, unless the element is explicitly described using the phrase "component for ..."

100‧‧‧無線通訊系統和存取網路100‧‧‧Wireless communication system and access network

102‧‧‧基地台102‧‧‧ base station

102’‧‧‧小型細胞102’‧‧‧small cells

104‧‧‧UE104‧‧‧UE

110‧‧‧覆蓋區域110‧‧‧ Coverage area

110‘‧‧‧覆蓋區域110 ‘‧‧‧ coverage area

120‧‧‧通訊鏈路120‧‧‧Communication link

132‧‧‧回載鏈路132‧‧‧backhaul link

150‧‧‧Wi-Fi存取點(AP)150‧‧‧Wi-Fi access point (AP)

152‧‧‧Wi-Fi站(STA)152‧‧‧Wi-Fi station (STA)

154‧‧‧通訊鏈路154‧‧‧Communication link

160‧‧‧進化封包核心(EPC)160‧‧‧Evolved Packet Core (EPC)

162‧‧‧行動性管理實體(MME)162‧‧‧ mobile management entity (MME)

164‧‧‧其他MME164‧‧‧Other MME

166‧‧‧服務閘道166‧‧‧Service Gateway

168‧‧‧多媒體廣播多播服務(MBMS)閘道168‧‧‧ Multimedia Broadcast Multicast Service (MBMS) Gateway

170‧‧‧廣播多播服務中心(BM-SC)170‧‧‧ Broadcast Multicast Service Center (BM-SC)

172‧‧‧封包資料網路(PDN)閘道172‧‧‧Packet Data Network (PDN) Gateway

174‧‧‧家庭用戶伺服器(HSS)174‧‧‧Home User Server (HSS)

176‧‧‧IP服務176‧‧‧IP service

180‧‧‧gNodeB(gNB)180‧‧‧gNodeB (gNB)

184‧‧‧波束成形184‧‧‧beamforming

192‧‧‧通訊鏈路192‧‧‧Communication link

198‧‧‧在沒有建立RRC連接的情況下發送和接收資料通訊資訊198‧‧‧ Send and receive data communication information without establishing RRC connection

200‧‧‧圖200‧‧‧Picture

230‧‧‧圖230‧‧‧Picture

250‧‧‧圖250‧‧‧Picture

280‧‧‧圖280‧‧‧Picture

310‧‧‧基地台310‧‧‧ base station

316‧‧‧發送(TX)處理器316‧‧‧Transmit (TX) processor

318‧‧‧發射器318‧‧‧ Launcher

320‧‧‧天線320‧‧‧ Antenna

350‧‧‧UE350‧‧‧UE

352‧‧‧天線352‧‧‧ Antenna

354‧‧‧接收器354‧‧‧Receiver

356‧‧‧RX處理器356‧‧‧RX processor

358‧‧‧通道估計器358‧‧‧channel estimator

359‧‧‧控制器/處理器359‧‧‧Controller / processor

360‧‧‧記憶體360‧‧‧Memory

368‧‧‧TX處理器368‧‧‧TX processor

370‧‧‧接收(RX)處理器370‧‧‧ Receive (RX) processor

374‧‧‧通道估計器374‧‧‧channel estimator

375‧‧‧控制器/處理器375‧‧‧Controller / processor

376‧‧‧記憶體376‧‧‧Memory

400‧‧‧圖400‧‧‧Picture

402‧‧‧節點402‧‧‧Node

404‧‧‧UE404‧‧‧UE

406‧‧‧UE406‧‧‧UE

408‧‧‧UL傳輸408‧‧‧UL transmission

410‧‧‧DL傳輸410‧‧‧DL transmission

412‧‧‧DL傳輸412‧‧‧DL transmission

414‧‧‧UL傳輸414‧‧‧UL transmission

500‧‧‧撥叫流程圖500‧‧‧Dial flow chart

501‧‧‧閒置狀態501‧‧‧Idle

502‧‧‧UE502‧‧‧UE

504‧‧‧基地台504‧‧‧ base station

506‧‧‧MME506‧‧‧MME

508‧‧‧SGW508‧‧‧SGW

510‧‧‧方塊510‧‧‧ block

512‧‧‧SIB通告512‧‧‧SIB notice

514‧‧‧方塊514‧‧‧ block

516‧‧‧PRACH前序信號516‧‧‧PRACH preamble signal

518‧‧‧RAR518‧‧‧RAR

520‧‧‧訊息520‧‧‧Message

522‧‧‧訊息522‧‧‧Message

524‧‧‧訊息524‧‧‧Message

526‧‧‧訊息526‧‧‧Message

528‧‧‧訊息528‧‧‧Message

530‧‧‧RRC閒置狀態530‧‧‧RRC idle state

600‧‧‧撥叫流程圖600‧‧‧Dial flow chart

601‧‧‧閒置狀態601‧‧‧Idle

602‧‧‧UE602‧‧‧UE

604‧‧‧基地台604‧‧‧ base station

606‧‧‧MME606‧‧‧MME

610‧‧‧方塊610‧‧‧ block

612‧‧‧SIB通告612‧‧‧SIB notice

614‧‧‧方塊614‧‧‧ block

616‧‧‧PRACH前序信號616‧‧‧PRACH preamble signal

618‧‧‧RAR618‧‧‧RAR

622‧‧‧方塊622‧‧‧ block

624‧‧‧S1-AP:UE上下文恢復請求624‧‧‧S1-AP: UE context recovery request

626‧‧‧修改承載626‧‧‧Modify load

628‧‧‧S1-AP:UE上下文恢復回應628‧‧‧S1-AP: UE context recovery response

630‧‧‧訊息/資料630‧‧‧Message / Data

632‧‧‧S1上下文釋放632‧‧‧S1 context release

634‧‧‧訊息634‧‧‧Message

638‧‧‧UE處於RRC_閒置(暫停狀態)638‧‧‧UE is in RRC_idle (suspended state)

700‧‧‧流程圖700‧‧‧Flowchart

702‧‧‧方塊702‧‧‧ block

704‧‧‧方塊704‧‧‧ block

706‧‧‧方塊706‧‧‧ block

708‧‧‧方塊708‧‧‧ block

710‧‧‧方塊710‧‧‧ block

712‧‧‧方塊712‧‧‧ block

714‧‧‧方塊714‧‧‧ block

800‧‧‧資料流程圖800‧‧‧Data flow chart

802‧‧‧裝置802‧‧‧device

802’‧‧‧裝置802’‧‧‧ device

804‧‧‧接收部件804‧‧‧Receiving parts

806‧‧‧發送部件806‧‧‧Sending parts

808‧‧‧系統資訊部件808‧‧‧System Information Parts

810‧‧‧資料通訊部件810‧‧‧Data communication components

812‧‧‧RRC模式部件812‧‧‧RRC mode parts

814‧‧‧指示部件814‧‧‧Indicating parts

816‧‧‧前序信號部件816‧‧‧Preamble signal components

818‧‧‧RAR部件818‧‧‧RAR parts

820‧‧‧下行鏈路資料部件820‧‧‧downlink data component

850‧‧‧基地台850‧‧‧ base station

900‧‧‧圖900‧‧‧Picture

904‧‧‧處理器904‧‧‧ processor

906‧‧‧電腦可讀取媒體/記憶體906‧‧‧ Computer readable media / memory

910‧‧‧收發機910‧‧‧ transceiver

914‧‧‧處理系統914‧‧‧ processing system

920‧‧‧天線920‧‧‧ Antenna

924‧‧‧匯流排924‧‧‧Bus

1000‧‧‧流程圖1000‧‧‧Flowchart

1002‧‧‧方塊1002‧‧‧ block

1006‧‧‧方塊1006‧‧‧ block

1008‧‧‧方塊1008‧‧‧ block

1012‧‧‧方塊1012‧‧‧ block

1014‧‧‧方塊1014‧‧‧ block

1016‧‧‧方塊1016‧‧‧ block

1100‧‧‧資料流程圖1100‧‧‧Data flow chart

1102‧‧‧裝置1102‧‧‧ installation

1102‘‧‧‧裝置1102‘‧‧‧ installation

1104‧‧‧接收部件1104‧‧‧Receiving parts

1106‧‧‧下行鏈路部件1106‧‧‧downlink components

1108‧‧‧SI部件1108‧‧‧SI parts

1110‧‧‧資料通訊部件1110‧‧‧Data Communication Parts

1112‧‧‧前序信號部件1112‧‧‧Preamble signal components

1114‧‧‧RAR部件1114‧‧‧RAR parts

1116‧‧‧核心網路部件1116‧‧‧Core network components

1118‧‧‧下行鏈路資料部件1118‧‧‧downlink data component

1150‧‧‧UE1150‧‧‧UE

1155‧‧‧核心網路1155‧‧‧Core network

1200‧‧‧圖1200‧‧‧Picture

1204‧‧‧處理器1204‧‧‧ processor

1206‧‧‧電腦可讀取媒體/記憶體1206‧‧‧ Computer readable media / memory

1210‧‧‧收發機1210‧‧‧Transceiver

1214‧‧‧處理系統1214‧‧‧ processing system

1220‧‧‧天線1220‧‧‧ Antenna

1224‧‧‧匯流排1224‧‧‧Bus

1300‧‧‧流程圖1300‧‧‧Flowchart

1302‧‧‧方塊1302‧‧‧ block

1304‧‧‧方塊1304‧‧‧ block

1306‧‧‧方塊1306‧‧‧ block

1308‧‧‧方塊1308‧‧‧ block

1310‧‧‧方塊1310‧‧‧ block

1312‧‧‧方塊1312‧‧‧ block

1314‧‧‧方塊1314‧‧‧ block

1400‧‧‧資料流程圖1400‧‧‧Data flow chart

1402‧‧‧裝置1402‧‧‧ device

1402’‧‧‧裝置1402’‧‧‧ device

1404‧‧‧接收部件1404‧‧‧Receiving parts

1406‧‧‧發送部件1406‧‧‧Sending parts

1408‧‧‧系統資訊部件1408‧‧‧System Information Parts

1410‧‧‧資料通訊部件1410‧‧‧Data Communication Parts

1412‧‧‧RRC模式部件1412‧‧‧ RRC mode parts

1414‧‧‧指示部件1414‧‧‧Indicating parts

1416‧‧‧前序信號部件1416‧‧‧Preamble signal components

1418‧‧‧RAR部件1418‧‧‧RAR parts

1420‧‧‧下行鏈路資料部件1420‧‧‧downlink data component

1422‧‧‧符記部件1422‧‧‧ Symbol Parts

1450‧‧‧基地台1450‧‧‧ base station

1500‧‧‧圖1500‧‧‧Picture

1504‧‧‧處理器1504‧‧‧ processor

1506‧‧‧電腦可讀取媒體/記憶體1506‧‧‧ Computer readable media / memory

1510‧‧‧收發機1510‧‧‧Transceiver

1514‧‧‧處理系統1514‧‧‧ processing system

1520‧‧‧天線1520‧‧‧ Antenna

1524‧‧‧匯流排1524‧‧‧Bus

1600‧‧‧流程圖1600‧‧‧Flowchart

1602‧‧‧方塊1602‧‧‧ block

1606‧‧‧方塊1606‧‧‧ block

1608‧‧‧方塊1608‧‧‧ block

1612‧‧‧方塊1612‧‧‧ block

1614‧‧‧方塊1614‧‧‧ block

1616‧‧‧方塊1616‧‧‧ block

1700‧‧‧資料流程圖1700‧‧‧Data flow chart

1702‧‧‧裝置1702‧‧‧ installation

1702’‧‧‧裝置1702’‧‧‧ installation

1704‧‧‧接收部件1704‧‧‧Receiving parts

1706‧‧‧下行鏈路部件1706‧‧‧downlink components

1708‧‧‧SI部件1708‧‧‧SI parts

1710‧‧‧資料通訊部件1710‧‧‧Data Communication Parts

1712‧‧‧前序信號部件1712‧‧‧Preamble signal components

1714‧‧‧RAR部件1714‧‧‧RAR parts

1716‧‧‧核心網路部件1716‧‧‧Core network components

1718‧‧‧下行鏈路資料部件1718‧‧‧downlink data component

1750‧‧‧UE1750‧‧‧UE

1755‧‧‧核心網路1755‧‧‧Core network

1800‧‧‧圖1800‧‧‧Picture

1804‧‧‧處理器1804‧‧‧ processor

1806‧‧‧電腦可讀取媒體/記憶體1806‧‧‧ Computer readable media / memory

1810‧‧‧收發機1810‧‧‧Transceiver

1814‧‧‧處理系統1814‧‧‧ processing system

1820‧‧‧天線1820‧‧‧ Antenna

1824‧‧‧匯流排1824‧‧‧Bus

圖1是示出無線通訊系統和存取網路的實例的圖。FIG. 1 is a diagram showing an example of a wireless communication system and an access network.

圖2A、2B、2C和2D是分別示出DL訊框結構、DL訊框結構內的DL通道、UL訊框結構以及UL訊框結構內的UL通道的實例的圖。2A, 2B, 2C, and 2D are diagrams showing examples of a DL frame structure, a DL channel in a DL frame structure, a UL frame structure, and a UL channel in a UL frame structure, respectively.

圖3是示出基地台和使用者設備(UE)的實例的圖。FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE).

圖4是示出包括基地台和UE的示例通訊系統的圖。4 is a diagram showing an example communication system including a base station and a UE.

圖5和6是根據本揭示內容的各態樣的示例撥叫流程圖。5 and 6 are example dialing flowcharts according to various aspects of the present disclosure.

圖7是一種無線通訊的方法的流程圖。7 is a flowchart of a method of wireless communication.

圖8是示出示例裝置中的不同構件/部件之間的資料流的概念性資料流程圖。8 is a conceptual data flow diagram illustrating the data flow between different components / components in an example device.

圖9是示出針對採用處理系統的裝置的硬體實現方式的實例的圖。FIG. 9 is a diagram showing an example of hardware implementation for a device employing a processing system.

圖10是一種無線通訊的方法的流程圖。10 is a flowchart of a method of wireless communication.

圖11是示出示例裝置中的不同構件/部件之間的資料流的概念性資料流程圖。11 is a conceptual data flow diagram illustrating the data flow between different components / components in an example device.

圖12是示出針對採用處理系統的裝置的硬體實現方式的實例的圖。FIG. 12 is a diagram showing an example of a hardware implementation for a device adopting a processing system.

圖13是一種無線通訊的方法的流程圖。13 is a flowchart of a method of wireless communication.

圖14是示出示例裝置中的不同構件/部件之間的資料流的概念性資料流程圖。14 is a conceptual data flow diagram illustrating the data flow between different components / components in an example device.

圖15是示出針對採用處理系統的裝置的硬體實現方式的實例的圖。FIG. 15 is a diagram showing an example of a hardware implementation manner for a device employing a processing system.

圖16是一種無線通訊的方法的流程圖。16 is a flowchart of a method of wireless communication.

圖17是示出示例裝置中的不同構件/部件之間的資料流的概念性資料流程圖。17 is a conceptual data flow diagram illustrating the data flow between different components / components in an example device.

圖18是示出針對採用處理系統的裝置的硬體實現方式的實例的圖。FIG. 18 is a diagram showing an example of a hardware implementation for a device adopting a processing system.

國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無Domestic storage information (please note in order of storage institution, date, number) No

國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無Overseas hosting information (please note in order of hosting country, institution, date, number) No

Claims (57)

一種由一使用者設備(UE)在沒有到一基地台的一無線電資源控制(RRC)連接的情況下進行無線通訊的方法,包括以下步驟: 從該基地台接收系統資訊;及由UE在沒有建立與該基地台的該RRC連接的情況下,在一控制平面上將一資料通訊發送給該基地台,其中該資料通訊包括資料以及針對該資料通訊的一原因指示。A method for wireless communication by a user equipment (UE) without a radio resource control (RRC) connection to a base station, including the following steps: receiving system information from the base station; and In the case of establishing the RRC connection with the base station, a data communication is sent to the base station on a control plane, where the data communication includes data and a cause indication for the data communication. 如請求項1所述之方法,其中該資料通訊是在一隨機存取程序期間被發送給該基地台的。The method of claim 1, wherein the data communication is sent to the base station during a random access procedure. 如請求項1所述之方法,其中該資料通訊進一步包括UE身份資訊。The method of claim 1, wherein the data communication further includes UE identity information. 如請求項3所述之方法,其中該UE身份資訊包括用於該UE的一系統架構進化TMSI(S-TMSI)。The method of claim 3, wherein the UE identity information includes a system architecture evolution TMSI (S-TMSI) for the UE. 如請求項1所述之方法,其中該資料通訊被包括在一RRC訊息中,該RRC訊息指示關於執行一RRC無連接早期資料傳輸的一意圖。The method of claim 1, wherein the data communication is included in an RRC message indicating an intention to perform an RRC connectionless early data transmission. 如請求項1所述之方法,其中該資料通訊是在一共用控制通道(CCCH)上的一非存取層(NAS)訊息中發送的。The method of claim 1, wherein the data communication is sent in a non-access layer (NAS) message on a shared control channel (CCCH). 如請求項1所述之方法,其中該資料通訊是在該UE沒有轉換到一RRC連接狀態的情況下被發送給該基地台的。The method of claim 1, wherein the data communication is sent to the base station without the UE transitioning to an RRC connected state. 如請求項1所述之方法,其中該資料通訊包括一單個上行鏈路資料傳輸。The method of claim 1, wherein the data communication includes a single uplink data transmission. 如請求項8所述之方法,其中在該單個上行鏈路資料傳輸中包括的該資料的一大小小於該基地台所指示的一大小限制。The method of claim 8, wherein a size of the data included in the single uplink data transmission is less than a size limit indicated by the base station. 如請求項1之所述方法,進一步包括以下步驟: 由該UE選擇用於發送該資料通訊的一RRC連接模式,其中該RRC連接模式是一活動的RRC連接傳輸模式或一RRC無連接傳輸模式。The method according to claim 1, further comprising the following steps: The UE selects an RRC connection mode for transmitting the data communication, wherein the RRC connection mode is an active RRC connection transmission mode or an RRC connectionless transmission mode . 如請求項1所述之方法,進一步包括以下步驟: 將關於用於發送該資料通訊的一RRC連接模式的一RRC模式指示發送給該基地台。The method of claim 1, further comprising the steps of: sending an RRC mode indication regarding an RRC connection mode used to send the data communication to the base station. 如請求項11所述之方法,其中該RRC模式指示包括從與一早期資料傳輸相關聯的一實體隨機存取通道(PRACH)資源池中對一PRACH資源的一選擇。The method of claim 11, wherein the RRC mode indication includes a selection of a PRACH resource from a physical random access channel (PRACH) resource pool associated with an early data transmission. 如請求項12所述之方法,其中該PRACH資源包括一窄頻PRACH(NPRACH)。The method according to claim 12, wherein the PRACH resource includes a narrow-band PRACH (NPRACH). 如請求項1所述之方法,進一步包括以下步驟: 將一隨機存取前序信號發送給該基地台;及接收針對在沒有建立該RRC連接的情況下的一上行鏈路傳輸的一授權,其中該資料通訊是基於該授權被發送給該基地台的。The method according to claim 1, further comprising the steps of: sending a random access preamble signal to the base station; and receiving an authorization for an uplink transmission without establishing the RRC connection, The data communication is sent to the base station based on the authorization. 如請求項1所述之方法,其中該系統資訊是從該基地台廣播的,並且指示與在該UE沒有轉換到一RRC連接狀態的情況下的一早期資料傳輸相關聯的實體隨機存取通道(PRACH)資源。The method of claim 1, wherein the system information is broadcast from the base station and indicates a physical random access channel associated with an early data transmission in the case where the UE has not transitioned to an RRC connected state (PRACH) resources. 如請求項15所述之方法,其中該UE至少部分地基於要在該資料通訊中發送的一資料量來選擇一資源。The method of claim 15, wherein the UE selects a resource based at least in part on a data volume to be sent in the data communication. 如請求項1所述之方法,進一步包括以下步驟: 在沒有建立與該基地台的該RRC連接的情況下,在該控制平面上從該基地台接收一下行鏈路資料通訊。The method according to claim 1, further comprising the steps of: receiving downlink data communication from the base station on the control plane without establishing the RRC connection with the base station. 如請求項17所述之方法,其中該下行鏈路資料通訊是在指示一早期資料傳遞完成的一RRC訊息中接收的。The method of claim 17, wherein the downlink data communication is received in an RRC message indicating the completion of an early data transfer. 一種用於由一使用者設備(UE)在沒有到一基地台的一無線電資源控制(RRC)連接的情況下進行無線通訊的裝置,包括: 用於從該基地台接收系統資訊的構件;及用於由UE在沒有建立與該基地台的該RRC連接的情況下,在一控制平面上將一資料通訊發送給該基地台的構件,其中該資料通訊包括資料以及針對該資料通訊的一原因指示。An apparatus for wireless communication by a user equipment (UE) without a radio resource control (RRC) connection to a base station, including: means for receiving system information from the base station; and A component used by the UE to send a data communication to the base station on a control plane without establishing the RRC connection with the base station, where the data communication includes data and a reason for the data communication Instructions. 如請求項19所述之裝置,其中該資料通訊是在一隨機存取程序期間被發送給該基地台的。The apparatus of claim 19, wherein the data communication is sent to the base station during a random access procedure. 如請求項19所述之裝置,進一步包括: 用於由該UE選擇用於發送該資料通訊的一RRC連接模式的構件,其中該RRC連接模式是一活動的RRC連接傳輸模式或一RRC無連接傳輸模式。The apparatus according to claim 19, further comprising: means for the UE to select an RRC connection mode for transmitting the data communication, wherein the RRC connection mode is an active RRC connection transmission mode or an RRC connectionless Transmission mode. 如請求項19所述之裝置,進一步包括: 用於將關於用於發送該資料通訊的一RRC連接模式的一RRC模式指示發送給該基地台的構件。The apparatus according to claim 19, further comprising: means for sending an RRC mode indication regarding an RRC connection mode used for sending the data communication to the base station. 如請求項19所述之裝置,進一步包括: 用於將一隨機存取前序信號發送給該基地台的構件;及用於接收針對在沒有建立該RRC連接的情況下的一上行鏈路傳輸的一授權的構件,其中該資料通訊是基於該授權被發送給該基地台的。The apparatus of claim 19, further comprising: means for sending a random access preamble signal to the base station; and for receiving an uplink transmission for the case where the RRC connection is not established An authorized component of which the data communication is sent to the base station based on the authorization. 如請求項19所述之裝置,進一步包括: 用於在沒有建立與該基地台的該RRC連接的情況下,在該控制平面上從該基地台接收一下行鏈路資料通訊的構件。The apparatus according to claim 19, further comprising: means for receiving downlink data communication from the base station on the control plane without establishing the RRC connection with the base station. 一種用於由一使用者設備(UE)在沒有到一基地台的一無線電資源控制(RRC)連接的情況下進行無線通訊的裝置,包括: 一記憶體;及至少一個處理器,其耦合到該記憶體並且被配置為:從該基地台接收系統資訊;及由UE在沒有建立與該基地台的該RRC連接的情況下,在一控制平面上將一資料通訊發送給該基地台,其中該資料通訊包括資料以及針對該資料通訊的一原因指示。An apparatus for wireless communication by a user equipment (UE) without a radio resource control (RRC) connection to a base station includes: a memory; and at least one processor, which is coupled to The memory is also configured to: receive system information from the base station; and the UE sends a data communication to the base station on a control plane without establishing the RRC connection with the base station, wherein The data communication includes data and an indication of a reason for the data communication. 如請求項25所述之裝置,其中該資料通訊是在一隨機存取程序期間被發送給該基地台的。The apparatus of claim 25, wherein the data communication is sent to the base station during a random access procedure. 如請求項25所述之裝置,其中該至少一個處理器進一步被配置為: 由該UE選擇用於發送該資料通訊的一RRC連接模式,其中該RRC連接模式是一活動的RRC連接傳輸模式或一RRC無連接傳輸模式。The apparatus of claim 25, wherein the at least one processor is further configured to: select, by the UE, an RRC connection mode for transmitting the data communication, wherein the RRC connection mode is an active RRC connection transmission mode or An RRC connectionless transmission mode. 如請求項25所述之裝置,其中該至少一個處理器進一步被配置為: 將關於用於發送該資料通訊的一RRC連接模式的一RRC模式指示發送給該基地台。The apparatus of claim 25, wherein the at least one processor is further configured to: send an RRC mode indication regarding an RRC connection mode used to transmit the data communication to the base station. 如請求項25所述之裝置,其中該至少一個處理器進一步被配置為: 將一隨機存取前序信號發送給該基地台;及接收針對在沒有建立該RRC連接的情況下的一上行鏈路傳輸的一授權,其中該資料通訊是基於該授權被發送給該基地台的。The apparatus of claim 25, wherein the at least one processor is further configured to: send a random access preamble signal to the base station; and receive an uplink for when the RRC connection is not established An authorization for road transmission, in which the data communication is sent to the base station based on the authorization. 如請求項25所述之裝置,其中該至少一個處理器進一步被配置為: 在沒有建立與該基地台的該RRC連接的情況下,在該控制平面上從該基地台接收一下行鏈路資料通訊。The apparatus of claim 25, wherein the at least one processor is further configured to: receive downlink data from the base station on the control plane without establishing the RRC connection with the base station communication. 一種儲存用於由一使用者設備(UE)在沒有到一基地台的一無線電資源控制(RRC)連接的情況下進行無線通訊的電腦可執行代碼的電腦可讀取媒體,包括用於進行以下操作的代碼: 從該基地台接收系統資訊;及由UE在沒有建立與該基地台的該RRC連接的情況下,在一控制平面上將一資料通訊發送給該基地台,其中該資料通訊包括資料以及針對該資料通訊的一原因指示。A computer-readable medium storing computer-executable code for wireless communication by a user equipment (UE) without a radio resource control (RRC) connection to a base station, including for performing the following Operation code: receive system information from the base station; and the UE sends a data communication to the base station on a control plane without establishing the RRC connection with the base station, where the data communication includes Information and an indication of a reason for the communication of the information. 如請求項31所述之電腦可讀取媒體,其中該資料通訊是在一隨機存取程序期間被發送給該基地台的。The computer-readable medium of claim 31, wherein the data communication is sent to the base station during a random access procedure. 一種由一基地台在沒有到一使用者設備(UE)的一無線電資源控制(RRC)連接的情況下進行無線通訊的方法,包括以下步驟: 在系統資訊中指示資源;及在沒有建立與該UE的該RRC連接的情況下,在一控制平面上從該UE接收一資料通訊,其中該資料通訊包括資料以及一原因指示。A method for wireless communication by a base station without a radio resource control (RRC) connection to a user equipment (UE) includes the following steps: indicating resources in system information; In the case of the RRC connection of the UE, a data communication is received from the UE on a control plane, where the data communication includes data and a cause indication. 如請求項33所述之方法,其中該資料通訊是在一隨機存取程序期間從該UE接收的。The method of claim 33, wherein the data communication is received from the UE during a random access procedure. 如請求項33所述之方法,其中該資料通訊被包括在來自該UE的一Msg3中。The method of claim 33, wherein the data communication is included in an Msg3 from the UE. 如請求項33所述之方法,其中該資料通訊進一步包括UE身份資訊,並且其中該UE身份資訊包括用於該UE的一系統架構進化TMSI(S-TMSI)。The method of claim 33, wherein the data communication further includes UE identity information, and wherein the UE identity information includes a system architecture evolution TMSI (S-TMSI) for the UE. 如請求項33所述之方法,其中該資料通訊被包括在一RRC訊息中,並且該原因指示用於指示關於執行一RRC無連接早期資料傳輸的一意圖。The method of claim 33, wherein the data communication is included in an RRC message, and the cause indication is used to indicate an intention to perform an RRC connectionless early data transmission. 如請求項33所述之方法,其中該資料通訊是在一共用控制通道(CCCH)上的一非存取層(NAS)訊息中接收的。The method of claim 33, wherein the data communication is received in a non-access stratum (NAS) message on a shared control channel (CCCH). 如請求項33所述之方法,其中該資料通訊是在沒有建立與該UE的一RRC連接狀態的情況下從該UE接收的,並且被轉發給一核心網路部件。The method of claim 33, wherein the data communication is received from the UE without establishing an RRC connection state with the UE and forwarded to a core network component. 如請求項33所述之方法,其中該資料通訊包括一單個上行鏈路資料傳輸。The method of claim 33, wherein the data communication includes a single uplink data transmission. 如請求項33所述之方法,其中在該系統資訊中指示的該等資源包括與一早期資料傳輸相關聯的實體隨機存取通道(PRACH)資源。The method of claim 33, wherein the resources indicated in the system information include physical random access channel (PRACH) resources associated with an early data transmission. 如請求項41所述之方法,其中該等PRACH資源包括一窄頻PRACH(NPRACH)。The method according to claim 41, wherein the PRACH resources include a narrow-band PRACH (NPRACH). 如請求項42所述之方法,其中不同的NPRACH資源與不同的覆蓋增強水平相關聯。The method of claim 42, wherein different NPRACH resources are associated with different coverage enhancement levels. 如請求項41所述之方法,進一步包括以下步驟: 基於與該早期資料傳輸相關聯的該等PRACH資源,從該UE接收一隨機存取前序信號。The method of claim 41, further comprising the steps of: receiving a random access preamble signal from the UE based on the PRACH resources associated with the early data transmission. 如請求項44所述之方法,進一步包括以下步驟: 將一隨機存取回應發送給該UE,該隨機存取回應包括針對在沒有建立與該UE的該RRC連接的情況下的該早期資料傳輸的一上行鏈路授權,其中該資料通訊是基於該上行鏈路授權從該UE接收的。The method of claim 44, further comprising the steps of: sending a random access response to the UE, the random access response including for the early data transmission without establishing the RRC connection with the UE An uplink grant, where the data communication is received from the UE based on the uplink grant. 如請求項33所述之方法,其中該資料包括在該控制平面上接收的一非存取層(NAS)協定資料單元(PDU)。The method of claim 33, wherein the data includes a non-access layer (NAS) protocol data unit (PDU) received on the control plane. 如請求項33所述之方法,進一步包括以下步驟: 在沒有建立與該UE的該RRC連接的情況下將該資料轉發給一核心網路。The method according to claim 33, further comprising the steps of: forwarding the data to a core network without establishing the RRC connection with the UE. 如請求項33所述之方法,進一步包括以下步驟: 在沒有建立與該UE的該RRC連接的情況下,在該控制平面上將一下行鏈路資料通訊發送給該UE。The method according to claim 33, further comprising the following steps: When the RRC connection with the UE is not established, the downlink data communication is sent to the UE on the control plane. 如請求項48所述之方法,其中該下行鏈路資料通訊是在指示一早期資料傳輸完成的一RRC訊息中發送的。The method of claim 48, wherein the downlink data communication is sent in an RRC message indicating the completion of an early data transmission. 一種用於由一基地台在沒有到一使用者設備(UE)的一無線電資源控制(RRC)連接的情況下進行無線通訊的裝置,包括: 用於在系統資訊中指示資源的構件;及用於在沒有建立與該UE的該RRC連接的情況下,在一控制平面上從該UE接收一資料通訊的構件,其中該資料通訊包括資料以及一原因指示。An apparatus for wireless communication by a base station without a radio resource control (RRC) connection to a user equipment (UE), including: means for indicating resources in system information; and In the case where the RRC connection with the UE is not established, a component that receives a data communication from the UE on a control plane, where the data communication includes data and a cause indication. 如請求項50所述之裝置,進一步包括: 用於在沒有建立與該UE的該RRC連接的情況下將該資料轉發給一核心網路的構件。The apparatus according to claim 50, further comprising: means for forwarding the data to a core network without establishing the RRC connection with the UE. 一種用於由一基地台在沒有到一使用者設備(UE)的一無線電資源控制(RRC)連接的情況下進行無線通訊的裝置,包括: 一記憶體;及至少一個處理器,其耦合到該記憶體並且被配置為:在系統資訊中指示資源;及在沒有建立與該UE的該RRC連接的情況下,在一控制平面上從該UE接收一資料通訊,其中該資料通訊包括資料以及一原因指示。An apparatus for wireless communication by a base station without a radio resource control (RRC) connection to a user equipment (UE) includes: a memory; and at least one processor, which is coupled to The memory is also configured to: indicate resources in system information; and receive the data communication from the UE on a control plane without establishing the RRC connection with the UE, where the data communication includes data and A reason indication. 如請求項52所述之裝置,其中在該系統資訊中指示的該等資源包括與一早期資料傳輸相關聯的實體隨機存取通道(PRACH)資源,其中該至少一個處理器進一步被配置為: 基於與該早期資料傳輸相關聯的該等PRACH資源,從該UE接收一隨機存取前序信號。The apparatus of claim 52, wherein the resources indicated in the system information include physical random access channel (PRACH) resources associated with an early data transmission, wherein the at least one processor is further configured to: Based on the PRACH resources associated with the early data transmission, a random access preamble signal is received from the UE. 如請求項53所述之裝置,其中該至少一個處理器進一步被配置為: 將一隨機存取回應發送給該UE,該隨機存取回應包括針對在沒有建立與該UE的該RRC連接的情況下的該早期資料傳輸的一上行鏈路授權,其中該資料通訊是基於該上行鏈路授權從該UE接收的。The apparatus according to claim 53, wherein the at least one processor is further configured to: send a random access response to the UE, the random access response includes when the RRC connection with the UE is not established An uplink grant for the early data transmission, where the data communication is received from the UE based on the uplink grant. 如請求項52所述之裝置,其中該至少一個處理器進一步被配置為: 在沒有建立與該UE的該RRC連接的情況下將該資料轉發給一核心網路。The apparatus of claim 52, wherein the at least one processor is further configured to: forward the data to a core network without establishing the RRC connection with the UE. 如請求項52所述之裝置,其中該至少一個處理器進一步被配置為: 在沒有建立與該UE的該RRC連接的情況下,在該控制平面上將一下行鏈路資料通訊發送給該UE。The apparatus according to claim 52, wherein the at least one processor is further configured to: send downlink data communication to the UE on the control plane without establishing the RRC connection with the UE . 一種儲存用於由一基地台在沒有到一使用者設備(UE)的一無線電資源控制(RRC)連接的情況下進行無線通訊的電腦可執行代碼的電腦可讀取媒體,包括用於進行以下操作的代碼: 在系統資訊中指示資源;及在沒有建立與該UE的該RRC連接的情況下,在一控制平面上從該UE接收一資料通訊,其中該資料通訊包括資料以及一原因指示。A computer readable medium storing computer executable code for wireless communication by a base station without radio resource control (RRC) connection to a user equipment (UE), including for performing the following Codes of operation: indicate resources in the system information; and receive the data communication from the UE on a control plane without establishing the RRC connection with the UE, where the data communication includes data and a cause indication.
TW107122778A 2017-08-11 2018-07-02 Uplink early data transmission TW201911939A (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201762544703P 2017-08-11 2017-08-11
US62/544,703 2017-08-11
US15/964,523 US20180324854A1 (en) 2017-05-04 2018-04-27 Uplink small data transmission for enhanced machine-type-communication (emtc) and internet of things (iot) communication
US15/964,523 2018-04-27
US16/024,421 2018-06-29
US16/024,421 US20180324869A1 (en) 2017-05-04 2018-06-29 Uplink early data transmission

Publications (1)

Publication Number Publication Date
TW201911939A true TW201911939A (en) 2019-03-16

Family

ID=65271375

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107122778A TW201911939A (en) 2017-08-11 2018-07-02 Uplink early data transmission

Country Status (4)

Country Link
EP (1) EP3666025A1 (en)
CN (1) CN111034329A (en)
TW (1) TW201911939A (en)
WO (1) WO2019032222A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112218383A (en) * 2019-07-09 2021-01-12 华硕电脑股份有限公司 Method and apparatus for carrier selection and early data transfer in a wireless communication system

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3831162B1 (en) * 2018-08-03 2023-05-31 Telefonaktiebolaget LM Ericsson (publ) User plane optimizations for 5g cellular internet of things
GB201820171D0 (en) * 2018-12-11 2019-01-23 Nordic Semiconductor Asa Efficient cellular communication
WO2020252659A1 (en) * 2019-06-18 2020-12-24 Oppo广东移动通信有限公司 Data sending method, network device and terminal device
WO2020258182A1 (en) * 2019-06-27 2020-12-30 Oppo广东移动通信有限公司 Data transmission method, apparatus, and communication device
US20220287101A1 (en) * 2019-07-19 2022-09-08 Lenovo (Beijing) Limited Method and apparatus for data transmission
US20220304093A1 (en) * 2019-08-06 2022-09-22 Lg Electronics Inc. Method and apparatus for handling security information between a wireless device and a network for a fast rrc release procedure in a wireless communication system
CN112566273B (en) * 2019-09-26 2022-12-23 维沃移动通信有限公司 Data receiving and sending method, terminal and network side equipment
CN110650533A (en) * 2019-09-29 2020-01-03 中兴通讯股份有限公司 Data transmission and information determination method, device and storage medium
CN111641976A (en) * 2020-05-22 2020-09-08 广东小天才科技有限公司 Data transmission method, terminal equipment and network equipment
KR20220037342A (en) * 2020-09-17 2022-03-24 아서스테크 컴퓨터 인코포레이션 Method and apparatus for small data transmission(sdt) procedure in a wireless communication system
EP4070620B1 (en) * 2021-01-14 2023-05-17 Ofinno, LLC Inactive context management
US20240022369A1 (en) * 2021-01-29 2024-01-18 Qualcomm Incorporated Uplink signal assisted preconfigured uplink resource
US20240064851A1 (en) * 2021-02-26 2024-02-22 Qualcomm Incorporated Message transmission via non-terrestrial network
CN116868633A (en) * 2021-05-11 2023-10-10 Oppo广东移动通信有限公司 Communication method and device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120071229A (en) * 2010-12-22 2012-07-02 한국전자통신연구원 Method for transmitting data for mobile communication systems
EP2955881B1 (en) * 2013-02-28 2020-05-27 Huawei Technologies Co., Ltd. Data sending method and receiving method and device
US10009926B2 (en) * 2014-07-11 2018-06-26 Qualcomm Incorporated Methods and apparatus for connectionless access
US20170099660A1 (en) * 2015-10-01 2017-04-06 Electronics And Telecommunications Research Institute Method and apparatus for transmitting uplink data

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112218383A (en) * 2019-07-09 2021-01-12 华硕电脑股份有限公司 Method and apparatus for carrier selection and early data transfer in a wireless communication system

Also Published As

Publication number Publication date
CN111034329A (en) 2020-04-17
EP3666025A1 (en) 2020-06-17
WO2019032222A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
TWI822826B (en) Downlink data transmission in rrc inactive mode
US20180359786A1 (en) Uplink early data transmission
TWI759468B (en) Relaying in a device-to-device communication system
TWI707597B (en) Narrowband time-division duplex frame structure for narrowband communications
TWI770423B (en) Method, apparatus, and computer-readable medium adopting early termination of pusch with new uplink grant
US11627635B2 (en) Expedited release of a user equipment
TW201911939A (en) Uplink early data transmission
US11039497B2 (en) User plane based small data service
TWI829714B (en) Methods and apparatus for handover enhancements
US10728739B2 (en) Control plane based small data service
US11895585B2 (en) Data transfer between an inactive mode user equipment and a wireless network
TW202106102A (en) Ue assisted fast transition between rrc states
US11356894B2 (en) Method and apparatus for configuring uplink hybrid automatic repeat request (HARQ) retransmission timer for narrowband communications
US11950308B2 (en) Optimized secondary node reporting for multi-radio access technology dual connectivity
TWI758526B (en) Signaling user equipment capability information
US20230247493A1 (en) Evolved packet system (eps) mobility configuration from wireless system
EP3520474B1 (en) Signaling to indicate whether physical broadcast channel repetition is enabled in a target cell
US20240224337A1 (en) Downlink data transmission in rrc inactive mode
WO2021217042A1 (en) Release assistance during early data transmission