TW201911200A - Fungus growth monitoring system - Google Patents

Fungus growth monitoring system Download PDF

Info

Publication number
TW201911200A
TW201911200A TW106125639A TW106125639A TW201911200A TW 201911200 A TW201911200 A TW 201911200A TW 106125639 A TW106125639 A TW 106125639A TW 106125639 A TW106125639 A TW 106125639A TW 201911200 A TW201911200 A TW 201911200A
Authority
TW
Taiwan
Prior art keywords
fungus
monitoring system
module
positioning
image
Prior art date
Application number
TW106125639A
Other languages
Chinese (zh)
Other versions
TWI662505B (en
Inventor
劉志俊
Original Assignee
中華大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中華大學 filed Critical 中華大學
Priority to TW106125639A priority Critical patent/TWI662505B/en
Publication of TW201911200A publication Critical patent/TW201911200A/en
Application granted granted Critical
Publication of TWI662505B publication Critical patent/TWI662505B/en

Links

Abstract

A fungus growth monitoring system is used for an indoor fungi culture field including at least one cultivation shelf and fungus disposed on the shelf. The fungus growth monitoring system including an aircraft and a management host is provided. The aircraft has a positioning module and an image capture module. The positioning module includes ultrasonic sensing elements and is used for positioning the aircraft. The image capture module is configured to shoot the fungus to generate an image data. The management hostcommunicates with the aircraft. According to a scheduling trajectory database and a positioning data of these ultrasonic sensing elements, the aircraft is driven by the management hostto move along adefault path.

Description

菌類生長影像監控系統Fungus growth image monitoring system

本發明是有關於一種菌類生長影像監控系統,且特別是關於一種結合空拍機的菌類生長影像監控系統。The invention relates to a fungus growth image monitoring system, and in particular to a fungus growth image monitoring system combined with an aerial camera.

菇類的栽培方式多採用太空包為培養介質,並將這些太空包堆疊於培養架各層上。而業者需根據菇類在不同生長階段的需求,進而調整場內環境,以確保菇類的品質與產量。一般而言,培養場內環境管理多為人工作業,需根據菇類的生長狀態以及現在的氣候狀況,再調整培養場內的通風、濕度、光照與溫度的環境條件,因而可根據場內狀況進行調整。Mushroom cultivation methods use space packs as the culture medium, and these space packs are stacked on each layer of the culture rack. The manufacturer needs to adjust the environment according to the needs of the mushrooms at different growth stages to ensure the quality and yield of the mushrooms. Generally speaking, the environmental management in the cultivation field is mostly manual work. It is necessary to adjust the environmental conditions of ventilation, humidity, light and temperature in the cultivation field according to the growth state of the mushroom and the current climatic conditions. Make adjustments.

然而,在菇類培養場中,由於大多採用人工作業方式,且人員進出不易進行管控,所以容易將真菌或細菌帶入場內,進而造成菇類受到感染,影響菇類整體的品質與產量。因此,如何降低培養場內的人工作業的比例且能有效調節培養場內的環境乃是一個重要的課題。However, in the mushroom culture field, since most of the manual operation methods are adopted, and the personnel are difficult to carry out the control, it is easy to bring the fungus or bacteria into the field, thereby causing the mushroom to be infected and affecting the overall quality and yield of the mushroom. Therefore, how to reduce the proportion of manual work in the cultivation field and effectively adjust the environment in the cultivation field is an important issue.

本發明提出一種菌類生長影像監控系統,以減少菌類培養場的人工作業需求,且能有效調節室內菌類培養場內的環境。The invention provides a fungus growth image monitoring system, which can reduce the manual operation demand of the fungus culture field, and can effectively adjust the environment in the indoor fungus culture field.

為達上述之一或部分或全部目的或是其他目的,本發明的一實施例提出一種菌類生長影像監控系統,適用於室內菌類培養場,室內菌類培養場至少包括培養架及承載於培養架上的菌類,菌類生長影像監控系統包括空拍機與管理主機。空拍機具有定位模組與影像擷取模組,定位模組具有多個超音波感測元件以進行定位,影像擷取模組用於拍攝菌類以產生影像資料。管理主機與空拍機互相通訊,並適於根據排程軌跡資料庫及這些超音波感測元件的定位資料以驅動空拍機沿預設路徑移動。In order to achieve one or a part or all of the above or other purposes, an embodiment of the present invention provides a fungus growth image monitoring system, which is suitable for an indoor fungus culture field, and the indoor fungus culture field includes at least a culture frame and is carried on the culture frame. The fungus and fungus growth image monitoring system includes an aerial camera and a management host. The aerial camera has a positioning module and an image capturing module. The positioning module has a plurality of ultrasonic sensing elements for positioning, and the image capturing module is used for photographing bacteria to generate image data. The management host and the aerial camera communicate with each other and are adapted to drive the empty camera to move along the preset path according to the scheduling trajectory database and the positioning data of the ultrasonic sensing components.

在本發明的一實施例中,上述之這些超音波感測元件的數量為三個,各個超音波感測元件用於發射聲束,而各聲束的聲軸彼此相互垂直,且這些超音波感測元件其中之的聲軸朝向空拍機的下方。In an embodiment of the invention, the number of the ultrasonic sensing elements is three, and each ultrasonic sensing element is used to emit an acoustic beam, and the acoustic axes of the acoustic beams are perpendicular to each other, and the ultrasonic waves are The acoustic axis of the sensing element is directed below the aerial camera.

在本發明的一實施例中,上述之培養架具有外框以及連接在外框內的多個隔板,而外框具有拍攝側,影像擷取模組朝向拍攝側拍攝位於這些隔板上的菌類,且菌類生長影像監控系統更包括多個反射板,這些反射板配置於拍攝側並位於這些隔板,這些超音波感測元件依據這些反射板以進行定位。In an embodiment of the invention, the culture rack has an outer frame and a plurality of partitions connected to the outer frame, and the outer frame has a photographing side, and the image capturing module photographs the fungi located on the partitions toward the photographing side. The fungus growth image monitoring system further includes a plurality of reflecting plates disposed on the shooting side and located on the partitions, and the ultrasonic sensing elements are positioned according to the reflecting plates.

在本發明的一實施例中,上述之菌類生長影像監控系統更包括多個二維條碼元件,這些二維條碼元件分別配置於拍攝側並位於這些隔板之相對二端,影像擷取模組拍攝各二維條碼元件以產生定位影像資料,定位模組接收定位影像資料以進行定位。In an embodiment of the present invention, the fungus growth image monitoring system further includes a plurality of two-dimensional bar code components respectively disposed on the photographing side and located at opposite ends of the partitions, and the image capturing module Each two-dimensional bar code component is photographed to generate a positioning image data, and the positioning module receives the positioning image data for positioning.

在本發明的一實施例中,上述之菌類生長影像監控系統更包括多個刻度尺,這些刻度尺分別配置於拍攝側並位於這些隔板,影像擷取模組拍攝各刻度尺以產生影像參考大小尺寸資料,定位模組接收定位影像資料以進行定位。In an embodiment of the present invention, the fungus growth image monitoring system further includes a plurality of scales respectively disposed on the shooting side and located on the partitions, and the image capturing module captures each scale to generate an image reference. The size and size data, the positioning module receives the positioning image data for positioning.

在本發明的一實施例中,上述之管理主機具有排程軌跡資料庫、生長狀態資料庫與深度學習模型(deep learning module),管理主機根據生長狀態資料庫及深度學習模型判斷影像資料以產生菇類生長狀態判斷結果。In an embodiment of the present invention, the management host has a scheduling trajectory database, a growth state database, and a deep learning module, and the management host determines the image data according to the growth state database and the deep learning model to generate The judgment result of the mushroom growth state.

在本發明的一實施例中,上述之菌類生長影像監控系統更包括雲端伺服器,與管理主機相互通訊並接收影像資料,雲端伺服器具有生長狀態資料庫與深度學習模型,而雲端伺服器根據生長狀態資料庫及深度學習模型判斷影像資料以產生判斷結果,進而將判斷結果回傳至管理主機。In an embodiment of the present invention, the fungus growth image monitoring system further includes a cloud server, communicates with the management host and receives image data, and the cloud server has a growth state database and a deep learning model, and the cloud server is based on the cloud server. The growth state database and the deep learning model determine the image data to generate a judgment result, and then return the judgment result to the management host.

在本發明的一實施例中,上述之管理主機更包括環境感測模組及環境控制模組,環境感測模組用以感測室內菌類培養場的多個環境參數,環境控制模組依據判斷結果與這些環境參數以調節室內菌類培養場的環境。In an embodiment of the invention, the management host further includes an environment sensing module and an environment control module, wherein the environment sensing module is configured to sense a plurality of environmental parameters of the indoor mushroom culture field, and the environmental control module is based on The results are judged with these environmental parameters to adjust the environment of the indoor fungus culture field.

在本發明的一實施例中,上述之環境感測模組為溫度感測器、濕度感測器、照度感測器或二氧化碳感測器的至少其中之一。In an embodiment of the invention, the environmental sensing module is at least one of a temperature sensor, a humidity sensor, an illuminance sensor, or a carbon dioxide sensor.

在本發明的一實施例中,上述之環境控制模組為溫度調節器、濕度調節器、光源或風扇的至少其中之一。In an embodiment of the invention, the environmental control module is at least one of a temperature regulator, a humidity regulator, a light source or a fan.

本發明實施例的菌類生長影像監控系統因空拍機具有多個超音波感測元件能進行室內準確定位,在定位完成後,可藉由管理主機定期驅動空拍機沿著預設路徑移動並拍攝菌類生長的影像資料,並將此影像資料回傳至管理主機,即時監控菌類生長狀況,所以本發明實施例的菌類生長影像監控系統可以減少室內菌類培養場的人工作業需求。此外,本發明實施例的菌類生長影像監控系統可具有環境感測模組及環境控制模組,所以在影像資料與生長狀態資料庫比對產生判斷結果後,環境控制模組可依據判斷結果有效調節室內菌類培養場內的環境。The fungus growth image monitoring system of the embodiment of the invention has multiple ultrasonic sensing components capable of accurately positioning indoors, and after the positioning is completed, the management host can periodically drive the empty camera to move along the preset path and The image data of the growth of the fungus is photographed, and the image data is returned to the management host to monitor the growth state of the fungus. Therefore, the fungus growth image monitoring system of the embodiment of the invention can reduce the manual operation requirement of the indoor fungus culture field. In addition, the fungus growth image monitoring system of the embodiment of the present invention may have an environment sensing module and an environment control module. Therefore, after the image data and the growth state database are compared, the environmental control module can be effective according to the judgment result. Regulate the environment within the indoor fungus culture field.

為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式,作詳細說明如下。The above and other objects, features and advantages of the present invention will become more <RTIgt;

圖1是本發明之一實施例的菌類生長影像監控系統的示意圖。圖2是圖1之方塊示意圖。請參照圖1及圖2,本實施例係一種菌類生長影像監控系統10,適用於室內菌類培養場,室內菌類培養場至少包括培養架20及承載於培養架20上的菌類G,菌類生長影像監控系統10包括空拍機11與管理主機12。空拍機11具有定位模組111與影像擷取模組112,定位模組111具有多個超音波感測元件(圖未繪示)以進行定位,影像擷取模112組用於拍攝菌類G以產生影像資料。管理主機12與空拍機11互相通訊,並適於根據排程軌跡資料庫121及超音波感測元件的定位資料以驅動空拍機11沿預設路徑L移動。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing a fungus growth image monitoring system according to an embodiment of the present invention. Figure 2 is a block diagram of Figure 1. Referring to FIG. 1 and FIG. 2, the present embodiment is a fungus growth image monitoring system 10, which is suitable for an indoor fungus culture field. The indoor fungus culture field includes at least a culture frame 20 and a fungus G carried on the culture frame 20, and the fungus growth image. The monitoring system 10 includes an aerial camera 11 and a management host 12. The air blasting machine 11 has a positioning module 111 and an image capturing module 112. The positioning module 111 has a plurality of ultrasonic sensing elements (not shown) for positioning, and the image capturing dies 112 are used for photographing the fungus G. To produce image data. The management host 12 communicates with the aerial camera 11 and is adapted to drive the aerial camera 11 to move along the preset path L according to the positioning data of the scheduling trajectory database 121 and the ultrasonic sensing element.

需提及的是,菌類G例如是靈芝或其他菇類,盛裝菌類G的太空包排列於培養架20上。具體而言,培養架20例如具有外框21以及連接在外框20內的多個隔板22,而外框21具有拍攝側,影像擷取模組112朝向拍攝側拍攝位於這些隔板22上的菌類G的子實體。It should be mentioned that the fungus G is, for example, a ganoderma lucidum or other mushroom, and the space bag containing the fungus G is arranged on the culture frame 20. Specifically, the culture rack 20 has, for example, an outer frame 21 and a plurality of partitions 22 connected to the outer frame 20, and the outer frame 21 has a photographing side, and the image capturing module 112 photographs the partitions 22 toward the photographing side. A fruiting body of fungus G.

本實施例的空拍機11是一種四軸飛行器,空拍機11例如具有控制器113、旋翼模組114與傳輸模組115,而控制器113與定位模組111、影像擷取模組112、旋翼模組114與傳輸模組115電性連接。控制器113依據管理主機12的命令以驅動旋翼模組114,而使空拍機11在完成定位之後,沿著預設路徑L移動。控制器113驅動影像擷取模組112來拍攝菌類G直到空拍機11回到預設路徑L的原點,但不以此為限,例如,影像擷取模組112也可視需求設計成僅在Y軸方向上的預設路徑L進行拍攝,而X軸方向與Z軸方向則可不拍攝。The air camera 11 of the present embodiment is a four-axis aircraft. The air camera 11 has a controller 113, a rotor module 114 and a transmission module 115, and the controller 113 and the positioning module 111 and the image capturing module 112. The rotor module 114 is electrically connected to the transmission module 115. The controller 113 drives the rotor module 114 according to the command of the management host 12, and causes the empty camera 11 to move along the preset path L after the positioning is completed. The controller 113 drives the image capturing module 112 to capture the fungus G until the null camera 11 returns to the origin of the preset path L, but is not limited thereto. For example, the image capturing module 112 can also be designed to be only required. The preset path L in the Y-axis direction is photographed, and the X-axis direction and the Z-axis direction are not photographed.

定位模組111之超音波感測元件的數量例如為三個,而各個超音波感測元件用於發射聲束,而各聲束的聲軸S1、S2、S3彼此相互垂直,且這些超音波感測元件其中之一聲軸S1朝向空拍機11的下方,即朝向室內菌類培養場的底面,藉由這些超音波感測元件接收返回的聲束,以進行空拍機11的定位。具體而言,請參照圖3A及圖3B,室內菌類培養場30具有底面31與頂面32以及連接於底面31與頂面32之間的多個側牆33、34,具有聲軸S1超音波感測元件沿著Z軸方向發射聲束到底面31並接收聲束,而具有聲軸S2、S3的超音波感測元件分別沿著Y軸方向與X軸方向發射聲束到側牆33、側牆34並接收聲束。之後,控制器113接收各個超音波感測元件產生的距離資料(即第一距離D1、第二距離D2與第三距離D3),以轉換成對應室內菌類培養場30內的座標(D3,D2,D1),進而定位空拍機11,並回傳定位資料至管理主機12。The number of ultrasonic sensing elements of the positioning module 111 is, for example, three, and each ultrasonic sensing element is used to emit a sound beam, and the acoustic axes S1, S2, S3 of the respective sound beams are perpendicular to each other, and these ultrasonic waves One of the sensing elements S1 is directed downward of the air-slot machine 11, i.e., toward the bottom surface of the indoor mushroom culture field, and the ultrasonic beams are received by the ultrasonic sensing elements to perform positioning of the aerial camera 11. Specifically, referring to FIG. 3A and FIG. 3B, the indoor fungus culture field 30 has a bottom surface 31 and a top surface 32, and a plurality of side walls 33 and 34 connected between the bottom surface 31 and the top surface 32, and has an acoustic axis S1 ultrasonic wave. The sensing element emits an acoustic beam along the Z-axis direction to the bottom surface 31 and receives the sound beam, and the ultrasonic sensing elements having the acoustic axes S2, S3 respectively emit the acoustic beam to the side wall 33 along the Y-axis direction and the X-axis direction, The side wall 34 receives the sound beam. Thereafter, the controller 113 receives the distance data generated by each of the ultrasonic sensing elements (ie, the first distance D1, the second distance D2, and the third distance D3) to be converted into coordinates (D3, D2) in the corresponding indoor mushroom culture field 30. , D1), thereby positioning the air-slot machine 11, and returning the positioning data to the management host 12.

管理主機12例如具有排程軌跡資料庫121、中央處理模組122及傳輸模組123,而中央處理模組122電性連接排程軌跡資料庫121與傳輸模組123,排程軌跡資料庫121用於提供排程資料與軌跡資料,排程資料例如包括驅動空拍機11的多個時間點,軌跡資料例如包括室內菌類培養場30的地圖資料與空拍機11的預定路徑L。而傳輸模組123則用以與空拍機11的傳輸模組115相互通訊,藉以接收或傳送前述的資料。此外,傳輸模組123與傳輸模組115是採用無線傳輸方式,例如,行動通訊技術(2G、GPRS、3D及4G)、無線網路技術(Wi-Fi)、乙太網(Ethernet)或藍芽傳輸。The management host 12 has, for example, a scheduling trajectory database 121, a central processing module 122, and a transmission module 123, and the central processing module 122 is electrically connected to the scheduling trajectory database 121 and the transmission module 123, and the scheduling trajectory database 121 The schedule data and the trajectory data are provided, for example, including a plurality of time points for driving the aerial camera 11, and the trajectory data includes, for example, map data of the indoor fungus culture field 30 and a predetermined path L of the aerial camera 11. The transmission module 123 is used to communicate with the transmission module 115 of the aerial camera 11 to receive or transmit the aforementioned data. In addition, the transmission module 123 and the transmission module 115 are wirelessly transmitted, for example, mobile communication technologies (2G, GPRS, 3D, and 4G), wireless network technology (Wi-Fi), Ethernet (Ethernet), or blue. Bud transmission.

為瞭解本實施例中管理主機12於空拍機11的操控方法,請再參照圖2,管理主機12係先依據排程資料驅動空拍機11,接著空拍機11進行定位。而在空拍機11定位完成之後,若空拍機11的座標位於預設路徑L的原點,空拍機11沿著預設路徑L移動,並將影像擷取模組112朝向拍攝側拍攝菌類G的子實體。若空拍機11的座標非為預設路徑L的原點,則空拍機11由管理主機12驅動空拍機11先返回預設路徑L的原點。接著,空拍機11沿著預設路徑L移動直至返回原點,並將影像資料傳輸至管理主機12,而完成一次排程。且排程可以視管理者的需求進行次數或時間的調整。In order to understand the control method of the management host 12 in the idler 11 in this embodiment, referring to FIG. 2, the management host 12 first drives the empty camera 11 according to the schedule data, and then the aerial camera 11 performs positioning. After the positioning of the aerial camera 11 is completed, if the coordinates of the aerial camera 11 are located at the origin of the preset path L, the aerial camera 11 moves along the preset path L, and the image capturing module 112 is photographed toward the shooting side. A fruiting body of fungus G. If the coordinates of the idler 11 are not the origin of the preset path L, the idler 11 is driven by the management host 12 to return to the origin of the preset path L first. Next, the aerial camera 11 moves along the preset path L until returning to the origin, and transmits the image data to the management host 12 to complete one schedule. And the schedule can be adjusted according to the needs of the manager.

本實施例的菌類生長影像監控系統10因空拍機11具有多個超音波感測元件而可進行室內菌類培養場30內準確定位,在定位完成後,再藉由管理主機12定期驅動空拍機11沿著預設路徑L移動並拍攝菌類G生長的影像資料,並將此影像資料回傳至管理主機12,即時監控菌類G生長的狀況,所以本實施例的菌類生長影像監控系統10可以減少室內菌類培養場30的人工作業需求。The fungus growth image monitoring system 10 of the present embodiment can accurately position the indoor fungus culture field 30 because the air take-up machine 11 has a plurality of ultrasonic sensing elements. After the positioning is completed, the management host 12 periodically drives the aerial shooting. The machine 11 moves along the preset path L and photographs the image data of the growth of the fungus G, and returns the image data to the management host 12 to monitor the growth condition of the fungus G. Therefore, the fungus growth image monitoring system 10 of the present embodiment can Reduce the manual work requirements of the indoor fungus culture field 30.

另一方面,本實施例的管理主機12還可用於判斷影像資料進而產生菇類生長狀態判斷結果。具體而言,管理主機12例如可包括生長狀態資料庫124,而中央處理模組122根據生長狀態資料庫124資料比對於菌類G的影像資料。影像資料例如包括菌類G的子實體圖像,中央處理模組122可根據影像資料計算(如結合影像處理)子實體的尺寸或是子實體的外型,進而比對至生長狀態資料庫124以產生判斷資料。而判斷資料例如是指室內菌類培養場30的環境參數之溫度、濕度、照度及二氧化碳濃度等不足或過多,但本發明也不限於此,也可以視菌類培養需求來增加其他種類的環境參數。On the other hand, the management host 12 of the present embodiment can also be used for judging image data to generate a mushroom growth state judgment result. Specifically, the management host 12 may include, for example, a growth status database 124, and the central processing module 122 compares the image data to the fungus G based on the growth status database 124. The image data includes, for example, a sub-entity image of the fungus G, and the central processing module 122 can calculate (eg, combine image processing) the size of the sub-entity or the appearance of the sub-entity according to the image data, and then compare to the growth state database 124. Generate judgment data. The judgment data refers to, for example, insufficient or excessive temperature, humidity, illuminance, and carbon dioxide concentration of the environmental parameters of the indoor fungus culture field 30. However, the present invention is not limited thereto, and other types of environmental parameters may be added depending on the culture culture demand.

此外,本實施例的管理主機12還可具有深度學習模型,而中央處理模組根據生長狀態資料庫124與深度學習模型125產生上述判斷資料。舉例來說,深度學習模型125是藉由大量資料輸入以持續修正內建參數(或權重值),以讓中央處理模組122產生更為準確的判斷結果。但在其他實施例中,也可以採用習知技藝中相似或相近於深度學習模型的其他種類運算模型。In addition, the management host 12 of the embodiment may further have a deep learning model, and the central processing module generates the above-mentioned judgment data according to the growth state database 124 and the deep learning model 125. For example, the deep learning model 125 is to continuously correct the built-in parameters (or weight values) by a large amount of data input, so that the central processing module 122 can generate more accurate judgment results. However, in other embodiments, other types of operational models that are similar or similar to the deep learning model in the prior art may also be employed.

再者,本實施例的管理主機12還可包括環境感測模組126及環境控制模組127,環境感測模組126用以感測室內菌類培養場30的多個環境參數。環境控制模組127依據判斷結果與這些環境參數以調節室內菌類培養場30內的環境。此外,環境感測模組126例如為溫度感測器、濕度感測器、照度感測器或二氧化碳感測器的至少其中之一,而環境控制模組127例如為溫度調節器、濕度調節器、光源或風扇的至少其中之一,但本發明不限於此,在其他實施例中,也可視室內菌類培養場30的設計需求來增加其它種類的感測器或是調節器。所以本發明實施例管理主機12將影像資料與生長狀態資料庫124比對產生判斷結果後,環境控制模組127可依據判斷結果有效調節室內菌類培養場30內的環境。需提及的是,在本發明中,環境監測模組126與環境控制模組127係自動化讀取環境參數以調節室內菌類培養場內的環境,而在管理主機12產生判斷結果之後,也可根據判斷結果一併調整。Furthermore, the management host 12 of the present embodiment may further include an environment sensing module 126 and an environment control module 127 for sensing a plurality of environmental parameters of the indoor fungus culture field 30. The environmental control module 127 adjusts the environment within the indoor fungus culture field 30 based on the determination results and these environmental parameters. In addition, the environment sensing module 126 is, for example, at least one of a temperature sensor, a humidity sensor, an illuminance sensor, or a carbon dioxide sensor, and the environment control module 127 is, for example, a temperature regulator and a humidity regulator. At least one of a light source or a fan, but the invention is not limited thereto, and in other embodiments, other types of sensors or regulators may be added depending on the design requirements of the indoor fungus culture field 30. Therefore, after the management host 12 compares the image data with the growth state database 124 to generate the determination result, the environment control module 127 can effectively adjust the environment in the indoor fungus culture field 30 according to the determination result. It should be noted that, in the present invention, the environment monitoring module 126 and the environment control module 127 automatically read environmental parameters to adjust the environment in the indoor fungus culture field, and after the management host 12 produces the judgment result, Adjust according to the judgment result.

雖然圖1是透過超音波感測元件進行定位,但是在其他實施例中,也可以在菌類G的培養架20設置其他輔助定位件,且對應預設路徑L設置在拍攝側且位在於隔板22,例如,反射板或二維條碼元件等,藉以輔助空拍機11進行於室內菌類培養場30的定位,詳細說明如下。Although FIG. 1 is positioned by the ultrasonic sensing element, in other embodiments, other auxiliary positioning members may be disposed on the culture frame 20 of the fungus G, and the corresponding preset path L is disposed on the shooting side and is located in the partition plate. 22, for example, a reflector or a two-dimensional bar code component or the like is used to assist the positioning of the indoor fungus culture field 30 by the aerial camera 11, and the details are as follows.

圖4是本發明之另一實施例的菌類生長影像監控系統的示意圖。請參照圖4,菌類生長影像監控系統10a例如更包括多個反射板40,這些反射板40配置於拍攝側並位於這些隔板22,這些超音波感測元件依據這些反射板40以進行定位。這些反射板40例如對應於預設路徑L。舉例來說,於空拍機11完成定位後並沿著預設路徑L移動時,具有聲軸S3的超音波感測元件沿著X軸方向發射聲束至反射板40並接收,控制器113接收此超音波感測元件的距離資料,若距離資料符合預設距離資料,則空拍機11位於預設路徑L上,以接續向前移動。雖然圖2是以反射板40位在這些隔板22為例,但是在其他實施例中,反射板40也可以視設計需求設置在拍攝側並位於外框21上。4 is a schematic view of a fungus growth image monitoring system according to another embodiment of the present invention. Referring to FIG. 4, the fungus growth image monitoring system 10a further includes a plurality of reflecting plates 40 disposed on the capturing side and located on the partitions 22, and the ultrasonic sensing elements are positioned according to the reflecting plates 40. These reflecting plates 40 correspond, for example, to a preset path L. For example, when the aerial camera 11 completes positioning and moves along the preset path L, the ultrasonic sensing element having the acoustic axis S3 emits an acoustic beam to the reflecting plate 40 along the X-axis direction and receives, and the controller 113 Receiving the distance data of the ultrasonic sensing component, if the distance data conforms to the preset distance data, the empty camera 11 is located on the preset path L to continuously move forward. Although FIG. 2 is taken as an example in which the reflecting plate 40 is located on the partition plates 22, in other embodiments, the reflecting plate 40 may be disposed on the photographing side and located on the outer frame 21 as the design requirements.

此外,菌類生長影像監控系統10a例如更可包括多個二維條碼元件60,這些二維條碼元件60分別配置於拍攝側並位於這些隔板22之相對二端,影像擷取模組112拍攝各二維條碼元件60以產生定位影像資料,定位模組111接收定位影像資料以進行定位。In addition, the fungus growth image monitoring system 10a may further include a plurality of two-dimensional bar code components 60, which are respectively disposed on the photographing side and located at opposite ends of the partitions 22, and the image capturing module 112 captures each The two-dimensional barcode component 60 generates the positioning image data, and the positioning module 111 receives the positioning image data for positioning.

除上述輔助定位方式之外,空拍機11例如更包括全球定位系統(GPS, Global Positioning System),而可輔助定位模組111於X軸方向與Y軸方向上的定位。此外,空拍機11例如更包括加速規、陀螺儀等電子零件,而可穩定空拍機11的懸空位置,但不限於此。In addition to the above-described auxiliary positioning method, the aerial camera 11 further includes, for example, a Global Positioning System (GPS), and can assist positioning of the positioning module 111 in the X-axis direction and the Y-axis direction. Further, the aerial camera 11 further includes electronic components such as an acceleration gauge and a gyroscope, and the floating position of the aerial camera 11 can be stabilized, but is not limited thereto.

另一方面,菌類生長影像監控系統10a例如更包括多個刻度尺50,這些刻度尺50分別配置於拍攝側並位於這些隔板22,影像擷取模組112拍攝各刻度尺50以產生影像尺寸資料,進而回傳至管理主機12,用以比對生長狀態資料庫124以產生判斷資料。具體而言,如圖5所示,本實施例的中央處理模組122根據生長狀態資料庫124資料比對於菌類G的影像資料時,影像資料例如包括菌類G的子實體圖像及刻度尺50的標號,因而中央處理模組122可根據影像資料計算出菌類G子實體的尺寸(以寬度D4為例),進而比對至生長狀態資料庫124以產生判斷資料,或可結合深度學習模型125產生此判斷資料,所以可提高判斷資料的準確性。On the other hand, the fungus growth image monitoring system 10a further includes a plurality of scales 50, which are respectively disposed on the photographing side and located on the partitions 22, and the image capturing module 112 captures each scale 50 to generate an image size. The data is then passed back to the management host 12 for comparing the growth status database 124 to generate the determination data. Specifically, as shown in FIG. 5, when the central processing module 122 of the present embodiment compares the image data of the growth state database 124 to the fungus G, the image data includes, for example, the fruit entity image of the fungus G and the scale 50. The central processing module 122 can calculate the size of the fungal G sub-entity based on the image data (take the width D4 as an example), and then compare the growth state database 124 to generate the judgment data, or can be combined with the deep learning model 125. This judgment data is generated, so the accuracy of the judgment data can be improved.

圖6是本發明另一實施例之菌類生長影像監控系統的方塊示意圖。如圖6所示,本實施例之菌類生長影像監控系統10b與圖1的菌類生長影像監控系統10類似,主要差異處在於菌類生長影像監控系統10b例如更包括雲端伺服器13,與管理主機12b相互通訊並接收影像資料,雲端伺服器13例如具有生長狀態資料庫131與深度學習模型132,而雲端伺服器13根據生長狀態資料庫131及深度學習模型132判斷影像資料以產生判斷結果,進而將判斷結果回傳至管理主機12b。具體而言,本實施例的管理主機12b可不具有圖1的生長狀態資料庫131與深度學習模型132,而交由雲端伺服器13產生判斷結果,而雲端伺服器13可以搭配多個管理主機12b,並藉由同步管理多個室內菌類培養場的環境,其中雲端伺服器13具有傳輸模組133以與管理主機12b透過網際網路14相互通訊,而雲端伺服器13例如還具有雲端運算模組134,雲端運算模組134可根據生長狀態資料庫131與深度學習模型判斷影像資料而產生判斷結果。Fig. 6 is a block diagram showing a fungus growth image monitoring system according to another embodiment of the present invention. As shown in FIG. 6, the fungus growth image monitoring system 10b of the present embodiment is similar to the fungus growth image monitoring system 10 of FIG. 1. The main difference is that the fungus growth image monitoring system 10b includes, for example, a cloud server 13 and a management host 12b. Communicating with each other and receiving image data, the cloud server 13 has, for example, a growth state database 131 and a deep learning model 132, and the cloud server 13 determines the image data according to the growth state database 131 and the deep learning model 132 to generate a determination result, and then The result of the judgment is transmitted back to the management host 12b. Specifically, the management host 12b of the embodiment may not have the growth state database 131 and the deep learning model 132 of FIG. 1, but the cloud server 13 may generate the determination result, and the cloud server 13 may be matched with the plurality of management hosts 12b. And by synchronously managing the environment of the plurality of indoor fungus culture fields, wherein the cloud server 13 has a transmission module 133 to communicate with the management host 12b via the Internet 14, and the cloud server 13 has, for example, a cloud computing module. 134. The cloud computing module 134 can determine the image data according to the growth state database 131 and the deep learning model to generate a determination result.

如此,增設雲端運算模組134除了具有前述實施例提及的優點之外,還可以同步對多個室內菌類培養場進行管理,且根據各個室內菌類培養場以提供大量資料予深度學習模型132,而優化深度學習模型132的運算法則,以提高各個室內菌類培養場的判斷結果的準確性,即藉由物聯網的方式管理多個室內菌類培養場,進而減少室內菌類培養場的人工作業需求,並可有助於改善現況室內菌類培養場於自動化管理的需求。In this way, in addition to the advantages mentioned in the foregoing embodiments, the cloud computing module 134 can simultaneously manage a plurality of indoor fungus culture fields, and provide a large amount of data to the deep learning model 132 according to each indoor fungus culture field. The algorithm of the deep learning model 132 is optimized to improve the accuracy of the judgment results of each indoor fungus culture field, that is, to manage a plurality of indoor fungus culture fields by means of the Internet of Things, thereby reducing the manual operation demand of the indoor fungus culture field. It can help to improve the needs of automated management of indoor fungal culture fields.

此外,根據管理者的需求,還可以透過網際網路或是無線傳輸方式將上述提及的環境參數、影像資料、定位資料、生長狀態資料庫、排程軌跡資料庫傳輸至管理者終端15,而管理者終端15例如是智慧型手機、平板電腦或是其他具有顯示功能的可攜帶式電子裝置,以幫助管理者即時掌握菌類培養場內的狀況。In addition, according to the needs of the administrator, the above-mentioned environmental parameters, image data, positioning data, growth status database, and scheduling trajectory database can be transmitted to the manager terminal 15 through the Internet or wireless transmission. The manager terminal 15 is, for example, a smart phone, a tablet computer or other portable electronic device with a display function, to help the manager to immediately grasp the situation in the fungus culture field.

綜上所述,本發明實施例的菌類生長影像監控系統因空拍機具有多個超音波感測元件能進行室內準確定位,在定位完成後,可藉由管理主機定期驅動空拍機沿著預設路徑移動並拍攝菌類生長的影像資料,並將此影像資料回傳至管理主機,即時監控菌類生長狀況,所以本發明實施例的菌類生長影像監控系統可以減少室內菌類培養場的人工作業需求。此外,本發明實施例的菌類生長影像監控系統可具有環境感測模組及環境控制模組,所以在影像資料與生長狀態資料庫比對產生判斷結果後,環境控制模組可依據判斷結果有效調節室內菌類培養場內的環境。In summary, the fungus growth image monitoring system of the embodiment of the present invention has multiple ultrasonic sensing components capable of performing accurate indoor positioning. After the positioning is completed, the management host can periodically drive the aerial camera along the path. The preset path moves and photographs the image data of the growth of the fungus, and the image data is returned to the management host to monitor the growth state of the fungus. Therefore, the fungus growth image monitoring system of the embodiment of the invention can reduce the manual operation requirement of the indoor fungus culture field. . In addition, the fungus growth image monitoring system of the embodiment of the present invention may have an environment sensing module and an environment control module. Therefore, after the image data and the growth state database are compared, the environmental control module can be effective according to the judgment result. Regulate the environment within the indoor fungus culture field.

雖然本發明已以實施例揭露如上,然其並非用於限定本發明,本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and those skilled in the art can make some modifications and refinements without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

10、10a、10b‧‧‧菌類生長影像監控系統10, 10a, 10b‧‧‧ fungus growth image monitoring system

11‧‧‧空拍機 11‧‧ ‧ empty camera

111‧‧‧定位模組 111‧‧‧ Positioning Module

112‧‧‧影像擷取模組 112‧‧‧Image capture module

113‧‧‧控制器 113‧‧‧ Controller

114‧‧‧旋翼模組 114‧‧‧Rotor Module

115‧‧‧傳輸模組 115‧‧‧Transmission module

12‧‧‧管理主機 12‧‧‧Management host

121‧‧‧排程軌跡資料庫 121‧‧‧ Schedule Track Database

122‧‧‧中央處理模組 122‧‧‧Central Processing Module

123‧‧‧傳輸模組 123‧‧‧Transmission module

124‧‧‧生長狀態資料庫 124‧‧‧ Growth Status Database

125‧‧‧深度學習模型 125‧‧‧Deep learning model

126‧‧‧環境感測模組 126‧‧‧Environment Sensing Module

127‧‧‧環境控制模組 127‧‧‧Environmental Control Module

13‧‧‧雲端伺服器 13‧‧‧Cloud Server

131‧‧‧生長狀態資料庫 131‧‧‧ Growth Status Database

132‧‧‧深度學習模型 132‧‧‧Deep learning model

133‧‧‧傳輸模組 133‧‧‧Transmission module

134‧‧‧雲端運算模組 134‧‧‧Cloud computing module

14‧‧‧網際網路 14‧‧‧Internet

15‧‧‧管理者終端 15‧‧‧Manager terminal

20‧‧‧培養架 20‧‧‧Cultivator

21‧‧‧外框 21‧‧‧Front frame

22‧‧‧隔板 22‧‧‧Baffle

30‧‧‧室內菌類培養場 30‧‧‧ Indoor fungus breeding grounds

31‧‧‧底面 31‧‧‧ bottom

32‧‧‧頂面 32‧‧‧ top surface

33、34‧‧‧側牆 33, 34‧‧‧ side wall

40‧‧‧反射板 40‧‧‧reflector

50‧‧‧刻度尺 50‧‧‧ scale

60‧‧‧二維條碼元件 60‧‧‧2D barcode components

D1‧‧‧第一距離 D1‧‧‧First distance

D2‧‧‧第二距離 D2‧‧‧Second distance

D3‧‧‧第三距離 D3‧‧‧ third distance

D4‧‧‧寬度 D4‧‧‧Width

G‧‧‧菌類 G‧‧‧ fungi

L‧‧‧預設路徑 L‧‧‧Preset path

S1、S2、S3‧‧‧聲軸 S1, S2, S3‧‧‧ sound axes

圖1是本發明之一實施例的菌類生長影像監控系統的示意圖。 圖2是圖1之方塊示意圖。 圖3A及圖3B是圖1之定位模組的超音波感測器計算室內座標的示意圖。 圖4是本發明之另一實施例的菌類生長影像監控系統的示意圖。 圖5是圖4之根據刻度尺的刻度輔助辨識菌類尺寸的示意圖。 圖6是本發明之另一實施例的菌類生長影像監控系統的方塊示意圖。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing a fungus growth image monitoring system according to an embodiment of the present invention. Figure 2 is a block diagram of Figure 1. 3A and 3B are schematic diagrams showing the calculation of the indoor coordinates of the ultrasonic sensor of the positioning module of FIG. 1. 4 is a schematic view of a fungus growth image monitoring system according to another embodiment of the present invention. Fig. 5 is a schematic view showing the size of the fungus according to the scale of the scale of Fig. 4; Fig. 6 is a block diagram showing a fungus growth image monitoring system according to another embodiment of the present invention.

Claims (10)

一種菌類生長影像監控系統,適用於一室內菌類培養場,該室內菌類培養場至少包括一培養架及承載於該培養架上的菌類,該菌類生長影像監控系統包括: 一空拍機,具有一定位模組與一影像擷取模組,該定位模組具有多個超音波感測元件以進行定位,該影像擷取模組用於拍攝菌類以產生一影像資料;以及 一管理主機,與該空拍機互相通訊,並適於根據一排程軌跡資料庫及該些超音波感測元件的定位資料以驅動該空拍機沿一預設路徑移動。The invention relates to a fungus growth image monitoring system, which is suitable for an indoor fungus culture field. The indoor fungus culture field comprises at least a culture frame and a fungus carried on the culture frame. The fungus growth image monitoring system comprises: an aerial camera with a positioning a module and an image capturing module, the positioning module having a plurality of ultrasonic sensing components for positioning, the image capturing module for capturing bacteria to generate an image data; and a management host, and the empty The cameras communicate with each other and are adapted to drive the aerial camera to move along a predetermined path according to a scheduling trajectory database and positioning data of the ultrasonic sensing components. 如申請專利範圍第1項所述之菌類生長影像監控系統,其中該些超音波感測元件的數量為三個,各該超音波感測元件用於發射一聲束,而各該聲束的聲軸彼此相互垂直,且該些超音波感測元件其中之一的該聲軸朝向該空拍機的下方。The fungus growth image monitoring system of claim 1, wherein the number of the ultrasonic sensing elements is three, each of the ultrasonic sensing elements is configured to emit a sound beam, and each of the sound beams The acoustic axes are perpendicular to one another and the acoustic axis of one of the ultrasonic sensing elements faces the underside of the aerial camera. 如申請專利範圍第2項所述之菌類生長影像監控系統,其中該培養架具有一外框以及連接在該外框內的多個隔板,而該外框具有一拍攝側,該影像擷取模組朝向該拍攝側拍攝位於該些隔板上的菌類,且該菌類生長影像監控系統更包括多個反射板,該些反射板配置於該拍攝側並位於該些隔板,該些超音波感測元件依據該些反射板以進行定位。The fungus growth image monitoring system of claim 2, wherein the culture frame has an outer frame and a plurality of partitions connected to the outer frame, and the outer frame has a photographing side, and the image captures The module is configured to photograph the fungi on the partitions toward the photographing side, and the fungus growth image monitoring system further includes a plurality of reflectors disposed on the photographing side and located in the partitions, the ultrasonic waves The sensing elements are positioned according to the reflectors. 如申請專利範圍第1項所述之菌類生長影像監控系統,其中該培養架具有一外框以及連接在該外框內的多個隔板,而該外框具有一拍攝側,該影像擷取模組朝向該拍攝側拍攝位於該些隔板上的菌類,且該菌類生長影像監控系統更包括多個二維條碼元件,該些二維條碼元件分別配置於該拍攝側並位於該些隔板之相對二端,該影像擷取模組拍攝各該二維條碼元件以產生一定位影像資料,該定位模組接收該定位影像資料以進行定位。The fungus growth image monitoring system of claim 1, wherein the culture frame has an outer frame and a plurality of partitions connected to the outer frame, and the outer frame has a photographing side, and the image captures The module is configured to photograph the fungi on the partitions toward the photographing side, and the fungus growth image monitoring system further includes a plurality of two-dimensional barcode components, and the two-dimensional barcode components are respectively disposed on the photographing side and located on the partitions The image capturing module captures each of the two-dimensional barcode components to generate a positioning image data, and the positioning module receives the positioning image data for positioning. 如申請專利範圍第1項所述之菌類生長影像監控系統,其中該培養架具有一外框以及連接在該外框內的多個隔板,而該外框具有一拍攝側,該影像擷取模組朝向該拍攝側拍攝位於該些隔板上的菌類,且該菌類生長影像監控系統更包括多個刻度尺,該些刻度尺分別配置於該拍攝側並位於該些隔板,該影像擷取模組拍攝各該刻度尺及該菌類以產生一影像尺寸資料,進而回傳至該管理主機。The fungus growth image monitoring system of claim 1, wherein the culture frame has an outer frame and a plurality of partitions connected to the outer frame, and the outer frame has a photographing side, and the image captures The module is configured to photograph the fungi on the partitions toward the photographing side, and the fungus growth image monitoring system further includes a plurality of scales respectively disposed on the photographing side and located on the partitions. The module takes each of the scales and the fungus to generate an image size data, and then returns to the management host. 如申請專利範圍第1項所述之菌類生長影像監控系統,其中該管理主機具有該排程軌跡資料庫、一生長狀態資料庫與一深度學習模型,該管理主機根據該生長狀態資料庫及該深度學習模型判斷該影像資料以產生一判斷結果。The fungus growth image monitoring system of claim 1, wherein the management host has the scheduling trajectory database, a growth state database, and a deep learning model, and the management host according to the growth state database and the The deep learning model determines the image data to produce a judgment result. 如申請專利範圍第1項所述之菌類生長影像監控系統,更包括一雲端伺服器,與該管理主機相互通訊並接收該影像資料,該雲端伺服器具有一生長狀態資料庫與一深度學習模型,而該雲端伺服器根據該生長狀態資料庫及該深度學習模型判斷該影像資料以產生一判斷結果,進而將該判斷結果回傳至該管理主機。For example, the fungus growth image monitoring system described in claim 1 further includes a cloud server that communicates with the management host and receives the image data, and the cloud server has a growth state database and a deep learning model. And the cloud server determines the image data according to the growth state database and the deep learning model to generate a determination result, and then returns the determination result to the management host. 如申請專利範圍第6或7項所述之菌類生長影像監控系統,其中該管理主機更包括一環境感測模組及一環境控制模組,該環境感測模組用以感測該室內菌類培養場的多個環境參數,該環境控制模組依據該判斷結果與該些環境參數以調節該室內菌類培養場內的環境。The fungus growth image monitoring system of claim 6 or 7, wherein the management host further comprises an environment sensing module and an environmental control module, wherein the environment sensing module is configured to sense the indoor fungus The plurality of environmental parameters of the cultivation field are determined, and the environmental control module adjusts the environment in the indoor mushroom culture field according to the determination result and the environmental parameters. 如申請專利範圍第8項所述之菌類生長影像監控系統,其中該環境感測模組為溫度感測器、濕度感測器、照度感測器或二氧化碳感測器的至少其中之一。The fungus growth image monitoring system of claim 8, wherein the environment sensing module is at least one of a temperature sensor, a humidity sensor, an illuminance sensor, or a carbon dioxide sensor. 如申請專利範圍第8項所述之菌類生長影像監控系統,其中該環境控制模組為溫度調節器、濕度調節器、光源或風扇的至少其中之一。The fungus growth image monitoring system of claim 8, wherein the environmental control module is at least one of a temperature regulator, a humidity regulator, a light source or a fan.
TW106125639A 2017-07-28 2017-07-28 Fungus growth monitoring system TWI662505B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106125639A TWI662505B (en) 2017-07-28 2017-07-28 Fungus growth monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106125639A TWI662505B (en) 2017-07-28 2017-07-28 Fungus growth monitoring system

Publications (2)

Publication Number Publication Date
TW201911200A true TW201911200A (en) 2019-03-16
TWI662505B TWI662505B (en) 2019-06-11

Family

ID=66590122

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106125639A TWI662505B (en) 2017-07-28 2017-07-28 Fungus growth monitoring system

Country Status (1)

Country Link
TW (1) TWI662505B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI707215B (en) * 2019-11-08 2020-10-11 國立虎尾科技大學 Method and system for monitoring growth environment of bag cultivated mushrooms
TWI730728B (en) * 2020-04-20 2021-06-11 林裕斌 Instrument sterilization monitoring system and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI793051B (en) * 2022-07-28 2023-02-11 國立虎尾科技大學 Monitoring System and Method of Internet of Things for Mushroom Cultivation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7610122B2 (en) * 2005-08-16 2009-10-27 Deere & Company Mobile station for an unmanned vehicle
JP6486024B2 (en) * 2014-07-02 2019-03-20 三菱重工業株式会社 Indoor monitoring system and method for structure
CN205121347U (en) * 2015-11-06 2016-03-30 中国航空工业经济技术研究院 Agricultural plant protection unmanned aerial vehicle scatters control system
CN205483061U (en) * 2016-02-29 2016-08-17 云南绿飞农业科技有限公司 Agricultural plant protection unmanned aerial vehicle comprehensive tester and unmanned aerial vehicle system
CN105936337A (en) * 2016-04-29 2016-09-14 天津工业大学 Agricultural unmanned aerial vehicle
TWM536779U (en) * 2016-11-03 2017-02-11 Chung Chou Univ Of Science And Tech Crop monitoring system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI707215B (en) * 2019-11-08 2020-10-11 國立虎尾科技大學 Method and system for monitoring growth environment of bag cultivated mushrooms
TWI730728B (en) * 2020-04-20 2021-06-11 林裕斌 Instrument sterilization monitoring system and method

Also Published As

Publication number Publication date
TWI662505B (en) 2019-06-11

Similar Documents

Publication Publication Date Title
US9454907B2 (en) System and method for placement of sensors through use of unmanned aerial vehicles
US7627447B2 (en) Method and apparatus for localizing and mapping the position of a set of points on a digital model
TWI662505B (en) Fungus growth monitoring system
CA2830730C (en) Augmented mobile platform localization
JP2020505694A (en) Indoor mapping and modular control for UAVs and other autonomous vehicles, and related systems and methods
EP4161858A1 (en) Robotic manipulation of pv modules
CN109596118A (en) It is a kind of for obtaining the method and apparatus of the spatial positional information of target object
KR101855864B1 (en) 3d mapping technique construction site management system using drone for considering heavy construction equipment
EP3475872B1 (en) System for taking inventory and estimating the position of objects
CN112654841A (en) System, method and apparatus for calibrating a sensor mounted on a device
CN109669474A (en) The adaptive hovering position optimization algorithm of multi-rotor unmanned aerial vehicle based on priori knowledge
CN105824011A (en) Unmanned aerial vehicle automated guided landing relative position measuring device and method
CN106323242A (en) Space structure detection method and device for unmanned aerial vehicle
US20230071953A1 (en) Systems, and methods for real time calibration of multiple range sensors on a robot
CN113226668A (en) Method and device for production line simulation
CN105526907B (en) The measuring device and measuring method of the space angle in large scale space
WO2019174166A1 (en) Projection mobile phone-based flight control system for unmanned aerial vehicle
WO2020237478A1 (en) Flight planning method and related device
CN110335001B (en) Express delivery piece positioning and guiding system and method
TW201635250A (en) Indoor monitoring system and method thereof
US11216966B2 (en) Systems and methods for automated product measurement
EP2836853B1 (en) Apparatus and method for determining reference elements of an environment
WO2021021869A1 (en) Systems and methods for calibrating nonvisible light emitting sensors using alignment targets
US20230120781A1 (en) Systems, apparatuses, and methods for calibrating lidar sensors of a robot using intersecting lidar sensors
CN108205130A (en) The control method of the transmission power of depth transducer, detection system and sensor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees