TW201910356A - Core-shell particle, method of manufacturing the same and applications thereof - Google Patents

Core-shell particle, method of manufacturing the same and applications thereof Download PDF

Info

Publication number
TW201910356A
TW201910356A TW106125397A TW106125397A TW201910356A TW 201910356 A TW201910356 A TW 201910356A TW 106125397 A TW106125397 A TW 106125397A TW 106125397 A TW106125397 A TW 106125397A TW 201910356 A TW201910356 A TW 201910356A
Authority
TW
Taiwan
Prior art keywords
core
decane
vinyl
shell particle
shell
Prior art date
Application number
TW106125397A
Other languages
Chinese (zh)
Other versions
TWI664197B (en
Inventor
蘇郁蕙
蕭裕霖
邱文英
戴子安
楊振漢
周柏廷
Original Assignee
長興材料工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 長興材料工業股份有限公司 filed Critical 長興材料工業股份有限公司
Priority to TW106125397A priority Critical patent/TWI664197B/en
Publication of TW201910356A publication Critical patent/TW201910356A/en
Application granted granted Critical
Publication of TWI664197B publication Critical patent/TWI664197B/en

Links

Landscapes

  • Graft Or Block Polymers (AREA)

Abstract

The present invention is related to a core-shell particle, method of manufacturing the same and applications thereof. The core of the core-shell particle includes a vinyl polymer. The shell of the core-shell particle includes a hydrophobic silane bonded to a surface of the core via a silane coupling agent. The core-shell particles are applied in a matting material as a matting agent.

Description

核殼粒子,其製造方法及應用Core-shell particle, its manufacturing method and application

本發明係關於核殼粒子及其製造方法。本發明亦關於包含核殼粒子作為消光劑之消光組合物。The present invention relates to core-shell particles and a method of producing the same. The invention also relates to a matte composition comprising core-shell particles as a matting agent.

隨著生活水準提高,相較於光澤表面,消費者在許多日常應用(諸如傢俱、或建築物或車輛之內飾)中已開始偏好消光表面。高光澤度表面反射大部分之光且因此會對觀察者眼睛造成損傷。相反,低光澤或消光表面具有抗反射特性,反射之光較少,因此可以減少此類損傷。另外,低光澤或消光表面上之刮痕因其抗反射特性而較難被察覺。因此,由於消費者需求上升,可預期消光劑出現快速之市場增長。 已知光澤度與物體表面之光滑度有關。因此,一種降低光澤度(亦即,達成消光效果)之方法係藉由在表面上塗覆消光組合物之塗層來增加表面粗糙度。消光組合物含有消光粒子,其在塗層上產生凹凸微結構,藉此可降低光澤度。 二氧化矽粒子(silica)因其價格低及容易獲得而在工業中常用作消光劑。然而,與使用二氧化矽粒子作為消光劑相關之問題係二氧化矽粒子之密度可以高達2.2g/cm3 ,因此二氧化矽粒子在乳液中容易沈降。此使得儲存穩定性不能長期維持。另外,無機二氧化矽粒子與有機樹脂黏合劑之間的相容性不佳。 因此,本發明提供一種新穎之核殼粒子,其不僅具有良好消光能力,而且與有機樹脂黏合劑具有良好相容性。As living standards improve, consumers have begun to prefer matting surfaces in many everyday applications, such as furniture, or interiors of buildings or vehicles, as compared to glossy surfaces. High gloss surfaces reflect most of the light and therefore cause damage to the viewer's eyes. In contrast, low-gloss or matte surfaces have anti-reflective properties and reflect less light, thus reducing such damage. In addition, scratches on low gloss or matte surfaces are less noticeable due to their anti-reflective properties. Therefore, due to rising consumer demand, a rapid market growth of matting agents is expected. Gloss is known to be related to the smoothness of the surface of the object. Thus, one method of reducing gloss (i.e., achieving a matting effect) is to increase surface roughness by coating a coating of the matte composition on the surface. The matte composition contains matting particles which produce a textured microstructure on the coating, thereby reducing gloss. Silica dioxide is commonly used as a matting agent in the industry because of its low price and easy availability. However, the problem associated with the use of cerium oxide particles as a matting agent is that the density of the cerium oxide particles can be as high as 2.2 g/cm 3 , so that the cerium oxide particles are easily settled in the emulsion. This makes storage stability not long-term. In addition, the compatibility between the inorganic cerium oxide particles and the organic resin binder is not good. Accordingly, the present invention provides a novel core-shell particle which not only has good matting ability but also has good compatibility with an organic resin binder.

本發明之一目的係提供一種核殼粒子。該核殼粒子之核心包括乙烯基聚合物。核殼粒子之殼體包括經由矽烷偶合劑鍵結至核心表面之疏水性矽烷。 本發明之另一目的提供一種包含核殼粒子之消光組合物。 本發明之再一目的提供一種製備核殼粒子之方法,該方法包括進行無皂乳液聚合以形成核心及進行溶膠-凝膠反應以形成殼體。 本發明提供至少以下優點:(1)核殼粒子可以藉由無皂乳液聚合合成;該製造方法簡單且對環境友好且可以連續方法進行。另外,無皂乳液聚合方法不影響隨後之乳液聚合。(2)核殼粒子具有高疏水性及低密度,因此可隆起至膜表面,增加表面粗糙度且降低表面光澤度。(3)由於有機核心之存在,因此核殼粒子不僅具有良好消光能力,而且與有機樹脂黏合劑具有良好相容性,因此,相較於習知消光組合物,可以改良消光組合物在儲存或輸送期間之穩定性。(4)含有本發明核殼粒子之消光組合物具有優良消光效果。One object of the present invention is to provide a core-shell particle. The core of the core-shell particles includes a vinyl polymer. The shell of the core-shell particle comprises a hydrophobic decane bonded to the core surface via a decane coupling agent. Another object of the present invention is to provide a matte composition comprising core-shell particles. Still another object of the present invention is to provide a method of preparing core-shell particles, which comprises performing soap-free emulsion polymerization to form a core and performing a sol-gel reaction to form a shell. The present invention provides at least the following advantages: (1) Core-shell particles can be synthesized by soap-free emulsion polymerization; the method of manufacture is simple and environmentally friendly and can be carried out in a continuous process. In addition, the soap-free emulsion polymerization process does not affect subsequent emulsion polymerization. (2) The core-shell particles have high hydrophobicity and low density, and thus can be raised to the surface of the film to increase surface roughness and reduce surface gloss. (3) Due to the presence of the organic core, the core-shell particles not only have good extinction ability, but also have good compatibility with the organic resin binder, and therefore, the matting composition can be improved in storage or compared with the conventional matting composition. Stability during delivery. (4) The matte composition containing the core-shell particles of the present invention has an excellent matting effect.

本案發明人經過廣泛而深入地研究後發現一種核殼粒子,其包含:含乙烯基聚合物之核心及含疏水性矽烷之殼體,且該疏水性矽烷經由矽烷偶合劑鍵結至核心表面。 在一個實施例中,本發明核殼粒子之核心之玻璃轉移溫度(Tg)在0℃至60℃範圍內,較佳在5℃至50℃範圍內,更佳20℃至40℃。 本案發明人已發現,當選用Tg在0℃至60℃範圍內之聚合物作為核殼粒子之核心時,所得消光組合物具有較佳的消光效果。不限於理論,當核心聚合物之Tg過低(例如小於0℃)時,核心聚合物之強度不足以保持球形;而當核心聚合物之Tg過高(例如高於60℃)時,核心聚合物之硬度會過高,此會引起消光組合物之成膜能力不良。另外,當核心聚合物之Tg過低(例如小於0℃)時,核殼粒子在室溫下傾向於彼此聚集且不能很好地分散於組合物中,因此消光效果變差;另一方面,當核心聚合物之Tg過高(例如高於60℃)時,核殼粒子與黏合劑樹脂相容性較差,因此較難以形成均一且連續之膜,且消光效果將變差。 上述核心聚合物之玻璃轉移溫度(Tg),可藉由形成該核心聚合物之單體種類或其比例(如,重量比)來調整。 在一個實施例中,本發明核心聚合物可為共聚物或均聚物。 在一個實施例中,本發明核殼粒子之核心包含乙烯基聚合物。 在另一個實施例中,本發明核殼粒子之核心實質上由乙烯基聚合物所組成。 本發明之乙烯基聚合物係衍生自含有碳-碳雙鍵之乙烯基單體。可用於本發明之乙烯基單體例如但不限於:苯乙烯類單體、(甲基)丙烯酸酯類單體、乙烯酯單體、烷基乙烯基醚單體、(甲基)丙烯醯胺單體、腈單體或其組合。除上述乙烯基單體之外,本發明之乙烯基聚合物可視情況含有衍生自其它單體之單元。 苯乙烯類單體之實例包括,但不限於:苯乙烯、α-甲基苯乙烯、對甲基苯乙烯、鄰甲基苯乙烯、間甲基苯乙烯、乙烯基甲苯、乙基苯乙烯、丙基苯乙烯、丁基苯乙烯、戊基苯乙烯、己基苯乙烯、庚基苯乙烯、辛基苯乙烯以及其類似物。 (甲基)丙烯酸酯類單體之實例包括,但不限於:丙烯酸甲酯、甲基丙烯酸甲酯、丙烯酸乙酯、甲基丙烯酸乙酯、丙烯酸丙酯、甲基丙烯酸丙酯、丙烯酸丁酯、甲基丙烯酸丁酯、丙烯酸戊酯、甲基丙烯酸戊酯、丙烯酸2-苯氧基乙酯、乙氧基化丙烯酸2-苯氧基乙酯、2-(2-乙氧基乙氧基)乙基丙烯酸酯、環狀三羥甲基丙烷縮甲醛丙烯酸酯、丙烯酸β-羧基乙酯、丙烯酸月桂酯、甲基丙烯酸月桂酯、丙烯酸異辛酯、甲基丙烯酸異辛酯、丙烯酸十八烷酯、甲基丙烯酸十八烷酯、丙烯酸異癸酯、甲基丙烯酸異癸酯、丙烯酸異冰片酯、甲基丙烯酸異冰片酯、丙烯酸苯甲酯、甲基丙烯酸苯甲酯、(甲基)丙烯酸2-羥乙酯磷酸酯、丙烯酸羥乙酯、甲基丙烯酸2-羥乙酯以及其類似物。 乙烯酯單體之實例包括,但不限於:乙酸乙烯酯、丙酸乙烯酯、丁酸乙烯酯以及其類似物。 烷基乙烯基醚單體之實例包括,但不限於:甲基乙烯基醚、乙基乙烯基醚以及其類似物。 (甲基)丙烯醯胺單體之實例包括,但不限於:N-甲基丙烯醯胺、N-甲基甲基丙烯醯胺、N-乙基丙烯醯胺、N-乙基甲基丙烯醯胺。 腈單體之實例包括,但不限於:丙烯腈、甲基丙烯腈以及其類似物。 聚合物之單體種類及其比例貢獻至該聚合物之玻璃轉移溫度(Tg)。所屬技術領域中具有通常知識者可以根據弗洛里-福克斯方程式(FloryFoxEquation)得到聚合物之玻璃轉移溫度且相應地調整單體種類及比例:其中Tg 係聚合物之玻璃轉移溫度;W1 、W2 、…Wn 係組分1、2…n之重量分率;且Tg1 、Tg2 、…Tgn 係組分1、2…n之玻璃轉移溫度。 在根據本發明之實施例中,可以調整單體比例(重量比),使核心聚合物之Tg在0℃至60℃範圍內,例如0℃、5℃、10℃、20℃、30℃、40℃、50℃或60℃。 在一個實施例中,本發明之含乙烯基聚合物之核心的Tg在0℃至60℃範圍內,較佳在5℃至50℃範圍內,更佳20℃至40℃。該核心的Tg可藉由形成該乙烯基聚合物之單體種類或其比例來調整,舉例而言,本發明之乙烯基聚合物可衍生自至少下述單體:苯乙烯類單體及(甲基)丙烯酸酯類單體,再藉由適度地調整單體比例(例如,重量比)獲得所欲之Tg。上述的(甲基)丙烯酸酯類單體可為(甲基)丙烯酸的C1-C18烷基酯,較佳為(甲基)丙烯酸的C1-C10烷基酯,更佳為(甲基)丙烯酸的C1-C6烷基酯。 在一個實施例中,本發明之乙烯基聚合物可為苯乙烯-(甲基)丙烯酸酯共聚物(styrene-(meth)acrylate copolymer),諸如聚苯乙烯-丙烯酸甲酯(P(St-MA))、聚苯乙烯-丙烯酸乙酯(P(St-EA))、聚苯乙烯-丙烯酸正丁酯(P(St-BA))、聚苯乙烯-丙烯酸正丁酯-丙烯酸(P(St-BA-AA))。 根據本發明,乙烯基聚合物可以用疏水性矽烷達到官能化,從而讓被合成之粒子提供一疏水性表面,亦即疏水性殼體。由於殼體之疏水性,因此核殼粒子在成膜過程中將隆起至膜的表面,產生奈米級的表面粗糙度並獲得理想的消光效果。 根據本發明,適合之疏水性矽烷為長碳鏈烷基矽烷,上述長碳鏈烷基係指具有3至25個,較佳5至20個,更佳8至18個碳原子烷基。長碳鏈烷基可以未經取代或經鹵基(較佳係氟)取代。長碳鏈烷基可為直鏈或分支鏈烷基,但具有至少3個排列成直鏈之碳原子。長碳鏈烷基較佳係直鏈烷基。 在本發明之一個實施例中,疏水性矽烷係長碳鏈烷基矽烷且具有下式(I): (R2 )y Si(OR1 )4-y (I) 其中: R1 係C1 -C3 烷基,較佳係甲基或乙基; R2 係-(CH2 )2 -R3 ; R3 係具有1至23個碳原子之烷基或全鹵烷基;及 y係整數1至3,較佳係1。 在本發明之一個實施例中,R3 係烷基或全鹵烷基,其具有1至23個碳原子,較佳3至18個碳原子且更佳6至16個碳原子。 在本發明之一個實施例中,R3 係為全氟烷基,其具有3至10個碳原子、較佳4至8個碳原子、更佳5至7個碳原子。 例示性疏水性矽烷包括,但不限於:1H, 1H, 2H, 2H全氟辛基三甲氧基矽烷、1H, 1H, 2H, 2H全氟辛基三乙氧基矽烷、三甲氧基(丙基)矽烷、三甲氧基(辛基)矽烷(OTS-矽烷)、三甲氧基(十八烷基)矽烷(ODS-矽烷)、癸基(三乙氧基)矽烷、十二烷基三乙氧基矽烷、三甲氧基(十四烷基)矽烷、十六烷基三甲氧基矽烷、異丁基(三甲氧基)矽烷及其組合。 在本發明之一個實施例中,以該核殼粒子之總重量計,該疏水性矽烷之量係在5wt%至30wt%範圍內,一般而言,鍵結至核心之疏水性矽烷愈多,隆起至膜表面之核殼粒子則愈多,從而增加表面粗糙度且改良消光效果。然而,當疏水性矽烷之量超過例如30wt%時,核殼粒子可能彼此聚集,此對消光效果造成不利之影響。另一方面,氟原子之強凝聚力或長碳鏈所產生之空間位阻可能阻礙具有氟原子或長碳鏈之疏水性矽烷附著至核殼粒子。因此,疏水性矽烷之量不應過高。此外,當疏水性矽烷之量小於例如5wt%時,疏水性矽烷將難以附著至核殼粒子。在本發明之一個實施例中,以核殼粒子之總重量計,疏水性矽烷之量係在5wt%至30wt%範圍內,例如5wt%、6wt%、8wt%、10wt%、12wt%、14wt%、16wt%、18wt%、20wt%、22wt%、24wt%、26wt%、28wt%或30wt%。 在本發明中,矽烷偶合劑用於改善核殼粒子的核心與殼體的界面性質,改質核心表面,以使核心表面經由矽烷偶合劑化學鍵結至疏水性矽烷。本發明之矽烷偶合劑具有至少一個烯系不飽和基團及至少一個羥基或烷氧基。矽烷偶合劑之烯系不飽和基團可與核心表面上剩餘之乙烯基聚合物的碳碳雙鍵經由加成聚合發生反應,以在矽烷偶合劑與核心之乙烯基聚合物之間形成化學鍵。另一方面,矽烷偶合劑之烷氧基可與存在於反應介質中之水發生反應而還原成羥基。矽烷偶合劑之羥基(包括來自烷氧基之羥基)經歷溶膠-凝膠反應,而在矽烷偶合劑與殼體之疏水性矽烷之間形成化學鍵。 本發明人發現,藉由使用可化學鍵結至核心之乙烯基聚合物及殼體之疏水性矽烷二者的矽烷偶合劑,所得核殼粒子具有高疏水性且可隆起至膜表面以提高膜之粗糙度,增加物理光散射,而提高消光性。此外,與本領域習用的二氧化矽顆粒相比,有機核心使得本發明核殼粒子具有較低的密度。由於本發明之核殼粒子具有較低之密度及核殼結構的緊密排列,本發明之核殼粒子可與黏合劑樹脂相容,因此含有本發明核殼粒子之消光組合物較為穩定。另外,用於製備本發明核殼粒子之方法容易操控。鍵結至核心表面之疏水性矽烷之量可容易控制或調整,且因此更容易設計及製備具有所需特性之核殼粒子。 例示性矽烷偶合劑包括,但不限於:苯乙烯基乙基三甲氧基矽烷、甲基丙烯醯氧基丙基-三甲氧基矽烷、經三乙氧基矽烷基修飾之聚-1,2-丁二烯、乙烯基乙氧基矽氧烷均聚物、乙烯基甲氧基矽氧烷均聚物、烯丙基三甲氧基矽烷、乙烯基三異丙氧基矽烷、(3-丙烯醯氧基丙基)三甲氧基矽烷或三乙氧基乙烯基矽烷。 在一個實施例中,矽烷偶合劑係具有下式(II)之乙烯基矽烷: (R4 )p Si(OR5 )4-p (II) 其中R4 係烯系不飽和基團;R5 係H或C1 -C3 烷基(例如甲基、乙基或丙基);且p係整數1至3,較佳係1。烯系不飽和基團之實例包括,但不限於:乙烯基、丙烯基、丁烯基、乙烯基苯基、丙烯基苯基、乙烯基苯基乙基、丙烯氧基甲基、丙烯氧基乙基、丙烯氧基丙基、丙烯氧基丁基、丙烯氧基戊基、丙烯氧基己基、甲基丙烯氧基甲基、甲基丙烯氧基乙基、甲基丙烯氧基丙基、甲基丙烯氧基丁基、甲基丙烯氧基戊基、甲基丙烯氧基己基、下式(7)之基團及下式(8)之基團:其中R12 係伸苯基、直鏈或分支鏈C1 -C8 伸烷基、直鏈或分支鏈C2 -C8 伸烯基、C3 -C8 伸環烷基或直鏈或分支鏈C1 -C8 羥基伸烷基;且R13 係氫或直鏈或分支鏈C1 -C4 烷基。 矽烷偶合劑之量不受特定限制且可依據疏水性矽烷之所需量調整。在本發明之實施例中,以核殼粒子之總重量計,矽烷偶合劑之量係在5wt%至25wt%範圍內,例如5wt%、6wt%、8wt%、10wt%、12wt%、14wt%、16wt%、18wt%、20wt%、22wt%或24wt%。發現當矽烷偶合劑之量超過例如25wt%時,矽烷偶合劑本身可能會發生溶膠-凝膠反應,此對矽烷偶合劑與疏水性矽烷之間的溶膠-凝膠反應造成不利影響。相比之下,當矽烷偶合劑之量小於例如5wt%時,經由矽烷偶合劑化學鍵結至核心之乙烯基聚合物的疏水性矽烷之量可能不足。 在本發明之一些實施例中,核殼粒子之平均粒度係10至1,000nm,特定而言,較佳係10至500nm,更佳係10至300nm。 本發明之核殼粒子可以藉由此項技術中已知之任何適合方法製備。在一個實施例中,本發明之核殼粒子係藉由進行無皂乳液聚合以形成核心及進行溶膠-凝膠方法以形成殼體來製備。舉例而言,本發明之核殼粒子可以藉由例如以下步驟製備: (a)使乙烯基單體在水溶液中聚合以形成乙烯基聚合物粒子; (b)經由添加矽烷偶合劑使乙烯基聚合物粒子膨潤; (c)使乙烯基聚合物粒子與矽烷偶合劑發生反應以使矽烷偶合劑鍵結至乙烯基聚合物粒子之表面;及 (d)使疏水性矽烷與鍵結至乙烯基聚合物粒子表面之矽烷偶合劑發生反應。 技術中已知可在乳液聚合中使用界面活性劑(或乳化劑);然而,此技術存在一些缺點,包括環境污染及聚合後移除界面活性劑(或乳化劑)之複雜性。根據本發明之較佳實施例,在步驟(a)中,藉由無皂乳液聚合(亦即不使用界面活性劑或乳化劑)製備核心,該無皂乳液聚合包含使乙烯基單體在水溶液中,在高溫(例如75℃)下、在氮氣氛圍下及在起始劑存在下聚合直至轉化率達到60%至80%。本文所提及之轉化率定義如下:轉化率 (%)=[( 反應物之單體總數 )-( 產物中之相應單元之總數 )]/[ 反應物之單體總數 ] 無皂乳液聚合之不完全轉化使核心中保留足量之碳碳雙鍵。由於來自單體之碳碳雙鍵並未完全地消耗,因此未反應之碳碳雙鍵可以與乙烯基矽烷偶合劑在後續步驟中反應並形成本發明之核殼粒子。與乳液聚合相比,無皂乳液聚合不僅可以減少如上文所述之缺點,而且提供下述優點,諸如粒度之單分散性(monodispersity)及所得聚合物之較小分子量。另外,無皂乳液聚合之聚合速率比乳液聚合之聚合速率慢得多,因此,無皂乳液聚合適於獲得預定之轉化率。 在步驟(b)中,經由添加矽烷偶合劑、較佳經由添加溶解於溶劑(諸如甲醇以及其類似物)中之矽烷偶合劑及苯乙烯,而使乙烯基聚合物粒子膨潤。由於新添加之苯乙烯與乙烯基聚合物中未反應之乙烯基單體(例如,在聚苯乙烯-丙烯酸正丁酯聚合物之實例下中之苯乙烯及丙烯酸正丁酯)之間存在親和力,添加苯乙烯有益於將矽烷偶合劑導向乙烯基聚合物粒子。以核心粒子之總重量計,苯乙烯之量較佳在3wt%至5wt%範圍內,例如3wt%、3.3wt%、3.5wt%、3.8wt%、4wt%、4.3wt%、4.5wt%、4.8wt%或5wt%。由於苯乙烯本身具有高疏水性及分子間作用力(π-π吸引力),若苯乙烯添加量過高,易造成苯乙烯本身自聚,並使矽烷偶合劑本身發生溶膠凝膠反應,因此,苯乙烯之含量不宜過高。。在甲醇或類似溶劑存在下,苯乙烯可以與矽烷偶合劑一起移動。以核殼粒子之總重量計,矽烷偶合劑之量較佳在5wt%至25wt%範圍內,例如5wt%、8wt%、10wt%、13wt%、15wt%、18wt%、20wt%、23wt%或25wt%。過量的矽烷偶合劑可能導致矽烷偶合劑本身進行溶膠凝膠反應。矽烷偶合劑之量不足將會使鍵結至核心之疏水性矽烷之量降低,從而影響消光效果。 在步驟(c)中,使乙烯基聚合物粒子與矽烷偶合劑在起始劑存在下發生反應,以使得矽烷偶合劑鍵結至乙烯基聚合物粒子之表面。 適用於步驟(a)及(c)中之起始劑可例如但不限於過氧化物。過氧化物之實例包括,但不限於:第三丁基過氧化氫、過氧化氫、過硫酸銨、過硫酸鉀及過硫酸鈉。 在步驟(d)中,疏水性矽烷與鍵結至乙烯基聚合物粒子表面之矽烷偶合劑在溶膠-凝膠方法中發生反應且形成本發明之核殼粒子。疏水性矽烷之適合量如上文所述。若系統中存在較多的疏水性矽烷,核心較可能遇到疏水性矽烷且與其進行溶膠-凝膠反應。相反,若疏水性矽烷之量過少,則僅有少數疏水性矽烷鍵結至核心表面,從而對消光效果造成不利影響。 溶膠-凝膠反應之優點如下: (1)可以藉由蒸餾或其他簡單純化方法移除前驅物來獲得高純度產物。 (2)低反應溫度,可以防止材料與容器壁發生反應。 (3)可以藉由改變實驗條件來精確控制粒子之形狀及尺寸。 (4)溶膠-凝膠反應可以使用比面積較大之奈米級催化劑催化。 可視疏水性矽烷之種類及所需之粒子特性(例如粒度)在酸或鹼環境下進行溶膠-凝膠反應。在酸性條件下,疏水性矽烷之水解速率較快,但是酸性條件下之縮合速率則慢得多。快速水解速率及緩慢縮合速率導致較小的核殼粒子。相比之下,在鹼性條件下,縮合速率比水解速率快,導致核殼粒子較大。溶膠-凝膠反應可在酸性或鹼性條件下進行,其所涉之pH值可以根據所需反應速率以及所需之核殼粒子特性而決定。在本發明之一個實施例中,溶膠-凝膠反應在2至11之pH值下進行,例如:3、4、5、6、7、8、9或10之pH值。 本發明亦提供一種消光組合物,其包含本發明之核殼粒子作為消光劑。在本發明之一實施例中,消光組合物包含上述之核殼粒子及黏合劑樹脂。 本發明之黏合劑樹脂用於分散核殼粒子,適用於本發明之黏合劑樹脂可以係任何適合之樹脂,例如熱固性樹脂。熱固性樹脂之實例包括,但不限於:丙烯酸類或丙烯酸酯樹脂、甲基丙烯酸類或甲基丙烯酸酯樹脂、聚醯胺樹脂、聚胺基甲酸酯樹脂、聚酯樹脂、聚醯亞胺樹脂、醇酸樹脂、環氧樹脂、酚系樹脂或其組合,較佳係丙烯酸酯樹脂或甲基丙烯酸酯樹脂。 在本發明之一些實施例中,黏合劑樹脂係丙烯酸乳液(Etersol1135-9;EternalMaterialsCo.Ltd.)。 在本發明之一些實施例中,以消光組合物固含量總重量計,消光組合物包含:3wt%至25wt%、較佳5wt%至20wt%且更佳10wt%至17wt%之核殼粒子。 本發明之消光組合物可視情況包括水、溶劑或此項技術中已知之適合添加劑,諸如成膜劑、界面活性劑、填充劑、顏料或其他加工助劑。 本發明將結合以下實施例加以描述。除以下實施例之外,本發明可以其他方法進行而不背離本發明之精神;本發明之範圍不應僅根據說明書之揭示內容解釋及限定。另外,除非本文中另有說明,否則說明書中所用之術語「一(a/an)」、「該(the)」以及其類似術語(尤其在隨附申請專利範圍)應該理解為包括單數形式與複數形式。「約」一詞用於描述量測值,包括可接受之誤差,此部分地視一般技術者如何進行量測而定。關於兩項或超過兩項之清單之「或」一詞涵蓋所有以下詞之解釋:清單中之任一項、清單中之所有項,及清單中之各項之任何組合。另外,當用於本申請案中時,詞語「本文中」、「上文」、「下文」及類似輸入之詞語應指本申請案整體而非本申請案之任何特定部分。實例 實例 1 消光組合 物之製備 1. 經由無皂乳液聚合形成乙烯基聚合物核心 向反應器中添加200g去離子水及總重量係20g之苯乙烯(AcrosOrganics,99%純度)及丙烯酸丁酯(AcrosOrganics,99%純度)。對於各樣品而言,苯乙烯與丙烯酸丁酯之重量比記錄於表1中。在300rpm攪拌下,使混合物在氮氣氛圍下脫氣30分鐘且接著加熱至75℃,隨後添加溶解於20g去離子水中之1g過硫酸鉀。使混合物在75℃保持4小時,從而以60%至70%之轉化率產生(P(St-BA))共聚物核心。2. 經由溶膠 - 凝膠反應形成殼體 經由添加溶解於40g甲醇中之三乙氧基乙烯基矽烷(矽烷偶合劑;AcrosOrganics,97%純度)及1.6g苯乙烯(15.2mmol;AcrosOrganics,99%純度),使P(St-BA)共聚物乳膠粒子在室溫下膨潤24小時。對於各樣品而言,矽烷偶合劑之量記錄於表1中。在300rpm攪拌下,使混合物在氮氣氛圍下脫氣30分鐘且接著加熱至75℃,隨後添加溶解於40g去離子水中之2g過硫酸鉀。使混合物在75℃保持24小時,以產生表面上經三乙氧基乙烯基矽烷修飾之P(St-BA)共聚物乳膠粒子。 將經修飾之P(St-BA)共聚物乳膠粒子冷卻至室溫且接著與溶解於40g甲醇中之疏水性矽烷摻混。用於各樣品之疏水性矽烷之種類及量記錄於表1中。在室溫下進行溶膠-凝膠反應2小時,以產生具有疏水性矽烷殼體及P(St-BA)共聚物核心之核殼粒子。3. 消光組合 物之製備 將所製備之核殼粒子與含有1wt%陰離子型界面活性劑之丙烯酸乳液(Etersol1135-9;EternalMaterialsCo. Ltd.)摻混以製備消光組合物。陰離子型界面活性劑之種類不受特別限制且可為適於本發明消光組合物之任何陰離子型界面活性劑。本文提供之實例使用十二烷基硫酸鈉(SDS)作為陰離子型界面活性劑。另外,摻混方法不受特別限制且可例如藉由以下步驟進行: (a)將50gEtersol1135-9丙烯酸乳液倒入250ml燒杯中並添加1% SDS界面活性劑溶液(包含1g SDS及99g水),在1000rpm攪拌速度下、在40至45℃水浴下攪拌約3分鐘製備丙烯酸類乳液。 (b)將3.75g核殼粒子添加至(a)所製備之丙烯酸乳液中。 (c)接著將5g成膜劑(二丙二醇正丁基醚(DPnB))添加至含有核殼粒子之丙烯酸乳液中。 (d)將混合物在1000rpm攪拌速度下充分攪拌30分鐘且靜置1天。實例 2 消光效果 之分析 藉由使用1/4"×16"繞線桿(wire wound rod; RD Specialties)將消光組合物塗佈至玻璃基板上且在玻璃基板上形成膜。在烘箱中,在50℃下將玻璃基板及膜加熱3天以便乾燥且自膜中移除DPnB。根據ASTMD523,藉由Novo-Gloss60°光澤度計測量膜之60°光澤度,以評估消光組合物之消光效果。結果記錄於表1中(60°光澤度:◎10至40;○41至70;Δ71至90;⤬>90)。 表1 1 以核殼粒子 之總重量計 ( 樣品 1 為例 核殼粒子 之總重量係 20 /( 100 %- 12 %- 14 %)= 27 . 03g ) 2 F - 矽烷 1H, 1H, 2H, 2H 全氟辛基三乙氧基矽烷 3 18 - 矽烷 三甲氧基 ( 十八烷基 ) 矽烷 ( ODS - 矽烷 ) 4 8 - 矽烷 三甲氧基 ( 辛基 ) 矽烷 ( OTS - 矽烷 ) 5 3 - 矽烷 三甲氧基 ( 丙基 ) 矽烷 6 基於說明書中所描述 弗洛 - 福克斯方程式獲得之理論 Tg 溫度 其中聚苯乙烯之 Tg 373K 且聚丙烯酸丁酯之 Tg 219K 比較樣品1之消光組合物含有無任何表面改性之P(St-BA)粒子。比較樣品1製備之膜之60°光澤度過高,顯示無任何表面改性之P(St-BA)粒子無法提供所需之消光效果。 樣品1至5之消光組合物含有P(St-BA)粒子,其表面經以核殼粒子總重量計14wt%之F-矽烷修飾。樣品1至5製備之膜之60°光澤度低於比較實例製備之膜之60°光澤度,證明經F-矽烷修飾之P(St-BA)粒子可以達成所需之消光效果。 樣品6至11之消光組合物含有P(St-BA)粒子,其表面經不同量之長碳鏈烷基矽烷(OTS-矽烷或ODS矽烷)修飾。由樣品6至10製備之膜之60°光澤度等級為「○」或「Δ」,證明經長碳鏈烷基矽烷修飾之P(St-BA)粒子可以達成所需之消光效果。 比較樣品2及3及樣品1至5製備之膜之消光結果顯示,當P(St-BA)粒子之Tg小於0℃(例如-10.8℃)或超過60℃(例如75.5℃)時,消光效果變差。 由樣品6至10及比較樣品4製備之膜之60°光澤度值,發現使用之疏水性矽烷愈多,消光效果愈佳;然而,當疏水性矽烷之量超過30wt% (例如35wt%)時,消光效果變差且可以觀測到粒子聚集。The inventors of the present invention have extensively and intensively studied to find a core-shell particle comprising: a core comprising a vinyl polymer and a shell containing hydrophobic decane, and the hydrophobic decane is bonded to the core surface via a decane coupling agent. In one embodiment, the core transition temperature (Tg) of the core of the core-shell particles of the present invention is in the range of 0 ° C to 60 ° C, preferably in the range of 5 ° C to 50 ° C, more preferably 20 ° C to 40 ° C. The inventors of the present invention have found that when a polymer having a Tg in the range of 0 ° C to 60 ° C is selected as the core of the core-shell particles, the resulting matting composition has a better matting effect. Without being bound by theory, when the Tg of the core polymer is too low (eg, less than 0 ° C), the strength of the core polymer is insufficient to maintain a spherical shape; and when the Tg of the core polymer is too high (eg, above 60 ° C), core polymerization The hardness of the material may be too high, which may cause poor film forming ability of the matting composition. In addition, when the Tg of the core polymer is too low (for example, less than 0 ° C), the core-shell particles tend to aggregate with each other at room temperature and are not well dispersed in the composition, so that the matting effect is deteriorated; When the Tg of the core polymer is too high (for example, higher than 60 ° C), the core-shell particles are less compatible with the binder resin, so that it is more difficult to form a uniform and continuous film, and the matting effect will be deteriorated. The glass transition temperature (Tg) of the above core polymer can be adjusted by the type of monomer forming the core polymer or a ratio thereof (e.g., weight ratio). In one embodiment, the core polymer of the present invention can be a copolymer or a homopolymer. In one embodiment, the core of the core-shell particles of the present invention comprises a vinyl polymer. In another embodiment, the core of the core-shell particles of the present invention consists essentially of a vinyl polymer. The vinyl polymer of the present invention is derived from a vinyl monomer having a carbon-carbon double bond. Vinyl monomers useful in the present invention are, for example but not limited to, styrenic monomers, (meth) acrylate monomers, vinyl ester monomers, alkyl vinyl ether monomers, (meth) acrylamide Monomer, nitrile monomer or a combination thereof. In addition to the above vinyl monomers, the vinyl polymers of the present invention may optionally contain units derived from other monomers. Examples of styrenic monomers include, but are not limited to, styrene, alpha-methyl styrene, p-methyl styrene, o-methyl styrene, m-methyl styrene, vinyl toluene, ethyl styrene, Propyl styrene, butyl styrene, amyl styrene, hexyl styrene, heptyl styrene, octyl styrene, and the like. Examples of (meth) acrylate monomers include, but are not limited to, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, butyl acrylate. , butyl methacrylate, amyl acrylate, amyl methacrylate, 2-phenoxyethyl acrylate, 2-phenoxyethyl ethoxylate, 2-(2-ethoxyethoxy) Ethyl acrylate, cyclic trimethylolpropane formal acrylate, β-carboxyethyl acrylate, lauryl acrylate, lauryl methacrylate, isooctyl acrylate, isooctyl methacrylate, acrylic acid Alkyl ester, octadecyl methacrylate, isodecyl acrylate, isodecyl methacrylate, isobornyl acrylate, isobornyl methacrylate, benzyl acrylate, benzyl methacrylate, (methyl 2-hydroxyethyl acrylate phosphate, hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, and the like. Examples of vinyl ester monomers include, but are not limited to, vinyl acetate, vinyl propionate, vinyl butyrate, and the like. Examples of alkyl vinyl ether monomers include, but are not limited to, methyl vinyl ether, ethyl vinyl ether, and the like. Examples of (meth)acrylamide monomers include, but are not limited to, N-methyl acrylamide, N-methyl methacrylamide, N-ethyl acrylamide, N-ethyl methacryl Guanamine. Examples of nitrile monomers include, but are not limited to, acrylonitrile, methacrylonitrile, and the like. The monomer species of the polymer and its proportion contribute to the glass transition temperature (Tg) of the polymer. Those of ordinary skill in the art can obtain the glass transition temperature of the polymer according to the FloryFoxEquation and adjust the monomer type and ratio accordingly: Wherein the glass transition temperature of the T g polymer; W 1 , W 2 , ... W n is the weight fraction of the components 1, 2...n; and T g1 , T g2 , ... T gn components 1, 2... The glass transition temperature of n. In an embodiment according to the present invention, the monomer ratio (weight ratio) may be adjusted such that the core polymer has a Tg in the range of 0 ° C to 60 ° C, such as 0 ° C, 5 ° C, 10 ° C, 20 ° C, 30 ° C, 40 ° C, 50 ° C or 60 ° C. In one embodiment, the core of the vinyl-containing polymer of the present invention has a Tg in the range of 0 ° C to 60 ° C, preferably in the range of 5 ° C to 50 ° C, more preferably 20 ° C to 40 ° C. The Tg of the core can be adjusted by the type of monomer forming the vinyl polymer or a ratio thereof. For example, the vinyl polymer of the present invention can be derived from at least the following monomers: styrene monomer and The methyl acrylate monomer is then subjected to a moderate adjustment of the monomer ratio (for example, a weight ratio) to obtain a desired Tg. The above (meth) acrylate monomer may be a C1-C18 alkyl (meth) acrylate, preferably a C1-C10 alkyl (meth) acrylate, more preferably a (meth) acrylate. C1-C6 alkyl ester. In one embodiment, the vinyl polymer of the present invention may be a styrene-(meth)acrylate copolymer such as polystyrene-methyl acrylate (P(St-MA) )), polystyrene - ethyl acrylate (P (St-EA)), polystyrene - n-butyl acrylate (P (St-BA)), polystyrene - n-butyl acrylate - acrylic acid (P (St) -BA-AA)). In accordance with the present invention, the vinyl polymer can be functionalized with a hydrophobic decane to provide the hydrophobic particles with a hydrophobic surface, i.e., a hydrophobic shell. Due to the hydrophobic nature of the shell, the core-shell particles will bulge to the surface of the film during film formation, producing a nano-scale surface roughness and achieving a desired matting effect. According to the present invention, a suitable hydrophobic decane is a long-chain alkyl decane, and the above-mentioned long-chain alkyl group means an alkyl group having 3 to 25, preferably 5 to 20, more preferably 8 to 18 carbon atoms. The long carbon alkyl group may be unsubstituted or substituted with a halogen group (preferably fluorine). The long carbon chain alkyl group may be a linear or branched alkyl group, but has at least 3 carbon atoms arranged in a straight chain. The long carbon chain alkyl group is preferably a linear alkyl group. In one embodiment of the present invention, the hydrophobic decane is a long carbon chain alkyl decane and has the following formula (I): (R 2 ) y Si(OR 1 ) 4-y (I) wherein: R 1 is C 1 - C 3 alkyl, preferably methyl or ethyl; R 2 -(CH 2 ) 2 -R 3 ; R 3 is an alkyl or perhaloalkyl group having 1 to 23 carbon atoms; and y is an integer 1 to 3, preferably 1 is preferred. In one embodiment of the invention, R 3 is an alkyl or perhaloalkyl group having from 1 to 23 carbon atoms, preferably from 3 to 18 carbon atoms and more preferably from 6 to 16 carbon atoms. In one embodiment of the invention, R 3 is a perfluoroalkyl group having from 3 to 10 carbon atoms, preferably from 4 to 8 carbon atoms, more preferably from 5 to 7 carbon atoms. Exemplary hydrophobic decanes include, but are not limited to, 1H, 1H, 2H, 2H perfluorooctyltrimethoxydecane, 1H, 1H, 2H, 2H perfluorooctyltriethoxydecane, trimethoxy (propyl) ) decane, trimethoxy(octyl)decane (OTS-decane), trimethoxy(octadecyl)decane (ODS-decane), mercapto (triethoxy)decane, dodecyltriethoxy Base decane, trimethoxy (tetradecyl) decane, cetyltrimethoxy decane, isobutyl (trimethoxy) decane, and combinations thereof. In one embodiment of the present invention, the amount of the hydrophobic decane is in the range of 5 wt% to 30 wt%, based on the total weight of the core shell particles, and generally, the more hydrophobic decane bonded to the core, The more core-shell particles that bulge to the surface of the film, the more the surface roughness is increased and the matting effect is improved. However, when the amount of the hydrophobic decane exceeds, for example, 30% by weight, the core-shell particles may aggregate with each other, which adversely affects the matting effect. On the other hand, the strong cohesive force of the fluorine atom or the steric hindrance generated by the long carbon chain may hinder the adhesion of the hydrophobic decane having a fluorine atom or a long carbon chain to the core-shell particles. Therefore, the amount of hydrophobic decane should not be too high. Further, when the amount of the hydrophobic decane is less than, for example, 5 wt%, the hydrophobic decane will be difficult to adhere to the core-shell particles. In one embodiment of the invention, the amount of hydrophobic decane is in the range of 5 wt% to 30 wt%, such as 5 wt%, 6 wt%, 8 wt%, 10 wt%, 12 wt%, 14 wt%, based on the total weight of the core shell particles. %, 16 wt%, 18 wt%, 20 wt%, 22 wt%, 24 wt%, 26 wt%, 28 wt% or 30 wt%. In the present invention, a decane coupling agent is used to improve the interfacial properties of the core-shell of the core-shell particles, modifying the core surface such that the core surface is chemically bonded to the hydrophobic decane via a decane coupling agent. The decane coupling agent of the present invention has at least one ethylenically unsaturated group and at least one hydroxyl group or alkoxy group. The ethylenically unsaturated group of the decane coupling agent can be reacted with the carbon-carbon double bond of the vinyl polymer remaining on the surface of the core via addition polymerization to form a chemical bond between the decane coupling agent and the vinyl polymer of the core. Alternatively, the alkoxy group of the decane coupling agent can be reduced to a hydroxyl group by reaction with water present in the reaction medium. The hydroxyl group of the decane coupling agent (including the hydroxyl group derived from the alkoxy group) undergoes a sol-gel reaction to form a chemical bond between the decane coupling agent and the hydrophobic decane of the shell. The inventors have found that by using a decane coupling agent chemically bonded to both the core vinyl polymer and the hydrophobic decane of the shell, the resulting core-shell particles are highly hydrophobic and can be raised to the surface of the film to enhance the film. Roughness increases physical light scattering while increasing extinction. Furthermore, the organic core provides a lower density of the core-shell particles of the present invention than the cerium oxide particles conventionally used in the art. Since the core-shell particles of the present invention have a low density and a close arrangement of the core-shell structure, the core-shell particles of the present invention are compatible with the binder resin, and thus the matte composition containing the core-shell particles of the present invention is relatively stable. In addition, the method for preparing the core-shell particles of the present invention is easy to handle. The amount of hydrophobic decane bonded to the core surface can be easily controlled or adjusted, and thus it is easier to design and prepare core-shell particles having desired characteristics. Exemplary decane coupling agents include, but are not limited to, styrylethyltrimethoxydecane, methacryloxypropyl-trimethoxydecane, poly-1,2- modified with triethoxydecylalkyl Butadiene, vinyl ethoxy oxirane homopolymer, vinyl methoxy oxirane homopolymer, allyl trimethoxy decane, vinyl triisopropoxy decane, (3-propene oxime Oxypropyl)trimethoxydecane or triethoxyvinyldecane. In one embodiment, the decane coupling agent is a vinyl decane of the following formula (II): (R 4 ) p Si(OR 5 ) 4-p (II) wherein R 4 is an ethylenically unsaturated group; R 5 H or C 1 -C 3 alkyl (e.g., methyl, ethyl or propyl); and p is an integer from 1 to 3, preferably 1 . Examples of ethylenically unsaturated groups include, but are not limited to, ethenyl, propenyl, butenyl, vinylphenyl, propenylphenyl, vinylphenylethyl, propyleneoxymethyl, propyleneoxy Ethyl, propyleneoxypropyl, propyleneoxybutyl, propyleneoxypentyl, propyleneoxyhexyl, methacryloxymethyl, methacryloxyethyl, methacryloxypropyl, a methacryloxybutyl group, a methacryloxypentyl group, a methacryloxyhexyl group, a group of the following formula (7), and a group of the following formula (8): Wherein R 12 is a phenyl, straight or branched C 1 -C 8 alkyl group, a straight or branched C 2 -C 8 alkyl group, a C 3 -C 8 cycloalkyl group or a straight chain or a branch a chain C 1 -C 8 hydroxyalkylene; and R 13 is hydrogen or a straight or branched C 1 -C 4 alkyl group. The amount of the decane coupling agent is not particularly limited and may be adjusted depending on the amount required for the hydrophobic decane. In an embodiment of the invention, the amount of the decane coupling agent is in the range of 5 wt% to 25 wt%, such as 5 wt%, 6 wt%, 8 wt%, 10 wt%, 12 wt%, 14 wt%, based on the total weight of the core shell particles. 16 wt%, 18 wt%, 20 wt%, 22 wt% or 24 wt%. It has been found that when the amount of the decane coupling agent exceeds, for example, 25% by weight, the decane coupling agent itself may undergo a sol-gel reaction, which adversely affects the sol-gel reaction between the decane coupling agent and the hydrophobic decane. In contrast, when the amount of the decane coupling agent is less than, for example, 5 wt%, the amount of hydrophobic decane chemically bonded to the core vinyl polymer via the decane coupling agent may be insufficient. In some embodiments of the invention, the core-shell particles have an average particle size of from 10 to 1,000 nm, specifically, preferably from 10 to 500 nm, more preferably from 10 to 300 nm. The core-shell particles of the present invention can be prepared by any suitable method known in the art. In one embodiment, the core-shell particles of the present invention are prepared by performing soap-free emulsion polymerization to form a core and performing a sol-gel process to form a shell. For example, the core-shell particles of the present invention can be prepared, for example, by the following steps: (a) polymerizing a vinyl monomer in an aqueous solution to form a vinyl polymer particle; (b) polymerizing a vinyl group by adding a decane coupling agent; The particles are swollen; (c) reacting the vinyl polymer particles with the decane coupling agent to bond the decane coupling agent to the surface of the vinyl polymer particles; and (d) polymerizing the hydrophobic decane to the vinyl group The decane coupling agent on the surface of the particles reacts. It is known in the art that surfactants (or emulsifiers) can be used in emulsion polymerization; however, this technique has several disadvantages, including environmental contamination and the complexity of removing surfactants (or emulsifiers) after polymerization. According to a preferred embodiment of the invention, in step (a), the core is prepared by soap-free emulsion polymerization (i.e., without the use of a surfactant or emulsifier) comprising the vinyl monomer in an aqueous solution. The polymerization is carried out at a high temperature (for example, 75 ° C) under a nitrogen atmosphere and in the presence of an initiator until the conversion reaches 60% to 80%. The conversion rates mentioned herein are defined as follows: conversion (%) = [( the total number of monomers of the reactants ) - ( the total number of corresponding units in the product )] / [ total number of monomers of the reactants ] soap-free emulsion polymerization Incomplete conversion leaves a sufficient amount of carbon-carbon double bonds in the core. Since the carbon-carbon double bond from the monomer is not completely consumed, the unreacted carbon-carbon double bond can be reacted with the vinyl decane coupling agent in a subsequent step to form the core-shell particle of the present invention. Compared to emulsion polymerization, soap-free emulsion polymerization can not only reduce the disadvantages as described above, but also provide advantages such as monodispersity of particle size and smaller molecular weight of the resulting polymer. In addition, the polymerization rate of the soap-free emulsion polymerization is much slower than the polymerization rate of the emulsion polymerization, and therefore, the soap-free emulsion polymerization is suitable for obtaining a predetermined conversion ratio. In the step (b), the vinyl polymer particles are swollen by adding a decane coupling agent, preferably by adding a decane coupling agent dissolved in a solvent such as methanol and the like, and styrene. Affinity exists between the newly added styrene and the unreacted vinyl monomer in the vinyl polymer (for example, styrene and n-butyl acrylate in the case of polystyrene-n-butyl acrylate polymer) The addition of styrene is beneficial for directing the decane coupling agent to the vinyl polymer particles. The amount of styrene is preferably in the range of 3 wt% to 5 wt%, such as 3 wt%, 3.3 wt%, 3.5 wt%, 3.8 wt%, 4 wt%, 4.3 wt%, 4.5 wt%, based on the total weight of the core particles. 4.8 wt% or 5 wt%. Since styrene itself has high hydrophobicity and intermolecular force (π-π attraction), if the amount of styrene added is too high, it tends to cause self-polymerization of styrene itself, and the decane coupling agent itself undergoes a sol-gel reaction. The content of styrene should not be too high. . Styrene can be moved with the decane coupling agent in the presence of methanol or a similar solvent. The amount of the decane coupling agent is preferably in the range of 5 wt% to 25 wt%, such as 5 wt%, 8 wt%, 10 wt%, 13 wt%, 15 wt%, 18 wt%, 20 wt%, 23 wt% or more based on the total weight of the core shell particles. 25wt%. Excess decane coupling agent may cause the decane coupling agent itself to undergo a sol-gel reaction. Insufficient amounts of the decane coupling agent will reduce the amount of hydrophobic decane bonded to the core, thereby affecting the matting effect. In step (c), the vinyl polymer particles are reacted with a decane coupling agent in the presence of an initiator to bond the decane coupling agent to the surface of the vinyl polymer particles. Suitable starters for use in steps (a) and (c) may be, for example but not limited to, peroxides. Examples of peroxides include, but are not limited to, tert-butyl hydroperoxide, hydrogen peroxide, ammonium persulfate, potassium persulfate, and sodium persulfate. In the step (d), the hydrophobic decane and the decane coupling agent bonded to the surface of the vinyl polymer particles are reacted in the sol-gel method and form the core-shell particles of the present invention. Suitable amounts of hydrophobic decane are as described above. If more hydrophobic decane is present in the system, the core is more likely to encounter hydrophobic decane and undergo a sol-gel reaction with it. Conversely, if the amount of hydrophobic decane is too small, only a few hydrophobic decanes are bonded to the core surface, thereby adversely affecting the matting effect. The advantages of the sol-gel reaction are as follows: (1) The precursor can be removed by distillation or other simple purification methods to obtain a high purity product. (2) Low reaction temperature prevents the material from reacting with the vessel wall. (3) The shape and size of the particles can be precisely controlled by changing the experimental conditions. (4) The sol-gel reaction can be catalyzed using a nano-scale catalyst having a larger area. The sol-gel reaction can be carried out in an acid or alkali environment depending on the type of hydrophobic decane and the desired particle characteristics (for example, particle size). Under acidic conditions, the hydrolysis rate of hydrophobic decane is faster, but the condensation rate under acidic conditions is much slower. The rapid rate of hydrolysis and the slow rate of condensation result in smaller core-shell particles. In contrast, under alkaline conditions, the rate of condensation is faster than the rate of hydrolysis, resulting in larger core-shell particles. The sol-gel reaction can be carried out under acidic or basic conditions, and the pH involved can be determined depending on the desired reaction rate and the desired core-shell particle characteristics. In one embodiment of the invention, the sol-gel reaction is carried out at a pH of from 2 to 11, for example, a pH of 3, 4, 5, 6, 7, 8, 9, or 10. The present invention also provides a matting composition comprising the core-shell particles of the present invention as a matting agent. In one embodiment of the invention, the matte composition comprises the core shell particles and binder resin described above. The binder resin of the present invention is used for dispersing core-shell particles, and the binder resin suitable for use in the present invention may be any suitable resin such as a thermosetting resin. Examples of thermosetting resins include, but are not limited to, acrylic or acrylate resins, methacrylic or methacrylic resins, polyamide resins, polyurethane resins, polyester resins, and polyimide resins. An alkyd resin, an epoxy resin, a phenol resin or a combination thereof is preferably an acrylate resin or a methacrylate resin. In some embodiments of the invention, the binder resin is an acrylic emulsion (Etersol 1135-9; Eternal Materials Co. Ltd.). In some embodiments of the invention, the matting composition comprises: from 3 wt% to 25 wt%, preferably from 5 wt% to 20 wt%, and more preferably from 10 wt% to 17 wt% of core-shell particles, based on the total weight of the matte composition solids. The matte compositions of the present invention may optionally include water, solvents or suitable additives known in the art, such as film formers, surfactants, fillers, pigments or other processing aids. The invention will now be described in connection with the following examples. The invention may be carried out in other ways than the following examples without departing from the spirit of the invention; the scope of the invention should not be construed and limited only by the disclosure. In addition, unless otherwise stated herein, the terms "a", "the" and "the" Plural form. The term "about" is used to describe measurements, including acceptable errors, depending in part on how the average technician performs the measurements. The word "or" in the list of two or more items covers the interpretation of all of the following words: any item in the list, all items in the list, and any combination of items in the list. In addition, when used in this application, the words "herein,""above,""below," and the like, shall mean the application as a whole and not any particular part of the application. EXAMPLES Example 1 : Preparation of a matting composition 1. Formation of a vinyl polymer core via soap-free emulsion polymerization 200 g of deionized water and 20 g of total weight of styrene (Acros Organics, 99% purity) and butyl acrylate were added to the reactor. (AcrosOrganics, 99% purity). The weight ratio of styrene to butyl acrylate is reported in Table 1 for each sample. The mixture was degassed under nitrogen atmosphere for 30 minutes with stirring at 300 rpm and then heated to 75 ° C, followed by the addition of 1 g of potassium persulfate dissolved in 20 g of deionized water. The mixture was maintained at 75 ° C for 4 hours to produce a (P(St-BA)) copolymer core at a conversion of 60% to 70%. 2. Formation of the shell via a sol - gel reaction via addition of triethoxyvinyl decane (decane coupling agent; Acros Organics, 97% purity) dissolved in 40 g of methanol and 1.6 g of styrene (15.2 mmol; Acros Organics, 99%) Purity), P(St-BA) copolymer latex particles were swollen at room temperature for 24 hours. The amount of decane coupling agent is reported in Table 1 for each sample. The mixture was degassed under nitrogen atmosphere for 30 minutes with stirring at 300 rpm and then heated to 75 ° C, followed by the addition of 2 g of potassium persulfate dissolved in 40 g of deionized water. The mixture was kept at 75 ° C for 24 hours to produce P (St-BA) copolymer latex particles modified with triethoxyvinyl decane on the surface. The modified P(St-BA) copolymer latex particles were cooled to room temperature and then blended with hydrophobic decane dissolved in 40 g of methanol. The types and amounts of hydrophobic decane used for each sample are reported in Table 1. The sol-gel reaction was carried out at room temperature for 2 hours to produce core-shell particles having a hydrophobic decane shell and a P(St-BA) copolymer core. 3. Preparation of matting composition The prepared core-shell particles were blended with an acrylic emulsion (Etersol 1135-9; Eternal Materials Co. Ltd.) containing 1 wt% of an anionic surfactant to prepare a matting composition. The type of the anionic surfactant is not particularly limited and may be any anionic surfactant suitable for the matting composition of the present invention. The examples provided herein use sodium dodecyl sulfate (SDS) as an anionic surfactant. In addition, the blending method is not particularly limited and can be carried out, for example, by the following steps: (a) Pour 50 g of Etersol 1135-9 acrylic emulsion into a 250 ml beaker and add 1% SDS surfactant solution (containing 1 g of SDS and 99 g of water). An acrylic emulsion was prepared by stirring at a stirring speed of 1000 rpm in a water bath of 40 to 45 ° C for about 3 minutes. (b) 3.75 g of core-shell particles were added to the acrylic emulsion prepared in (a). (c) Next, 5 g of a film-forming agent (dipropylene glycol n-butyl ether (DPnB)) was added to the acrylic emulsion containing core-shell particles. (d) The mixture was thoroughly stirred at a stirring speed of 1000 rpm for 30 minutes and allowed to stand for 1 day. Example 2 : Analysis of matting effect A matte composition was applied onto a glass substrate using a 1/4" x 16" wire wound rod (RD Specialties) and a film was formed on the glass substrate. The glass substrate and film were heated in an oven at 50 ° C for 3 days to dry and remove DPnB from the film. The matte finish of the matte composition was evaluated according to ASTM D523 by measuring the 60° gloss of the film by a Novo-Gloss 60° gloss meter. The results are reported in Table 1 (60° gloss: ◎10 to 40; ○41 to 70; Δ71 to 90; ⤬>90). Table 1 1 based on the total weight of the core-shell particles (Sample 1 For an example, based on the total weight of the core-shell particles: 20 / (100% - 12 % - 14%) = 27 03g.) 2 F - Silane: 1H, 1H, 2H, 2H perfluorooctyl triethoxysilane Silane 318-- Silane: trimethoxysilane (octadecyl) Silane (ODS - Silane) 4 8 - Silane: trimethoxysilane (octyl) Silane (OTS - Silane) 53-- Silane: trimethoxysilane (propyl) silane-based Flores 6 described in the specification of the lining - theory Fox equation to obtain the temperature Tg, wherein Tg of the polystyrene-based 373K and polyacrylic acid ester-based Tg of 219K. The matte composition of Comparative Sample 1 contained P(St-BA) particles without any surface modification. The 60° gloss of the film prepared in Comparative Sample 1 was too high, indicating that the P(St-BA) particles without any surface modification could not provide the desired matting effect. The matte compositions of Samples 1 to 5 contained P(St-BA) particles whose surface was modified with 14% by weight of F-decane based on the total weight of the core-shell particles. The 60° gloss of the films prepared in samples 1 to 5 was lower than the 60° gloss of the films prepared in the comparative examples, demonstrating that the F-decane-modified P(St-BA) particles can achieve the desired matting effect. The matte compositions of Samples 6 through 11 contained P(St-BA) particles whose surface was modified with varying amounts of long carbon chain alkyl decane (OTS-decane or ODS decane). The 60° gloss grade of the film prepared from Samples 6 to 10 was "○" or "Δ", demonstrating that the long-carbon chain alkyl decane-modified P(St-BA) particles can achieve the desired matting effect. The matting results of the films prepared in Comparative Samples 2 and 3 and Samples 1 to 5 showed that the matting effect was obtained when the Tg of the P(St-BA) particles was less than 0 ° C (for example, -10.8 ° C) or more than 60 ° C (for example, 75.5 ° C). Getting worse. From the 60° gloss values of the films prepared from Samples 6 to 10 and Comparative Sample 4, it was found that the more hydrophobic decane used, the better the matting effect; however, when the amount of hydrophobic decane exceeded 30% by weight (for example, 35 wt%) The matting effect is deteriorated and particle aggregation can be observed.

Claims (13)

一種核殼粒子,包含: 含乙烯基聚合物之核心;及 含疏水性矽烷之殼體,該疏水性矽烷經由矽烷偶合劑鍵結至核心表面。A core-shell particle comprising: a core comprising a vinyl polymer; and a shell comprising a hydrophobic decane bonded to the core surface via a decane coupling agent. 如請求項1之核殼粒子,其中該含乙烯基聚合物之核心之Tg在0℃至60℃範圍內。The core-shell particle of claim 1, wherein the core of the vinyl-containing polymer has a Tg in the range of 0 °C to 60 °C. 如請求項1之核殼粒子,其中該疏水性矽烷係具有3至25個碳原子之長碳鏈烷基矽烷。The core-shell particle of claim 1, wherein the hydrophobic decane has a long-chain alkyl decane having 3 to 25 carbon atoms. 如請求項1之核殼粒子,其中以該核殼粒子之總重量計,該疏水性矽烷之量為5wt%至30wt%。The core-shell particle of claim 1, wherein the amount of the hydrophobic decane is from 5 wt% to 30 wt%, based on the total weight of the core shell particle. 如請求項1之核殼粒子,其中以該核殼粒子之總重量計,該矽烷偶合劑之量為5wt%至25wt%。The core-shell particle of claim 1, wherein the amount of the decane coupling agent is from 5 wt% to 25 wt%, based on the total weight of the core shell particle. 如請求項1之核殼粒子,其中該疏水性矽烷具有下式(I): (R2 )y Si(OR1 )4-y (I) 其中: R1 係C1 -C3 烷基; R2 係-(CH2 )2 -R3 ; R3 係具有1至23個碳原子之烷基或全鹵烷基;及 y係整數1至3。The core-shell particle of claim 1, wherein the hydrophobic decane has the following formula (I): (R 2 ) y Si(OR 1 ) 4-y (I) wherein: R 1 is a C 1 -C 3 alkyl group; R 2 is -(CH 2 ) 2 -R 3 ; R 3 is an alkyl group having 1 to 23 carbon atoms or a perhaloalkyl group; and y is an integer of 1 to 3. 如請求項6之核殼粒子,其中該疏水性矽烷選自1H, 1H, 2H, 2H全氟辛基三甲氧基矽烷、1H, 1H, 2H, 2H全氟辛基三乙氧基矽烷、三甲氧基(丙基)矽烷、三甲氧基(辛基)矽烷、三甲氧基(十八烷基)矽烷、癸基(三乙氧基)矽烷、十二烷基三乙氧基矽烷、三甲氧基(十四烷基)矽烷、十六烷基三甲氧基矽烷、異丁基(三甲氧基)矽烷及其組合。The core-shell particle of claim 6, wherein the hydrophobic decane is selected from the group consisting of 1H, 1H, 2H, 2H perfluorooctyltrimethoxydecane, 1H, 1H, 2H, 2H perfluorooctyltriethoxydecane, trimethyl Oxy (propyl) decane, trimethoxy (octyl) decane, trimethoxy (octadecyl) decane, decyl (triethoxy) decane, dodecyl triethoxy decane, trimethoxy (Tetradecyl)decane, hexadecyltrimethoxydecane, isobutyl(trimethoxy)decane, and combinations thereof. 如請求項1之核殼粒子,其中該乙烯基聚合物係衍生自含有碳-碳雙鍵之乙烯基單體。The core-shell particle of claim 1, wherein the vinyl polymer is derived from a vinyl monomer having a carbon-carbon double bond. 如請求項8之核殼粒子,其中該乙烯基單體係選自由苯乙烯類單體、(甲基)丙烯酸酯類單體、乙烯酯單體、烷基乙烯基醚單體、(甲基)丙烯醯胺單體、腈單體及其組合所組成之群。The core-shell particle of claim 8, wherein the vinyl single system is selected from the group consisting of a styrene monomer, a (meth) acrylate monomer, a vinyl ester monomer, an alkyl vinyl ether monomer, (methyl a group of acrylamide monomers, nitrile monomers, and combinations thereof. 如請求項1之核殼粒子,其中該矽烷偶合劑係具有下式(II)之乙烯基矽烷: (R4 )p Si(OR5 )4-p (II) 其中R4 係烯系不飽和基團;R5 係H或C1 -C3 烷基;且p係整數1至3。The core-shell particle of claim 1, wherein the decane coupling agent has a vinyl decane of the following formula (II): (R 4 ) p Si(OR 5 ) 4-p (II) wherein the R 4 olefinic unsaturated a group; R 5 is H or C 1 -C 3 alkyl; and p is an integer from 1 to 3. 如請求項1之核殼粒子,其中該矽烷偶合劑係苯乙烯基乙基三甲氧基矽烷、甲基丙烯醯氧基丙基-三甲氧基矽烷、經三乙氧基矽烷基修飾之聚-1,2-丁二烯、乙烯基乙氧基矽氧烷均聚物、乙烯基甲氧基矽氧烷均聚物、烯丙基三甲氧基矽烷、乙烯基三異丙氧基矽烷、(3-丙烯醯氧基丙基)三甲氧基矽烷或三乙氧基乙烯基矽烷。The core-shell particle of claim 1, wherein the decane coupling agent is styrylethyltrimethoxydecane, methacryloxypropyl-trimethoxydecane, poly(ethyleneoxyalkyl)-modified poly- 1,2-butadiene, vinyl ethoxy oxirane homopolymer, vinyl methoxy oxirane homopolymer, allyl trimethoxy decane, vinyl triisopropoxy decane, 3-propenyloxypropyl)trimethoxydecane or triethoxyvinylnonane. 一種用於製備如請求項1至11中任一項之核殼粒子之方法,該方法包含進行無皂乳液聚合以形成核心及進行溶膠-凝膠反應以形成殼體。A method for producing a core-shell particle according to any one of claims 1 to 11, which comprises performing soap-free emulsion polymerization to form a core and performing a sol-gel reaction to form a shell. 一種消光組合物,其包含如請求項1至11中任一項之核殼粒子。A matte composition comprising the core-shell particles of any one of claims 1 to 11.
TW106125397A 2017-07-28 2017-07-28 Core-shell particle, method of manufacturing the same and applications thereof TWI664197B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106125397A TWI664197B (en) 2017-07-28 2017-07-28 Core-shell particle, method of manufacturing the same and applications thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106125397A TWI664197B (en) 2017-07-28 2017-07-28 Core-shell particle, method of manufacturing the same and applications thereof

Publications (2)

Publication Number Publication Date
TW201910356A true TW201910356A (en) 2019-03-16
TWI664197B TWI664197B (en) 2019-07-01

Family

ID=66590407

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106125397A TWI664197B (en) 2017-07-28 2017-07-28 Core-shell particle, method of manufacturing the same and applications thereof

Country Status (1)

Country Link
TW (1) TWI664197B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5579512B2 (en) * 2010-06-24 2014-08-27 電気化学工業株式会社 Composite particle and method for producing the same
JP2013139506A (en) * 2011-12-29 2013-07-18 Nippon Zeon Co Ltd Method for manufacturing core-shell type particle
JP6463154B2 (en) * 2015-01-30 2019-01-30 キヤノン株式会社 toner

Also Published As

Publication number Publication date
TWI664197B (en) 2019-07-01

Similar Documents

Publication Publication Date Title
CN109868026B (en) Organic silicon modified acrylate resin, preparation method thereof and hydrophobic weather-resistant slow-release modified acrylic resin coating
CN101432316B (en) Aqueous silica-based nanocomposite polymer dispersion
CN101617006B (en) Aqueous coating resin composition
JP5030780B2 (en) Damping emulsion
JP2010510338A (en) Super hydrophobic coating
JP2000512662A (en) Aqueous curable silane / polymer composition
JP2018532824A (en) Copolymers having polysiloxane macromonomer units, methods for making the copolymers, and use of the copolymers in coating compositions and polymer molding compounds
US10287386B2 (en) Core-shell particle, method of manufacturing the same and applications thereof
CN102753618B (en) The hybrid particulates be made up of polymkeric substance and nano particle
KR101886395B1 (en) New and stable aqueous hybrid binder
DE102009046664A1 (en) Composite particles with organic and inorganic domains
US5482994A (en) Silicone/organic copolymer emulsions from preformed organic emulsions
JP3513985B2 (en) Method for producing curable polymer aqueous dispersion and aqueous curable polymer dispersion
JP3934152B1 (en) Resin composition for plastic paint and plastic paint using the same
TW201910356A (en) Core-shell particle, method of manufacturing the same and applications thereof
CN107602767B (en) Core-shell particles, method for producing same, and use thereof
KR101209851B1 (en) One-liquid type organic-inorganic emulsion resin composition and preparation method of the same
CN115584175A (en) Silica sol-hydroxy acrylic resin composite-dispersion and preparation method thereof
KR102274032B1 (en) Core-shell copolymer composition, method for preparing the copolymer composition and resin composition comprising the copolymer composition
JP7512152B2 (en) Rubber composition containing polymer particles
JP3765330B2 (en) Curable composition, method for producing the same, and method for producing the cured product
CA2199793A1 (en) Self-crosslinking coating formulation
JP3930618B2 (en) Film-forming composition and use thereof
JP2018080297A (en) Aqueous coating composition
CN105566558A (en) Preparation method of soap-free nanoscale core-shell silicone-acrylic emulsion