TW201907681A - Wireless optical communication method for implementing image encryption and decryption capable of ensuring the safety of image transmission in wireless optical communication - Google Patents
Wireless optical communication method for implementing image encryption and decryption capable of ensuring the safety of image transmission in wireless optical communication Download PDFInfo
- Publication number
- TW201907681A TW201907681A TW107123521A TW107123521A TW201907681A TW 201907681 A TW201907681 A TW 201907681A TW 107123521 A TW107123521 A TW 107123521A TW 107123521 A TW107123521 A TW 107123521A TW 201907681 A TW201907681 A TW 201907681A
- Authority
- TW
- Taiwan
- Prior art keywords
- unit
- output
- input
- optical communication
- wireless optical
- Prior art date
Links
Landscapes
- Optical Communication System (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
本發明是有關於一種無線光通訊方法,特別是指一種用於實現影像加解密之無線光通訊方法。The invention relates to a wireless optical communication method, in particular to a wireless optical communication method for realizing image encryption and decryption.
隨著無線網路的快速發展,資料量的負荷日益增大,人們開始追求更靈活、高速的無線網路服務,但也成為竊聽者攻擊的主要目標。由於無線光通信具有廣大的頻寬,可以乘載更多的訊息,所以成為近年無線網路通訊的重要技術之一,也因此無線光通訊的安全性得到了更多學者的關注。以影像傳輸為例,由於所需傳輸的資料量過於龐大,因此電信服務商或設備廠商在考量傳輸效率的條件下時,在應用層上執行加密程序時僅會針對部分資料進行加密,而削減了無線光通訊於傳輸時之安全性。With the rapid development of wireless networks, the load of data volume is increasing, people are beginning to pursue more flexible and high-speed wireless network services, but it has also become the main target of eavesdropper attacks. Because wireless optical communication has a wide bandwidth and can carry more messages, it has become one of the important technologies of wireless network communication in recent years. Therefore, the security of wireless optical communication has attracted more scholars' attention. Taking image transmission as an example, because the amount of data to be transmitted is too large, when a telecom service provider or equipment manufacturer considers the transmission efficiency, when the encryption program is executed on the application layer, only part of the data is encrypted, and the information is reduced. The security of wireless optical communication during transmission.
有鑑於此,如何提供一種可解決前述問題之方案乃本領域亟需解決之技術問題。In view of this, how to provide a solution that can solve the aforementioned problems is a technical problem that needs to be solved in the field.
因此,本發明的目的,即在提供一種用於實現影像加解密之無線光通訊方法,以解決在應用層上影像僅能進行部份加密而削減了無線光通訊於傳輸影像時之安全性的困境。Therefore, the object of the present invention is to provide a wireless optical communication method for realizing image encryption and decryption, so as to solve the problem that only the partial encryption can be performed on the application layer, and the security of the wireless optical communication in transmitting the image is reduced. Dilemma.
於是,本發明用於實現影像加解密之無線光通訊方法,藉由一發射端無線光通訊裝置及一接收端無線光通訊裝置在一預定無線光通訊架構來實施;該發射端無線光通訊裝置包括一影像壓縮單元、一光源生成單元、一具有N個濾波器並電連接該光源生成單元之光濾波單元、一加密單元、一具有一微處理器、N個輸入端及N個輸出端,並與該影像壓縮單元及該加密單元電連接之發射端邏輯輸入輸出單元、一具有N個調變器並與發射端邏輯輸入輸出單元電連接之調變單元,以及一與該調變單元電連接之光多工單元。Therefore, the wireless optical communication method for realizing image encryption and decryption according to the present invention is implemented by a transmitting wireless optical communication device and a receiving wireless optical communication device in a predetermined wireless optical communication architecture; the transmitting wireless optical communication device The invention comprises an image compression unit, a light source generating unit, an optical filtering unit having N filters and electrically connecting the light source generating unit, an encryption unit, a microprocessor, N input terminals and N output terminals. And a transmitting end logic input and output unit electrically connected to the image compressing unit and the encrypting unit, a modulation unit having N modulators and electrically connected to the transmitting end logic input and output unit, and a modulation unit Connected light multiplex unit.
該影像壓縮單元可將該等N個來源影像資料進行壓縮編碼以對應產生N個影像位元資料,該光源生成單元可提供M個波長不等的光源載波。The image compression unit may compress and encode the N source image data to generate N image bit data, and the light source generating unit may provide M light source carriers with different wavelengths.
該等N個濾波器可經由該等M個光源載波之輸入以產生N個載波組;其中,每一載波組具有至少一光源載波,該等N個調變器分別與該等N個濾波器及該發射端邏輯輸入輸出單元之該等N個輸出端電連接,其中M≥N且N≥3;The N filters may be input through the M light source carriers to generate N carrier groups; wherein each carrier group has at least one light source carrier, and the N modulators and the N filters respectively And the N output ends of the logic input/output unit of the transmitting end are electrically connected, wherein M≥N and N≥3;
該方法包含一個步驟(A)、一個步驟(B) 一個步驟(C)、一個步驟(D),及一個步驟(E)。The method comprises a step (A), a step (B), a step (C), a step (D), and a step (E).
在該步驟(A)中,該加密單元根據該發射端邏輯輸入輸出單元之該等N個輸入端及該等N個輸出端得到用以指示該等N個輸入端及該等N個輸出端之對射關係的N!個配對組合。In the step (A), the cryptographic unit is configured to indicate the N input terminals and the N output terminals according to the N input terminals and the N output terminals of the logic input/output unit of the transmitting end. N! Pairing combinations of the opposing relationship.
在該步驟(B)中,該加密單元產生一隨機性索引值,並根據該隨機性索引值從該等N!個配對組合中選取出一加密配對組合,並將該隨機性索引值傳送至該解密單元及該發射端邏輯輸入輸出單元,其中,該加密配對組合用以指示該發射端邏輯輸入輸出單元之每一輸入端及其對應配合的輸出端。In the step (B), the cryptographic unit generates a random index value, and selects an encrypted pairing combination from the N! pairing combinations according to the randomness index value, and transmits the random index value to The decrypting unit and the transmitting end logic input and output unit, wherein the encrypted pairing combination is used to indicate each input end of the transmitting end logic input and output unit and its corresponding mating output end.
在該步驟(C)中,對於該發射端邏輯輸入輸出單元之每一輸入端,當該微處理器經由該輸入端接收來自於該影像壓縮單元的該等N個影像位元資料中之一對應的影像位元資料時,該微處理器根據該加密配對組合,將對應的該影像位元資料輸出至該輸入端所配合的該發射端邏輯輸入輸出單元之輸出端。In the step (C), for each input end of the transmitting logic input/output unit, when the microprocessor receives one of the N image bit data from the image compressing unit via the input end Corresponding image bit data, the microprocessor outputs the corresponding image bit data to the output end of the transmitting logic input/output unit matched by the input terminal according to the encrypted pairing combination.
在該步驟(D)中,對於每一調變器,該調變器根據所連接該發射端邏輯輸入輸出單元之輸出端輸出的影像位元資料及所連接之濾波器所產生的載波組來進行調變,以產生並輸出一光調變訊號至該光多工單元。In the step (D), for each modulator, the modulator is based on the image bit data outputted from the output end of the logic input/output unit connected to the transmitting end and the carrier group generated by the connected filter. Modulation is performed to generate and output a light modulation signal to the optical multiplexing unit.
在該步驟(E)中,該光多工單元根據該預定無線光通訊架構將該等N個光調變訊號進行多工處理以產生一光多工輸出訊號並輸出至該接收端無線光通訊裝置。In the step (E), the optical multiplexing unit performs multiplexing processing on the N optical modulation signals according to the predetermined wireless optical communication architecture to generate an optical multiplexing output signal and outputs the optical optical communication to the receiving end. Device.
本發明的功效在於:本發明運用實體層上多個光源載波的擾亂光跳波(wavelength-hopping)或光頻跳碼(coded wavelength hopping)加密效能,解決在應用層上影像僅能進行部份加密而削減了無線光通訊於傳輸影像時之安全性的困境。The effect of the present invention is that the present invention utilizes the wavelength-hopping or coded wavelength hopping encryption performance of multiple light source carriers on the physical layer to solve the problem that the image can only be partially performed on the application layer. Encryption reduces the security of wireless optical communications when transmitting images.
在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it should be noted that in the following description, similar elements are denoted by the same reference numerals.
參閱圖1,為本發明用於實現影像加解密之無線光通訊方法的一第一實施例,該用於實現影像加解密之無線光通訊方法係藉由一發射端無線光通訊裝置1及一接收端無線光通訊裝置2在一預定無線光通訊架構來實施;在本第一實施例中,該預定無線光通訊架構係為波長分波多工技術(Wavelength Division Multiplexing, WDM)。1 is a first embodiment of a wireless optical communication method for implementing image encryption and decryption according to the present invention. The wireless optical communication method for implementing image encryption and decryption is implemented by a transmitting wireless optical communication device 1 and a The receiving wireless optical communication device 2 is implemented in a predetermined wireless optical communication architecture. In the first embodiment, the predetermined wireless optical communication architecture is Wavelength Division Multiplexing (WDM).
該發射端無線光通訊裝置1包括一影像壓縮單元11、一光源生成單元12、一電連接該光源生成單元12之光濾波單元15、一加密單元16、一與該影像壓縮單元11及該加密單元16電連接之發射端邏輯輸入輸出單元13、一與該發射端邏輯輸入輸出單元13電連接之調變單元14、一與該調變單元14電連接之光多工單元17,以及一與該光多工單元17電連接之發射端準直器18。該發射端邏輯輸入輸出單元13具有一微處理器131、N個輸入端及N個輸出端(圖未示),該調變單元14具有N個調變器(圖未示),該光濾波單元15具有N個濾波器(圖未示);其中,該等N個調變器分別與該等N個濾波器及該發射端邏輯輸入輸出單元13之該等N個輸出端電連接,且N≥2。The transmitting end wireless optical communication device 1 includes an image compression unit 11, a light source generating unit 12, an optical filtering unit 15 electrically connected to the light source generating unit 12, an encryption unit 16, an image compression unit 11 and the encryption. a transmitting end logic input/output unit 13 electrically connected to the unit 16, a modulation unit 14 electrically connected to the transmitting end logic input and output unit 13, an optical multiplexing unit 17 electrically connected to the modulation unit 14, and a The optical multiplexing unit 17 is electrically coupled to the transmitting end collimator 18. The transmitting end logic input and output unit 13 has a microprocessor 131, N input terminals and N output terminals (not shown). The modulation unit 14 has N modulators (not shown), and the optical filter The unit 15 has N filters (not shown); wherein the N modulators are electrically connected to the N filters and the N outputs of the transmitter logic input/output unit 13, respectively, and N ≥ 2.
該接收端無線光通訊裝置2具有一接收端準直器23、一解密單元21、一與該接收端準直器23電連接之光解多工單元22、一與該光解多工單元22電連接之解調變單元25、一分別與該解密單元21及該解調變單元25電連接之接收端邏輯輸入輸出單元24,以及一與接收端邏輯輸入輸出單元24電連接的影像還原單元26;該接收端邏輯輸入輸出單元24具有一微處理器241、N個輸入端及N個輸出端(圖未示),該解調變單元25具有N個解調變器(圖未示),每一解調變器與該接收端邏輯輸入輸出單元24之每一輸入端電連接。在本第一實施例中,該發射端邏輯輸入輸出單元13及該接收端邏輯輸入輸出單元24為可程式化之N×N電子交換機,可受控而改變其內部相應開關接點密合(cross-on)或斷開(bar-off)之狀態,以變化該發射端邏輯輸入輸出單元13之該等N個該等N個輸入端及該等N個輸出端之輸入輸出配合關係,以及該接收端邏輯輸入輸出單元24之該等N個該等N個輸入端及該等N個輸出端之輸入輸出配合關係。此外,該影像壓縮單元11、該影像還原單元26、該加密單元16及該解密單元21可由嵌入式系統元件、數位電路等具備運算能力之電子元件實現之。The receiving end wireless optical communication device 2 has a receiving end collimator 23, a decrypting unit 21, an optical multiplexing unit 22 electrically connected to the receiving end collimator 23, and a photo demultiplexing unit 22 a demodulation unit 25 electrically connected, a receiving logic input/output unit 24 electrically connected to the decrypting unit 21 and the demodulation unit 25, and an image restoration unit electrically connected to the receiving logic input/output unit 24 26; the receiving end logic input and output unit 24 has a microprocessor 241, N inputs and N outputs (not shown), the demodulation unit 25 has N demodulators (not shown) Each demodulation is electrically coupled to each input of the receiving logic input and output unit 24. In the first embodiment, the transmitting end logic input and output unit 13 and the receiving end logic input and output unit 24 are programmable N×N electronic switches, which can be controlled to change the corresponding internal switch contacts ( a cross-on or bar-off state for varying the input-output cooperation relationship of the N N input terminals and the N output terminals of the transmit logic input/output unit 13 and The N input and the N input ends of the receiving logic input/output unit 24 and the input and output coordination functions of the N output terminals. In addition, the image compression unit 11, the image restoration unit 26, the encryption unit 16, and the decryption unit 21 can be realized by electronic components having computing capabilities such as embedded system components and digital circuits.
該影像壓縮單元11接收來自外部所傳送N個來源影像資料User#1~User#N,並將該等N個來源影像資料User#1~User#N進行壓縮編碼(例如,H.264或H.265之壓縮編碼技術)以對應產生N個影像位元資料U1 ~UN 進而依序將N個影像位元資料傳送至對應的該發射端邏輯輸入輸出單元13之該等N個輸入端;在本第一實施例中,每一影像位元資料U1 /U2… /UN 例如可代表一幀(frame)影像,但不在此限,亦可代表多幀影像。該等N個來源影像資料User#1~User#N係為未經處理過的原始影像格式。The image compression unit 11 receives the N source image data User#1~User#N transmitted from the outside, and compresses and encodes the N source image materials User#1~User#N (for example, H.264 or H). The compression coding technique of .265 is to sequentially generate N image bit data U 1 ~U N and sequentially transfer N image bit data to the corresponding N input terminals of the corresponding logic input/output unit 13 of the transmitting end. In the first embodiment, each image bit material U 1 /U 2 . . . /U N can represent, for example, a frame image, but not limited thereto, and can also represent a multi-frame image. The N source image data User#1~User#N are unprocessed original image formats.
該光源生成單元12產生N個波長不等的光源載波λ1 ~λN 後,將其分別傳送至該光濾波單元15之該等N個濾波器;接著,該等N個濾波器根據所接收的該等N個光源載波λ1 ~λN 來產生N個載波組;在本第一實施例中,每一載波組具有一特定波長的光源載波λ1 /λ2 …λN-1 /λN ,亦即該等N個濾波器所輸出的該等N個光源載波λ1 ~λN 之波長彼此相異,其中,N=2n ,n≥2;每一濾波器可由空間光調制器(spatial light modulator, SLM)或布拉格光纖光柵(fiber Bragg grating, FBG)等光學元件實現。The light source generating unit 12 generates N light source carriers λ 1 to λ N having unequal wavelengths, and then transmits them to the N filters of the optical filtering unit 15 respectively; then, the N filters are received according to the received The N light source carriers λ 1 ~λ N to generate N carrier groups; in the first embodiment, each carrier group has a specific wavelength of the light source carrier λ 1 /λ 2 ... λ N-1 /λ N , that is, the wavelengths of the N light source carriers λ 1 ~ λ N output by the N filters are different from each other, wherein N = 2 n , n ≥ 2; each filter may be a spatial light modulator Realized by optical components such as (spatial light modulator, SLM) or fiber Bragg grating (FBG).
首先,該加密單元16根據該發射端邏輯輸入輸出單元13之該等N個輸入端及該等N個輸出端得到用以指示該等N個輸入端及該等N個輸出端之對射(bijective)關係的N!個配對組合;其中,該加密配對組合用以指示該發射端邏輯輸入輸出單元13之每一輸入端及其對應配合的輸出端,即每一個輸入端都正好配合一個輸出端之對射關係。接著,該加密單元16產生一隨機性索引值,並根據該隨機性索引值從該等N!個配對組合中選取出一加密配對組合,並將該隨機性索引值傳送至該解密單元21及該發射端邏輯輸入輸出單元13。First, the cryptographic unit 16 is configured to indicate the N input terminals and the N output terminals according to the N input terminals and the N output terminals of the logic input/output unit 13 of the transmitting end ( The N! pairing combination of the relationship; wherein the encrypted pairing combination is used to indicate each input end of the transmitting end logic input and output unit 13 and its corresponding mating output end, that is, each input end exactly matches an output The opposite relationship. Then, the encryption unit 16 generates a random index value, and selects an encrypted pairing combination from the N! pairing combinations according to the randomness index value, and transmits the randomness index value to the decrypting unit 21 and The transmitting end logic inputs and outputs the unit 13.
值得一提的是,每一配對組合對應一個矩陣型樣,每一矩陣型樣為N×N且其每一行元素(matrix element)及每一列元素中只有一個元素為‘1’ 其餘元素為‘0’之矩陣,且每一矩陣中的N列對應該發射端邏輯輸入輸出單元13之該等N個輸入端,每一矩陣中的N行對應該發射端邏輯輸入輸出單元13之該等N個輸出端;此外,該等N!配對組合為該矩陣型樣所有可能性之集合,i,j=1,2,3…,N;假設以N=3,共3!個配對組合為例,該等所有可能性之集合之矩陣型樣分別為:、、、、及,共六種態樣;當該加密配對組合為之矩陣型樣時,其中,該矩陣型樣裡面的矩陣元素TR12 =1,可表示任何一筆訊號資料從該發射端邏輯輸入輸出單元13之第1個輸入端輸入,只會由其對應配合第2個輸出端輸出;TR23 =1,可表示任何一筆訊號資料從該發射端邏輯輸入輸出單元13之第2個輸入端輸入,只會由其對應配合第3個輸出端輸出;TR31 =1,可表示任何一筆訊號資料從該發射端邏輯輸入輸出單元13之第3個輸入端輸入,只會由其對應配合第1個輸出端輸出。又值得一提的是,若該影像壓縮單元11在不同時間點tk ,k=1,2,3…,30(在此假設30個,但不以此為限)依序將不同的N個影像位元資料傳送至對應的該發射端邏輯輸入輸出單元13之該等N個輸入端,本發明用於實現影像加解密之無線光通訊方法的該微處理器131每次在輸出每一影像位元資料U1 /U2… /UN (亦即,代表每一幀或多幀影像)至該輸入端所配合的該發射端邏輯輸入輸出單元之輸出端時所採用的加密配對組合皆會重新根據新的隨機性索引值而重新自該等N!個配對組合(即,每次在不同時間點tk 之)中選取出,以避免當該加密配對組合被破解後,往後傳輸的影像位元資料皆可被成功解密。此外,針對每一矩陣型樣,其產生方式如下:首先,該加密單元16係透過一虛擬亂數產生器(Pseudo-random number generator, PRNG)產生一具有N個隨機實數r1 (tk ),r2 (tk ),...rN (tk )且彼此數值互異且具隨機性之元素的亂數序列Rreal ={r1 (tk ),r2 (tk ),...rN (tk )},k=1,2,3... ,30,並將該亂數序列對應至該隨機性索引值,在本第一實施例中,該虛擬亂數產生器用以在固定間隔時間(亦即,不同的時間點tk )產生不重複的亂數序列;接著,該加密單元16藉由一映射函式OTR 將該亂數序列進行數值轉換,以將該等N個隨機實數依照其數值大小分別將其對應至數值為1至N的正整數序碼,舉例來說,假設N=4且該亂數序列為:{0.6, 0.8, 0.9, 0.3},則經由該映射函式OTR 進行數值轉換後對應至OTR (tk )= {2, 3, 4, 1},其中,該亂數序列中最小值0.3所對應的正整數序碼為1且最大值0.9所對應的正整數序碼為4;並將OTR (tk )= {2, 3, 4, 1}作為時間點tk 的隨機性索引值,其內含4個元素所組成的一個數列,其中每個元素代表彼此為互異正整數具隨機性之序碼值(order value);繼而,該加密單元16將該映射函式對應置換至一置換矩陣(permutation matrix),即:。接上例,則對應於置換π = OTR (tk )= {2, 3, 4, 1}的置換矩陣Pπ表示為:It is worth mentioning that each pairing combination corresponds to a matrix pattern, each matrix type is N×N and each of the matrix elements and only one element of each column element is '1' and the remaining elements are ' a matrix of 0', and N columns in each matrix correspond to the N inputs of the logic input/output unit 13 of the transmitting end, and N rows in each matrix correspond to the N of the logical input/output unit 13 of the transmitting end Outputs; in addition, the N! pairing combinations are a collection of all possibilities for the matrix pattern , i, j = 1, 2, 3..., N; assuming that N = 3, a total of 3! pairing combinations, for example, the matrix types of the sets of all the possibilities are: , , , , and , a total of six aspects; when the encryption pairing is In the matrix type, wherein the matrix element TR 12 =1 in the matrix pattern can indicate that any one of the signal data is input from the first input end of the logic input/output unit 13 of the transmitting end, and only correspondingly cooperates The second output is output; TR 23 =1, which means that any one of the signal data is input from the second input of the logic input/output unit 13 of the transmitting end, and only the corresponding output of the third output is matched; TR 31 =1, it can mean that any one of the signal data is input from the third input of the logic input/output unit 13 of the transmitting end, and only the corresponding output is matched by the first output. It is also worth mentioning that if the image compression unit 11 is at different time points t k , k=1, 2, 3..., 30 (here 30 is assumed, but not limited thereto), different Ns are sequentially arranged. The image bit data is transmitted to the N input terminals of the corresponding logic input/output unit 13 of the transmitting end, and the microprocessor 131 for implementing the wireless optical communication method for image encryption and decryption is outputted each time. Encrypted pairing combination used by image bit data U 1 /U 2... /U N (that is, representing each frame or multi-frame image) to the output of the transmitter-side logic input-output unit to which the input is coupled the re are new random index values from such re-N! pairing combination (i.e., each at a different time point t k of It is selected to avoid that after the encrypted pairing combination is cracked, the image bit data transmitted later can be successfully decrypted. In addition, for each matrix pattern, the manner is generated as follows: First, the encryption unit 16 generates a random real number r 1 (t k ) through a Pseudo-random number generator (PRNG). , r 2 (t k ),...r N (t k ) and the random number sequence of elements of mutually different and random values R real ={r 1 (t k ),r 2 (t k ), ...r N (t k )}, k=1, 2, 3..., 30, and the random number sequence is assigned to the randomness index value. In the first embodiment, the virtual random number The generator is configured to generate a sequence of non-repeating random numbers at fixed intervals (ie, different time points t k ); then, the encryption unit 16 numerically converts the random number sequence by a mapping function O TR to The N random real numbers are respectively assigned to a positive integer sequence code having a value of 1 to N according to their numerical values. For example, it is assumed that N=4 and the random number sequence is: {0.6, 0.8, 0.9, 0.3 }, the value conversion is performed by the mapping function O TR and corresponds to O TR (t k )= {2, 3, 4, 1}, wherein the positive integer sequence code corresponding to the minimum value of 0.3 in the random number sequence Positive for 1 and maximum 0.9 Code sequence number is 4; and O TR (t k) = { 2, 3, 4, 1} as a point of time t randomness index value k, which contains a series consisting of four elements, wherein each The elements represent mutually exclusive integer values with a random order value; then, the encryption unit 16 replaces the mapping function with a permutation matrix, ie: . In the above example, the permutation matrix Pπ corresponding to the permutation π = O TR (t k )= {2, 3, 4, 1} is expressed as:
換言之,藉由OTR (tk )={ 2, 3, 4, 1}的置換處理即可對應得到該集合矩陣中的其中一個矩陣型樣。In other words, the set matrix can be correspondingly obtained by the permutation process of O TR (t k )={ 2, 3, 4, 1} One of the matrix types.
由於該映射函式數列中的每個元素具隨機性,因此,每一矩陣型樣同樣具隨機性。Since each element in the mapping function sequence is random, each matrix pattern is also random.
接著,對於該發射端邏輯輸入輸出單元13之每一輸入端,當該微處理器131經由該輸入端接收來自於該影像壓縮單元11的該等N個影像位元資料U1 ~UN 中之一對應的影像位元資料,即U1 ~UN 其中一者時,該微處理器131根據該加密配對組合,將對應的該影像位元資料U1 ~UN 輸出至該輸入端所配合的該發射端邏輯輸入輸出單元13之輸出端。Then, for each input end of the transmitting end logic input/output unit 13, when the microprocessor 131 receives the N pieces of image bit data U 1 ~U N from the image compressing unit 11 via the input end, When one of the corresponding image bit data, that is, U 1 ~U N , the microprocessor 131 outputs the corresponding image bit data U 1 ~U N to the input terminal according to the encrypted pairing combination The output end of the mating logic input/output unit 13 is matched.
對於每一調變器,該調變器根據所連接該發射端邏輯輸入輸出單元13之輸出端輸出的影像位元資料U1 /U2 …UN-1 /UN 及所連接之濾波器所產生的載波組λ1 /λ2 …λN-1 /λN 來進行調變,以產生並輸出一光調變訊號UX1 (λ1 )/UX2 (λ2 )…UXN-1 (λN-1 )/UXN (λN )而並行傳送至該光多工單元17。在本第一實施例中,每一調變器係係透過振幅鍵控(on-off keying)技術來進行調變;其中,由於該等影像位元資料U1 ~UN 可根據該發射端邏輯輸入輸出單元13變換其輸入及輸出關係,以使得在每一次調變中,該等影像位元資料U1 ~UN 不皆搭配相同的載波組λ1 ~λN ,進而形成跳波(wavelength hopping)機制。舉例來說,本次以之矩陣型樣作為該加密配對組合來將對應的該影像位元資料U1 ~UN 輸出至該輸入端所配合的該發射端邏輯輸入輸出單元13之輸出端後,U1 、U2 、U3 、U4 的輸出順序將變為U4 、U1 、U2 、U3 ,接著,連接對應產生λ1 載波組之濾波器的調變器調變U4 以產生光調變訊號UX1 (λ1 ) ,連接對應產生λ2 載波組之濾波器的調變器調變U1 以產生光調變訊號UX2 (λ2 ) ,連接對應產生λ3 載波組之濾波器的調變器調變U2 以產生光調變訊號UX3 (λ3 ) ,連接對應產生λ4 載波組之濾波器的調變器調變U3 以產生光調變訊號UX4 (λ4 ),下次若以之矩陣型樣作為該加密配對組合來將對應的該影像位元資料U1 ~UN 輸出至該輸入端所配合的該發射端邏輯輸入輸出單元13之輸出端,則U1 、U2 、U3 、U4 的輸出順序將變為U1 、U4 、U2 、U3 ,接著,連接對應產生λ1 載波組之濾波器的調變器調變U1 以產生光調變訊號UX1 (λ1 ) ,連接對應產生λ2 載波組之濾波器的調變器調變U4 以產生光調變訊號UX2 (λ2 ) ,連接對應產生λ3 載波組之濾波器的調變器調變U2 以產生光調變訊號UX3 (λ3 ) ,連接對應產生λ4 載波組之濾波器的調變器調變U3 以產生光調變訊號UX4 (λ4 ),如此一來,本次的影像位元資料U1 ~UN 與下次的影像位元資料U1 ~UN 不皆搭配相同的載波組λ1 ~λN ,故形成跳波機制。For each modulator, the modulator outputs image bit data U 1 /U 2 ... U N-1 /U N and the connected filter according to the output end of the logic input/output unit 13 connected to the transmitting end. The generated carrier group λ 1 /λ 2 ... λ N-1 /λ N is modulated to generate and output a light modulation signal U X1 (λ 1 )/U X2 (λ 2 )...U XN-1 (λ N-1 ) / U XN (λ N ) is transmitted to the optical multiplexing unit 17 in parallel. In the first embodiment, each of the modulator systems is modulated by an on-off keying technique; wherein, since the image bit data U 1 ~U N can be based on the transmitting end The logic input/output unit 13 converts its input and output relationship so that in each modulation, the image bit data U 1 ~U N are not all matched with the same carrier group λ 1 ~λ N , thereby forming a jump wave ( Wavelength hopping) mechanism. For example, this time The matrix pattern is used as the encryption pairing combination to output the corresponding image bit data U 1 ~U N to the output end of the transmitting end logic input/output unit 13 matched by the input terminal, U 1 , U 2 , The output order of U 3 and U 4 will become U 4 , U 1 , U 2 , U 3 , and then, the modulator U 4 corresponding to the filter generating the λ 1 carrier group is connected to generate the optical modulation signal U. X1 (λ 1 ), connected to the modulator U 1 corresponding to the filter generating the λ 2 carrier group to generate the optical modulation signal U X2 (λ 2 ), and connected to the modulation corresponding to the filter generating the λ 3 carrier group Transducing U 2 to generate a light modulation signal U X3 (λ 3 ), connecting a modulator U 3 corresponding to a filter generating a λ 4 carrier group to generate a light modulation signal U X4 (λ 4 ), Second The matrix pattern is used as the encryption pairing combination to output the corresponding image bit data U 1 ~U N to the output end of the transmitting end logic input/output unit 13 to which the input end is matched, then U 1 , U 2 , The output order of U 3 and U 4 will become U 1 , U 4 , U 2 , U 3 , and then, the modulator U 1 corresponding to the filter generating the λ 1 carrier group is connected to generate the optical modulation signal U. X1 (λ 1 ), connected to the modulator U 4 corresponding to the filter generating the λ 2 carrier group to generate the optical modulation signal U X2 (λ 2 ), and connected to the modulation corresponding to the filter generating the λ 3 carrier group Modulating U 2 to generate a light modulation signal U X3 (λ 3 ), connecting a modulator U 3 corresponding to a filter generating a λ 4 carrier group to generate a light modulation signal U X4 (λ 4 ), First, the image bit data U 1 ~U N and the next image bit data U 1 ~U N are not all matched with the same carrier group λ 1 ~λ N , so a jumping wave mechanism is formed.
該光多工單元17根據該波長分波多工技術將該等N個光調變訊號UX1 (λ1 )~UxN (λN )進行光分波多工處理以產生一光多工輸出訊號(即,多工匯聚後的該等N個光調變訊號(UX1 (λ1 )~UXN (λN )),並經由該發射端準直器18(collimator)進行聚焦後平行入射於一無線光通道並輸出至該接收端無線光通訊裝置2之該接收端準直器23。在本第一實施例中,可採用陣列波導光纖光柵或布拉格光纖光柵等光學元件將該等N個光調變訊號UX1 (λ1 )~UXN (λN )進行光分波多工,但不在此限。The optical multiplexing unit 17 performs optical multiplexing and multiplexing on the N optical modulation signals U X1 (λ 1 )~Ux N (λ N ) according to the wavelength division multiplexing technology to generate an optical multiplexing output signal ( That is, the N optical modulation signals (U X1 (λ 1 )~U XN (λ N )) after the multiplex convergence are focused by the emitter collimator 18 and then parallel incident on the The wireless optical channel is output to the receiving end collimator 23 of the receiving end wireless optical communication device 2. In the first embodiment, the N optical elements such as an arrayed waveguide fiber grating or a Bragg fiber grating may be used. The modulation signal U X1 (λ 1 )~U XN (λ N ) performs optical splitting multiplexing, but is not limited thereto.
當該接收端無線光通訊裝置2之該接收端準直器23接收到該光多工輸出訊號後,將該光多工輸出訊號傳送至該光解多工單元22;同步地,該解密單元21根據該加密單元16所傳送的該隨機性索引值自該等N!個配對組合中選取出對應該加密配對組合之一解密配對組合並傳送至該接收端邏輯輸入輸出單元24;其中,該解密配對組合用以指示該接收端邏輯輸入輸出單元24之每一輸入端及其對應配合的輸出端。在本第一實施例中,由於該加密配對組合為對應上述該矩陣型樣集合共N!個可能性中的其中一個矩陣型樣,且為了將經由跳波的該等影像位元資料U1 ~UN 進行解密,該解密配對組合所對應的矩陣型樣與該加密配對組合所對應的矩陣型樣之互為轉置關係;舉例來說,假設在N=4時間點tk ,該加密配對組合所對應的矩陣型樣為,則該解密配對組合所對應的矩陣型樣為(即,之轉置矩陣),此兩者矩陣之乘積後構成一個單位矩陣。After the receiving end collimator 23 of the receiving end wireless optical communication device 2 receives the optical multiplexing output signal, the optical multiplexing output signal is transmitted to the optical multiplexing multiplex unit 22; synchronously, the decrypting unit 21, according to the random index value transmitted by the encryption unit 16, selecting one of the N! pairing combinations to decrypt the pairing combination and transmitting to the receiving logic input/output unit 24; wherein The decryption pairing combination is used to indicate each input end of the receiving end logic input and output unit 24 and its corresponding mated output end. In the first embodiment, the encryption pair is combined to correspond to the matrix pattern set described above. One of a total of N! possibilities, and in order to decrypt the image bit data U 1 ~U N via the jump wave, the matrix pattern corresponding to the decrypted pairing combination is combined with the encryption pair The corresponding matrix patterns are mutually transposed; for example, assuming that at N=4 time point t k , the matrix pattern corresponding to the encrypted pairing combination is , the matrix pattern corresponding to the decrypted pairing combination is (which is, The transposed matrix), the product of the two matrices constitutes an identity matrix.
該光解多工單元22根據該波長分波多工技術將該光多工輸出訊號進行解多工處理,以產生該等N組光解多工訊號UX1 (λ1 )~UXN (λN )並對應輸入至該等N個解調變器。在本第一實施例中,該光解多工單元22係可藉由1×N集中式的陣列波導光纖光柵(AWG),或N個分列的布拉格光纖光柵(FBG)進行分波解多工處理,但不以此為限。此時,因跳波的擾亂(scrambling)作用,無法確實得知該等影像位元資料U1 ~UN 中所一一對應配合調變的該等載波組λ1 ~λN 中的何者。The photo-multiplexing unit 22 performs multiplex processing on the optical multiplex output signal according to the wavelength division multiplexing technology to generate the N sets of photo-demultiplexed signals U X1 (λ 1 )~U XN (λ N And correspondingly input to the N demodulation transformers. In the first embodiment, the photo-demultiplexing unit 22 can be demultiplexed by a 1×N concentrated arrayed waveguide fiber grating (AWG) or N columns of Bragg fiber gratings (FBG). Work, but not limited to this. At this time, due to the scrambling effect of the skipping wave, it is impossible to surely know which of the carrier groups λ 1 to λ N which are one-to-one corresponding to the modulated image bit data U 1 to U N .
該等N個解調變器分別將該等N組光解多工訊號UX1 (λ1 )~UXN (λN )進行解調變,以產生N個光解調變訊號UX1 ~UXN ,進而將該等N個光解調變訊號UX1 ~UXN 分別輸入至該接收端邏輯輸入輸出單元24所對應的該等輸入端。在本第一實施例中,每一解調變器可藉由光檢測器(photodetector) 進行解調變,但不以此為限;此時,仍然無法確實得知該等N個光解調變訊號UX1 ~UXN ,是否依序對應該等影像位元資料U1 ~UN 。The N demodulation transformers respectively demodulate the N sets of photo-demultiplexed signals U X1 (λ 1 )~U XN (λ N ) to generate N optical demodulation signals U X1 -U XN , and then input the N optical demodulation signals U X1 ~ U XN to the input terminals corresponding to the receiving logic input and output unit 24 respectively. In the first embodiment, each demodulator can be demodulated by a photodetector, but not limited thereto; at this time, it is still impossible to know the N optical demodulations. The variable signals U X1 ~U XN , whether or not the image bit data U 1 ~U N are sequentially aligned .
對於該接收端邏輯輸入輸出單元24之每一輸入端,當該微處理器241經由該輸入端接收來自於該等N個解調變器的該等N個光解調變訊號UX1 ~UXN 中之一對應的光解調變訊號時,該微處理器241根據該解密配對組合,將對應的該光解調變訊號輸出至該輸入端所配合的該接收端邏輯輸入輸出單元24之輸出端,以獲得一對應的影像位元資料U1 ~UN 。For each input end of the receiving-side logic input-output unit 24, when the microprocessor 241 receives the N optical demodulation signals U X1 -U from the N demodulators via the input terminal When one of the XNs corresponds to the optical demodulation signal, the microprocessor 241 outputs the corresponding optical demodulation signal to the receiving logic input/output unit 24 corresponding to the input terminal according to the decrypted pairing combination. The output end obtains a corresponding image bit material U 1 ~U N .
該影像還原單元26將該等影像位元資料U1 ~UN 進行還原,以產生該等來源影像資料User#1~User#N,而得以正確地還原解讀出該等來源影像資料User#1~User#N其原始影像格式的信號。值得一提的是,由於解密配對組合所對應的與該加密配對組合所對應的兩者乘積可形成單位矩陣,故可解密還原經由跳波後的該等來源影像資料User#1~User#N。The image restoration unit 26 restores the image bit data U 1 ~U N to generate the source image data User#1~User#N, and correctly restores the source image data User#1. ~User#N The signal in its original image format. It is worth mentioning that due to the decryption pairing combination Corresponding to the encryption pairing The product of the two can form a unit matrix, so the source image data User#1~User#N after the jump wave can be decrypted and restored.
參閱圖2,為本發明用於實現影像加解密之無線光通訊方法的一第二實施例,該用於實現影像加解密之無線光通訊方法係藉由一發射端無線光通訊裝置1及一接收端無線光通訊裝置2在一預定無線光通訊架構來實施;在本第二實施例中,該預定無線光通訊架構係為光分碼多重存取技術(Optical Code Division Multiple Access, OCDMA)。值得一提的是,本第二實施例中的該發射端無線光通訊裝置1及該接收端無線光通訊裝置2運作方式類似於該第一實施例中的該發射端無線光通訊裝置1及該接收端無線光通訊裝置2,因此,以下部分相似內容不再贅述。2 is a second embodiment of a wireless optical communication method for implementing image encryption and decryption according to the present invention. The wireless optical communication method for implementing image encryption and decryption is provided by a transmitting wireless optical communication device 1 and a transmitter. The receiving wireless optical communication device 2 is implemented in a predetermined wireless optical communication architecture. In the second embodiment, the predetermined wireless optical communication architecture is Optical Code Division Multiple Access (OCDMA). It should be noted that the transmitting end wireless optical communication device 1 and the receiving end wireless optical communication device 2 in the second embodiment are similar to the transmitting wireless optical communication device 1 in the first embodiment. The receiving end wireless optical communication device 2, therefore, the following similar content will not be described again.
該發射端無線光通訊裝置1與包括一影像壓縮單元11、一光源生成單元12、一電連接該光源生成單元12之光濾波單元15、一加密單元16、一與該影像壓縮單元11及該加密單元16電連接之發射端邏輯輸入輸出單元13、一與該發射端邏輯輸入輸出單元13電連接之調變單元14、一與該調變單元14電連接之光多工單元17,以及一與該光多工單元17電連接之發射端準直器18。該發射端邏輯輸入輸出單元13具有一微處理器131、N個輸入端及N個輸出端(圖未示),該調變單元14具有N個調變器(圖未示),該光濾波單元15具有N個濾波器(圖未示);其中,該等N個調變器分別與該等N個濾波器及該發射端邏輯輸入輸出單元13之該等N個輸出端電連接,且N≥3。The transmitting end wireless optical communication device 1 includes an image compressing unit 11, a light source generating unit 12, an optical filtering unit 15 electrically connected to the light source generating unit 12, an encrypting unit 16, a and the image compressing unit 11 and the a transmitting logic input/output unit 13 electrically connected to the encryption unit 16 , a modulation unit 14 electrically connected to the transmitting logic input and output unit 13 , an optical multiplexing unit 17 electrically connected to the modulation unit 14 , and a An emitter collimator 18 electrically coupled to the optical multiplexing unit 17. The transmitting end logic input and output unit 13 has a microprocessor 131, N input terminals and N output terminals (not shown). The modulation unit 14 has N modulators (not shown), and the optical filter The unit 15 has N filters (not shown); wherein the N modulators are electrically connected to the N filters and the N outputs of the transmitter logic input/output unit 13, respectively, and N ≥ 3.
該接收端無線光通訊裝置2具有一接收端準直器23、一解密單元21、一與該接收端準直器23電連接之光解多工單元22、一與該光解多工單元22電連接之解調變單元25、一分別與該解密單元21及該解調變單元25電連接之接收端邏輯輸入輸出單元24,以及一與接收端邏輯輸入輸出單元24電連接的影像還原單元26;該接收端邏輯輸入輸出單元24具有一微處理器241、N個輸入端及N個輸出端(圖未示),該解調變單元25具有N個解調變器(圖未示),每一解調變器與該接收端邏輯輸入輸出單元24之每一輸入端電連接。在本第二實施例中,該發射端邏輯輸入輸出單元13及該接收端邏輯輸入輸出單元24為可程式化之N×N電子交換機,可受控而改變其內部相應開關接點密合或斷開之狀態,以變化該發射端邏輯輸入輸出單元13之該等N個該等N個輸入端及該等N個輸出端之輸入輸出配合關係,以及該接收端邏輯輸入輸出單元24之該等N個該等N個輸入端及該等N個輸出端之輸入輸出配合關係。此外,該影像壓縮單元11、該影像還原單元26、該加密單元16及該解密單元21可由嵌入式系統元件、數位電路等具備運算能力之電子元件實現之。The receiving end wireless optical communication device 2 has a receiving end collimator 23, a decrypting unit 21, an optical multiplexing unit 22 electrically connected to the receiving end collimator 23, and a photo demultiplexing unit 22 a demodulation unit 25 electrically connected, a receiving logic input/output unit 24 electrically connected to the decrypting unit 21 and the demodulation unit 25, and an image restoration unit electrically connected to the receiving logic input/output unit 24 26; the receiving end logic input and output unit 24 has a microprocessor 241, N inputs and N outputs (not shown), the demodulation unit 25 has N demodulators (not shown) Each demodulation is electrically coupled to each input of the receiving logic input and output unit 24. In the second embodiment, the transmitting logic input/output unit 13 and the receiving logic input and output unit 24 are programmable N×N electronic switches, which can be controlled to change the internal switch contacts or a state of being disconnected to change an input/output cooperation relationship between the N Nth input terminals and the N output terminals of the logic input/output unit 13 of the transmitting end, and the logic input/output unit 24 of the receiving end The input and output coordination relationship of the N N input terminals and the N output terminals. In addition, the image compression unit 11, the image restoration unit 26, the encryption unit 16, and the decryption unit 21 can be realized by electronic components having computing capabilities such as embedded system components and digital circuits.
該影像壓縮單元11接收來自外部所傳送N個來源影像資料User#1~User#N,並將該等N個來源影像資料User#1~User#N進行壓縮編碼(例如,H.264或H.265之壓縮編碼技術)以對應產生N個影像位元資料U1 ~UN 進而依序將N個影像位元資料傳送至對應的該發射端邏輯輸入輸出單元13之該等N個輸入端;在本第二實施例中,每一影像位元資料U1 /U2… /UN 皆代表一幀或多幀影像,該等N個來源影像資料User#1~User#N係為未經處理過的原始影像格式。The image compression unit 11 receives the N source image data User#1~User#N transmitted from the outside, and compresses and encodes the N source image materials User#1~User#N (for example, H.264 or H). The compression coding technique of .265 is to sequentially generate N image bit data U 1 ~U N and sequentially transfer N image bit data to the corresponding N input terminals of the corresponding logic input/output unit 13 of the transmitting end. In the second embodiment, each of the image bit data U 1 /U 2 . . . /U N represents one or more frames of images, and the N source image data User#1~User#N are not The processed original image format.
該光源生成單元12產生M個波長不等的光源載波λ1 ~λM 後,將其分別傳送至該光濾波單元15之該等N個濾波器;接著,該等N個濾波器根據所接收的該等M個光源載波λ1 ~λM 來產生N個載波組,其中M≥4;在本第二實施例中,每一載波組具有M個相異波長的光源載波λ1 ~λM ;每一濾波器可由空間光調制器或布拉格光纖光柵等光學元件實現。The light source generating unit 12 generates M light source carriers λ 1 ~ λ M having unequal wavelengths, and respectively transmits them to the N filters of the optical filtering unit 15; then, the N filters are received according to the received The M light source carriers λ 1 ~ λ M to generate N carrier groups, where M ≥ 4; in the second embodiment, each carrier group has M different wavelengths of light source carriers λ 1 ~ λ M Each filter can be implemented by an optical component such as a spatial light modulator or a Bragg fiber grating.
首先,該加密單元16根據該發射端邏輯輸入輸出單元13之該等N個輸入端及該等N個輸出端得到用以指示該等N個輸入端及該等N個輸出端之對射關係的N!個配對組合;其中,該加密配對組合用以指示該發射端邏輯輸入輸出單元13之每一輸入端及其對應配合的輸出端,即每一個輸入端都正好配合一個輸出端之對射關係。接著,該加密單元16產生一隨機性索引值,並根據該隨機性索引值從該等N!個配對組合中選取出一加密配對組合,並將該隨機性索引值傳送至該解密單元21及該發射端邏輯輸入輸出單元13。First, the cryptographic unit 16 obtains the relationship between the N input terminals and the N output terminals according to the N input terminals and the N output terminals of the logic input/output unit 13 of the transmitting end. The N! pairing combination; wherein the encrypted pairing combination is used to indicate each input end of the transmitting end logic input and output unit 13 and its corresponding mating output end, that is, each input end is exactly matched with an output end pair Shooting relationship. Then, the encryption unit 16 generates a random index value, and selects an encrypted pairing combination from the N! pairing combinations according to the randomness index value, and transmits the randomness index value to the decrypting unit 21 and The transmitting end logic inputs and outputs the unit 13.
其中,每一加密配對組合對應一個矩陣型樣,該等N!配對組合即為該矩陣型樣所有可能性之集合,,i,j=1,2,…N;矩陣型樣其產生方式之技術內容相同於該第一實施例,不在此贅述。Wherein, each encryption pair combination corresponds to a matrix pattern, and the N! pairing combination is a set of all possibilities of the matrix pattern , i, j = 1, 2, ... N; the technical content of the matrix pattern is the same as that of the first embodiment, and will not be described herein.
接著,對於該發射端邏輯輸入輸出單元13之每一輸入端,當該微處理器131經由該輸入端接收來自於該影像壓縮單元11的該等N個影像位元資料U1 ~UN 中之一對應的影像位元資料,即U1 ~UN 其中一者時,該微處理器131根據該加密配對組合,將對應的該影像位元資料U1 ~UN 輸出至該輸入端所配合的該發射端邏輯輸入輸出單元13之輸出端。Then, for each input end of the transmitting end logic input/output unit 13, when the microprocessor 131 receives the N pieces of image bit data U 1 ~U N from the image compressing unit 11 via the input end, When one of the corresponding image bit data, that is, U 1 ~U N , the microprocessor 131 outputs the corresponding image bit data U 1 ~U N to the input terminal according to the encrypted pairing combination The output end of the mating logic input/output unit 13 is matched.
對於每一調變器,該調變器根據所連接該發射端邏輯輸入輸出單元13之輸出端輸出的影像位元資料U1 /U2 …UN-1 /UN 及所連接之濾波器所產生的載波組λ1 ~λM 來進行調變,以產生並輸出一光調變訊號UX1 (λ1 ~λM )/UX2 (λ1 ~λM )/ UX3 (λ1 ~λM )…UXN-1 (λ1 ~λM )/UXN (λ1 ~λM )而並行傳送至該光多工單元17。在本第二實施例中,每一調變器係係透過一振幅鍵控技術來進行調變;值得一提的是,該等影像位元資料U1 ~UN 可根據該發射端邏輯輸入輸出單元13變換其輸入及輸出關係。For each modulator, the modulator outputs image bit data U 1 /U 2 ... U N-1 /U N and the connected filter according to the output end of the logic input/output unit 13 connected to the transmitting end. The generated carrier group λ 1 ~ λ M is modulated to generate and output a light modulation signal U X1 (λ 1 ~ λ M ) / U X2 (λ 1 ~ λ M ) / U X3 (λ 1 ~ λ M )...U XN-1 (λ 1 ~λ M )/U XN (λ 1 ~λ M ) are transmitted to the optical multiplexing unit 17 in parallel. In the second embodiment, each of the modulator systems is modulated by an amplitude keying technique; it is worth mentioning that the image bit data U 1 ~U N can be input according to the logic of the transmitting end. The output unit 13 converts its input and output relationships.
該光多工單元17根據該光分碼多重存取技術將該等N個光調變訊號UX1 (λ1 ~λM )~UXN (λ1 ~λM )進行正交編碼來完成多工處理,並產生一光多工輸出訊號UX1 (C1 )~UXN (CN )(其中,C1 ~CN 為該等相異波長的光源載波λ1 ~λM 經由編碼後的正交光頻域碼),並經由該發射端準直器18的進行聚焦後平行入射於一無線光通道並輸出至該接收端無線光通訊裝置2之該接收端準直器23。在本第二實施例中,該光多工單元17可藉由N×N集中式的陣列波導光纖光柵並利用最大長度序列(Maximum length sequence, MLS)將該等N個光調變訊號UX1 (λ1 ~λM )~UXN (λ1 ~λM )進行正交編碼、或藉由N個分列的布拉格光纖光柵依據哈達碼(Hadamard code)將該等N個光調變訊號UX1 (λ1 ~λM )~UXN (λ1 ~λM )進行正交編碼後再經由光耦合器(coupler)(圖未示)產生該光多工輸出訊號UX1 (C1 )~UXN (CN ),由於該等影像位元資料U1 ~UN 可根據該發射端邏輯輸入輸出單元13變換其輸入及輸出關係,因此在每一次經由調變、編碼及完成多工處理後的該等影像位元資料U1 ~UN 不皆搭配相同的光頻域碼繼而形成光頻跳碼(coded wavelength hopping)機制;值得一提的是,當採用最大長度序列進行正交編碼時,M=N=2n -1,n≥2;當採用哈達碼進行正交編碼時,M=N+1=2n ,n≥2。The optical multiplexing unit 17 performs orthogonal coding of the N optical modulation signals U X1 (λ 1 ~λ M )~U XN (λ 1 ~λ M ) according to the optical code division multiple access technology to complete Processing, and generating an optical multiplex output signal U X1 (C 1 )~U XN (C N ) (wherein C 1 ~C N are encoded signals of the different wavelengths of the light source carrier λ 1 ~λ M The orthogonal optical frequency domain code is focused by the transmitting end collimator 18 and then parallelly incident on a wireless optical channel and output to the receiving end collimator 23 of the receiving end wireless optical communication device 2. In the second embodiment, the optical multiplexing unit 17 can adjust the N optical modulation signals U X1 by using an N×N concentrated array waveguide fiber grating and using a maximum length sequence (MLS). (λ 1 ~ λ M )~U XN (λ 1 ~λ M ) performing orthogonal coding, or N-divided Bragg fiber gratings according to Hadamard code to adjust the N optical modulation signals U X1 (λ 1 ~λ M )~U XN (λ 1 ~λ M ) is orthogonally encoded and then generated by an optical coupler (not shown) to generate the optical multiplex output signal U X1 (C 1 )~ U XN (C N ), since the image bit data U 1 ~U N can be converted according to the input and output relationship of the logic input and output unit 13 of the transmitting end, each time through modulation, encoding and completion of multiplexing processing The latter image bit data U 1 ~U N are not all matched with the same optical frequency domain code to form a coded wavelength hopping mechanism; it is worth mentioning that when using the maximum length sequence for orthogonal coding When M=N=2 n -1, n≥2; when orthogonal coding is performed using the Hada code, M=N+1=2 n , n≥2.
當該接收端無線光通訊裝置2之該接收端準直器23接收到該光多工輸出訊號UX1 (C1 )~UXN (CN )後,經由光分歧器(splitter)(圖未示)將該光多工輸出訊號UX1 (C1 )~UXN (CN )傳送至該光解多工單元22;同步地,該解密單元21根據該加密單元16所傳送的該隨機性索引值自該等N!個配對組合中選取出對應該加密配對組合之一解密配對組合並傳送至該接收端邏輯輸入輸出單元24;其中,該解密配對組合用以指示該接收端邏輯輸入輸出單元24之每一輸入端及其對應配合的輸出端。在本第二實施例中,相同於該第一實施例,由於該加密配對組合為對應上述該矩陣型樣集合共N!個可能性中的其中一個矩陣型樣,且為了將經由光頻跳碼(coded wavelength hopping)後的該等影像位元資料U1 ~UN 進行解密,該解密配對組合所對應的矩陣型樣與該加密配對組合所對應的矩陣型樣之互為轉置關係。When the receiving end collimator 23 of the receiving end wireless optical communication device 2 receives the optical multiplexing output signal U X1 (C 1 )~U XN (C N ), it passes through a splitter (not shown) Transmitting the optical multiplexing output signal U X1 (C 1 )~U XN (C N ) to the optical multiplexing multiplex unit 22; synchronously, the randomness transmitted by the decrypting unit 21 according to the encryption unit 16 The index value is selected from the N! pairing combinations to decrypt the pairing combination corresponding to one of the encrypted pairing combinations and transmitted to the receiving end logic input and output unit 24; wherein the decrypting pairing combination is used to indicate the receiving end logic input and output Each input of unit 24 and its corresponding mated output. In the second embodiment, the same as the first embodiment, since the encrypted pairing combination is corresponding to the matrix pattern set described above. One of a total of N! possibilities, and in order to decrypt the image bit data U 1 ~U N after the coded wavelength hopping, the decrypted pairing combination corresponds The matrix patterns corresponding to the matrix type and the encryption pairing are mutually transposed.
該光解多工單元22根據該分碼多重存取技術將該光多工輸出訊號UX1 (C1 )~UXN (CN )進行正交解碼來完成解多工處理,並產生該等N組光解多工訊號UX1 (C1 ), UX1 ()~UXN (CN ), UXN ()並對應輸入至該等N個解調變器。在本第二實施例中,該光解多工單元22可藉由可採用集中式的2個NN互補式(original and complementary)陣列波導光纖光柵解碼器編寫正交碼中的最大長度序碼(M-sequence code)、或N對互補式(original and complementary)布拉格光纖光柵編寫的正交碼中哈達碼進行解多工處理,但不以此為限。此時,由於光頻跳碼的擾亂作用,無法確實得知該等影像位元資料U1 ~UN 是否正確對應於(C1 ,~(CN ,中的哪一個承載光頻域碼。The photo-multiplexing unit 22 performs orthogonal decoding on the optical multiplexing output signals U X1 (C 1 )~U XN (C N ) according to the code division multiple access technology to complete the demultiplexing process, and generates the same Group N photolysis multiplex signal U X1 (C 1 ), U X1 ( )~U XN (C N ), U XN ( And correspondingly input to the N demodulation transformers. In the second embodiment, the photo-demultiplexing unit 22 can adopt two Ns in a centralized manner. An original and complementary arrayed waveguide fiber grating decoder writes a maximum length code (M-sequence code) in an orthogonal code, or an orthogonal code written in an N-pair complementary and complementary Bragg fiber grating. Hada code performs multiplex processing, but not limited to this. At this time, due to the disturbance of the optical frequency hopping code, it is impossible to know whether the image bit metadata U 1 ~U N correctly corresponds to (C 1 , ~(C N , Which one of them carries the optical frequency domain code.
該等N個解調變器分別將該等分列並行的N組光解多工訊號UX1 (C1 ), UX1 ()~UXN (CN ), UXN ()進行解調變,以產生N個光解調變訊號UX1 ~UXN ,進而將該等N個光解調變訊號UX1 ~UXN 分別輸入至該接收端邏輯輸入輸出單元24所對應的該等輸入端。在本第二實施例中,每一解調變器可藉由平衡光檢測器(balanced photodetector) 進行解調變,但不以此為限;此時,仍然無法確實得知該等N個光解調變訊號UX1 ~UXN ,是否依序對應該等影像位元資料U1 ~UN 。The N demodulation transformers respectively divide the N sets of photo-demultiplexed signals U X1 (C 1 ), U X1 ( )~U XN (C N ), U XN ( Demodulating to generate N optical demodulation signals U X1 ~ U XN , and then inputting the N optical demodulation signals U X1 ~ U XN to the receiving end logic input and output unit 24 respectively The inputs. In the second embodiment, each demodulator can be demodulated by a balanced photodetector, but not limited thereto; at this time, the N lights cannot be surely known. Demodulation of the variable signal U X1 ~ U XN , whether or not the corresponding image bit data U 1 ~ U N are sequentially matched .
對於該接收端邏輯輸入輸出單元24之每一輸入端,當該微處理器241經由該輸入端接收來自於該等N個解調變器的該等N個光解調變訊號UX1 ~UXN 中之一對應的光解調變訊號(即,UX1 ~UXN 其中一者)時,該微處理器241根據該解密配對組合,將對應的該光解調變訊號輸出至該輸入端所配合的該接收端邏輯輸入輸出單元24之輸出端,以獲得一對應的影像位元資料U1 ~UN 。For each input end of the receiving-side logic input-output unit 24, when the microprocessor 241 receives the N optical demodulation signals U X1 -U from the N demodulators via the input terminal When one of the XNs corresponds to the optical demodulation signal (ie, one of U X1 ~ U XN ), the microprocessor 241 outputs the corresponding optical demodulation signal to the input terminal according to the decrypted pairing combination. The output of the receiving end logic input/output unit 24 is matched to obtain a corresponding image bit material U 1 ~U N .
該影像還原單元26該等影像位元資料U1 ~UN 進行還原,以產生該等來源影像資料User#1~User#N,而以得正確地還原解讀出該等來源影像資料User#1~User#N其原始影像格式的訊號。值得一提的是,由於解密配對組合所對應的與該加密配對組合所對應的兩者乘積可形成單位矩陣,故可解密還原經由光頻跳碼(coded wavelength hopping)的該等來源影像資料User#1~User#N。The image restoration unit 26 restores the image bit data U 1 ~U N to generate the source image data User#1~User#N, and correctly restores the source image data User#1 ~User#N The signal in its original image format. It is worth mentioning that due to the decryption pairing combination Corresponding to the encryption pairing The product of the two can form a unit matrix, so that the source image data User#1~User#N via the coded wavelength hopping can be decrypted and restored.
綜上所述,本發明藉由從該等N!個配對組合中選取出該加密配對組合,針對在傳輸加密處理後該等來源影像資料User#1~User#N,在波長分波多工通訊架構下掌握跳波的型樣(wavelength hopping pattern)或在光分碼多重存取通訊架構下掌握光頻跳碼的型樣(coded wavelength hopping pattern),進而在後續解密時與該解密配對組合形成自相關(autocorrelation)之正確匹配,以解讀出較高的峰值信噪比(Peak signal-to-noise ratio, PSNR)的該等N個來源影像資料,進而還原該等來源影像資料User#1~User#N;另一方面可因應未來更巨量的影像串流,本發明運用實體層上多個光源載波的擾亂跳波或光頻跳碼加密效能,以解決在應用層上影像僅能進行部份加密而削減了無線光通訊於傳輸影像時之安全性的困境,故確實能達成本發明的目的。In summary, the present invention selects the encrypted pairing combination from the N! pairing combinations for the wavelength-multiplexed communication of the source image data User#1~User#N after the transmission encryption process. Under the framework, master the wavelength hopping pattern or master the coded wavelength hopping pattern under the optical code division multiple access communication architecture, and then combine with the decryption pair in the subsequent decryption. Correct matching of autocorrelation to interpret the higher peak signal-to-noise ratio (PSNR) of the N source image data, and then restore the source image data User#1~ User#N; on the other hand, in response to a larger amount of video stream in the future, the present invention uses the scrambling or optical frequency hopping encryption performance of multiple light source carriers on the physical layer to solve the problem that the image can only be performed on the application layer. Partial encryption reduces the security of wireless optical communication when transmitting images, so the object of the present invention can be achieved.
惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。However, the above is only the embodiment of the present invention, and the scope of the invention is not limited thereto, and all the simple equivalent changes and modifications according to the scope of the patent application and the patent specification of the present invention are still Within the scope of the invention patent.
本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一方塊圖,說明本發明一發射端無線光通訊裝置及一接收端無線光通訊裝置採用波長分波多工技術進行無線光通訊的一第一實施例;及 圖2是一方塊圖,說明本發明該發射端無線光通訊裝置及該接收端無線光通訊裝置採用光分碼多重存取技術進行無線光通訊的一第二實施例。Other features and effects of the present invention will be apparent from the following description of the drawings. FIG. 1 is a block diagram illustrating a transmitting wireless optical communication device and a receiving wireless optical communication device of the present invention. A first embodiment of the wireless optical communication using the wavelength division multiplexing technology; and FIG. 2 is a block diagram illustrating the wireless optical communication device of the transmitting end and the wireless optical communication device of the receiving end using the optical code division multiple access technology A second embodiment of wireless optical communication.
Claims (9)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106122804 | 2017-07-07 | ||
??106122804 | 2017-07-07 | ||
TW106122804 | 2017-07-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201907681A true TW201907681A (en) | 2019-02-16 |
TWI686061B TWI686061B (en) | 2020-02-21 |
Family
ID=66213400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107123521A TWI686061B (en) | 2017-07-07 | 2018-07-06 | Wireless optical communication method for realizing image encryption and decryption |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI686061B (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102324974A (en) * | 2011-07-08 | 2012-01-18 | 北京邮电大学 | A kind of visible light communication system and device thereof based on the OCDMA technology |
CN102932142B (en) * | 2012-10-08 | 2015-10-21 | 中国科学院西安光学精密机械研究所 | Optical Data Signal Encryption and Decryption Method in Optical Fiber Communication System |
TWI470947B (en) * | 2012-12-24 | 2015-01-21 | Ind Tech Res Inst | Apparatus and method for data embedding in light communication and the light communication system and method thereof |
CN103986516A (en) * | 2014-05-30 | 2014-08-13 | 中国人民解放军信息工程大学 | Visible light communication system and method |
-
2018
- 2018-07-06 TW TW107123521A patent/TWI686061B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI686061B (en) | 2020-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8831426B2 (en) | OCDM-based all optical multi-level security | |
US8737618B2 (en) | Secure key distribution for optical code division multiplexed based optical encryption | |
CN110247705B (en) | Multi-core fiber-based optical quantum fusion network implementation method and system | |
CN108494544A (en) | A kind of encryption in physical layer high speed optical communication system of high efficient and reliable | |
WO2011130985A1 (en) | Reconfigurable codec and optical code division multiple access passive optical network based on device | |
US7437082B1 (en) | Private optical communications systems, devices, and methods | |
CN111416701B (en) | High-safety orthogonal mode division multiplexing access method and system based on vector disturbance | |
TWI686061B (en) | Wireless optical communication method for realizing image encryption and decryption | |
TWI552586B (en) | System and method for secure transmission of videos on passive optical network | |
Bhanja et al. | Novel encryption technique for security enhancement in optical code division multiple access | |
Yang | The application of spectral-amplitude-coding optical CDMA in passive optical networks | |
Etemad et al. | OCDM-based photonic layer'security'scalable to 100 Gbits/s for existing WDM networks | |
Kodama et al. | High-security 2.5 Gbps, polarization multiplexed 256-ary OCDM using a single multi-port encoder/decoder | |
TWI803440B (en) | Wireless optical encryption communication method using vortex optical scrambling | |
US7609968B2 (en) | Secure analog communication system using time and wavelength scrambling | |
JP2007511178A5 (en) | ||
EP1690364A2 (en) | Coherent-states based quantum data-encryption through optically-amplified wdm communication networks | |
Goldberg et al. | Towards a cryptanalysis of spectral-phase encoded optical CDMA with phase-scrambling | |
CA2725804A1 (en) | System and method for ocdma-based photonic layer security robustness to archival attack | |
JP2021166364A (en) | Signal processing device | |
Chang et al. | Intelligent shuffling cryptography with dynamic AWG/switch matrix for video transmission in WDM-PON network | |
US20110228939A1 (en) | System and methods for ocdm-based optical encryption using subsets of phase-locked frequency lines | |
RU2730397C2 (en) | Device for encrypted transmission of messages with short aging time of information | |
Yen et al. | Hybrid analog/digital wavelength-time optical CDMA systems in radio-over-fiber transmissions | |
Chang | Multimedia Encrypted Experiment of Reconfigurable Wavelength Hopping Protection against Eavesdroppers over a Wireless Wavelength Division Multiplexing Network. |