TW201904700A - Laser processing apparatus, methods of use and related arrangements - Google Patents

Laser processing apparatus, methods of use and related arrangements

Info

Publication number
TW201904700A
TW201904700A TW107121327A TW107121327A TW201904700A TW 201904700 A TW201904700 A TW 201904700A TW 107121327 A TW107121327 A TW 107121327A TW 107121327 A TW107121327 A TW 107121327A TW 201904700 A TW201904700 A TW 201904700A
Authority
TW
Taiwan
Prior art keywords
mirror
laser
workpiece
laser processing
processing system
Prior art date
Application number
TW107121327A
Other languages
Chinese (zh)
Inventor
吉野郁世
布萊迪 尼爾森
羅伯特 佛葛森
大衛 羅德
偉恩 巴特菲爾德
Original Assignee
美商伊雷克托科學工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商伊雷克托科學工業股份有限公司 filed Critical 美商伊雷克托科學工業股份有限公司
Publication of TW201904700A publication Critical patent/TW201904700A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Laser Beam Processing (AREA)

Abstract

A laser processing system can include a laser source configured to generate a beam of laser pulses at an average power of greater than 10 W and a turn mirror disposed in a path of the beam. The turn mirror can include a mirror configured to reflect a first portion of light within the laser pulses and transmit a second portion of the light within the laser pulses, and a mirror mount coupled to the mirror. The mirror mount is configured so as to not be present behind the mirror at a location where the mirror is irradiated with the laser pulses.

Description

雷射加工設備、使用方法及相關配置  Laser processing equipment, methods of use and related configurations  

本文中所描述之具體實例大體而言係關於一種雷射加工設備及其組件,且係關於以有助於對工件之準確且可靠加工的方式使用該雷射加工設備之方法。 The specific examples described herein relate generally to a laser processing apparatus and components thereof, and to methods of using the laser processing apparatus in a manner that facilitates accurate and reliable processing of the workpiece.

相關申請案之交叉參考 Cross-reference to related applications

本申請案主張2017年6月26日申請之美國臨時申請案第 62/254,863號之權益,該案係以全文引用之方式併入本文中。 This application claims the benefit of U.S. Provisional Application Serial No. 62/254,863, filed on Jun.

雷射加工系統用於涵蓋多種效能要求之廣泛多種應用中,該等效能要求諸如波長、功率、光點大小、工作距離、部件處置、產出量、準確度、產率等。在一些情況下,諸如在某些半導體加工應用、過孔鑽孔應用等中,系統之準確度可具有非常高的要求且在僅幾微米或甚至次微米層級之範圍中。具有此高光束置放準確度之系統要求雷射之光束指向不穩定性非常小,且此外光束路徑遞送光學件亦不導致額外的光束運動不穩定性。可導致雷射光束不當地移動之某物之一實例為不穩定的翻轉鏡面(turn mirror)。使用透鏡以將雷射光束聚焦至待加工之工件(例如,半導體晶圓、印刷電路板等)之工作表面處的小光點係雷射加工系統之常見作法。為此目的,彼光點在工作表面處之橫向運動(△)將等於聚焦透鏡之焦距(F)乘以至透鏡之輸入處的光束角(θ)之變化(△=Fθ)。在諸如顯微鏡之一些系統中,聚焦透鏡(例如,顯微鏡物 鏡)之焦距可非常小,僅為幾毫米。在諸如使用掃描透鏡之雷射加工系統之其他系統中,透鏡焦距可為幾十或數百毫米。對於具有100毫米焦距透鏡之系統,使聚焦光點橫向地移動1.0微米僅需要光束角變化10微弧度(μRad)。在考慮了諸如對準及部件置放的準確度之其他促成因素後,額外1.0微米之光點運動可使整個系統之準確度要求陷入危險。 Laser processing systems are used in a wide variety of applications covering a wide range of performance requirements such as wavelength, power, spot size, working distance, component handling, throughput, accuracy, yield, and the like. In some cases, such as in certain semiconductor processing applications, via drilling applications, etc., the accuracy of the system can have very high requirements and be in the range of only a few microns or even sub-micron levels. Systems with this high beam placement accuracy require that the beam pointing instability of the laser is very small, and in addition the beam path delivery optics does not cause additional beam motion instability. An example of something that can cause the laser beam to move unduly is an unstable turn mirror. A common practice of using a lens to focus a laser beam onto a working surface of a workpiece to be processed (eg, a semiconductor wafer, printed circuit board, etc.) at a working surface is a common laser processing system. For this purpose, the lateral motion (Δ) of the spot at the working surface will be equal to the focal length (F) of the focusing lens multiplied by the beam angle (θ) at the input of the lens (Δ = Fθ). In some systems, such as microscopes, the focal length of a focusing lens (e.g., a microscope objective) can be very small, only a few millimeters. In other systems, such as laser processing systems that use scanning lenses, the focal length of the lens can be tens or hundreds of millimeters. For systems with 100 mm focal length lenses, moving the focused spot laterally by 1.0 micron requires only a beam angle change of 10 microradians (μRad). After considering other factors such as alignment and accuracy of component placement, an additional 1.0 micron spot motion can put the accuracy requirements of the entire system at risk.

在翻轉鏡面之情況下,雷射光束將以兩倍鏡面角度反射。因此,使光束角變化10微弧度僅需要使鏡面角度變化5微弧度。不幸地,賦予此小角度變化不會對鏡面安裝件造成很大的干擾。可調整之鏡面安裝件更易受更多數目個及種類的構成鏡面安裝件總成之組件零件部件干擾影響。干擾可為振動、推動或拉動安裝件之某物(例如,清潔乾燥空氣淨化軟管)或甚至小溫度變化之形式。作為由溫度干擾引起之變化之一實例,設想普通鏡面直徑為一吋(25.4mm)。若干擾會導致鏡面之邊緣移動(亦即,以便使鏡面傾斜)恰好0.127微米,則鏡面角度變化為0.127μm/25.4mm=5微弧度。 In the case of flipping the mirror, the laser beam will be reflected at twice the specular angle. Therefore, changing the beam angle by 10 microradians requires only a change in the mirror angle of 5 microradians. Unfortunately, imparting this small angular change does not cause significant interference with the mirror mount. Adjustable mirror mounts are more susceptible to interference from a greater number of types and types of component parts that make up the mirror mount assembly. The interference can be in the form of vibration, pushing or pulling something of the mounting (eg, cleaning the dry air purification hose) or even small temperature changes. As an example of a change caused by temperature disturbance, it is assumed that the ordinary mirror diameter is one turn (25.4 mm). If the interference causes the edge of the mirror to move (i.e., to tilt the mirror) to exactly 0.127 microns, the mirror angle change is 0.127 μm / 25.4 mm = 5 microradians.

存在具有實心背面之許多鏡面安裝件。實心背面可為有益的。其可為鏡面提供保護,此係因為實心背面將通常由如鋁之材料製成,該材料的脆性與可能由玻璃製備之鏡面相比會較小。實心背面亦可形成對經由鏡面漏泄之任何雜散光的天然安全障壁。然而,若鏡面安裝件係由鋁(CTE=0.000023m/m℃之一種非常常見的安裝件材料)製成,且若鏡面安裝件為5.5mm厚,則導致鋁膨脹0.127微米且因此賦予5微弧度之鏡面角度變化將僅需要鏡面安裝件之一個邊緣上的溫度(相對於鏡面安裝件之相對邊緣)變化1℃。 There are many mirror mounts with a solid back. A solid back can be beneficial. It provides protection to the mirror because the solid back will typically be made of a material such as aluminum, which is less brittle than the mirror that may be made of glass. The solid back side can also form a natural safety barrier to any stray light that leaks through the mirror. However, if the mirror mount is made of aluminum (a very common mounting material of CTE = 0.000023 m/m ° C), and if the mirror mount is 5.5 mm thick, the aluminum expands by 0.127 microns and thus gives 5 micro A change in the mirror angle of the arc will only require a temperature change of 1 °C on one edge of the mirror mount (relative to the opposite edge of the mirror mount).

在高準確度雷射加工系統中,知道所有熱源及其影響光束路徑中之物品之可能性係重要的。用來冷卻部件之機制亦可影響其對熱源之敏感度。許多鏡面安裝件之一種熱源可為雷射光束本身。儘管要求鏡面具有99.5%或甚至更高之反射率可相當常見,但仍會存在透射穿過鏡面之少量光。對於雷 射光束功率<1W之系統,透射之光的總量很可能可忽略。然而,在較高功率系統(例如,其中雷射光束功率為約30W或更大)中,功率之0.5%為150mW。若150mW之雷射光光束透射穿過鏡面且擊中鏡面安裝件之背面,則大部分之雷射光光束可由安裝件吸收、轉換為熱且導致安裝件之溫度增高約一度。視鏡面安裝件總成之材料及幾何形狀、定向及可用冷卻機構而定,鏡面將經受傾斜之變化,此會導致非所需之光束轉向問題。用以防止鏡面使由光束加熱引起的雷射加工系統之光束轉向準確度降級的一種方法為打開雷射且等待,直至直至熱平衡建立。隨後,可執行任何對準或加工。然而,此情況可為不利的,此係因為達到熱平衡所需之時間可不合需要地長(亦即,大約幾分鐘至幾個10分鐘)且將需要在每當雷射光束被打開時(甚至在暫時關閉之後)執行。 In high-accuracy laser processing systems, it is important to know all the heat sources and their potential to influence the items in the beam path. The mechanism used to cool the part can also affect its sensitivity to the heat source. One source of heat for many mirror mounts can be the laser beam itself. Although it is quite common to require a specular surface with a reflectance of 99.5% or even higher, there will still be a small amount of light transmitted through the mirror. For systems with a laser beam power <1W, the total amount of transmitted light is likely to be negligible. However, in higher power systems (eg, where the laser beam power is about 30 W or greater), 0.5% of the power is 150 mW. If a 150 mW laser beam is transmitted through the mirror and hits the back of the mirror mount, most of the laser beam can be absorbed by the mount, converted to heat and cause the temperature of the mount to increase by about one degree. Depending on the material and geometry of the mirror mount assembly, orientation, and the available cooling mechanism, the mirror will experience a change in tilt that can cause undesirable beam steering problems. One way to prevent the mirror from degrading the beam steering accuracy of a laser processing system caused by beam heating is to turn the laser on and wait until the thermal balance is established. Any alignment or processing can then be performed. However, this can be disadvantageous because the time required to reach thermal equilibrium can be undesirably long (i.e., about a few minutes to a few 10 minutes) and will need to be whenever the laser beam is turned on (even Execute after temporary shutdown.

解決由光束加熱引起的降低之光束轉向準確度之問題的另一方式涉及添加馬達或其他機構以調整鏡面傾斜角,以在雷射通電時即時地補償光束加熱。此方式具有若干缺點,諸如需要提供某種指示符以知道要調整多少,在哪個軸線上調整及要執行補償調整多久。解決由光束加熱引起的降低之光束轉向準確度之問題(或減小其嚴重性)的又一方式涉及使用具有遠高於99.5%之反射率之鏡面。然而,具有極高反射率之鏡面具有較高成本及/或準備時間之可能性。亦存在批次件差異之可能性。 Another way to address the problem of reduced beam steering accuracy caused by beam heating involves adding a motor or other mechanism to adjust the mirror tilt angle to compensate for beam heating on the fly as soon as the laser is energized. This approach has several drawbacks, such as the need to provide some kind of indicator to know how much to adjust, which axis to adjust, and how long to perform the compensation adjustment. Yet another way to address (or reduce the severity of) reduced beam steering accuracy caused by beam heating involves the use of a mirror having a reflectance well above 99.5%. However, mirrors with extremely high reflectivity have the potential for higher cost and/or preparation time. There is also the possibility of batch differences.

有時,當使用雷射加工系統加工工件時(例如,當刻劃或切割諸如半導體晶圓之工件時),針對待加工之一系列工件中之每一者很好地維持特徵(例如,劃線/鋸口)之置放可為重要的。工件處之光點置放的錯誤可由系統硬體之變化引起,由關於正確地對準至待加工之工件的問題引起,或甚至由創建用以加工工件配方時的錯誤引起。若未偵測到錯誤,則工件可受損或全部丟失,有時成本相當大。基於視覺之度量衡目前可作為專用度量衡工具或併入於系統本身內以供許多雷射加工系統使用。習知的基於視覺之度量衡技術通常 利用常常使用低角度照明以幫助突出顯示邊緣的邊緣發現演算法,或簡單影像定限演算法,以幫助識別晶粒道之影像中的特定視覺變化,其應表示形成於工件(例如,半導體晶圓)中的特徵(例如,劃線或鋸口)之邊緣。諸如雷射三角量測感測器之其他非基於視覺之度量衡技術可用以量測高度變化,且因此幫助判定特徵(例如,劃線或鋸口)之位置,但與此等非基於視覺之度量衡技術相關聯的解析度常常受限制(例如,在雷射三角量測感測器之情況下,受藉由雷射三角量測系統可產生之光點大小限制)。 Sometimes, when machining a workpiece using a laser machining system (eg, when scoring or cutting a workpiece such as a semiconductor wafer), features are well maintained for each of a series of workpieces to be processed (eg, Placement of the wire/saw) can be important. Errors in spot placement at the workpiece can be caused by changes in the hardware of the system, caused by problems with proper alignment to the workpiece to be machined, or even by mistakes created to process the workpiece recipe. If no errors are detected, the workpiece can be damaged or lost in its entirety, sometimes at a considerable cost. Vision-based metrology is currently available as a dedicated metrology tool or incorporated into the system itself for use in many laser processing systems. Conventional vision-based metrology techniques typically utilize edge discovery algorithms that often use low-angle illumination to help highlight edges, or simple image-limiting algorithms to help identify specific visual changes in the image of the grain track, which should Represents the edge of a feature (eg, a scribe or kerf) formed in a workpiece (eg, a semiconductor wafer). Other non-visual-based metrology techniques, such as laser triangulation sensors, can be used to measure height changes, and thus help determine the location of features (eg, scribing or kerf), but with such non-visual-based weights and measures The resolution associated with technology is often limited (for example, in the case of a laser triangulation sensor, it is limited by the spot size that can be produced by a laser triangulation system).

本發明之一個具體實例可廣泛地特性化為一種雷射加工系統,該雷射加工系統:一雷射源,其經組態以產生一平均功率大於10W之雷射脈衝之一光束;及一翻轉鏡面,其安置於該光束之一路徑中。該翻轉鏡面可包括經組態以反射該等雷射脈衝內之光的一第一部分且透射該等雷射脈衝內之該光的一第二部分之一鏡面,及耦接至該鏡面之一鏡面安裝件。該鏡面安裝件經組態,以在該鏡面經該等雷射脈衝輻照之一位置處不存在於該鏡面後。 A specific embodiment of the invention can be broadly characterized as a laser processing system: a laser source configured to generate a beam of laser pulses having an average power greater than 10 W; The mirror is flipped and placed in one of the paths of the beam. The flip mirror may include a mirror configured to reflect a first portion of the light within the laser pulses and transmit a second portion of the light within the laser pulses, and coupled to one of the mirrors Mirror mount. The mirror mount is configured to be absent from the mirror at a location where the mirror is irradiated by the laser pulses.

100‧‧‧雷射加工系統 100‧‧‧Laser processing system

101‧‧‧工件 101‧‧‧Workpiece

101a‧‧‧工件表面 101a‧‧‧Workpiece surface

102‧‧‧雷射源 102‧‧‧Laser source

104‧‧‧光束定位器 104‧‧‧beam positioner

110‧‧‧掃描透鏡 110‧‧‧Scan lens

112‧‧‧控制器 112‧‧‧ Controller

114‧‧‧攝影機 114‧‧‧ camera

116‧‧‧光束路徑 116‧‧‧beam path

108‧‧‧工件定位器 108‧‧‧Workpiece positioner

圖1示意性地圖示根據一個具體實例的用於加工工件之設備。 Fig. 1 schematically illustrates an apparatus for processing a workpiece according to one specific example.

圖2及圖3為根據一些具體實例的自翻轉鏡面之背面看時取得之立體圖,翻轉鏡面可併入於圖1中所示之設備內。 2 and 3 are perspective views taken from the back of the flip mirror according to some embodiments, and the flip mirror can be incorporated into the apparatus shown in FIG.

圖4至圖7示意性地圖示根據一個具體實例的用於促進圖1中所示之設備內的工件之對準之一例示性程序。 4 through 7 schematically illustrate an exemplary procedure for facilitating alignment of workpieces within the apparatus shown in FIG. 1 in accordance with one embodiment.

I.前言I. Preface

本文中參看隨附圖式來描述之實例具體實例。除非另外明確地陳述,否則在圖式中,組件、特徵、元件等之大小、位置等以及其間的任何距離未必依據比例,而是出於明晰之目的加以誇示。 Example specific examples are described herein with reference to the accompanying drawings. The size, position, etc. of components, features, elements, etc., and any distances therebetween, are not necessarily to scale, but are exaggerated for clarity, in the drawings.

本文中所使用之術語僅出於描述特定實例具體實例之目的,且並不意欲為限制性的。如本文中所使用,除非上下文另外明確地指示,否則單數形式「一」及「該」意欲亦包括複數形式。應認識到,術語「包含」在用於本說明書中時指定所陳述之特徵、整體、步驟、操作、元件及/或組件之存在,但不排除一或多個其他特徵、整體、步驟、操作、元件、組件及/或其群組之存在或添加。除非另外指定,否則在敍述值範圍時,值範圍包括該範圍之上限及下限兩者以及在其間的任何子範圍。除非另外指示,否則諸如「第一」、「第二」等之術語僅用於區別一個元件與另一元件。舉例而言,一個節點可稱為「第一節點」,且類似地,另一節點可稱為「第二節點」,或反之亦然。本文中所用之部分標題僅出於組織目的,而不應理解為限制所描述之標的物。 The terminology used herein is for the purpose of describing particular example embodiments and is not intended to be limiting. As used herein, the singular forms "" It is to be understood that the term "comprises", when used in the specification, is intended to mean the presence of the features, the whole, the steps, the operation, the components and/or The presence or addition of components, components, and/or groups thereof. The range of values includes both the upper and lower limits of the range and any sub-ranges in the Terms such as "first", "second" and the like are used to distinguish one element from another element unless otherwise indicated. For example, one node may be referred to as a "first node," and similarly, another node may be referred to as a "second node," or vice versa. The section headings used herein are for organizational purposes only and are not to be construed as limiting.

除非另外指示,否則術語「約」、「上下」等意謂量、大小、配方、參數及其他量及特性並非且不必為精確的,而視需要可為大致的及/或更大或更小,從而反映容限、轉換因素、捨入、量測誤差及其類似者,以及熟習此項技術者已知之其他因素。 Unless otherwise indicated, the terms "about", "upper and lower" and the like mean that quantity, size, formulation, parameters, and other quantities and characteristics are not, and need not be precise, and may be approximate and/or larger or smaller, as desired. To reflect tolerances, conversion factors, rounding, measurement errors, and the like, as well as other factors known to those skilled in the art.

諸如「下方」、「底下」、「下」、「上方」及「上」以及其類似者之空間相對術語可在本文中為易於描述而用以描述一個元件或特徵與另一元件或特徵之關係,如圖式中所說明。應認識到,該等空間相對術語意欲涵蓋除圖式中所描繪之定向之外的不同定向。舉例而言,若圖式中之物件翻轉,則描述為「在其他元件或特徵下方」或「在其他元件或特徵底下」的元件將定 向「在其他元件或特徵上方」。因此,例示性術語「在……下方」可涵蓋「在……上方」及「在……下方」的定向兩者。物件可以其他方式定向(例如,旋轉90度或處於其他定向),且本文中所使用的空間相對描述詞可相應地進行解釋。 Spatially relative terms such as "lower", "lower", "lower", "above" and "upper" and the like may be used herein to describe one element or feature and another element or feature. Relationship, as illustrated in the figure. It will be appreciated that the spatially relative terms are intended to encompass different orientations other than the orientation depicted in the drawings. For example, if the items in the figures are turned over, the elements described as "under the other elements or features" or "under the other elements or features" will be &quot;above&quot; Therefore, the exemplary term "below" can encompass both the "above" and "under" orientations. The object may be otherwise oriented (eg, rotated 90 degrees or at other orientations), and the spatially relative descriptors used herein may be interpreted accordingly.

相同數字始終指代相同元件。因此,可能在參考其他圖式時描述相同或類似數字,即使該等數字在對應圖式中未提及亦未描述。又,即使未經參考數字指示之元件亦可參考其他圖式加以描述。 The same numbers always refer to the same component. Accordingly, the same or similar numerals may be described in reference to the other figures, even if the figures are not mentioned in the corresponding drawings. Also, elements that are not indicated by reference numerals may be described with reference to the other drawings.

應瞭解,許多不同形式及具體實例係可能的,而不會背離本發明之精神及教示,且因此,本發明不應被視為限於本文中所闡述之實例具體實例。確切而言,提供此等實例及具體實例,使得本發明將為透徹且完整的,且將向熟習此項技術者充分傳達本發明之範圍。 It should be understood that many different forms and specific examples are possible without departing from the spirit and scope of the invention, and therefore, the invention should not be construed as limited. Rather, these examples and specific examples are provided so that this invention will be thorough and complete, and the scope of the invention will be fully conveyed by those skilled in the art.

II.系統概述II. System Overview

圖1示意性地說明根據一個具體實例的經組態以加工工件之雷射加工系統。大體而言,加工係藉由如下操作完全或部分地實現:用雷射輻射輻照工件,以加熱、熔融、蒸發、剝蝕、破裂、褪色、拋光、粗糙化、碳化、發泡用以形成工件之一或多種材料,或另外修改用以形成工件之一或多種材料的一或多個性質或特性(例如,化學組成、晶體結構、電子結構、微結構、奈米結構、密度、黏度、折射率、磁導率、相對電容率等)。此等材料在處理之前或期間可存在於工件的外部表面處,或在處理之前或期間可位於工件內(亦即,不存在於工件的外部表面處)。可由圖示之設備進行之加工的特定實例包括過孔鑽孔、穿孔、焊接、刻劃、雕刻、標記(例如,表面標記、次表面標記等)、切割、雷射引發之正向傳送、清洗、漂白、明亮像素維修(例如,彩色濾光片暗化、修改有機發光二極體材料等)、除去塗層、表面締捲(例如,粗糙化、平滑化等)、熔煉、包層或沈積,或其類似處理或其任何組合。因此, 可作為加工之結果形成於工件上或內的特徵可包括開口、槽、過孔(例如,盲孔、通孔、狹縫過孔)、凹槽、溝槽、切割道、鋸口、凹陷區域、導電跡線、歐姆觸點、光阻圖案、標記(例如,由具有一或多個視覺上、文本上、質地上等可區分之特性的工件中或上之一或多個區域構成),或其類似物或其任何組合。此等特徵在形成為開口、過孔等時可具有任何合適或期望的形狀(例如,圓形、橢圓形、正方形、矩形、三角形、環形,或其類似者或其任何組合)。 Figure 1 schematically illustrates a laser processing system configured to machine a workpiece in accordance with one embodiment. In general, the processing is accomplished in whole or in part by irradiating the workpiece with laser radiation for heating, melting, evaporating, ablation, cracking, fading, polishing, roughening, carbonizing, foaming to form a workpiece. One or more materials, or otherwise modified to form one or more properties or characteristics of one or more materials of the workpiece (eg, chemical composition, crystal structure, electronic structure, microstructure, nanostructure, density, viscosity, refraction) Rate, permeability, relative permittivity, etc.). These materials may be present at the outer surface of the workpiece before or during processing, or may be located within the workpiece before or during processing (ie, not present at the outer surface of the workpiece). Specific examples of processing that can be performed by the illustrated apparatus include via drilling, perforation, welding, scoring, engraving, marking (eg, surface marking, subsurface marking, etc.), cutting, laser induced forward transfer, cleaning Bleaching, bright pixel maintenance (eg, color filter darkening, modification of organic light-emitting diode materials, etc.), removal of coatings, surface winding (eg, roughening, smoothing, etc.), smelting, cladding or deposition , or a similar treatment thereof, or any combination thereof. Thus, features that may be formed on or in the workpiece as a result of processing may include openings, slots, vias (eg, blind vias, vias, slit vias), grooves, trenches, dicing streets, kerfs, a recessed region, a conductive trace, an ohmic contact, a photoresist pattern, a mark (eg, composed of one or more regions in or on a workpiece having one or more visual, textual, qualitatively distinguishable characteristics, etc.) ), or an analog thereof, or any combination thereof. Such features may have any suitable or desired shape (eg, circular, elliptical, square, rectangular, triangular, toroidal, or the like, or any combination thereof) when formed into openings, vias, and the like.

可由該設備加工之工件可一般特性化為金屬、聚合物、陶瓷或複合物。可進行加工之工件之特定實例包括以下各者:印刷電路板(printed circuit board;PCB)之面板(在本文中亦被稱為「PCB面板」)、PCB、可撓性印刷電路(flexile printed circuit;FPC)、積體電路(integrated circuit;IC)、IC封裝(ICP)、發光二極體(light-emitting diode;LED)、LED封裝、半導體晶圓、電子或光學裝置基板(例如,由Al2O3、AlN、BeO、Cu、GaAS、GaN、Ge、InP、Si、SiO2、SiC、Si1-xGex(其中0.0001<x<0.9999),或其類似物或其任何組合或合金形成的基板)、由塑膠、玻璃(例如,未強化、熱強化、化學強化或以其他方式強化)、石英、藍寶石、塑膠、矽等形成的用於微流體裝置、觸控感測器、電子顯示器之組件(例如,上面形成有TFT、彩色濾光片、有機LED(OLED)陣列、量子點LED陣列或其類似者或其任何組合的基板)、蓋玻片、透鏡、鏡面、螢幕保護器等之物件、渦輪葉片、粉末、膜、箔片、板、模具、織物(編織的、氈製的等)、手術儀器、醫用植入物、消費型封裝商品、鞋、腳踏車、汽車、汽車或航空部件(例如,框架、車身面板等)、電器(例如,微波爐、烘箱、冰箱等)、(例如,手錶、電腦、智慧型電話、平板電腦、可穿戴電子裝置,或其類似物或其任何組合之)裝置外殼。 The workpieces that can be processed by the apparatus can be generally characterized as metals, polymers, ceramics or composites. Specific examples of workpieces that can be processed include the following: printed circuit board (PCB) panels (also referred to herein as "PCB panels"), PCBs, flexible printed circuits (flexile printed circuits) ; FPC), integrated circuit (IC), IC package (ICP), light-emitting diode (LED), LED package, semiconductor wafer, electronic or optical device substrate (for example, by Al) Substrate formed of 2 O 3 , AlN, BeO, Cu, GaAS, GaN, Ge, InP, Si, SiO 2 , SiC, Si1-xGex (where 0.0001 < x <0.9999), or an analogue thereof, or any combination or alloy thereof ), components for microfluidic devices, touch sensors, electronic displays formed of plastic, glass (eg, unreinforced, thermally strengthened, chemically strengthened, or otherwise reinforced), quartz, sapphire, plastic, tantalum, etc. (for example, a substrate on which a TFT, a color filter, an organic LED (OLED) array, a quantum dot LED array or the like or any combination thereof), a cover glass, a lens, a mirror, a screen protector, and the like are formed , turbine blades, powder, film, foil, , molds, fabrics (woven, felted, etc.), surgical instruments, medical implants, consumer packaged goods, shoes, bicycles, automobiles, automotive or aerospace components (eg, frames, body panels, etc.), electrical appliances ( For example, a microwave oven, an oven, a refrigerator, etc., a device housing (eg, a watch, a computer, a smart phone, a tablet, a wearable electronic device, or the like, or any combination thereof).

因此,可加工之材料包括:一或多種金屬(例如,Al、Ag、 Au、Cu、Fe、In、Mg、Pt、Sn、Ti或其類似物或其組合或合金);導電金屬氧化物(例如,ITO等)、透明的導電聚合物、半導體、陶瓷、蠟、樹脂、無機介電材料(例如,用作層間介電結構,諸如氧化矽、氮化矽、氮氧化矽或其類似物或其任何組合)、低k介電材料(例如,甲基矽倍半氧烷(MSQ)、氫矽倍半氧烷(HSQ)、氟化正矽酸四乙酯(FTEOS)或其類似物或其任何組合)、有機介電材料(例如,SILK、苯并環丁烯、Nautilus(全部由Dow製造)、聚四氟乙烯(由DuPont製造)、FLARE(由Allied Chemical製造)或其類似物或其任何組合)、玻璃纖維、聚合材料(聚醯胺、聚醯亞胺、聚酯、聚縮醛、聚碳酸酯、改質聚苯醚、聚丁烯對苯二甲酸酯、聚苯硫醚、聚醚碸、聚醚醯亞胺、聚醚醚酮、液晶聚合物、丙烯腈丁二烯苯乙烯及其任何化合物、複合物或合金)、皮革、紙張、累積材料(例如,味之素累積膜,亦被稱作「ABF」等)、玻璃加強型環氧樹脂積層(例如,FR4)、預浸體、或其類似物或任何複合物、積層或其他組合。 Thus, the processable material comprises: one or more metals (eg, Al, Ag, Au, Cu, Fe, In, Mg, Pt, Sn, Ti, or the like or combinations or alloys thereof); conductive metal oxides ( For example, ITO or the like), a transparent conductive polymer, a semiconductor, a ceramic, a wax, a resin, an inorganic dielectric material (for example, used as an interlayer dielectric structure such as cerium oxide, cerium nitride, cerium oxynitride or the like or Any combination thereof, a low-k dielectric material (eg, methyl sesquioxanes (MSQ), hydroquinone sesquioxanes (HSQ), fluorinated tetraethyl orthoformate (FTEOS) or the like or Any combination thereof), an organic dielectric material (for example, SILK, benzocyclobutene, Nautilus (all manufactured by Dow), polytetrafluoroethylene (manufactured by DuPont), FLARE (manufactured by Allied Chemical), or the like or Any combination thereof), glass fiber, polymeric material (polyamide, polyimine, polyester, polyacetal, polycarbonate, modified polyphenylene ether, polybutylene terephthalate, polyphenylene sulfide) Ether, polyether oxime, polyether oximine, polyether ether ketone, liquid crystal polymer, acrylonitrile butadiene styrene and any compound thereof Matter or alloy), leather, paper, cumulative materials (for example, Ajinomoto accumulation film, also known as "ABF", etc.), glass-reinforced epoxy resin laminate (for example, FR4), prepreg, or the like Or any composite, laminate or other combination.

參看圖1,雷射加工系統100包括用於產生雷射脈衝之雷射源102、光束定位器104、工件定位器108、掃描透鏡110、控制器112以及視情況之攝影機114。儘管未圖示,但雷射加工系統100亦包括一或多個光學組件(例如,擴束器、光束整形器、孔隙、諧波產生晶體、濾光片、準直儀、透鏡、鏡面、偏光器、波片、繞射光學元件或其類似者或其任何組合),以對由雷射源102產生的沿著在雷射源102與掃描透鏡110之間延伸之一或多個光束路徑(例如,光束路徑116)之雷射脈衝進行聚焦、擴展、準直、整形、偏光、濾光、分割、組合或另外修改、調節、引導。透射穿過掃描透鏡110之雷射脈衝沿著束軸傳播以便遞送至工件101。雷射脈衝通常經遞送以便入射於待加工之工件表面101a之一區域上。由遞送之雷射脈衝輻照之區域在本文中被稱為「處理光點」、「光點位置」或更簡單為「光點」,且涵蓋束軸橫穿工件101之區域。 Referring to FIG. 1, laser processing system 100 includes a laser source 102 for generating laser pulses, a beam positioner 104, a workpiece positioner 108, a scanning lens 110, a controller 112, and optionally a camera 114. Although not shown, the laser processing system 100 also includes one or more optical components (eg, beam expanders, beam shapers, apertures, harmonic generating crystals, filters, collimators, lenses, mirrors, polarizers) , a wave plate, a diffractive optical element, or the like, or any combination thereof, to one or more beam paths extending between the laser source 102 and the scanning lens 110 produced by the laser source 102 ( For example, the laser pulses of beam path 116) are focused, expanded, collimated, shaped, polarized, filtered, segmented, combined, or otherwise modified, adjusted, and guided. Laser pulses transmitted through the scanning lens 110 propagate along the beam axis for delivery to the workpiece 101. The laser pulse is typically delivered to be incident on an area of the workpiece surface 101a to be processed. The area irradiated by the delivered laser pulse is referred to herein as a "processing spot", a "spot position" or more simply a "spot" and encompasses the area of the beam axis that traverses the workpiece 101.

儘管未圖示,但系統100包括配置於光束路徑116中(例如,在雷射源102與光束定位器104之間)之一或多個翻轉鏡面。任何翻轉鏡面可提供作為一固定翻轉鏡面或一可調整翻轉鏡面。已固定之翻轉鏡面之定向通常在安裝於系統100內後固定(或至少實質上固定)。可調整翻轉鏡面之定向可藉助於手動可調整螺釘、壓電致動器或其類似者或其任何組合來調整(例如,以便使鏡面繞一或多個軸線翻倒或傾斜)。一般而言,翻轉鏡面包括作為其組件的用於反射雷射脈衝(亦即,重定向光束路徑116)之鏡面及用於將鏡面耦接至系統100之鏡面安裝件。 Although not shown, system 100 includes one or more flip mirrors disposed in beam path 116 (eg, between laser source 102 and beam positioner 104). Any flip mirror can be provided as a fixed flip mirror or an adjustable flip mirror. The orientation of the fixed flip mirror is typically fixed (or at least substantially fixed) after installation in system 100. The orientation of the adjustable flip mirror can be adjusted by means of a manually adjustable screw, a piezoelectric actuator, or the like, or any combination thereof (eg, to tilt or tilt the mirror about one or more axes). In general, the flip mirror includes, as its component, a mirror for reflecting the laser pulses (i.e., redirecting the beam path 116) and a mirror mount for coupling the mirror to the system 100.

A.雷射源A. Laser source

在一個具體實例中,雷射源102操作以產生雷射脈衝。因而,雷射源102可包括脈衝雷射源、QCW雷射源或CW雷射源。在雷射源102包括QCW或CW雷射源之情況下,雷射源102可視情況包括一脈衝閘控單元(例如,聲光(acousto-optic;AO)調變器(AOM)、光束斬波器等)以在時間上調變自QCW或CW雷射源輸出之雷射輻射的光束。由雷射源102產生之雷射脈衝可特性化為具有在電磁波譜之紫外線(UV)、可見光(例如,紫色、藍色、綠色、紅色等)或紅外線(IR)範圍或其任何組合內中之一或多者中的一或多個波長。電磁波譜之UV範圍中之雷射光可具有在150nm(或上下)至385nm(或上下)範圍內的一或多個波長,諸如157nm、200nm、334nm、337nm、351nm、380nm等,或此等值中之任一者之間的值。電磁波譜之可見綠色範圍中之雷射光可具有在500nm(或上下)至570nm(或上下)範圍內的一或多個波長,諸如511nm、515nm、530nm、532nm、543nm、568nm等,或此等值中之任一者之間的值。電磁波譜之IR範圍中之雷射光可具有在750nm(或上下)至15μm(或上下)範圍內的一或多個波長,諸如700nm至1000nm、752.5nm、780nm至1060nm、799.3nm、980nm、1047nm、1053nm、1060nm、 1064nm、1080nm、1090nm、1152nm、1150nm至1350nm、1540nm、2.6μm至4μm、4.8μm至8.3μm、9.4μm、10.6μm等,或此等值中之任一者之間的值。 In one specific example, laser source 102 operates to generate a laser pulse. Thus, the laser source 102 can include a pulsed laser source, a QCW laser source, or a CW laser source. Where the laser source 102 comprises a QCW or CW laser source, the laser source 102 may optionally include a pulse gating unit (eg, an acousto-optic (AO) modulator (AOM), beam chopping) A device that emits laser radiation that is temporally modulated from a QCW or CW laser source. The laser pulses generated by the laser source 102 can be characterized as having ultraviolet (UV), visible (eg, purple, blue, green, red, etc.) or infrared (IR) ranges or any combination thereof in the electromagnetic spectrum. One or more wavelengths in one or more. The laser light in the UV range of the electromagnetic spectrum may have one or more wavelengths in the range of 150 nm (or up and down) to 385 nm (or up and down), such as 157 nm, 200 nm, 334 nm, 337 nm, 351 nm, 380 nm, etc., or the like. The value between any of them. The laser light in the visible green range of the electromagnetic spectrum may have one or more wavelengths in the range of 500 nm (or upper and lower) to 570 nm (or upper and lower), such as 511 nm, 515 nm, 530 nm, 532 nm, 543 nm, 568 nm, etc., or the like. The value between any of the values. The laser light in the IR range of the electromagnetic spectrum may have one or more wavelengths in the range of 750 nm (or upper and lower) to 15 μm (or upper and lower), such as 700 nm to 1000 nm, 752.5 nm, 780 nm to 1060 nm, 799.3 nm, 980 nm, 1047 nm. Values between 1053 nm, 1060 nm, 1064 nm, 1080 nm, 1090 nm, 1152 nm, 1150 nm to 1350 nm, 1540 nm, 2.6 μm to 4 μm, 4.8 μm to 8.3 μm, 9.4 μm, 10.6 μm, etc., or any of these values .

若入射光之光束包括一系列雷射脈衝,則該等雷射脈衝可具有在10fs至900ms範圍內的一脈衝持續時間(亦即,基於脈衝中之光功率之半波高全寬(full-width at half-maximum,FWHM)對比時間)。然而,應瞭解,可使脈衝持續時間小於30fs或大於900ms。因此,至少一個雷射脈衝可具有大於或等於10fs、15fs、30fs、50fs、100fs、150fs、200fs、300fs、500fs、700fs、750fs、850fs、900fs、1ps、2ps、3ps、4ps、5ps、7ps、10ps、15ps、25ps、50ps、75ps、100ps、200ps、500ps、1ns、1.5ns、2ns、5ns、10ns、20ns、50ns、100ns、200ns、400ns、800ns、1000ns、2μs、5μs、10μs、50μs、100μs、300μs、500μs、900μs、1ms、2ms、5ms、10ms、20ms、50ms、100ms、300ms、500ms、900ms、1s等或此等值中之任一者之間的值之一脈衝持續時間。同樣地,至少一個雷射脈衝可具有小於1s、900ms、500ms、300ms、100ms、50ms、20ms、10ms、5ms、2ms、1ms、300ms、900μs、500μs、300μs、100μs、50μs、10μs、5μs、1μs、800ns、400ns、200ns、100ns、50ns、20ns、10ns、5ns、2ns、1.5ns、1ns、500ps、200ps、100ps、75ps、50ps、25ps、15ps、10ps、7ps、5ps、4ps、3ps、2ps、1ps、900fs、850fs、800fs、750fs、700fs、500fs、300fs、200fs、150fs、100fs、50fs、30fs、15fs、10fs等或此等值中之任一者之間的值之一脈衝持續時間。 If the beam of incident light comprises a series of laser pulses, the laser pulses may have a pulse duration in the range of 10fs to 900ms (ie, based on the full-width of the half-wave height of the optical power in the pulse (full-width) At half-maximum, FWHM) comparison time). However, it should be understood that the pulse duration can be made less than 30 fs or greater than 900 ms. Therefore, the at least one laser pulse may have greater than or equal to 10fs, 15fs, 30fs, 50fs, 100fs, 150fs, 200fs, 300fs, 500fs, 700fs, 750fs, 850fs, 900fs, 1ps, 2ps, 3ps, 4ps, 5ps, 7ps, 10ps, 15ps, 25ps, 50ps, 75ps, 100ps, 200ps, 500ps, 1ns, 1.5ns, 2ns, 5ns, 10ns, 20ns, 50ns, 100ns, 200ns, 400ns, 800ns, 1000ns, 2μs, 5μs, 10μs, 50μs, 100μs One of the values of the pulse duration between 300μs, 500μs, 900μs, 1ms, 2ms, 5ms, 10ms, 20ms, 50ms, 100ms, 300ms, 500ms, 900ms, 1s, etc. or any of these values. Likewise, the at least one laser pulse can have less than 1 s, 900 ms, 500 ms, 300 ms, 100 ms, 50 ms, 20 ms, 10 ms, 5 ms, 2 ms, 1 ms, 300 ms, 900 μs, 500 μs, 300 μs, 100 μs, 50 μs, 10 μs, 5 μs, 1 μs. 800ns, 400ns, 200ns, 100ns, 50ns, 20ns, 10ns, 5ns, 2ns, 1.5ns, 1ns, 500ps, 200ps, 100ps, 75ps, 50ps, 25ps, 15ps, 10ps, 7ps, 5ps, 4ps, 3ps, 2ps, One pulse duration of values between 1 ps, 900 fs, 850 fs, 800 fs, 750 fs, 700 fs, 500 fs, 300 fs, 200 fs, 150 fs, 100 fs, 50 fs, 30 fs, 15 fs, 10 fs, etc., or any of these values.

若入射光之光束包括一系列雷射脈衝,則該等雷射脈衝可具有在5mW至50kW範圍內的一平均功率。然而,應瞭解,可使平均功率小於5mW或大於50kW。因此,雷射脈衝可具有大於或等於5mW、10mW、15 mW、20mW、25mW、50mW、75mW、100mW、300mW、500mW、800mW、1W、2W、3W、4W、5W、6W、7W、10W、15W、18W、25W、30W、50W、60W、100W、150W、200W、250W、500W、2kW、3kW、20kW、50kW等或此等值中之任一者之間的值之一平均功率。同樣地,雷射脈衝可具有小於50kW、20kW、3kW、2kW、500W、250W、200W、150W、100W、60W、50W、30W、25W、18W、15W、10W、7W、6W、5W、4W、3W、2W、1W、800mW、500mW、300mW、100mW等或此等值中之任一者之間的值之一平均功率。 If the beam of incident light comprises a series of laser pulses, the laser pulses may have an average power in the range of 5 mW to 50 kW. However, it should be understood that the average power can be made less than 5 mW or greater than 50 kW. Therefore, the laser pulse may have greater than or equal to 5 mW, 10 mW, 15 mW, 20 mW, 25 mW, 50 mW, 75 mW, 100 mW, 300 mW, 500 mW, 800 mW, 1 W, 2 W, 3 W, 4 W, 5 W, 6 W, 7 W, 10 W, 15 W. One of the values between 18W, 25W, 30W, 50W, 60W, 100W, 150W, 200W, 250W, 500W, 2kW, 3kW, 20kW, 50kW, etc. or any of these values. Similarly, the laser pulse can have less than 50 kW, 20 kW, 3 kW, 2 kW, 500 W, 250 W, 200 W, 150 W, 100 W, 60 W, 50 W, 30 W, 25 W, 18 W, 15 W, 10 W, 7 W, 6 W, 5 W, 4 W, 3 W. Average power of one of the values between 2W, 1W, 800mW, 500mW, 300mW, 100mW, etc. or any of these values.

雷射脈衝可由雷射源102以在5kHz至1GHz範圍內之脈衝重複率輸出。然而,應瞭解,可使脈衝重複率小於5kHz或大於1GHz。因此,雷射脈衝可由雷射源102以大於或等於5kHz、50kHz、100kHz、250kHz、500kHz、800kHz、900kHz、1MHz、2MHz、10MHz、20MHz、50MHz、70MHz、100MHz、150MHz、200MHz、250MHz、300MHz、350MHz、500MHz、550MHz、700MHz、900MHz、2GHz、10GHz等之一脈衝重複率輸出。同樣地,雷射脈衝可由雷射源102以小於10GHz、2GHz、1GHz、900MHz、700MHz、550MHz、500MHz、350MHz、300MHz、250MHz、200MHz、150MHz、100MHz、90MHz、70MHz、50MHz、20MHz、10MHz、2MHz、1MHz、900kHz、800kHz、500kHz、250kHz、100kHz、50kHz、5kHz等之一脈衝重複率輸出。在另一具體實例中,雷射源102可操作以按需求而非以任何特定脈衝重複率產生一或多個雷射脈衝。 The laser pulse can be output by the laser source 102 at a pulse repetition rate in the range of 5 kHz to 1 GHz. However, it will be appreciated that the pulse repetition rate can be made less than 5 kHz or greater than 1 GHz. Thus, the laser pulse can be greater than or equal to 5 kHz, 50 kHz, 100 kHz, 250 kHz, 500 kHz, 800 kHz, 900 kHz, 1 MHz, 2 MHz, 10 MHz, 20 MHz, 50 MHz, 70 MHz, 100 MHz, 150 MHz, 200 MHz, 250 MHz, 300 MHz, by the laser source 102. One pulse repetition rate output of 350 MHz, 500 MHz, 550 MHz, 700 MHz, 900 MHz, 2 GHz, 10 GHz, and the like. Similarly, the laser pulse can be less than 10 GHz, 2 GHz, 1 GHz, 900 MHz, 700 MHz, 550 MHz, 500 MHz, 350 MHz, 300 MHz, 250 MHz, 200 MHz, 150 MHz, 100 MHz, 90 MHz, 70 MHz, 50 MHz, 20 MHz, 10 MHz, 2 MHz from the laser source 102. One pulse repetition rate output of 1 MHz, 900 kHz, 800 kHz, 500 kHz, 250 kHz, 100 kHz, 50 kHz, 5 kHz, and the like. In another embodiment, the laser source 102 is operable to generate one or more laser pulses on demand rather than at any particular pulse repetition rate.

除了波長、脈衝持續時間、平均功率以及脈衝重複率之外,遞送至工件101之雷射脈衝之特徵亦可在於一或多個其他特性,諸如脈衝能量、峰值功率等,可選擇該等其他特性(例如,視情況基於一或多個其他特性,諸如波長、脈衝持續時間、平均功率以及脈衝重複率)而以足以加工工件101或 其組件之光學強度(以W/cm2量測)、通量(以J/cm2)等照射處於處理光點的工件101。 In addition to wavelength, pulse duration, average power, and pulse repetition rate, the laser pulses delivered to workpiece 101 may also be characterized by one or more other characteristics, such as pulse energy, peak power, etc., which may be selected. (eg, based on one or more other characteristics, such as wavelength, pulse duration, average power, and pulse repetition rate), sufficient to process the optical intensity of the workpiece 101 or its components (measured in W/cm 2 ), The workpiece 101 at the processing spot is irradiated with a quantity (in J/cm 2 ) or the like.

可用以產生前述入射光光束之雷射之類型的實例可特性化為氣體雷射(例如,二氧化碳雷射、一氧化碳雷射、準分子雷射等)、固態雷射(例如,Nd:YAG雷射等)、棒雷射、光纖雷射、光子晶體棒/光纖雷射、被動模式鎖定固態塊體或光纖雷射、染料雷射、模式鎖定二極體雷射、脈動雷射(例如,ms、ns、ps、fs脈動雷射)、CW雷射、QCW雷射,或其類似者或其任何組合。可用以產生前述入射光光束之雷射之特定實例包括諸如以下各者之一或多個雷射:由EOLITE製造的BOREAS、HEGOA、SIROCCO或CHINOOK系列雷射;由PYROPHOTONICS製造的PYROFLEX系列雷射;由COHERENT製造的PALADIN進階355或DIAMOND串聯(例如,DIAMOND E、G、J-2、J-3、J-5系列)雷射;由SYNRAD製造的PULSTAR或FIRESTAR系列雷射;TRUFLOW系列雷射(例如,TRUFLOW 2000、2700、3000、3200、3600、4000、5000、6000、7000、8000、10000、12000、15000、20000)、TRUCOAX系列雷射(例如,TRUCOAX 1000)或TRUDISK、TRUPULSE、TRUDIODE、TRUFIBER或TRUMICRO系列雷射,該等雷射全部由TRUMPF製造;由IMRA AMERICA製造的FCPA μJEWEL或FEMTOLITE系列雷射;由AMPLITUDE SYSTEMES製造的TANGERINE及SATSUMA系列雷射(及MIKAN及T-PULSE系列振盪器);由IPG PHOTONICS製造的CL、CLPF、CLPN、CLPNT、CLT、ELM、ELPF、ELPN、ELPP、ELR、ELS、FLPN、FLPNT、FLT、GLPF、GLPN、GLR、HLPN、HLPP、RFL、TLM、TLPN、TLR、ULPN、ULR、VLM、VLPN、YLM、YLPF、YLPN、YLPP、YLR、YLS、FLPM、FLPMT、DLM、BLM或DLR系列雷射(例如,包括GPLN-100-M、GPLN-500-QCW、GPLN-500-M、GPLN-500-R、GPLN-2000-S、UPLN- 355-M、UPLN-355-R、UPLN-355-QCW-R等),或其類似者或其任何組合。 Examples of types of lasers that can be used to generate the aforementioned incident light beam can be characterized as gas lasers (eg, carbon dioxide lasers, carbon monoxide lasers, excimer lasers, etc.), solid state lasers (eg, Nd:YAG lasers). Etc., rod laser, fiber laser, photonic crystal rod/fiber laser, passive mode locked solid block or fiber laser, dye laser, mode-locked diode laser, pulsed laser (eg, ms, Ns, ps, fs pulsating laser), CW laser, QCW laser, or the like or any combination thereof. Specific examples of lasers that can be used to generate the aforementioned incident light beam include one or more of the following: BOREAS, HEGOA, SIROCCO, or CHINOOK series lasers manufactured by EOLITE; PYROFLEX series lasers manufactured by PYROPHOTONICS; PLAADIN advanced 355 or DIAMOND series (for example, DIAMOND E, G, J-2, J-3, J-5 series) lasers manufactured by COHERENT; PULSTAR or FIRESTAR series lasers manufactured by SYNRAD; TRUFLOW series lasers (eg, TRUFLOW 2000, 2700, 3000, 3200, 3600, 4000, 5000, 6000, 7000, 8000, 10000, 12000, 15000, 20000), TRUCOAX series lasers (eg TRUCOAX 1000) or TRUDISK, TRUPULSE, TRUDIODE, TRUFIBER or TRUMICRO series lasers, all manufactured by TRUMPF; FCPA μJEWEL or FEMTOLITE series lasers manufactured by IMRA AMERICA; TANGERINE and SATSUMA series lasers (and MIKAN and T-PULSE series oscillators manufactured by AMPLITUDE SYSTEMES) ); CL, CLPF, CLPN, CLPNT, CLT, ELM, ELPF, ELPN, ELPP, ELR, ELS, FLPN, FLPNT, FLT, GLPF, GLPN, GLR, HLPN, HLPP, RFL, TLM, TLPN manufactured by IPG PHOTONICS , TLR, ULPN, ULR, VLM, VLPN, YLM, YLPF, YLPN, YLPP, YLR, YLS, FLPM, FLPMT, DLM, BLM or DLR series lasers (eg, including GPLN-100-M, GPLN-500-QCW , GPLN-500-M, GPLN-500-R, GPLN-2000-S, UPLN-355-M, UPLN-355-R, UPLN-355-QCW-R, etc., or the like or any combination thereof.

B.光束定位器B. Beam locator

光束定位器104可操作以使來自光束成像系統104之輸出的沿著光束路徑116傳播之雷射能量光束繞射、反射、折射或其類似處理或其任何組合,以便賦予光束路徑116相對於掃描透鏡110之移動。一般而言,光束定位器104經組態以賦予束軸相對於工件101沿著X及Y軸線(或方向)之移動,以使得處理光點可經掃描、移動或另外定位於掃描場內,該掃描場(例如,自掃描透鏡110)投影至工件101上。儘管未圖示,但X軸(或X方向)應理解為指正交於所圖示之Y及Z軸(或方向)之軸線(或方向)。 The beam positioner 104 is operable to diffract, reflect, refract or otherwise or otherwise combine the laser energy beam propagating along the beam path 116 from the output of the beam imaging system 104 to impart a beam path 116 relative to the scan. Movement of the lens 110. In general, beam positioner 104 is configured to impart movement of the beam axis relative to workpiece 101 along the X and Y axes (or directions) such that the processing spot can be scanned, moved, or otherwise positioned within the field. The field (eg, from the scanning lens 110) is projected onto the workpiece 101. Although not shown, the X-axis (or X-direction) is understood to mean an axis (or direction) orthogonal to the Y and Z axes (or directions) illustrated.

光束定位器104可提供為微機電系統(micro-electro-mechanical-system;MEMS)鏡面或鏡面陣列、AO偏轉器(AOD)系統、電光偏轉器(electro-optic deflector;EOD)系統、快速轉向鏡面(fast-steering mirror;FSM)元件(例如,併有壓電致動器、電致伸縮致動器、音圈致動器等)、電流計鏡面系統(例如,包括兩個電流計鏡面組件,其中一個電流計鏡面組件經配置以賦予束軸相對於工件101沿著X方向之移動,且另一電流計鏡面組件經配置以賦予束軸相對於工件101沿著Y方向之移動),或其類似者或其任何組合。 The beam positioner 104 can be provided as a micro-electro-mechanical-system (MEMS) mirror or mirror array, an AO deflector (AOD) system, an electro-optic deflector (EOD) system, a fast turning mirror (fast-steering mirror; FSM) components (eg, piezoelectric actuators, electrostrictive actuators, voice coil actuators, etc.), galvanometer mirror systems (eg, including two galvanometer mirror components, One of the galvanometer mirror assemblies is configured to impart movement in the X direction relative to the workpiece 101 and the other galvanometer mirror assembly is configured to impart movement in the Y direction relative to the workpiece 101, or Similar or any combination thereof.

D.工件定位器D. Workpiece locator

工件定位器108可操作以使工件101在X、Y及/或Z方向上相對於掃描透鏡110移動。因此,在工件定位器108使工件101在X及/或Y方向上移動之範圍內,工件定位器108經組態以使工件101之不同區域移進及移出由掃描透鏡110投影之掃描場。在一個具體實例中,工件定位器108提供作為一或多個線性平台(例如,每一者能夠賦予工件101沿著X、Y及/或Z方向的平移移動)、一或多個旋轉平台(例如,每一者能夠賦予工件101圍繞平行於X、Y及/或Z方向之軸線的旋轉移動),或其類似者或其任何組合。在一個具體實例中,工件定 位器108包括用於使工件101沿著X方向移動的X平台,及由X平台支撐(且因此可藉由X平台沿著X方向移動)的用於使工件101沿著Y方向移動的Y平台。雷射加工系統100可視情況包括耦接至工件定位器108之一夾盤(圖中未示),工件101可夾持、固定、保持、緊固或以其他方式支撐至該夾盤。儘管未展示,但雷射加工系統100亦可包括支撐工件定位器108之一可選底座。 The workpiece positioner 108 is operable to move the workpiece 101 relative to the scanning lens 110 in the X, Y, and/or Z directions. Thus, within the range in which workpiece positioner 108 moves workpiece 101 in the X and/or Y direction, workpiece positioner 108 is configured to move different regions of workpiece 101 into and out of the field projected by scan lens 110. In one specific example, the workpiece positioner 108 is provided as one or more linear platforms (eg, each can impart translational movement along the X, Y, and/or Z directions of the workpiece 101), one or more rotating platforms ( For example, each can impart a rotational movement of the workpiece 101 about an axis parallel to the X, Y, and/or Z directions, or the like, or any combination thereof. In one embodiment, the workpiece locator 108 includes an X platform for moving the workpiece 101 in the X direction and a workpiece 101 supported by the X platform (and thus movable in the X direction by the X platform) Y platform moving along the Y direction. The laser processing system 100 can optionally be coupled to a chuck (not shown) of the workpiece positioner 108 that can be clamped, secured, held, fastened, or otherwise supported to the chuck. Although not shown, the laser processing system 100 can also include an optional base that supports the workpiece positioner 108.

如迄今所描述,雷射加工系統100採用所謂的「堆疊式」定位系統,其中諸如光束定位器104、掃描透鏡110等之組件的位置在雷射加工系統100內相對於工件101保持靜止(例如,經由一或多個支撐件、框架等,如此項技術中已知的),工件係經由工件定位器108移動。在另一具體實例中,且儘管未展示,但可提供一或多個輔助定位器(例如,一或多個線性旋轉平台,或其類似者或其任何組合)以使諸如光束定位器104、掃描透鏡110等之一或多個組件移動,且工件101可保持靜止(在此情況下,可省略工件定位器108)。 As described so far, the laser processing system 100 employs a so-called "stacked" positioning system in which the positions of components such as the beam positioner 104, the scanning lens 110, etc., remain stationary relative to the workpiece 101 within the laser processing system 100 (eg, The workpiece is moved via the workpiece positioner 108 via one or more supports, frames, etc., as is known in the art. In another embodiment, and although not shown, one or more auxiliary locators (eg, one or more linear rotating platforms, or the like or any combination thereof) may be provided to enable, for example, beam locator 104, One or more components of the scanning lens 110 and the like are moved, and the workpiece 101 can remain stationary (in this case, the workpiece positioner 108 can be omitted).

在又一具體實例中,雷射加工系統100可使用分裂軸線定位系統,其中諸如光束定位器104、掃描透鏡110等之一或多個組件係藉由一或多個輔助定位器(圖中未示)定位。在此具體實例中,一或多個線性或旋轉平台經配置且經組態以使諸如光束定位器104、工件定位器108、掃描透鏡110等之一或多個組件移動,且工件定位器108經配置且經組態以使工件101移動。可有益地或有利地用於雷射加工系統100中之分裂軸線定位系統之一些實例包括以下各者中所揭示之分裂軸線定位系統中之任一者:美國專利第5,751,585號、第5,798,927號、第5,847,960號、第6,706,999號、第7,605,343號、第8,680,430號、第8,847,113號,或美國專利申請公開案第2014/0083983號,或其任何組合,前述各者中之每一者係以全文引用之方式併入本文中。 In yet another embodiment, the laser processing system 100 can use a split axis positioning system in which one or more components, such as beam locator 104, scan lens 110, etc., are supported by one or more auxiliary locators (not shown) Show) positioning. In this particular example, one or more linear or rotating platforms are configured and configured to move one or more components, such as beam locator 104, workpiece locator 108, scanning lens 110, etc., and workpiece locator 108 It is configured and configured to move the workpiece 101. Some examples of split-axis positioning systems that may be beneficially or advantageously used in laser processing system 100 include any of the split-axis positioning systems disclosed in U.S. Patent Nos. 5,751,585, 5,798,927. No. 5,847,960, 6,706,999, 7, 605, 343, 8, 680, 430, 8, 847, 113, or U.S. Patent Application Publication No. 2014/0083983, or any combination thereof, each of which is incorporated by reference in its entirety. The manner is incorporated herein.

在另一具體實例中,諸如光束定位器104、掃描透鏡110等之一或多個組件可由鉸接式多軸線機器人臂(例如,2、3、4、5或6軸線臂)承 載。在此具體實例中,光束定位器104及/或掃描透鏡110可視情況由機器人臂之末端執行器承載。在又一具體實例中,工件101可直接承載於鉸接式多軸線機器人臂之末端執行器上(亦即,不具有工件定位器108)。在再一具體實例中,工件定位器108可承載於鉸接式多軸線機器人臂之末端執行器上。 In another embodiment, one or more components, such as beam locator 104, scanning lens 110, etc., can be carried by an articulated multi-axis robotic arm (eg, a 2, 3, 4, 5, or 6 axis arm). In this particular example, beam aligner 104 and/or scan lens 110 may optionally be carried by an end effector of the robotic arm. In yet another embodiment, the workpiece 101 can be carried directly on the end effector of the articulated multi-axis robotic arm (ie, without the workpiece positioner 108). In yet another embodiment, the workpiece positioner 108 can be carried on an end effector of an articulated multi-axis robotic arm.

D.掃描透鏡D. Scanning lens

掃描透鏡110(例如,提供為簡單透鏡或複合透鏡)通常經組態以聚焦沿著光束路徑116引導之雷射能量,以便產生光束腰。掃描透鏡110可提供為平場(f-theta)透鏡、遠心透鏡、軸錐透鏡,或其類似者或其任何組合。在一個具體實例中,掃描透鏡110係提供作為固定焦距透鏡且耦接至一透鏡致動器(圖中未示),該透鏡致動器經組態以使掃描透鏡110移動(例如,從而沿著束軸改變光束腰之位置)。舉例而言,該透鏡致動器可提供作為經組態以使掃描透鏡110沿著Z方向線性地平移的音圈。在另一具體實例中,掃描透鏡110係提供作為可變焦距透鏡(例如,變焦透鏡,或併有由COGNEX、VARIOPTIC等當前提供之技術的所謂「液體透鏡」),可變焦距透鏡能夠經致動(例如,經由透鏡致動器)以沿著束軸改變光束腰之位置。 Scanning lens 110 (eg, provided as a simple lens or a compound lens) is typically configured to focus the laser energy directed along beam path 116 to produce a beam waist. Scanning lens 110 can be provided as an f-theta lens, a telecentric lens, a conical lens, or the like, or any combination thereof. In one embodiment, the scanning lens 110 is provided as a fixed focal length lens and coupled to a lens actuator (not shown) that is configured to move the scanning lens 110 (eg, thereby The beam axis changes the position of the beam waist). For example, the lens actuator can be provided as a voice coil configured to linearly translate the scanning lens 110 in the Z direction. In another embodiment, the scanning lens 110 is provided as a variable focus lens (eg, a zoom lens, or a so-called "liquid lens" that is currently provided by COGNEX, VARIOPTIC, etc.), and the variable focus lens can Move (eg, via a lens actuator) to change the position of the beam waist along the beam axis.

E.控制器E. Controller

一般而言,控制器112(例如,經由一或多個有線或無線通信鏈路,諸如USB、乙太網路、Firewire、Wi-Fi、RFID、NFC、藍芽、Li-Fi,或其類似者或其任何組合)以通信方式耦接至雷射加工系統100之一或多個組件,諸如雷射源102、光束定位器104、工件定位器108、透鏡致動器等,且該一或多個組件因此回應於藉由控制器112輸出之一或多個控制信號而操作。 In general, controller 112 (eg, via one or more wired or wireless communication links, such as USB, Ethernet, Firewire, Wi-Fi, RFID, NFC, Bluetooth, Li-Fi, or the like) Or any combination thereof) communicatively coupled to one or more components of the laser processing system 100, such as a laser source 102, a beam positioner 104, a workpiece positioner 108, a lens actuator, etc., and the one or The plurality of components thus operate in response to outputting one or more control signals by controller 112.

通常,控制器112包括經組態以在執行指令後即產生控制信號的一或多個處理器。處理器可提供作為經組態以執行指令之可程式化處理器(例如,包括一或多個通用電腦處理器、微處理器、數位信號處理器,或其類似者 或其任何組合)。可由處理器執行之指令可實施為軟體、韌體等,或為任何適合形式之電路,包括可程式化邏輯裝置(programmable logic device;PLD)、場可程式化閘陣列(field-programmable gate array;FPGA)、場可程式化物件陣列(field-programmable object array;FPOA)、特殊應用積體電路(application-specific integrated circuit;ASIC)-包括數位、類比及混合類比/數位電路-或其類似者或其任何組合。指令之執行可在一個處理器上執行、分配在多個處理器中、跨一裝置內之處理器或跨裝置之網路並行地進行,或其類似者或其任何組合。 Generally, controller 112 includes one or more processors configured to generate control signals upon execution of an instruction. The processor can be provided as a programmable processor configured to execute instructions (e.g., including one or more general purpose computer processors, microprocessors, digital signal processors, or the like, or any combination thereof). The instructions executable by the processor can be implemented as software, firmware, etc., or any suitable form of circuitry, including a programmable logic device (PLD), a field-programmable gate array (field-programmable gate array; FPGA), field-programmable object array (FPOA), application-specific integrated circuit (ASIC) - including digital, analog and mixed analog/digital circuits - or the like or Any combination of them. Execution of instructions may be performed on one processor, distributed among multiple processors, across a processor within a device, or across a network of devices, or the like, or any combination thereof.

在一個具體實例中,控制器112包括諸如電腦記憶體之有形媒體,其可(例如,經由一或多個有線或無線通信鏈路)由處理器存取。如本文中所使用,「電腦記憶體」包括磁性媒體(例如,磁帶、硬碟機等)、光碟、揮發性或非揮發性半導體記憶體(例如,RAM、ROM、反及型快閃記憶體、反或型快閃記憶體、SONOS記憶體等)等,且可本地、遠端(例如,跨網路)或以其組合方式存取。通常,指令可儲存為電腦軟體(例如,可執行碼、檔案、指令等,程式庫檔案等),其可易於由業內人士製作(根據本文中所提供之描述),例如以C、C++、Visual Basic、Java、Python、Tel、Perl、Scheme、Ruby等編寫。電腦軟體通常儲存於藉由電腦記憶體輸送之一或多個資料結構中。 In one specific example, controller 112 includes tangible media, such as computer memory, that can be accessed by a processor (e.g., via one or more wired or wireless communication links). As used herein, "computer memory" includes magnetic media (eg, magnetic tape, hard disk drive, etc.), optical disks, volatile or non-volatile semiconductor memory (eg, RAM, ROM, reverse flash memory). , reverse or flash memory, SONOS memory, etc., etc., and can be accessed locally, remotely (eg, across a network) or in a combination thereof. Generally, instructions can be stored as computer software (eg, executable code, files, instructions, etc., library files, etc.), which can be easily produced by the industry (according to the description provided herein), for example, C, C++, Visual Basic, Java, Python, Tel, Perl, Scheme, Ruby, etc. Computer software is typically stored in one or more data structures that are transferred by computer memory.

儘管未展示,一或多個驅動器(例如,RF驅動器、伺服驅動器、線驅動器、電源等)可以通信方式耦接至諸如雷射源102、光束定位器104、工件定位器108、透鏡致動器等之一或多個組件的輸入端。在一個具體實例中,每一驅動器通常包括控制器112以通信方式耦接至的輸入端,且控制器112因此可操作以產生一或多個控制信號(例如,觸發信號等),該一或多個控制信號可傳輸至與雷射加工系統100之一或多個組件相關聯的一或多個驅動 器之輸入端。因此,諸如雷射源102、光束定位器104、工件定位器108、透鏡致動器等之組件回應於由控制器112產生之控制信號。 Although not shown, one or more drivers (eg, RF drivers, servo drives, line drivers, power supplies, etc.) can be communicatively coupled to, for example, laser source 102, beam positioner 104, workpiece positioner 108, lens actuators. Wait for the input of one or more components. In one specific example, each driver typically includes an input to which the controller 112 is communicatively coupled, and the controller 112 is thereby operable to generate one or more control signals (eg, trigger signals, etc.), the one or A plurality of control signals can be transmitted to the inputs of one or more drivers associated with one or more components of the laser processing system 100. Accordingly, components such as laser source 102, beam positioner 104, workpiece positioner 108, lens actuators, and the like, are responsive to control signals generated by controller 112.

在另一具體實例中,且儘管未展示,但一或多個額外控制器(例如,組件特定控制器)可視情況以通信方式耦接至驅動器之輸入端,其以通信方式耦接至諸如雷射源102、光束定位器104、工件定位器108、透鏡致動器等之組件(且因此與組件相關聯)。在此具體實例中,每一組件特定控制器可以通信方式耦接,且控制器112可操作以回應於自控制器112接收之一或多個控制信號而產生一或多個控制信號(例如,觸發信號等),該一或多個控制信號接著可傳輸至控制器以通信方式耦接至的驅動器之輸入端。在此具體實例中,組件特定控制器之組態可類似於關於控制器112所描述。 In another embodiment, and although not shown, one or more additional controllers (eg, component-specific controllers) may be communicatively coupled to the input of the drive, which is communicatively coupled to, for example, a mine Components of the source 102, beam positioner 104, workpiece positioner 108, lens actuator, etc. (and thus associated with the assembly). In this particular example, each component specific controller can be communicatively coupled, and controller 112 is operative to generate one or more control signals in response to receiving one or more control signals from controller 112 (eg, The trigger signal, etc., the one or more control signals can then be transmitted to the input of the driver to which the controller is communicatively coupled. In this particular example, the configuration of the component specific controller can be similar to that described with respect to controller 112.

在提供一或多個組件特定控制器之另一具體實例中,與一個組件(例如,雷射源102)相關聯之組件特定控制器可以通信方式耦接至與一個組件(例如,光束定位器104等)相關聯之組件特定控制器。在此具體實例中,組件特定控制器中之一或多者可操作以回應於自一或多個其他組件特定控制器接收的一或多個控制信號而產生一或多個控制信號(例如,觸發信號等)。 In another specific example of providing one or more component specific controllers, a component specific controller associated with one component (eg, laser source 102) can be communicatively coupled to one component (eg, a beam positioner) 104, etc.) associated component specific controller. In this particular example, one or more of the component-specific controllers are operative to generate one or more control signals in response to one or more control signals received from one or more other component-specific controllers (eg, Trigger signal, etc.).

E.攝影機E. Camera

當包括於雷射加工系統100中時,攝影機114通常經組態以擷取工件101之影像且將表示所擷取成像之影像資料傳輸至控制器112。攝影機114可提供作為數位攝影機(例如,CCD攝影機、CMOS攝影機或其類似者或其任何組合),且可經組態及配置以使得攝影機114之視場完全處於掃描場外。在另一具體實例中,攝影機114經組態及配置以使得攝影機114之視場完全處於掃描場內。在又一具體實例中,攝影機114經組態及配置以使得攝影機114之視場僅部分地處於掃描場內。當攝影機114之視場完全處於掃描場外(或僅部分地 處於掃描場內)時,工件定位器108可經組態以定位工件101之任何區域,其能夠定位於掃描場內、攝影機114之視場內。 When included in the laser processing system 100, the camera 114 is typically configured to capture an image of the workpiece 101 and transmit image data representative of the captured image to the controller 112. Camera 114 may be provided as a digital camera (eg, a CCD camera, a CMOS camera, or the like, or any combination thereof), and may be configured and configured such that the field of view of camera 114 is completely off-screen. In another embodiment, camera 114 is configured and configured to cause the field of view of camera 114 to be completely within the field of view. In yet another embodiment, camera 114 is configured and configured such that the field of view of camera 114 is only partially within the field of view. When the field of view of the camera 114 is completely outside the field (or only partially within the field), the workpiece positioner 108 can be configured to position any area of the workpiece 101 that can be positioned within the field, as viewed by the camera 114. Inside the venue.

III.與光束穩定有關之具體實例III. Specific examples related to beam stabilization

如上文所提及,賦予此小角度變化不會對鏡面安裝件造成很大的干擾。圖2示出了翻倒/傾斜可調整鏡面安裝件之一實例。儘管已知緊接在鏡面後擱置之鏡面安裝件的部分在鏡面被雷射脈衝輻照時會升溫,但不會準確地知道鏡面安裝件之哪個部件或哪些部件會變形(例如,歸因於鏡面安裝件之熱膨脹係數)且導致鏡面之非所要傾斜。在一種情況下亦已觀察到,若定向鏡面安裝件以使得與遠離安裝件上升,但至少部分地被鏡面阻擋(亦即,鏡面指向上)相反,熱遠離安裝件而上升(亦即,鏡面指向下),則非所要鏡面傾斜之量增加。 As mentioned above, imparting this small angular change does not cause significant interference with the mirror mount. Figure 2 shows an example of a flip/tilt adjustable mirror mount. Although it is known that the portion of the mirror mount that rests immediately after the mirror surface heats up when the mirror surface is irradiated by the laser pulse, it is not accurately known which component or components of the mirror mount are deformed (eg, due to The coefficient of thermal expansion of the mirror mount) and the undesired tilt of the mirror. It has also been observed in one case that if the mirror mount is oriented such that it rises away from the mounting, but is at least partially mirrored (ie, the mirror points upward), the heat rises away from the mounting (ie, the mirror) Pointing down), the amount of non-mirror tilt is increased.

上文關於圖2所論述之發熱問題的解決方案為提供一翻轉鏡面,其具有不緊接在希望或預期用雷射脈衝輻照之鏡面之區域後存在的鏡面安裝件。圖3圖示此鏡面安裝件之一實例。關於此方法,透射穿過鏡面之任何雷射光將使不緊接在鏡面之受輻照區域後的鏡面安裝件之一區域變熱,及/或將傳播,直至雷射光照在離光束路徑116較遠之某一其他部件上。因此,諸如圖3中所示之鏡面安裝件的鏡面安裝件可減少鏡面之非所要傾斜之風險。此外,與自動化光束轉向系統相比,諸如所示之翻轉鏡面的翻轉鏡面可相當簡單且不太廉價。在一個具體實例中,當雷射源102產生一平均功率大於或等於10W、20W、30W、40W等或在此等值中之任一者之間的雷射脈衝之光束時,諸如圖3中所示之翻轉鏡面的翻轉鏡面可用於系統100中。 The solution to the heat problem discussed above with respect to Figure 2 is to provide a flip mirror having a mirror mount that does not exist immediately after the area of the mirror that is desired or expected to be irradiated with a laser pulse. Figure 3 illustrates an example of such a mirror mount. With respect to this method, any laser light transmitted through the mirror will heat a region of the mirror mount that is not immediately after the irradiated region of the mirror, and/or will propagate until the laser illumination is off the beam path 116. On some other component farther away. Thus, a mirror mount such as the mirror mount shown in Figure 3 can reduce the risk of undesired tilting of the mirror. Furthermore, a flip mirror such as the flip mirror shown can be relatively simple and less expensive than an automated beam steering system. In one embodiment, when the laser source 102 produces a beam of laser pulses having an average power greater than or equal to 10 W, 20 W, 30 W, 40 W, etc., or between any of these values, such as in FIG. The flip mirror of the flip mirror shown can be used in system 100.

IV.與工件對準有關之具體實例IV. Specific examples related to workpiece alignment

如上文所提及,當雷射刻劃或切割諸如半導體晶圓之工件時,確保針對每一個工件很好地維持特徵(例如,劃線、鋸口等)之置放可為重要 的。在一個具體實例(例如,其中系統100包括攝影機114)中,Z堆疊技術(亦被稱作延長聚焦深度技術)可用以準確地判定工件中之特徵的位置。Z堆疊係基於視覺之方法,其用於攝影術及顯微術兩者中以提供具有看上去遠超傳統光學能力之聚聚焦深度度的影像。在Z堆疊情況下,使用攝影機114以遍歷一系列焦距(參見例如圖4)、但不改變工件相對於攝影機114之位置之方式收集許多影像。此被稱為「Z堆疊」。對於該等影像中之每一像素,藉由任何合適之技術來計算區域影像梯度。針對遍及Z堆疊中之所有影像的同一像素位置進行此計算(參見例如圖5)。可常常藉由影像梯度中之峰值來判定一影像或一影像內之區域的「最佳焦點」(亦即,一影像之可見特徵之間的對比度在聚焦時達到最高)。因此,藉由比較遍及Z堆疊中之所有影像的同一像素位置之影像梯度(參見例如圖6),有可能判定堆疊內之哪個影像提供在分析中之像素位置的最佳焦點。藉由在資料點之間內插,有可能達成解析度超出由Z堆疊的間距提供之解析度的結果。當對影像中之所有像素執行此相同分析時,您可判定針對所有像素位置的堆疊中之最佳影像,從而允許您建構合成影像,其中每一像素表示Z堆疊中之彼位置的最佳焦點。對於許多應用而言,此增加之場深影像係主要輸出。然而,知道Z堆疊中之哪個影像表示一特定像素之最佳焦點意謂著您知道位置之高度(亦即,如沿著Z軸量測的彼位置之高度),且若已知影像中之所有像素的彼資訊,則您可建構場景之高度/分佈圖(參見例如圖7)。一旦高度圖已產生,則可藉由查看高度資料中之較高梯度區域(亦即,具有更陡斜率之區域)來發現劃線邊緣。知道鋸口邊緣應為大致線性的,且知道什麼樣的典型場景可看起來相同(例如,當檢查相交點時,水平及垂直鋸口邊緣均存在)亦可幫助識別該等邊緣。使用所描述之技術處理之影像可使用用於諸如視覺對準之其他典型系統活動的相同攝影機及照明器來收集。不需要額外硬體。此情形自成本視點看係有益的。 As mentioned above, when laser scribing or cutting a workpiece such as a semiconductor wafer, it may be important to ensure that the placement of features (e.g., scribing, sawing, etc.) is well maintained for each workpiece. In one specific example (eg, where system 100 includes camera 114), a Z-stacking technique (also referred to as extended depth of focus technology) can be used to accurately determine the location of features in the workpiece. Z-stacking is a vision-based approach for both photography and microscopy to provide images with a depth of focus that appears to be far superior to conventional optical capabilities. In the case of a Z stack, a plurality of images are collected using the camera 114 in a manner that traverses a series of focal lengths (see, for example, FIG. 4) without changing the position of the workpiece relative to the camera 114. This is called "Z stacking". For each pixel in the images, the regional image gradient is calculated by any suitable technique. This calculation is performed for the same pixel location throughout all images in the Z stack (see, eg, Figure 5). The "best focus" of an image or region within an image can often be determined by the peak in the image gradient (i.e., the contrast between the visible features of an image is highest at the time of focusing). Thus, by comparing the image gradients of the same pixel location throughout all of the images in the Z stack (see, for example, Figure 6), it is possible to determine which image within the stack provides the best focus for the pixel location in the analysis. By interpolating between data points, it is possible to achieve a resolution that exceeds the resolution provided by the spacing of the Z stack. When performing this same analysis on all pixels in the image, you can determine the best image in the stack for all pixel locations, allowing you to construct a composite image where each pixel represents the best focus of the position in the Z stack . For many applications, this added depth image is the primary output. However, knowing which image in the Z stack represents the best focus of a particular pixel means that you know the height of the position (ie, the height of the position as measured along the Z axis), and if known in the image For each pixel's information, you can construct the height/profile of the scene (see, for example, Figure 7). Once the height map has been generated, the line edges can be found by looking at the higher gradient regions in the height data (i.e., the regions with steeper slopes). Knowing that the edge of the kerf should be roughly linear, and knowing what typical scenes can look the same (for example, both the horizontal and vertical kerf edges are present when checking the intersection) can also help identify the edges. Images processed using the described techniques can be collected using the same cameras and illuminators for other typical system activities such as visual alignment. No extra hardware is required. This situation is beneficial from a cost perspective.

儘管在計算上密集,但上文所述之Z堆疊技術的主要益處中之一者為僅使用高度資料來進行一特徵(例如,一劃線或鋸口)之一邊緣之偵測。在分析中不時有場景之視覺內容(例如,具有可明亮或黑暗之區域);視覺內容之唯一重要態樣為視覺內容如何隨在Z堆疊內之位置變化,該態樣影響收集到的高度資料之品質。此意謂相同演算法可用於(可具有顯著視覺差異之)不同產品類型,而不需要改變或調諧參數。 Although computationally intensive, one of the primary benefits of the Z-stacking technique described above is the detection of only one edge of a feature (eg, a scribe or kerf) using only height data. From time to time, there is visual content of the scene (for example, areas that can be bright or dark); the only important aspect of visual content is how the visual content changes with position within the Z stack, which affects the height of the collection. The quality of the information. This means that the same algorithm can be used for different product types (which can have significant visual differences) without the need to change or tune the parameters.

V.結論V. Conclusion

前文說明本發明之具體實例及實例,且不應解釋為對其之限制。儘管已參看圖式描述了幾個特定具體實例及實例,但熟習此項技術者將易於瞭解,對所揭示具體實例及實例以及其他具體實例的許多修改在本質上不背離本發明之新穎教示及優點的情況下係可能的。相應地,所有此等修改意欲包括於如申請專利範圍中所界定的本發明之範圍內。舉例而言,熟習此項技術者將瞭解,任何句子、段落、實例或具體實例之標的物可與其他句子、段落、實例或具體實例之一些或全部之標的物組合,除非此等組合係互斥的。本發明之範圍因此應由以下申請專利範圍判定,且該等技術方案之等效物包括於本發明之範圍中。 Specific examples and examples of the invention are described above and should not be construed as limiting. While the invention has been described with respect to the specific embodiments of the embodiments of the invention In the case of advantages, it is possible. Accordingly, all such modifications are intended to be included within the scope of the invention as defined in the scope of the claims. For example, those skilled in the art will appreciate that the subject matter of any sentence, paragraph, example, or example can be combined with some or all of the other sentences, paragraphs, examples, or specific examples, unless such combinations are Repulsed. The scope of the invention is therefore intended to be determined by the scope of the appended claims

Claims (9)

一種雷射加工系統,其包含:一雷射源,其經組態以產生一平均功率大於10W之雷射脈衝之一光束;及一翻轉鏡面,其安置於該光束之一路徑中,該翻轉鏡面包含:經組態以反射該等雷射脈衝內之光的一第一部分且透射該等雷射脈衝內之該光的一第二部分之一鏡面;及耦接至該鏡面之一鏡面安裝件,其中該鏡面安裝件不在該鏡面經該等雷射脈衝輻照之一位置處存在於該鏡面後。  A laser processing system comprising: a laser source configured to generate a beam of laser pulses having an average power greater than 10 W; and a flip mirror disposed in a path of the beam, the flipping The mirror includes: a mirror configured to reflect a first portion of the light within the laser pulses and to transmit a second portion of the light within the laser pulses; and mirror mounted to one of the mirrors And wherein the mirror mount is not present behind the mirror at a location where the mirror is irradiated by the laser pulses.   如請求項1所述之雷射加工系統,其中該平均功率大於18W。  The laser processing system of claim 1, wherein the average power is greater than 18W.   如請求項2所述之雷射加工系統,其中該平均功率大於25W。  The laser processing system of claim 2, wherein the average power is greater than 25W.   如請求項3所述之雷射加工系統,其中該平均功率等於30W。  The laser processing system of claim 3, wherein the average power is equal to 30W.   如請求項3所述之雷射加工系統,其中該平均功率大於30W。  The laser processing system of claim 3, wherein the average power is greater than 30W.   如請求項1至5中任一項所述之雷射加工系統,其進一步包含:一掃描透鏡,其配置於一光束路徑內,雷射脈衝之該光束可沿著該光束路徑傳播;及光束定位器,其在該雷射源與該掃描透鏡之間配置於該光束路徑內。  The laser processing system of any one of claims 1 to 5, further comprising: a scanning lens disposed in a beam path along which the laser beam propagates; and the beam a locator disposed within the beam path between the laser source and the scanning lens.   如請求項6所述之雷射加工系統,其中該光束定位器包括一電流計鏡面系統。  The laser processing system of claim 6, wherein the beam positioner comprises a galvanometer mirror system.   如請求項6所述之雷射加工系統,其中該光束定位器包括一聲光偏轉器系統。  The laser processing system of claim 6, wherein the beam positioner comprises an acousto-optic deflector system.   如請求項6所述之雷射加工系統,其中該翻轉鏡面定向成面朝下。  The laser processing system of claim 6, wherein the flip mirror is oriented to face down.  
TW107121327A 2017-06-26 2018-06-21 Laser processing apparatus, methods of use and related arrangements TW201904700A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762524863P 2017-06-26 2017-06-26
US62/524,863 2017-06-26

Publications (1)

Publication Number Publication Date
TW201904700A true TW201904700A (en) 2019-02-01

Family

ID=64741817

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107121327A TW201904700A (en) 2017-06-26 2018-06-21 Laser processing apparatus, methods of use and related arrangements

Country Status (2)

Country Link
TW (1) TW201904700A (en)
WO (1) WO2019005530A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110434471A (en) * 2019-08-21 2019-11-12 南京魔迪多维数码科技有限公司 The experimental provision of integrated three kinds of laser processing technologies

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6951995B2 (en) * 2002-03-27 2005-10-04 Gsi Lumonics Corp. Method and system for high-speed, precise micromachining an array of devices
JP2004228456A (en) * 2003-01-27 2004-08-12 Canon Inc Exposure device
JP5093267B2 (en) * 2010-03-11 2012-12-12 ウシオ電機株式会社 Condensing mirror assembly and extreme ultraviolet light source device using the condensing mirror assembly
WO2015112775A1 (en) * 2014-01-22 2015-07-30 Swift Control Systems, Inc. A smart mirror mount device
JP6307322B2 (en) * 2014-03-27 2018-04-04 株式会社荏原製作所 Reflector attitude adjustment structure

Also Published As

Publication number Publication date
WO2019005530A2 (en) 2019-01-03
WO2019005530A3 (en) 2019-02-21

Similar Documents

Publication Publication Date Title
TWI726909B (en) Laser processing apparatus, methods of laser-processing workpieces and related arrangements
CN110139727B (en) Method and system for extending the lifetime of optics in a laser processing apparatus
TWI829703B (en) Laser-processing apparatus, methods of operating the same, and methods of processing workpieces using the same
TWI843784B (en) Laser-processing apparatus, a controller and a non-transitory computer-readable medium for use with the laser-processing apparatus
US7469831B2 (en) Laser-based method and system for processing targeted surface material and article produced thereby
US10864599B2 (en) Location of image plane in a laser processing system
US20230061635A1 (en) Laser processing apparatus facilitating directed inspection of laser-processed workpieces and methods of operating the same
TW201904700A (en) Laser processing apparatus, methods of use and related arrangements