TW201843293A - Quantum dot-containing compositions having superior resistance to degradation from exposure to environmental contaminants while maintaining their light generating capabilities - Google Patents

Quantum dot-containing compositions having superior resistance to degradation from exposure to environmental contaminants while maintaining their light generating capabilities Download PDF

Info

Publication number
TW201843293A
TW201843293A TW107114456A TW107114456A TW201843293A TW 201843293 A TW201843293 A TW 201843293A TW 107114456 A TW107114456 A TW 107114456A TW 107114456 A TW107114456 A TW 107114456A TW 201843293 A TW201843293 A TW 201843293A
Authority
TW
Taiwan
Prior art keywords
composition
meth
group
acrylate
quantum dot
Prior art date
Application number
TW107114456A
Other languages
Chinese (zh)
Inventor
荔蓉 包
孫琦山
Original Assignee
德商漢高智慧財產控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商漢高智慧財產控股公司 filed Critical 德商漢高智慧財產控股公司
Publication of TW201843293A publication Critical patent/TW201843293A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/014Stabilisers against oxidation, heat, light or ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1811C10or C11-(Meth)acrylate, e.g. isodecyl (meth)acrylate, isobornyl (meth)acrylate or 2-naphthyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/106Esters of polycondensation macromers
    • C08F222/1065Esters of polycondensation macromers of alcohol terminated (poly)urethanes, e.g. urethane(meth)acrylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2206Oxides; Hydroxides of metals of calcium, strontium or barium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1535Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/39Thiocarbamic acids; Derivatives thereof, e.g. dithiocarbamates
    • C08K5/405Thioureas; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/50Phosphorus bound to carbon only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Epoxy Resins (AREA)

Abstract

Quantum dot-containing composition, films of quantum dot-containing compositions and assemblies fabricated therewith, all of which having superior resistance to degradation from environmental contaminates, such as air and/or moisture, are provided.

Description

對因暴露至環境汙染物產生降解具有優異抗性同時維持其光產生能力之含量子點的組合物Composition having a content of sub-dot having excellent resistance to degradation due to exposure to environmental pollutants while maintaining its light generating ability

本發明提供含量子點的組合物及形成含量子點的組合物之方法以及用其製造之總成,以上所有均對因諸如空氣及/或濕氣之環境汙染物產生降解具有優異抗性。The present invention provides a sub-dot composition and a method for forming a sub-dot composition, and an assembly made therefrom, all of which have excellent resistance to degradation due to environmental pollutants such as air and / or moisture.

諸如呈膜形式之含量子點的組合物及用此類膜製成之元件適用於顯示裝置及其他光學應用。在此等應用中,量子點需要遠離空氣及濕氣以確保效能不會受損。在許多情況下,以膜形式提供含量子點的組合物,包括頂部阻擋膜、底部阻擋膜及膜黏著劑之中間層,量子點分散於中間層內。 美國專利申請公開案第2015/0368553號係此結構之實例,其中含量子點的膜描述為第一阻擋膜;第二阻擋膜;及分隔第一阻擋膜與第二阻擋膜之量子點層,量子點層包含分散於聚合物基質中之量子點。 在形成含量子點的膜之期間,其中分散有量子點之聚合基質可由兩份式黏著劑形成。如此形成之膜較有可能存在缺陷,此係因為常用高溫固化黏著劑,其導致黏著劑之黏度初步降低。黏度降低使黏著劑能夠在結構內移動,針對由例如阻擋膜收縮、線張力失配及不均勻加熱引起之應力的反應亦如此。 量子點通常對因暴露至諸如空氣及濕氣之環境汙染物產生降解敏感。在如美國'553專利公開案中所描述以一種形式構建時,頂部及底部阻擋膜用於使量子點免於接觸來自環境之空氣及濕氣。然而,在膜之邊緣,沿垂直於阻擋膜之方向,僅有聚合物基質充當障壁,阻擋量子點暴露至環境汙染物。空氣及濕氣之穿透導致量子點降解,特別是接近膜之邊緣的量子點。此種量子點降解產生無法提供彩色之非作用邊緣區域,進而導致使用含量子點的膜之顯示裝置效能不佳且不均勻。 國際專利公開案第WO2015/095296號認識到此現象,其指出「一些當前可用的基質材料僅提供極小的阻擋特性,其可導致一種稱為邊緣進入之現象。若水及/或氧氣進入量子點製品之邊緣區域,則位於積層結構之暴露邊緣上或靠近積層結構之暴露邊緣的量子點可降解,且最終在受到紫外線或藍光照射之激發時無法發光。此量子點降解可導致膜製品之切割邊緣周圍的黑線,其可損害一部分由量子點製品形成之顯示器的效能。」 [第1頁,第16-22行。] '296 PCT公開案亦指出處理該現象之客觀需要: 沿積層邊緣減慢或消除量子點降解對延長較小電子裝置中的顯示器之使用壽命而言尤其重要,諸如例如手持型裝置及平板電腦中所使用之彼等顯示器。[第1頁,第22-24行。] '296 PCT公開案藉由以下來回答該問題:提供用於量子點製品之基質調配物,據報導該等基質調配物阻擋空氣及/或濕氣之進入,且因此可減慢位於量子點製品之邊緣上或靠近量子點製品之邊緣的量子點降解。'296 PCT公開案主張此類益處可由一種量子點膜製品實現,該製品包括第一阻擋層;第二阻擋層;及介於第一阻擋層與第二阻擋層之間的量子點層,量子點層包括分散於基質中之量子點,該基質包含固化黏著劑組合物,其中黏著劑組合物包括:環氧化物;二胺基官能性化合物及輻射可固化甲基丙烯酸脂化合物。 儘管存在'296 PCT公開案,還是希望提供替代性方法來解決該問題以使終端用戶具有多種方法及供應商選擇。 因此,希望製造一種含量子點的組合物,特定言之,該組合物呈膜形式,其對因暴露至環境汙染物而對效能產生之不利影響具有優異耐受能力。Compositions such as content dots in the form of films and elements made with such films are suitable for display devices and other optical applications. In such applications, quantum dots need to be kept away from air and moisture to ensure that performance is not compromised. In many cases, a composition that provides sub-dots in the form of a film includes an intermediate layer of a top barrier film, a bottom barrier film, and a film adhesive, and the quantum dots are dispersed in the intermediate layer. U.S. Patent Application Publication No. 2015/0368553 is an example of this structure, in which a film containing sub-dots is described as a first barrier film; a second barrier film; and a quantum dot layer separating the first barrier film and the second barrier film, The quantum dot layer contains quantum dots dispersed in a polymer matrix. During the formation of the sub-dot film, the polymeric matrix in which the quantum dots are dispersed may be formed from a two-part adhesive. The film formed in this way is more likely to have defects. This is because the high-temperature curing adhesive is commonly used, which causes the viscosity of the adhesive to decrease initially. The reduced viscosity allows the adhesive to move within the structure, as does the response to stresses caused by, for example, shrinkage of the barrier film, line tension mismatch, and uneven heating. Quantum dots are often sensitive to degradation due to exposure to environmental pollutants such as air and moisture. When constructed in one form as described in the U.S. '553 patent publication, top and bottom barrier films are used to protect the quantum dots from exposure to air and moisture from the environment. However, at the edge of the film, in a direction perpendicular to the barrier film, only the polymer matrix acts as a barrier, blocking the quantum dots from exposure to environmental pollutants. The penetration of air and moisture causes degradation of quantum dots, especially quantum dots near the edges of the film. Such quantum dot degradation produces non-active edge regions that cannot provide color, which in turn leads to poor and non-uniform display devices using sub-dot film. International Patent Publication No. WO2015 / 095296 recognizes this phenomenon, stating that "some currently available matrix materials provide only minimal barrier properties, which can lead to a phenomenon called edge entry. If water and / or oxygen enters quantum dot products In the edge area, the quantum dots located on or near the exposed edge of the multilayer structure can degrade and eventually cannot emit light when excited by ultraviolet or blue light. This quantum dot degradation can cause the cutting edge of the film product The surrounding black lines can impair the performance of a portion of a display made of quantum dot products. "[Page 1, lines 16-22. The '296 PCT publication also states the objective need to address this phenomenon: slowing down or eliminating quantum dot degradation along the edges of the laminate is particularly important for extending the life of displays in smaller electronic devices such as, for example, handheld devices and tablet Their displays. [Page 1, lines 22-24. ] The '296 PCT publication answers this question by providing matrix formulations for quantum dot products, which are reported to block the entry of air and / or moisture and therefore slow down the quantum dots Degradation of quantum dots on or near the edge of the article. The '296 PCT publication asserts that such benefits can be realized by a quantum dot film product that includes a first barrier layer; a second barrier layer; and a quantum dot layer between the first barrier layer and the second barrier layer. The dot layer includes quantum dots dispersed in a matrix including a cured adhesive composition, wherein the adhesive composition includes: an epoxide; a diamine-based functional compound; and a radiation-curable methacrylate compound. In spite of the '296 PCT publication, it is desirable to provide an alternative approach to address this issue so that end users have multiple methods and vendor options. Therefore, it is desirable to make a composition containing sub-dots, in particular, the composition is in the form of a film, which has excellent tolerance to adverse effects on performance due to exposure to environmental pollutants.

因此,提供諸如呈膜形式之含量子點的組合物及形成此類含量子點的組合物之方法及用其製造之總成,以上所有均對因暴露至諸如空氣及/或濕氣之環境汙染物產生降解具有優異抗性。 此處,本發明在含量子點的組合物中使用乾燥劑及/或去氧劑以使量子點之降解最小化。當本發明置於膜形式中時,本發明之益處及優勢在組合物之邊緣尤其明顯。 舉例而言,含量子點的組合物可以膜形式加以使用,且可用於使用適當塗佈及積層技術之生產工藝以製造含量子點的顯示裝置。在調配其中分散有量子點之基質期間,將乾燥劑及/或去氧劑添加至組合物中。可調整乾燥劑及/或去氧劑之類型、載入及粒度以實現隨後之應用所需的邊緣保護。 在第一態樣中,呈膜形式之含量子點的組合物可用作置於第一阻擋膜與第二阻擋膜之間的層。含量子點的膜組合物之層包括分散於可固化基質中之量子點,該可固化基質自身包括可固化組分且在一些實施例中包括光引發劑。當然,可固化基質亦包括乾燥劑及去氧劑中之至少一者。 濕氣及/或空氣在量子點膜之邊緣或周圍進入導致量子點降解且在膜中形成非作用邊緣區域。此非作用區域可能不再於顯示器中履行波長轉換職能。通常量子點膜之標定尺寸大於顯示器尺寸,且非作用邊緣侷限於邊框區域內,朝向顯示器之邊緣,以此避免顯示器之可視區中的色彩失真。需要使邊框寬度減至最小以提昇美感及消費者觀看體驗。然而,此需要之對抗因素在於公認的問題,即量子點沿量子點膜之外緣降解且隨後破壞該區域之色彩。 本發明組合物極大地延緩了量子點在暴露至諸如濕氣及/或空氣之環境汙染物之後的降解。在如此操作時,量子點維持其光產生能力及色彩產生能力。可證明本發明組合物適用於已知量子點降解在量子點膜之邊緣附近難以解決的顯示裝置應用,其在既定老化時間之後減小非作用邊緣區域之寬度。此外,減小或理想地去除量子點膜之非作用邊緣可使顯示器擁有最小邊框寬度。Therefore, to provide a composition such as a content sub-dot in the form of a film, a method of forming such a content sub-dot, and an assembly made using the same, all of the above are related to exposure to an environment such as air and / or moisture. Contaminants have excellent resistance to degradation. Here, the present invention uses a desiccant and / or a deoxidizing agent in the composition of the sub-dots to minimize the degradation of the quantum dots. The benefits and advantages of the invention are particularly evident at the edges of the composition when the invention is placed in a film form. For example, the composition of the content dots can be used in the form of a film, and can be used to produce a display device with the content dots using a production process using appropriate coating and lamination techniques. During the formulation of the matrix in which the quantum dots are dispersed, a desiccant and / or a deoxidizing agent is added to the composition. The type, loading, and particle size of the desiccant and / or deoxidizer can be adjusted to achieve the edge protection required for subsequent applications. In the first aspect, the composition having a content of dots in the form of a film can be used as a layer interposed between the first barrier film and the second barrier film. The layer of the sub-dot film composition includes quantum dots dispersed in a curable matrix that itself includes a curable component and in some embodiments a photoinitiator. Of course, the curable matrix also includes at least one of a desiccant and a deoxidizer. Moisture and / or air entering at or around the edge of the quantum dot film causes the quantum dots to degrade and form non-active edge regions in the film. This inactive area may no longer perform wavelength conversion functions in the display. Usually, the calibrated size of the quantum dot film is larger than the size of the display, and the non-active edge is limited to the frame area and faces the edge of the display to avoid color distortion in the visible area of the display. The width of the border needs to be minimized to improve the aesthetics and consumer viewing experience. However, the required counteracting factor is a recognized problem that the quantum dots degrade along the outer edge of the quantum dot film and subsequently destroy the color of the area. The composition of the present invention greatly retards the degradation of quantum dots after exposure to environmental pollutants such as moisture and / or air. In doing so, the quantum dot maintains its light generating ability and color generating ability. It can be proved that the composition of the present invention is suitable for display device applications in which quantum dot degradation is difficult to resolve near the edge of the quantum dot film, which reduces the width of the non-active edge region after a predetermined aging time. In addition, reducing or ideally removing the non-active edges of the quantum dot film allows the display to have a minimum bezel width.

如上所指出,呈膜形式之含量子點的組合物可用作置於第一阻擋膜與第二阻擋膜之間的層,諸如用於背光單元。呈膜形式之含量子點的膜組合物之層包括分散於可固化基質中之量子點,該可固化基質自身包括可固化組分及諸如光引發劑之固化劑。通常,在調配其中分散有量子點之基質期間,將乾燥劑及/或去氧劑添加至組合物中。 因此,含量子點的組合物包括複數個量子點;可固化基質;及乾燥劑及去氧劑中之至少一者。複數個量子點通常分散於載劑中。 可固化基質可選自以下中之一者:(甲基)丙烯酸酯組分、環氧樹脂組分、噁嗪組分(諸如苯并噁嗪組分)、噁唑啉組分、順丁烯二醯亞胺組分、聚矽氧組分及其組合。 可固化基質亦可包括固化劑或引發劑,引發劑可為光引發劑。理想地,固化劑係含氮固化劑,諸如胺類,如脂族胺。含氮固化劑可選自環狀脒;三級胺;二級胺;經取代之環狀脒、經取代之三級胺、經取代之二級胺;或其組合。催化劑可包含以下中之一或多者:咪唑、咪唑啉、吡咯啶、經取代之咪唑化合物、經取代之咪唑啉化合物、1,4,5,6-四氫嘧啶、經取代之1,4,5,6-四氫嘧啶化合物、經取代之吡咯啶化合物、經取代之哌啶化合物及其組合。催化劑亦可包含未經取代之哌啶、非環狀脒或經取代之非環狀脒。可作為本發明之可接受催化劑的非環狀脒之實例包括NN'-二烷基烷眯,諸如N,N'-二甲基烷脒及N,N'-二乙基烷脒。 (甲基)丙烯酸酯組分可選自大量(甲基)丙烯酸酯,包括單官能(甲基)丙烯酸酯、雙官能(甲基)丙烯酸酯、三官能(甲基)丙烯酸酯、多官能(甲基)丙烯酸酯及類似者。基於環氧基之(甲基)丙烯酸酯及胺基甲酸酯(甲基)丙烯酸酯亦可包括在內。 單官能(甲基)丙烯酸酯之實例包括苯基苯酚(甲基)丙烯酸酯、(甲基)丙烯酸甲氧基聚伸乙酯、丁二酸丙烯醯基氧基乙酯、脂肪酸(甲基)丙烯酸酯、(甲基)丙烯醯基氧基乙基鄰苯二甲酸、苯氧基乙二醇(甲基)丙烯酸酯、(甲基)丙烯酸β-羧基乙酯、(甲基)丙烯酸異冰片酯、(甲基)丙烯酸異丁酯、(甲基)丙烯酸第三丁酯、(甲基)丙烯酸羥基乙酯、(甲基)丙烯酸羥基丙酯、(甲基)丙烯酸二氫環戊二乙酯、(甲基)丙烯酸環己酯、(甲基)丙烯酸二甲基胺基乙酯、(甲基)丙烯酸二乙基胺基乙酯、(甲基)丙烯酸第三丁基胺基乙酯、(甲基)丙烯酸4-羥基丁酯、(甲基)丙烯酸四氫呋喃酯、(甲基)丙烯酸苯甲酯、乙基卡必醇(甲基)丙烯酸酯、(甲基)丙烯酸苯氧基乙酯、甲氧基三乙二醇(甲基)丙烯酸酯、單季戊四醇(甲基)丙烯酸酯、二季戊四醇(甲基)丙烯酸酯、三季戊四醇(甲基)丙烯酸酯、多季戊四醇(甲基)丙烯酸酯及類似者。 雙官能(甲基)丙烯酸酯之實例包括己二醇二(甲基)丙烯酸酯、(甲基)丙烯酸羥基丙稀醯基氧基丙酯、己二醇二(甲基)丙烯酸酯、胺基甲酸酯(甲基)丙烯酸酯、環氧(甲基)丙烯酸酯、雙酚A型環氧(甲基)丙烯酸酯、經改質之環氧(甲基)丙烯酸酯、脂肪酸-經改質之環氧(甲基)丙烯酸酯、胺-經改質之雙酚F型環氧(甲基)丙烯酸酯、(甲基)丙烯酸烯丙酯、乙二醇二(甲基)丙烯酸酯、二甘醇二(甲基)丙烯酸酯、乙氧基化雙酚A二(甲基)丙烯酸酯、三環癸烷二甲醇二(甲基)丙烯酸酯、丙三醇二(甲基)丙烯酸酯、聚丙二醇二(甲基)丙烯酸酯丙氧基化乙氧基化雙酚A二(甲基)丙烯酸酯、9,9-雙(4-(2-(甲基)丙烯醯氧基乙氧基)苯基)茀、三環癸烷二(甲基)丙烯酸酯、二丙二醇二(甲基)丙烯酸酯、聚丙二醇二(甲基)丙烯酸酯、PO-經改質之新戊二醇二(甲基)丙烯酸酯、三環癸烷二甲醇二(甲基)丙烯酸酯、1,12-十二烷二醇二(甲基)丙烯酸酯及類似者。 三官能(甲基)丙烯酸酯之實例包括三羥甲基丙烷三(甲基)丙烯酸酯、三羥甲基丙烷三(甲基)丙烯酸乙氧酯、聚醚三(甲基)丙烯酸酯、丙三醇三(甲基)丙烯酸丙氧酯及類似者。 多官能(甲基)丙烯酸酯之實例包括二季戊四醇聚(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、四(甲基)丙烯酸季戊四醇乙氧酯、二(三羥甲基丙烷)四(甲基)丙烯酸酯及類似者。 環氧樹脂組分可選自廣泛多種環氧基官能化樹脂。舉例而言,基於雙酚A之液體型環氧樹脂、基於雙酚A之固體型環氧樹脂、基於雙酚F之液體型環氧樹脂(例如,EPICLON EXA-835LV)、基於苯酚-酚醛清漆樹脂之多官能環氧樹脂、二環戊二烯型環氧樹脂(例如,EPICLON HP-7200L)、萘型環氧樹脂及類似者以及其任何兩種或超過兩種之混合物可在此適用。 環氧基官能化樹脂之實例包括環脂族乙醇之二環氧化物、氫化雙酚A(市售為EPALLOY 5000)、六氫鄰苯二甲酸酐之雙官能環脂族縮水甘油酯(市售為EPALLOY 5200)、EPICLON EXA-835LV、EPICLON HP-7200L及類似者以及其任何兩種或超過兩種之混合物。 在某些實施例中,環氧樹脂組分可包括兩種或超過兩種不同的基於雙酚之環氧樹脂的組合。此等基於雙酚之環氧樹脂可選自雙酚A環氧樹脂、雙酚F環氧樹脂或雙酚S環氧樹脂或其組合。此外,可使用相同類型樹脂內的兩種或超過兩種不同雙酚環氧樹脂(諸如A、F或S)。 雙酚環氧樹脂之市售實例包括雙酚F型環氧樹脂(諸如來自日本Nippon Kayaku之RE-404-S、及來自Dai Nippon Ink & Chemicals, Inc.之EPICLON 830(RE1801)、830S (RE1815)、830A (RE1826)及830W、及RSL 1738及YL-983U (來自Resolution)及雙酚A型環氧樹脂(諸如來自Resolution之YL-979及980)。 此等可購自Dai Nippon及上述雙酚環氧樹脂經提昇為液體未經稀釋之表氯醇-雙酚F環氧樹脂,其黏度比基於雙酚A環氧樹脂之習知環氧樹脂低得多,且其具有類似於液體雙酚A環氧樹脂之物理特性。此等四種雙酚F環氧樹脂之EEW介於165與180之間;在25℃下,黏度介於3,000與4,500 cps之間(除了RE1801,其黏度上限係4,000 cps);且RE1815及830W之可水解氯化物含量報導為200 ppm,且RE1826之可水解氯化物含量報導為100 ppm。 可購自Resolution及上述雙酚環氧樹脂經提昇為含低氯化物之液體環氧樹脂。雙酚A環氧樹脂之EEW (公克/當量)介於180與195之間,且在25℃下,黏度介於100與250 cps之間 。YL-979之總氯化物含量報導為介於500與700 ppm之間,且YL-980之總氯化物含量介於100與300 ppm之間。雙酚F環氧樹脂之EEW (公克/當量)介於165與180之間,且在25℃下,黏度介於30與60之間。RSL-1738之總氯化物含量報導為介於500與700 ppm之間,且YL-983U之總氯化物含量介於150與350 ppm之間。 亦可使用環脂族環氧樹脂,諸如3,4-環氧環己基甲基-3,4-環氧環己基碳酸酯。反應性稀釋劑(諸如單官能、雙官能或多官能反應性稀釋劑)可用於調整所得樹脂材料之黏度且/或降低其Tg。單官能環氧樹脂共反應物稀釋劑應具有擁有約6個至約28個碳原子之烷基的環氧基,其實例包括C6 - 28 烷基縮水甘油醚、C6 - 28 脂肪酸縮水甘油酯、C6 - 28 烷基苯酚縮水甘油醚及類似者。反應性稀釋劑之實例包括丁基縮水甘油醚、甲苯基縮水甘油醚、聚乙二醇縮水甘油醚、聚丙二醇縮水甘油醚及類似者。 可使用酚化合物之聚縮水甘油衍生物,諸如可以EPON商標購得之彼等聚縮水甘油衍生物,諸如來自Resolution之EPON 828、EPON 1001、EPON 1009及EPON 1031;來自Dow Chemical Co.之DER 331、DER 332、DER 334及DER 542;及來自Nippon Kayaku之BREN-S。其他合適之環氧樹脂包括由多元醇及類似者製備之聚環氧化物及苯酚-甲醛酚醛清漆之聚縮水甘油衍生物,後者諸如來自Dow Chemical之DEN 431、DEN 438及DEN 439。亦可以商標ARALDITE購得甲酚類似物,諸如來自Ciba Specialty Chemicals Corporation之ARALDITE ECN 1235、ARALDITE ECN 1273及ARALDITE ECN 1299。SU-8係可購自Resolution之雙酚A型環氧樹脂酚醛清漆。胺、胺基醇及聚羧酸之聚縮水甘油加合物亦適用於本發明,其市售樹脂包括來自F.I.C. Corporation之GLYAMINE 135、GLYAMINE 125及GLYAMINE 115;來自Ciba Specialty Chemicals之ARALDITE MY-720、ARALDITE 0500及ARALDITE 0510,及來自Sherwin-Williams Co.之PGA-X及PGA-C。 本文中視情況使用之適當的單官能環氧樹脂共反應物稀釋劑包括黏度低於環氧樹脂組分之黏度(通常低於約250 cps)之彼等物。 噁嗪組分可選自其中o係1-4,X選自直接鍵(在o為2時)、烷基(在o為1時)、伸烷基(在o為2-4時)、羰基(在o為2時)、硫醇(在o為1時)、硫醚(在o為2時)、亞碸(在o為2時)及碸(在o為2時),且R1 選自氫、烷基及芳基。 更特定言之,噁嗪可由以下結構涵蓋:其中X選自直接鍵、CH2 、C(CH3 )2 、C=0、S、S=O及O=S=O,且R1 及R2 相同或不同且選自氫、烷基(諸如甲基、乙基、丙基及丁基)及芳基。 因此,噁嗪可選自以下例示性結構中之任一者: 其中R1 及R2 如上文所定義。 即使不由噁嗪結構I或噁嗪結構II中之任一者涵蓋,其他噁嗪可由以下結構涵蓋: 其中R1 及R2 如上文所定義,且R3 如R1 或R2 所定義。 因此,此等噁嗪之具體實例包括: 噁嗪組分可包括多官能噁嗪與單官能噁嗪之組合。 單官能噁嗪之實例可由以下結構涵蓋:其中R係烷基,諸如甲基、乙基、丙基及丁基。 作為噁唑啉,由以下結構涵蓋之化合物係合適的其中R1 、R2 、R3 、R4 及X係氫,或就二價有機基團而言X係直接鍵,且m係1。 例示性化合物具有以下結構其中k係0-6;m及n各自獨立地係1或2,其條件是m或n中之至少一者係1;X係選自以下之單價或多價基團:分支鏈烷基、伸烷基、環氧烷、酯、醯胺、胺基甲酸酯及胺基甲酸酯類或鍵,其具有約12個至約500個碳原子;且R1 至R8 各自獨立地選自C1 - 40 烷基、C2 - 40 烯基,其各者視情況經以下中之一或多者取代或間雜:-O-、-NH-、-S-、-CO-、-C(O)O-、-NHC(O)-及C6 - 20 芳基。 噁唑啉化合物包括4,4',5,5'-四氫-2,2'-雙-噁唑、2,2'-雙(2-噁唑啉);2,2'-(烷二基)雙[4,4-二氫噁唑],例如2,2'-(2,4-丁二基)雙[4,5-二氫噁唑]及2,2'-(1,2-乙烷二基)雙[4,5-二氫噁唑];2,2'-(伸芳基)雙[4,5-二氫噁唑];例如2,2'-(1,4-伸苯基)雙(4,5-二氫噁唑]、2,2'-(1,5-萘基)雙(4,5-二氫噁唑]、2,2'-(1,3-伸苯基)雙[4,5-二氫噁唑)及2,2'-(1,8-蒽基)雙[4,5-二氫噁唑];磺醯基、氧基、硫基或伸烷基雙2-(伸芳基) [4,5-二氫噁唑],例如磺醯基雙2-(1,4-伸苯基) [4,5-二氫噁唑]、硫基雙2,2'-(1,4-伸苯基) [4,5-二氫噁唑]及亞甲基雙2,2'-(1,4-伸苯基) [4,5-二氫噁唑];2,2',2"-(1,3,5-伸芳基)參[4,5-二氫噁唑],例如2,2',2"-參(4,5-二氫噁唑]1,3,5-苯;聚[(2-烯基) 4,5-二氫噁唑],例如聚[2-(2-丙烯基)4,5-二氫噁唑]及其他及其混合物。 在一些實施例中,噁唑啉化合物將具有以下結構。順丁烯二醯亞胺組分可選自順丁烯二醯亞胺、納迪醯亞胺(nadimide)或衣康醯亞胺(itaconimide)。舉例而言,順丁烯二醯亞胺、納迪醯亞胺或衣康醯亞胺分別包括具有以下結構之彼等物:,其中:m係1-15, p係0-15, 各R2 獨立地選自氫或低碳數烷基(諸如C1 - 5 ),且J係包含有機基團或有機矽氧烷基團之單價或多價基團,及其兩者或多於兩者之組合。 J係選自以下之單價或多價基團: n 烴基或經取代之烴基種類,其通常具有約6個至約500個範圍內之碳原子,其中烴基種類選自烷基、烯基、炔基、環烷基、環烯基、芳基、烷芳基、芳基烷基、芳基烯基、烯基芳基、芳基炔基或炔基芳基,然而其限制條件為,僅在X包含兩種或超過兩種不同種類之組合時,X可為芳基; n 伸烴基或經取代之伸烴基種類,其通常具有約6個至約500個範圍內之碳原子,其中伸烴基種類選自伸烷基、伸烯基、伸炔基、伸環烷基、伸環烯基、伸芳基、烷基伸芳基、芳基伸烷基、芳基伸烯基、烯基伸芳基、芳基伸炔基或炔基伸芳基, n 雜環或經取代之雜環種類,其通常具有約6個至約500個範圍內之碳原子, n 聚矽氧烷,或 n 聚矽氧烷-聚胺基甲酸酯嵌段共聚物,以及 上述中之一或多者與選自以下之連接基團的組合:共價鍵、-O-、-S-、-NR-、-NR-C(O)-、-NR-C(O)-O-、-NR-C(O)-NR-、-S-C(O)-、-S-C(O)-O-、-S-C(O)-NR-、-O-S(O)2 -、-O-S(O)2 -O-、-O-S(O)2 -NR-、-O-S(O)-、-O-S(O)-O-、-O-S(O)-NR-、-O-NR-C(O)-、-O-NR-C(O)-O-、-O-NR-C(O)-NR、-NR-O-C(O)-、-NR-O-C(O)-O-、-NR-O-C(O)-NR-、-O-NR-C(S)-、-O-NR-C(S)-O-、-O-NR-C(S)-NR-、-NR-O-C(S)-、-NR-O-C(S)-O-、-NR-O-C(S)-NR-、-O-C(S)-、-O-C(S)-O-、-O-C(S)-NR-、-NR-C(S)-、-NR-C(S)-O-、-NR-C(S)-NR-、-S-S(O)2 -、-S-S(O)2 - O-、-S-S(O)2 -NR-、-NR-O-S(O)-、-NR-O-S(O)-O-、-NR-O-S(O)-NR-、-NR-O-S(O)2 -、-NR-O-S(O)2 -O-、-NR-O-S(O)2 -NR-、-O-NR-S(O)-、-O-NR-S(O)-O-、-O-NR-S(O)-NR-、-O-NR-S(O)2 -O-、-O-NR-S(O)2 -NR-、-O-NR-S(O)2 -、-O-P(O)R2 -、-S-P(O)R2 -或-NR-P(O)R2 -;其中各R獨立地係氫、烷基或經取代之烷基。 因此,J可為氧烷基、硫烷基、胺基烷基、羧基烷基、氧基烯基、硫烯基、胺基烯基、羧基烯基、氧基炔基、硫炔基、胺基炔基、羧基炔基、氧基環烷基、硫環烷基、胺基環烷基、羧基環烷基、氧基環烯基、硫環烯基、胺基環烯基、羧基環烯基、雜環、氧基雜環、硫雜環、胺基雜環、羧基雜環、氧基芳基、硫芳基、胺基芳基、羧基芳基、雜芳基、氧基雜芳基、硫雜芳基、胺基雜芳基、羧基雜芳基、氧基烷基芳基、硫烷基芳基、胺基烷基芳基、羧基烷基芳基、氧基芳基烷基、硫芳基烷基、胺基芳基烷基、羧基芳基烷基、氧基芳基烯基、硫芳基烯基、胺基芳基烯基、羧基芳基烯基、氧基烯基芳基、硫烯基芳基、胺基烯基芳基、羧基烯基芳基、氧基芳基炔基、硫芳基炔基、胺基芳基炔基、羧基芳基炔基、氧基炔基芳基、硫炔基芳基、胺基炔基芳基或羧基炔基芳基、氧基伸烷基、硫伸烷基、胺基伸烷基、羧基伸烷基、氧基伸烯基、硫伸烯基、胺基伸烯基、羧基伸烯基、氧基伸炔基、硫伸炔基、胺基伸炔基、羧基伸炔基、氧基伸環烷基、硫伸環烷基、胺基伸環烷基、羧基伸環烷基、氧基伸環烯基、硫伸環烯基、胺基伸環烯基、羧基伸環烯基、氧基伸芳基、硫伸芳基、胺基伸芳基、羧基伸芳基、氧基烷基伸芳基、硫烷基伸芳基、胺基烷基伸芳基、羧基烷基伸芳基、氧基芳基伸烷基、硫芳基伸烷基、胺基芳基伸烷基、羧基芳基伸烷基、氧基芳基伸烯基、硫芳基伸烯基、胺基芳基伸烯基、羧基芳基伸烯基、氧基烯基伸芳基、硫烯基伸芳基、胺基烯基伸芳基、羧基烯基伸芳基、氧基芳基伸炔基、硫芳基伸炔基、胺基芳基伸炔基、羧基芳基伸炔基、氧基炔基伸芳基、硫炔基伸芳基、胺基炔基伸芳基、羧基炔基伸芳基、伸雜芳基、氧基伸雜芳基、硫伸雜芳基、胺基伸雜芳基、羧基伸雜芳基、含雜原子之二價或多價環狀部分、含氧基雜原子之二價或多價環狀部分、含硫雜原子之二價或多價環狀部分、含胺基雜原子之二價或多價環狀部分或含羧基雜原子之二價或多價環狀部分。 聚矽氧組分可選自(甲基)丙烯酸酯官能化之聚矽氧。 理想地,可固化基質包含(甲基)丙烯酸酯組分及環氧樹脂組分,其中環氧樹脂組分之存在量係40重量百分比至90重量百分比(諸如約50重量百分比至約80重量百分比),且(甲基)丙烯酸酯組分之存在量係約10重量百分比至約60重量百分比(諸如約20重量百分比至約40重量百分比)。此處相對百分比係基於總組合物。且環氧樹脂組分之相對百分比亦包括含氮固化劑。 理想地,但可替代地,可固化基質包含基於環氧基之(甲基)丙烯酸酯、胺基甲酸酯(甲基)丙烯酸酯及(甲基)丙烯酸烷基酯之組合,其中基於環氧基之(甲基)丙烯酸酯的存在量係10重量百分比至50重量百分比(諸如約20重量百分比至約40重量百分比),胺基甲酸酯(甲基)丙烯酸酯可存在或可不存在,但當存在時,其使用量大於0至約30重量百分比(諸如約10重量百分比至約20重量百分比)且(甲基)丙烯酸烷基酯之存在量係約20重量百分比至約60重量百分比(諸如約30重量百分比至約50重量百分比)。此處相對百分比係基於總組合物。 用於本發明之含量子點的組合物之量子點可具有多種結構。一種此結構包含核及至少一個配體。 在一些情況下,在量子點上或與量子點相連之配體可為鍵結至其表面之分子、寡聚物或聚合物,其在量子點之表面產生原子所需之局部配體環境。大體而言,某些配體存在於用於合成量子點之生長過程期間。通常,此等配體稍後經過替換或交換以提供新的配體環境,該環境經選擇以使特性最佳化。配體履行若干職能。其幫助避免量子點聚集及猝減,其可改善量子點表面之化學穩定性,且其可改善量子點之發光效率。配體系統可包括若干形式。一般而言,其可包括直接鍵結至量子點之分子或官能基,及視情況選用之其他材料。在一些實施例中,官能性聚矽氧提供必需的配體官能基。 在一些實施例中,在量子點上或與量子點相連之配體可由下式表示: R8 -(X)P 其中此處R8 係具有C2 至C30 碳原子之(雜)烴基;較佳係10個至30個碳原子之直鏈或分支鏈烷基或聚矽氧烷;p至少為一;較佳地至少為二;且X係供給電子之基團。較佳地,X係胺基或硫醇。 大體而言,當配體存在於量子點上或與量子點相連時,每一量子點具有許多配體分子。 在一些實施例中,量子點材料可包括分散於液體載劑中之量子點。舉例而言,液體載劑可包括油,諸如胺基-聚矽氧油。理想地,液體載劑經選擇以與可固化基質之透射率匹配。載劑液體與可固化基質之折射率的差值大於0.05,諸如大於0.1,以增大穿過量子點層之光學路徑長度且改善量子點吸收率及效率。 用於量子點之液體載劑可為胺基官能化聚矽氧,諸如在下文結構III中所顯示:其中各R6 獨立地係烷基或芳基;RNH2 係胺經取代之(雜)烴基;x係1至2000;諸如3至100;y可為零;x+y至少為一;R7 係烷基、芳基或RNH2 ,其中胺官能性聚矽氧具有至少兩個RNH2 基團。適用之胺基官能化聚矽氧係描述於美國專利申請公開案第2013/0345458號(Freeman等人)中;且描述於Lubkowsha等人, 「Aminoalkyl Functionalized Siloxanes,」 Polimery, 59, 第763-68頁 (2014)。胺基官能化聚矽氧可購自Gelest Inc, Morrisville, PA;以Xiameter商標購自Dow Corning,包括Xiameter OFX-0479、OFX-8040、OFX-8166、OFX-8220、OFX-8417、OFX-8630、OFX-8803及OFX-8822;以商標Silamine購自Siletech;且以商品名稱ASF3830、SF4901、RPS-116、XF40-C3029及TSF4707購自Momentive,且以商標名Magnasoft購買,諸如Magnasoft PlusTSF4709,及Baysilone OF-TP3309。 在一些實施例中,配體可為硫醇,諸如聚硫醇,其選自初級聚硫醇、二級聚硫醇及其組合,理想地係以下中之任一者或多者:季戊四醇肆(3-巰基丁酯)、季戊四醇四-3-巰基丙酸酯、三羥甲基丙烷三(3-巰基丙酸酯)、參[2-(3-巰基丙醯基氧基)乙基]異氰尿酸酯、二季戊四醇六(3-巰基丙酸酯)、乙氧基化三羥甲基丙烷三-3-巰基丙酸酯、巰基官能性甲基烷基聚矽氧聚合物及其組合。 在用聚硫醇配體構建量子點時,配體應具有至少2個官能基,理想地3至4個官能基。 在一些實施例中,配體系統起初可為液體,且隨後藉由固化、聚合或移除溶劑呈現為固體。在一些實施例中,配體系統可保持液態以提供分散於載劑液體中之量子點液滴,其隨後分散於可固化基質中。 在一些實施例中,相對於總組合物,配體及載劑液體(官能性或非官能性配體)之量大於60重量百分比,諸如大於70重量百分比,理想地大於80重量百分比。 在一些情況下,量子點之配體由以下涵蓋: R1 -(X)n 其中此處R1 係具有C1 至C30 碳原子之烷基、具有C2 至C30 碳原子之烯基或具有C2 至C30 碳原子之炔基,其中任一者可為直鏈、分支鏈或環狀,其限制條件為存在適當數目之碳原子,或可經雜原子取代或間雜有雜原子;n係整數,至少為一;且X係供電子基團,諸如胺、甲酸及硫醇。 此處量子點之核係由金屬或半導化合物或其混合物構成。在一些實施例中,每個核均由至少一個配體包圍,諸如聚硫醇配體,該配體可與至少一個包圍另一核之其他配體交聯。 本發明之含量子點的組合物可包括單個量子點類型或單個量子點結合配體之類型,或複數個量子點類型或複數個量子點結合配體之類型。舉例而言,本發明之含量子點的組合物可包括Cd量子點,諸如CdS、CdTe、CdSe、CdSe/CdS、CdTe/CdS、CdTe/ZnS、CdSe/CdS/ZnS、CdSe/ZnS、CdSeZn/CdS/ZnS或CdSeZn/ZnS,或與具有胺結合基團之配體結合的Cd量子點。本發明之含量子點的組合物亦可包括InP量子點,諸如InP或InP/ZnS,及與具有羧基結合基團之配體結合的InP量子點。 在所有實施例中,用於形成核之金屬或半導化合物係以下之組合:一或多種選自元素週期表第IV族之元素;一或多種選自元素週期表第II族及第VI族之元素;一或多種選自元素週期表第III族及第V族之元素;一或多種選自元素週期表第IV族及第VI族之元素;及一或多種選自元素週期表第I族及第III族及第VI族之元素;或其組合。 理想地,金屬或半導化合物係一或多種選自元素週期表第I族及第III族及第VI族之元素的組合。舉例而言,金屬或半導化合物係Cd、Zn、In、Cu、S及Se中之一或多者的組合。 用於製備核殼量子點之材料的實例包括Si、Ge、Sn、Se、Te、B、C (包括金剛石)、P、Co、Au、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si3 N4 、Ge3 N4 、Al2 O3 、(Al, Ga, In)2 (S, Se, Te)3 、Al2 CO3 及此類材料中之兩種或超過兩種的適當組合。例示性核殼發光量子點包括CuInS、CuInSeS、CuZnInSeS、CuZnInS、Cu:ZnInS、CuInS/ZnS、Cu:ZnInS/ZnS、CuInSeS/ZnS、CdSe/ZnS、InP/ZnS、PbSe/PbS、CdSe/CdS、CdTe/CdS、CdTe/ZnS以及其他。 在一些實施例中,量子點可來自Nanosys, Inc., Milpitas, CA,其供應呈量子點形式及量子點濃縮物形式之量子點,其中量子點可具有與其相連的配體或可不具有配體。舉例而言,Nanosys供應GP-988及綠色奈米結晶膏體(Green Nanocrystal Paste)。(本文中所用之奈米結晶及量子點可互換。) 可參見以下文獻製備此等量子點:Alivisatos, A. P., 「Semiconductor clusters, quantum dots, and quantum dots,」 Science, 271:933 (1996);X. Peng, M. Schlamp, A. Kadavanich, A. P. Alivisatos, 「Epitaxial growth of highly luminescent CdSe/CdS Core/Shell quantum dots with photostability and electronic accessibility,」 J. Am. Chem. Soc., 30:7019-7029 (1997);及C. B. Murray, D. J. Norris, M. G. Bawendi, 「Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites,」 J. Am. Chem. Soc., 115:8706 (1993), X. Peng等人, J. Am. Chem. Soc., 30:7019-7029 (1997)。舉例而言,將1.5 g GP-988添加至綠色奈米結晶膏體(來自15 mL經洗滌之奈米結晶,其洗滌溶劑經過傾析)中,用刮勺充分攪拌,且隨後用攪拌棒攪拌,同時加熱至約90℃之溫度維持2小時之時間段。使溶液冷卻至室溫且傾析至另一瓶中。典型重量比將為0.8 g膏體於8.0 g GP-988中。交換之綠色聚合物323-13E之量子產率量測值經量測為86.8%。 可使用熟習此項技術者已知之任何方法生產量子點。舉例而言,參見美國專利第6,225,198號;第6,207,229號;第6,322,901號;第6,872,249號;第6,949,206號;第7,572,393號;第7,267,865號及第7,374,807號,其各者係以全文引用的方式併入本文中。 量子點之光學特性可藉由其粒度、化學或表面組合物及/或藉由本領域中可用的合適光學測試來測定。調整量子點粒度,使其介於約1 nm與約15 nm之間之範圍內的能力使得整個光譜中之光發射覆蓋度能夠提供極大的顯色變通性。 在其形成之後或形成過程中,量子點可分散於載劑中以供用於預混物。 於藍色一次光下轉換(down-conversion)時,量子點發射綠光及紅光,諸如自藍光LED至由量子點發射之二次光。可控制紅光、綠光及藍光之對應部分以實現藉由併入量子點膜製品之顯示裝置發射之白光所需的白點。 量子點濃縮物可用於含量子點的組合物,其量係約0.05重量百分比至約10重量百分比。 量子點可分散於可固化基質中,其量係約0.2至約1重量百分比,諸如約0.3重量百分比至約0.6重量百分比。 一旦形成,量子點層之厚度則為約40微米至約250微米。 含量子點的組合物之可固化基質黏著於阻擋層以形成積層結構,且亦形成量子點之保護基質。然而,已知的量子點層顯示出至少部分因為環境汙染物穿入而隨時間推移在邊緣產生降解的傾向性。 此種穿入或進入(包括邊緣進入)係由因濕氣及/或氧氣進入基質24中導致量子點效能損失而定義。在各種實施例中,在處於85℃下1週之後,固化基質24中濕氣及氧氣之邊緣進入小於約1.0 mm,或在處於85℃下1週之後約小於0.75 mm,或在處於85℃下1週之後小於約0.5 mm,或在處於85℃下1週之後小於0.25 mm。在各種實施例中,在處於65℃下500小時之後,基質的濕氣及氧氣進入小於約0.5 mm,且相對濕度係95%。 在各種實施例中,固化基質之氧氣穿透率小於約150 (cc.mil)/(m2 d),或小於約100 (cc.mil)/(m2 d)。在各種實施例中,固化基質之水蒸氣穿透率應小於約50 g/m2 .mil.d,諸如小於約30 g/m2 .mil.d。 本發明組合物亦可包括乾燥劑,諸如選自氧化鈣、無水硫酸鈣、分子篩及沸石之一種乾燥劑。 乾燥劑之粒度應在約0.1 μm至約500 μm範圍內,諸如約0.1 μm至約10 μm。 乾燥劑之存在量應在約0.5至約15重量百分比範圍內,諸如約1至約8重量百分比。 本發明組合物可包括去氧劑,諸如選自亞硫酸鈉、亞硫酸氫鈉、三苯基膦、抗壞血酸衍生物及硫脲衍生物之一種去氧劑。 所選去氧劑之粒度應在約1 μm至約500 μm範圍內,且存在量應在約1至約8重量百分比範圍內。 理想地,在一些實施例中,可存在乾燥劑及去氧劑。然而,乾燥劑及去氧劑中之至少一者必須存在於含量子點的組合物中。 乾燥劑及/或去氧劑幫助維持量子點層之完整性。藉由如此操作,保留了變色能力。在各種實施例中,老化後所觀察到的色彩變化係由以下定義:在處於85℃下1週之老化時間後,1931 CIE (x,y)色度座標系統上之變化小於0.02。在某些實施例中,在處於85℃下1週之老化時間後,老化後的色彩變化小於0.005。在某些實施例中,在處於65℃下100小時之後,基質使用CIE 1931 (x,y)定則得到之色彩移位d (x,y)小於約0.02,且相對濕度係95%。 在許多實施例中,形成量子點膜製品之方法包括:形成一種部分固化之量子點材料,其黏度在聚合可固化基質經歷部分固化之後比可固化基質經歷部分固化之前的黏度至少大10倍或至少大20倍。在一或多個實施例中,第一黏度小於10,000厘泊且第二黏度大於100,000厘泊。在固化之前,含量子點的組合物之黏度至少係200厘泊,且高達15,000厘泊,較佳係500至10,000厘泊,且最佳介於1000與3000厘泊之間。 形成量子點膜製品之方法包括將含量子點的組合物塗佈至第一阻擋層上,且在含量子點的組合物上或上方安置第二阻擋層,該層與第一阻擋層呈匹配關係。 在一或多個實施例中,形成量子點膜製品之方法包括將可固化基質暴露至可有效地引發固化之條件下以形成部分固化之量子點膜。 圖1係說明性量子點膜10之示意性側視圖。 在一或多個實施例中,量子點膜製品10包括第一阻擋膜32、第二阻擋膜34及分隔第一阻擋膜32與第二阻擋膜34之量子點層20。量子點層20包括分散於可固化基質24中之量子點22。 在一或多個實施例中,形成量子點膜製品10之方法包括將含量子點的組合物20塗佈至第一阻擋膜32上,且在含量子點的組合物20上安置第二阻擋膜34。 阻擋膜32、34可形成自任何可保護量子點免受諸如空氣及濕氣之環境條件損害的適用膜材料。合適的阻擋膜包括諸如聚對苯二甲酸伸乙酯之聚合物、玻璃、氧化物(諸如氧化矽、氧化鈦或氧化鋁)或其他介電材料。在許多實施例中,量子點膜之各阻擋層均包括至少兩層不同材料或組合物,使得多層阻擋層消除或減少阻擋層中的氣孔疵點對準,提供針對空氣及濕氣標度值之有效阻擋。 阻擋層之特性、厚度及數目將取決於具體應用,且將適當選擇以使阻擋層保護及量子點之亮度最大化同時使量子點膜之厚度最小化。在許多實施例中,各阻擋層係積層膜,諸如雙積層膜,其中各阻擋層之厚度足夠厚以消除卷軸式或積層製造過程中的褶皺。在一個說明性實施例中,阻擋膜係具有氧化層之聚酯膜。 上文所論述之阻擋層保護係指在垂直方向上提供的保護。在水平或橫向方向上(尤其在量子點膜之蒸餾邊緣)所獲得之保護來自所添加之乾燥劑及/或濕氣清除劑。 本發明含量子點的組合物及自其形成之膜的一些優勢係由如下實例說明。實例 實例 1 作為比較實例,藉由混合如下組分製備調配物(樣品A)。 1 將5重量%來自Nanosys Inc之Green Gen 2 QD濃縮物混合添加至四種組分。隨後,將如此形成之含量子點的組合物(樣品A)積層至兩個阻擋膜(各來自Vitriflex)之間,且固化係藉由暴露至365 nm UV LED燈產生之2 J/cm2 輻射量,且隨後藉由暴露至汞氣相UV燈產生之額外1 J/cm2 輻射量來進行。量子點膜製品之厚度約100微米。 將所得量子點膜製品衝壓成19 mm直徑圓形,且將其放入60℃/90% RH 之潮濕箱中以供老化研究。定期地自潮濕箱中移除膜樣品,且在藍光LED背光上用光學顯微鏡進行觀察。如藉由虛擬觀察所測定,膜製品中之量子點係由藍光及所發射之綠光而激發。在膜製品之外圍邊緣,空氣及濕氣穿入導致量子點降解且形成非作用區域。根據老化時間(以週為單位)量測及監測此非作用邊緣區域之寬度。1週後,非作用邊緣量測為1.6 mm;2週後,其量測為1.66 mm;且3週後,其量測為2.61 mm。實例 2 將氧化鈣作為乾燥劑添加至表1之調配物(樣品A)中,其負載量係1% wt、3% wt、5% wt、8% wt及10% wt。 2 隨後,遵循描述於樣品A中之相同程序製備量子點膜製品。在60℃/90% RH 潮濕箱中老化此等量子點膜製品。在不同老化時間下觀察並如下記錄非作用邊緣區域之寬度。樣品5顯示出分層。無法對樣品5進行恰當的評估,因為量子點膜在衝壓後顯示出局部分層。 3 可以看出,添加氧化鈣作為乾燥劑減小了在加熱及潮濕老化後形成之量子點膜製品的非作用邊緣區域之寬度。 亦量測氧化鈣作為乾燥劑對量子點膜之光學特性的作用。藉由光研究PR655分光輻射度計(Photo Research PR655 spectroradiometer)量測量子點膜之亮度及色彩座標。用藍光LED背光照射量子點膜且藉由PR655分光輻射度計量測量子點膜所發射之光。觀察樣品1至3號量子點膜之亮度及色彩座標,且記錄在如下表4中。 4 亮度及y色彩座標指示量子點膜所發射綠光之量。量子點膜中存在乾燥劑增加了膜所發射之綠光的量。因此,在量子點之負載量相同時,可將較多藍光轉化為綠光。換言之,用氧化鈣作為乾燥劑,似乎需要較低濃度之量子點來將相同量之藍光轉化為綠光。實例 3 將亞硫酸鈉及亞硫酸氫鈉作為去氧劑添加至樣品A中,其重量百分比負載量如下表5中顯示(樣品6號及8號係3重量百分比;樣品7號及9號係5重量百分比)。 5 隨後,遵循實例1中所述之相同程序製備量子點膜製品。亦在60℃/90% RH 潮濕箱中老化此等量子點膜製品。在不同老化時間觀察非作用邊緣區域之寬度,且記錄在如下表6中。 6 可以看出,添加亞硫酸鈉及亞硫酸氫鈉作為去氧劑在加熱及潮濕老化期間減小了非作用邊緣區域之寬度。實例 4 作為比較實例(樣品B),藉由混合如下列舉於A及B部分之組分製備兩份式黏著劑調配物。 7a -- A 部分 7b -- B 部分 混合A部分之組分與B部分之組分,其後使A部分與B部分結合在一起以形成含量子點的組合物,隨後將其積層至兩個阻擋膜(各來自Vitriflex)之間,且藉由暴露至365 nm UV LED燈產生之1 J/cm2 UVA輻射量進行固化。隨後,在100℃之溫度下固化積層膜持續5分鐘之時間段。 使用實例1中所概述之相同方法評估所得量子點膜。觀察樣品B所得之結果記錄於表9中。實例 5 將微粉化氧化鈣混合至前述實例之A部分調配物中。 表8a -- A部分 表8b -- B部分 將所述組分混合在一起以形成B部分調配物,將其與A部分混合,且遵循如前述實例之相同製程製備及評估量子點膜。 如下表9顯示評估之結果。 9 實例 6 此處,乾燥劑與去氧劑之組合係用於製備含量不同但同樣較低之含量子點的形式。 10 隨後,遵循實例1中所述之相同程序製備量子點膜製品。在60℃/90% RH 潮濕箱中老化量子點膜製品。在不同老化時間觀察非作用邊緣區域之寬度,且記錄在如下表11中。 11 表11中顯示之結果表示乾燥劑與去氧劑之組合亦可用於有效地減小量子點膜之非作用邊緣的寬度。As indicated above, the composition of the content dots in the form of a film can be used as a layer interposed between a first barrier film and a second barrier film, such as for a backlight unit. The layer of the film composition containing the sub-dots in the form of a film includes quantum dots dispersed in a curable matrix, which itself includes a curable component and a curing agent such as a photoinitiator. Generally, a desiccant and / or a deoxidizing agent is added to the composition during the formulation of the matrix in which the quantum dots are dispersed. Therefore, the composition of the quantum dots includes a plurality of quantum dots; a curable matrix; and at least one of a desiccant and a deoxidizer. A plurality of quantum dots are usually dispersed in a carrier. The curable matrix may be selected from one of the following: (meth) acrylate component, epoxy resin component, oxazine component (such as benzoxazine component), oxazoline component, maleic acid Diamidine component, polysiloxane component, and combinations thereof. The curable matrix may also include a curing agent or initiator, and the initiator may be a photoinitiator. Desirably, the curing agent is a nitrogen-containing curing agent, such as an amine, such as an aliphatic amine. The nitrogen-containing curing agent may be selected from cyclic amidine; tertiary amine; secondary amine; substituted cyclic amidine, substituted tertiary amine, substituted secondary amine; or a combination thereof. The catalyst may include one or more of the following: imidazole, imidazoline, pyrrolidine, substituted imidazole compound, substituted imidazoline compound, 1,4,5,6-tetrahydropyrimidine, substituted 1,4 , 5,6-Tetrahydropyrimidine compound, substituted pyrrolidine compound, substituted piperidine compound, and combinations thereof. The catalyst may also include unsubstituted piperidine, acyclic fluorene or substituted acyclic fluorene. Examples of non-cyclic amidines that can be used as acceptable catalysts for the present invention include NN'-dialkylalkanes such as N, N'-dimethylalkane and N, N'-diethylalkane. The (meth) acrylate component may be selected from a large number of (meth) acrylates, including monofunctional (meth) acrylates, bifunctional (meth) acrylates, trifunctional (meth) acrylates, polyfunctional ( (Meth) acrylates and the like. Epoxy-based (meth) acrylates and urethane (meth) acrylates are also included. Examples of the monofunctional (meth) acrylate include phenylphenol (meth) acrylate, methoxypoly (ethyl) acrylate, methacrylic acid ethyl succinate, fatty acid (meth) Acrylate, (meth) acrylic acid ethyl phthalate, phenoxyethylene glycol (meth) acrylate, β-carboxyethyl (meth) acrylate, isobornyl (meth) acrylate Ester, isobutyl (meth) acrylate, tertiary butyl (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, dihydrocyclopentanedimethacrylate Ester, cyclohexyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, third butylaminoethyl (meth) acrylate , 4-hydroxybutyl (meth) acrylate, tetrahydrofuran (meth) acrylate, benzyl (meth) acrylate, ethyl carbitol (meth) acrylate, phenoxyethyl (meth) acrylate Ester, methoxytriethylene glycol (meth) acrylate, monopentaerythritol (meth) acrylate, dipentaerythritol (meth) acrylate, tripentaerythritol (meth) acrylate, poly Dipentaerythritol (meth) acrylate, and the like. Examples of the bifunctional (meth) acrylate include hexanediol di (meth) acrylate, hydroxypropylmethyloxypropyl (meth) acrylate, hexanediol di (meth) acrylate, amine group Formate (meth) acrylate, epoxy (meth) acrylate, bisphenol A epoxy (meth) acrylate, modified epoxy (meth) acrylate, fatty acid-modified Epoxy (meth) acrylate, amine-modified bisphenol F-type epoxy (meth) acrylate, allyl (meth) acrylate, ethylene glycol di (meth) acrylate, two Glycol di (meth) acrylate, ethoxylated bisphenol A di (meth) acrylate, tricyclodecanedimethanol di (meth) acrylate, glycerol di (meth) acrylate, Polypropylene glycol di (meth) acrylate propoxylated ethoxylated bisphenol A di (meth) acrylate, 9,9-bis (4- (2- (meth) acrylic acid ethoxylate) ) Phenyl) fluorene, tricyclodecane di (meth) acrylate, dipropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, PO-modified neopentyl glycol di ( (Meth) acrylate, tricyclodecanedimethanol dim (meth) propylene Esters, 1,12-dodecanediol di (meth) acrylate, and the like. Examples of trifunctional (meth) acrylates include trimethylolpropane tri (meth) acrylate, trimethylolpropane tri (meth) acrylate ethoxylate, polyether tri (meth) acrylate, propyl Triol propoxy tris (meth) acrylate and the like. Examples of polyfunctional (meth) acrylates include dipentaerythritol poly (meth) acrylate, dipentaerythritol hexa (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate ethoxylate , Bis (trimethylolpropane) tetra (meth) acrylate and the like. The epoxy resin component may be selected from a wide variety of epoxy-functional resins. For example, bisphenol A-based liquid epoxy resin, bisphenol A-based solid epoxy resin, bisphenol F-based liquid epoxy resin (e.g., EPICLON EXA-835LV), phenol-phenol novolac Polyfunctional epoxy resins of resins, dicyclopentadiene-type epoxy resins (for example, EPICLON HP-7200L), naphthalene-type epoxy resins and the like, and mixtures of any two or more thereof may be applicable here. Examples of epoxy-functional resins include diepoxides of cycloaliphatic ethanol, hydrogenated bisphenol A (commercially available as EPALLOY 5000), bifunctional cycloaliphatic glycidyl esters of hexahydrophthalic anhydride (commercially available EPALLOY 5200), EPICLON EXA-835LV, EPICLON HP-7200L and the like and any two or more of them. In certain embodiments, the epoxy resin component may include a combination of two or more different bisphenol-based epoxy resins. These bisphenol-based epoxy resins may be selected from bisphenol A epoxy resin, bisphenol F epoxy resin, or bisphenol S epoxy resin, or a combination thereof. In addition, two or more than two different bisphenol epoxy resins (such as A, F, or S) within the same type of resin can be used. Commercial examples of bisphenol epoxy resins include bisphenol F-type epoxy resins such as RE-404-S from Nippon Kayaku in Japan, and EPICLON 830 (RE1801), 830S (RE1815) from Dai Nippon Ink & Chemicals, Inc. ), 830A (RE1826) and 830W, and RSL 1738 and YL-983U (from Resolution) and bisphenol A type epoxy resin (such as YL-979 and 980 from Resolution). These are available from Dai Nippon and the above-mentioned double The phenol epoxy resin has been upgraded to a liquid undiluted epichlorohydrin-bisphenol F epoxy resin, which has a much lower viscosity than conventional epoxy resins based on bisphenol A epoxy resin, and it has a similarity to liquid bisphenol A Physical properties of epoxy resins. The EEW of these four bisphenol F epoxy resins is between 165 and 180; at 25 ° C, the viscosity is between 3,000 and 4,500 cps (except for RE1801, which has an upper viscosity limit of 4,000 cps); and the hydrolyzable chloride content of RE1815 and 830W is reported as 200 ppm, and the hydrolyzable chloride content of RE1826 is reported as 100 ppm. Available from Resolution and the above bisphenol epoxy resins have been upgraded to low chloride content Liquid epoxy resin. EEW (g / equivalent) of bisphenol A epoxy resin is between 180 and 19 5 and at 25 ° C, the viscosity is between 100 and 250 cps. The total chloride content of YL-979 is reported to be between 500 and 700 ppm, and the total chloride content of YL-980 is between 100 and 300 ppm. EEW (g / equivalent) of bisphenol F epoxy resin is between 165 and 180, and viscosity is between 30 and 60 at 25 ° C. Total chloride of RSL-1738 The content is reported to be between 500 and 700 ppm, and the total chloride content of YL-983U is between 150 and 350 ppm. Cycloaliphatic epoxy resins such as 3,4-epoxycyclohexyl formamide can also be used -3,4-epoxycyclohexyl carbonate. Reactive diluents such as monofunctional, difunctional, or polyfunctional reactive diluents can be used to adjust the viscosity of the resulting resin material and / or reduce its Tg. The oxyresin co-reactant diluent should have an epoxy group having an alkyl group of about 6 to about 28 carbon atoms, examples of which include C6 - 28 Alkyl glycidyl ether, C6 - 28 Fatty acid glycidyl ester, C6 - 28 Alkylphenol glycidyl ether and the like. Examples of the reactive diluent include butyl glycidyl ether, tolyl glycidyl ether, polyethylene glycol glycidyl ether, polypropylene glycol glycidyl ether, and the like. Polyglycidyl derivatives of phenolic compounds can be used, such as those available under the EPON trademark, such as EPON 828, EPON 1001, EPON 1009, and EPON 1031 from Resolution; DER 331 from Dow Chemical Co. , DER 332, DER 334 and DER 542; and BREN-S from Nippon Kayaku. Other suitable epoxy resins include polyepoxides made from polyols and the like and polyglycidyl derivatives of phenol-formaldehyde novolac, such as DEN 431, DEN 438 and DEN 439 from Dow Chemical. Cresol analogs are also commercially available under the trademark ARALDITE, such as ARALDITE ECN 1235, ARALDITE ECN 1273, and ARALDITE ECN 1299 from Ciba Specialty Chemicals Corporation. SU-8 is a bisphenol A epoxy novolac commercially available from Resolution. Polyglycidyl adducts of amines, amino alcohols, and polycarboxylic acids are also suitable for use in the present invention. Commercially available resins include GLYAMINE 135, GLYAMINE 125, and GLYAMINE 115 from FIC Corporation; ARALDITE MY-720 from Ciba Specialty Chemicals, ARALDITE 0500 and ARALDITE 0510, and PGA-X and PGA-C from Sherwin-Williams Co. Suitable monofunctional epoxy co-reactant diluents for use herein as appropriate include those having a viscosity lower than the viscosity of the epoxy resin component (typically less than about 250 cps). The oxazine component may be selected fromWherein o is 1-4, X is selected from direct bond (when o is 2), alkyl (when o is 1), alkylene (when o is 2-4), carbonyl (when o is 2) ), Thiol (when o is 1), thioether (when o is 2), fluorene (when o is 2), and 碸 (when o is 2), and R1 It is selected from hydrogen, alkyl and aryl. More specifically, oxazines can be covered by the following structures:Where X is selected from direct bonds, CH2 , C (CH3 )2 , C = 0, S, S = O, and O = S = O, and R1 And R2 The same or different and selected from hydrogen, alkyl (such as methyl, ethyl, propyl and butyl) and aryl. Therefore, the oxazine may be selected from any of the following exemplary structures: Where R1 And R2 As defined above. Even if not covered by either the oxazine structure I or the oxazine structure II, other oxazines may be covered by the following structures: Where R1 And R2 As defined above, and R3 As R1 Or R2 As defined. Therefore, specific examples of these oxazines include: The oxazine component may include a combination of a polyfunctional oxazine and a monofunctional oxazine. Examples of monofunctional oxazines can be covered by the following structures:Among them, R is an alkyl group such as methyl, ethyl, propyl and butyl. As oxazoline, compounds covered by the following structures are suitableWhere R1 , R2 , R3 , R4 And X is hydrogen, or in the case of a divalent organic group, X is a direct bond, and m is 1. Exemplary compounds have the following structureWhere k is 0-6; m and n are each independently 1 or 2, provided that at least one of m or n is 1; X is a monovalent or polyvalent group selected from the group consisting of a branched alkyl group, Alkylene oxides, alkylene oxides, esters, amidines, carbamates, and carbamates or bonds, which have from about 12 to about 500 carbon atoms; and R1 To R8 Each independently selected from C1 - 40 Alkyl, C2 - 40 Alkenyl, each of which is optionally substituted or interspersed with one or more of the following: -O-, -NH-, -S-, -CO-, -C (O) O-, -NHC (O)- And C6 - 20 Aryl. Oxazoline compounds include 4,4 ', 5,5'-tetrahydro-2,2'-bis-oxazole, 2,2'-bis (2-oxazoline); 2,2'-(alkanedi Group) bis [4,4-dihydrooxazole], such as 2,2 '-(2,4-butanediyl) bis [4,5-dihydrooxazole] and 2,2'-(1,2 -Ethanediyl) bis [4,5-dihydrooxazole]; 2,2 '-(arylene) bis [4,5-dihydrooxazole]; for example 2,2'-(1,4 -Phenylene) bis (4,5-dihydrooxazole), 2,2 '-(1,5-naphthyl) bis (4,5-dihydrooxazole), 2,2'-(1, 3-phenylene) bis [4,5-dihydrooxazole) and 2,2 '-(1,8-anthryl) bis [4,5-dihydrooxazole]; sulfonyl, oxy, Thio or alkylidene bis 2- (arylene) [4,5-dihydrooxazole], such as sulfonyl bis 2- (1,4-phenylene) [4,5-dihydrooxazole ], Thiobis 2,2 '-(1,4-phenylene) [4,5-dihydrooxazole] and methylenebis 2,2'-(1,4-phenylene) [4 , 5-dihydrooxazole]; 2,2 ', 2 "-(1,3,5-arylene) reference [4,5-dihydrooxazole], such as 2,2', 2" -reference (4,5-dihydrooxazole] 1,3,5-benzene; poly [(2-alkenyl) 4,5-dihydrooxazole], such as poly [2- (2-propenyl) 4,5 -Dihydrooxazole] and others and mixtures thereof. In some embodiments, the oxazoline compound will have the following structure.The maleimide component can be selected from maleimide, nadimide, or itacimide. For example, maleimide, nadicarbimide, or itacondaimine include those having the following structures, respectively:, Where: m is 1-15, p is 0-15, each R2 Independently selected from hydrogen or a lower carbon number alkyl (such as C1 - 5 ), And J is a monovalent or multivalent group containing an organic group or an organosiloxy group, and two or more combinations thereof. J is a monovalent or polyvalent group selected from the following: n Hydrocarbyl or substituted hydrocarbyl species, which typically have from about 6 to about 500 carbon atoms, where the hydrocarbyl species is selected from alkyl, alkenyl, alkyne Group, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, arylalkenyl, alkenylaryl, arylalkynyl, or alkynylaryl, however, the limitation is that only When X contains two or more than two different kinds of combinations, X may be an aryl group; n alkylene or substituted alkylene groups, which usually have carbon atoms in the range of about 6 to about 500, wherein alkylene groups The species is selected from the group consisting of alkylene, alkenyl, alkenyl, cycloalkylene, cycloalkenyl, alkylene, alkylaryl, arylalkylene, arylalkylene, alkenyl, aryl Alkynyl or alkynyl aryl, n heterocyclic or substituted heterocyclic species, which typically have carbon atoms in the range of about 6 to about 500 carbon atoms, n polysiloxanes, or n polysiloxanes-poly Urethane block copolymers, and combinations of one or more of the above with a linking group selected from: covalent bond, -O-, -S -, -NR-, -NR-C (O)-, -NR-C (O) -O-, -NR-C (O) -NR-, -SC (O)-, -SC (O)- O-, -SC (O) -NR-, -OS (O)2 -, -O-S (O)2 -O-, -O-S (O)2 -NR-, -OS (O)-, -OS (O) -O-, -OS (O) -NR-, -O-NR-C (O)-, -O-NR-C (O)- O-, -O-NR-C (O) -NR, -NR-OC (O)-, -NR-OC (O) -O-, -NR-OC (O) -NR-, -O-NR -C (S)-, -O-NR-C (S) -O-, -O-NR-C (S) -NR-, -NR-OC (S)-, -NR-OC (S)- O-, -NR-OC (S) -NR-, -OC (S)-, -OC (S) -O-, -OC (S) -NR-, -NR-C (S)-, -NR -C (S) -O-, -NR-C (S) -NR-, -SS (O)2 -, -S-S (O)2 - O-, -S-S (O)2 -NR-, -NR-O-S (O)-, -NR-O-S (O) -O-, -NR-O-S (O) -NR-, -NR-O-S (O)2 -, -NR-O-S (O)2 -O-, -NR-O-S (O)2 -NR-, -O-NR-S (O)-, -O-NR-S (O) -O-, -O-NR-S (O) -NR-, -O-NR-S (O)2 -O-, -O-NR-S (O)2 -NR-, -O-NR-S (O)2 -, -O-P (O) R2 -, -S-P (O) R2 -Or-NR-P (O) R2 -; Wherein each R is independently hydrogen, alkyl, or substituted alkyl. Therefore, J may be oxyalkyl, sulfanyl, aminoalkyl, carboxyalkyl, oxyalkenyl, thioalkenyl, aminoalkenyl, carboxyalkenyl, oxyalkynyl, thioalkynyl, amine Alkynyl, carboxyalkynyl, oxycycloalkyl, thiocycloalkyl, amine cycloalkyl, carboxycycloalkyl, oxycycloalkenyl, thiocycloalkenyl, amine cycloalkenyl, carboxycycloalkene Aryl, heterocyclic, oxyheterocycle, thioheterocycle, aminoheterocycle, carboxyheterocycle, oxyaryl, thioaryl, aminearyl, carboxyaryl, heteroaryl, oxyheteroaryl , Thioheteroaryl, aminoheteroaryl, carboxyheteroaryl, oxyalkylaryl, thioalkylaryl, aminoalkylaryl, carboxyalkylaryl, oxyarylalkyl, Thiarylalkyl, aminoarylalkyl, carboxyarylalkyl, oxyarylalkenyl, thioarylalkenyl, aminoarylalkenyl, carboxyarylalkenyl, oxyalkenylaryl Base, thioalkenylaryl, aminoalkenylaryl, carboxyalkenylaryl, oxyarylalkynyl, thioarylalkynyl, aminearylalkynyl, carboxyarylalkynyl, oxyalkynyl Arylaryl, thioalkynylaryl, aminoalkynylaryl, or carboxyalkynyl Arylaryl, oxyalkylene, thioalkylene, aminoalkylene, carboxyalkylene, oxyalkylene, thioalkylene, aminoalkylene, carboxyalkylene, oxyalkylene, sulfur Alkynyl, aminoalkynyl, carboxyalkynyl, oxycycloalkylene, thiocycloalkyl, aminocycloalkyl, carboxycycloalkyl, oxycycloalkenyl, thiocycloalkenyl, Amino cycloalkenyl, carboxy cycloalkenyl, oxyarylene, thioarylene, amino arylene, carboxy arylene, oxyalkyl arylene, thioalkyl arylene, amine alkyl arylene Base, carboxyalkylalkylene, oxyarylalkylene, thioarylalkylene, aminoarylalkylene, carboxyarylalkylene, oxyarylalkylene, thioarylalkylene, aminoaryl Alkylene alkenyl, carboxyaryl alkenyl, oxyalkenyl aryl, thioalkenyl aryl, amino alkenyl aryl, carboxyalkenyl aryl, oxyaryl alkynyl, thioaryl alkynyl, amine Aryl aryl alkynyl, carboxy aryl alkynyl, oxy alkynyl aryl, thioalkynyl aryl, amino alkynyl aryl, carboxy alkynyl phenyl Radical, heteroaryl, oxyheteroaryl, thioheteroaryl, amine heteroaryl, carboxy heteroaryl, bivalent or polyvalent cyclic moieties containing heteroatoms, oxygen heteroatoms Divalent or polyvalent cyclic moiety, sulfur-containing heteroatom-containing bivalent or polyvalent cyclic moiety, amine-containing heteroatom-containing bivalent or polyvalent cyclic moiety, or carboxyl-containing heteroatom-containing bivalent or polyvalent cyclic section. The polysiloxane component may be selected from (meth) acrylate-functionalized polysiloxanes. Desirably, the curable matrix includes a (meth) acrylate component and an epoxy resin component, wherein the epoxy resin component is present in an amount of 40 to 90 weight percent (such as about 50 to about 80 weight percent). ), And the (meth) acrylate component is present in an amount of about 10 weight percent to about 60 weight percent (such as about 20 weight percent to about 40 weight percent). The relative percentages here are based on the total composition. The relative percentage of the epoxy resin component also includes a nitrogen-containing curing agent. Ideally, but alternatively, the curable matrix comprises a combination of epoxy-based (meth) acrylates, urethane (meth) acrylates, and (meth) acrylate alkyls, wherein The oxy (meth) acrylate is present in an amount of 10% to 50% by weight (such as about 20% to about 40% by weight), and the urethane (meth) acrylate may or may not be present, But when present, it is used in an amount greater than 0 to about 30 weight percent (such as about 10 weight percent to about 20 weight percent) and the alkyl (meth) acrylate is present in an amount of about 20 weight percent to about 60 weight percent ( Such as about 30 weight percent to about 50 weight percent). The relative percentages here are based on the total composition. The quantum dots used in the quantum dot-containing composition of the present invention may have various structures. One such structure comprises a core and at least one ligand. In some cases, the ligand on or connected to the quantum dot may be a molecule, oligomer, or polymer bonded to its surface, which creates the local ligand environment required for the atoms on the surface of the quantum dot. In general, certain ligands are present during the growth process used to synthesize quantum dots. Typically, these ligands are later replaced or exchanged to provide a new ligand environment that is selected to optimize properties. Ligands perform several functions. It helps avoid quantum dot aggregation and decay, it can improve the chemical stability of the quantum dot surface, and it can improve the luminous efficiency of the quantum dot. Ligand systems can include several forms. In general, it may include molecules or functional groups directly bonded to the quantum dots, and other materials selected as appropriate. In some embodiments, the functional polysiloxane provides the necessary ligand functionality. In some embodiments, a ligand on or connected to a quantum dot can be represented by the following formula: R8 -(X)P Where R here8 Department has C2 To C30 (Hetero) hydrocarbon groups of carbon atoms; preferably straight or branched alkyl or polysiloxanes of 10 to 30 carbon atoms; p is at least one; preferably at least two; and X is an electron donating group Group. Preferably, X is an amine or thiol. In general, when a ligand is present on or connected to a quantum dot, each quantum dot has many ligand molecules. In some embodiments, the quantum dot material may include quantum dots dispersed in a liquid carrier. For example, the liquid carrier may include an oil, such as an amine-polysiloxane. Ideally, the liquid carrier is selected to match the transmittance of the curable matrix. The difference between the refractive index of the carrier liquid and the curable matrix is greater than 0.05, such as greater than 0.1, to increase the length of the optical path through the quantum dot layer and improve the quantum dot absorption and efficiency. The liquid carrier for quantum dots may be an amine-functional polysiloxane, such as shown in Structure III below:Where each R6 Independently alkyl or aryl; RNH2 Amine substituted (hetero) hydrocarbyl; x is 1 to 2000; such as 3 to 100; y may be zero; x + y is at least one; R7 Alkyl, aryl or RNH2 Where amine-functional polysiloxane has at least two RNH2 Group. Suitable amine-functionalized polysiloxanes are described in U.S. Patent Application Publication No. 2013/0345458 (Freeman et al.); And described in Lubkowsha et al., "Aminoalkyl Functionalized Siloxanes," Polimery, 59, pp. 763-68 Page (2014). Amine-functionalized polysiloxanes are commercially available from Gelest Inc, Morrisville, PA; Xiameter trademarks are available from Dow Corning, including Xiameter OFX-0479, OFX-8040, OFX-8166, OFX-8220, OFX-8417, OFX-8630 , OFX-8803 and OFX-8822; purchased from Siletech under the trademark Silamine; and purchased from Momentive under the trade names ASF3830, SF4901, RPS-116, XF40-C3029 and TSF4707, and purchased under the tradename Magnasoft, such as Magnasoft PlusTSF4709, and Baysilone OF-TP3309. In some embodiments, the ligand may be a thiol, such as a polythiol, selected from primary polythiols, secondary polythiols, and combinations thereof, ideally any one or more of the following: pentaerythritol (3-mercaptobutyl ester), pentaerythritol tetra-3-mercaptopropionate, trimethylolpropane tris (3-mercaptopropionate), [[2- (3-mercaptopropionyloxy) ethyl] Isocyanurate, dipentaerythritol hexa (3-mercaptopropionate), ethoxylated trimethylolpropane tri-3-mercaptopropionate, thiol-functional methylalkyl polysiloxane polymers and their combination. When constructing a quantum dot with a polythiol ligand, the ligand should have at least 2 functional groups, ideally 3 to 4 functional groups. In some embodiments, the ligand system may be liquid at first and then appear to be solid by curing, polymerizing, or removing the solvent. In some embodiments, the ligand system can remain liquid to provide quantum dot droplets dispersed in a carrier liquid, which are then dispersed in a curable matrix. In some embodiments, the amount of ligand and carrier liquid (functional or non-functional ligand) relative to the total composition is greater than 60 weight percent, such as greater than 70 weight percent, ideally greater than 80 weight percent. In some cases, quantum dot ligands are covered by: R1 -(X) n where R1 Department has C1 To C30 Carbon atom alkyl, with C2 To C30 Alkenyl of carbon atom or having C2 To C30 Carbon atom alkynyl, any of which can be straight chain, branched chain or cyclic, with the restriction that there is an appropriate number of carbon atoms, or that it can be substituted or interspersed with hetero atoms; n is an integer, at least -; And X-based electron-donating groups, such as amines, formic acid, and thiols. The nucleus of a quantum dot here is composed of a metal or a semiconducting compound or a mixture thereof. In some embodiments, each core is surrounded by at least one ligand, such as a polythiol ligand, which can be cross-linked with at least one other ligand surrounding another core. The composition of the sub-dot content of the present invention may include a single quantum dot type or a single quantum dot binding ligand type, or a plurality of quantum dot types or a plurality of quantum dot binding ligand types. For example, the composition of the present invention may include Cd quantum dots such as CdS, CdTe, CdSe, CdSe / CdS, CdTe / CdS, CdTe / ZnS, CdSe / CdS / ZnS, CdSe / ZnS, CdSeZn / CdS / ZnS or CdSeZn / ZnS, or Cd quantum dots bound to a ligand with an amine-binding group. The sub-dot composition of the present invention may also include InP quantum dots, such as InP or InP / ZnS, and InP quantum dots bound to a ligand having a carboxyl-binding group. In all embodiments, the metal or semiconducting compound used to form the core is a combination of one or more elements selected from Group IV of the Periodic Table of the Elements; one or more elements selected from Groups II and VI of the Periodic Table of Elements One or more elements selected from Groups III and V of the Periodic Table of the Elements; one or more elements selected from Groups IV and VI of the Periodic Table of Elements; and one or more elements selected from Group I of the Periodic Table of Elements Group and Group III and Group VI elements; or a combination thereof. Ideally, the metal or semiconducting compound is a combination of one or more elements selected from Group I and Group III and Group VI of the Periodic Table of Elements. For example, the metal or semiconducting compound is a combination of one or more of Cd, Zn, In, Cu, S, and Se. Examples of materials for preparing core-shell quantum dots include Si, Ge, Sn, Se, Te, B, C (including diamond), P, Co, Au, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si3 N4 Ge3 N4 , Al2 O3 , (Al, Ga, In)2 (S, Se, Te)3 , Al2 CO3 And an appropriate combination of two or more of these materials. Exemplary core-shell luminescent quantum dots include CuInS, CuInSeS, CuZnInSeS, CuZnInS, Cu: ZnInS, CuInS / ZnS, Cu: ZnInS / ZnS, CuInSeS / ZnS, CdSe / ZnS, InP / ZnS, PbSe / PbS, CdSe / CdS, CdTe / CdS, CdTe / ZnS, and others. In some embodiments, the quantum dots may be from Nanosys, Inc., Milpitas, CA, which supplies quantum dots in the form of quantum dots and quantum dot concentrates, where the quantum dots may or may not have ligands connected to them . For example, Nanosys supplies GP-988 and Green Nanocrystal Paste. (The nanocrystals and quantum dots used in this article are interchangeable.) These quantum dots can be prepared by referring to the following literatures: Alivisatos, AP, "Semiconductor clusters, quantum dots, and quantum dots," Science, 271: 933 (1996); X. Peng, M. Schlamp, A. Kadavanich, AP Alivisatos, `` Epitaxial growth of highly luminescent CdSe / CdS Core / Shell quantum dots with photostability and electronic accessibility, '' J. Am. Chem. Soc., 30: 7019-7029 (1997); and CB Murray, DJ Norris, MG Bawendi, `` Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, '' J. Am. Chem. Soc., 115: 8706 (1993) X. Peng et al., J. Am. Chem. Soc., 30: 7019-7029 (1997). For example, add 1.5 g of GP-988 to a green nanocrystalline paste (from 15 mL of washed nanocrystals whose decanting solvent is decanted), stir well with a spatula, and then stir with a stir bar At the same time, it is heated to a temperature of about 90 ° C for a period of 2 hours. The solution was allowed to cool to room temperature and decanted into another bottle. A typical weight ratio would be 0.8 g of paste in 8.0 g of GP-988. The measured quantum yield of the exchanged green polymer 323-13E was measured to be 86.8%. Quantum dots can be produced using any method known to those skilled in the art. For example, see U.S. Patent Nos. 6,225,198; 6,207,229; 6,322,901; 6,872,249; 6,949,206; 7,572,393; 7,267,865 and 7,374,807, each of which is incorporated by reference in its entirety In this article. The optical properties of a quantum dot can be determined by its particle size, chemical or surface composition, and / or by suitable optical tests available in the art. The ability to adjust the particle size of the quantum dots to a range between about 1 nm and about 15 nm enables the light emission coverage in the entire spectrum to provide great color rendering flexibility. After or during its formation, the quantum dots can be dispersed in a carrier for use in a premix. When the blue primary light is down-conversion, the quantum dots emit green and red light, such as from the blue LED to the secondary light emitted by the quantum dots. Corresponding parts of red light, green light and blue light can be controlled to achieve the white point required for white light emitted by a display device incorporating a quantum dot film product. Quantum dot concentrates can be used in sub-dot compositions in amounts ranging from about 0.05 weight percent to about 10 weight percent. The quantum dots may be dispersed in a curable matrix in an amount of about 0.2 to about 1 weight percent, such as about 0.3 to about 0.6 weight percent. Once formed, the quantum dot layer has a thickness of about 40 microns to about 250 microns. The curable matrix of the sub-dot composition adheres to the barrier layer to form a laminated structure, and also forms a protective matrix for the quantum dots. However, known quantum dot layers show a tendency to degrade at the edges over time, at least in part, due to penetration of environmental pollutants. Such penetration or entry (including edge entry) is defined by the loss of quantum dot performance caused by moisture and / or oxygen entering the matrix 24. In various embodiments, the edges of moisture and oxygen in the cured matrix 24 enter less than about 1.0 mm after 1 week at 85 ° C, or less than about 0.75 mm after 1 week at 85 ° C, or at 85 ° C Less than about 0.5 mm after the next week, or less than 0.25 mm after 1 week at 85 ° C. In various embodiments, after 500 hours at 65 ° C, the moisture and oxygen of the substrate enter less than about 0.5 mm, and the relative humidity is 95%. In various embodiments, the oxygen transmission rate of the cured matrix is less than about 150 (cc.mil) / (m2 d), or less than about 100 (cc.mil) / (m2 d). In various embodiments, the water vapor transmission rate of the cured substrate should be less than about 50 g / m2 .mil.d, such as less than about 30 g / m2 .mil.d. The composition of the present invention may also include a desiccant, such as a desiccant selected from the group consisting of calcium oxide, anhydrous calcium sulfate, molecular sieves, and zeolites. The particle size of the desiccant should be in the range of about 0.1 μm to about 500 μm, such as about 0.1 μm to about 10 μm. The desiccant should be present in an amount ranging from about 0.5 to about 15 weight percent, such as from about 1 to about 8 weight percent. The composition of the present invention may include a deoxidizing agent such as a deoxidizing agent selected from the group consisting of sodium sulfite, sodium bisulfite, triphenylphosphine, an ascorbic acid derivative, and a thiourea derivative. The particle size of the selected deoxidizer should be in the range of about 1 μm to about 500 μm, and the present amount should be in the range of about 1 to about 8 weight percent. Ideally, in some embodiments, a desiccant and a deoxidizing agent may be present. However, at least one of the desiccant and the deoxidizing agent must be present in the composition having a sub-dot. Desiccants and / or deoxidants help maintain the integrity of the quantum dot layer. By doing so, the color changing ability is retained. In various embodiments, the color change observed after aging is defined by the following: after an aging time of 1 week at 85 ° C, the change on the 1931 CIE (x, y) chromaticity coordinate system is less than 0.02. In some embodiments, the color change after aging is less than 0.005 after an aging time of 1 week at 85 ° C. In some embodiments, after 100 hours at 65 ° C., the color shift d (x, y) obtained by the matrix using the CIE 1931 (x, y) rule is less than about 0.02, and the relative humidity is 95%. In many embodiments, the method of forming a quantum dot film product includes forming a partially cured quantum dot material having a viscosity that is at least 10 times greater than that of a polymerizable curable matrix after undergoing partial curing or before the curable matrix undergoes partial curing or At least 20 times larger. In one or more embodiments, the first viscosity is less than 10,000 centipoise and the second viscosity is greater than 100,000 centipoise. Prior to curing, the viscosity of the composition with sub-points is at least 200 centipoise and as high as 15,000 centipoise, preferably 500 to 10,000 centipoise, and most preferably between 1000 and 3000 centipoise. A method for forming a quantum dot film product includes applying a composition containing sub-dots to a first barrier layer, and placing a second barrier layer on or above the composition containing sub-dots, the layer matching the first barrier layer relationship. In one or more embodiments, a method of forming a quantum dot film article includes exposing a curable matrix to conditions effective to initiate curing to form a partially cured quantum dot film. FIG. 1 is a schematic side view of an illustrative quantum dot film 10. In one or more embodiments, the quantum dot film product 10 includes a first barrier film 32, a second barrier film 34, and a quantum dot layer 20 separating the first barrier film 32 and the second barrier film 34. The quantum dot layer 20 includes quantum dots 22 dispersed in a curable matrix 24. In one or more embodiments, the method of forming the quantum dot film product 10 includes coating the sub-dot-containing composition 20 on the first barrier film 32 and placing a second barrier on the sub-dot-containing composition 20 Film 34. The barrier films 32, 34 can be formed from any suitable film material that can protect the quantum dots from environmental conditions such as air and moisture. Suitable barrier films include polymers such as polyethylene terephthalate, glass, oxides such as silicon oxide, titanium oxide or aluminum oxide, or other dielectric materials. In many embodiments, each barrier layer of the quantum dot film includes at least two different materials or compositions, so that the multilayer barrier layer eliminates or reduces the alignment of stomata defects in the barrier layer, and provides a value for air and moisture scale values. Effective blocking. The characteristics, thickness, and number of barrier layers will depend on the specific application, and will be appropriately selected to maximize the protection of the barrier layer and the brightness of the quantum dots while minimizing the thickness of the quantum dot film. In many embodiments, each barrier layer is a laminated film, such as a double laminated film, wherein the thickness of each barrier layer is thick enough to eliminate wrinkles in a roll or laminated manufacturing process. In one illustrative embodiment, the barrier film is a polyester film having an oxide layer. The barrier protection discussed above refers to the protection provided in the vertical direction. The protection obtained in the horizontal or lateral direction (especially at the distillation edge of the quantum dot film) comes from the added desiccant and / or moisture scavenger. Some of the advantages of the sub-dot composition and films formed therefrom according to the present invention are illustrated by the following examples.Examples Examples 1 : As a comparative example, a formulation (Sample A) was prepared by mixing the following components.table 1 5% by weight of Green Gen 2 QD concentrate from Nanosys Inc was added to the four components. Subsequently, the thus-formed sub-dot composition (sample A) was laminated between two barrier films (each from Vitriflex), and the curing was 2 J / cm generated by exposure to a 365 nm UV LED lamp2 The amount of radiation, and subsequently an additional 1 J / cm generated by exposure to a mercury vapor phase UV lamp2 Radiation dose. The thickness of the quantum dot film product is about 100 microns. The obtained quantum dot film product was punched into a 19 mm diameter circle, and it was placed in a humid box at 60 ° C / 90% RH for aging research. Film samples were periodically removed from the humid chamber and observed with an optical microscope on a blue LED backlight. As determined by virtual observation, the quantum dots in the film product are excited by blue light and emitted green light. At the peripheral edge of the membrane product, the penetration of air and moisture causes the quantum dots to degrade and form non-active areas. Measure and monitor the width of this non-active edge area based on the aging time (in weeks). After 1 week, the non-active edge was measured at 1.6 mm; after 2 weeks, it was measured at 1.66 mm; and after 3 weeks, it was measured at 2.61 mm.Examples 2 : Calcium oxide was added to the formulation (sample A) in Table 1 as a desiccant, and the loadings thereof were 1% wt, 3% wt, 5% wt, 8% wt, and 10% wt.table 2 Subsequently, a quantum dot film article was prepared following the same procedure described in Sample A. These quantum dot film products were aged in a 60 ° C / 90% RH humidity cabinet. Observe at different aging times and record the width of the non-active edge area as follows. Sample 5 showed delamination. Sample 5 could not be properly evaluated because the quantum dot film showed local delamination after stamping.table 3 It can be seen that the addition of calcium oxide as a desiccant reduces the width of the non-active edge region of the quantum dot film product formed after heating and humid aging. The effect of calcium oxide as a desiccant on the optical properties of the quantum dot film was also measured. The brightness and color coordinates of the sub-dot film were measured by a Photo Research PR655 spectroradiometer. The quantum dot film was illuminated with a blue LED backlight and the light emitted by the sub-dot film was measured by PR655 spectroradiometry. Observe the brightness and color coordinates of the quantum dot films Nos. 1 to 3, and record them in Table 4 below.table 4 The brightness and y color coordinates indicate the amount of green light emitted by the quantum dot film. The presence of a desiccant in a quantum dot film increases the amount of green light emitted by the film. Therefore, when the load of the quantum dots is the same, more blue light can be converted into green light. In other words, using calcium oxide as a desiccant seems to require a lower concentration of quantum dots to convert the same amount of blue light into green light.Examples 3 : Add sodium sulfite and sodium bisulfite as deoxidants to sample A. The weight percentage loadings are shown in Table 5 below (samples 6 and 8 are 3 weight percent; samples 7 and 9 are 5 weight percent) .table 5 Subsequently, the same procedure as described in Example 1 was followed to prepare a quantum dot film product. These quantum dot film products were also aged in a 60 ° C / 90% RH humidity cabinet. Observe the width of the non-active edge area at different aging times and record it in Table 6 below.table 6 It can be seen that the addition of sodium sulfite and sodium bisulfite as deoxidants reduces the width of the non-active edge area during heating and humid aging.Examples 4 : As a comparative example (sample B), a two-part adhesive formulation was prepared by mixing the components listed below in sections A and B.table 7a - A section table 7b - B section Mix the components of Part A with the components of Part B, and then combine Part A and Part B to form a composition containing sub-dots, and then laminate them between two barrier films (each from Vitriflex), 1 J / cm generated by exposure to 365 nm UV LED lamps2 UVA radiation to cure. Subsequently, the laminated film was cured at a temperature of 100 ° C for a period of 5 minutes. The resulting quantum dot film was evaluated using the same method outlined in Example 1. The results obtained by observing Sample B are reported in Table 9.Examples 5 : Micronized calcium oxide was mixed into the formulation of Part A of the foregoing example. Table 8a-Part A Table 8b-Part B The components are mixed together to form a Part B formulation, which is mixed with Part A, and a quantum dot film is prepared and evaluated following the same process as the previous example. The evaluation results are shown in Table 9 below.table 9 Examples 6 : Here, the combination of the desiccant and the deoxidizing agent is used to prepare a form with different content but similarly low content of dots.table 10 Subsequently, the same procedure as described in Example 1 was followed to prepare a quantum dot film product. Aging quantum dot film products in a 60 ° C / 90% RH humidity cabinet. Observe the width of the non-active edge region at different aging times and record it in Table 11 below.table 11 The results shown in Table 11 indicate that the combination of desiccant and deoxidizer can also be used to effectively reduce the width of the non-active edge of the quantum dot film.

10‧‧‧量子點膜製品10‧‧‧ Quantum Dot Film Products

20‧‧‧量子點層20‧‧‧ Quantum Dot Layer

22‧‧‧量子點22‧‧‧ Quantum Dots

24‧‧‧可固化基質24‧‧‧ Curable Matrix

32‧‧‧第一阻擋膜32‧‧‧First barrier film

34‧‧‧第二阻擋膜34‧‧‧Second barrier film

圖1係說明性含量子點的組合物之示意性側視圖,該組合物呈介於兩個阻擋膜之間的膜形式。Figure 1 is a schematic side view of an illustrative sub-dot composition, which is in the form of a film between two barrier films.

Claims (22)

一種組合物,其包含 複數個量子點; 可固化基質;及 乾燥劑及去氧劑中之至少一者。A composition comprising : a plurality of quantum dots; a curable matrix; and at least one of a desiccant and a deoxidizer. 如請求項1之組合物,其中該等複數個量子點分散於載劑中。The composition of claim 1, wherein the plurality of quantum dots are dispersed in a carrier. 如請求項1之組合物,其中該等量子點由包含金屬或半導化合物或其混合物之核構成。The composition of claim 1, wherein the quantum dots are composed of a core comprising a metal or a semiconducting compound or a mixture thereof. 如請求項1之組合物,其中該金屬或半導化合物係以下之組合:一或多種選自元素週期表第IV族之元素;一或多種選自元素週期表第II族及第VI族之元素;一或多種選自元素週期表第III族及第V族之元素;一或多種選自元素週期表第IV族及第VI族之元素;及一或多種選自元素週期表第I族及第III族及第VI族之元素;或其組合。The composition of claim 1, wherein the metal or semiconducting compound is a combination of: one or more elements selected from Group IV of the Periodic Table of the Elements; one or more elements selected from Groups II and VI of the Periodic Table of Elements Element; one or more elements selected from Groups III and V of the Periodic Table of the Elements; one or more elements selected from Groups IV and VI of the Periodic Table of the Elements; and one or more elements selected from Group I of the Periodic Table of Elements And elements of Groups III and VI; or a combination thereof. 如請求項1之組合物,其中該金屬或半導化合物係一或多種選自元素週期表第I族及第III族及第VI族之元素的組合。The composition of claim 1, wherein the metal or semiconducting compound is a combination of one or more elements selected from Group I and Group III and Group VI of the Periodic Table of Elements. 如請求項1之組合物,其中該金屬或半導化合物係一或多種選自Cd、Zn、In、Cu、S及Se之元素的組合。The composition of claim 1, wherein the metal or semiconducting compound is a combination of one or more elements selected from the group consisting of Cd, Zn, In, Cu, S, and Se. 如請求項1之組合物,其中該核由選自由以下組成之群的成員組成:CuInS、CuInSeS、CuZnInSeS、CuZnInS、Cu:ZnInS、CuInS/ZnS、Cu:ZnInS/ZnS、CuInSeS/ZnS、CdSe/ZnS、InP/ZnS、PbSe/PbS、CdSe/CdS、CdTe/CdS及CdTe/ZnS。The composition of claim 1, wherein the core is composed of members selected from the group consisting of: CuInS, CuInSeS, CuZnInSeS, CuZnInS, Cu: ZnInS, CuInS / ZnS, Cu: ZnInS / ZnS, CuInSeS / ZnS, CdSe / ZnS, InP / ZnS, PbSe / PbS, CdSe / CdS, CdTe / CdS and CdTe / ZnS. 如請求項1之組合物,其中該核由選自由以下組成之群的成員組成:CdSe/ZnS、CdSe/CdS、CdTe/CdS及CdTe/ZnS。The composition of claim 1, wherein the core is composed of a member selected from the group consisting of CdSe / ZnS, CdSe / CdS, CdTe / CdS, and CdTe / ZnS. 如請求項1之組合物,其中該可固化基質包含(甲基)丙烯酸酯組分、環氧樹脂組分及其組合中之至少一者。The composition of claim 1, wherein the curable matrix comprises at least one of a (meth) acrylate component, an epoxy resin component, and a combination thereof. 如請求項1之組合物,其中該(甲基)丙烯酸酯組分包含基於環氧基之(甲基)丙烯酸酯、胺基甲酸酯(甲基)丙烯酸酯及(甲基)丙烯酸烷基酯之組合。The composition of claim 1, wherein the (meth) acrylate component comprises an epoxy-based (meth) acrylate, a urethane (meth) acrylate, and an (meth) acrylate alkyl Combination of esters. 如請求項1之組合物,其中該可固化基質進一步包含固化劑。The composition of claim 1, wherein the curable matrix further comprises a curing agent. 如請求項11之組合物,其中該固化劑係光引發劑。The composition of claim 11, wherein the curing agent is a photoinitiator. 如請求項1之組合物,其中該乾燥劑選自由以下組成之群:氧化鈣、無水硫酸鈣、分子篩及沸石。The composition of claim 1, wherein the desiccant is selected from the group consisting of calcium oxide, anhydrous calcium sulfate, molecular sieve, and zeolite. 如請求項1之組合物,其中該乾燥劑係氧化鈣。The composition of claim 1, wherein the desiccant is calcium oxide. 如請求項14之組合物,其中該乾燥劑之粒度在約1 μm至約500 μm範圍內。The composition of claim 14, wherein the particle size of the desiccant is in the range of about 1 μm to about 500 μm. 如請求項14之組合物,其中該乾燥劑之存在量在約1至約8重量百分比範圍內。The composition of claim 14, wherein the desiccant is present in an amount ranging from about 1 to about 8 weight percent. 如請求項1之組合物,其中該去氧劑選自由以下組成之群:亞硫酸鈉、亞硫酸氫鈉、三苯基膦、抗壞血酸衍生物及硫脲衍生物。The composition of claim 1, wherein the oxygen scavenger is selected from the group consisting of sodium sulfite, sodium bisulfite, triphenylphosphine, an ascorbic acid derivative, and a thiourea derivative. 如請求項1之組合物,其中該去氧劑係亞硫酸鈉、亞硫酸氫鈉及其組合。The composition of claim 1, wherein the oxygen scavenger is sodium sulfite, sodium bisulfite, and combinations thereof. 如請求項1之組合物,其中該去氧劑之粒度在約1 μm至約500 μm範圍內。The composition of claim 1, wherein the particle size of the deoxidizer is in the range of about 1 μm to about 500 μm. 如請求項1之組合物,其中該去氧劑之存在量在約1至約8重量百分比範圍內。The composition of claim 1, wherein the oxygen scavenger is present in an amount ranging from about 1 to about 8 weight percent. 如請求項1之組合物,其中存在該乾燥劑及該去氧劑。The composition of claim 1, wherein the desiccant and the deoxidizer are present. 如請求項1之組合物,其中該等量子點之存在量係約0.5至約2重量百分比。The composition of claim 1, wherein the quantum dots are present in an amount of about 0.5 to about 2 weight percent.
TW107114456A 2017-04-28 2018-04-27 Quantum dot-containing compositions having superior resistance to degradation from exposure to environmental contaminants while maintaining their light generating capabilities TW201843293A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762491287P 2017-04-28 2017-04-28
US62/491,287 2017-04-28

Publications (1)

Publication Number Publication Date
TW201843293A true TW201843293A (en) 2018-12-16

Family

ID=63918789

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107114456A TW201843293A (en) 2017-04-28 2018-04-27 Quantum dot-containing compositions having superior resistance to degradation from exposure to environmental contaminants while maintaining their light generating capabilities

Country Status (2)

Country Link
TW (1) TW201843293A (en)
WO (1) WO2018200946A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085634A (en) * 2019-04-08 2019-08-02 深圳市华星光电技术有限公司 Display panel and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102486314B1 (en) * 2022-04-25 2023-01-10 주식회사 한솔케미칼 Solvent-free thermosetting quantumdot resin composition, quantumdot resin composite prepared therefrom, led package and display device using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070077480A1 (en) * 2005-10-05 2007-04-05 Curello Andrew J Scavenger materials in fuel cartridge
CN103852817B (en) * 2014-03-14 2016-05-11 宁波激智科技股份有限公司 A kind of quantum dot film that is applied to backlight module
WO2016075950A1 (en) * 2014-11-14 2016-05-19 富士フイルム株式会社 Wavelength conversion member, backlight unit including same, and liquid crystal display apparatus
US20180267365A1 (en) * 2015-09-24 2018-09-20 3M Innovative Properties Company Matrix for quantum dot articles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085634A (en) * 2019-04-08 2019-08-02 深圳市华星光电技术有限公司 Display panel and preparation method thereof

Also Published As

Publication number Publication date
WO2018200946A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
US11634627B2 (en) Method for manufacturing quantum dot film comprising encapsulated quantum dots uniformly dispersed therein, quantum dot film manufactured thereby and wavelength conversion sheet and display comprising same
TWI503626B (en) Hardened resin composition
CN108026443A (en) The composite nanoparticle that additive is stablized
CN108884385B (en) Quantum dots with stabilized fluorochemical reagents
CN109790452A (en) Quantum dot with mixed amine and mercaptan ligand
US11203181B2 (en) Barrier film-containing format and the use thereof for pre-applied underfill film for 3D TSV packages
TWI645007B (en) Adhesive composition
TW201335682A (en) Composition, end-face seal agent for display device containing the composition, display device and method for fabricating the same
TW201843293A (en) Quantum dot-containing compositions having superior resistance to degradation from exposure to environmental contaminants while maintaining their light generating capabilities
CN108699432B (en) Nanocrystal composites
JP2010135621A (en) Sheet for forming protective film for chip and semiconductor chip with protective film
CN108026444B (en) Additive stabilized composite nanoparticles
US20190218434A1 (en) Light stable transparent adhesive compositions and methods for use thereof
US20050082338A1 (en) Sprayable adhesive material for laser marking semiconductor wafers, dies and devices
US11149194B2 (en) Stabilizing styrenic polymer for quantum dots
US11345849B2 (en) Stabilizing styrenic polymer for quantum dots
TW201003257A (en) Curable composition for liquid crystal sealant and liquid crystal display element
TW201901772A (en) Semiconductor device and method of manufacturing same
CN107428963A (en) Diaphragm formation film
WO2020241369A1 (en) Curable organopolysiloxane composition, and optical member formed from cured product of same
JP6901513B2 (en) Light conversion resin composition and light conversion laminated base material, image display device using this
US20200115630A1 (en) Additive stabilized composite nanoparticles
KR20210154588A (en) A quantum dot, a quantum dot dispersion, a light converting curable composition, a quantum dot light-emitting diode, a quantum dot film and a light converting ink composition comprising the quantum dot, a cured film manufactured by the composition and a display device comprising the same
TW201902867A (en) Polyaromatic compounds and high refractive index, light stable, yellowing resistant resins containing same
CN113169082A (en) Thermosetting resin film, sheet for forming first protective film, kit, and method for producing workpiece with first protective film