TW201840964A - Method for determining an amount of sediment in a ceramic dispersion - Google Patents

Method for determining an amount of sediment in a ceramic dispersion Download PDF

Info

Publication number
TW201840964A
TW201840964A TW106144710A TW106144710A TW201840964A TW 201840964 A TW201840964 A TW 201840964A TW 106144710 A TW106144710 A TW 106144710A TW 106144710 A TW106144710 A TW 106144710A TW 201840964 A TW201840964 A TW 201840964A
Authority
TW
Taiwan
Prior art keywords
dispersion
acrylate
ceramic
meth
deposit
Prior art date
Application number
TW106144710A
Other languages
Chinese (zh)
Inventor
克里斯 史密特
賓斯 古德曼
柏裘恩 史都赫曼
沃夫崗 史齊羅弗
Original Assignee
德商巴地斯顏料化工廠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商巴地斯顏料化工廠 filed Critical 德商巴地斯顏料化工廠
Publication of TW201840964A publication Critical patent/TW201840964A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/32Paints; Inks
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/04Investigating sedimentation of particle suspensions
    • G01N15/042Investigating sedimentation of particle suspensions by centrifuging and investigating centrifugates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0037Production of three-dimensional images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

A method determines an amount of sediment in a ceramic dispersion. The ceramic dispersion includes a free-radical curable monomer, silica, and metal particles. The method includes providing a centrifuge to apply a gravitational force to the ceramic dispersion, placing a sample of the ceramic dispersion in a sample container in the centrifuge, and applying a gravitational force of from 25G to 2000G to the ceramic dispersion to precipitate a portion of the silica thereby forming a sediment that includes a topmost layer that includes the metal particles to allow for visualization. The method further includes measuring the amount of the sediment via calculating the height of the sediment as a percentage of the total height of the dispersion, and/or decanting the continuous phase and measuring the mass of the sediment to determine mass percentage of the sediment based on the total mass of the dispersion before application of gravitational force.

Description

測定陶瓷分散液中沉積物含量之方法Method for determining the content of deposits in ceramic dispersions

本發明大體上係關於一種測定陶瓷分散液中沉積物含量之方法。更特定言之,分散液包括金屬粒子以允許可視化。The present invention generally relates to a method of determining the amount of deposits in a ceramic dispersion. More specifically, the dispersion includes metal particles to allow visualization.

用於產生三維物體之積層製造(additive fabrication)過程已為所熟知。積層製造過程利用物體之電腦輔助設計(CAD)資料來建立三維零件。此等三維零件可由液體樹脂、粉末或其他材料形成。 在立體微影(SL)中,物體之CAD資料轉化成三維物體之薄橫截面。將資料加載至控制雷射之電腦中,該雷射穿過缸中之液體輻射可固化樹脂組合物描繪截面之圖案,對應於該截面固化樹脂組合物之薄層。固化層藉由樹脂組合物再塗佈且雷射描繪另一截面以在前一層的頂部上硬化樹脂組合物之另一層。逐層重複該過程直至完成三維物體。當最初形成時,三維物體一般未完全固化,且稱作「生坯模型」。此過程亦稱為三維(3D)打印。 存在若干類型的用於立體微影之雷射,其波長傳統地介於193 nm至355 nm範圍內,儘管存在其他波長變化形式。使用氣體雷射固化液體輻射可固化樹脂組合物為熟知的。在立體微影系統中傳遞雷射能量的可為連續波(Continuous Wave;CW)或調Q脈衝。CW雷射提供連續雷射能量且可用於高速掃描方法。然而,其輸出功率受到限制,降低了在物體產生期間出現之固化的量。積層製造之其他方法利用燈或發光二極體(LED)。LED為利用電致發光現象來產生光之半導體裝置。目前,LED UV光源普遍地在300與475 nm之間的波長處發光,其中365 nm、390 nm、395 nm、405 nm及415 nm為常用尖峰頻譜輸出。 許多積層製造應用需要生坯模型具有高機械強度(例如彈性模量、斷裂強度等)。通常稱為「生強度」之此特性通常藉由液體輻射可固化樹脂組合物測定。一些組合物包括二氧化矽,例如以提高熱變形溫度及模數或製造陶瓷零件。然而,此類組合物傾向於具有(1)高初始黏度,(2)不佳黏度穩定性,(3)相分離之傾向,導致稱為「軟包裝」或「硬包裝」之現象,及(4)導致打印部分之畸變的高固化收縮。 隨著此類組合物中之二氧化矽的量增加,組合物之黏度增加,導致可加工性及處理速度降低。同時,組合物必須具有足夠隨時間推移之黏度穩定性。黏度不應隨時間推移而顯著增加,否則可產生額外加工問題。 此外,此類組合物傾向於在儲存時隨時間推移而相分離。舉例而言,二氧化矽可聚集於儲存容器底部,產生相分離之組合物。組合物之頂部部分可為低黏度、很大程度上未填充的部分,亦即不包括足夠二氧化矽負載之部分。底部部分可為二氧化矽過飽和及高黏度。頂部部分中之組合物無法用於產生具有足夠強度及硬度之生坯模型且任何所得零件將由於二氧化矽耗盡而在黏合劑燃盡及燒結期間遭受高收縮及裂解。底部部分中之組合物無法使用,因為其過於黏滯且具有使得最終零件不可用之二氧化矽濃度。因此,整個容器可變得不可用,或在最低限度下,必須經歷另外的昂貴且費時的處理以能夠使用。 在一種情境下,二氧化矽在儲存容器之底部沉降且形成軟包裝。沉降之二氧化矽可由部分聚合之樹脂包圍,產生蠟樣稠度。儘管可能再同化為可使用組合物,但此類方法需要頻繁且通常劇烈的再循環。此為耗費時間及能量之維護過程,且仍不除去組合物之有問題的黏度。 在另一情境下,二氧化矽在儲存容器之底部沉降且形成硬包裝。在此類情境下,二氧化矽形成極硬的岩石樣結構。此類結構必須藉由鑽孔機或類似裝置破碎,隨後可能再同化。同樣,此為耗費時間及能量的。 許多組合物必須進行測試以達成穩定分散液且此可能需要許多天或許多週以測試各配方。測定穩定性之度量通常僅使用主觀觀測來界定何時出現沉積且隨後使用沉積物之進一步定性評估。然而,即使此等方法亦為不精確且費時的。因此,仍存在改良之機會。The additive fabrication process for producing three-dimensional objects is well known. The laminate manufacturing process uses computer-aided design (CAD) data from objects to create three-dimensional parts. These three-dimensional parts can be formed from liquid resins, powders or other materials. In stereo lithography (SL), the CAD data of an object is transformed into a thin cross section of a three-dimensional object. The data is loaded into a computer that controls the laser that passes through the liquid radiation curable resin composition in the cylinder to draw a pattern of cross-sections corresponding to a thin layer of the cross-section cured resin composition. The cured layer is recoated by the resin composition and the laser depicts another cross section to harden another layer of the resin composition on top of the previous layer. This process is repeated layer by layer until the three-dimensional object is completed. When initially formed, the three-dimensional object is generally not fully cured and is referred to as a "green model." This process is also known as three-dimensional (3D) printing. There are several types of lasers for stereo lithography whose wavelengths are traditionally in the range of 193 nm to 355 nm, although other wavelength variations exist. The use of a gas laser-curable liquid radiation curable resin composition is well known. The laser energy transmitted in the stereo lithography system may be a continuous wave (CW) or a Q-switched pulse. CW lasers provide continuous laser energy and can be used in high speed scanning methods. However, its output power is limited, reducing the amount of solidification that occurs during the creation of an object. Other methods of laminate manufacturing utilize lamps or light emitting diodes (LEDs). An LED is a semiconductor device that generates light using an electroluminescence phenomenon. Currently, LED UV sources generally emit light at wavelengths between 300 and 475 nm, with 365 nm, 390 nm, 395 nm, 405 nm, and 415 nm being common peak spectral outputs. Many laminate manufacturing applications require green molds with high mechanical strength (eg, modulus of elasticity, breaking strength, etc.). This property, commonly referred to as "green strength", is typically determined by a liquid radiation curable resin composition. Some compositions include cerium oxide, for example to increase heat distortion temperature and modulus or to make ceramic parts. However, such compositions tend to have (1) high initial viscosity, (2) poor viscosity stability, and (3) a tendency to phase separation, resulting in a phenomenon known as "soft packaging" or "hard packaging", and (4) A high cure shrinkage that causes distortion of the printed portion. As the amount of cerium oxide in such compositions increases, the viscosity of the composition increases, resulting in reduced processability and processing speed. At the same time, the composition must have sufficient viscosity stability over time. Viscosity should not increase significantly over time, otherwise additional processing problems can arise. Moreover, such compositions tend to phase separate over time during storage. For example, cerium oxide can be concentrated at the bottom of the storage vessel to produce a phase separated composition. The top portion of the composition can be a low viscosity, largely unfilled portion, i.e., a portion that does not include sufficient cerium oxide loading. The bottom portion can be super-saturated and highly viscous. The composition in the top portion cannot be used to produce a green mold of sufficient strength and hardness and any resulting part will suffer from high shrinkage and cracking during burnout and sintering of the binder due to the depletion of cerium oxide. The composition in the bottom portion cannot be used because it is too viscous and has a concentration of cerium oxide that renders the final part unusable. Thus, the entire container may become unavailable or, at a minimum, must undergo additional expensive and time consuming processing to enable use. In one scenario, the cerium oxide settles at the bottom of the storage container and forms a flexible package. The precipitated cerium oxide can be surrounded by a partially polymerized resin to produce a waxy consistency. Although it is possible to assimilate into a usable composition, such methods require frequent and often severe recycling. This is a time and energy maintenance process and still does not remove the problematic viscosity of the composition. In another scenario, the cerium oxide settles at the bottom of the storage container and forms a rigid package. In such situations, cerium oxide forms an extremely hard rock-like structure. Such structures must be broken by a drill or similar device and may then be assimilated. Again, this is time consuming and energy intensive. Many compositions must be tested to achieve a stable dispersion and this may take many days or weeks to test each formulation. Metrics for determining stability typically use only subjective observations to define when deposition occurs and then use a further qualitative assessment of the deposit. However, even these methods are inaccurate and time consuming. Therefore, there are still opportunities for improvement.

本發明提供一種測定用於積層製造之陶瓷分散液中沉積物含量之方法。陶瓷分散液包括(a)作為連續相之自由基可固化單體,(b)作為分散相之二氧化矽,該分散相分散於連續相中且以按陶瓷分散液之總體積計55至70體積百分比之量存在,及(c)金屬粒子。該方法包括提供離心機以向陶瓷分散液施加重力及將陶瓷分散液樣品置於離心機中之樣品容器中的步驟。該方法亦包括向離心機中之陶瓷分散液施加25G至2000G之重力以自連續相沉澱一定量之二氧化矽,藉此形成沉積物,其包含安置於沉積物上之最頂層,其中最頂層包含金屬粒子以允許可視化。方法進一步包括量測陶瓷分散液中沉積物含量之步驟。量測步驟可如下進行:經由以分散液之總高度之百分比計算沉積物之高度,及/或傾析連續相且量測沉積物之質量以基於施加重力之前的分散液之總質量測定沉積物之質量百分比。The present invention provides a method of determining the amount of deposits in a ceramic dispersion for multilayer manufacturing. The ceramic dispersion comprises (a) a radically curable monomer as a continuous phase, (b) as a dispersed phase of cerium oxide, the dispersed phase being dispersed in the continuous phase and being 55 to 70 in terms of the total volume of the ceramic dispersion. The volume percentage is present, and (c) the metal particles. The method includes the steps of providing a centrifuge to apply gravity to the ceramic dispersion and placing the ceramic dispersion sample in a sample container in the centrifuge. The method also includes applying a gravity of 25G to 2000G to the ceramic dispersion in the centrifuge to precipitate a quantity of cerium oxide from the continuous phase, thereby forming a deposit comprising the topmost layer disposed on the deposit, wherein the topmost layer Contains metal particles to allow visualization. The method further includes the step of measuring the amount of deposits in the ceramic dispersion. The measuring step can be carried out by calculating the height of the deposit by a percentage of the total height of the dispersion, and/or decanting the continuous phase and measuring the mass of the deposit to determine the deposit based on the total mass of the dispersion before gravity is applied. Percentage of mass.

本發明提供一種測定用於積層製造之陶瓷分散液中沉積物含量之方法。陶瓷分散液在下文中描述為「分散液」。術語「積層製造」描述層中之建立部分,如此項技術中所熟知且如上文所述。術語「陶瓷」描述該分散液用於形成陶瓷製品,亦在下文更詳細地描述。術語「分散液」描述包括連續相及分散於連續相中之分散相之組合物。術語「沉積物」通常描述自連續相沉澱出之分散相的量。 分散液包括作為連續相之自由基可固化單體、作為分散相之二氧化矽及金屬粒子,該分散相分散於連續相中且以按陶瓷分散液之總體積計55至70體積百分比之量存在。各自描述於下文。 在各種實施例中,分散液為自由基可固化單體、二氧化矽及金屬粒子,基本上由其組成或由其組成。舉例而言,在「基本上由」上述組分「組成」之實施例中,分散液可不含不可藉由自由基機制聚合之單體、其他聚合物、此項技術中已知之任何類型之添加劑(包括本文所述之任何添加劑)、任何不為自由基引發劑之聚合引發劑及/或除二氧化矽以外之填充劑等,及/或其組合。或者,此等組分中之任何一或多者可以按分散液之總重量計小於25、20、15、10、5、4、3、2、1、0.1、0.05、0.01等,或其任何範圍之量存在。在各種非限制性實施例中,特此明確地涵蓋上述值之間的所有值及值範圍。自由基可固化單體: 分散液包括自由基可固化單體。此單體能夠經由自由基聚合與自身及/或與其他丙烯酸酯單體聚合,例如藉由暴露於UV光/能量、過氧化物或如此項技術中已知之其他自由基引發劑而引發。此單體充當分散液之連續(例如液體)相。自由基可固化單體可為丙烯酸酯或甲基丙烯酸酯。丙烯酸酯單體可為多官能性丙烯酸酯。可使用單一類型或大於一種類型之UV可固化丙烯酸酯單體。 適合之非限制性實例包括(甲基)丙烯酸異冰片酯、(甲基)丙烯酸莰酯、(甲基)丙烯酸三環癸酯、(甲基)丙烯酸二環戊酯、(甲基)丙烯酸二環戊烯酯、(甲基)丙烯酸環己酯、(甲基)丙烯酸苯甲酯、(甲基)丙烯酸4-丁基環己酯、丙烯醯基嗎啉、(甲基)丙烯酸、(甲基)丙烯酸2-羥乙酯、(甲基)丙烯酸2-羥丙酯、(甲基)丙烯酸2-羥丁酯、(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸異丙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸戊酯、(甲基)丙烯酸異丁酯、(甲基)丙烯酸第三丁酯、(甲基)丙烯酸戊酯、己內酯丙烯酸酯、(甲基)丙烯酸異戊酯、(甲基)丙烯酸己酯、(甲基)丙烯酸庚酯、(甲基)丙烯酸辛酯、(甲基)丙烯酸異辛酯、(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸壬酯、(甲基)丙烯酸癸酯、(甲基)丙烯酸異癸酯、(甲基)丙烯酸十三烷酯、(甲基)丙烯酸十一烷酯、(甲基)丙烯酸月桂酯、(甲基)丙烯酸硬脂酯、(甲基)丙烯酸異硬脂酯、(甲基)丙烯酸四氫呋喃酯、(甲基)丙烯酸丁氧基乙酯、乙氧基二乙醇(甲基)丙烯酸酯、(甲基)丙烯酸苯甲酯、(甲基)丙烯酸苯氧基乙酯、聚乙二醇單(甲基)丙烯酸酯、聚丙二醇單(甲基)丙烯酸酯、甲氧基乙二醇(甲基)丙烯酸酯、(甲基)丙烯酸乙氧基乙酯、甲氧基聚乙二醇(甲基)丙烯酸酯、甲氧基聚丙二醇(甲基)丙烯酸酯、二丙酮(甲基)丙烯醯胺、(甲基)丙烯酸β-羧乙酯、鄰苯二甲酸(甲基)丙烯酸酯、(甲基)丙烯酸二甲胺基乙酯、(甲基)丙烯酸二乙胺基乙酯、(甲基)丙烯酸丁基胺甲醯酯、(甲基)丙烯醯胺氟化(甲基)丙烯酸正-異丙酯、(甲基)丙烯酸7-胺基-3,7-二甲基辛酯、三羥甲基丙烷三(甲基)丙烯酸酯、(甲基)丙烯酸異戊四醇酯、二(甲基)丙烯酸乙二醇酯、雙酚A二縮水甘油醚二(甲基)丙烯酸酯、二環戊二烯二甲醇二(甲基)丙烯酸酯、[2-[1,1-二甲基-2-[(1-側氧基烯丙基)氧基]乙基]-5-乙基-1,3-二噁烷-5-基] 甲基丙烯酸酯;3,9-雙(1,1-二甲基-2-羥乙基)-2,4,8,10-四氧雜螺[5.5-]十一烷二(甲基)丙烯酸酯;二異戊四醇單羥基五(甲基)丙烯酸酯、丙氧基化三羥甲基丙烷(甲基)丙烯酸酯、丙氧基化新戊二醇二(甲基)丙烯酸酯、四乙二醇二(甲基)丙烯酸酯、聚乙二醇二(甲基)丙烯酸酯、1,4-丁二醇二(甲基)丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、新戊二醇二(甲基)丙烯酸酯、聚丁二醇二(甲基)丙烯酸酯、三丙二醇二(甲基)丙烯酸酯、三(甲基)丙烯酸甘油酯、磷酸單(甲基)丙烯酸酯及二(甲基)丙烯酸酯、二(甲基)丙烯酸C7-C20烷基酯、三(2-羥乙基)異氰尿酸酯三(甲基)丙烯酸酯、三(2-羥乙基)異氰尿酸酯二(甲基)丙烯酸酯、三環癸烷二基二甲基二(甲基)丙烯酸酯及其烷氧基化(例如乙氧基化及/或丙氧基化)型式,及三乙二醇二乙烯醚、丙烯酸羥乙酯之加合物及其組合。 在其他實施例中,丙烯酸酯單體為可包括所有甲基丙烯醯基、所有丙烯醯基或甲基丙烯醯基及丙烯醯基之任何組合的多官能性(甲基)丙烯酸酯。在一個實施例中,丙烯酸酯單體係選自丙氧基化三羥甲基丙烷三(甲基)丙烯酸酯、及丙氧基化新戊二醇二(甲基)丙烯酸酯及其組合。 在其他實施例中,丙烯酸酯單體具有大於2個、大於3個或大於4個官能團。或者,丙烯酸酯單體可恰好具有1、2、3、4、5、6、7、8、9或10個官能團。在一個實施例中,丙烯酸酯單體僅由單一多官能性(甲基)丙烯酸酯組分組成。在其他實施例中,丙烯酸酯單體係選自二環戊二烯二甲醇二丙烯酸酯、[2-[1,1-二甲基-2-[(1-側氧基烯丙基)氧基]乙基]-5-乙基-1,3-二噁烷-5-基]甲基丙烯酸酯、丙氧基化三羥甲基丙烷三丙烯酸酯及丙氧基化新戊二醇二丙烯酸酯,及其組合。在各種非限制性實施例中,特此明確地涵蓋上述值之間的所有值及值範圍。 或者,丙烯酸酯單體可為二環戊二烯二甲醇二(甲基)丙烯酸酯、丙氧基化三羥甲基丙烷三(甲基)丙烯酸酯及/或丙氧基化新戊二醇二(甲基)丙烯酸酯,且更特定言之,二環戊二烯二甲醇二丙烯酸酯、丙氧基化三羥甲基丙烷三丙烯酸酯及/或丙氧基化新戊二醇二丙烯酸酯中之一或多者。 可單獨或以兩種或大於兩種之組合使用上文所提及之丙烯酸酯單體。分散液可包括任何適合量之丙烯酸酯單體,只要二氧化矽以按分散液及自由基引發劑之總體積計55至70體積百分比之量存在且剪切稀化添加劑亦存在於分散液中即可。 在各種實施例中,自由基可固化單體經另外定義為(甲基)丙烯酸酯單體,其可為具有至少一個丙烯酸酯官能團及/或至少一個甲基丙烯酸酯官能團之任何單體。換言之,術語「(甲基)」描述「甲基」係視情況存在且非必需。因此,單體可為「丙烯酸酯」單體(無甲基)或包括甲基之「甲基丙烯酸酯」單體。典型的是本文所用之(甲基)丙烯酸酯單體為選自脂族丙烯酸酯、脂族甲基丙烯酸酯、環脂族丙烯酸酯、環脂族甲基丙烯酸酯及其組合之群的化合物。應理解,化合物、脂族丙烯酸酯、脂族甲基丙烯酸酯、環脂族丙烯酸酯及環脂族甲基丙烯酸酯中之每一者包括烷基。此等化合物中之烷基可包括至多20個碳原子。 可選擇為(甲基)丙烯酸酯單體中之一者的脂族丙烯酸酯係選自由以下組成之群:丙烯酸甲酯、丙烯酸乙酯、丙烯酸丙酯、丙烯酸正丁酯、丙烯酸異丁酯、丙烯酸叔丁酯、丙烯酸己酯、丙烯酸2-乙基己酯、丙烯酸異辛酯、丙烯酸異壬酯、丙烯酸異戊酯、丙烯酸十三烷酯、丙烯酸硬脂酯、丙烯酸月桂酯及其混合物。可選擇為(甲基)丙烯酸酯單體中之一者的脂族甲基丙烯酸酯係選自由以下組成之群:甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丙酯、甲基丙烯酸正丁酯、甲基丙烯酸異丁酯、甲基丙烯酸第三丁酯、甲基丙烯酸己酯、甲基丙烯酸2-乙基己酯、甲基丙烯酸異辛酯、甲基丙烯酸異壬酯、甲基丙烯酸異戊酯、甲基丙烯酸十三烷酯、甲基丙烯酸硬脂酯、甲基丙烯酸月桂酯及其混合物。可選擇為(甲基)丙烯酸酯單體中之一者的環脂族丙烯酸酯為丙烯酸環己酯,且可選擇為(甲基)丙烯酸酯單體中之一者的環脂族甲基丙烯酸酯為甲基丙烯酸環己酯。 在各種實施例中,丙烯酸酯單體以大於零且至多分散液之約40體積%之量存在。在其他實施例中,丙烯酸酯單體以按分散液之總體積重量計2至40、5至40、5至35、5至30、10至30、10至25、10至20、15至30、15至25、15至20或1、2、3、4或5體積百分比之量存在。在各種非限制性實施例中,特此明確地涵蓋上述值之間的所有值及值範圍。 亦可使用不為丙烯酸酯之自由基可固化單體。此等單體可包括此項技術中已知之任何單體,諸如包括碳-碳雙鍵(例如烯系不飽和化合物)、碳-碳三鍵及/或任何其他可經由自由基聚合機制聚合之化合物之彼等。在各種替代實施例中,分散液不含不為(甲基)丙烯酸酯之單體。二氧化矽 分散液亦包括二氧化矽。二氧化矽為分散於上文所述之連續相中之分散相。舉例而言,二氧化矽粒子可分散於丙烯酸酯單體中,該單體通常為液體或液體樣。二氧化矽以按分散液之總體積計55至70體積百分比之量存在。在各種實施例中,二氧化矽以按分散液之總體積計的55、56、57、58、59、60、61、62、63、64、65、66、67、68、69或70體積百分比存在。在各種非限制性實施例中,特此明確地涵蓋上述值之間的所有值及值範圍。 在各種實施例中,二氧化矽另外定義為二氧化矽粒子,例如微米粒子及/或奈米粒子。舉例而言,二氧化矽(粒子)可為90、95、99或大致100重量%的微米粒子、奈米粒子或微米粒子及奈米粒子之組合。奈米粒子可描述為平均粒度在1奈米(nm)至999 nm之間的彼等粒子。微米粒子可替代地描述為平均粒度為1微米(µm)至999 µm之彼等粒子。在各種實施例中,二氧化矽具有介於0.04微米至90微米範圍之粒度(分佈)。在各種實施例中,二氧化矽之粒度為1微米至90微米且包括5、4、3、2、1、0.5、0.1、0.05或0.01重量或體積百分比或更少的粒度為10奈米至999奈米之奈米粒子。在各種非限制性實施例中,特此明確地涵蓋所有上述值之間的所有值及值範圍(包括端點)以供使用。 在各種實施例中,二氧化矽包含粒度為1至90微米之微米粒子及粒度為10至500奈米之奈米粒子之組合,微米粒子:奈米粒子之平均粒度比率為1:2至1:200。在其他實施例中,二氧化矽包含粒度為1至90微米之微米粒子及粒度為10至1000奈米之奈米粒子之組合,微米粒子:奈米粒子之平均粒度比率為1:2至1:200。在其他非限制性實施例中,此等比率可反轉。在各種非限制性實施例中,特此明確地涵蓋1與90微米、10與500奈米以及1:2與1:200之間的所有值及值範圍(包括端點)以供使用。 或者,奈米粒子可描述為平均粒度在1奈米(nm)至999 nm之間的彼等粒子。微米粒子可替代地描述為平均粒度為1微米(µm)至999 µm之彼等粒子。在各種實施例中,二氧化矽具有介於0.04微米至90微米範圍之粒度(分佈)。在各種非限制性實施例中,特此明確地涵蓋所有上述值之間的所有值及值範圍(包括端點)以供使用。 可根據ISO13320:2009使用雷射繞射粒度分析來量測粒度。用於量測奈米粒子之平均粒徑的適合裝置為購自Horiba Instruments, Inc之LB-550機器,其藉由動態光散射量測粒徑。在各種非限制性實施例中,特此明確地涵蓋上述值之間的所有值及值範圍。 二氧化矽可包括大於85重量%、90重量%或95重量%之二氧化矽(SiO2 )。市售二氧化矽之某些非限制性實例包括Crystallite 3K-S、Crystallite NX-7、Crystallite MCC-4、Crystallite CMC-12、Crystallite A-1、Crystallite AA、Crystallite C、Crystallite D、Crystallite CMC-1、Crystallite C-66、Crystallite 5X、Crystallite 2A-2、Crystallite VX-S2、Crystallite VX-SR、Crystallite VX-X、Crystallite VX-S、Huselex RD-8、Huselex RD-120、Huselex MCF-4、Huselex GP-200T、Huselex ZA-30、Huselex RD-8、Huselex Y-40、Huselex E-2、Huselex Y-60、Huselex E-1、Huselex E-2、Huselex FF、Huselex X、Huselex ZA-20、IMSIL A-25、IMSIL A-15、IMSIL A-10及IMSIL A-8 (Ryushin Co., Ltd.);ORGANOSILICASOL MEK-EC-2102、Organosilicasol MEK-EC-2104、Organosilicasol MEK-AC-2202、Organosilicasol MEK-AC-4101、Organosilicasol MEK-AC-5101、Organosilicasol MIBK-SD、Organosilicasol MIBK-SD-L、Organosilicasol DMAC-ST、Organosilicasol EG-ST、Organosilicasol IPA-ST、Organosilicasol IPA-ST-L、Organosilicasol IPA-ST-L-UP、Organosilicasol IPA-ST-ZL、Organosilicasol MA-ST-M、Organosilicasol MEK-ST、Organosilicasol MEK-ST-L、Organosilicasol MEK-ST-UP、Organosilicasol MIBK-ST、Organosilicasol MT-ST、Organosilicasol NPC-ST-30、Organosilicasol PMA-ST、Sunsphere H-31、Sunsphere H-32、Sunsphere H-51、Sunsphere H-52、Sunsphere H-121、Sunsphere H-122、Sunsphere L-31、Sunsphere L-51、Sunsphere L-121、Sunsphere NP-30、Sunsphere NP-100及Sunsphere NP-200 (Asahi Glass Co., Ltd.);Silstar MK-08及MK-15 (Nippon Chemical Industrial Co., Ltd.);FB-48 (Denki Kagaku Kogyo K.K.);Nipsil SS-10、Nipsi:L SS-15、Nipsil SS-10A、Nipsil SS-20、Nipsil SS-30P、Nipsil SS-30S、Nipsil SS-40、Nipsil SS-50、Nipsil SS-50A、Nipsil SS-70、Nipsil SS-100、Nipsil SS-10F、Nipsil SS-50F、Nipsil SS-50B、Nipsil SS-50C、Nipsil SS-72F、Nipsil SS-170X、Nipsil SS-178B、Nipsil E150K、Nipsil E-150J、Nipsil E-1030、Nipsil ST-4、Nipsil E-170、Nipsil E-200、Nipsil E-220、Nipsil E-200A、Nipsil E-1009、Nipsil E-220A、Nipsil E-1011、Nipsil E-K300、Nipsil HD、Nipsil HD-2、Nipsil N-300A、Nipsil L-250、Nipsil G-300、Nipsil E-75、Nipsil E-743及Nipsil E-74P (Nippon Silica Industry, Ltd.)。在其他實施例中,二氧化矽為如美國專利第6,013,714號中所述,其在與二氧化矽相關之各種非限制性實施例中明確以引用之方式併入本文中。 二氧化矽可用矽烷偶合劑表面處理。可用於此目的之矽烷偶合劑包括乙烯基三氯矽烷、乙烯基參(β-甲氧基乙氧基)矽烷、乙烯基三乙氧基矽烷、乙烯基三甲氧基矽烷、γ-(甲基丙烯醯氧基丙基)三甲氧基矽烷、β-(3,4-環氧環己基)乙基三甲氧基矽烷、γ-甘胺醯氧基丙基三甲氧基矽烷、γ-甘胺醯氧基丙基甲基二乙氧基矽烷、N-β(胺乙基)胺丙基三甲氧基矽烷、N-β-(胺乙基)-γ-胺基丙基甲基二甲氧基矽烷、γ-胺基丙基三乙氧基矽烷、N-苯基-γ-胺基丙基三甲氧基矽烷、γ-巰基丙基三甲氧基矽烷及γ-氯丙基三甲氧基矽烷。 在各種實施例中,適合於打印100 µm層之典型二氧化矽調配物闡述於下表中。 在其他實施例中,適合於打印50 μ層之調配物見於下表中。 *指示如由Remet提供之Angular-200經由325目篩來篩分。 **指示如由Imerys提供之RP-1經由325目篩來篩分。 Teco-sphere Microdust可商購自Imerys Fused Materials Greenville, Inc., 109 Coile Street, Greeville, TN, USA。 Angular-200可商購自Remet Corporation, 210 Commons Road, Utica, NY 13502-6395, USA。 RP-1可商購自Imerys Fused Materials Greenville, Inc., 109 Coile Street, Greeville, TN, USA。 A-10可商購自Almatis Inc., 501 West Park Road, Leetsdale, Pa 15056, USA。 Milled Zircon Fine Grind可商購自Remet Corporation, 210 Commons Road, Utica, NY 13502-6395, USA。 在其他實施例中,增加陶瓷裝載會增加黏度及粒子-粒子相互作用之概率,其降低分散液之沉降速率。使陶瓷負載最大化亦可增加陶瓷製品之密度、減少開裂及分層缺陷且增加陶瓷製品之機械強度。當陶瓷負載達到負載之64-66體積百分比時,黏度可開始指數地增加。因此,在各種實施例中,64體積百分比陶瓷負載用於維持對於3D打印而言足夠低之調配物黏度。金屬粒子 分散液亦包括金屬粒子。金屬粒子通常為鋼,但可為任何類型的金屬。金屬粒子通常源自用於形成分散液之金屬設備且通常不由技術員獨立地添加至分散液。換言之,金屬粒子通常在形成分散液時原位產生。然而,在各種實施例中,本發明不以此方式受限制,使得金屬粒子本身及/或額外金屬粒子可獨立地手動添加,不管任何金屬粒子是否原位產生。金屬粒子可以按分散液之總重量計小於0.5、0.4、0.3、0.2、0.1、0.05、0.01、0.005、0.001、0.0005或0.0001重量%之量存在。在各種非限制性實施例中,特此明確地涵蓋所有上述值之間的所有值及值範圍(包括端點)以供使用。染料及 / 或顏料: 分散液亦可包括染料及/或顏料,例如以按分散液之總重量%計0.01至0.3重量%之量存在。在各種實施例中,染料及/或顏料以按分散液之總重量%計0.05至0.25、0.1至0.2或0.15至0.2重量%之量存在。在各種實施例中,染料為蒽醌染料。在其他實施例中,顏料之密度大於3、3.5、4、4.5或5 g/cm3 。在各種非限制性實施例中,特此明確地涵蓋所有上述值之間的所有值及值範圍(包括端點)以供使用。自由基引發劑: 在各種實施例中,分散液包括自由基引發劑。通常,自由基引發劑為UV活化之自由基引發劑。舉例而言,自由基引發劑通常藉由暴露至UV光而引發,其導致自由基形成,隨後再傳播該自由基。然而,可單獨或與UV活化之自由基引發劑組合使用非UV引發之自由基引發劑。 自由基引發劑可經描述為自由基光引發劑。自由基光引發劑通常分成稱為「Norrish I型」之藉由裂解形成自由基之彼等,及稱為「Norrish II型」之藉由氫提取形成自由基之彼等。Norrish II型光引發劑通常需要氫供體,其充當自由基來源。由於引發係基於雙分子反應,因此Norrish II型光引發劑一般比基於自由基之單分子形成的Norrish I型光引發劑慢。然而,Norrish II型光引發劑通常在近UV光譜區中具有更佳光吸收特性。諸如二苯甲酮、9-氧硫、二苯基乙二酮及醌類之芳族酮在諸如醇、胺或硫醇之氫供體存在下之光解導致形成產生自羰基化合物之自由基(羰自由基型自由基)及衍生自氫供體之另一自由基。乙烯基單體之光聚合通常藉由產生自氫供體之自由基引發。由於位阻及不成對電子之非定域化,羰自由基通常不與乙烯基單體反應。 在各種實施例中,自由基引發劑係選自苯甲醯膦氧化物、芳基酮、二苯甲酮、羥基化酮、1-羥基苯基酮、縮酮、茂金屬及其組合。在其他實施例中,自由基引發劑係選自2,4,6-三甲基苯甲醯基二苯基膦氧化物及2,4,6-三甲基苯甲醯基苯基、乙氧基膦氧化物、雙(2,4,6-三甲基苯甲醯基)-苯基膦氧化物、2-甲基-1-[4-(甲硫基)苯基]-2-嗎啉基丙酮-1,2-苯甲基-2-(二甲胺基)-1-[4-(4-嗎啉基)苯基]-1-丁酮、2-二甲胺基-2-(4-甲基-苯甲基)-1-(4-嗎啉-4-基-苯基)-丁-1-酮、4-苯甲醯基-4'-甲基二苯基硫醚、4,4'-雙(二乙胺基)二苯甲酮及4,4'-雙(N,N'-二甲胺基)二苯甲酮(米蚩酮(Michler's ketone))、二苯甲酮、4-甲基二苯甲酮、2,4,6-三甲基二苯甲酮、二甲氧基二苯甲酮、1-羥基環己基苯酮、苯基(1-羥基異丙基)酮、2-羥基-1-[4-(2-羥基乙氧基)苯基]-2-甲基-1-丙酮、4-異丙基苯基(1-羥基異丙基)酮、寡聚-[2-羥基-2-甲基-1-[4-(1-甲基乙烯基)苯基]丙酮]、樟腦醌、4,4'-雙(二乙胺基)二苯甲酮、二苯基乙二酮二甲基縮酮、雙(η 5-2-4-環戊二烯-1-基)雙[2,6-二氟-3-(1H-吡咯-1-基)苯基]鈦及其組合。 通常,當形成分散液時,評估存在之光引發劑之波長敏感性以確定其是否將藉由選擇之輻射源活化。對於在300-475 nm波長範圍內發光之光源,尤其在365 nm、390 nm或395 nm處發光之光源,在此等範圍內吸收之適合之自由基引發劑之非限制性實例包括(但不限於)苯甲醯膦氧化物,諸如2,4,6-三甲基苯甲醯基二苯基膦氧化物(獲自BASF之Lucirin TPO)及2,4,6-三甲基苯甲醯基苯基, 乙氧基膦氧化物(獲自BASF之Lucirin TPO-L)、雙(2,4,6-三甲基苯甲醯基)-苯基膦氧化物(獲自Ciba之Irgacure 819或BAPO)、2-甲基-1-[4-(甲硫基)苯基]-2-嗎啉基丙酮-1(獲自Ciba之Irgacure 907)、2-苯甲基-2-(二甲胺基)-1-[4-(4-嗎啉基)苯基]-1-丁酮(獲自Ciba之Irgacure 369)、2-二甲胺基-2-(4-甲基-苯甲基)-1-(4-嗎啉-4-基-苯基)-丁-1-酮(獲自Ciba之Irgacure 379)、4-苯甲醯基-4'-甲基二苯基硫醚(獲自Chitec之Chivacure BMS)、4,4'-雙(二乙胺基)二苯甲酮(獲自Chitec之Chivacure EMK)及4,4'-雙(N,N'-二甲胺基)二苯甲酮(米蚩酮)。亦適合的為其組合。 另外,可使用光敏劑,例如當使用LED光源時。適合之光敏劑之非限制性實例包括:蒽醌,諸如2-甲基蒽醌、2-乙基蒽醌、2-第三丁基蒽醌、1-氯蒽醌及2-戊基蒽醌,9-氧硫𠮿及氧蔥酮,諸如異丙基9-氧硫𠮿、2-氯9-氧硫𠮿、2,4-二乙基9-氧硫𠮿及1-氯-4-丙氧基9-氧硫𠮿、甲基苯甲醯基甲酸酯(獲自Ciba之Darocur MBF)、甲基-2-苯甲醯基苯甲酸酯(獲自Chitec之Chivacure OMB)、4-苯甲醯基-4'-甲基二苯基硫醚(獲自Chitec之Chivacure BMS)、4,4'-雙(二乙胺基)二苯甲酮(獲自Chitec之Chivacure EMK)。 對於在100至300 nm之波長範圍內發光之光源,可使用光敏劑,諸如二苯甲酮,諸如二苯甲酮、4-甲基二苯甲酮、2,4,6-三甲基二苯甲酮、二甲氧基二苯甲酮,及1-羥基苯基酮,諸如1-羥基環己基苯基酮、苯基(1-羥基異丙基)酮、2-羥基-1-[4-(2-羥基乙氧基)苯基]-2-甲基-1-丙酮及4-異丙基苯基(1-羥基異丙基)酮、二苯基乙二酮二甲基縮酮及寡聚-[2-羥基-2-甲基-1-[4-(1-甲基乙烯基)苯基]丙酮] (獲自Lamberti之Esacure KIP 150),及其組合。 對於在475至900 nm之波長範圍內發光之光源,可使用自由基引發劑,諸如樟腦醌、4,4'-雙(二乙胺基)二苯甲酮(獲自Chitec之Chivacure EMK)、4,4'-雙(N,N'-二甲胺基)二苯甲酮(米蚩酮)、雙(2,4,6-三甲基苯甲醯基)-苯基膦氧化物(「BAPO」或獲自Ciba之Irgacure 819),及獲自Spectra Group Limited, Inc.之可見光光引發劑,諸如H-Nu 470、H-Nu-535、H-Nu-635、H-Nu-Blue-640及H-Nu-Blue-660,及其組合。 返回參看UV光,光可為UVA輻射,其為波長在約320與約400 nm之間的輻射;UVB輻射,其為波長在約280與約320 nm之間的輻射;及/或UVC輻射,其為波長在約100與約280 nm之間的輻射。 分散液可包括任何量的自由基引發劑,只要存在其他所需組分。舉例而言,自由基引發劑可以大於零且至多分散液之約10重量%、分散液之約0.1至約10重量%或分散液之約1至約6重量%之量存在。在各種非限制性實施例中,特此明確地涵蓋上述值之間的所有值及值範圍。剪切薄化添加劑: 在其他實施例中,分散液亦包括剪切稀化添加劑以使分散液中之二氧化矽沉降最小化。剪切稀化添加劑可選自膨潤土、脲-多元醇-脂族共聚物、丙烯酸系共聚物及其組合。在一個實施例中,剪切稀化添加劑為膨潤土。在另一實施例中,剪切稀化添加劑為脲-多元醇-脂族共聚物。在另一實施例中,剪切稀化添加劑為丙烯酸聚合物。可使用之剪切稀化添加劑以BYK 410、420或430市售。 在各種實施例中,丙烯酸系共聚物具有以下結構:其中R1 及R2 中之每一者獨立地為基團(Cn H2n )OH,其中n為15至20。舉例而言,n可為15、16、17、18、19或20。此外,OH基團可存在於R1 及R2 之鏈上之任何位置處。R1 及R2 可具有相同或不同鏈長。在一個實施例中,丙烯酸系共聚物為N,N'-乙烷-1,2-二基雙(12-羥基十八-1-醯胺)且具有以下結構:N,N'-乙烷-1,2-二基雙(12-羥基十八-1-醯胺) 其中R1 及R2 之n均為17。在其他實施例中,Attagel 50之丙烯酸系共聚物購自BASF。 在其他實施例中,剪切稀化添加劑為具有以下結構之脲-多元醇-脂族共聚物:。 在其他實施例中,剪切稀化添加劑為具有以下結構之脲-多元醇-脂族共聚物:。 在其他實施例中,剪切稀化添加劑為改質氫化蓖麻油。改質氫化蓖麻油可為獲自BASF之EFKA RM1900。添加劑 分散液亦可包括,或不含,或包括小於10、9、8、7、6、5、4、3、2、1、0.5、0.1、0.05或0.01重量%之一或多種下文闡述之添加劑。分散液可替代地包括0.01、0.05、0.1、0.5、1、2、3、4、5、6、7、8、9或10重量%之一或多種下文闡述之添加劑。此類添加劑包括(但不限於)美國專利第5,665,792號及美國專利第6,099,787號中所述之彼等,與各種非限制性實施例中之此類添加劑相關之該等專利中之每一者之揭示內容以引用之方式併入本文中。在各種實施例中,添加劑係選自第IA及IIA族金屬之烴羧酸鹽,諸如碳酸氫鈉、碳酸氫鉀及碳酸銣、聚乙烯吡咯啶酮、聚丙烯腈及其組合。其他添加劑包括染料、顏料、抗氧化劑、濕潤劑、光敏劑、鏈轉移劑、調平劑、消泡劑、界面活性劑、氣泡破碎劑、抗氧化劑、除酸劑、增稠劑、阻燃劑、矽烷偶合劑、紫外線吸收劑、樹脂粒子、核殼粒子抗衝擊改質劑、可溶聚合物及嵌段共聚物。在各種非限制性實施例中,特此明確地涵蓋包括上述彼等值及在其之間的所有值及值範圍以供用於本文中。上述組分中之任一者或多者可與任何一或多種其他組分以整體或以各種部分組合。物理特性 分散液亦通常具有相比於不含剪切薄化添加劑之相同組合物小至少75、80、85、90、95或99%之沉降速率。沉降速率通常藉由以下方法測定。然而,可使用此項技術中之任何方法。測定分散液中沉積物含量之方法 本發明之方法包括提供離心機以向陶瓷分散液施加重力、將陶瓷分散液樣品置於離心機中之樣品容器中、向離心機中之陶瓷分散液施加25G至2000G之重力以自連續相沉澱一定量之二氧化矽,藉此形成沉積物,其包含安置於沉積物上之最頂層(25),其中最頂層(25)包含金屬粒子以允許可視化,及量測陶瓷分散液中之沉積物含量。量測步驟可另外定義為,或包括,或為(i)以分散液之總高度之百分比計算沉積物之高度(例如如圖1A中所示),及/或(ii)傾析連續相及量測沉積物之質量以測定按分散液之總質量計之沉積物的質量百分比,隨後施加重力(例如如圖1B中所示)。各自更詳細地描述於下文。 在一個實施例中,該方法通常使用離心機向分散液施加向心力,該等向心力為重力之法線力的許多倍。此增加之G力加速粒子隔離及沉澱。可使用任何離心裝置。然而,當離心機經定向以使得含有測試分散液之離心管與施加之向心力之方向對準,使得所得沉澱物頂表面平行於離心管之頂部及底部時,傾向於更易於以定量方式評估沉積物含量。以此方式,沉澱物(20)之厚度可僅藉由使用規定標度,諸如毫米標度容易地量測。可使用允許離心管擺動至此描述位置中之擺動型離心機。或者,可使用將離心管安裝至平面圓板上之離心機,該平面圓板諸如以LUMiSizer製造及銷售之裝置中所發現地旋轉。 在各種實施例中,使用LUMiSizer 6112-24分散液分析儀。此分析儀經設計以藉由在離心管旋轉時照射一束光通過離心管而加速及遵循沉澱法。當使用包括大粒子及小粒子之分散液時,可藉由肉眼觀測到大量的大粒子沉澱物(20),而其餘的分散液仍對LUMiSizer 6112-24之探針不透明。 第一方法自沉澱物(20)傾析分散液(30)(參見圖1A),例如如圖1B中所示,且在施加離心向心力之前以分散液之總質量之百分比量測沉澱物(20)之質量。第二方法將規定標度與離心管及管底部、分散液頂部及沉澱物(20)頂部之間的距離對準且以分散液之總高度之百分比報導沉澱物(20)之高度。 離心機之旋轉速率可變化以使測試時間最小化,使得可在避免所有或大部分粒子經沉澱時觀測到可量測量之沉澱物(20)。藉由以下方程式計算施加至分散液之加速度:ac = v2 / r = ω2 r= (2 π ns )2 r = (2 π nrpm / 60)2 r 其中 ac = 向心加速度 ( m / s2 ) v = 切向速度 ( m / s ) r = 自旋轉中心至分散液管柱之中點 ( m ) 的圓形半徑 ω = 角速度 ( rad / s ) ns = 轉數每秒 ( 1 / s ) nrpm = 轉數每分 ( 1 / min ) 樣品可藉由將分散液移液至離心管中至45 mm之高度而製備。聚醯胺離心管可用於藉由丙烯酸酯單體預防管之溶解。2000 G之加速力通常沉澱所有粒子,其並非所需的。500 G力可達成相同非所需結果。對應於46 G之約600 RPM之旋轉速度可再現地產生可量測量之沉澱物(20)。施加旋轉之時間可隨後變化以確定最優測試時間。可隨後以10分鐘時間間隔自離心機移出兩個測試樣品。更特定言之,管可在25℃下在46×重力(例如600 rpm)下旋轉10-60分鐘。離心可開始於一整套管(各12個)。每10分鐘,可隨後暫停離心以移出一個管用於沉積物量測,同時其餘的管繼續進行離心。沉積物之高度及分散液之總高度可藉由具有±0.5 mm之精確度的標尺量測。 適當加速度可至少部分取決於分散液中之粒子的特性。在一個實施例中,當粒子為陶瓷粒子(D50=9 µm,主要包括二氧化矽粒子與小部分氧化鋁以及大至90 µm之鋯石粒子)時,產生大致46 G之加速度為足夠的。在各種實施例中,G力為25至100、30至95、35至90、40至85、45至80、50至75、55至70、60至65、40至50、40至45或45至50 G。在其他實施例中,G力為100至2000、200至1900、300至1800、400至1700、500至1600、600至1500、700至1400、800至1300、900至1200或1000至1100 G。 在其他實施例中,沉積物邊界之可視化可藉由添加小分率之顏料(0.1 w%之Oracet Blue 640)定製。在無顏料的情況下,沉積物及上清液之界面可很少地檢測到,因為本發明之分散液通常不具有透明上清液。取而代之,僅來自沉積物之最大粒子傾向於顯而易見,而大多數陶瓷小粒子保持懸浮於上清液中,使其不透明。 分散液使用ASTM D 2196-99在25℃及30 RPM下之黏度通常為500至4,000 cps。在各種實施例中,使用ASTM D 2196-99在25℃及30 RPM下之黏度為600至3,900、700至3,800、800至3,700、900至3,600、1,000至3,500、1,100至3,400、1,200至3,300、1,300至3,200、1,400至3,100、1,500至3,000、1,600至2,900、1,700至2,800、1,800至2,700、1,900至2,600、2,000至2,500、2,100至2,400或2,200至2,300 cps。形成分散液之方法 本發明亦提供形成分散液之方法。該方法包括提供UV可固化丙烯酸酯單體、提供二氧化矽、提供自由基引發劑及提供剪切薄化添加劑之步驟。該方法亦包括組合UV可固化丙烯酸酯單體、二氧化矽、自由基引發劑及剪切薄化添加劑以形成分散液之步驟。此等組分中之一或多者可與任何一或多種其他組分以整體或以各種部分組合。 在各種非限制性實施例中,為了降低對於3D打印而言足夠之分散液黏度及避免大於一個打印層厚度之聚結粒子的存在,二氧化矽粒子必須在混合期間經歷高剪切以打破大型二氧化矽聚結物。此需要經由在混合時向1.7%w分散劑Variquat CC 42 NS與11.6%w主要丙烯酸單體之混合物中緩慢添加86.7%w二氧化矽粉末,接著連續剪切混合此高黏度糊漿幾個小時而製備二氧化矽糊漿濃縮物(「二氧化矽濃縮物」)。在各種實施例中,此二氧化矽濃縮物接著與其餘的液體成分(例如「光聚合物稀釋劑」)混合以降低適合於3D打印之分散液黏度。 二氧化矽光聚合物分散液例如可使用高剪切混合製備,諸如藉由經Chemineer製造之錨-雙螺旋混合器國家委員會(National Board)編號/U-1 131或使用購自Amazon.com之KFE5T Flex Edge Beater之5夸脫KitchenAid混合器提供之高剪切混合。在一些實施例中,重要的是具有高黏度二氧化矽濃縮物之足夠剪切以在藉由添加光聚合物稀釋劑降低黏度之前使二氧化矽解聚。舉例而言,可向裝備有耐綸塗佈之平板式攪拌器的5夸脫KitchenAid混合器中添加0.10 Kg分散劑Variquat CC 42 NS及0.7 Kg丙烯酸單體。此等液體成分可隨後以最慢速度設定混合1分鐘。二氧化矽粉末可隨後以小等分試樣添加,使得稠度不超出糊漿階段,同時允許等分試樣添加之間的足夠混合以將黏度降低回至高黏度液體。二氧化矽添加通常需要45-60分鐘。攪拌器可隨後變為曲邊攪拌器以藉由在攪拌葉片與混合槽壁之間具有較小清除率而增大使二氧化矽聚結物破碎之剪切力。攪拌可以此方式再繼續兩小時。隨著黏度由於二氧化矽解聚而降低,攪拌速度可增加,然而,攪拌速度應減速以將混合物之溫度維持於低於50℃以避免分散液聚合。此二氧化矽濃縮物可隨後與其餘的液體成分(「光聚合物稀釋劑」)混合以降低適合於3D打印之分散液黏度。 在裝備有溫度控制器之混合容器,諸如Chemineer容器中,除攪拌速度以外,容器之溫度可藉由冷卻水套控制。通常但非必需,在混合時間結束時使用較高攪拌速度以確保聚結物破碎。任何高剪切葉片或槳葉(諸如雙螺旋)將提供使聚結物破碎之足夠剪切。陶瓷製品 分散液可用於形成陶瓷製品。陶瓷製品不受特定限制且可為此項技術中已知之任何陶瓷製品。舉例而言,陶瓷製品通常為陶瓷芯或陶瓷殼,其產生用於鎳超合金部分之熔模鑄造的模具。在其他實施例中,分散液可用於形成陶瓷製品,該陶瓷製品參與金屬部件及許多不同類型鑄造物之鑄造或形成。形成陶瓷製品之方法 本發明亦提供一種自分散液形成陶瓷製品之方法。該方法包括A.向表面塗覆陶瓷分散液之層及B.選擇性地逐影像暴露該層至光化輻射以形成成像截面之步驟。該方法亦包括C.向成像截面塗覆陶瓷分散液之第二層及D.選擇性地逐影像暴露第二層至光化輻射以形成第二成像截面之步驟。該方法亦包括E.重複步驟(C)及(D)以產生三維陶瓷生坯製品及F.在爐中燒結該三維陶瓷生坯製品以形成陶瓷製品之步驟。 A.向表面塗覆陶瓷分散液之層之步驟可另外定義為向表面塗覆厚度為50至100、55至95、60至90、65至85、70至80或75至80 µm之分散液之層。此外,表面不受特定限制且可為此項技術中已知之任何表面。舉例而言,通常,零件結構中之所有層具有相同厚度,例如50或100 µm。然而,層可為150或200 µm厚,但接著,傾斜表面上之階梯步進可能過大。在各種實施例中,建立以較大層厚度形成豎直壁之一系列層,同時建立以較小層厚度形成傾斜或圓形表面之層。較厚層傾向於較快地建立。然而,需要零件之輪廓區域使階梯高度最小化。 塗覆步驟通常另外定義為使用由電腦控制之刮刀進行塗覆。刮刀可具有1-3個擋板,其中刀片可封閉或可不封閉,使得施加之部分真空將分散液向上抽拉至刀片中以輔助沉積至前一層部分表面上。 B.選擇性地逐影像暴露層至光化輻射之步驟可另外定義為暴露於325-365 nm範圍內之UV雷射,其藉由X-Y掃描鏡定向至分散液之表面上。鏡之電腦控制可用於繪製零件之橫截面,使得僅零件截面選擇性地接收UV輻射。或者,波長為260、265、280、310、325及340 nm、365、375及385 nm及/或405 nm或其組合之一組LED燈可自數字微鏡面陣列(DLP晶片)反射以在分散液之表面上暴露層截面影像,使得僅零件截面選擇性地接收UV輻射。C.向成像截面塗覆陶瓷分散液之第二層之步驟可與步驟A相同或可在一或多個方面不同。舉例而言,第二層可就組成、厚度、尺寸、塗覆方法等而言與第一層相同或不同。 D.選擇性地逐影像暴露第二層至光化輻射以形成第二成像截面之步驟可與步驟B相同或可在一或多個方面不同。舉例而言,第二層可選擇性地以與第一層相同或不同之方式暴露,可暴露於相同或不同光化輻射,且可相比於第二層相同、更多或更少地暴露於輻射。 E.重複步驟(C)及(D)以產生三維陶瓷生坯製品之步驟可進行一次或多次。舉例而言,步驟(C)及(D)可重複如由熟習此項技術者選擇之次數,例如50至5,000次。 F.在爐中燒結三維陶瓷生坯製品以形成陶瓷製品之步驟通常另外定義為在爐中在1100-1600℃的溫度下加熱。通常,時間及溫度可為此項技術中已知之任何時間及溫度。此外,爐類型亦可為此項技術中已知之任何爐類型。 此外,該方法可替代地描述為三維打印該陶瓷生坯製品。因此,該方法可包括在此項技術中稱為與三維打印相關之任何一或多個步驟。在各種非限制性實施例中,該方法之一或多個步驟可如以下各者中所述: (A) Rapid Prototyping & Manufacturing: Fundamentals of StereoLithography, 1992年1月15日, Paul F. Jacobs; (B) Stereolithography & Other RP&M Technologies: From Rapid Prototyping to Rapid Tooling, Paul F Jacobs, 1995; (C) 美國專利第4,093,017號; (D) Integrally Cored Ceramic Investment Casting Mold Fabricated By Ceramic Stereolithography, Chang-Jun Bae; (E) Parametric Study And Optimization Of Ceramic Stereolithography, Kahn Chia Wu;及/或 (F) Towards Inert Cores for Investment Casting, Martin Riley,與各種非限制性實施例中之該方法相關之其中之每一者明確地全文併入本文中。 該方法亦可包括在燒結步驟之前後固化三維陶瓷生坯製品之步驟。儘管大部分分散液通常在零件建立過程期間藉由提供之輻射固化,零件通常僅部分聚合。後固化步驟可另外描述為SL部分經後固化以基本上完成聚合過程且改良陶瓷生坯製品之最終機械強度之情況。可使用3D Systems Inc.後固化裝置(PCA),其基本上為具有在裝置內輻射及反射之UV光源的「烘箱」。PCA具有轉盤,其提供更分佈式的光化UV發光暴露。此裝置之標準後固化時間為60分鐘。 在各種實施例中,可使用Prodways L5000機器且可由熟習此項技術者選擇特定參數。在其他實施例中,可使用基於雷射之立體微影系統。再另外,可使用UV 3D打印,其經由玻璃板自底部暴露光聚合物層(而非自暴露於自由空氣之頂部打印)。在所有此等系統中,可由熟習此項技術者選擇參數、循環時間等。陶瓷生坯製品 本發明亦提供陶瓷生坯製品本身。陶瓷生坯製品可經固化、部分固化或未固化,例如藉由UV輻射。換言之,陶瓷生坯製品可包括固化、部分固化或未固化單體,如上文所述。在各種實施例中,陶瓷生坯製品係使用足以固化層厚度之200% (亦即在100 µm層上過固化100 µm)之UV暴露固化。在此類實施例中,陶瓷生坯製品通常具有大於10 MPa、大於40 MPa、大於100 MPa之彎曲模量,如藉由ASTM D790所量測。陶瓷光聚合物調配物及UV暴露之組合應形成具有如上文所述之可接受生強度及小於3、較佳小於2且最佳小於1.5之捲曲因數的生坯品,該捲曲因數如藉由Rapid Prototyping & Manufacturing: Fundamentals of StereoLithography, 1992年1月15日, Paul F. Jacobs中所述之方法所測定,與各種非限制性實施例相關之該文獻明確地以全文引用的方式併入本文中。 在各種非限制性實施例中,關於BASF案號129568及160762之同時申請之美國臨時專利申請案中之一者或兩者中所述之任何一或多種組分、化合物、反應物、溶劑、添加劑、方法步驟、設備部件等可用於本文中。此等申請案均在各種非限制性實施例中特此明確地以全文引用之方式併入本文中。實例 樣品係藉由將分散液移液至離心管中至45 mm之高度而製備(圖2;10×10 mm方形截面)。聚醯胺離心管用於藉由丙烯酸調配物預防管崩解)。管接著在25℃下在46×重力(就此裝置而言,600 rpm)下旋轉10-60分鐘。離心開始於一整套管(各12個)。每10分鐘,暫停離心以移出一個管用於沉積物量測,同時其餘的管繼續進行離心。沉積物之高度及調配物之總高度及係藉由具有±0.5 mm之精確度的標尺量測。圖2A以及2B顯示隨上述分散液之離心時間(46 G)而變之總分散液高度之百分比形式的沉澱物高度。 發現難以肉眼區分白色陶瓷液體分散液與陶瓷沉澱物(20)質間的隔板。亦發現產生於用於製備及維持陶瓷懸浮液之不鏽鋼螺旋槳葉之磨耗的精細金屬粒子(25)在沉澱物(20)之頂部隔離,促進了視覺區分及使用規定標度之量測。研究使用各種可視化助劑,包括染料、顏料、石墨,識別為最佳識別劑:購自BASF Canada Inc., 100 Milverton Drive, Mississauga, ON L5R 4H1, Canada之0.1 w%藍色染料Oracet Blue 640。 進行46 G下之離心機加速之測試指標的比較以觀測正常1G加速下之陶瓷分散液的150 mm管柱。圖3A及3B將藉由46 G及正常重力下之離心方法量測之三種不同材料之沉降特性並列。該比較表明離心加速方法之有效性。 藉由比較如圖4A、4B及4C中所示之量測之6次重複展示該方法之再現性。比較使用質量量測之方法及使用沉澱物高度量測之方法。明顯的是使用沉澱物高度之方法更可重複。 遍及整個揭示內容之前述實施例的所有組合特此明確地涵蓋於一或多個非限制性實施例中,即使此類揭示內容未逐字描述於上文單一段落或部分中。換言之,明確涵蓋之實施例可包括自本發明之任何部分選擇及組合之上文所述之任何一或多個要素。 上文所述之該等值中之一或多者可變化±5%、±10%、±15%、±20%、±25%等,只要該變化保持在本發明之範疇內。出人意料的結果可獨立於所有其他成員獲自馬庫西組(Markush group)中之各成員。可個別地及或以組合依賴各成員且對於所附申請專利範圍之範疇內之特定實施例提供足夠支持。本文中明確地涵蓋獨立及從屬請求項(單依賴性及多依賴性)之所有組合的主題。本發明為說明性的而非限制性的,包括描述字語。根據以上教示,本發明之許多修改及變化為可能的,且可以除如本文特定描述之外的其他方式來實踐本發明。 亦應理解,在描述本發明之各種實施例中所依賴的任何範圍及子範圍獨立地及共同地屬於所附申請專利範圍之範疇內,且理解為描述及涵蓋所有範圍,包括其中之整體及/或部分值,即使該等值未明確寫入本文中。熟習此項技術者容易識別所列舉範圍及子範圍充分地描述並使得本揭示案之各種實施例能夠進行,且該等範圍及子範圍可進一步描述成相關的一半、三分之一、四分之一、五分之一等。僅作為一個實例,「0.1至0.9之」範圍可進一步描述為下三分之一(亦即0.1至0.3)、中三分之一(亦即0.4至0.6)及上三分之一(亦即0.7至0.9),其個別地且共同地屬於所附申請專利範圍之範疇內,且可個別地及/或共同地依賴,且為所附申請專利範圍之範疇內的特定實施例提供足夠支持。另外,關於定義或修飾範圍之語言,諸如「至少」、「大於」、「小於」、「不超過」及其類似者,應理解此類語言包括子範圍及/或上限或下限。作為另一實例,「至少10」之範圍本質上包括至少10至35之子範圍、至少10至25之子範圍、25至35之子範圍等,且各子範圍可單獨地及/或共同地依賴且對所附申請專利範圍之範疇內的特定實施例提供足夠支持。最後,所揭示之範圍內的個別數目可加以依賴且為所附申請專利範圍之範疇內的特定實施例提供足夠支持。舉例而言,「1至9之」範圍包括各種個別整數,諸如3,以及包括小數點(或分數)之個別數字,諸如4.1,可依賴該等數字且為所附申請專利範圍之範疇內的特定實施例提供足夠支持。The present invention provides a method of determining the amount of deposits in a ceramic dispersion for multilayer manufacturing. The ceramic dispersion is described below as a "dispersion". The term "layered fabrication" describes the established portion of the layer, as is well known in the art and as described above. The term "ceramic" describes the dispersion used to form ceramic articles and is also described in more detail below. The term "dispersion" describes a composition comprising a continuous phase and a dispersed phase dispersed in a continuous phase. The term "sediment" generally describes the amount of dispersed phase precipitated from the continuous phase. The dispersion includes a radically curable monomer as a continuous phase, cerium oxide as a dispersed phase, and metal particles dispersed in the continuous phase and in an amount of 55 to 70 volume percent based on the total volume of the ceramic dispersion. presence. Each is described below. In various embodiments, the dispersion is, consists essentially of, or consists of a radical curable monomer, cerium oxide, and metal particles. For example, in an embodiment "consisting essentially of" the composition of the above components, the dispersion may contain no monomers, other polymers, any type of additives known in the art that are not polymerizable by a free radical mechanism. (including any of the additives described herein), any polymerization initiator that is not a free radical initiator, and/or a filler other than cerium oxide, and the like, and/or combinations thereof. Alternatively, any one or more of these components may be less than 25, 20, 15, 10, 5, 4, 3, 2, 1, 0.1, 0.05, 0.01, etc., based on the total weight of the dispersion, or any The amount of scope exists. In various non-limiting embodiments, all values and ranges of values between the above values are specifically intended to be encompassed. Free radical curable monomer: The dispersion includes a radical curable monomer. This monomer can be polymerized with itself and/or with other acrylate monomers via free radical polymerization, for example by exposure to UV light/energy, peroxides or other free radical initiators known in the art. This monomer acts as a continuous (e.g., liquid) phase of the dispersion. The free radical curable monomer can be an acrylate or methacrylate. The acrylate monomer can be a polyfunctional acrylate. A single type or more than one type of UV curable acrylate monomer can be used. Suitable non-limiting examples include isobornyl (meth)acrylate, decyl (meth)acrylate, tricyclodecyl (meth)acrylate, dicyclopentanyl (meth)acrylate, (meth)acrylic acid Cyclopentenyl ester, cyclohexyl (meth)acrylate, benzyl (meth)acrylate, 4-butylcyclohexyl (meth)acrylate, acryloylmorpholine, (meth)acrylic acid, (A) 2-hydroxyethyl acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, (methyl) ) propyl acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, amyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, ( Amyl methacrylate, caprolactone acrylate, isoamyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, octyl (meth)acrylate, (methyl) Isooctyl acrylate, 2-ethylhexyl (meth) acrylate, decyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, tridecyl (meth) acrylate Ester, undecane (meth) acrylate , lauryl (meth)acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, butoxyethyl (meth) acrylate, ethoxylate Diethanol (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate , methoxyethylene glycol (meth) acrylate, ethoxyethyl (meth) acrylate, methoxy polyethylene glycol (meth) acrylate, methoxy polypropylene glycol (meth) acrylate Diacetone (meth) acrylamide, β-carboxyethyl (meth) acrylate, (meth) acrylate, dimethylaminoethyl (meth) acrylate, (meth) acrylate Diethylaminoethyl ester, butylamine methyl methacrylate, (meth) acrylamide fluorinated n-isopropyl (meth) acrylate, 7-amino-3 (meth) acrylate , 7-dimethyloctyl ester, trimethylolpropane tri(meth)acrylate, isoamyl (meth)acrylate, ethylene glycol di(meth)acrylate, bisphenol A diglycidyl Ether di(meth)acrylate, two Cyclopentadiene dimethanol di(meth) acrylate, [2-[1,1-dimethyl-2-[(1-sided oxyallyl)oxy]ethyl]-5-ethyl -1,3-dioxan-5-yl]methacrylate; 3,9-bis(1,1-dimethyl-2-hydroxyethyl)-2,4,8,10-tetraoxa Spiro[5.5-]undecanedi(meth)acrylate; diisoamyltetraol monohydroxypenta(meth)acrylate, propoxylated trimethylolpropane (meth)acrylate, propoxy Neopentyl glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylic acid Ester, 1,6-hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, polybutylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate , tris(meth)acrylate, glycerol mono(meth)acrylate and di(meth)acrylate, C7-C20 alkyl di(meth)acrylate, tris(2-hydroxyethyl)isocyanate Uric acid tris(meth)acrylate, tris(2-hydroxyethyl)isocyanurate di(meth)acrylate, tricyclodecanediyldimethyldi(meth)acrylate and Alkoxylated (eg ethoxylated) And/or propoxylated) forms, and adducts of triethylene glycol divinyl ether, hydroxyethyl acrylate, and combinations thereof. In other embodiments, the acrylate monomer is a polyfunctional (meth) acrylate that can include all of the methacryl fluorenyl groups, all propylene fluorenyl groups, or any combination of methacryl fluorenyl groups and acryl fluorenyl groups. In one embodiment, the acrylate monosystem is selected from the group consisting of propoxylated trimethylolpropane tri(meth)acrylate, and propoxylated neopentyl glycol di(meth)acrylate, and combinations thereof. In other embodiments, the acrylate monomer has greater than 2, greater than 3, or greater than 4 functional groups. Alternatively, the acrylate monomer may have exactly 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 functional groups. In one embodiment, the acrylate monomer consists solely of a single polyfunctional (meth) acrylate component. In other embodiments, the acrylate monoester is selected from the group consisting of dicyclopentadiene dimethanol diacrylate, [2-[1,1-dimethyl-2-[(1-sided oxyallyl)oxy) Ethyl]ethyl]-5-ethyl-1,3-dioxan-5-yl]methacrylate, propoxylated trimethylolpropane triacrylate and propoxylated neopentyl glycol Acrylates, and combinations thereof. In various non-limiting embodiments, all values and ranges of values between the above values are specifically intended to be encompassed. Alternatively, the acrylate monomer may be dicyclopentadiene dimethanol di(meth)acrylate, propoxylated trimethylolpropane tri(meth)acrylate, and/or propoxylated neopentyl glycol. Di(meth)acrylate, and more specifically, dicyclopentadiene dimethanol diacrylate, propoxylated trimethylolpropane triacrylate and/or propoxylated neopentyl glycol diacrylate One or more of the esters. The above-mentioned acrylate monomers may be used singly or in combination of two or more. The dispersion may include any suitable amount of acrylate monomer as long as the cerium oxide is present in an amount of 55 to 70 volume percent based on the total volume of the dispersion and the radical initiator and the shear thinning additive is also present in the dispersion. Just fine. In various embodiments, the free radical curable monomer is otherwise defined as a (meth) acrylate monomer, which can be any monomer having at least one acrylate functional group and/or at least one methacrylate functional group. In other words, the term "(meth)" describes "methyl" as it exists and is not required. Therefore, the monomer may be an "acrylate" monomer (no methyl group) or a "methacrylate" monomer including a methyl group. Typically, the (meth) acrylate monomer used herein is a compound selected from the group consisting of aliphatic acrylates, aliphatic methacrylates, cycloaliphatic acrylates, cycloaliphatic methacrylates, and combinations thereof. It should be understood that each of the compound, aliphatic acrylate, aliphatic methacrylate, cycloaliphatic acrylate, and cycloaliphatic methacrylate includes an alkyl group. The alkyl groups in such compounds can include up to 20 carbon atoms. The aliphatic acrylate which may be selected from one of the (meth) acrylate monomers is selected from the group consisting of methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, Tert-butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, isooctyl acrylate, isodecyl acrylate, isoamyl acrylate, tridecyl acrylate, stearyl acrylate, lauryl acrylate, and mixtures thereof. The aliphatic methacrylate which may be selected from one of the (meth) acrylate monomers is selected from the group consisting of methyl methacrylate, ethyl methacrylate, propyl methacrylate, methyl group. N-butyl acrylate, isobutyl methacrylate, tert-butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, isooctyl methacrylate, isodecyl methacrylate, Isoamyl methacrylate, tridecyl methacrylate, stearyl methacrylate, lauryl methacrylate, and mixtures thereof. The cycloaliphatic acrylate which is one of the (meth) acrylate monomers may be cyclohexyl acrylate, and may be selected from cycloaliphatic methacrylic acid of one of the (meth) acrylate monomers. The ester is cyclohexyl methacrylate. In various embodiments, the acrylate monomer is present in an amount greater than zero and up to about 40% by volume of the dispersion. In other embodiments, the acrylate monomer is 2 to 40, 5 to 40, 5 to 35, 5 to 30, 10 to 30, 10 to 25, 10 to 20, 15 to 30, based on the total volume by weight of the dispersion. , 15 to 25, 15 to 20 or 1, 2, 3, 4 or 5 volume percent is present. In various non-limiting embodiments, all values and ranges of values between the above values are specifically intended to be encompassed. Free radical curable monomers other than acrylates can also be used. Such monomers may include any monomer known in the art, such as including carbon-carbon double bonds (eg, ethylenically unsaturated compounds), carbon-carbon triple bonds, and/or any other polymerizable via free radical polymerization mechanisms. The compounds are the same. In various alternative embodiments, the dispersion does not contain monomers that are not (meth) acrylates. Cerium Oxide : The dispersion also includes cerium oxide. Cerium oxide is a dispersed phase dispersed in the continuous phase described above. For example, the cerium oxide particles can be dispersed in an acrylate monomer, which is typically a liquid or liquid. The cerium oxide is present in an amount of from 55 to 70 volume percent based on the total volume of the dispersion. In various embodiments, the cerium oxide is in a volume of 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69 or 70, based on the total volume of the dispersion. The percentage exists. In various non-limiting embodiments, all values and ranges of values between the above values are specifically intended to be encompassed. In various embodiments, cerium oxide is additionally defined as cerium oxide particles, such as microparticles and/or nanoparticles. For example, the cerium oxide (particles) may be 90, 95, 99 or approximately 100% by weight of microparticles, nanoparticles or a combination of microparticles and nanoparticles. Nanoparticles can be described as such particles having an average particle size between 1 nanometer (nm) and 999 nm. Microparticles are alternatively described as having particles having an average particle size of from 1 micrometer (μm) to 999 μm. In various embodiments, the cerium oxide has a particle size (distribution) ranging from 0.04 microns to 90 microns. In various embodiments, the cerium oxide has a particle size of from 1 micron to 90 microns and comprises 5, 4, 3, 2, 1, 0.5, 0.1, 0.05 or 0.01 weight or volume percent or less having a particle size of 10 nanometers to 999 nanometer nano particles. In all of the non-limiting embodiments, all values and ranges of values (including endpoints) between all of the above values are specifically intended to be used. In various embodiments, the cerium oxide comprises a combination of microparticles having a particle size of from 1 to 90 micrometers and nanoparticles having a particle size of from 10 to 500 nanometers, and the average particle size ratio of the microparticles: nanoparticles is from 1:2 to 1 :200. In other embodiments, the cerium oxide comprises a combination of microparticles having a particle size of from 1 to 90 micrometers and nanoparticles having a particle size of from 10 to 1000 nanometers. The average particle size ratio of the microparticles: nanoparticles is from 1:2 to 1 :200. In other non-limiting embodiments, such ratios may be reversed. In various non-limiting embodiments, all values and ranges of values (including endpoints) between 1 and 90 microns, between 10 and 500 nanometers, and between 1:2 and 1:200 are specifically contemplated for use. Alternatively, nanoparticles can be described as such particles having an average particle size between 1 nanometer (nm) and 999 nm. Microparticles are alternatively described as having particles having an average particle size of from 1 micrometer (μm) to 999 μm. In various embodiments, the cerium oxide has a particle size (distribution) ranging from 0.04 microns to 90 microns. In all of the non-limiting embodiments, all values and ranges of values (including endpoints) between all of the above values are specifically intended to be used. The particle size can be measured using laser diffraction particle size analysis according to ISO 13320:2009. A suitable apparatus for measuring the average particle size of the nanoparticles is a LB-550 machine from Horiba Instruments, Inc. which measures the particle size by dynamic light scattering. In various non-limiting embodiments, all values and ranges of values between the above values are specifically intended to be encompassed. The cerium oxide may include more than 85% by weight, 90% by weight or 95% by weight of cerium oxide (SiO 2 ). Some non-limiting examples of commercially available ceria include Crystallite 3K-S, Crystallite NX-7, Crystallite MCC-4, Crystallite CMC-12, Crystallite A-1, Crystallite AA, Crystallite C, Crystallite D, Crystallite CMC- 1. Crystallite C-66, Crystallite 5X, Crystallite 2A-2, Crystallite VX-S2, Crystallite VX-SR, Crystallite VX-X, Crystallite VX-S, Huselex RD-8, Huselex RD-120, Huselex MCF-4, Huselex GP-200T, Huselex ZA-30, Huselex RD-8, Huselex Y-40, Huselex E-2, Huselex Y-60, Huselex E-1, Huselex E-2, Huselex FF, Huselex X, Huselex ZA-20 IMSIL A-25, IMSIL A-15, IMSIL A-10 and IMSIL A-8 (Ryushin Co., Ltd.); ORGANOSILICASOL MEK-EC-2102, Organosilicasol MEK-EC-2104, Organosilicasol MEK-AC-2202, Organosilicasol MEK-AC-4101, Organosilicasol MEK-AC-5101, Organosilicasol MIBK-SD, Organosilicasol MIBK-SD-L, Organosilicasol DMAC-ST, Organosilicasol EG-ST, Organosilicasol IPA-ST, Organosilicasol IPA-ST-L, Organosilicasol IPA -ST-L-UP, Organosilicasol IPA-ST-ZL, Organ Osilicasol MA-ST-M, Organosilicasol MEK-ST, Organosilicasol MEK-ST-L, Organosilicasol MEK-ST-UP, Organosilicasol MIBK-ST, Organosilicasol MT-ST, Organosilicasol NPC-ST-30, Organosilicasol PMA-ST, Sunsphere H -31, Sunsphere H-32, Sunsphere H-51, Sunsphere H-52, Sunsphere H-121, Sunsphere H-122, Sunsphere L-31, Sunsphere L-51, Sunsphere L-121, Sunsphere NP-30, Sunsphere NP -100 and Sunsphere NP-200 (Asahi Glass Co., Ltd.); Silstar MK-08 and MK-15 (Nippon Chemical Industrial Co., Ltd.); FB-48 (Denki Kagaku Kogyo KK); Nipsil SS-10 Nipsi: L SS-15, Nipsil SS-10A, Nipsil SS-20, Nipsil SS-30P, Nipsil SS-30S, Nipsil SS-40, Nipsil SS-50, Nipsil SS-50A, Nipsil SS-70, Nipsil SS -100, Nipsil SS-10F, Nipsil SS-50F, Nipsil SS-50B, Nipsil SS-50C, Nipsil SS-72F, Nipsil SS-170X, Nipsil SS-178B, Nipsil E150K, Nipsil E-150J, Nipsil E-1030 , Nipsil ST-4, Nipsil E-170, Nipsil E-200, Nipsil E-220, Nipsil E-200A, Nipsil E-1009, Nipsil E-220A, Nipsil E-1011, Nipsil EK 300, Nipsil HD, Nipsil HD-2, Nipsil N-300A, Nipsil L-250, Nipsil G-300, Nipsil E-75, Nipsil E-743 and Nipsil E-74P (Nippon Silica Industry, Ltd.). In other embodiments, cerium oxide is as described in U.S. Patent No. 6,013,714, which is hereby incorporated by reference in its entirety in its entirety in its entirety in its entirety in its entirety. The cerium oxide can be surface treated with a decane coupling agent. The decane coupling agents which can be used for this purpose include vinyltrichloromethane, vinyl stilbene (β-methoxyethoxy) decane, vinyl triethoxy decane, vinyl trimethoxy decane, γ-(methyl Propylene methoxypropyl)trimethoxydecane, β-(3,4-epoxycyclohexyl)ethyltrimethoxydecane, γ-glycine methoxypropyltrimethoxydecane, γ-glycin oxime Oxypropylmethyldiethoxydecane, N-β(Amineethyl)Aminopropyltrimethoxydecane, N-β-(Aminoethyl)-γ-Aminopropylmethyldimethoxy Decane, γ-aminopropyltriethoxydecane, N-phenyl-γ-aminopropyltrimethoxydecane, γ-mercaptopropyltrimethoxydecane, and γ-chloropropyltrimethoxydecane. In various embodiments, a typical ceria formulation suitable for printing a 100 μm layer is set forth in the table below. In other embodiments, formulations suitable for printing 50 μ layers are found in the table below. * indicates that Angular-200 as supplied by Remet is screened through a 325 mesh screen. ** Indications such as RP-1 supplied by Imerys were sieved through a 325 mesh screen. Teco-sphere Microdust is commercially available from Imerys Fused Materials Greenville, Inc., 109 Coile Street, Greeville, TN, USA. Angular-200 is commercially available from Remet Corporation, 210 Commons Road, Utica, NY 13502-6395, USA. RP-1 is commercially available from Imerys Fused Materials Greenville, Inc., 109 Coile Street, Greeville, TN, USA. A-10 is commercially available from Almatis Inc., 501 West Park Road, Leetsdale, Pa 15056, USA. Milled Zircon Fine Grind is commercially available from Remet Corporation, 210 Commons Road, Utica, NY 13502-6395, USA. In other embodiments, increasing the ceramic loading increases the probability of viscosity and particle-particle interaction, which reduces the settling rate of the dispersion. Maximizing the ceramic load can also increase the density of the ceramic article, reduce cracking and delamination defects, and increase the mechanical strength of the ceramic article. When the ceramic load reaches 64-66 volume percent of the load, the viscosity can begin to increase exponentially. Thus, in various embodiments, a 64 volume percent ceramic loading is used to maintain a formulation viscosity that is sufficiently low for 3D printing. The metal particle dispersion also includes metal particles. The metal particles are typically steel, but can be any type of metal. Metal particles are typically derived from metal equipment used to form the dispersion and are typically not added to the dispersion independently by the skilled person. In other words, the metal particles are usually generated in situ when the dispersion is formed. However, in various embodiments, the invention is not limited in this manner such that the metal particles themselves and/or additional metal particles can be manually added independently, regardless of whether any metal particles are produced in situ. The metal particles may be present in an amount of less than 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005 or 0.0001% by weight, based on the total weight of the dispersion. In all of the non-limiting embodiments, all values and ranges of values (including endpoints) between all of the above values are specifically intended to be used. Dyes and / or pigments: The dispersions may also comprise dyes and/or pigments, for example in an amount of from 0.01 to 0.3% by weight, based on the total weight % of the dispersion. In various embodiments, the dye and/or pigment is present in an amount of from 0.05 to 0.25, from 0.1 to 0.2, or from 0.15 to 0.2% by weight, based on the total weight percent of the dispersion. In various embodiments, the dye is an anthraquinone dye. In other embodiments, the pigment has a density greater than 3, 3.5, 4, 4.5, or 5 g/cm 3 . In all of the non-limiting embodiments, all values and ranges of values (including endpoints) between all of the above values are specifically intended to be used. Free Radical Initiator: In various embodiments, the dispersion comprises a free radical initiator. Typically, the free radical initiator is a UV activated free radical initiator. For example, free radical initiators are typically initiated by exposure to UV light, which causes free radical formation followed by propagation of the free radicals. However, non-UV initiated free radical initiators can be used alone or in combination with UV activated free radical initiators. Free radical initiators can be described as free radical photoinitiators. Free radical photoinitiators are generally classified into those known as "Norrish Type I" by cleavage to form free radicals, and those known as "Norrish Type II" which form free radicals by hydrogen extraction. Norrish Type II photoinitiators typically require a hydrogen donor that acts as a source of free radicals. Since the initiation is based on a bimolecular reaction, Norrish Type II photoinitiators are generally slower than Norrish Type I photoinitiators formed from free radical based single molecules. However, Norrish Type II photoinitiators typically have better light absorption characteristics in the near UV spectral region. Such as benzophenone, 9-oxosulfur Photolysis of an aromatic ketone of diphenylethylenedione and anthracene in the presence of a hydrogen donor such as an alcohol, an amine or a thiol results in the formation of a free radical (carbonyl radical-type free radical) derived from a carbonyl compound and derived therefrom. Another free radical from a hydrogen donor. Photopolymerization of vinyl monomers is typically initiated by free radicals generated from hydrogen donors. Due to steric hindrance and delocalization of unpaired electrons, carbonyl radicals generally do not react with vinyl monomers. In various embodiments, the free radical initiator is selected from the group consisting of benzamidine phosphine oxides, aryl ketones, benzophenones, hydroxylated ketones, 1-hydroxyphenyl ketones, ketals, metallocenes, and combinations thereof. In other embodiments, the free radical initiator is selected from the group consisting of 2,4,6-trimethylbenzimidyldiphenylphosphine oxide and 2,4,6-trimethylbenzomethylphenyl, B. Oxylphosphine oxide, bis(2,4,6-trimethylbenzylidene)-phenylphosphine oxide, 2-methyl-1-[4-(methylthio)phenyl]-2- Morpholinoacetone-1,2-benzyl-2-(dimethylamino)-1-[4-(4-morpholinyl)phenyl]-1-butanone, 2-dimethylamino- 2-(4-Methyl-benzyl)-1-(4-morpholin-4-yl-phenyl)-butan-1-one, 4-benzylidene-4'-methyldiphenyl Thioether, 4,4'-bis(diethylamino)benzophenone and 4,4'-bis(N,N'-dimethylamino)benzophenone (Michler's ketone) , benzophenone, 4-methylbenzophenone, 2,4,6-trimethylbenzophenone, dimethoxybenzophenone, 1-hydroxycyclohexyl benzophenone, phenyl (1 -hydroxyisopropyl)one, 2-hydroxy-1-[4-(2-hydroxyethoxy)phenyl]-2-methyl-1-propanone, 4-isopropylphenyl (1-hydroxyiso) Propyl)ketone, oligo-[2-hydroxy-2-methyl-1-[4-(1-methylvinyl)phenyl]propanone], camphorquinone, 4,4'-bis(diethylamine) Benzophenone, diphenylethylenedione dimethyl ketal, bis(η 5-2-4-cyclopentadien-1-yl) Bis[2,6-difluoro-3-(1H-pyrrol-1-yl)phenyl]titanium and combinations thereof. Typically, when a dispersion is formed, the wavelength sensitivity of the photoinitiator present is assessed to determine if it will be activated by the selected source of radiation. Non-limiting examples of suitable free radical initiators that absorb in these ranges for light sources that illuminate in the 300-475 nm wavelength range, especially at 365 nm, 390 nm, or 395 nm include (but not Limited to benzamidine phosphine oxides such as 2,4,6-trimethylbenzimidyl diphenylphosphine oxide (Lucirin TPO from BASF) and 2,4,6-trimethylbenzamide Phenylphenyl, ethoxyphosphine oxide (Lucirin TPO-L from BASF), bis(2,4,6-trimethylbenzylidene)-phenylphosphine oxide (Irgacure 819 from Ciba) Or BAPO), 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinylacetone-1 (Irgacure 907 from Ciba), 2-benzyl-2-(di) Methylamino)-1-[4-(4-morpholino)phenyl]-1-butanone (Irgacure 369 from Ciba), 2-dimethylamino-2-(4-methyl-benzene Methyl)-1-(4-morpholin-4-yl-phenyl)-butan-1-one (Irgacure 379 from Ciba), 4-benzylidene-4'-methyldiphenylsulfide Ether (Chivacure BMS from Chitec), 4,4'-bis(diethylamino)benzophenone (Chivacure EMK from Chitec) and 4,4'-bis(N,N'-dimethylamine) Base) benzophenone (milaxone). Also suitable for their combination. Additionally, photosensitizers can be used, such as when using LED light sources. Non-limiting examples of suitable photosensitizers include: hydrazine, such as 2-methyl hydrazine, 2-ethyl hydrazine, 2-tert-butyl fluorene, 1-chloroindole, and 2-pentyl hydrazine. 9-oxopurine Oxene ketone, such as isopropyl 9-oxopurine 2-chloro 9-oxosulfuron 2,4-Diethyl 9-oxothione And 1-chloro-4-propoxy 9-oxothione , methotrexate (Darocur MBF from Ciba), methyl-2-benzhydryl benzoate (Chivacure OMB from Chitec), 4-benzylidene-4' Methyl diphenyl sulfide (Chivacure BMS from Chitec), 4,4'-bis(diethylamino)benzophenone (Chivacure EMK from Chitec). For light sources that emit light in the wavelength range of 100 to 300 nm, photosensitizers such as benzophenones such as benzophenone, 4-methylbenzophenone, 2,4,6-trimethyl s can be used. Benzophenone, dimethoxybenzophenone, and 1-hydroxyphenyl ketone, such as 1-hydroxycyclohexyl phenyl ketone, phenyl (1-hydroxyisopropyl) ketone, 2-hydroxy-1-[ 4-(2-hydroxyethoxy)phenyl]-2-methyl-1-propanone and 4-isopropylphenyl(1-hydroxyisopropyl)one, diphenylethylenedione dimethyl condensate Ketones and oligo-[2-hydroxy-2-methyl-1-[4-(1-methylvinyl)phenyl]propanone] (obtained from Lamberti's Esacure KIP 150), and combinations thereof. For light sources that emit light in the wavelength range of 475 to 900 nm, free radical initiators such as camphorquinone, 4,4'-bis(diethylamino)benzophenone (acquired from Chitec's Chivacure EMK), 4,4'-bis(N,N'-dimethylamino)benzophenone (milaxone), bis(2,4,6-trimethylbenzylidene)-phenylphosphine oxide ( "BAPO" or Irgacure 819 from Ciba, and visible light initiators from Spectra Group Limited, Inc., such as H-Nu 470, H-Nu-535, H-Nu-635, H-Nu-Blue -640 and H-Nu-Blue-660, and combinations thereof. Referring back to UV light, the light can be UVA radiation, which is radiation having a wavelength between about 320 and about 400 nm; UVB radiation, which is between about 280 and about 320 nm; and/or UVC radiation, It is radiation having a wavelength between about 100 and about 280 nm. The dispersion can include any amount of free radical initiator as long as other desired components are present. For example, the free radical initiator can be present in an amount greater than zero and up to about 10% by weight of the dispersion, from about 0.1 to about 10% by weight of the dispersion, or from about 1 to about 6% by weight of the dispersion. In various non-limiting embodiments, all values and ranges of values between the above values are specifically intended to be encompassed. Shear thinning additives: In other embodiments, the dispersion also includes a shear-thinning additive to make the dispersion of silicon dioxide to minimize settling. The shear thinning additive may be selected from the group consisting of bentonite, urea-polyol-aliphatic copolymers, acrylic copolymers, and combinations thereof. In one embodiment, the shear thinning additive is bentonite. In another embodiment, the shear thinning additive is a urea-polyol-aliphatic copolymer. In another embodiment, the shear thinning additive is an acrylic polymer. The shear thinning additive that can be used is commercially available as BYK 410, 420 or 430. In various embodiments, the acrylic copolymer has the following structure: Wherein each of R 1 and R 2 is independently a group (C n H 2n )OH, wherein n is from 15 to 20. For example, n can be 15, 16, 17, 18, 19, or 20. Furthermore, OH groups may be present at any position on the chain of R 1 and R 2 . R 1 and R 2 may have the same or different chain lengths. In one embodiment, the acrylic copolymer is N,N'-ethane-1,2-diylbis(12-hydroxyoctadec-1-amine) and has the structure: N,N'-ethane-1,2-diylbis(12-hydroxyoctadec-1-amine) wherein n of R 1 and R 2 are both 17. In other embodiments, the acrylic copolymer of Attagel 50 is available from BASF. In other embodiments, the shear thinning additive is a urea-polyol-aliphatic copolymer having the following structure: . In other embodiments, the shear thinning additive is a urea-polyol-aliphatic copolymer having the following structure: . In other embodiments, the shear thinning additive is a modified hydrogenated castor oil. The modified hydrogenated castor oil may be EFKA RM1900 from BASF. Additives : The dispersion may also or may not include, or include less than 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.5, 0.1, 0.05, or 0.01% by weight of one or more of the following Additives. The dispersion may alternatively comprise 0.01, 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10% by weight of one or more of the additives set forth below. Such additives include, but are not limited to, those described in U.S. Patent No. 5,665,792 and U.S. Patent No. 6,099,787, each of which is incorporated herein in The disclosure is incorporated herein by reference. In various embodiments, the additive is selected from the group consisting of hydrocarbon carboxylic acid salts of Group IA and IIA metals, such as sodium bicarbonate, potassium bicarbonate and cesium carbonate, polyvinylpyrrolidone, polyacrylonitrile, and combinations thereof. Other additives include dyes, pigments, antioxidants, wetting agents, photosensitizers, chain transfer agents, leveling agents, defoamers, surfactants, bubble breakers, antioxidants, acid scavengers, thickeners, flame retardants , decane coupling agent, ultraviolet absorber, resin particles, core-shell particle impact modifier, soluble polymer and block copolymer. In various non-limiting embodiments, the inclusion of the above-described values and all values and ranges of values therebetween are specifically intended to be used herein. Any one or more of the above components may be combined with any one or more of the other components in whole or in various parts. Physical Properties : The dispersion also typically has a settling rate that is at least 75, 80, 85, 90, 95 or 99% less than the same composition without the shear thinning additive. The sedimentation rate is usually determined by the following method. However, any of the methods can be used. Method for determining the amount of deposits in a dispersion : The method of the present invention comprises providing a centrifuge to apply gravity to a ceramic dispersion, placing a sample of the ceramic dispersion in a sample container in a centrifuge, and applying the ceramic dispersion to the centrifuge A gravity of 25G to 2000G precipitates a certain amount of cerium oxide from the continuous phase, thereby forming a deposit comprising a topmost layer (25) disposed on the deposit, wherein the topmost layer (25) contains metal particles to allow visualization, And measuring the sediment content in the ceramic dispersion. The measuring step may additionally be defined as, or include, or (i) calculating the height of the deposit as a percentage of the total height of the dispersion (eg, as shown in FIG. 1A), and/or (ii) decanting the continuous phase and The mass of the deposit is measured to determine the mass percentage of the deposit based on the total mass of the dispersion, followed by gravity (e.g., as shown in Figure IB). Each is described in more detail below. In one embodiment, the method typically uses a centrifuge to apply a centripetal force to the dispersion that is many times the normal force of gravity. This increased G force accelerates particle isolation and precipitation. Any centrifugal device can be used. However, when the centrifuge is oriented such that the centrifuge tube containing the test dispersion is aligned with the direction of the applied centripetal force such that the top surface of the resulting precipitate is parallel to the top and bottom of the centrifuge tube, it tends to be easier to quantitatively evaluate the deposition. Content. In this way, the thickness of the precipitate (20) can be easily measured only by using a prescribed scale, such as a millimeter scale. An oscillating centrifuge that allows the centrifuge tube to swing into the position described can be used. Alternatively, a centrifuge can be used to mount the centrifuge tube to a flat circular plate, such as found in a device manufactured and sold by LUMISizer. In various embodiments, a LUMiSizer 6112-24 dispersion analyzer is used. The analyzer is designed to accelerate and follow the precipitation method by irradiating a beam of light through the centrifuge tube as the tube rotates. When a dispersion comprising large particles and small particles is used, a large amount of large particle precipitate (20) can be observed by the naked eye, while the remaining dispersion is still opaque to the probe of LUMiSizer 6112-24. The first method decanters the dispersion (30) from the precipitate (20) (see FIG. 1A), for example as shown in FIG. 1B, and measures the precipitate as a percentage of the total mass of the dispersion before applying the centrifugal centripetal force (20) ) the quality. The second method aligns the specified scale with the distance between the centrifuge tube and the bottom of the tube, the top of the dispersion, and the top of the precipitate (20) and reports the height of the precipitate (20) as a percentage of the total height of the dispersion. The rate of rotation of the centrifuge can be varied to minimize test time so that a measurable precipitate (20) can be observed while avoiding all or most of the particles being precipitated. The acceleration applied to the dispersion is calculated by the following equation: a c = v 2 / r = ω 2 r = (2 π n s ) 2 r = (2 π n rpm / 60) 2 r where a c = centripetal acceleration ( m / s 2 ) v = tangential velocity ( m / s ) r = circular radius from the center of rotation to the point ( m ) in the dispersion column ω = angular velocity ( rad / s ) n s = number of revolutions per Seconds ( 1 / s ) n rpm = number of revolutions per minute ( 1 / min ) The sample can be prepared by pipetting the dispersion into a centrifuge tube to a height of 45 mm. Polyamine centrifuge tubes can be used to prevent dissolution of the tube by acrylate monomers. The acceleration of 2000 G usually precipitates all particles, which are not required. 500 G force can achieve the same undesired results. A rotational speed of about 600 RPM corresponding to 46 G reproducibly produces a measurable precipitate (20). The time at which the rotation is applied can then be varied to determine the optimal test time. Two test samples can then be removed from the centrifuge at 10 minute intervals. More specifically, the tube can be rotated at 46 ° C (for example, 600 rpm) for 10 to 60 minutes at 25 °C. Centrifugation can begin with a complete cannula (12 each). Every 10 minutes, the centrifugation can then be paused to remove one tube for sediment measurement while the remaining tubes continue to centrifuge. The height of the deposit and the total height of the dispersion can be measured by a scale having an accuracy of ±0.5 mm. The appropriate acceleration can depend, at least in part, on the characteristics of the particles in the dispersion. In one embodiment, when the particles are ceramic particles (D50 = 9 μm, mainly comprising cerium oxide particles and a small portion of alumina and zircon particles as large as 90 μm), an acceleration of approximately 46 G is sufficient. In various embodiments, the G force is 25 to 100, 30 to 95, 35 to 90, 40 to 85, 45 to 80, 50 to 75, 55 to 70, 60 to 65, 40 to 50, 40 to 45 or 45. Up to 50 G. In other embodiments, the G force is 100 to 2000, 200 to 1900, 300 to 1800, 400 to 1700, 500 to 1600, 600 to 1500, 700 to 1400, 800 to 1300, 900 to 1200, or 1000 to 1100 G. In other embodiments, the visualization of the sediment boundary can be customized by the addition of a small fraction of pigment (0.1 w% Oracet Blue 640). In the absence of pigment, the interface between the deposit and the supernatant can be rarely detected because the dispersion of the present invention typically does not have a clear supernatant. Instead, only the largest particles from the deposit tend to be apparent, while most of the small ceramic particles remain suspended in the supernatant, making them opaque. The dispersion used in ASTM D 2196-99 has a viscosity of typically 500 to 4,000 cps at 25 ° C and 30 RPM. In various embodiments, the viscosity of ASTM D 2196-99 at 25 ° C and 30 RPM is 600 to 3,900, 700 to 3,800, 800 to 3,700, 900 to 3,600, 1,000 to 3,500, 1,100 to 3,400, 1,200 to 3,300, 1,300 to 3,200, 1,400 to 3,100, 1,500 to 3,000, 1,600 to 2,900, 1,700 to 2,800, 1,800 to 2,700, 1,900 to 2,600, 2,000 to 2,500, 2,100 to 2,400 or 2,200 to 2,300 cps. A method of forming a dispersion: The present invention also provides a method of forming the dispersion. The method includes the steps of providing a UV curable acrylate monomer, providing cerium oxide, providing a free radical initiator, and providing a shear thinning additive. The method also includes the steps of combining a UV curable acrylate monomer, ceria, a free radical initiator, and a shear thinning additive to form a dispersion. One or more of these components may be combined with any one or more of the other components, either in whole or in various parts. In various non-limiting embodiments, in order to reduce the viscosity of the dispersion sufficient for 3D printing and to avoid the presence of agglomerated particles greater than one print layer thickness, the cerium oxide particles must undergo high shear during mixing to break large Ceria agglomerates. This requires the slow addition of 86.7% w of cerium oxide powder to a mixture of 1.7% w dispersant Variquat CC 42 NS and 11.6% w of the main acrylic monomer upon mixing, followed by continuous shear mixing of the high viscosity paste for several hours. A cerium oxide syrup concentrate ("cerium oxide concentrate") was prepared. In various embodiments, the cerium oxide concentrate is then mixed with the remaining liquid components (e.g., "photopolymer diluent") to reduce the viscosity of the dispersion suitable for 3D printing. The ceria photopolymer dispersion can be prepared, for example, using high shear mixing, such as by the National Board number/U-1 131 of the anchor-double helix mixer manufactured by Chemineer or by using Amazon.com. KFE5T Flex Edge Beater's 5-quart KitchenAid mixer provides high shear mixing. In some embodiments, it is important to have sufficient shear with a high viscosity ceria concentrate to depolymerize the cerium oxide before reducing the viscosity by adding a photopolymer diluent. For example, 0.10 Kg of dispersant Variquat CC 42 NS and 0.7 Kg of acrylic monomer can be added to a 5 quart KitchenAid mixer equipped with a nylon coated plate stirrer. These liquid components can then be mixed for 1 minute at the slowest speed setting. The cerium oxide powder can then be added in small aliquots such that the consistency does not exceed the syrup stage while allowing sufficient mixing between aliquot additions to reduce the viscosity back to the high viscosity liquid. The addition of cerium oxide usually takes 45-60 minutes. The agitator can then be turned into a curved edge agitator to increase the shear force that breaks the ceria agglomerate by having a small clearance between the agitating blades and the mixing channel walls. Stirring can continue for another two hours in this manner. As the viscosity decreases due to the depolymerization of cerium oxide, the stirring speed can be increased, however, the stirring speed should be slowed to maintain the temperature of the mixture below 50 ° C to avoid polymerization of the dispersion. This cerium oxide concentrate can then be mixed with the remaining liquid components ("photopolymer diluent") to reduce the viscosity of the dispersion suitable for 3D printing. In a mixing vessel equipped with a temperature controller, such as a Chemineer vessel, the temperature of the vessel can be controlled by a cooling jacket in addition to the agitation speed. Usually, but not necessarily, a higher agitation speed is used at the end of the mixing time to ensure that the agglomerates break. Any high shear blade or paddle (such as a double helix) will provide sufficient shear to break the agglomerates. Ceramic articles : Dispersions can be used to form ceramic articles. The ceramic article is not particularly limited and can be any ceramic article known in the art. For example, ceramic articles are typically ceramic cores or ceramic shells that produce molds for investment casting of nickel superalloy portions. In other embodiments, the dispersion can be used to form ceramic articles that are involved in the casting or formation of metal parts and many different types of castings. Method of Forming a Ceramic Article : The present invention also provides a method of forming a ceramic article from a dispersion. The method comprises the steps of: applying a layer of ceramic dispersion to the surface and B. selectively exposing the layer to actinic radiation imagewise to form an imaging cross section. The method also includes the steps of applying a second layer of the ceramic dispersion to the imaging section and D. selectively exposing the second layer to actinic radiation imagewise to form a second imaging section. The method also includes the steps of E. repeating steps (C) and (D) to produce a three-dimensional ceramic green article and F. sintering the three-dimensional ceramic green article in a furnace to form a ceramic article. A. The step of applying a layer of the ceramic dispersion to the surface may be additionally defined as applying a dispersion having a thickness of 50 to 100, 55 to 95, 60 to 90, 65 to 85, 70 to 80 or 75 to 80 μm to the surface. Layer. Further, the surface is not particularly limited and may be any surface known in the art. For example, typically, all layers in a part structure have the same thickness, such as 50 or 100 μm. However, the layer may be 150 or 200 μm thick, but then, the stepping step on the inclined surface may be too large. In various embodiments, a series of layers of vertical walls are formed with a greater layer thickness while establishing a layer that forms a sloped or rounded surface with a smaller layer thickness. Thicker layers tend to build faster. However, the contoured area of the part is required to minimize the step height. The coating step is typically additionally defined as coating using a computer controlled spatula. The doctor blade can have 1-3 baffles wherein the blade can be closed or not closed such that a portion of the vacuum applied pulls the dispersion up into the blade to aid deposition onto the surface of the previous layer portion. B. The step of selectively exposing the layer to actinic radiation imagewise may additionally be defined as a UV laser exposed to the 325-365 nm range, which is directed onto the surface of the dispersion by an XY scanning mirror. The computer control of the mirror can be used to draw a cross section of the part such that only the part section selectively receives UV radiation. Alternatively, a group of LED lamps having wavelengths of 260, 265, 280, 310, 325, and 340 nm, 365, 375, and 385 nm and/or 405 nm, or a combination thereof, can be reflected from a digital micro-mirror array (DLP wafer) to be dispersed The cross-sectional image of the layer is exposed on the surface of the liquid such that only the cross-section of the part selectively receives UV radiation. C. The step of applying the second layer of the ceramic dispersion to the imaging section may be the same as step A or may differ in one or more aspects. For example, the second layer can be the same or different from the first layer in terms of composition, thickness, size, coating method, and the like. D. The step of selectively exposing the second layer to actinic radiation imagewise to form a second imaging cross section may be the same as step B or may differ in one or more aspects. For example, the second layer can be selectively exposed in the same or different manner as the first layer, can be exposed to the same or different actinic radiation, and can be the same, more or less exposed than the second layer In radiation. E. The steps of repeating steps (C) and (D) to produce a three-dimensional ceramic green article can be performed one or more times. For example, steps (C) and (D) may be repeated as many times as selected by those skilled in the art, such as 50 to 5,000. F. The step of sintering a three-dimensional ceramic green article in a furnace to form a ceramic article is typically additionally defined as heating in a furnace at a temperature of 1100-1600 °C. Generally, the time and temperature can be any time and temperature known in the art. In addition, the furnace type can be any furnace type known in the art. Moreover, the method can alternatively be described as three-dimensional printing of the ceramic green article. Thus, the method can include any one or more of the steps associated with three-dimensional printing in the art. In various non-limiting embodiments, one or more of the steps of the method can be as described in: (A) Rapid Prototyping & Manufacturing: Fundamentals of StereoLithography, January 15, 1992, Paul F. Jacobs; (B) Stereolithography & Other RP&M Technologies: From Rapid Prototyping to Rapid Tooling, Paul F Jacobs, 1995; (C) US Patent No. 4,093,017; (D) Integrally Cored Ceramic Investment Casting Mold Fabricated By Ceramic Stereolithography, Chang-Jun Bae; (E) Parametric Study And Optimization Of Ceramic Stereolithography, Kahn Chia Wu; and/or (F) Towards Inert Cores for Investment Casting, Martin Riley, each of which is associated with the method in various non-limiting embodiments The text is fully incorporated herein. The method can also include the step of post-curing the three-dimensional ceramic green article prior to the sintering step. Although most dispersions are typically cured by the radiation provided during the part build process, the parts are typically only partially polymerized. The post-cure step can additionally be described as a condition in which the SL portion is post-cured to substantially complete the polymerization process and to improve the final mechanical strength of the ceramic green article. A 3D Systems Inc. Post-Curing Device (PCA) can be used, which is essentially an "oven" with a UV source that radiates and reflects within the device. The PCA has a turntable that provides a more distributed exposure to actinic UV illumination. The standard post cure time for this device is 60 minutes. In various embodiments, Prodways L5000 machines can be used and specific parameters can be selected by those skilled in the art. In other embodiments, a laser based stereolithography system can be used. Still further, UV 3D printing can be used that exposes the photopolymer layer from the bottom via a glass plate (rather than printing from the top exposed to free air). In all such systems, parameters, cycle times, etc. can be selected by those skilled in the art. Ceramic green product : The present invention also provides the ceramic green product itself. The ceramic green article can be cured, partially cured or uncured, for example by UV radiation. In other words, the ceramic green article can include a cured, partially cured or uncured monomer, as described above. In various embodiments, the ceramic green article is cured using a UV exposure sufficient to cure the layer thickness by 200% (i.e., over 100 μm over 100 μm layer). In such embodiments, the ceramic green article typically has a flexural modulus greater than 10 MPa, greater than 40 MPa, greater than 100 MPa, as measured by ASTM D790. The combination of the ceramic photopolymer formulation and the UV exposure should form a green product having an acceptable green strength as described above and a crimp factor of less than 3, preferably less than 2 and optimally less than 1.5, such as by Rapid Prototyping & Manufacturing: Fundamentals of StereoLithography, January 15, 1992, as determined by the method described in Paul F. Jacobs, the documents relating to various non-limiting examples are expressly incorporated herein by reference in their entirety. . In any of the various non-limiting embodiments, any one or more of the components, compounds, reactants, solvents, or any one of the US Provisional Patent Applications, both of which are incorporated herein by reference. Additives, method steps, equipment components, and the like can be used herein. Each of these applications is hereby expressly incorporated by reference in its entirety in its entirety in its entirety in its entirety. EXAMPLES Samples were prepared by pipetting the dispersion into a centrifuge tube to a height of 45 mm (Fig. 2; 10 x 10 mm square section). Polyamine centrifuge tubes are used to prevent tube disintegration by acrylic acid formulations). The tube was then spun for 10 to 60 minutes at 46 ° C (for this device, 600 rpm) at 25 °C. Centrifugation begins with a complete cannula (12 each). Every 10 minutes, the centrifugation was paused to remove one tube for sediment measurement while the remaining tubes continued to centrifuge. The height of the deposit and the total height of the formulation are measured by a scale having an accuracy of ±0.5 mm. 2A and 2B show the height of the precipitate in the form of a percentage of the total dispersion height as a function of the centrifugation time (46 G) of the above dispersion. It was found that it is difficult to visually distinguish the separator between the white ceramic liquid dispersion and the ceramic precipitate (20). It has also been found that the fine metal particles (25) resulting from the abrasion of the stainless steel propeller blades used to prepare and maintain the ceramic suspension are isolated on top of the precipitate (20), facilitating visual differentiation and measurement using a prescribed scale. The study used various visual auxiliaries, including dyes, pigments, and graphite, to identify the best identifier: 0.1 w% blue dye Oracet Blue 640 from BASF Canada Inc., 100 Milverton Drive, Mississauga, ON L5R 4H1, Canada. A comparison of the test indexes for centrifuge acceleration at 46 G was performed to observe a 150 mm column of the ceramic dispersion under normal 1 G acceleration. Figures 3A and 3B show the sedimentation characteristics of three different materials measured by a centrifugal method at 46 G and normal gravity. This comparison shows the effectiveness of the centrifugal acceleration method. The reproducibility of the method was demonstrated by comparing 6 replicates of the measurements as shown in Figures 4A, 4B and 4C. Compare the method of mass measurement with the method of using sediment height measurement. It is obvious that the method of using the height of the precipitate is more repeatable. All combinations of the foregoing embodiments throughout the disclosure are hereby explicitly covered in one or more non-limiting embodiments, even if such disclosure is not described in a single paragraph or section above. In other words, the embodiments explicitly covered may include any one or more of the elements described above selected and combined from any part of the invention. One or more of the above-described values may vary by ±5%, ±10%, ±15%, ±20%, ±25%, etc., as long as the variation remains within the scope of the present invention. Unexpected results can be obtained from all members of the Markush group independently of all other members. Sufficient support may be provided for individual embodiments and for specific embodiments within the scope of the appended claims. The subject matter of all combinations of independent and dependent request items (single dependencies and multiple dependencies) is explicitly covered herein. The present invention is intended to be illustrative, and not restrictive. Many modifications and variations of the present invention are possible in the light of the teachings herein. It is also to be understood that the scope of the present invention is to be construed as being / or partial values, even if the values are not explicitly written in this article. Those skilled in the art will readily recognize that the scope and sub-ranges are fully described and the various embodiments of the present disclosure can be made, and the scope and sub-range can be further described as a half, one-third, and four One, one fifth, etc. As an example only, the "0.1 to 0.9" range can be further described as the lower third (ie 0.1 to 0.3), the middle third (ie 0.4 to 0.6) and the upper third (ie 0.7 to 0.9), which are individually and collectively within the scope of the appended claims, and which may be individually and/or collectively dependent, and provide sufficient support for specific embodiments within the scope of the appended claims. In addition, as to the language defining or modifying the scope, such as "at least", "greater than", "less than", "not exceeding", and the like, it should be understood that such language includes sub-ranges and/or upper or lower limits. As a further example, the range of "at least 10" essentially includes a sub-range of at least 10 to 35, a sub-range of at least 10 to 25, a sub-range of 25 to 35, etc., and each sub-range may be individually and/or collectively dependent and Particular embodiments within the scope of the appended claims are provided with sufficient support. Finally, the individual numbers within the scope of the disclosure may be relied upon and provide sufficient support for the particular embodiments within the scope of the appended claims. For example, the "1 to 9" range includes various individual integers, such as 3, and individual numbers including decimal points (or fractions), such as 4.1, which may depend on such numbers and are within the scope of the appended claims. Particular embodiments provide sufficient support.

20‧‧‧沉澱物20‧‧ ‧ sediment

25‧‧‧最頂層;金屬粒子25‧‧‧ top layer; metal particles

30‧‧‧分散液30‧‧‧Dispersion

本發明之其他優勢將易於瞭解,因為在結合隨附圖式考慮時參考以下實施方式將更好地理解該等優勢,在該等隨附圖式中: 圖1A為用於離心機中之試管的透視圖,其顯示沉積物、金屬粒子及一定量的未自其傾析之連續相。 圖1B為用於離心機中之試管的透視圖,其顯示沉積物、金屬粒子及自其傾析之連續相。 圖2A為呈總分散液高度之百分比之沉澱物高度之量測結果的相片。 圖2B為隨離心時間而變的沉積物管柱高度之線圖。 圖3A為隨離心時間而變的沉降高度之第二線圖。 圖3B為使分散液在不離心之情況下沉降的隨時間而變之沉降高度之線圖。 圖4A為顯示隨重複而變的沉降高度之條形圖。 圖4B為圖4A之放大圖。 圖4C為顯示隨重複而變的沉澱物質量之條形圖。Other advantages of the present invention will be readily appreciated, as the advantages will be better understood by reference to the following embodiments in conjunction with the accompanying drawings in which: Figure 1A is a test tube for use in a centrifuge A perspective view showing deposits, metal particles and a certain amount of continuous phase not decanted therefrom. Figure 1B is a perspective view of a test tube for use in a centrifuge showing deposits, metal particles, and a continuous phase decanted therefrom. Figure 2A is a photograph of the measurement of the height of the precipitate as a percentage of the total dispersion height. Figure 2B is a line graph of the height of the sediment string as a function of centrifugation time. Figure 3A is a second line graph of settling height as a function of centrifugation time. Figure 3B is a line graph of the settling height over time as the dispersion settles without centrifugation. Figure 4A is a bar graph showing the settling height as a function of repetition. Fig. 4B is an enlarged view of Fig. 4A. Figure 4C is a bar graph showing the mass of the precipitate as a function of repetition.

Claims (15)

一種測定用於積層製造(additive fabrication)之陶瓷分散液中沉積物含量之方法,其中該陶瓷分散液包含(a)作為連續相之自由基可固化單體,(b)作為分散相之二氧化矽,該分散相分散於該連續相中且以按該陶瓷分散液之總體積計55至70體積百分比之量存在,及(c)金屬粒子,該方法包含以下步驟: A.提供離心機以向該陶瓷分散液施加重力; B.將該陶瓷分散液之樣品置於該離心機中之樣品容器中; C.向該離心機中之該陶瓷分散液施加25G至2000G之重力以自該連續相沉澱一定量之該二氧化矽,藉此形成沉積物,其包含安置於該沉積物上之最頂層,其中該最頂層包含該等金屬粒子以允許可視化;及 D.經由以下方式量測該陶瓷分散液中之該沉積物含量: (i)計算該沉積物之高度作為該分散液之總高度之百分比;及/或 (ii)傾析該連續相且量測該沉積物之質量,以基於施加重力之前的該分散液之總質量測定該沉積物之質量百分比。A method for determining a content of a deposit in a ceramic dispersion for additive fabrication, wherein the ceramic dispersion comprises (a) a radically curable monomer as a continuous phase, and (b) a dioxide as a dispersed phase矽, the dispersed phase is dispersed in the continuous phase and is present in an amount of 55 to 70 volume percent based on the total volume of the ceramic dispersion, and (c) metal particles, the method comprising the steps of: A. providing a centrifuge Applying gravity to the ceramic dispersion; B. placing a sample of the ceramic dispersion in a sample container in the centrifuge; C. applying a gravity of 25 G to 2000 G to the ceramic dispersion in the centrifuge from the continuous Precipitating a certain amount of the cerium oxide, thereby forming a deposit comprising a topmost layer disposed on the deposit, wherein the topmost layer comprises the metal particles to permit visualization; and D. measuring the The deposit content in the ceramic dispersion: (i) calculating the height of the deposit as a percentage of the total height of the dispersion; and/or (ii) decanting the continuous phase and measuring the mass of the deposit to Based on application The total mass of the dispersion of the force measured prior to the mass percentage of the deposit. 如請求項1之方法,其中該等金屬粒子係以按該分散液之總重量計小於0.5重量%之量存在。The method of claim 1, wherein the metal particles are present in an amount of less than 0.5% by weight based on the total weight of the dispersion. 如請求項1或2之方法,其中該等金屬粒子為鋼。The method of claim 1 or 2, wherein the metal particles are steel. 如請求項1或2之方法,其中該等金屬粒子係源自用於形成該分散液之金屬設備。The method of claim 1 or 2, wherein the metal particles are derived from a metal device for forming the dispersion. 如請求項1或2之方法,其中進一步包含染料或顏料,其以按該分散液之總重量%計0.01至0.3重量%的量存在。The method of claim 1 or 2, further comprising a dye or pigment present in an amount of from 0.01 to 0.3% by weight, based on the total weight% of the dispersion. 如請求項5之方法,其中該染料為蒽醌染料。The method of claim 5, wherein the dye is an anthraquinone dye. 如請求項5之方法,其中該顏料之密度大於3 g/cm3The method of claim 5, wherein the pigment has a density greater than 3 g/cm 3 . 如請求項1或2之方法,其中所施加之該重力為40G至50G。The method of claim 1 or 2, wherein the applied gravity is 40G to 50G. 如請求項1或2之方法,其中該陶瓷分散液使用ASTM D 2196-99在25℃及30 RPM下之黏度為500至4,000 cps。The method of claim 1 or 2, wherein the ceramic dispersion has a viscosity of 500 to 4,000 cps at 25 ° C and 30 RPM using ASTM D 2196-99. 如請求項1或2之方法,其中該二氧化矽包含粒度為0.04至90微米之粒子。The method of claim 1 or 2, wherein the cerium oxide comprises particles having a particle size of from 0.04 to 90 microns. 如請求項1或2之方法,其中該二氧化矽包含粒度為1至90微米之微米粒子及粒度為10至500奈米之奈米粒子之組合,微米粒子:奈米粒子之平均粒度比率為1:2至1:200。The method of claim 1 or 2, wherein the cerium oxide comprises a combination of microparticles having a particle size of 1 to 90 micrometers and nanoparticles having a particle size of 10 to 500 nanometers, and an average particle size ratio of the microparticles: nanoparticles is 1:2 to 1:200. 如請求項1或2之方法,其中該分散液進一步包含選自膨潤土、脲-多元醇-脂族共聚物、丙烯酸系共聚物及其組合之剪切稀化添加劑。The method of claim 1 or 2, wherein the dispersion further comprises a shear thinning additive selected from the group consisting of bentonite, urea-polyol-aliphatic copolymer, acrylic copolymer, and combinations thereof. 如請求項1或2之方法,其中該自由基可固化單體為丙烯酸酯單體。The method of claim 1 or 2, wherein the radical curable monomer is an acrylate monomer. 如請求項13之方法,其中該丙烯酸酯單體為多官能性(甲基)丙烯酸酯。The method of claim 13, wherein the acrylate monomer is a polyfunctional (meth) acrylate. 如請求項1或2之方法,其中該分散液不含不為(甲基)丙烯酸酯之單體。The method of claim 1 or 2, wherein the dispersion does not contain a monomer other than (meth) acrylate.
TW106144710A 2016-12-20 2017-12-20 Method for determining an amount of sediment in a ceramic dispersion TW201840964A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662436806P 2016-12-20 2016-12-20
US62/436,806 2016-12-20

Publications (1)

Publication Number Publication Date
TW201840964A true TW201840964A (en) 2018-11-16

Family

ID=61148469

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106144710A TW201840964A (en) 2016-12-20 2017-12-20 Method for determining an amount of sediment in a ceramic dispersion

Country Status (2)

Country Link
TW (1) TW201840964A (en)
WO (1) WO2018119041A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093017A (en) 1975-12-29 1978-06-06 Sherwood Refractories, Inc. Cores for investment casting process
US5665792A (en) 1995-06-07 1997-09-09 E. I. Du Pont De Nemours And Company Stabilizers for use with photoacid precursor formulations
WO1998006560A1 (en) * 1996-08-08 1998-02-19 Sri International Apparatus for automated fabrication of three-dimensional objects, and associated methods of use
JPH1087963A (en) 1996-09-20 1998-04-07 Japan Synthetic Rubber Co Ltd Resin composition and mold for forming fibrous material
EP0998696A2 (en) 1997-07-21 2000-05-10 Ciba SC Holding AG Viscosity stabilization of radiation-curable filled compositions
KR20160112495A (en) * 2015-03-19 2016-09-28 한국과학기술연구원 Ink Compositions for a Powder Bed and Inkjet Head-Based 3D Printer

Also Published As

Publication number Publication date
WO2018119041A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
TW201840510A (en) Photopolymer ceramic dispersion for additive fabrication
US11840618B2 (en) Stabilized matrix-filled liquid radiation curable resin compositions for additive fabrication
TW201840515A (en) Photopolymer ceramic dispersion
US20120251841A1 (en) Liquid radiation curable resins for additive fabrication comprising a triaryl sulfonium borate cationic photoinitiator
ES2866881T3 (en) Production of a photocurable formulation for additive manufacturing
JP2009084619A (en) Photo-curable composition for micro-optical shape-forming, metal shaped article, and manufacturing method therefor
TW201840964A (en) Method for determining an amount of sediment in a ceramic dispersion
JP4307636B2 (en) Photocurable resin composition for optical three-dimensional modeling
CN117500655A (en) Method for producing three-dimensional printed article
JP2023521628A (en) Photocurable composition for producing dental components with a matt surface
JP5288758B2 (en) Photocurable composition for stereolithography, metal molding and method for producing the same
PL227321B1 (en) Photocurable ceramic mass and a method for obtaining the mass
JPH10330627A (en) Photosetting resin composition having dilatancy