TW201840108A - Flyback power supply system and control method thereof - Google Patents

Flyback power supply system and control method thereof Download PDF

Info

Publication number
TW201840108A
TW201840108A TW106117737A TW106117737A TW201840108A TW 201840108 A TW201840108 A TW 201840108A TW 106117737 A TW106117737 A TW 106117737A TW 106117737 A TW106117737 A TW 106117737A TW 201840108 A TW201840108 A TW 201840108A
Authority
TW
Taiwan
Prior art keywords
state
current
voltage
transformer
power switch
Prior art date
Application number
TW106117737A
Other languages
Chinese (zh)
Other versions
TWI636647B (en
Inventor
黃劍鋒
張允超
張秀紅
方烈義
Original Assignee
昂寶電子(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昂寶電子(上海)有限公司 filed Critical 昂寶電子(上海)有限公司
Application granted granted Critical
Publication of TWI636647B publication Critical patent/TWI636647B/en
Publication of TW201840108A publication Critical patent/TW201840108A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop

Abstract

The invention provides a flyback power supply system and a control method thereof. The flyback power supply system comprises a transformer, a power switch connected to a primary side winding of the transformer and a system control module used for making the power switch be in a cut-off state from a conduction state or be in the conduction state from the cut-off state. The system control module makes the power switch be in the cut-off state from the conduction state based on a current sampling voltage on a current sampling resistor connected between the power switch and ground, and makes the power switch be in the conduction state from the cut-off state based on a feedback voltage and a feedback current of an auxiliary winding of a transformer. The feedback voltage represents a system output voltage of the flyback power supply system and the feedback current represents a system input voltage of the flyback power supply system.

Description

返馳式電源系統及其控制方法    Flyback power system and control method thereof   

本發明涉及電路領域,尤其涉及一種返馳式電源系統及其控制方法。 The invention relates to the field of circuits, in particular to a flyback power supply system and a control method thereof.

一般,返馳式電源系統通過變壓器來隔離一次輸入和二次輸出,並通過諸如光耦之類的隔離元件來將輸出電壓的取樣資訊回饋到位於一次側的控制晶片,以使得控制晶片能夠根據輸出電壓的取樣資訊來對輸出電壓進行調節。但是,諸如光耦之類的隔離元件不僅會增加返馳式電源系統的成本,而且由於其本身的使用壽命非常有限而會成為返馳式電源系統的使用壽命的制約因素之一。 Generally, the flyback power system isolates the primary input and secondary output through a transformer, and feeds back the sampling information of the output voltage to the control chip located on the primary side through an isolation element such as an optocoupler, so that the control chip can Output voltage sampling information to adjust the output voltage. However, isolation components such as optocouplers will not only increase the cost of the flyback power supply system, but will also become one of the limiting factors of the service life of the flyback power supply system due to its very limited service life.

鑒於此,提出了一種基於一次回饋的返馳式電源系統,該返馳式電源系統無需通過任何隔離元件來將輸出電壓的取樣資訊回饋到位於一次側的控制晶片,而是直接基於從一次側取樣得到的電壓/電流資訊來對輸出電壓進行調節。 In view of this, a flyback power system based on primary feedback is proposed. The flyback power system does not need any isolation element to feed back the sampling information of the output voltage to the control chip located on the primary side, but directly based on the secondary side. Sampling the voltage / current information to adjust the output voltage.

鑒於以上所述的一個或多個問題,本發明提供了一種返馳式電源系統及其控制方法,能夠根據來自變壓器的一次側的電流取樣電壓、以及來自變壓器的輔助繞組的回饋電壓和回饋電流來控制功率開關的狀態切換,從而控制系統輸出電流。 In view of one or more of the problems described above, the present invention provides a flyback power supply system and a control method thereof capable of sampling a voltage based on a current from a primary side of a transformer, and a feedback voltage and a feedback current from an auxiliary winding of the transformer. To control the state switching of the power switch, thereby controlling the system output current.

根據本發明實施例的返馳式電源系統,包括變壓器、與變壓器的一次繞組連接的功率開關、以及用於控制功率開關從導通狀態變為截止狀態或者從截止狀態變為導通狀態的系統控制模組,其中:系統控制模組基於連接在功率開關與地之間的電流取樣電阻上的電流取樣電壓控 制功率開關從導通狀態變為截止狀態,並且基於來自變壓器的輔助繞組的回饋電壓和回饋電流控制功率開關從截止狀態變為導通狀態,回饋電壓表徵返馳式電源系統的系統輸出電壓,回饋電流錶征返馳式電源系統的系統輸入電壓。 A flyback power supply system according to an embodiment of the present invention includes a transformer, a power switch connected to a primary winding of the transformer, and a system control module for controlling the power switch from an on state to an off state or from an off state to an on state. Group, where: the system control module controls the power switch from the on state to the off state based on the current sampling voltage on the current sampling resistor connected between the power switch and ground, and is based on the feedback voltage and feedback current from the auxiliary winding of the transformer Control the power switch from the off state to the on state, the feedback voltage represents the system output voltage of the flyback power system, and the feedback current represents the system input voltage of the flyback power system.

在一些實施例中,系統控制模組基於回饋電壓確定變壓器的二次繞組導通時間,並且基於回饋電流與第一閾值電流之間的大小關係、以及變壓器的二次繞組導通時間控制功率開關從截止狀態變為導通狀態,以使得變壓器的二次繞組導通時間與功率開關的開關週期之間的比值在回饋電流小於第一閾值電流時為第一值並且在回饋電流大於第一閾值電流時為第二值。 In some embodiments, the system control module determines the on-time of the secondary winding of the transformer based on the feedback voltage, and controls the power switch from turning off based on the magnitude relationship between the feedback current and the first threshold current, and the on-time of the secondary winding of the transformer. The state becomes the on state, so that the ratio between the secondary winding on-time of the transformer and the switching cycle of the power switch is the first value when the feedback current is less than the first threshold current and the first value when the feedback current is greater than the first threshold current. Binary.

在一些實施例中,當電流取樣電壓大於第一閾值電壓時,系統控制模組控制功率開關從導通狀態變為截止狀態。 In some embodiments, when the current sampling voltage is greater than the first threshold voltage, the system control module controls the power switch from an on state to an off state.

在一些實施例中,系統控制模組包括二次導通時間感測電路,二次導通時間感測電路基於回饋電壓與第二閾值電壓之間的大小關係生成表徵變壓器的二次繞組是否處於導通狀態的導通狀態指示信號。 In some embodiments, the system control module includes a second on-time sensing circuit, and the second on-time sensing circuit generates whether the secondary winding of the transformer is in a conducting state based on the magnitude relationship between the feedback voltage and the second threshold voltage. On-state indication signal.

在一些實施例中,系統控制模組包括線電壓-線電流轉換電路和第一比較器,線電壓-線電流轉換電路根據預先確定的轉換關係將回饋電流轉換為線電流,第一比較器基於線電流與第二閾值電流之間的大小關係生成第一比較結果指示信號,第二閾值電流與第一閾值電流成比例。 In some embodiments, the system control module includes a line voltage-line current conversion circuit and a first comparator. The line voltage-line current conversion circuit converts the feedback current into a line current according to a predetermined conversion relationship. The first comparator is based on The magnitude relationship between the line current and the second threshold current generates a first comparison result indication signal, and the second threshold current is proportional to the first threshold current.

在一些實施例中,系統控制模組包括可變比值控制模組,可變比值控制模組包括第一至第三電流鏡、電容器、以及第二比較器,其中:第一電流鏡在第一比較結果指示信號的控制下,對電容器進行充電;第二電流鏡在導通狀態指示信號的控制下,對電容器進行充電;第三電流鏡在導通狀態指示信號的控制下,對電容器進行放電,第二比較器基於電容器上的電壓與第三閾值電壓之間的大小關係生成第二比較結果指示信號,用於控制功率開關從截止狀態變為導通狀態。 In some embodiments, the system control module includes a variable ratio control module, and the variable ratio control module includes first to third current mirrors, a capacitor, and a second comparator, wherein the first current mirror is in the first The comparison result indicates that the capacitor is charged under the control of the indication signal; the second current mirror charges the capacitor under the control of the on-state indication signal; the third current mirror discharges the capacitor under the control of the on-state indication signal, and The two comparators generate a second comparison result indication signal based on the magnitude relationship between the voltage on the capacitor and the third threshold voltage, and are used to control the power switch from the off state to the on state.

在一些實施例中,系統控制模組還包括第三比較器和RS 觸發器,第三比較器基於電流取樣電壓與第一閾值電壓之間的大小關係生成第三比較結果指示信號,RS(Reset-Set)觸發器基於第二比較結果指示信號和第三比較結果指示信號生成用於控制功率開關從導通狀態變為截止狀態或者從截止狀態變為導通狀態的脈衝頻率調變信號。 In some embodiments, the system control module further includes a third comparator and an RS trigger. The third comparator generates a third comparison result indication signal based on a magnitude relationship between the current sampling voltage and the first threshold voltage, and RS (Reset -Set) The trigger generates a pulse frequency modulation signal for controlling the power switch from the on state to the off state or from the off state to the on state based on the second comparison result indication signal and the third comparison result indication signal.

在一些實施例中,回饋電壓是在功率開關處於導通狀態時對變壓器的輔助繞組上的電壓進行分壓得到的。 In some embodiments, the feedback voltage is obtained by dividing the voltage on the auxiliary winding of the transformer when the power switch is in an on state.

根據本發明實施例的用於返馳式電源系統的控制方法,返馳式電源系統包括變壓器和與變壓器的一次繞組連接的功率開關,該控制方法包括:基於連接在功率開關與地之間的電流取樣電阻上的電流取樣電壓控制功率開關從導通狀態變為截止狀態,並且基於來自變壓器的輔助繞組的回饋電壓和回饋電流控制功率開關從截止狀態變為導通狀態,其中,回饋電壓表徵返馳式電源系統的系統輸出電壓,回饋電流錶征返馳式電源系統的系統輸入電壓。 According to a control method for a flyback power supply system according to an embodiment of the present invention, the flyback power supply system includes a transformer and a power switch connected to a primary winding of the transformer, and the control method includes: The current sampling voltage on the current sampling resistor controls the power switch from the on state to the off state, and controls the power switch from the off state to the on state based on the feedback voltage from the auxiliary winding of the transformer and the feedback current, where the feedback voltage represents the flyback The output voltage and feedback current of the power supply system represent the system input voltage of the flyback power supply system.

在一些實施例中,基於回饋電壓確定變壓器的二次繞組導通時間,並且基於回饋電流與第一閾值電流之間的大小關係、以及變壓器的二次繞組導通時間控制功率開關從截止狀態變為導通狀態,以使得變壓器的二次繞組導通時間與功率開關的開關週期之間的比值在回饋電流小於第一閾值電流時為第一值並且在回饋電流大於第一閾值電流時為第二值。 In some embodiments, the on-time of the secondary winding of the transformer is determined based on the feedback voltage, and the power switch is controlled to change from the off state to the on-state based on the magnitude relationship between the feedback current and the first threshold current and the on-time of the secondary winding of the transformer State so that the ratio between the on-time of the secondary winding of the transformer and the switching cycle of the power switch is a first value when the feedback current is less than the first threshold current and a second value when the feedback current is greater than the first threshold current.

VFB‧‧‧輸出表徵電壓 VFB‧‧‧Output Characterization Voltage

VAC‧‧‧交流輸入電壓 V AC ‧‧‧ AC input voltage

VR‧‧‧閾值電壓 VR‧‧‧Threshold Voltage

Vbulk‧‧‧線電壓 Vbulk‧‧‧line voltage

Vramp‧‧‧電容C上的電壓 Vramp‧‧‧Voltage on capacitor C

Vaux‧‧‧電壓 Vaux‧‧‧Voltage

CC_ctrl‧‧‧狀態控制信號 CC_ctrl‧‧‧status control signal

Naux‧‧‧T1的輔助繞組的匝數 Naux‧‧‧T1's auxiliary winding turns

PFM‧‧‧脈衝頻率調變信號 PFM‧‧‧ Pulse Frequency Modulation Signal

Np‧‧‧T1的一次繞組的匝數 The number of turns of the primary winding of Np‧‧‧T1

Q1‧‧‧功率開關 Q1‧‧‧Power Switch

VFB‧‧‧回饋電壓 V FB ‧‧‧Feedback voltage

T1‧‧‧變壓器 T1‧‧‧Transformer

IFB‧‧‧回饋電流 I FB ‧‧‧Feedback Current

Ics‧‧‧變壓器一次電流 Ics‧‧‧Transformer primary current

Vout‧‧‧系統輸出電壓 Vout‧‧‧System output voltage

Rs‧‧‧電流取樣電阻 Rs‧‧‧Current sampling resistor

CC1、CC2‧‧‧系統輸出電流 CC1, CC2‧‧‧ system output current

Vcs‧‧‧電流取樣電壓 Vcs‧‧‧Current sampling voltage

K1、K2‧‧‧比值(Tons/Ts) K1, K2‧‧‧‧ ratio (Tons / Ts)

Isec‧‧‧變壓器二次電流 Isec‧‧‧Transformer secondary current

204-2‧‧‧線電壓-線電流轉換電路 204-2‧‧‧line voltage-line current conversion circuit

Ro‧‧‧負載 Ro‧‧‧Load

204-4‧‧‧二次導通時間感測電路 204-4‧‧‧Second on-time sensing circuit

Iout‧‧‧流過Ro的電流 Iout‧‧‧Current flowing through Ro

204-6‧‧‧可變比值控制電路 204-6‧‧‧Variable ratio control circuit

Tons‧‧‧二次導通時間 Tons‧‧‧second on-time

204-8‧‧‧開關驅動電路 204-8‧‧‧Switch driving circuit

Ts‧‧‧二次導通時間 Ts‧‧‧second on-time

Iline‧‧‧線電流 Iline‧‧‧line current

202‧‧‧整流濾波模組 202‧‧‧ Rectification Filter Module

I1、I2、I0‧‧‧電流鏡 I1, I2, I0‧‧‧ current mirror

204‧‧‧系統控制模組 204‧‧‧System Control Module

C‧‧‧電容 C‧‧‧Capacitor

R1、R2‧‧‧回饋分壓電阻 R1, R2‧‧‧Feedback resistor

State_Tons‧‧‧導通狀態指示信號 State_Tons‧‧‧Continuity state indication signal

L‧‧‧一次繞組電感 L‧‧‧ primary winding inductance

PFM‧‧‧脈衝頻率調變信號 PFM‧‧‧ Pulse Frequency Modulation Signal

D1、D2‧‧‧整流二極體 D1, D2‧‧‧‧rectified diode

Nsec‧‧‧T1變壓器二次側繞組的匝數 Nsec‧‧‧T1 transformer secondary winding turns

VCC‧‧‧控制器供電電壓 VCC‧‧‧ Controller supply voltage

Req‧‧‧等效電阻 Req‧‧‧ Equivalent Resistance

Vth、Vth_bulk‧‧‧閾值電壓 Vth, Vth_bulk‧‧‧threshold voltage

BD、CS、FB‧‧‧端子 BD, CS, FB‧‧‧ terminals

Iovp_1、Iovp_2‧‧‧過壓保護閾值電流 Iovp_1, Iovp_2‧‧‧ Overvoltage protection threshold current

Line_high、OCP‧‧‧比較結果指示信號 Line_high, OCP‧‧‧ Comparison result indication signal

cmp1、cmp2、cmp3、cmp4‧‧‧比較器 cmp1, cmp2, cmp3, cmp4‧‧‧ comparator

從下面結合附圖對本發明的具體實施方式的描述中可以更好地理解本發明,其中:第1圖示出了傳統的基於一次回饋的返馳式電源系統的電路圖;第2圖示出了根據本發明實施例的返馳式電源系統的電路圖;第3圖示出了第2圖中的二次導通時間感測模組的示例電路圖;第4圖示出了第2圖中的可變比值控制模組的示例電路圖; 圖5示出了在第2圖中的二次導通時間感測模組和可變比值控制模組分別被實現為第3圖和第4圖所示的示例電路時,輸出表徵電壓VFB、導通狀態指示信號State_Tons、電容C上的電壓Vramp、狀態控制信號CC_ctrl、以及PFM(Pulse Frequency Modulation,脈衝頻率調變)信號的時序圖;第6圖示出了第2圖所示的返馳式電源系統的系統輸出電流隨系統輸入電壓變化的示意圖。 The present invention can be better understood from the following description of specific embodiments of the present invention with reference to the accompanying drawings, in which: FIG. 1 shows a circuit diagram of a conventional flyback power system based on a primary feedback; FIG. 2 shows A circuit diagram of a flyback power supply system according to an embodiment of the present invention; FIG. 3 illustrates an example circuit diagram of the secondary on-time sensing module in FIG. 2; and FIG. 4 illustrates a variable in FIG. 2 Example circuit diagram of the ratio control module; FIG. 5 shows that the secondary on-time sensing module and the variable ratio control module in FIG. 2 are implemented as the example circuits shown in FIGS. 3 and 4 respectively. Timing diagram of the output voltage VFB, the on-state indication signal State_Tons, the voltage Vramp on the capacitor C, the state control signal CC_ctrl, and the PFM (Pulse Frequency Modulation) signal; The schematic diagram of the system output current of the flyback power system as shown in the figure varies with the system input voltage.

下面將詳細描述本發明的各個方面的特徵和示例性實施例。在下面的詳細描述中,提出了許多具體細節,以便提供對本發明的全面理解。但是,對於本領域技術人員來說很明顯的是,本發明可以在不需要這些具體細節中的一些細節的情況下實施。下面對實施例的描述僅僅是為了通過示出本發明的示例來提供對本發明的更好的理解。本發明決不限於下面所提出的任何具體配置和演算法,而是在不脫離本發明的精神的前提下覆蓋了元素、部件和演算法的任何修改、替換和改進。在附圖和下面的描述中,沒有示出公知的結構和技術,以便避免對本發明造成不必要的模糊。 Features and exemplary embodiments of various aspects of the invention will be described in detail below. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it is obvious to a person skilled in the art that the present invention can be implemented without the need for some of these specific details. The following description of the embodiments is merely for providing a better understanding of the present invention by showing examples of the present invention. The invention is by no means limited to any specific configuration and algorithm proposed below, but covers any modification, replacement and improvement of elements, components and algorithms without departing from the spirit of the invention. In the drawings and the following description, well-known structures and techniques are not shown in order to avoid unnecessarily obscuring the present invention.

第1圖示出了傳統的基於一次回饋的返馳式電源系統的電路圖。在第1圖所示的返馳式電源系統工作於電流斷續模式(Discontinuous Conduction Mode,DCM)的情況下:當功率開關Q1處於導通狀態時,變壓器T1儲存能量,流過變壓器T1的一次繞組的變壓器一次電流Ics線性上升,電流取樣電阻Rs上的電流取樣電壓Vcs線性上升;當電流取樣電阻Rs上的電流取樣電壓Vcs達到閾值電壓Vth時,功率開關Q1從導通狀態變為截止狀態;當功率開關Q1處於截止狀態時,變壓器T1釋放能量,流過變壓器T1的二次繞組的變壓器二次電流Isec線性下降。 FIG. 1 shows a circuit diagram of a conventional flyback power system based on a single feedback. In the case where the flyback power system shown in Figure 1 works in the Discontinuous Conduction Mode (DCM): When the power switch Q1 is in the on state, the transformer T1 stores energy and flows through the primary winding of the transformer T1 The primary current Ics of the transformer rises linearly, and the current sampling voltage Vcs on the current sampling resistor Rs rises linearly; when the current sampling voltage Vcs on the current sampling resistor Rs reaches the threshold voltage Vth, the power switch Q1 changes from the on state to the off state; when When the power switch Q1 is in the off state, the transformer T1 releases energy, and the secondary current Isec of the transformer flowing through the secondary winding of the transformer T1 decreases linearly.

根據一次原理,第1圖所示的返馳式電源系統的系統輸出電流,即流過負載Ro的電流Iout可以表示為: According to the one-time principle, the system output current of the flyback power supply system shown in Figure 1, that is, the current Iout flowing through the load Ro can be expressed as:

其中,N是變壓器T1的一次繞組與二次繞組的匝數比,Ip是流過變壓器T1的一次繞組的變壓器一次峰值電流(即,變壓器一次電流Ics的峰值),Tons是變壓器T1的二次導通時間,Ts是功率開關Q的開關週期。 Among them, N is the turns ratio of the primary winding to the secondary winding of the transformer T1, Ip is the primary peak current of the transformer (that is, the peak value of the transformer primary current Ics) flowing through the primary winding of the transformer T1, and Tons is the secondary of the transformer T1 On-time, Ts is the switching period of the power switch Q.

根據等式1和等式2可知,只要保證變壓器T1的二次導通時間Tons與功率開關Q1的開關週期Ts的比值、和流過變壓器T1的一次繞組的變壓器一次峰值電流Ip為固定值,就可以使第1圖所示的返馳式電源系統的系統輸出電流保持恒定。在這種情況下,不論第1圖所示的返馳式電源系統的系統輸入電壓是否恒定,其系統輸出電流都保持恒定。 According to Equation 1 and Equation 2, as long as the ratio of the secondary on-time Tons of the transformer T1 to the switching period Ts of the power switch Q1 and the primary peak current Ip of the transformer flowing through the primary winding of the transformer T1 are fixed, The system output current of the flyback power supply system shown in FIG. 1 can be kept constant. In this case, the system output current remains constant regardless of whether the system input voltage of the flyback power system shown in Figure 1 is constant.

在一些電網欠發達的國家或地區,例如,印度,交流輸入電壓相當不穩定,如果第1圖所示的返馳式電源系統在交流輸入電壓過高時仍然保持系統輸出電流恒定,則會由於系統過熱而損壞。 In some countries or regions with underdeveloped power grids, such as India, the AC input voltage is quite unstable. If the flyback power system shown in Figure 1 still keeps the system output current constant when the AC input voltage is too high, it will be caused by The system is overheated and damaged.

鑒於上述問題,提出了一種新穎的返馳式電源系統,能夠根據來自變壓器的一次側的電流取樣電壓和來自變壓器的二次側的輸出表徵電壓二者來控制功率開關的狀態切換,從而控制系統輸出電流。 In view of the above problems, a novel flyback power supply system is proposed, which can control the state switching of the power switch based on both the current sampling voltage from the primary side of the transformer and the output characterization voltage from the secondary side of the transformer, thereby controlling the system Output current.

第2圖示出了根據本發明實施例的返馳式電源系統的電路圖。如第2圖所示,根據本發明實施例的返馳式電源系統包括變壓器T1、位於變壓器T1的一次側的整流濾波模組202、系統控制模組204、功率開關Q1、和電流取樣電阻Rs、以及位於變壓器T1的二次側的回饋分壓電阻R1和R2,其中:整流濾波模組202的第一端子和第二端子用於分別與交流電源的正極和負極連接,整流濾波模組202的第三端子與變壓器T1的一次繞組電感L的第一端子連接,整流濾波模組202的第四端子接地;系統控制模組204的BD端子與功率開關Q1的基極連接,系統控制模組 204的CS端子與電流取樣電阻Rs的第一端子連接,系統控制模組204的FB端子與回饋分壓電阻R1和R2之間的連接節點連接;功率開關Q1的集極與變壓器T1的一次繞組電感L的第二端子連接,功率開關Q1的發射極與電流取樣電阻Rs的第一端子連接;電流取樣電阻Rs的第二端子接地;回饋分壓電阻R1和R2串聯連接在變壓器T1的輔助繞組的同名端和地之間。 FIG. 2 shows a circuit diagram of a flyback power supply system according to an embodiment of the present invention. As shown in FIG. 2, the flyback power supply system according to the embodiment of the present invention includes a transformer T1, a rectification and filtering module 202 located on the primary side of the transformer T1, a system control module 204, a power switch Q1, and a current sampling resistor Rs. And the feedback voltage dividing resistors R1 and R2 on the secondary side of the transformer T1, wherein the first terminal and the second terminal of the rectifying and filtering module 202 are respectively connected to the positive and negative poles of the AC power supply, and the rectifying and filtering module 202 The third terminal is connected to the first terminal of the primary winding inductance L of the transformer T1, and the fourth terminal of the rectification and filtering module 202 is grounded; the BD terminal of the system control module 204 is connected to the base of the power switch Q1, and the system control module The CS terminal of 204 is connected to the first terminal of the current sampling resistor Rs, the FB terminal of the system control module 204 is connected to the connection node between the feedback voltage dividing resistors R1 and R2; the collector of the power switch Q1 is connected to the primary winding of the transformer T1 The second terminal of the inductor L is connected, and the emitter of the power switch Q1 is connected to the first terminal of the current sampling resistor Rs; the second terminal of the current sampling resistor Rs is grounded; and the feedback voltage dividing resistors R1 and R2 are connected in series Connected between the dotted end of secondary winding of the transformer T1 and the ground.

在第2圖所示的返馳式電源系統中,整流濾波模組202通過對交流輸入電壓VAC進行整流和濾波生成線電壓Vbulk;在功率開關Q1處於導通狀態時,變壓器T1的輔助繞組上的電壓Vaux為負壓且大小與線電壓Vbulk成比例,具體如下: In the flyback power supply system shown in FIG. 2, the rectification and filtering module 202 generates a line voltage Vbulk by rectifying and filtering the AC input voltage V AC . When the power switch Q1 is in an on state, the auxiliary winding of the transformer T1 is The voltage Vaux is negative and its magnitude is proportional to the line voltage Vbulk, as follows:

其中,Naux是變壓器T1的輔助繞組的匝數,Np是變壓器T1的一次繞組的匝數。 Among them, Naux is the number of turns of the auxiliary winding of the transformer T1, and Np is the number of turns of the primary winding of the transformer T1.

在功率開關Q1處於導通狀態時,變壓器T1的輔助繞組上的電壓Vaux可以表徵線電壓Vbulk(即,系統輸入電壓),因此來自變壓器T1的輔助繞組的回饋電流IFB也可以表徵線電壓Vbulk。在功率開關Q1處於截止狀態時,變壓器T1的輔助繞組上的電壓Vaux與系統輸出電壓,即,負載Ro上的電壓Vout成比例,因此來自變壓器T1的輔助繞組的回饋電壓VFB可以表徵系統輸出電壓Vout。 When the power switch Q1 is in the on state, the voltage Vaux on the auxiliary winding of the transformer T1 can represent the line voltage Vbulk (ie, the system input voltage), so the feedback current I FB from the auxiliary winding of the transformer T1 can also represent the line voltage Vbulk. When the power switch Q1 is in the off state, the voltage Vaux on the auxiliary winding of the transformer T1 is proportional to the system output voltage, that is, the voltage Vout on the load Ro, so the feedback voltage V FB from the auxiliary winding of the transformer T1 can characterize the system output Voltage Vout.

在第2圖所示的返馳式電源系統中,系統控制模組204可以根據電流取樣電阻Rs上的電流取樣電壓Vcs、以及來自變壓器T1的輔助繞組的回饋電壓VFB和回饋電流IFB來控制功率開關Q1從導通狀態變為截止狀態或者從截止狀態變為導通狀態,從而控制系統輸出電流,即流過負載Ro的電流Iout。 In the flyback power supply system shown in FIG. 2, the system control module 204 may determine the current sampling voltage Vcs on the current sampling resistor Rs and the feedback voltage V FB and the feedback current I FB from the auxiliary winding of the transformer T1. The power switch Q1 is controlled to change from the on state to the off state or from the off state to the on state, thereby controlling the system output current, that is, the current Iout flowing through the load Ro.

具體地,當功率開關Q1處於導通狀態時,變壓器T1儲存能量,流過變壓器T1的一次繞組的變壓器一次電流Ics線性上升,電流取樣電阻Rs上的電流取樣電壓Vcs線性上升;當電流取樣電阻Rs上的電 流取樣電壓Vcs達到閾值電壓Vth時,系統控制模組204控制功率開關Q1從導通狀態變為截止狀態。當功率開關Q1處於截止狀態時,系統控制模組204可以根據來自變壓器T1的輔助繞組的回饋電壓VFB來判斷變壓器T1的二次繞組何時開始退磁以及何時結束退磁(即,感測變壓器T1的二次導通時間Tons),並根據變壓器T1的二次導通時間Tons、以及來自變壓器T1的輔助繞組的回饋電流IFB與過壓保護閾值電流Iovp_1之間的大小關係來控制功率開關Q1從截止狀態變為導通狀態,以使得變壓器T1的二次導通時間Tons與功率開關Q1的開關週期Ts之間的比值(Tons/Ts)在來自變壓器T1的輔助繞組的回饋電流IFB小於過壓保護閾值電流Iovp_1時為K1並且在來自變壓器T1的回饋電流IFB大於過壓保護閾值電流Iovp_1時為K2。 Specifically, when the power switch Q1 is on, the transformer T1 stores energy, and the primary current Ics of the transformer flowing through the primary winding of the transformer T1 rises linearly, and the current sampling voltage Vcs on the current sampling resistor Rs increases linearly; when the current sampling resistor Rs When the current sampling voltage Vcs reaches the threshold voltage Vth, the system control module 204 controls the power switch Q1 from the on state to the off state. When the power switch Q1 is in the off state, the system control module 204 can determine when the secondary winding of the transformer T1 starts to demagnetize and when to end the demagnetization according to the feedback voltage V FB from the auxiliary winding of the transformer T1 (ie, the sense of the transformer T1 Secondary conduction time Tons), and control the power switch Q1 from the off state according to the magnitude relationship between the secondary conduction time Tons of the transformer T1 and the feedback current I FB from the auxiliary winding of the transformer T1 and the overvoltage protection threshold current Iovp_1 Into a conducting state so that the ratio (Tons / Ts) between the secondary conduction time Tons of the transformer T1 and the switching period Ts of the power switch Q1 is less than the overvoltage protection threshold current from the feedback current I FB from the auxiliary winding of the transformer T1 K1 at Iovp_1 and K2 when the feedback current I FB from the transformer T1 is greater than the overvoltage protection threshold current Iovp_1.

在一些實施例中,系統控制模組204可以進一步包括線電壓-線電流轉換電路204-2、二次導通時間感測電路204-4、可變比值控制電路204-6、RS觸發器、開關驅動電路204-8、以及比較器cmp1和cmp2,其中: 線電壓-線電流轉換電路204-2可以在功率開關Q1處於導通狀態時把線電壓Vbulk取樣下來並轉換成線電流Iline,然後把線電流Iline輸出到比較器cmp1。例如,線電壓-線電流轉換電路204-2可以根據以下等式並結合等式3將線電壓Vbulk轉換成線電流Iline: In some embodiments, the system control module 204 may further include a line voltage-line current conversion circuit 204-2, a second on-time sensing circuit 204-4, a variable ratio control circuit 204-6, an RS trigger, a switch The driving circuit 204-8 and the comparators cmp1 and cmp2, among which: the line voltage-line current conversion circuit 204-2 can sample the line voltage Vbulk and convert it into a line current Iline when the power switch Q1 is on. The current Iline is output to the comparator cmp1. For example, the line voltage-line current conversion circuit 204-2 may convert the line voltage Vbulk into a line current Iline according to the following equation and combining Equation 3:

其中,A表示轉換係數且為常數。 Here, A represents a conversion coefficient and is constant.

比較器cmp1可以將線電流Iline與過壓保護閾值電流Iovp_2進行比較,並將比較結果指示信號Line_high輸出到可變比值控制電路204-6。這裡,當線電流Iline小於過壓保護閾值電流Iovp_2時,比較器cmp1輸出的比較結果指示信號Line_high為低位準;當線電流Iline大 於過壓保護閾值電流Iovp_2時,比較器cmp1輸出的比較結果指示信號Line_high為高位準。這裡,Iovp_1=Iovp_2×A。 The comparator cmp1 can compare the line current Iline with the overvoltage protection threshold current Iovp_2, and output the comparison result indication signal Line_high to the variable ratio control circuit 204-6. Here, when the line current Iline is less than the overvoltage protection threshold current Iovp_2, the comparison result indication signal Line_high output by the comparator cmp1 is at a low level; when the line current Iline is greater than the overvoltage protection threshold current Iovp_2, the comparison result output by the comparator cmp1 indicates The signal Line_high is high. Here, Iovp_1 = Iovp_2 × A.

二次導通時間感測電路204-4可以根據來自變壓器T1的輔助繞組的回饋電壓VFB來判斷變壓器T1的二次繞組何時開始退磁以及何時結束退磁,即感測變壓器T1的二次導通時間Tons,並將變壓器T1的二次導通時間Tons提供給可變比值控制電路204-6。 The secondary on-time sensing circuit 204-4 can determine when the secondary winding of the transformer T1 starts to demagnetize and when to end the demagnetization according to the feedback voltage V FB from the auxiliary winding of the transformer T1, that is, to sense the secondary on-time Tons of the transformer T1 And provides the secondary on-time Tons of the transformer T1 to the variable ratio control circuit 204-6.

第3圖示出了第2圖中的二次導通時間感測模組的示例電路圖。如第3圖所示,比較器cmp4通過比較來自變壓器T1的輔助繞組的回饋電壓VFB是否高於例如,0.1V來判斷變壓器T1的二次繞組的退磁開始與結束。當來自變壓器T1的輔助繞組的回饋電壓VFB高於0.1V時,指示變壓器T1的二次繞組開始退磁,即變壓器T1的二次繞組處於導通狀態;當來自變壓器T1的輔助繞組的回饋電壓VFB低於0.1V時,指示變壓器T1的二次繞組結束退磁,即變壓器T1的二次繞組處於截止狀態。 FIG. 3 shows an example circuit diagram of the secondary on-time sensing module in FIG. 2. As shown in FIG. 3, the comparator cmp4 determines whether the demagnetization of the secondary winding of the transformer T1 starts and ends by comparing whether the feedback voltage V FB from the auxiliary winding of the transformer T1 is higher than, for example, 0.1V. When the feedback voltage V FB from the auxiliary winding of the transformer T1 is higher than 0.1V, it indicates that the secondary winding of the transformer T1 starts to demagnetize, that is, the secondary winding of the transformer T1 is in a conducting state; when the feedback voltage V from the auxiliary winding of the transformer T1 When FB is lower than 0.1V, it indicates that the secondary winding of the transformer T1 is demagnetized, that is, the secondary winding of the transformer T1 is in a cut-off state.

第3圖所示的二次導通時間感測模組的輸出信號是表徵變壓器T1的二次繞組是否處於導通狀態的導通狀態指示信號State_Tons;當變壓器T1的二次繞組處於導通狀態時,導通狀態指示信號State_Tons為高位準;當變壓器T1的二次繞組處於截止狀態時,導通狀態指示信號state_Tons為低位準。 The output signal of the secondary on-time sensing module shown in FIG. 3 is a conduction state indication signal State_Tons that indicates whether the secondary winding of the transformer T1 is in a conducting state; when the secondary winding of the transformer T1 is in a conducting state, the conducting state The indication signal State_Tons is at a high level; when the secondary winding of the transformer T1 is in an off state, the on-state indication signal state_Tons is at a low level.

可變比值控制電路204-6可以在比較結果指示信號Line_high為低位準時,利用變壓器T1的二次導通時間Tons基於Tons/Ts=K1確定功率開關Q1的開關週期,並基於所確定的功率開關Q1的開關週期控制功率開關Q1從截止狀態變為導通狀態,從而使得系統輸 出電流;在比較結果指示信號Line_high為高位準時,利用 變壓器T1的二次導通時間Tons基於Tons/Ts=K2確定功率開關Q1的開關週期,並基於所確定的功率開關Q1的開關週期控制功率開關Q1從截止狀 態變為導通狀態,從而使得系統輸出電流The variable ratio control circuit 204-6 may determine the switching cycle of the power switch Q1 based on Tons / Ts = K1 when the comparison result indicates that the signal Line_high is at a low level, based on Tons / Ts = K1, and based on the determined power switch Q1 Switching cycle controls the power switch Q1 from the off state to the on state, so that the system output current ; When the comparison result indicates that the signal Line_high is at a high level, the secondary conduction time Tons of the transformer T1 is used to determine the switching cycle of the power switch Q1 based on Tons / Ts = K2, and the power switch Q1 is controlled based on the determined switching cycle of the power switch Q1 The off state becomes the on state, so that the system output current .

第4圖示出了第2圖中的可變比值控制模組的示例電路圖。如第4圖所示,當二次導通時間感測模組輸出的導通狀態指示信號State_Tons為高位準時,電流鏡I2對電容C放電,電容C上的電壓Vramp線性下降;當二次導通時間感測模組輸出的導通狀態指示信號State_Tons為低位準時,電流鏡I1或者I1+I0對電容C充電,電容C上的電壓Vramp線性升高;當電容C上的電壓Vramp高於閾值電壓VR時,比較器cmp3輸出的狀態控制信號CC_ctrl為高位準;當電容C上的電壓Vramp低於VR時,比較器cmp3輸出的狀態控制信號CC_ctrl為低位準。 FIG. 4 shows an example circuit diagram of the variable ratio control module in FIG. 2. As shown in Figure 4, when the on-state indication signal State_Tons output by the second on-time sensing module is at a high level, the current mirror I2 discharges the capacitor C, and the voltage Vramp on the capacitor C decreases linearly. When the on-state indication signal State_Tons output by the test module is at a low level, the current mirror I1 or I1 + I0 charges the capacitor C, and the voltage Vramp on the capacitor C rises linearly; when the voltage Vramp on the capacitor C is higher than the threshold voltage VR, The state control signal CC_ctrl output by the comparator cmp3 is at a high level; when the voltage Vramp on the capacitor C is lower than VR, the state control signal CC_ctrl output by the comparator cmp3 is at a low level.

比較器cmp2可以將電流取樣電阻Rs上的電流取樣電壓Vcs與閾值電壓Vth進行比較,並將比較結果指示信號OCP輸出到RS觸發器。這裡,當電流取樣電阻Rs上的電流取樣電壓Vcs大於閾值電壓Vth時,比較器cmp2輸出的比較結果指示信號OCP為高位準;當電流取樣電阻Rs上的電流取樣電壓Vcs小於閾值電壓Vth時,比較器cmp2輸出的比較結果指示信號OCP為低位準。 The comparator cmp2 can compare the current sampling voltage Vcs on the current sampling resistor Rs with the threshold voltage Vth, and output the comparison result indication signal OCP to the RS flip-flop. Here, when the current sampling voltage Vcs on the current sampling resistor Rs is larger than the threshold voltage Vth, the comparison result indicated by the comparator cmp2 indicates that the signal OCP is at a high level; when the current sampling voltage Vcs on the current sampling resistor Rs is smaller than the threshold voltage Vth, The comparison result output by the comparator cmp2 indicates that the signal OCP is at a low level.

RS觸發器可以基於來自比較器cmp2的比較結果指示信號OCP和來自可變比值控制模組204-6的狀態控制信號CC_ctrl,生成脈衝頻率調變(PFM)信號。 The RS trigger can generate a pulse frequency modulation (PFM) signal based on the comparison result indication signal OCP from the comparator cmp2 and the state control signal CC_ctrl from the variable ratio control module 204-6.

開關驅動模組204-8可以基於來自RS觸發器的PFM信號來生成用於功率開關Q1的驅動信號。 The switch driving module 204-8 may generate a driving signal for the power switch Q1 based on the PFM signal from the RS trigger.

圖5示出了在第2圖中的二次導通時間感測模組和可變比值控制模組分別被實現為第3圖和第4圖所示的示例電路時,來自變壓器T1的輔助繞組的回饋電壓VFB、導通狀態指示信號State_Tons、電容C上的電壓Vramp、狀態控制信號CC_ctrl、以及PFM信號的時序圖。 Figure 5 shows the secondary winding from the transformer T1 when the secondary on-time sensing module and the variable ratio control module in Figure 2 are implemented as the example circuits shown in Figures 3 and 4 respectively. Timing diagram of the feedback voltage V FB , the on-state indication signal State_Tons, the voltage Vramp on the capacitor C, the state control signal CC_ctrl, and the PFM signal.

由上面分析可以知道,當線電流Iline小於過壓保護閾值電流Iovp_2時,比較器cmp1輸出的比較結果指示信號Line_high為低電 平,功率開關Q1的開關週期,變壓器T1的變壓器一次 峰值電流,系統輸出電流;當線電流 Iline大於過壓保護閾值電流Iovp_2時,比較器cmp1輸出的比較結果指示 信號Line_high為高位準,功率開關Q1的開關週期, 變壓器T1的變壓器一次峰值電流,系統輸出電流 From the analysis above, it can be known that when the line current Iline is less than the overvoltage protection threshold current Iovp_2, the comparison result output by the comparator cmp1 indicates that the signal Line_high is low, and the switching cycle of the power switch Q1 Transformer primary peak current of transformer T1 , System output current ; When the line current Iline is greater than the overvoltage protection threshold current Iovp_2, the comparison result output signal of the comparator cmp1 indicates that the signal Line_high is at a high level, and the switching cycle of the power switch Q1 Transformer primary peak current of transformer T1 , System output current

第6圖示出了第2圖所示的返馳式電源系統的系統輸出電流隨系統輸入電壓變化的示意圖。如第6圖所示,當線電壓Vbulk小於閾值電壓Vth_bulk時,系統輸出電流為CC1,當線電壓Vbulk電壓大於閾值電壓Vth_bulk時,系統輸出電流為CC2。可以看出,在系統輸入電壓過高時,系統輸出電流成比例變小,這有利於避免系統過熱。 Fig. 6 is a schematic diagram showing the system output current of the flyback power supply system shown in Fig. 2 as a function of the system input voltage. As shown in FIG. 6, when the line voltage Vbulk is less than the threshold voltage Vth_bulk, the system output current is CC1, and when the line voltage Vbulk voltage is greater than the threshold voltage Vth_bulk, the system output current is CC2. It can be seen that when the system input voltage is too high, the system output current becomes proportionally smaller, which helps to avoid overheating of the system.

需要明確,本發明並不局限於上文所描述並在圖中示出的特定配置和處理。並且,為了簡明起見,這裡省略對已知方法技術的詳細描述。在上述實施例中,描述和示出了若干具體的步驟作為示例。但是,本發明的方法過程並不限於所描述和示出的具體步驟,本領域的技術人員可以在領會本發明的精神之後,做出各種改變、修改、和添加。 It needs to be clear that the invention is not limited to the specific configurations and processes described above and shown in the figures. And, for the sake of brevity, detailed descriptions of known method technologies are omitted here. In the above embodiments, several specific steps have been described and shown as examples. However, the method of the present invention is not limited to the specific steps described and shown, and those skilled in the art can make various changes, modifications, and additions after understanding the spirit of the present invention.

本發明可以以其他的具體形式實現,而不脫離其精神和本質特徵。例如,特定實施例中所描述的演算法可以被修改,而系統體系結構並不脫離本發明的基本精神。因此,當前的實施例在所有方面都被看作是示例性的而非限定性的,本發明的範圍由所附申請專利範圍而非上述描述定義,並且,落入申請專利範圍的含義和等同物的範圍內的全部改變從而都被包括在本發明的範圍之中。 The present invention may be implemented in other specific forms without departing from the spirit and essential characteristics thereof. For example, the algorithms described in particular embodiments may be modified without the system architecture departing from the basic spirit of the invention. Therefore, the current embodiment is considered in all aspects as exemplary rather than limiting, the scope of the present invention is defined by the scope of the attached patent application rather than the above description, and the meanings and equivalents falling within the scope of the patent application All changes within the scope of the substance are thus included in the scope of the present invention.

Claims (10)

一種返馳式電源系統,包括變壓器、與所述變壓器的一次繞組連接的功率開關、以及用於控制所述功率開關從導通狀態變為截止狀態或者從截止狀態變為導通狀態的系統控制模組,其中:所述系統控制模組基於連接在所述功率開關與地之間的電流取樣電阻上的電流取樣電壓控制所述功率開關從導通狀態變為截止狀態,並且基於來自所述變壓器的輔助繞組的回饋電壓和回饋電流控制所述功率開關從截止狀態變為導通狀態,所述回饋電壓表徵所述返馳式電源系統的系統輸出電壓,所述回饋電流錶征所述返馳式電源系統的系統輸入電壓。     A flyback power supply system includes a transformer, a power switch connected to a primary winding of the transformer, and a system control module for controlling the power switch from an on state to an off state or from an off state to an on state. Wherein, the system control module controls the power switch from an on state to an off state based on a current sampling voltage on a current sampling resistor connected between the power switch and ground, and is based on assistance from the transformer The feedback voltage and feedback current of the winding control the power switch from the off state to the on state. The feedback voltage represents the system output voltage of the flyback power system, and the feedback current represents the System input voltage.     如申請專利範圍第1項所述的返馳式電源系統,其中,所述系統控制模組基於所述回饋電壓確定所述變壓器的二次繞組導通時間,並且基於所述回饋電流與第一閾值電流之間的大小關係、以及所述變壓器的二次繞組導通時間控制所述功率開關從截止狀態變為導通狀態,以使得所述變壓器的二次繞組導通時間與所述功率開關的開關週期之間的比值在所述回饋電流小於所述第一閾值電流時為第一值並且在所述回饋電流大於所述第一閾值電流時為第二值。     The flyback power supply system according to item 1 of the scope of patent application, wherein the system control module determines the on-time of the secondary winding of the transformer based on the feedback voltage, and based on the feedback current and a first threshold The magnitude relationship between the currents and the secondary winding on-time of the transformer controls the power switch from an off state to an on state, so that the secondary winding on-time of the transformer is different from the switching cycle of the power switch. The ratio between them is a first value when the feedback current is less than the first threshold current and a second value when the feedback current is greater than the first threshold current.     如申請專利範圍第1項所述的返馳式電源系統,其中,當所述電流取樣電壓大於第一閾值電壓時,所述系統控制模組控制所述功率開關從導通狀態變為截止狀態。     The flyback power supply system according to item 1 of the patent application scope, wherein when the current sampling voltage is greater than a first threshold voltage, the system control module controls the power switch from an on state to an off state.     如申請專利範圍第2項所述的返馳式電源系統,其中,所述系統控制模組包括二次導通時間感測電路,所述二次導通時間感測電路基於所述回饋電壓與第二閾值電壓之間的大小關係生成表徵所述變壓器的二次繞組是否處於導通狀態的導通狀態指示信號。     The flyback power supply system according to item 2 of the scope of patent application, wherein the system control module includes a second on-time sensing circuit based on the feedback voltage and the second on-time sensing circuit. The magnitude relationship between the threshold voltages generates a conduction state indication signal that indicates whether the secondary winding of the transformer is in a conduction state.     如申請專利範圍第2或4項所述的返馳式電源系統,其中,所述系統控制模組包括線電壓-線電流轉換電路和第一比較器,所述線電壓-線電流轉換電路根據預先確定的轉換關係將所述回饋電流轉換為線電流,所述 第一比較器基於所述線電流與第二閾值電流之間的大小關係生成第一比較結果指示信號,所述第二閾值電流與所述第一閾值電壓成比例。     The flyback power supply system according to item 2 or 4 of the scope of patent application, wherein the system control module includes a line voltage-line current conversion circuit and a first comparator, and the line voltage-line current conversion circuit is based on A predetermined conversion relationship converts the feedback current into a line current, and the first comparator generates a first comparison result indication signal based on a magnitude relationship between the line current and a second threshold current, and the second threshold current It is proportional to the first threshold voltage.     如申請專利範圍第5項所述的返馳式電源系統,其中,所述系統控制模組包括可變比值控制模組,所述可變比值控制模組包括第一至第三電流鏡、電容器、以及第二比較器,其中所述第一電流鏡在所述第一比較結果指示信號的控制下,對所述電容器進行充電,所述第二電流鏡在所述導通狀態指示信號的控制下,對所述電容器進行充電,所述第三電流鏡在所述導通狀態指示信號的控制下,對所述電容器進行放電,所述第二比較器基於所述電容器上的電壓與第三閾值電壓之間的大小關係生成第二比較結果指示信號,用於控制所述功率開關從截止狀態變為導通狀態。     The flyback power supply system according to item 5 of the scope of patent application, wherein the system control module includes a variable ratio control module, and the variable ratio control module includes first to third current mirrors and capacitors. And a second comparator, wherein the first current mirror charges the capacitor under the control of the first comparison result indication signal, and the second current mirror is under the control of the on-state indication signal To charge the capacitor, the third current mirror discharges the capacitor under the control of the on-state indication signal, and the second comparator is based on the voltage on the capacitor and a third threshold voltage The magnitude relationship between them generates a second comparison result indication signal for controlling the power switch from an off state to an on state.     如申請專利範圍第6項所述的返馳式電源系統,其中,所述系統控制模組還包括第三比較器和RS觸發器,所述第三比較器基於所述電流取樣電壓與所述第一閾值電壓之間的大小關係生成第三比較結果指示信號,所述RS觸發器基於所述第二比較結果指示信號和所述第三比較結果指示信號生成用於控制所述功率開關從導通狀態變為截止狀態或者從截止狀態變為導通狀態的脈衝頻率調變信號。     The flyback power supply system according to item 6 of the patent application scope, wherein the system control module further includes a third comparator and an RS trigger, and the third comparator is based on the current sampling voltage and the The magnitude relationship between the first threshold voltages generates a third comparison result indication signal, and the RS trigger generates a control signal for controlling the power switch from turning on based on the second comparison result indication signal and the third comparison result indication signal. A pulse frequency modulation signal whose state changes to an off state or from an off state to an on state.     如申請專利範圍第1項所述的返馳式電源系統,其中,所述回饋電壓是在所述功率開關處於導通狀態時對所述變壓器的輔助繞組上的電壓進行分壓得到的。     The flyback power supply system according to item 1 of the scope of patent application, wherein the feedback voltage is obtained by dividing the voltage on the auxiliary winding of the transformer when the power switch is in an on state.     一種用於返馳式電源系統的控制方法,所述返馳式電源系統包括變壓器和與所述變壓器的一次繞組連接的功率開關,該控制方法包括:基於連接在所述功率開關與地之間的電流取樣電阻上的電流取樣電壓控制所述功率開關從導通狀態變為截止狀態,並且基於來自所述變壓器的 輔助繞組的回饋電壓和回饋電流控制所述功率開關從截止狀態變為導通狀態,所述回饋電壓表徵所述返馳式電源系統的系統輸出電壓,所述回饋電流錶征所述返馳式電源系統的系統輸入電壓。     A control method for a flyback power system includes a transformer and a power switch connected to a primary winding of the transformer, and the control method includes: based on being connected between the power switch and ground The current sampling voltage on the current sampling resistor controls the power switch from the on state to the off state, and controls the power switch from the off state to the on state based on the feedback voltage and the feedback current from the auxiliary winding of the transformer, The feedback voltage represents a system output voltage of the flyback power system, and the feedback current represents a system input voltage of the flyback power system.     如申請專利範圍第9項所述的控制方法,其中,基於所述回饋電壓確定所述變壓器的二次繞組導通時間,並且基於所述回饋電流與第一閾值電流之間的大小關係、以及所述變壓器的二次繞組導通時間控制所述功率開關從截止狀態變為導通狀態,以使得所述變壓器的二次繞組導通時間與所述功率開關的開關週期之間的比值在所述回饋電流小於所述第一閾值電流時為第一值並且在所述回饋電流大於所述第一閾值電流時為第二值。     The control method according to item 9 of the scope of patent application, wherein the on-time of the secondary winding of the transformer is determined based on the feedback voltage, and based on a magnitude relationship between the feedback current and a first threshold current, and The on time of the secondary winding of the transformer controls the power switch from the off state to the on state, so that the ratio between the on time of the secondary winding of the transformer and the switching cycle of the power switch is less than the feedback current. The first threshold current is a first value when the feedback current is greater than the first threshold current and is a second value.    
TW106117737A 2017-04-25 2017-05-26 Flyback power system and control method thereof TWI636647B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??201710279652.7 2017-04-25
CN201710279652.7A CN106992684B (en) 2017-04-25 2017-04-25 Flyback power supply system and its control method

Publications (2)

Publication Number Publication Date
TWI636647B TWI636647B (en) 2018-09-21
TW201840108A true TW201840108A (en) 2018-11-01

Family

ID=59418521

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106117737A TWI636647B (en) 2017-04-25 2017-05-26 Flyback power system and control method thereof

Country Status (2)

Country Link
CN (1) CN106992684B (en)
TW (1) TWI636647B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10972013B2 (en) * 2018-12-03 2021-04-06 New Japan Radio Co., Ltd. Switching power supply device with current limiting operation by feedback current
CN109406860A (en) * 2018-12-24 2019-03-01 厦门能瑞康电子有限公司 A kind of voltage sampling circuit
WO2021127957A1 (en) * 2019-12-24 2021-07-01 深圳大学 Flyback converter constant-current control circuit
CN114624499B (en) * 2022-03-15 2023-09-19 无锡市晶源微电子股份有限公司 Output voltage sampling circuit of switching power supply
CN115800767A (en) * 2023-01-31 2023-03-14 深圳市芯茂微电子有限公司 Control method of switching power supply and switching power supply

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8305776B2 (en) * 2008-07-30 2012-11-06 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for primary-side regulation in off-line switching-mode flyback power conversion system
US8526203B2 (en) * 2008-10-21 2013-09-03 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for constant voltage mode and constant current mode in flyback power converter with primary-side sensing and regulation
CN101854124B (en) * 2009-03-30 2014-05-07 通嘉科技股份有限公司 Power converter and use method thereof
CN201435677Y (en) * 2009-06-19 2010-03-31 Bcd半导体制造有限公司 Flyback switch power supply
CN102769383B (en) * 2011-05-05 2015-02-04 广州昂宝电子有限公司 System and method for constant-current control via primary side sensing and regulating
KR101803538B1 (en) * 2011-05-25 2017-12-01 페어차일드코리아반도체 주식회사 Power supply device and driving method thereof
CN103051191A (en) * 2012-12-11 2013-04-17 青岛联盟电子仪器有限公司 Flyback type switching circuit with auxiliary winding
CN104578792B (en) * 2013-10-17 2017-11-28 比亚迪股份有限公司 Line loss compensation device, switch power supply system and line loss compensation method
TWI562525B (en) * 2014-08-15 2016-12-11 Eosmem Corp Primary-side regulated flyback converter and power control integrated circuit thereof
CN205596029U (en) * 2015-12-31 2016-09-21 广州金升阳科技有限公司 Double stage control ware and ACDC switching power supply

Also Published As

Publication number Publication date
TWI636647B (en) 2018-09-21
CN106992684B (en) 2019-06-21
CN106992684A (en) 2017-07-28

Similar Documents

Publication Publication Date Title
TWI636647B (en) Flyback power system and control method thereof
US6788557B2 (en) Single conversion power converter with hold-up time
US9654013B2 (en) Control circuit, control method and primary-controlled flyback converter using the same
EP2621069B1 (en) Flyback converter with primary side voltage sensing and overvoltage protection during low load operation
TWI483524B (en) A system and method for adjusting a power conversion system
US9083246B2 (en) Control circuit for primary side control of switching power supply
CN110401349B (en) Semiconductor device for power control, switching power supply device, and design method therefor
US8928235B2 (en) Damper circuit for switched dimming
CN108173434B (en) Switching power supply circuit
JP6424605B2 (en) Insulated DC power supply device and control method
CN108880296B (en) Power supply conversion system
US8242765B2 (en) Switching power supply device and semiconductor device used for the same
KR101658207B1 (en) Synchronous rectification circuit and synchronous rectification m1ethod
US9831763B2 (en) Capacitor discharge circuit for power supply EMI filters
TWI590574B (en) Power supply apparatus
TW201603444A (en) Charge control circuit, flyback type power source transformation system and charge control method
KR101803538B1 (en) Power supply device and driving method thereof
CN110995025A (en) Switching power supply circuit
CN110445397B (en) Synchronous rectifier drive and soft switching circuit
JP7095784B2 (en) Switching power supply
US11350503B2 (en) Power converter
US20140098571A1 (en) Saturation prevention in an energy transfer element of a power converter
US8036002B2 (en) Wide supply range flyback converter
CN210669601U (en) Battery charging circuit
JP2012125084A (en) Insulated type dc power supply