TW201839640A - Model generation system and model generation method - Google Patents

Model generation system and model generation method Download PDF

Info

Publication number
TW201839640A
TW201839640A TW107106853A TW107106853A TW201839640A TW 201839640 A TW201839640 A TW 201839640A TW 107106853 A TW107106853 A TW 107106853A TW 107106853 A TW107106853 A TW 107106853A TW 201839640 A TW201839640 A TW 201839640A
Authority
TW
Taiwan
Prior art keywords
model
input variable
input
soundness
unit
Prior art date
Application number
TW107106853A
Other languages
Chinese (zh)
Other versions
TWI713823B (en
Inventor
西田幸仁
曾我朗
Original Assignee
日商東芝股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東芝股份有限公司 filed Critical 日商東芝股份有限公司
Publication of TW201839640A publication Critical patent/TW201839640A/en
Application granted granted Critical
Publication of TWI713823B publication Critical patent/TWI713823B/en

Links

Landscapes

  • Testing And Monitoring For Control Systems (AREA)

Abstract

According to one embodiment, a model generation system includes a NCLM processor, a filter part, a model generator, a variable narrow-down part, a determiner, and a soundness calculator. The NCLM processor and the filter part narrows down a first input variable group to a third input variable group selected using NCLM. The model generator generates a model of a relationship between the third input variable group and an output variable. The variable narrow-down part narrows down the first input variable group to one or more of the input variables not used in the generation of the model. When the number of the models has not reached the specified number, the determiner outputting to the NCLM processor the first input variable group narrowed down by the variable narrow-down part. The soundness calculator calculates an overall soundness of the models and calculating a soundness of each of the models.

Description

模型構築系統及模型構築方法Model construction system and model construction method

本發明之實施形態一般而言係關於一種模型構築系統及模型構築方法。Embodiments of the present invention generally relate to a model construction system and a model construction method.

為了自複數個輸入變數(說明變數)預測某輸出變數(目的變數),進行表示輸入變數與輸出變數之關係之模型之構築。作為一例,於在製造裝置進行工件之加工之情形時,有以於製造裝置獲得之各種資料為輸入變數,構築用於預測加工後之工件之品質等之模型之情形。此種模型例如於自於工件之加工中所獲得之資料預測出之品質偏離特定管理範圍之情形時,用以檢測該工件為不良。 一般而言,構築之模型隨著使用期間延長而感度會下降,相對於實測值之預測值的誤差會變大。若相對於實測值之預測值的誤差變大,則於自模型輸出之預測值偏離管理範圍之情形時,難以判別此係起因於模型之感度下降還是實際上工件不良。 因此,期望開發一種可緩和感度下降之影響,且可判別模型是否健全之技術。In order to predict an output variable (destination variable) from a plurality of input variables (description variables), a model representing the relationship between the input variable and the output variable is constructed. As an example, when the manufacturing apparatus performs the processing of the workpiece, there are cases in which various types of data obtained by the manufacturing apparatus are used as input variables, and a model for predicting the quality of the workpiece after processing is constructed. Such a model is used to detect that the workpiece is defective, for example, when the quality predicted from the data obtained in the processing of the workpiece deviates from the specific management range. In general, the model of the construction will decrease in sensitivity as the usage period is extended, and the error with respect to the predicted value of the measured value will become large. If the error with respect to the predicted value of the measured value becomes large, when the predicted value of the self-model output deviates from the management range, it is difficult to determine whether the system is caused by the sensitivity of the model or the actual workpiece defect. Therefore, it is desired to develop a technique that can alleviate the influence of the decrease in sensitivity and can judge whether the model is sound.

本發明之實施形態係提供一種可緩和感度下降之影響,且可判別模型是否健全之模型構築系統及模型構築方法。 根據本發明之實施形態,模型構築系統具備NCLM處理部、過濾部、模型構築部、變數限定部、判定部、健全度算出部。上述NCLM處理部將包含複數個輸入變數之第1輸入變數群限定為使用最新相關魯汶方法(Nearest Correlation Louvain Method (NCLM))選擇之第2輸入變數群。上述過濾部將上述第2輸入變數群限定為滿足特定條件之第3輸入變數群。上述模型構築部係構築表示上述第3輸入變數群與輸出變數之關係之模型。上述變數限定部將上述第1輸入變數群限定為未使用於上述模型之構築之上述輸入變數。上述判定部判定經構築之上述模型之數是否達到規定數,於上述模型之數未達到上述規定數之情形時,將藉由上述變數限定部限定之上述第1輸入變數群輸出至上述NCLM處理部。上述健全度算出部算出上述規定數之上述模型之綜合之健全度與各上述模型之健全度。 根據上述構成之模型構築系統,可緩和感度下降之影響,且可判別模型是否健全。Embodiments of the present invention provide a model construction system and a model construction method that can alleviate the influence of a decrease in sensitivity and can determine whether a model is sound. According to the embodiment of the present invention, the model construction system includes an NCLM processing unit, a filter unit, a model construction unit, a variable restriction unit, a determination unit, and a soundness calculation unit. The NCLM processing unit limits the first input variable group including the plurality of input variables to the second input variable group selected using the latest related correlation law (NCLM). The filter unit limits the second input variable group to a third input variable group that satisfies a specific condition. The model construction unit constructs a model indicating the relationship between the third input variable group and the output variable. The variable limiting unit limits the first input variable group to the input variable that is not used in the construction of the model. The determination unit determines whether the number of the constructed models reaches a predetermined number, and when the number of the models does not reach the predetermined number, outputs the first input variable group defined by the variable limiting unit to the NCLM processing. unit. The soundness calculation unit calculates the overall soundness of the model of the predetermined number and the soundness of each of the models. According to the model construction system configured as described above, it is possible to alleviate the influence of the decrease in sensitivity and to judge whether or not the model is sound.

以下,一面參照圖式一面對本發明之各實施形態進行說明。 又,於本案說明書與各圖中,對與已說明者相同之要素標註相同符號且適當省略詳細說明。 圖1係表示第1實施形態之模型構築系統1之構成之方塊圖。 如圖1所表示般,模型構築系統1具備取得部100、NCLM處理部102、過濾部104、模型構築部106、模型資訊保存部108、變數限定部110、判定部112、健全度算出部114、外部輸出部116、規定數資料庫120及變數資料庫122。 規定數資料庫120記憶規定數。規定數表示於模型構築系統1中構築之模型之數。規定數例如預先由使用者輸入。於變數資料庫122記憶關於輸入變數及輸出變數之各變數之實測值即變數資料。 取得部100自規定數資料庫120及變數資料庫122分別取得規定數及變數資料。取得部100將取得之資訊輸出至NCLM處理部102。 上述NCLM處理部將藉由取得部100取得之複數個輸入變數限定於使用最新相關魯汶方法(Nearest Correlation Louvain Method (NCLM))選擇之複數個輸入變數。NCLM為組合NC(Nearest Correlation)法與Louvain Method之方法。藉由使用NC法,可自多個輸入變數之中找出相關關係較高且更類似(相關關係強)之變數。又,Louvain Method為將加權圖分割於複數個組之最優方法之1種。於Louvain Method中,以組內之結合緊密,且組間之結合疏鬆之方式,將加權圖分割於複數組。以NC法找出之類似變數視為結合。藉此,能以類似變數分配於同一組,相關較低之變數分配於不同組之方式實施組分割。對於分配結果,使用部分最小平方(Partial Least Square(PLS)),僅選擇可良好說明輸出變數之組。而且,藉由組合該等方法,可考慮變數間之類似性而將多個輸入變數組群化,以組單位進行輸入變數之選擇。即,NCLM處理部102將複數個輸入變數限定為最能說明輸出變數之1個以上之輸入變數。 再者,關於NCLM、NC法、及Louvain Method,於Uchimaru, T., Hazama, K., Fujiwara, K., and Kano, M Nearest Correlation Louvain Method for Fast and Good Selection of Input Variables of Statistical Model. 9th International Symposium on Advanced Control of Chemical Processes. Received November 15, 2014.中有詳細敍述。 過濾部104對自NCLM處理部102輸入之複數個輸入變數過濾。藉此,限定為滿足預先設定之特定條件之上述複數個輸入變數之一部分。過濾部104將上述複數個輸入變數之上述一部分輸出至模型構築部106。 於以下,為了說明簡潔,亦可將輸入至NCLM處理部102且進行使用NCLM之限定之複數個輸入變數之群稱為「第1輸入變數群」。又,亦可將使用NCLM限定之複數個輸入變數之群稱為「第2輸入變數群」。將自第2輸入變數群藉由過濾部104限定之輸入變數之群稱為「第3輸入變數群」。 模型構築部106係構築表示自過濾部104輸入之第3輸入變數群與輸出變數之關係之模型。模型構築部106例如使用複回歸或部分最小平方(Partial Least Square(PLS))構築模型。模型構築部106將構築之模型資訊保存於模型資訊保存部108。 變數限定部110將第1輸入變數群限定於未於模型之構築使用之1個以上之輸入變數。即,自第1輸入變數群除去於模型之構築中已使用之輸入變數。變數限定部110將限定之第1輸入變數群輸出至判定部112。 判定部112判定保存於模型保存部108之模型資訊之數(藉由模型構築部106構築之模型之數)是否達到規定數。當藉由判定部112判定模型資訊之數未達到規定數時,將藉由變數限定部110限定之第1輸入變數群輸入至NCLM處理部102。 於NCLM處理部102及過濾部104中,再次進行向第2輸入變數群及第3輸入變數群之限定。藉由模型構築部106而構築其他模型。此時,於輸入至模型構築部106之第3輸入變數群,不包含已經使用於模型之構築之輸入變數。因此,藉由模型構築部106構築表示還未使用於模型之構築之複數個輸入變數之至少一部分與輸出變數之關係之其他模型。 藉由NCLM處理部102、過濾部104、模型構築部106及變數限定部110之處理重複至構築之模型之數量達到規定數為止。當構築之模型之數量達到規定數時,健全度算出部114自模型資訊保存部108取得模型資訊,自變數資料庫122取得變數資料。健全度算出部114基於取得之資料,算出構築之模型群之綜合之健全度及各模型之健全度。 具體而言,首先,健全度算出部114對構築之各模型之輸入變數輸入變數資料而得出輸出變數(預測值)。 例如,進行輸出變數於特定之範圍內之情形為良,且於範圍外之情形為不良之判定。於該情形時,健全度算出部114對各模型之輸出結果進行該判定。而且,分別統計良之判定數與不良之判定數。健全度算出部114將更多方之判定結果作為綜合之判定結果。 或,健全度算出部114算出各模型之預測值之中央值或加權平均值等。健全度算出部114將算出之值作為模型群之代表值。健全度算出部114將代表值處於特定之範圍內之情形作為良,且處於範圍外之情形作為不良而得出綜合之判定結果。 而且,健全度算出部114比較實際之輸出變數(實測值)之判定結果與綜合之判定結果。此時,若綜合之判定結果與實際之判定結果一致,則構築之模型群判定為綜合上健全。 又,健全度算出部114亦可直接比較實測值與模型群之代表值。於該情形時,可使用均方誤差(Mean Square Error(MSE))、均方根誤差(Root Mean Squared Error(RMSE))、決定係數(R2 )或相關係數等作為健全度之指標。 其次,健全度算出部114比較實測值與各模型之預測值,比較實測值之判定結果與各模型之判定結果。藉此,健全度算出部114算出各模型之健全度。比較實測值之判定結果與預測值之判定結果之情形係獲得「健全」「異常」等離散值作為健全度。比較實測值與預測值之情形係獲得MSE、RMSE、R2或相關係數等指標作為健全度。 或者,亦可將模型群之代表值或綜合之判定結果設為正。藉由比較各模型之預測值或判定結果,可算出各模型之健全度。 又,該等健全度之算出方法根據模型構築系統1之應用目的而適當組合,亦可管理模型群與各模型之健全度。例如,於以代替實測或削減實測之頻度為目標之情形時,以模型群之代表值或其判定結果為正,暫時性地算出各模型之健全度。而且,亦可於數量較少之實測點,藉由比較預測值與實測值,或其判定結果彼此,而算出模型群之綜合之健全度及各模型之健全度。 外部輸出部116將資訊於顯示器上對使用者顯示,或以特定之文檔形式輸出且輸出至外部。該資訊藉由健全算出部114算出,包含各模型之預測值、各模型之健全度及綜合之模型之健全度。 圖2係說明第1實施形態之模型構築系統1之動作之圖。 複數個輸入變數(第1輸入變數群)限定於使用NCLM選擇之複數個輸入變數(第2輸入變數群)。將限定之複數個輸入變數過濾。使用藉由NCLM及過濾器進一步限定之複數個輸入變數(第3輸入變數群)而構築第1個模型。 於構築第1個模型時,將使用於第2個以後之模型構築之複數個輸入變數限定為未使用於第1個模型者。對該限定之複數個輸入變數,於構築第2個模型時,藉由NCLM及過濾器進一步加以限定。使用限定之複數個輸入變數而構築第2個模型。 其後,重複同樣之動作。即,於構築第n-1個模型時,將使用於第n個以後之模型構築之複數個輸入變數限定為未使用於第1、2、…n-1個模型者。使用該限定之複數個輸入變數之至少一部分構築第n個模型。 圖3係表示第1實施形態之模型構築方法之流程圖。 取得部100自規定數資料庫120及變數資料庫122取得規定數及變數資料(步驟S1)。NCLM處理部102將取得之複數個輸入變數限定於使用NCLM選擇之複數個輸入變數(步驟S2)。過濾部104將藉由NCLM限定之複數個輸入變數過濾,限定於預先設定之滿足特定之條件之複數個輸入變數(步驟S3)。模型構築部106係構築表示藉由NCLM及過濾器限定之複數個輸入變數與輸出變數之關係之模型(步驟S4)。 模型構築部106將構築之模型資訊保存於模型資訊保存部108(步驟S5)。變數限定部110將於步驟S1取得之複數個輸入變數限定於步驟S4中未使用(未使用於模型構築)之輸入變數(步驟S6)。判定部112判定構築之模型之數是否達到規定數(步驟S7)。於模型之數未達到規定數之情形時,基於步驟S6限定之輸入變數而再次執行步驟S2~S6。 當模型數達到規定數時,健全度算出部114自模型資訊保存部108及變數資料庫122取得模型資訊及變數資料(步驟S8)。健全度算出部114使用取得之變數資料及模型資訊,算出各模型之預測值(步驟S9)。健全度算出部114統計各模型之預測值而算出綜合之健全度(步驟S10)。健全度算出部114算出各模型之健全度(步驟S11)。外部輸出部116將各模型之預測值、各模型之健全度及綜合之模型之健全度輸出至外部 (步驟S12)。 此處,對本實施形態之效果進行說明。 為了緩和模型之感度降低之影響,亦考慮使用複數個模型,自複數個預測值綜合性地判別模型是否健全。然而,當複數個模型之行為相似時,可能於複數個模型中同樣地感度下降,或同樣地暫時產生較大之誤差。因此,難以判別健全度。 於本實施形態之模型構築系統1中,藉由NCLM處理部102限定複數個輸入變數。包含於以NCLM處理部102限定之第2輸入變數群之複數個輸入變數相互相關關係較強。換言之,於以NCLM處理部102限定之輸入變數群與未限定之輸入變數群之間,相關關係變弱。因此,使用該等之輸入變數群構築之模型之行為容易成為彼此不同者。 又,於模型構築系統1中,第2輸入變數群藉由過濾部104過濾。因此,相對於輸出變數之模型之精度亦可提高。即,根據模型構築系統1,藉由NCLM處理部102、過濾部104、模型構築部106、及變數限定部110可提高對於各模型之輸出變數之精度,並且構築行為各不相同之複數個模型。 而且,構築之模型藉由健全度算出部114而算出各模型之健全度及規定數之模型之綜合之健全度。可確認該等之綜合之健全度及各模型之健全度。藉此,即使於一部分模型之輸出變數偏離管理範圍之情形時,亦可更準確地判別此係起因於模型之感度之下降,還是實際上產生了那種變動。 又,本實施形態之模型構築系統1將藉由變數限定部110限定之第1輸入變數群再次輸入至NCLM處理部102。例如,於NCLM處理部102中執行之NCLM之條件可配合構築之模型數之增加而調整。藉由此種方法,可一面進一步提高對各模型之輸出變數之精度,一面構築行為各不相同之複數個模型。 (第2實施形態) 圖4係表示第2實施形態之模型構築系統2之構成之方塊圖。 於第1實施形態之模型構築系統1中,變數限定部110將第1輸入變數群限定於在模型之構築中未使用之輸入變數。而且,將限定之第1輸入變數群輸入至NCLM處理部102。 於圖4表示之第2實施形態之模型構築系統2中,變數限定部110將第2輸入變數群限定於在模型之構築中未使用之輸入變數。而且,將限定之第2輸入變數群輸入至過濾部104。 因此,於模型構築系統2中,未藉由NCLM處理部102限定之除第2輸入變數群以外之第1輸入變數群未於模型之構築中使用。 圖5係說明第2實施形態之模型構築系統2之動作之圖。 如圖5所表示般,第1個模型與第1實施形態之模型構築系統1同樣,係使用藉由NCLM及過濾器限定之輸入變數而構築。以下之模型雖藉由NCLM限定,但使用未藉由過濾器限定之輸入變數構築。 圖6係表示第2實施形態之模型構築方法之流程圖。 步驟S21~S25分別與圖3表示之流程圖之步驟S1~S5同樣地執行。變數限定部110將於步驟S22中限定之變數限定於在步驟S24中未使用之變數(步驟S26)。判定部112判定構築之模型之數量是否達到規定數(步驟S27)。於模型之數量未達到規定數之情形時,基於步驟S26中限定之輸入變數再次執行步驟S23~S26。模型之數量達到規定數後,步驟S28~S32分別與圖3表示之流程圖之步驟S8~S12同樣地執行。 如於第1實施形態之說明中所敍述般,NCLM處理部102將第1輸入變數群限定於相關關係較強,對輸出變數之精度較高之包含複數個輸入變數之第2輸入變數群。而且,於本實施形態之模型構築系統2中,基於該第2輸入變數群,反覆進行模型之構築及輸入變數之限定。因此,根據本實施形態之模型構築系統,構築之模型之行為雖容易成為相對類似者,但可提高各模型之精度。 (第3實施形態) 圖7係表示第3實施形態之模型構築系統3之構成之方塊圖。 於圖7表示之第3實施形態之模型構築系統3中,變數限定部110將第1輸入變數群限定於在模型之構築中未使用之輸入變數。而且,限定之第1輸入變數群作為第2輸入變數群輸入至過濾部104。 即,於模型構築系統1中,當構築各模型時,每次均進行藉由NCLM處理部102之輸入變數之限定。於模型構築系統3中,藉由NCLM處理部102進行之輸入變數之限定僅於最初之模型構築時進行。 圖8係說明第3實施形態之模型構築系統3之動作之圖。 如圖8所表示般,第1個模型與第1實施形態之模型構築系統1同樣,係使用藉由NCLM及過濾器限定之輸入變數而構築。第2個模型使用將未藉由NCLM及過濾器限定之輸入變數以過濾器限定者構築。以下之模型使用將未藉由過濾器限定之輸入變數以過濾器限定者構築。 圖9係表示第3實施形態之模型構築方法之流程圖。 步驟S41~S45分別與圖3表示之流程圖之步驟S1~S5同樣地執行。變數限定部110將步驟S41中取得之複數個輸入變數限定於步驟S44中未使用之變數(步驟S46)。判定部112判定構築之模型之數是否達到規定數(步驟S47)。於模型之數未達到規定數之情形時,基於步驟S46中限定之輸入變數再次執行步驟S43~S46。模型之數量達到規定數之後,步驟S48~S52分別與圖3表示之流程圖之步驟S8~S12同樣地執行。 如於第1實施形態之說明中所敍述般,於以NCLM處理部102限定之輸入變數群與未限定之輸出變數群之間,相關關係變弱。因此,對於未以NCLM處理部102限定之輸入變數群,不反覆以NCLM處理部102進行限定,可構築與第1個模型不同之行為之模型。又,於第2個以下之模型之構築中,由於輸入變數群藉由過濾部104限定,故亦可提高對於輸出變數之精度。 因此,根據本實施形態之模型構築系統3,可一面提高對各模型之輸出變數之精度,一面可使行為各不相同之複數個模型較第1實施形態更簡便地構築。 (第4實施形態) 圖10係表示第4實施形態之模型構築系統4之構成之方塊圖。 圖10表示之第4實施形態之模型構築系統4於例如未具備變數限定部110之點,與第1~第3實施形態之模型構築系統不同。於模型構築系統4中,藉由NCLM處理部102產生複數個輸入變數之組。即,NCLM處理部102自第1輸入變數群產生複數個第2輸入變數群。產生之第2輸入變數群之數較規定數更多之情形時,例如,NCLM處理部102將複數個第2輸入變數群限定於能更良好地說明輸出變數之規定數之第2輸入變數群。 過濾部104將複數個第2輸入變數群分別限定於滿足特定條件之複數個第3輸入變數群。模型構築部106對於各第3輸入變數群,構築表示第3輸入變數群與輸出變數之關係之模型。健全度算出部114算出該等複數個模型之綜合之健全度及各模型之健全度。 圖11係說明第4實施形態之模型構築系統4之動作之圖。 如圖11所表示般,使用NCLM產生複數個輸入變數之組(複數個第2輸入變數群)。其次,將各第2輸入變數群以過濾器過濾。而且,針對各第2輸入變數群構築模型。 圖12係表示第4實施形態之模型構築方法之流程圖。 取得部100自規定數資料庫120及變數資料庫122分別取得規定數及變數資料(步驟S61)。NCLM處理部102自取得之複數個輸入變數產生使用NCLM選擇之複數個輸入變數之組(複數個第2輸入變數群)(步驟S62)。上述過濾部將複數個第2輸入變數群分別限定於滿足特定條件之第3輸入變數群(步驟S63)。 模型構築部106構築複數個模型(步驟S64)。複數個模型分別表示複數個第3輸入變數群與輸出變數之關係。模型構築部106將複數個模型保存於模型資訊保存部108(步驟S65)。以下之步驟S66~S70分別與圖3表示之流程圖之步驟S8~S12同樣地執行。 (第1實施例) 圖13係例示第1實施例之輸出變數與輸入變數之圖。 圖14係例示第1實施例之輸出變數與藉由NCLM選擇之輸入變數之圖。 圖15係例示第1實施例之輸出變數與藉由過濾器選擇之輸入變數之圖。 圖16係表示第1實施例之實測值與各模型之預測值之曲線圖。 於第1實施例中,使用第2實施形態之模型構築系統2。此處,如圖13所表示般,說明基於輸出變數Y與34個輸入變數X之變數資料而構築複數個模型之例。輸出變數Y為工件之品質特性。輸入變數X為於各步驟中加工後之工件之品質。品質係基於加工後之工件之尺寸及工件之加工率之至少一者。 首先,將於圖13表示之34個輸入變數(第1輸入變數群)輸入至NCLM處理部102。其結果,藉由NCLM處理部102,如圖14所表示般,限定於15個輸入變數(第2輸入變數群)。其次,將該15個輸入變數輸入至過濾部104。於圖15表示之例中,過濾部104針對各輸入變數算出推定值、標準誤差、t值、p值及VIF(Variance Inflation Factor:變異數膨脹因子)。而且,過濾部104例如將輸入之說明變數限定於滿足P值<0.0001之輸入變數(第3輸入變數群)。 於圖15表示之例中,藉由過濾部104限定於4個輸入變數。藉由模型構築部106而構築表示該4個輸入變數與輸出變數關係之第1模型。其次,藉由變數限定部110,將以NCLM處理部102限定之15個輸入變數(第2輸入變數群)限定於未使用在第1模型之11個輸入變數。此處,簡單地說,模型構築部106使用該等11個輸入變數(限定之第2輸入變數),構築表示與輸出變數之關係之第2模型。 圖16係表示輸出變數Y之實測值與第1模型及第2模型之預測值之曲線圖。自圖16可知,第1模型可較第2模型更高精度地預測實測值。另一方面,第2模型之精度雖劣於第1模型,但並未大幅偏離實測值。再者,得知第1模型與第2模型相對於實測值之變動而顯示不同之行為。 即,根據本發明之實施形態之模型構築系統,可一面提高對輸出變數之精度,一面構築行為各不相同之複數個模型。又,使用以該等各模型獲得之預測值,藉由健全度算出部114算出模型群之綜合之健全度及各模型之健全度,可更準確地判別構築之模型是否健全。 (第2實施例) 圖17係例示第2實施例之輸出變數與輸入變數之圖。 圖18係例示第2實施例之輸出變數與藉由NCLM選擇之輸入變數之圖。 圖19係例示第2實施例之各模型之特性之表。 圖20係表示第2實施例之實測值與各模型之預測值之曲線圖。 於第2實施例中,如圖17所表示般,說明基於輸出變數Y與270個輸入變數X之變數資料而構築複數個模型之例。輸出變數Y為工件之品質。輸入變數X為於各步驟中獲得之感測器之資料(加工時之溫度或壓力等)。品質係基於加工後之工件之尺寸及工件之加工率之至少一者。於本實施例中,於模型之構築使用第4實施形態之模型構築系統4。 首先,將於圖17表示之270個輸入變數(第1輸入變數群)輸入至NCLM處理部102。其結果,產生圖18表示之3個輸入變數之組(3個第2輸入變數群)。1個第2輸入變數群G1包含132個輸入變數。另一個第2輸入變數群G2包含62個輸入變數。又一個輸入變數群G3包含9個輸入變數。 將第2輸入變數群G1及G2之各者以過濾器過濾而限定於第3輸入變數群。第2輸入變數群G3由於變數之數已經足夠少,故不以過濾器過濾。於過濾部104中,使用逐步法限定輸入變數。藉此,第2輸入變數群G1限定於22個第3輸入變數群G4。第2輸入變數群G2限定於13個第3輸入變數群G5。使用第3輸入變數群G4、第3輸入變數群G5、及第2輸入變數群G3,藉由模型構築部106分別構築第1模型、第2模型及第3模型。 對第1模型至第3模型各者之特性進行評價。圖19表示第1模型及第2模型各者之特性。第3模型由於預測精度較低,故已廢棄。如圖19所表示般,關於第1模型,R2 為約0.64,第1模型之精度顯示為良好。關於第2模型,R2 為約0.42,雖然稍低,但為可容許之精度。 圖20表示輸出變數Y之實測值與第1模型及第2模型之預測值之圖。於圖20之曲線圖中,橫軸表示時刻T。於圖20之曲線圖中,表示實測值之平均值A。又,表示下限值L1及上限值L2之一例。下限值L1及上限值L2分別表示製造上可容許之輸出變數之下限及上限。 自圖20可知,第1模型可較第2模型更高精度地預測實測值。又,第2模型之精度雖劣於第1模型,但未較大地偏離實測值。第1模型與第2模型相對於實測值之變動而顯示不同之行為。 再者,於時刻T126中,相對於實測值處於下限值L1與上限值L2之間,而第1模型之預測值低於下限值L1。因此,於僅使用第1模型之預測中,於時刻T126,可能會錯誤地判定預測之輸出處於不容許之範圍。另一方面,第2模型之預測值處於下限值L1與上限值L2之間。因此,關於時刻T126之預測值,藉由構築更多之模型,算出模型群之綜合之健全度而可準確地進行判定。 圖21係例示用於實現各實施形態之模型構築系統之模型構築裝置5之構成之方塊圖。 模型構築裝置5例如具備輸入裝置200、輸出裝置202及電腦204。電腦204例如具有ROM(Read Only Memory,唯讀記憶體)206、RAM(Random Access Memory,隨機存取記憶體)208、CPU(Central Processing Unit:中央處理單元)210及記憶裝置HDD(Hard Disc Drive:硬碟驅動器)212。 輸入裝置200係使用者對模型構築裝置5進行資訊輸入者。輸入裝置200為鍵盤或觸控面板等。 輸出裝置202係用於將由模型構築系統1獲得之輸出結果對使用者輸出者。輸出裝置202為顯示器或印表機等。 ROM206儲存控制模型構築裝置5之動作之程式。於ROM206,儲存用於使電腦204作為如圖1所表示之取得部100、NCLM處理部102、過濾部104、基本模型構築部106、類似度算出部108、變數限定部110、判定部112、健全度算出部114及外部輸出部116發揮功能之程式。 RAM208係作為儲存於ROM206之程式展開之記憶區域而發揮功能。CPU210讀入儲存於ROM103之控制程式,根據該控制程式而控制電腦204之動作。又,CPU210將藉由電腦204之動作而獲得之各種資料於RAM208展開。 HDD212收納於圖1表示之規定數資料庫120及變數資料庫122。又,HDD212亦作為保存構築之模型或算出之類似度之模型資訊保存部及類似度資訊保存部108發揮功能。 以上,雖例示了本發明之若干實施形態,但此等實施形態僅係作為例示而提出者,並非意欲限制本發明之範圍。該等新穎實施形態能以其他各種形態實施,可於不脫離發明之主旨之範圍內進行各種省略、置換、變更。該等實施形態及其變化包含於發明之範圍及主旨,並且包含於申請專利範圍所記載之發明及其均等之範圍內。又,上述各實施形態係可互相組合而實施。 本申請案以日本專利申請案2017-064333號(申請日:2017年3月29日)及日本專利申請案2017-249763(申請日2017年12月26日)為基礎,自該等申請案享有優先利益。本申請案藉由參照該等申請案而包含該等申請案之全部內容。Hereinafter, each embodiment of the present invention will be described with reference to the drawings. In the present specification and the drawings, the same components as those described above are denoted by the same reference numerals, and the detailed description is omitted as appropriate. Fig. 1 is a block diagram showing the configuration of a model construction system 1 according to the first embodiment. As shown in FIG. 1 , the model construction system 1 includes an acquisition unit 100, an NCLM processing unit 102, a filter unit 104, a model construction unit 106, a model information storage unit 108, a variable restriction unit 110, a determination unit 112, and a soundness calculation unit 114. The external output unit 116, the predetermined number database 120, and the variable database 122. The prescribed number database 120 memorizes the prescribed number. The predetermined number indicates the number of models constructed in the model construction system 1. The prescribed number is input, for example, in advance by the user. The variable database 122 stores the measured values of the variables of the input variables and the output variables, that is, the variable data. The acquisition unit 100 acquires the predetermined number and the variable data from the predetermined number database 120 and the variable database 122, respectively. The acquisition unit 100 outputs the acquired information to the NCLM processing unit 102. The NCLM processing unit limits the plurality of input variables obtained by the acquisition unit 100 to a plurality of input variables selected using the Nearest Correlation Louvain Method (NCLM). NCLM is a combination of the NC (Nearest Correlation) method and the Louvain Method. By using the NC method, variables with higher correlations and more similar (strong correlations) can be found from among multiple input variables. Also, the Louvain Method is one of the best methods for dividing a weighted graph into a plurality of groups. In the Louvain Method, the weighted graph is segmented into complex arrays in such a way that the binding within the group is tight and the combination between the groups is loose. Similar variables found by the NC method are considered as a combination. Thereby, group division can be performed in such a manner that similar variables are assigned to the same group, and related lower variables are assigned to different groups. For the distribution result, use Partial Least Square (PLS) and select only the group that can well describe the output variables. Moreover, by combining these methods, a plurality of input variable arrays can be grouped in consideration of the similarity between the variables, and the input variables can be selected in groups. In other words, the NCLM processing unit 102 limits the plurality of input variables to one or more input variables that best describe the output variables. Furthermore, regarding NCLM, NC method, and Louvain Method, Uchimaru, T., Hazama, K., Fujiwara, K., and Kano, M Nearest Correlation Louvain Method for Fast and Good Selection of Input Variables of Statistical Model. 9th Detailed in International Symposium on Advanced Control of Chemical Processes. Received November 15, 2014. The filter unit 104 filters a plurality of input variables input from the NCLM processing unit 102. Thereby, it is limited to one of the plurality of input variables satisfying the predetermined condition set in advance. The filter unit 104 outputs the above-described part of the plurality of input variables to the model construction unit 106. Hereinafter, for the sake of brevity, a group that is input to the NCLM processing unit 102 and that uses a plurality of input variables defined by the NCLM may be referred to as a “first input variable group”. Further, a group of a plurality of input variables defined by the NCLM may be referred to as a "second input variable group". The group of input variables defined by the filter unit 104 from the second input variable group is referred to as a "third input variable group". The model construction unit 106 constructs a model indicating the relationship between the third input variable group and the output variable input from the filter unit 104. The model construction unit 106 constructs a model using, for example, a complex regression or a partial least square (PLA). The model construction unit 106 stores the constructed model information in the model information storage unit 108. The variable limiting unit 110 limits the first input variable group to one or more input variables that are not used in the construction of the model. That is, the input variable that has been used in the construction of the model is removed from the first input variable group. The variable limiting unit 110 outputs the limited first input variable group to the determination unit 112. The determination unit 112 determines whether or not the number of model information stored in the model storage unit 108 (the number of models constructed by the model construction unit 106) has reached a predetermined number. When the determination unit 112 determines that the number of model information has not reached the predetermined number, the first input variable group defined by the variable limiting unit 110 is input to the NCLM processing unit 102. The NCLM processing unit 102 and the filter unit 104 perform the restriction on the second input variable group and the third input variable group again. The other model is constructed by the model construction unit 106. At this time, the third input variable group input to the model construction unit 106 does not include the input variables that have been used in the construction of the model. Therefore, the model construction unit 106 constructs another model indicating the relationship between at least a part of the plurality of input variables that have not been used in the construction of the model and the output variables. The processing by the NCLM processing unit 102, the filter unit 104, the model construction unit 106, and the variable defining unit 110 is repeated until the number of models constructed reaches a predetermined number. When the number of the constructed models reaches a predetermined number, the soundness calculation unit 114 acquires the model information from the model information storage unit 108, and acquires the variable data from the variable database 122. The soundness calculation unit 114 calculates the overall soundness of the constructed model group and the soundness of each model based on the acquired data. Specifically, first, the soundness calculation unit 114 inputs the variable data to the input variables of the constructed models to obtain an output variable (predicted value). For example, the case where the output variable is within a specific range is good, and the case outside the range is a bad judgment. In this case, the soundness calculation unit 114 performs this determination on the output result of each model. Moreover, the number of judgments and the number of judgments of badness are separately counted. The soundness calculation unit 114 uses the judgment results of the more parties as the comprehensive determination result. Alternatively, the soundness calculation unit 114 calculates a median value, a weighted average value, and the like of the predicted values of the respective models. The soundness calculation unit 114 uses the calculated value as a representative value of the model group. The soundness calculation unit 114 takes the case where the representative value is within the specific range as a good condition, and the situation outside the range as a defect results in a comprehensive determination result. Further, the soundness calculation unit 114 compares the determination result of the actual output variable (actual measurement value) with the comprehensive determination result. At this time, if the comprehensive determination result matches the actual determination result, the constructed model group is judged to be comprehensively sound. Further, the soundness calculation unit 114 can directly compare the actual measurement value with the representative value of the model group. In this case, a Mean Square Error (MSE), a Root Mean Squared Error (RMSE), a coefficient of determination (R 2 ), or a correlation coefficient may be used as an indicator of soundness. Next, the soundness calculation unit 114 compares the actual measurement value with the predicted value of each model, and compares the determination result of the actual measurement value with the determination result of each model. Thereby, the soundness calculation unit 114 calculates the soundness of each model. In the case of comparing the determination result of the actual measurement value with the determination result of the predicted value, a discrete value such as "sound" and "abnormal" is obtained as the soundness. Comparing the measured value with the predicted value, the indicators such as MSE, RMSE, R2 or correlation coefficient are obtained as the soundness. Alternatively, the representative value of the model group or the comprehensive determination result may be set to be positive. By comparing the predicted values or the determination results of the respective models, the soundness of each model can be calculated. Further, the methods for calculating the soundness are appropriately combined according to the application purpose of the model construction system 1, and the soundness of the model group and each model can be managed. For example, when the target frequency of the model group or the determination result thereof is positive, the soundness of each model is temporarily calculated. Moreover, the comprehensive soundness of the model group and the soundness of each model can be calculated by comparing the predicted value with the measured value or the determination result thereof at a small number of actual measurement points. The external output unit 116 displays the information on the display to the user, or outputs it in a specific document form and outputs it to the outside. This information is calculated by the sound calculation unit 114, and includes the predicted values of the models, the soundness of each model, and the soundness of the integrated model. Fig. 2 is a view for explaining the operation of the model construction system 1 of the first embodiment. The plurality of input variables (first input variable group) are limited to a plurality of input variables (second input variable groups) selected using NCLM. Filter the defined number of input variables. The first model is constructed using a plurality of input variables (the third input variable group) further defined by the NCLM and the filter. When constructing the first model, the plurality of input variables used for constructing the second and subsequent models are limited to those not used in the first model. The plurality of input variables for the limitation are further limited by the NCLM and the filter when constructing the second model. Construct a second model using a defined number of input variables. Thereafter, the same action is repeated. That is, when constructing the n-1th model, the plurality of input variables used for the nth and subsequent model construction are limited to those not used for the first, second, ..., n-1 models. The nth model is constructed using at least a portion of the plurality of defined input variables. Fig. 3 is a flow chart showing a model construction method according to the first embodiment. The acquisition unit 100 acquires the predetermined number and the variable data from the predetermined number database 120 and the variable database 122 (step S1). The NCLM processing unit 102 limits the plurality of acquired input variables to a plurality of input variables selected using the NCLM (step S2). The filter unit 104 filters a plurality of input variables defined by the NCLM, and is limited to a plurality of input variables that are set in advance to satisfy a specific condition (step S3). The model construction unit 106 constructs a model indicating the relationship between the plurality of input variables and the output variables defined by the NCLM and the filter (step S4). The model construction unit 106 stores the constructed model information in the model information storage unit 108 (step S5). The variable limiting unit 110 limits the plurality of input variables obtained in step S1 to the input variables that are not used (not used for model construction) in step S4 (step S6). The determination unit 112 determines whether or not the number of models constructed has reached a predetermined number (step S7). When the number of models does not reach the predetermined number, steps S2 to S6 are executed again based on the input variables defined in step S6. When the number of models reaches a predetermined number, the soundness calculation unit 114 acquires the model information and the variable data from the model information storage unit 108 and the variable database 122 (step S8). The soundness calculation unit 114 calculates the predicted value of each model using the acquired variable data and model information (step S9). The soundness calculation unit 114 calculates the predicted value of each model and calculates the comprehensive soundness (step S10). The soundness calculation unit 114 calculates the soundness of each model (step S11). The external output unit 116 outputs the predicted value of each model, the soundness of each model, and the soundness of the integrated model to the outside (step S12). Here, the effects of the present embodiment will be described. In order to alleviate the influence of the sensitivity reduction of the model, it is also considered to use a plurality of models to comprehensively determine whether the model is sound from a plurality of prediction values. However, when the behaviors of a plurality of models are similar, it is possible to similarly decrease the sensitivity in a plurality of models, or similarly temporarily generate a large error. Therefore, it is difficult to determine the soundness. In the model construction system 1 of the present embodiment, the NCLM processing unit 102 defines a plurality of input variables. The plurality of input variables included in the second input variable group defined by the NCLM processing unit 102 have a strong correlation with each other. In other words, the correlation between the input variable group defined by the NCLM processing unit 102 and the undefined input variable group becomes weak. Therefore, the behavior of models constructed using these input variable groups tends to be different from each other. Further, in the model construction system 1, the second input variable group is filtered by the filter unit 104. Therefore, the accuracy of the model relative to the output variable can also be improved. In other words, according to the model construction system 1, the NCLM processing unit 102, the filter unit 104, the model construction unit 106, and the variable defining unit 110 can improve the accuracy of the output variables for each model and construct a plurality of models having different behaviors. . Further, the constructed model calculates the overall soundness of the model of the soundness and the predetermined number of each model by the soundness calculation unit 114. The comprehensive soundness of these and the soundness of each model can be confirmed. Thereby, even when the output variable of a part of the model deviates from the management range, it is possible to more accurately determine whether the system is caused by the decrease in the sensitivity of the model or whether the change actually occurs. Further, in the model construction system 1 of the present embodiment, the first input variable group defined by the variable limiting unit 110 is again input to the NCLM processing unit 102. For example, the condition of the NCLM executed in the NCLM processing unit 102 can be adjusted in accordance with the increase in the number of models constructed. By this method, it is possible to further improve the accuracy of the output variables of each model while constructing a plurality of models having different behaviors. (Second Embodiment) Fig. 4 is a block diagram showing the configuration of a model construction system 2 according to a second embodiment. In the model construction system 1 of the first embodiment, the variable limiting unit 110 limits the first input variable group to an input variable that is not used in the construction of the model. Then, the limited first input variable group is input to the NCLM processing unit 102. In the model construction system 2 of the second embodiment shown in FIG. 4, the variable limiting unit 110 limits the second input variable group to the input variables that are not used in the construction of the model. Then, the limited second input variable group is input to the filter unit 104. Therefore, in the model construction system 2, the first input variable group other than the second input variable group that is not limited by the NCLM processing unit 102 is not used for construction of the model. Fig. 5 is a view for explaining the operation of the model construction system 2 of the second embodiment. As shown in FIG. 5, the first model is constructed using the input variables defined by the NCLM and the filter, similarly to the model construction system 1 of the first embodiment. The following model is defined by NCLM, but is constructed using input variables that are not defined by filters. Fig. 6 is a flow chart showing a model construction method in the second embodiment. Steps S21 to S25 are executed in the same manner as steps S1 to S5 of the flowchart shown in Fig. 3, respectively. The variable defining unit 110 limits the variable defined in step S22 to the variable not used in step S24 (step S26). The determination unit 112 determines whether or not the number of models constructed has reached a predetermined number (step S27). When the number of models does not reach the predetermined number, steps S23 to S26 are executed again based on the input variables defined in step S26. After the number of models reaches a predetermined number, steps S28 to S32 are executed in the same manner as steps S8 to S12 of the flowchart shown in FIG. 3, respectively. As described in the description of the first embodiment, the NCLM processing unit 102 limits the first input variable group to the second input variable group including a plurality of input variables, which have a strong correlation and a high accuracy for output variables. Further, in the model construction system 2 of the present embodiment, the construction of the model and the limitation of the input variables are repeatedly performed based on the second input variable group. Therefore, according to the model construction system of the present embodiment, the behavior of the model constructed is likely to be relatively similar, but the accuracy of each model can be improved. (Third Embodiment) Fig. 7 is a block diagram showing the configuration of a model construction system 3 according to a third embodiment. In the model construction system 3 of the third embodiment shown in FIG. 7, the variable limiting unit 110 limits the first input variable group to the input variables that are not used in the construction of the model. Further, the limited first input variable group is input to the filter unit 104 as the second input variable group. That is, in the model construction system 1, when each model is constructed, the input variable by the NCLM processing unit 102 is limited each time. In the model construction system 3, the limitation of the input variables by the NCLM processing unit 102 is performed only at the time of the initial model construction. Fig. 8 is a view for explaining the operation of the model construction system 3 of the third embodiment. As shown in Fig. 8, the first model is constructed using the input variables defined by the NCLM and the filter, similarly to the model construction system 1 of the first embodiment. The second model is constructed with a filter qualifier using input variables that are not defined by the NCLM and the filter. The following model uses a filter qualifier to construct input variables that are not defined by the filter. Fig. 9 is a flow chart showing a model construction method according to a third embodiment. Steps S41 to S45 are executed in the same manner as steps S1 to S5 of the flowchart shown in Fig. 3, respectively. The variable limiting unit 110 limits the plurality of input variables obtained in step S41 to the variables that are not used in step S44 (step S46). The determination unit 112 determines whether or not the number of models constructed has reached a predetermined number (step S47). When the number of models does not reach the predetermined number, steps S43 to S46 are executed again based on the input variables defined in step S46. After the number of models reaches a predetermined number, steps S48 to S52 are executed in the same manner as steps S8 to S12 of the flowchart shown in FIG. 3, respectively. As described in the description of the first embodiment, the correlation between the input variable group defined by the NCLM processing unit 102 and the undefined output variable group is weak. Therefore, the input variable group not limited by the NCLM processing unit 102 is not limited by the NCLM processing unit 102, and a model of behavior different from the first model can be constructed. Further, in the construction of the second or lower model, since the input variable group is limited by the filter unit 104, the accuracy with respect to the output variable can be improved. Therefore, according to the model construction system 3 of the present embodiment, it is possible to construct a plurality of models having different behaviors as compared with the first embodiment while improving the accuracy of the output variables of the respective models. (Fourth Embodiment) Fig. 10 is a block diagram showing the configuration of a model construction system 4 according to a fourth embodiment. In the model construction system 4 of the fourth embodiment, for example, the model construction system 4 is different from the model construction systems of the first to third embodiments. In the model construction system 4, the NCLM processing unit 102 generates a plurality of sets of input variables. In other words, the NCLM processing unit 102 generates a plurality of second input variable groups from the first input variable group. When the number of the second input variable groups generated is larger than the predetermined number, for example, the NCLM processing unit 102 limits the plurality of second input variable groups to the second input variable group that can better explain the predetermined number of output variables. . The filter unit 104 limits each of the plurality of second input variable groups to a plurality of third input variable groups that satisfy a specific condition. The model construction unit 106 constructs a model indicating the relationship between the third input variable group and the output variable for each of the third input variable groups. The soundness calculation unit 114 calculates the overall soundness of the plurality of models and the soundness of each model. Fig. 11 is a view for explaining the operation of the model construction system 4 of the fourth embodiment. As shown in FIG. 11, a plurality of sets of input variables (a plurality of second input variable groups) are generated using the NCLM. Next, each of the second input variable groups is filtered by a filter. Further, a model is constructed for each of the second input variable groups. Fig. 12 is a flow chart showing a model construction method in the fourth embodiment. The acquisition unit 100 acquires the predetermined number and the variable data from the predetermined number database 120 and the variable database 122 (step S61). The NCLM processing unit 102 generates a plurality of sets of input variables (a plurality of second input variable groups) selected by the NCLM from the plurality of input variables obtained (step S62). The filter unit limits each of the plurality of second input variable groups to a third input variable group that satisfies a specific condition (step S63). The model construction unit 106 constructs a plurality of models (step S64). A plurality of models respectively represent the relationship between a plurality of third input variable groups and output variables. The model construction unit 106 stores a plurality of models in the model information storage unit 108 (step S65). The following steps S66 to S70 are executed in the same manner as steps S8 to S12 of the flowchart shown in Fig. 3, respectively. (First Embodiment) Fig. 13 is a view showing an output variable and an input variable of the first embodiment. Fig. 14 is a view showing an output variable of the first embodiment and an input variable selected by the NCLM. Fig. 15 is a view showing an output variable of the first embodiment and an input variable selected by a filter. Fig. 16 is a graph showing the measured values of the first embodiment and the predicted values of the respective models. In the first embodiment, the model building system 2 of the second embodiment is used. Here, as shown in FIG. 13, an example in which a plurality of models are constructed based on the variable data of the output variable Y and the 34 input variables X will be described. The output variable Y is the quality characteristic of the workpiece. The input variable X is the quality of the workpiece after machining in each step. The quality is based on at least one of the size of the processed workpiece and the processing rate of the workpiece. First, 34 input variables (first input variable group) shown in FIG. 13 are input to the NCLM processing unit 102. As a result, the NCLM processing unit 102 is limited to 15 input variables (second input variable group) as shown in FIG. 14 . Next, the 15 input variables are input to the filter unit 104. In the example shown in FIG. 15, the filter unit 104 calculates an estimated value, a standard error, a t value, a p value, and a VIF (Variance Inflation Factor) for each input variable. Further, the filter unit 104 limits, for example, the input explanatory variable to an input variable (the third input variable group) that satisfies the P value of <0.0001. In the example shown in FIG. 15, the filter unit 104 is limited to four input variables. The first model that shows the relationship between the four input variables and the output variable is constructed by the model construction unit 106. Next, the variable limiting unit 110 limits the 15 input variables (the second input variable group) defined by the NCLM processing unit 102 to the 11 input variables that are not used in the first model. Here, simply, the model construction unit 106 constructs the second model indicating the relationship with the output variable using the eleven input variables (the second input variable that is limited). Fig. 16 is a graph showing the measured values of the output variable Y and the predicted values of the first model and the second model. As can be seen from Fig. 16, the first model can predict the measured value with higher accuracy than the second model. On the other hand, although the accuracy of the second model is inferior to the first model, it does not significantly deviate from the measured value. Furthermore, it is known that the first model and the second model exhibit different behaviors with respect to changes in the measured values. That is, according to the model construction system according to the embodiment of the present invention, it is possible to construct a plurality of models having different behaviors while improving the accuracy of the output variables. Further, by using the predicted values obtained by the respective models, the soundness calculation unit 114 calculates the overall soundness of the model group and the soundness of each model, and can more accurately determine whether or not the constructed model is sound. (Second Embodiment) Fig. 17 is a view showing an output variable and an input variable of the second embodiment. Fig. 18 is a view showing an output variable of the second embodiment and an input variable selected by the NCLM. Fig. 19 is a table showing the characteristics of each model of the second embodiment. Fig. 20 is a graph showing the measured values of the second embodiment and the predicted values of the respective models. In the second embodiment, as shown in FIG. 17, an example in which a plurality of models are constructed based on the variable data of the output variable Y and the 270 input variables X will be described. The output variable Y is the quality of the workpiece. The input variable X is the data of the sensor obtained in each step (temperature or pressure during processing, etc.). The quality is based on at least one of the size of the processed workpiece and the processing rate of the workpiece. In the present embodiment, the model construction system 4 of the fourth embodiment is used for the construction of the model. First, 270 input variables (first input variable group) shown in FIG. 17 are input to the NCLM processing unit 102. As a result, a set of three input variables (three second input variable groups) shown in FIG. 18 is generated. One second input variable group G1 includes 132 input variables. The other second input variable group G2 contains 62 input variables. Yet another input variable group G3 contains nine input variables. Each of the second input variable groups G1 and G2 is filtered by a filter and is limited to the third input variable group. Since the number of variables in the second input variable group G3 is sufficiently small, it is not filtered by the filter. In the filter unit 104, the input variable is defined using a stepwise method. Thereby, the second input variable group G1 is limited to the 22 third input variable groups G4. The second input variable group G2 is limited to the 13 third input variable groups G5. The first model, the second model, and the third model are constructed by the model construction unit 106 using the third input variable group G4, the third input variable group G5, and the second input variable group G3. The characteristics of each of the first model to the third model were evaluated. Fig. 19 shows the characteristics of each of the first model and the second model. The third model has been abandoned due to its low prediction accuracy. As shown in Fig. 19, with respect to the first model, R 2 was about 0.64, and the accuracy of the first model was shown to be good. On the second model, R 2 is about 0.42, although slightly lower, but the accuracy is tolerable. Fig. 20 is a view showing the measured values of the output variable Y and the predicted values of the first model and the second model. In the graph of Fig. 20, the horizontal axis represents time T. In the graph of Fig. 20, the average value A of the measured values is shown. Further, an example of the lower limit value L1 and the upper limit value L2 is shown. The lower limit value L1 and the upper limit value L2 respectively indicate the lower limit and the upper limit of the allowable output variable in manufacturing. As can be seen from Fig. 20, the first model can predict the measured value more accurately than the second model. Further, although the accuracy of the second model is inferior to that of the first model, it does not largely deviate from the measured value. The first model and the second model exhibit different behaviors with respect to changes in measured values. Further, at time T126, the measured value is between the lower limit value L1 and the upper limit value L2, and the predicted value of the first model is lower than the lower limit value L1. Therefore, in the prediction using only the first model, at time T126, it may be erroneously determined that the predicted output is in an unacceptable range. On the other hand, the predicted value of the second model is between the lower limit value L1 and the upper limit value L2. Therefore, with respect to the predicted value at time T126, by constructing more models, the comprehensive soundness of the model group can be calculated, and the determination can be accurately performed. Fig. 21 is a block diagram showing the configuration of a model construction device 5 for realizing the model construction system of each embodiment. The model construction device 5 includes, for example, an input device 200, an output device 202, and a computer 204. The computer 204 includes, for example, a ROM (Read Only Memory) 206, a RAM (Random Access Memory) 208, a CPU (Central Processing Unit) 210, and a memory device HDD (Hard Disc Drive). : Hard disk drive) 212. The input device 200 is a user who inputs information to the model building device 5. The input device 200 is a keyboard, a touch panel, or the like. The output device 202 is for outputting the output obtained by the model building system 1 to the user. The output device 202 is a display or a printer or the like. The ROM 206 stores a program for controlling the operation of the model construction device 5. In the ROM 206, the computer 204 is stored as the acquisition unit 100, the NCLM processing unit 102, the filter unit 104, the basic model construction unit 106, the similarity calculation unit 108, the variable restriction unit 110, and the determination unit 112 shown in FIG. The soundness calculation unit 114 and the external output unit 116 function as a program. The RAM 208 functions as a memory area in which the program stored in the ROM 206 is developed. The CPU 210 reads the control program stored in the ROM 103, and controls the operation of the computer 204 based on the control program. Further, the CPU 210 expands various materials obtained by the operation of the computer 204 in the RAM 208. The HDD 212 is stored in the predetermined number database 120 and the variable data library 122 shown in FIG. Further, the HDD 212 also functions as a model information storage unit and a similarity information storage unit 108 that store a model of construction or a similar degree of similarity. The embodiments of the present invention have been described above by way of example only, and are not intended to limit the scope of the present invention. The present invention can be implemented in various other forms, and various omissions, substitutions and changes can be made without departing from the spirit of the invention. The scope of the invention and the scope of the invention are included in the scope of the invention and the scope of the invention as set forth in the appended claims. Further, each of the above embodiments can be implemented in combination with each other. This application is based on Japanese Patent Application No. 2017-064333 (application date: March 29, 2017) and Japanese Patent Application No. 2017-249763 (application date: December 26, 2017), from which the applications are enjoyed. Priority interest. The entire contents of the applications are hereby incorporated by reference in their entirety.

1~4‧‧‧模型構築系統1~4‧‧‧Model Construction System

5‧‧‧模型構築裝置5‧‧‧Model building device

100‧‧‧取得部100‧‧‧Acquisition Department

102‧‧‧NCLM處理部102‧‧‧NCLM Processing Department

104‧‧‧過濾部104‧‧‧Filter Department

106‧‧‧模型構築部106‧‧‧Model Construction Department

108‧‧‧模型資訊保存部108‧‧‧Model Information Saving Department

110‧‧‧變數限定部110‧‧‧Variable Limits

112‧‧‧判定部112‧‧‧Decision Department

114‧‧‧健全度算出部114‧‧‧Surability calculation department

116‧‧‧外部輸出部116‧‧‧External output

120‧‧‧規定數資料庫120‧‧‧Specified database

122‧‧‧變數資料庫122‧‧‧Variable database

200‧‧‧輸入裝置200‧‧‧ input device

202‧‧‧輸出裝置202‧‧‧Output device

204‧‧‧電腦204‧‧‧ computer

206‧‧‧ROM206‧‧‧ROM

208‧‧‧RAM208‧‧‧RAM

210‧‧‧CPU210‧‧‧CPU

212‧‧‧HDD212‧‧‧HDD

S1~S12‧‧‧步驟S1~S12‧‧‧Steps

S21~S32‧‧‧步驟S21~S32‧‧‧Steps

S41~S52‧‧‧步驟S41~S52‧‧‧Steps

S61~S70‧‧‧步驟S61~S70‧‧‧Steps

圖1係表示第1實施形態之模型構築系統之構成之方塊圖。 圖2係表示第1實施形態之模型構築系統之動作之圖。 圖3係表示第1實施形態之模型構築方法之流程圖。 圖4係表示第2實施形態之模型構築系統之構成之方塊圖。 圖5係說明第2實施形態之模型構築系統之動作之圖。 圖6係表示第2實施形態之模型構築方法之流程圖。 圖7係表示第3實施形態之模型構築系統之構成之方塊圖。 圖8係說明第3實施形態之模型構築系統之動作之圖。 圖9係表示第3實施形態之模型構築方法之流程圖。 圖10係表示第4實施形態之模型構築系統4之構成之方塊圖。 圖11係說明第4實施形態之模型構築系統4之動作之圖。 圖12係表示第4實施形態之模型構築方法之流程圖。 圖13係例示第1實施例之輸出變數與輸入變數之圖。 圖14係例示第1實施例之輸出變數與藉由NCLM選擇之輸入變數之圖。 圖15係例示第1實施例之輸出變數與藉由過濾器選擇之輸入變數之圖。 圖16係表示第1實施例之實測值與各模型之預測值之曲線圖。 圖17係例示第2實施例之輸出變數與輸入變數之圖。 圖18係例示第2實施例之輸出變數與藉由NCLM選擇之輸入變數之圖。 圖19係例示第2實施例之各模型之特性之表。 圖20係表示第2實施例之實測值與各模型之預測值之曲線圖。 圖21係例示用於實現各實施形態之模型構築系統之模型構築裝置之構成之方塊圖。Fig. 1 is a block diagram showing the configuration of a model construction system according to the first embodiment. Fig. 2 is a view showing the operation of the model construction system of the first embodiment. Fig. 3 is a flow chart showing a model construction method according to the first embodiment. Fig. 4 is a block diagram showing the configuration of a model construction system according to a second embodiment. Fig. 5 is a view for explaining the operation of the model building system of the second embodiment. Fig. 6 is a flow chart showing a model construction method in the second embodiment. Fig. 7 is a block diagram showing the configuration of a model construction system according to a third embodiment. Fig. 8 is a view for explaining the operation of the model construction system of the third embodiment. Fig. 9 is a flow chart showing a model construction method according to a third embodiment. Fig. 10 is a block diagram showing the configuration of the model construction system 4 of the fourth embodiment. Fig. 11 is a view for explaining the operation of the model construction system 4 of the fourth embodiment. Fig. 12 is a flow chart showing a model construction method in the fourth embodiment. Fig. 13 is a view showing an output variable and an input variable of the first embodiment. Fig. 14 is a view showing an output variable of the first embodiment and an input variable selected by the NCLM. Fig. 15 is a view showing an output variable of the first embodiment and an input variable selected by a filter. Fig. 16 is a graph showing the measured values of the first embodiment and the predicted values of the respective models. Fig. 17 is a view showing an output variable and an input variable of the second embodiment. Fig. 18 is a view showing an output variable of the second embodiment and an input variable selected by the NCLM. Fig. 19 is a table showing the characteristics of each model of the second embodiment. Fig. 20 is a graph showing the measured values of the second embodiment and the predicted values of the respective models. Fig. 21 is a block diagram showing the configuration of a model building device for realizing the model building system of each embodiment.

Claims (9)

一種模型構築系統,其具備: NCLM處理部,其將包含複數個輸入變數之第1輸入變數群限定於使用最新相關魯汶方法(Nearest Correlation Louvain Method (NCLM))選擇之第2輸入變數群; 過濾部,其將上述第2輸入變數群限定於滿足特定條件之第3輸入變數群; 模型構築部,其構築表示上述第3輸入變數群與輸出變數之關係之模型; 變數限定部,其將上述第1輸入變數群限定於未使用於上述模型之構築之1個以上之上述輸入變數; 判定部,其判定經構築之上述模型之數是否達到規定數,於上述模型之數未達到上述規定數之情形時,將藉由上述變數限定部限定之上述第1輸入變數群輸出至上述NCLM處理部;及 健全度算出部,其算出上述規定數之上述模型之綜合之健全度與各上述模型之健全度。A model construction system including: an NCLM processing unit that limits a first input variable group including a plurality of input variables to a second input variable group selected using a latest related correlation law (NCLM); a filter unit that limits the second input variable group to a third input variable group that satisfies a specific condition; the model construction unit constructs a model that indicates a relationship between the third input variable group and an output variable; and a variable limiting unit that The first input variable group is limited to one or more of the input variables that are not used in the construction of the model; and the determining unit determines whether the number of the constructed models reaches a predetermined number, and the number of the models does not meet the above requirement. In the case of a number, the first input variable group defined by the variable limiting unit is output to the NCLM processing unit, and the soundness calculating unit calculates a comprehensive soundness of the model of the predetermined number and each of the models. The soundness. 如請求項1之模型構築系統,其進而具備外部輸出部,該外部輸出部將各上述模型之健全度、各上述模型之輸出變數及上述綜合之健全度輸出至外部。The model construction system of claim 1, further comprising an external output unit that outputs the soundness of each of the models, the output variable of each of the models, and the integrated soundness to the outside. 一種模型構築系統,其具備: NCLM處理部,其將包含複數個輸入變數之第1輸入變數群限定於使用最新相關魯汶方法(Nearest Correlation Louvain Method (NCLM))選擇之第2輸入變數群; 過濾部,其將上述第2輸入變數群限定於滿足特定條件之第3輸入變數群; 模型構築部,其構築表示上述第3輸入變數群與輸出變數之關係之模型; 變數限定部,其將上述第2輸入變數群限定於未使用於上述模型之構築之1個以上之上述輸入變數; 判定部,其判定經構築之上述模型之數是否達到規定數,於上述模型之數未達到上述規定數之情形時,將藉由上述變數限定部限定之上述第2輸入變數群輸出至上述過濾部;及 健全度算出部,其算出上述規定數之上述模型之綜合之健全度與各上述模型之健全度。A model construction system including: an NCLM processing unit that limits a first input variable group including a plurality of input variables to a second input variable group selected using a latest related correlation law (NCLM); a filter unit that limits the second input variable group to a third input variable group that satisfies a specific condition; the model construction unit constructs a model that indicates a relationship between the third input variable group and an output variable; and a variable limiting unit that The second input variable group is limited to one or more input variables that are not used in the construction of the model; and the determining unit determines whether the number of the constructed models reaches a predetermined number, and the number of the models does not reach the above requirement In the case of a number, the second input variable group defined by the variable limiting unit is output to the filter unit; and the soundness calculation unit calculates a comprehensive soundness of the model of the predetermined number and each of the models Soundness. 如請求項3之模型構築系統,其進而具備外部輸出部,該外部輸出部將各上述模型之健全度、各上述模型之輸出變數及上述綜合之健全度輸出至外部。The model construction system of claim 3, further comprising an external output unit that outputs the soundness of each of the models, the output variable of each of the models, and the integrated soundness to the outside. 一種模型構築系統,其具備: NCLM處理部,其將包含複數個輸入變數之第1輸入變數群限定於使用最新相關魯汶方法(Nearest Correlation Louvain Method (NCLM))選擇之第2輸入變數群; 過濾部,其將上述第2輸入變數群限定於滿足特定條件之第3輸入變數群; 模型構築部,其構築表示上述第3輸入變數群與輸出變數之關係之模型; 變數限定部,其將上述第1輸入變數群限定於未於上述模型之構築使用之1個以上之上述輸入變數; 判定部,其判定構築之上述模型之數是否達到規定數,於上述模型之數未達到上述規定數之情形時,將藉由上述變數限定部限定之上述第1輸入變數群作為上述第2輸入變數群輸出至上述過濾部;及 健全度算出部,其算出上述規定數之上述模型之綜合之健全度與各上述模型之健全度。A model construction system including: an NCLM processing unit that limits a first input variable group including a plurality of input variables to a second input variable group selected using a latest related correlation law (NCLM); a filter unit that limits the second input variable group to a third input variable group that satisfies a specific condition; the model construction unit constructs a model that indicates a relationship between the third input variable group and an output variable; and a variable limiting unit that The first input variable group is limited to one or more input variables that are not used in the construction of the model; and the determining unit determines whether the number of the constructed models reaches a predetermined number, and the number of the models does not reach the predetermined number In the case of the first input variable group defined by the variable limiting unit, the second input variable group is output to the filter unit, and the soundness calculation unit calculates a comprehensive sound of the model of the predetermined number. Degree and the soundness of each of the above models. 如請求項5之模型構築系統,其進而具備外部輸出部,該外部輸出部將各上述模型之健全度、各上述模型之輸出變數及上述綜合之健全度輸出至外部。The model construction system of claim 5, further comprising an external output unit that outputs the soundness of each of the models, the output variable of each of the models, and the integrated soundness to the outside. 一種模型構築系統,其具備: NCLM處理部,其自包含複數個輸入變數之第1輸入變數群產生使用最新相關魯汶方法(Nearest Correlation Louvain Method(NCLM))選擇之複數個第2輸入變數群; 過濾部,其將上述複數個第2輸入變數群限定於滿足特定條件之複數個第3輸入變數群; 模型構築部,其構築表示上述複數個第3輸入變數群之各者與輸出變數之關係之模型;及 健全度算出部,其算出上述複數個模型之綜合之健全度與各上述模型之健全度。A model construction system includes: an NCLM processing unit that generates a plurality of second input variable groups selected using a latest related Leuven method (NCLM) from a first input variable group including a plurality of input variables And a filter unit that limits the plurality of second input variable groups to a plurality of third input variable groups that satisfy a specific condition; and the model construction unit constructs each of the plurality of third input variable groups and an output variable A model of the relationship; and a soundness calculation unit that calculates the overall soundness of the plurality of models and the soundness of each of the models. 如請求項7之模型構築系統,其進而具備外部輸出部,該外部輸出部將各上述模型之健全度、各上述模型之輸出變數及上述綜合之健全度輸出至外部。The model construction system of claim 7, further comprising an external output unit that outputs the soundness of each of the models, the output variable of each of the models, and the integrated soundness to the outside. 一種模型構築方法,其具備: 第1步驟,其將包含複數個輸入變數之第1輸入變數群限定於使用最新相關魯汶方法(Nearest Correlation Louvain Method (NCLM))選擇之第2輸入變數群; 第2步驟,其將上述第2輸入變數群限定於滿足特定條件之第3輸入變數群; 第3步驟,其構築表示上述第3輸入變數群與輸出變數之關係之模型; 第4步驟,其將上述第1輸入變數群限定於上述第3步驟中未使用於上述模型之構築之上述輸入變數;且 基於上述第4步驟中限定之上述第1輸入變數群,重複上述第1步驟至上述第4步驟直至構築之上述模型之數達到規定數,且進而具備: 第5步驟,其算出上述規定數之上述模型之綜合之健全度與各上述模型之健全度。A model construction method comprising: a first step of limiting a first input variable group including a plurality of input variables to a second input variable group selected using a Nearest Correlation Louvain Method (NCLM); In the second step, the second input variable group is limited to a third input variable group that satisfies a specific condition; and the third step is a model that represents a relationship between the third input variable group and an output variable; and a fourth step Limiting the first input variable group to the input variable not used in the construction of the model in the third step; and repeating the first step to the first step based on the first input variable group defined in the fourth step In the fourth step, the number of the models to be constructed reaches a predetermined number, and further includes: a fifth step of calculating the overall soundness of the model of the predetermined number and the soundness of each of the models.
TW107106853A 2017-03-29 2018-03-01 Model building system and model building method TWI713823B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-064333 2017-03-29
JP2017064333 2017-03-29
JP2017-249763 2017-12-26
JP2017249763A JP6767356B2 (en) 2017-03-29 2017-12-26 Model building system and model building method

Publications (2)

Publication Number Publication Date
TW201839640A true TW201839640A (en) 2018-11-01
TWI713823B TWI713823B (en) 2020-12-21

Family

ID=64018227

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107106853A TWI713823B (en) 2017-03-29 2018-03-01 Model building system and model building method

Country Status (2)

Country Link
JP (1) JP6767356B2 (en)
TW (1) TWI713823B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167152A (en) * 1995-12-19 1997-06-24 Hitachi Ltd Interactive model preparing method
US20080072182A1 (en) * 2006-09-19 2008-03-20 The Regents Of The University Of California Structured and parameterized model order reduction
JP5342199B2 (en) * 2008-09-19 2013-11-13 ルネサスエレクトロニクス株式会社 Failure rate prediction method, failure rate prediction program, semiconductor manufacturing device management method, and semiconductor device manufacturing method
JP5682484B2 (en) * 2010-09-16 2015-03-11 新日鐵住金株式会社 Thick steel plate cooling control method, cooling control device, and thick steel plate manufacturing method
CN107438795A (en) * 2015-04-10 2017-12-05 Asml荷兰有限公司 Method and apparatus for checking and measuring

Also Published As

Publication number Publication date
JP6767356B2 (en) 2020-10-14
JP2018170000A (en) 2018-11-01
TWI713823B (en) 2020-12-21

Similar Documents

Publication Publication Date Title
KR102153924B1 (en) Model parameter value estimation apparatus and estimation method, program, recording medium recording the program, model parameter value estimation system
JP2018124937A (en) Abnormality detection device, abnormality detection method, and program
CN109242135B (en) Model operation method, device and business server
US20170061313A1 (en) System and Method for Estimating a Performance Metric
JP5320985B2 (en) Prediction system, prediction method, and prediction program
JP2012226511A (en) Yield prediction system and yield prediction program
JP2023052477A (en) Data processing method and data processing program
JPWO2015122010A1 (en) Learning control device for rolling process
EP2725440A1 (en) Prediction device, prediction method and prediction program
US20220382229A1 (en) Machining condition searching device and machining condition searching method
CN111931426A (en) Method and equipment for determining influence factors of concentration of nitrogen oxides at inlet of SCR (Selective catalytic reduction) reactor
TW201939316A (en) Data processing method, data processing device, and computer-readable recording medium having recorded thereon data processing program
US20180285317A1 (en) Model generation system and model generation method
US10853538B2 (en) Model generation system and model generation method
TWI677799B (en) Model building system and method
TW201621792A (en) Quality controlling device and control method thereof
US7844932B2 (en) Method to identify timing violations outside of manufacturing specification limits
JP5775803B2 (en) Production line simulation model construction method, production line simulation model construction apparatus, and production line simulation model construction program
JP7188950B2 (en) Data processing method and data processing program
TW201839640A (en) Model generation system and model generation method
JP2014110047A (en) Method and device for electronic circuit simulation
JP2020149209A (en) Residual characteristic estimation model creation method and residual characteristic estimation model creation system
JP2020099982A (en) Machine tool thermal displacement correction method, thermal displacement correction program, thermal displacement correction device
WO2017183066A1 (en) Window evaluation method and analysis device
CN108762959B (en) Method, device and equipment for selecting system parameters