TW201838300A - Converter - Google Patents

Converter Download PDF

Info

Publication number
TW201838300A
TW201838300A TW106112543A TW106112543A TW201838300A TW 201838300 A TW201838300 A TW 201838300A TW 106112543 A TW106112543 A TW 106112543A TW 106112543 A TW106112543 A TW 106112543A TW 201838300 A TW201838300 A TW 201838300A
Authority
TW
Taiwan
Prior art keywords
inductor
converter
resonant
unit
secondary winding
Prior art date
Application number
TW106112543A
Other languages
Chinese (zh)
Other versions
TWI631802B (en
Inventor
李文章
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW106112543A priority Critical patent/TWI631802B/en
Application granted granted Critical
Publication of TWI631802B publication Critical patent/TWI631802B/en
Publication of TW201838300A publication Critical patent/TW201838300A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

A converter includes a switching circuit, a resonant circuit, a rectifying circuit, and a transformer including a primary winding, and a secondary winding. The switching circuit is configured to convert a DC input voltage to a switching signal. The resonant circuit is electrically coupled to the switching circuit and configured to receive the switching signal to provide a primary current. The primary winding is coupled to the resonant circuit. The rectifying circuit is coupled to the secondary winding and configured to rectify a secondary current output by the secondary winding so as to provide an output voltage. The resonant circuit includes a variable inductor to adjust the characteristic curve of the converter.

Description

轉換器converter

本案係關於一種轉換器,且特別係關於一種諧振轉換器。This case relates to a converter, and in particular to a resonant converter.

LLC諧振轉換器可透過頻率調變的方式達到穩定的輸出電壓。近來,由於LLC諧振轉換器適合寬範圍輸入電壓與大功率輸出,被廣泛應用於各種應用當中。The LLC resonant converter achieves a stable output voltage through frequency modulation. Recently, the LLC resonant converter is widely used in various applications due to its wide range of input voltages and high power output.

然而,現有LLC諧振轉換器中,當負載或是工作條件改變時,勵磁電感與諧振電感的比值若過大或過小,便無法操作在最佳的工作點上,導致轉換器的效率降低,其應用場合也受到限制。However, in the existing LLC resonant converter, when the load or operating conditions change, if the ratio of the magnetizing inductance to the resonant inductor is too large or too small, it cannot operate at the optimum operating point, resulting in a decrease in the efficiency of the converter. Applications are also limited.

本揭示內容的一態樣為一種轉換器。轉換器包含切換電路、諧振電路、變壓器以及整流電路。切換電路用以將一直流輸入電壓轉換為一切換訊號。諧振電路電性連接於該切換電路,用以接收該切換訊號以提供一原邊電流。變壓器包含一原邊繞組,電性連接於該諧振電路;以及一副邊繞組。整流電路電性連接於該變壓器的該副邊繞組,用以對該副邊繞組輸出的一副邊電流進行整流以提供一輸出電壓。該諧振電路包含一可變電感器,以調整轉換器的特性曲線。One aspect of the present disclosure is a converter. The converter includes a switching circuit, a resonant circuit, a transformer, and a rectifier circuit. The switching circuit is configured to convert the DC input voltage into a switching signal. The resonant circuit is electrically connected to the switching circuit for receiving the switching signal to provide a primary current. The transformer includes a primary winding electrically connected to the resonant circuit; and a secondary winding. The rectifier circuit is electrically connected to the secondary winding of the transformer for rectifying a secondary current output of the secondary winding to provide an output voltage. The resonant circuit includes a variable inductor to adjust the characteristic curve of the converter.

在本揭示內容部分實施例中,該轉換器用以調整該可變電感器的電感值以控制該轉換器的直流增益。In some embodiments of the present disclosure, the converter is configured to adjust an inductance value of the variable inductor to control a DC gain of the converter.

在本揭示內容部分實施例中,該諧振電路包含:一諧振電容單元,以串聯形式電性連接於該原邊繞組;一諧振電感單元,以串聯形式電性連接於該原邊繞組;以及一勵磁電感單元,以並聯形式電性連接於該原邊繞組。In some embodiments of the present disclosure, the resonant circuit includes: a resonant capacitor unit electrically connected to the primary winding in series; a resonant inductor unit electrically connected to the primary winding in series; and a The field magnetizing unit is electrically connected to the primary winding in parallel.

在本揭示內容部分實施例中,該諧振電感單元與該勵磁電感單元中任一者包含該可變電感器,且該諧振電路透過該可變電感器調整該勵磁電感單元與該諧振電感單元的電感比值。In some embodiments of the present disclosure, the resonant inductor unit and the field inductor unit include the variable inductor, and the resonant circuit adjusts the field magnetizing unit through the variable inductor. The inductance ratio of the resonant inductor unit.

在本揭示內容部分實施例中,該諧振電感單元包含該可變電感器,且該諧振電路透過該可變電感器調整該轉換器的品質因數。In some embodiments of the present disclosure, the resonant inductor unit includes the variable inductor, and the resonant circuit adjusts a quality factor of the converter through the variable inductor.

在本揭示內容部分實施例中,該諧振電感單元更包含一固定電感器,該固定電感器以串聯或並聯方式電性耦接於該可變電感器,該固定電感器的磁芯材料異於該可變電感器的磁芯材料。In some embodiments of the present disclosure, the resonant inductor unit further includes a fixed inductor electrically coupled to the variable inductor in series or in parallel, and the core material of the fixed inductor is different. The core material of the variable inductor.

在本揭示內容部分實施例中,該固定電感器包含一鐵氧體磁芯電感器。In some embodiments of the present disclosure, the fixed inductor includes a ferrite core inductor.

在本揭示內容部分實施例中,該勵磁電感單元包含該可變電感器。In some embodiments of the present disclosure, the magnetizing inductance unit includes the variable inductor.

在本揭示內容部分實施例中,該勵磁電感單元更包含一固定電感器,該固定電感器以串聯或並聯方式電性耦接於該可變電感器,該固定電感器的磁芯材料異於該可變電感器的磁芯材料。In some embodiments of the present disclosure, the field inductor unit further includes a fixed inductor electrically coupled to the variable inductor in series or in parallel, and the core material of the fixed inductor Different from the core material of the variable inductor.

在本揭示內容部分實施例中,該固定電感器包含一鐵氧體磁芯電感器。In some embodiments of the present disclosure, the fixed inductor includes a ferrite core inductor.

在本揭示內容部分實施例中,該可變電感器包含一磁粉芯電感器,其導磁率隨著直流磁場強度變化而變化。In some embodiments of the present disclosure, the variable inductor includes a magnetic powder core inductor whose magnetic permeability changes as the DC magnetic field strength changes.

在本揭示內容部分實施例中,該可變電感器包含一可飽和磁芯電感器。In some embodiments of the present disclosure, the variable inductor includes a saturable core inductor.

在本揭示內容部分實施例中,該切換電路包含:一第一開關,該第一開關的一第一端電性耦接於該直流輸入電壓的正極端,該第一開關的一第二端電性耦接於該諧振電路;以及一第二開關,該第二開關的一第一端電性耦接於該第一開關的該第二端,該第二開關的一第二端電性耦接於該直流輸入電壓的負極端。In some embodiments of the present disclosure, the switching circuit includes: a first switch, a first end of the first switch is electrically coupled to a positive end of the DC input voltage, and a second end of the first switch Electrically coupled to the resonant circuit; and a second switch, a first end of the second switch is electrically coupled to the second end of the first switch, and a second end of the second switch is electrically The anode terminal is coupled to the DC input voltage.

在本揭示內容部分實施例中,該變壓器中的該副邊繞組包含一第一副邊繞組與一第二副邊繞組,其中該第二副邊繞組的起始端電性耦接於該第一副邊繞組的結束端。In some embodiments of the present disclosure, the secondary winding of the transformer includes a first secondary winding and a second secondary winding, wherein a starting end of the second secondary winding is electrically coupled to the first The end of the secondary winding.

在本揭示內容部分實施例中,該整流電路包含:一第一二極體,該第一二極體的一陽極端電性耦接於該第一副邊繞組的起始端,該第一二極體的一陰極端電性耦接於一輸出電容的一正極端;以及一第二二極體,該第二二極體的一陽極端電性耦接於該第二副邊繞組的結束端,該第二二極體的一陰極端電性耦接於該第一二極體的該陰極端;其中該第一副邊繞組的結束端與該第二副邊繞組的起始端電性耦接於該輸出電容的一負極端。In some embodiments of the present disclosure, the rectifier circuit includes: a first diode, an anode end of the first diode is electrically coupled to a start end of the first secondary winding, the first diode a cathode end of the body is electrically coupled to a positive terminal of the output capacitor; and a second diode, an anode end of the second diode is electrically coupled to the end of the second secondary winding, a cathode end of the second diode is electrically coupled to the cathode end of the first diode; wherein an end of the first secondary winding is electrically coupled to a start end of the second secondary winding At a negative terminal of the output capacitor.

下文係舉實施例配合所附圖式作詳細說明,以更好地理解本案的態樣,但所提供之實施例並非用以限制本揭露所涵蓋的範圍,而結構操作之描述非用以限制其執行之順序,任何由元件重新組合之結構,所產生具有均等功效的裝置,皆為本揭露所涵蓋的範圍。此外,根據業界的標準及慣常做法,圖式僅以輔助說明為目的,並未依照原尺寸作圖,實際上各種特徵的尺寸可任意地增加或減少以便於說明。下述說明中相同元件將以相同之符號標示來進行說明以便於理解。The embodiments are described in detail below to better understand the aspects of the present invention, but the embodiments are not intended to limit the scope of the disclosure, and the description of the structural operation is not limited. The order in which they are performed, any device that is recombined by components, produces equal devices, and is covered by this disclosure. In addition, according to industry standards and practices, the drawings are only for the purpose of assisting the description, and are not drawn according to the original size. In fact, the dimensions of the various features may be arbitrarily increased or decreased for convenience of explanation. In the following description, the same elements will be denoted by the same reference numerals for explanation.

在全篇說明書與申請專利範圍所使用之用詞(terms),除有特別註明外,通常具有每個用詞使用在此領域中、在此揭露之內容中與特殊內容中的平常意義。某些用以描述本揭露之用詞將於下或在此說明書的別處討論,以提供本領域技術人員在有關本揭露之描述上額外的引導。The terms used in the entire specification and the scope of the patent application, unless otherwise specified, generally have the ordinary meaning of each term used in the field, the content disclosed herein, and the particular content. Certain terms used to describe the disclosure are discussed below or elsewhere in this specification to provide additional guidance to those skilled in the art in the description of the disclosure.

此外,在本文中所使用的用詞『包含』、『包括』、『具有』、『含有』等等,均為開放性的用語,即意指『包含但不限於』。此外,本文中所使用之『及/或』,包含相關列舉項目中一或多個項目的任意一個以及其所有組合。In addition, the terms "including", "including", "having", "containing", and the like, as used herein, are all open terms, meaning "including but not limited to". Further, "and/or" as used herein includes any one or combination of one or more of the associated listed items.

於本文中,當一元件被稱為『連接』或『耦接』時,可指『電性連接』或『電性耦接』。『連接』或『耦接』亦可用以表示二或多個元件間相互搭配操作或互動。此外,雖然本文中使用『第一』、『第二』、…等用語描述不同元件,該用語僅是用以區別以相同技術用語描述的元件或操作。除非上下文清楚指明,否則該用語並非特別指稱或暗示次序或順位,亦非用以限定本發明。As used herein, when an element is referred to as "connected" or "coupled", it may mean "electrically connected" or "electrically coupled". "Connected" or "coupled" can also be used to indicate that two or more components operate or interact with each other. In addition, although the terms "first", "second", and the like are used herein to describe different elements, the terms are used only to distinguish the elements or operations described in the same technical terms. The use of the term is not intended to be a limitation or a

請參考第1圖。第1圖為根據本案部分實施例所繪示的轉換器100的示意圖。如第1圖所示,在部分實施例中,轉換器100包含切換電路120、諧振電路140、變壓器160、整流電路180以及輸出電容Co。Please refer to Figure 1. FIG. 1 is a schematic diagram of a converter 100 according to some embodiments of the present disclosure. As shown in FIG. 1, in some embodiments, the converter 100 includes a switching circuit 120, a resonant circuit 140, a transformer 160, a rectifier circuit 180, and an output capacitor Co.

在結構上,切換電路120的輸入端電性耦接至直流電壓源110,用以接收直流輸入電壓Vin。切換電路120的輸出端電性耦接於諧振電路140的輸入端,用以輸出直流輸入電壓Vin經切換電路120轉換後的切換訊號Sig1至諧振電路140。諧振電路140的輸出端電性耦接於變壓器160的原邊側。整流電路180的輸入端電性耦接於變壓器160的副邊側。整流電路180的輸出端電性耦接於輸出電容Co,以提供直流輸出電壓Vo至後級電路。如此一來,切換電路120、諧振電路140、變壓器160、整流電路180便可形成LLC諧振轉換器的電路架構。Structurally, the input end of the switching circuit 120 is electrically coupled to the DC voltage source 110 for receiving the DC input voltage Vin. The output end of the switching circuit 120 is electrically coupled to the input end of the resonant circuit 140 for outputting the switching signal Sig1 converted by the DC input voltage Vin through the switching circuit 120 to the resonant circuit 140. The output end of the resonant circuit 140 is electrically coupled to the primary side of the transformer 160. The input end of the rectifier circuit 180 is electrically coupled to the secondary side of the transformer 160. The output end of the rectifier circuit 180 is electrically coupled to the output capacitor Co to provide a DC output voltage Vo to the subsequent stage circuit. In this way, the switching circuit 120, the resonant circuit 140, the transformer 160, and the rectifier circuit 180 can form the circuit architecture of the LLC resonant converter.

具體來說,在部分實施例中變壓器160的原邊側包含一組原邊繞組Np。變壓器160的副邊側包含兩組副邊繞組Ns1、Ns2,其中副邊繞組Ns2的起始端電性耦接於副邊繞組Ns1的結束端,並一同電性耦接於輸出電容Co的負極端。舉例來說,在部分實施例中,變壓器160可為副邊側帶中心抽頭式的變壓器,以將變壓器160的副邊側分為彼此耦接的副邊繞組Ns1與副邊繞組Ns2。在部分實施例中,變壓器160亦可為副邊側僅一組副邊繞組之變壓器,並搭配全橋整流電路,副邊側及其整流電路可根據本領域技術人員熟知之任何形式來完成。Specifically, in some embodiments, the primary side of the transformer 160 includes a set of primary windings Np. The secondary side of the transformer 160 includes two sets of secondary windings Ns1 and Ns2, wherein the starting end of the secondary winding Ns2 is electrically coupled to the end of the secondary winding Ns1 and is electrically coupled to the negative terminal of the output capacitor Co. . For example, in some embodiments, the transformer 160 may be a secondary side center tapped transformer to divide the secondary side of the transformer 160 into a secondary winding Ns1 and a secondary winding Ns2 coupled to each other. In some embodiments, the transformer 160 can also be a transformer with only one set of secondary windings on the secondary side, and with a full bridge rectifier circuit, the secondary side and its rectifier circuit can be completed according to any form known to those skilled in the art.

在部分實施例中,轉換器100中的切換電路120可採用半橋式架構以實現半橋諧振變換器,但本案並不以此為限。如第1圖所示,在部分實施例中,切換電路120包含開關S1與開關S2。在結構上,開關S1的第一端電性耦接於直流輸入電壓Vin的正極端,開關S1的第二端電性耦接於諧振電路140。開關S2的第一端電性耦接於開關S1的第二端,開關S2的第二端電性耦接於直流輸入電壓Vin的負極端。開關S1、開關S2的控制端分別用以接收驅動訊號CS1、CS2,使得開關S1、開關S2根據驅動訊號CS1、CS2選擇性地導通或關斷。In some embodiments, the switching circuit 120 in the converter 100 can adopt a half bridge architecture to implement a half bridge resonant converter, but the present invention is not limited thereto. As shown in FIG. 1, in some embodiments, the switching circuit 120 includes a switch S1 and a switch S2. The first end of the switch S1 is electrically coupled to the positive terminal of the DC input voltage Vin, and the second end of the switch S1 is electrically coupled to the resonant circuit 140. The first end of the switch S2 is electrically coupled to the second end of the switch S1, and the second end of the switch S2 is electrically coupled to the negative end of the DC input voltage Vin. The control terminals of the switch S1 and the switch S2 are respectively configured to receive the driving signals CS1 and CS2, so that the switch S1 and the switch S2 are selectively turned on or off according to the driving signals CS1 and CS2.

藉此,切換電路120透過選擇性地導通開關S1、開關S2當中之一者,便可於開關S1導通時輸出具有高準位(如:輸入電壓Vin)的切換訊號Sig1,並於開關S2導通時輸出具有低準位(如:零電位)的切換訊號Sig1。舉例來說,在一個完整切換週期內,驅動訊號CS1、CS2可為脈衝頻率調變(Pulse Frequency Modulation,PFM)訊號,開關S1與開關S2可分別導通半個週期,以輸出責任週期為50%的切換訊號Sig1。此外,在其他實施例中,切換電路120亦可採用全橋式架構以實現全橋諧振變換器。舉例來說,切換電路120亦可包含兩兩成對的四組開關,該些開關分別接受對應的驅動訊號選擇性地導通或截止。如此一來,於一個完整週期內,切換電路120便可於前半週期根據驅動訊號導通其中一對開關,關斷另外一對開關以輸出具有正電位的切換訊號Sig1,並於後半週期根據驅動訊號切換開關的啟閉,以輸出具有負準位的切換訊號Sig1。Therefore, the switching circuit 120 can selectively turn on the switch S1 and the switch S2 to output the switching signal Sig1 having a high level (eg, the input voltage Vin) when the switch S1 is turned on, and is turned on at the switch S2. The switching signal Sig1 having a low level (eg, zero potential) is output. For example, in a complete switching cycle, the driving signals CS1 and CS2 can be pulse frequency modulation (PFM) signals, and the switches S1 and S2 can be turned on for half a cycle respectively, so that the output duty cycle is 50%. Switching signal Sig1. In addition, in other embodiments, the switching circuit 120 can also employ a full bridge architecture to implement a full bridge resonant converter. For example, the switching circuit 120 can also include two pairs of switches in pairs, and the switches are selectively turned on or off by receiving corresponding driving signals. In this way, in a complete cycle, the switching circuit 120 can turn on one of the switches according to the driving signal in the first half cycle, turn off the other pair of switches to output the switching signal Sig1 having a positive potential, and according to the driving signal in the second half cycle. The switch is turned on and off to output a switching signal Sig1 having a negative level.

在部分實施例中,諧振電路140包含諧振電容單元142、諧振電感單元144以及勵磁電感單元146,但本案並不以此為限。在結構上,諧振電容單元142、諧振電感單元144與變壓器160的原邊繞組Np彼此串聯。勵磁電感單元146與變壓器160的原邊繞組Np彼此並聯。舉例來說,如第1圖所示,諧振電容單元142的第一端電性連接於諧振電路140的第一端,以電性連接於開關S1的第二端以及開關S2的第一端。諧振電容單元142的第二端電性連接於諧振電感單元144的第一端。諧振電感單元144的第二端電性連接於勵磁電感單元146的第一端。勵磁電感單元146的第二端電性連接於諧振電路140的第二端,以電性連接於直流輸入電壓Vin的負極端,但本揭示內容並不以此為限。在部分實施例中,諧振電感單元144以及勵磁電感單元146可分別包含變壓器160的漏感與磁化電感。在其他實施例中,諧振電容單元142、諧振電感單元144以及勵磁電感單元146亦可透過不同方式電性連接以實現LLC諧振電路。此外,在其他實施例中,諧振電路140亦可藉由一或多組的電感單元與電容單元實現LC諧振電路、LCC諧振電路、LLCC諧振電路,因此本案圖式中所繪示的LLC諧振電路僅為本案可能的實施方式之一,並非用以限制本案。換言之,本技術領域具有通常知識者當明白,本案各個實施例中的諧振電路140可為一或多組電感單元與一或多組電容單元之任意組合,並透過串聯或並聯等不同方式電性連接以實現諧振。In some embodiments, the resonant circuit 140 includes a resonant capacitor unit 142, a resonant inductor unit 144, and a magnetizing inductor unit 146, but the present invention is not limited thereto. Structurally, the resonant capacitor unit 142, the resonant inductor unit 144, and the primary winding Np of the transformer 160 are connected in series with each other. The field inductance unit 146 and the primary winding Np of the transformer 160 are connected in parallel with each other. For example, as shown in FIG. 1, the first end of the resonant capacitor unit 142 is electrically connected to the first end of the resonant circuit 140 to be electrically connected to the second end of the switch S1 and the first end of the switch S2. The second end of the resonant capacitor unit 142 is electrically connected to the first end of the resonant inductor unit 144. The second end of the resonant inductor unit 144 is electrically connected to the first end of the magnetizing inductance unit 146. The second end of the magnetizing inductance unit 146 is electrically connected to the second end of the resonant circuit 140 to be electrically connected to the negative terminal of the DC input voltage Vin, but the disclosure is not limited thereto. In some embodiments, the resonant inductor unit 144 and the magnetizing inductor unit 146 can respectively include the leakage inductance and magnetizing inductance of the transformer 160. In other embodiments, the resonant capacitor unit 142, the resonant inductor unit 144, and the magnetizing inductor unit 146 can also be electrically connected in different manners to implement an LLC resonant circuit. In addition, in other embodiments, the resonant circuit 140 can also implement an LC resonant circuit, an LCC resonant circuit, and an LLCC resonant circuit by one or more sets of inductive units and capacitor units. Therefore, the LLC resonant circuit illustrated in the drawings herein It is only one of the possible implementation methods of this case and is not intended to limit the case. In other words, those skilled in the art will understand that the resonant circuit 140 in various embodiments of the present invention may be any combination of one or more sets of inductive units and one or more sets of capacitive units, and may be electrically connected in different ways, such as in series or in parallel. Connect to achieve resonance.

具體來說,諧振電路140中的諧振電感單元144與勵磁電感單元146其中任一者包含一可變電感器,且諧振電路140透過可變電感器調整勵磁電感單元146與諧振電感單元144的電感比值,藉此調整轉換器100的特性曲線。詳細內容將於後續段落中搭配相應圖式進行說明。Specifically, any one of the resonant inductor unit 144 and the magnetizing inductor unit 146 in the resonant circuit 140 includes a variable inductor, and the resonant circuit 140 adjusts the magnetizing and inducting unit 146 and the resonant inductor through the variable inductor. The inductance ratio of unit 144, thereby adjusting the characteristic curve of converter 100. The details will be explained in the subsequent paragraphs with the corresponding drawings.

如第1圖所示,在部分實施例中,整流電路180電性連接於變壓器160的副邊繞組Ns1與副邊繞組Ns2,用以對副邊繞組Ns1與副邊繞組Ns2感應原邊繞組Np上訊號變化而輸出的副邊電流Is進行整流,以提供輸出電容Co兩端上的輸出電壓Vo。As shown in FIG. 1 , in some embodiments, the rectifier circuit 180 is electrically connected to the secondary winding Ns1 and the secondary winding Ns2 of the transformer 160 for sensing the primary winding Np of the secondary winding Ns1 and the secondary winding Ns2. The secondary current Is outputted by the change of the upper signal is rectified to provide an output voltage Vo across the output capacitor Co.

在部分實施例中,整流電路180包含二極體D1與二極體D2。在結構上,二極體D1的陽極端電性耦接於副邊繞組Ns1的起始端。二極體D1的陰極端電性耦接於輸出電容Co的正極端。二極體D2的陽極端電性耦接於副邊繞組Ns2的結束端。二極體D2的陰極端電性耦接於二極體D1的陰極端。In some embodiments, the rectifier circuit 180 includes a diode D1 and a diode D2. Structurally, the anode end of the diode D1 is electrically coupled to the start end of the secondary winding Ns1. The cathode end of the diode D1 is electrically coupled to the positive terminal of the output capacitor Co. The anode end of the diode D2 is electrically coupled to the end of the secondary winding Ns2. The cathode end of the diode D2 is electrically coupled to the cathode end of the diode D1.

藉此,透過整流電路180與輸出電容Co對副邊繞組Ns1、Ns2感應輸出的電訊號進行整流與濾波,便可提供直流輸出電壓Vo。Thereby, the DC output voltage Vo can be supplied by rectifying and filtering the electric signals sensed and outputted by the rectifying circuit 180 and the output capacitor Co to the secondary windings Ns1 and Ns2.

如此一來,透過上述電路的操作,轉換器100便可將直流輸入電壓Vin轉換為具有適當電壓準位的直流輸出電壓Vo提供給後級電路。In this way, through the operation of the above circuit, the converter 100 can convert the DC input voltage Vin into a DC output voltage Vo having an appropriate voltage level to be supplied to the subsequent stage circuit.

請一併參考第2圖以及第3圖。第2圖、第3圖為根據本揭示內容部分實施例所繪示的轉換器100的操作示意圖。於第2圖、第3圖中,與第1圖之實施例有關的相似元件係以相同的參考標號表示以便於理解,且相似元件之具體原理已於先前段落中詳細說明,若非必要介紹者,於此不再贅述。Please refer to Figure 2 and Figure 3 together. 2 and 3 are schematic diagrams showing the operation of the converter 100 according to some embodiments of the present disclosure. In FIGS. 2 and 3, similar elements related to the embodiment of FIG. 1 are denoted by the same reference numerals for ease of understanding, and the specific principles of the similar elements have been described in detail in the preceding paragraphs, if not necessary. This will not be repeated here.

如第2圖所示,在上半週期,開關S1接收具有致能準位的驅動訊號CS1而導通。原邊繞組Np承受正向電壓,諧振電容單元142與諧振電感單元144參與諧振,並透過變壓器160將能量傳遞至副邊繞組Ns1,最後經由導通的二極體D1輸出電流。As shown in FIG. 2, in the upper half cycle, the switch S1 receives the drive signal CS1 having the enable level and is turned on. The primary winding Np is subjected to a forward voltage, the resonant capacitor unit 142 and the resonant inductor unit 144 participate in resonance, and the energy is transmitted to the secondary winding Ns1 through the transformer 160, and finally the current is output via the turned-on diode D1.

如第3圖所示,在下半週期,開關S2接收具有致能準位的驅動訊號CS2而導通。隨著切換訊號Sig1降為零,原邊繞組Np承受反向電壓,諧振電容單元142與諧振電感單元144參與諧振,並透過變壓器160將能量傳遞至副邊繞組Ns2,最後經由導通的二極體D2輸出電流。As shown in FIG. 3, in the second half cycle, the switch S2 receives the drive signal CS2 having the enable level and is turned on. As the switching signal Sig1 falls to zero, the primary winding Np is subjected to a reverse voltage, the resonant capacitor unit 142 and the resonant inductor unit 144 participate in resonance, and the energy is transmitted to the secondary winding Ns2 through the transformer 160, and finally via the turned-on diode. D2 output current.

對於第1圖~第3圖中所繪示的LLC諧振轉換器的電路架構而言,轉換器100的諧振頻率、品質因數(Quality Factor)與直流增益(DC gain)可分別表示為下列各式。 For the circuit architecture of the LLC resonant converter illustrated in FIGS. 1 to 3, the resonant frequency, the quality factor, and the DC gain of the converter 100 can be expressed as the following equations, respectively. .

其中表示諧振頻率,表示諧振電感單元144的感值,表示諧振電容單元142的容值。n表示原邊繞組Np與副邊繞組Ns1、Ns2的匝數比。表示負載阻值。表示直流增益。表示勵磁電感單元146與諧振電感單元144的電感比值(即:/)。表示正規化頻率(即:切換頻率與諧振頻率的比值/)。among them Represents the resonant frequency, Representing the sense value of the resonant inductor unit 144, Represents the capacitance of the resonant capacitor unit 142. n represents the turns ratio of the primary winding Np and the secondary windings Ns1, Ns2. Indicates the load resistance. Indicates DC gain. Indicates the inductance ratio of the magnetizing inductance unit 146 and the resonant inductor unit 144 (ie, / ). Represents the normalized frequency (ie: switching frequency) And resonant frequency Ratio / ).

由以上各式可得知,轉換器100的諧振頻率與品質因數Q與諧振電感單元144的感值有關。當諧振電感單元144的感值越大時,品質因數Q越大,諧振頻率越低。相對地,當諧振電感單元144的感值越小時,品質因數Q越小,諧振頻率越高。It can be known from the above formulas that the resonant frequency of the converter 100 And the quality factor Q and the inductance of the resonant inductor unit 144 related. When the inductance of the resonant inductor unit 144 The larger the quality factor Q, the higher the resonance frequency The lower. In contrast, when the inductance of the resonant inductor unit 144 The smaller the quality factor Q, the smaller the resonance frequency The higher.

另一方面,轉換器100的直流增益可表示為勵磁電感單元146與諧振電感單元144的電感比值h、品質因數Q以及正規化頻率之函數。因此,轉換器100的直流增益與諧振電感單元144的感值、勵磁電感單元146的感值有關。On the other hand, the DC gain of the converter 100 It can be expressed as the inductance ratio h of the magnetizing inductance unit 146 and the resonant inductor unit 144, the quality factor Q, and the normalized frequency. The function. Therefore, the DC gain of the converter 100 Sensing value with the resonant inductor unit 144 The inductance of the magnetizing inductance unit 146 related.

操作上,諧振轉換器的切換頻率通常設計在諧振頻率附近,以獲得較佳的轉換效率,並維持切換頻率整體的操作範圍在一定區間內,使得各種工作條件下,可以將轉換器100的損耗維持在較低的水平。因此,透過設置諧振電感單元144的感值與勵磁電感單元146的感值在電路工作當中可變,便可調整h值、品質因數Q、諧振頻率,來優化轉換器100的工作特性,在特性曲線上取得理想的工作點。Operationally, the switching frequency of the resonant converter Usually designed at resonant frequency Nearby to get better conversion efficiency and maintain switching frequency The overall operating range is within a certain range so that the losses of the converter 100 can be maintained at a low level under various operating conditions. Therefore, by setting the sense value of the resonant inductor unit 144 Sensing value with the magnetizing inductance unit 146 Variable in circuit operation, you can adjust h value, quality factor Q, resonant frequency To optimize the operating characteristics of the converter 100 and achieve an ideal operating point on the characteristic curve.

請參考第4A圖、第4B圖以及第4C圖。第4A圖、第4B圖以及第4C圖為根據本揭示內容部分實施例所繪示的直流增益與正規化頻率的關係示意圖。在第4A圖、第4B圖以及第4C圖中,橫軸代表正規化頻率,縱軸代表直流增益。於第4A圖中繪示勵磁電感單元146與諧振電感單元144的電感比值h固定於4時,曲線L1、L2、L3、L4分別對應於品質因數Q為0.1、0.2、0.4、0.8時,直流增益與正規化頻率的關係。第4B圖中繪示勵磁電感單元146與諧振電感單元144的電感比值h固定於6時,曲線L5、L6、L7、L8分別對應於品質因數Q為0.1、0.2、0.4、0.8時,直流增益與正規化頻率的關係。第4C圖中繪示品質因數固定於0.3時,曲線L9、L10、L11、L12分別對應於電感比值h為2、4、6、8時,直流增益與正規化頻率的關係。Please refer to FIG. 4A, FIG. 4B and FIG. 4C. 4A, 4B, and 4C are DC gains according to some embodiments of the present disclosure. Regularization frequency Schematic diagram of the relationship. In Figures 4A, 4B, and 4C, the horizontal axis represents the normalized frequency. , the vertical axis represents DC gain . When the inductance ratio h of the magnetizing inductance unit 146 and the resonant inductor unit 144 is fixed at 4, the curves L1, L2, L3, and L4 correspond to the quality factor Q of 0.1, 0.2, 0.4, and 0.8, respectively. DC gain Regularization frequency Relationship. 4B shows that the inductance ratio h of the magnetizing inductance unit 146 and the resonant inductor unit 144 is fixed at 6, and the curves L5, L6, L7, and L8 correspond to the quality factor Q of 0.1, 0.2, 0.4, and 0.8, respectively. Gain Regularization frequency Relationship. In Fig. 4C, when the quality factor is fixed at 0.3, the curves L9, L10, L11, and L12 correspond to the inductance ratio h, which is 2, 4, 6, and 8, respectively. Regularization frequency Relationship.

值得注意的是,第4A圖、第4B圖以及第4C圖中的具體參數數值以及所繪示的特性曲線僅為示例之用,用以說明直流增益與電感比值h、品質因數Q以及正規化頻率的相關性,並非用以限制本案。It is worth noting that the specific parameter values in Figures 4A, 4B, and 4C and the characteristic curves shown are only examples to illustrate the DC gain. Inductance ratio h, quality factor Q, and normalized frequency The relevance is not intended to limit the case.

如第4A圖與第4B圖所示。當勵磁電感單元146與諧振電感單元144的電感比值h較大時,對於具有相同品質因數Q(如:相同負載的情況下)的曲線而言,轉換器100具有較小的最大直流增益值。舉例來說,當品質因數維持在0.1時,當電感比值h為4時,曲線的最大值大於5。相對地,當電感比值h為6時,曲線的最大值介於4與5之間。As shown in Figures 4A and 4B. When the inductance ratio h of the magnetizing inductance unit 146 and the resonant inductor unit 144 is large, the converter 100 has a smaller maximum DC gain value for a curve having the same quality factor Q (eg, in the case of the same load). . For example, when the quality factor is maintained at 0.1, when the inductance ratio h is 4, the maximum value of the curve is greater than 5. In contrast, when the inductance ratio h is 6, the maximum value of the curve is between 4 and 5.

此外,當勵磁電感單元146與諧振電感單元144的電感比值h較大時,對應於最大直流增益值的正規化頻率較小。相對地,當勵磁電感單元146與諧振電感單元144的電感比值h較小時,對應於最大直流增益值的正規化頻率較大。換言之,當勵磁電感單元146與諧振電感單元144的電感比值h較大時,欲操作在相同直流增益輸出時,切換頻率較為遠離轉換器100的諧振頻率,進而影響轉換器100整體效率。In addition, when the inductance ratio h of the magnetizing inductance unit 146 and the resonant inductor unit 144 is large, the normalized frequency corresponding to the maximum DC gain value Smaller. In contrast, when the inductance ratio h of the magnetizing inductance unit 146 and the resonant inductor unit 144 is small, the normalized frequency corresponding to the maximum DC gain value Larger. In other words, when the inductance ratio h of the magnetizing inductance unit 146 and the resonant inductor unit 144 is large, the switching frequency is to be operated when the same DC gain output is to be operated. Farther away from the resonant frequency of the converter 100 In turn, affecting the overall efficiency of the converter 100.

此外,由第4A圖與第4B圖中亦可得知,在切換頻率小於諧振頻率的操作區域中,當勵磁電感單元146與諧振電感單元144的電感比值h較大時,轉換器100操作在相同的切換頻率時,轉換器100亦具有較小的直流增益In addition, it can also be seen from the 4A and 4B diagrams that the switching frequency Less than the resonant frequency In the operating region, when the inductance ratio h of the magnetizing inductance unit 146 and the resonant inductor unit 144 is large, the converter 100 operates at the same switching frequency. Converter 100 also has a small DC gain .

由第4C圖中亦可得知,當品質因數Q維持於一定值,而勵磁電感單元146與諧振電感單元144的電感比值h改變時,對於較大的h值而言,直流增益的最大值較小,且當正規化頻率隨切換頻率增加時,直流增益的變化較為平緩,進而導致負載處於輕載的情況下,可能會無法將輸出電壓Vo控制在適當的電壓位準。It can also be seen from FIG. 4C that when the quality factor Q is maintained at a certain value and the inductance ratio h of the magnetizing inductance unit 146 and the resonant inductor unit 144 is changed, the maximum DC gain is larger for the larger value of h. Smaller value, and when normalized frequency With switching frequency DC gain when increasing The change is relatively flat, which in turn causes the load to be under light load conditions, and the output voltage Vo may not be controlled to an appropriate voltage level.

然而,對於較小的h值而言,勵磁電感單元146相對較小導致勵磁電流較大,因此可能會增加開關切換損失,因此h值的選擇往往無法滿足所有狀況。換言之,由第4A圖、第4B圖以及第4C圖的特性曲線圖可得知,若諧振電感單元144與勵磁電感單元146的電感值皆為定值,便無法根據負載狀況、工作條件的差異調整特性曲線,導致轉換器100效率降低,或是應用場合受到限制。However, for a smaller value of h, the magnetizing inductance unit 146 is relatively small, resulting in a larger field current, and thus may increase the switching loss of the switch, so the selection of the value of h often fails to satisfy all conditions. In other words, it can be seen from the characteristic diagrams of FIG. 4A, FIG. 4B, and FIG. 4C that if the inductance values of the resonant inductor unit 144 and the magnetizing inductance unit 146 are constant values, the load condition and the working condition cannot be used. The difference adjustment characteristic curve results in a decrease in the efficiency of the converter 100 or a limitation in the application.

因此,在本揭示內容部分實施例中,諧振電感單元144與勵磁電感單元146中至少包含一可變電感器。藉此,諧振電路140便可透過可變電感器調整勵磁電感單元146與諧振電感單元144的電感比值h。如此一來,轉換器100便可藉由調整可變電感器的電感值以控制轉換器100的最大直流增益。Therefore, in some embodiments of the present disclosure, the resonant inductor unit 144 and the magnetizing inductance unit 146 include at least one variable inductor. Thereby, the resonant circuit 140 can adjust the inductance ratio h of the magnetizing inductance unit 146 and the resonant inductor unit 144 through the variable inductor. As such, the converter 100 can control the maximum DC gain of the converter 100 by adjusting the inductance of the variable inductor.

此外,在諧振電感單元144包含可變電感器的實施例中,諧振電路140更可透過可變電感器同時調整轉換器100的品質因數Q與勵磁電感單元146與諧振電感單元144的電感比值h,以調整轉換器100的輸出特性。In addition, in the embodiment where the resonant inductor unit 144 includes a variable inductor, the resonant circuit 140 can further adjust the quality factor Q of the converter 100 and the excitation inductor unit 146 and the resonant inductor unit 144 through the variable inductor. The inductance ratio h is used to adjust the output characteristics of the converter 100.

舉例來說,當於電壓可調整的應用中,轉換器100的直流增益可能會不足,或需要大幅降低切換頻率以提高增益。而根據本揭示內容部分實施例,轉換器100可藉由調整可變電感器的電感值,以降低勵磁電感單元146與諧振電感單元144的電感比值h,藉此獲得較高的輸出電壓Vo。For example, in a voltage adjustable application, the DC gain of converter 100 may be insufficient or the switching frequency needs to be greatly reduced. To increase the gain. According to some embodiments of the present disclosure, the converter 100 can reduce the inductance ratio of the magnetizing inductance unit 146 and the resonant inductor unit 144 by adjusting the inductance value of the variable inductor, thereby obtaining a higher output voltage. Vo.

以下段落中將分別搭配圖式,說明於諧振電路140中設置可變電感器的各種實施態樣。請參考第5A圖~第5D圖。第5A圖~第5D圖為根據本揭示內容部份實施例所繪示的諧振電路140的示意圖。Various embodiments of the variable inductor provided in the resonant circuit 140 will be described in the following paragraphs in conjunction with the drawings. Please refer to pictures 5A to 5D. 5A-5D are schematic diagrams of a resonant circuit 140 according to some embodiments of the present disclosure.

在第5A圖~第5D圖所繪示的實施例中,可透過於勵磁電感單元146中設置可變電感器Lm對勵磁電感單元146與諧振電感單元144的電感比值h進行調整。如第5A圖所示,在部分實施例中,諧振電感單元144可包含固定電感器Ls,勵磁電感單元146可包含可變電感器Lm。舉例來說,在部分實施例中,可變電感器Lm可為磁粉芯電感器。例如含鐵、鎳、鉬的鉬坡莫合金磁粉芯(MPP Cores)、含鐵鎳合金粉末之高磁通磁芯(High Flux core)、含鐵矽鋁合金粉末之磁芯(Kool Mu/Sendust Cores)、含鐵矽合金粉末之超高磁通磁芯(Mega Flux core)等等,但本案並不以此為限。In the embodiment shown in FIGS. 5A to 5D, the inductance ratio h of the field inductance unit 146 and the resonance inductance unit 144 can be adjusted by providing the variable inductance Lm in the field inductance unit 146. As shown in FIG. 5A, in some embodiments, the resonant inductor unit 144 can include a fixed inductor Ls, and the magnetizing inductor unit 146 can include a variable inductor Lm. For example, in some embodiments, the variable inductor Lm can be a magnetic powder core inductor. For example, molybdenum permalloy magnetic powder cores (MPP Cores) containing iron, nickel, and molybdenum, high flux cores containing iron-nickel alloy powder, and magnetic cores containing iron-bismuth aluminum alloy powder (Kool Mu/Sendust Cores), Mega Flux core with iron-bismuth alloy powder, etc., but this is not limited to this case.

採用以上磁粉芯的可變電感器Lm,其磁導率(Permeability)會隨著直流偏置(DC bias)磁場強度變化而變化,因此電感值會隨著流過電流大小而改變,且不同磁粉芯亦有不同變化率。The magnetic permeability (Permeability) of the variable inductor Lm using the above magnetic powder core changes with the DC bias magnetic field strength, so the inductance value changes with the magnitude of the flowing current, and is different. The magnetic powder core also has different rates of change.

如第5B圖、第5C圖所示,在部分實施例中,勵磁電感單元146可包含彼此電性耦接的固定電感器Lm1與可變電感器Lm2,使得勵磁電感單元146整體的電感值可變。如第5B圖所示,勵磁電感單元146中的固定電感器Lm1與可變電感器Lm2彼此串聯。如第5C圖所示,勵磁電感單元146中的固定電感器Lm1與可變電感器Lm2彼此並聯。值得注意的是,此處所述固定電感僅代表在負載變動範圍內會保持固定的電感值,只要在負載變動範圍內會保持固定的電感都可視為固定電感。As shown in FIG. 5B and FIG. 5C , in some embodiments, the magnetizing inductance unit 146 may include a fixed inductor Lm1 and a variable inductor Lm2 electrically coupled to each other such that the exciting inductor unit 146 is integral. The inductance value is variable. As shown in FIG. 5B, the fixed inductor Lm1 and the variable inductor Lm2 in the magnetizing inductance unit 146 are connected in series to each other. As shown in FIG. 5C, the fixed inductor Lm1 and the variable inductor Lm2 in the magnetizing inductance unit 146 are connected in parallel with each other. It is worth noting that the fixed inductance described here only represents a fixed inductance value within the load variation range, as long as the fixed inductance is maintained within the load variation range as a fixed inductance.

舉例來說,在第5B圖、第5C圖所示實施例中,固定電感器Lm1可為鐵氧體磁芯電感器(gapped ferrite Core)。換言之,固定電感器Lm1採用的磁芯材料異於可變電感器Lm2採用的磁芯材料。與第5A圖相比,第5B圖、第5C圖所示實施例中,進一步可藉由固定電感器Lm1和可變電感器Lm2的分配比例來調整整個勵磁電感的變化率。舉例來說,在第5B圖中,若需要勵磁電感較大的變化,可增加Lm2的分配比例;若僅需要勵磁電感些微變化,可減少Lm2的分配比例,藉此優化線路。For example, in the embodiment shown in FIGS. 5B and 5C, the fixed inductor Lm1 may be a powdered ferrite core. In other words, the fixed inductor Lm1 uses a magnetic core material that is different from the magnetic core material used in the variable inductor Lm2. In the embodiment shown in FIGS. 5B and 5C, the rate of change of the entire magnetizing inductance can be further adjusted by the ratio of the distribution of the fixed inductor Lm1 and the variable inductor Lm2. For example, in Figure 5B, if a large change in the magnetizing inductance is required, the distribution ratio of Lm2 can be increased; if only a slight change in the magnetizing inductance is required, the distribution ratio of Lm2 can be reduced, thereby optimizing the line.

如第5D圖所示,在部分實施例中,勵磁電感單元146中的可變電感器Lm2亦可為一可飽和磁芯電感器。通過改變流經可飽和磁芯電感器的電流,可以使可飽和磁芯電感器的電感值隨之改變。如此一來,諧振電路140便可透過可飽和磁芯的磁飽和特性,改變勵磁電感單元146與諧振電感單元144的電感比值h。As shown in FIG. 5D, in some embodiments, the variable inductor Lm2 in the magnetizing inductance unit 146 may also be a saturable core inductor. By varying the current flowing through the saturable core inductor, the inductance of the saturable core inductor can be changed. In this way, the resonant circuit 140 can change the inductance ratio h of the magnetizing inductance unit 146 and the resonant inductor unit 144 through the magnetic saturation characteristic of the saturable core.

請參考第6A圖~第6D圖。第6A圖~第6D圖為根據本揭示內容其他部份實施例所繪示的諧振電路140的示意圖。和第5A圖~第5D圖所繪示的實施例相比,在第6A圖~第6D圖所繪示的實施例中,可變電感器Ls或Ls2設置於諧振電感單元144中,以對勵磁電感單元146與諧振電感單元144的電感比值h進行調整。此外,由於轉換器100的諧振頻率與品質因數Q皆與諧振電感單元144的感值有關。因此亦可透過設置於諧振電感單元144中的可變電感器Ls或Ls2調整轉換器100的諧振頻率與品質因數Q。舉例來說,當負載較輕時,流經諧振電感單元144的電流會較小,此時可變電感器Ls或Ls2具較大的電感值,轉換器100則有較大的品質因數Q與較小的電感比值h,可幫助輸出電壓Vo控制在適當的電壓位準。Please refer to pictures 6A to 6D. 6A-6D are schematic diagrams of a resonant circuit 140 according to other embodiments of the present disclosure. In the embodiment illustrated in FIGS. 6A to 6D, the variable inductor Ls or Ls2 is disposed in the resonant inductor unit 144, as compared with the embodiment illustrated in FIGS. 5A-5D. The inductance ratio h of the magnetizing inductance unit 146 and the resonant inductor unit 144 is adjusted. In addition, due to the resonant frequency of the converter 100 The quality factor Q is related to the sense value of the resonant inductor unit 144. Therefore, the resonant frequency of the converter 100 can also be adjusted through the variable inductor Ls or Ls2 provided in the resonant inductor unit 144. With quality factor Q. For example, when the load is light, the current flowing through the resonant inductor unit 144 will be small. At this time, the variable inductor Ls or Ls2 has a large inductance value, and the converter 100 has a large quality factor Q. The ratio h to the smaller inductance helps the output voltage Vo to be controlled at the appropriate voltage level.

如第6A圖所示,在部分實施例中,勵磁電感單元146可包含固定電感器Lm,諧振電感單元144可包含可變電感器Ls。相似地,在部分實施例中,諧振電感單元144中的可變電感器Ls可為各種類型的磁粉芯電感器,其以於先前段落中詳細說明,故於此不再贅述。As shown in FIG. 6A, in some embodiments, the magnetizing inductance unit 146 can include a fixed inductor Lm, and the resonant inductor unit 144 can include a variable inductor Ls. Similarly, in some embodiments, the variable inductor Ls in the resonant inductor unit 144 can be various types of magnetic powder core inductors, which are described in detail in the previous paragraphs, and thus will not be described again.

如第6B圖、第6C圖所示,在部分實施例中,諧振電感單元144可包含彼此電性耦接的固定電感器Ls1與可變電感器Ls2,使得諧振電感單元144整體的電感值可變。如第6B圖所示,諧振電感單元144中的固定電感器Ls1與可變電感器Ls2彼此串聯。如第6C圖所示,諧振電感單元144中的固定電感器Ls1與可變電感器Ls2彼此並聯。相似地,固定電感器Ls1可為鐵氧體磁芯電感器(gapped ferrite Core)。換言之,固定電感器Ls1採用的磁芯材料異於可變電感器Ls2採用的磁芯材料。其固定電感器Ls1與可變電感器Ls2分配比例亦可調整,類似先前段落中的說明,故於此不再贅述。As shown in FIG. 6B and FIG. 6C, in some embodiments, the resonant inductor unit 144 may include a fixed inductor Ls1 and a variable inductor Ls2 electrically coupled to each other such that the inductance value of the resonant inductor unit 144 as a whole is obtained. variable. As shown in FIG. 6B, the fixed inductor Ls1 and the variable inductor Ls2 in the resonant inductor unit 144 are connected in series to each other. As shown in FIG. 6C, the fixed inductor Ls1 and the variable inductor Ls2 in the resonant inductor unit 144 are connected in parallel with each other. Similarly, the fixed inductor Ls1 may be a powdered ferrite core. In other words, the fixed inductor Ls1 uses a magnetic core material that is different from the magnetic core material used in the variable inductor Ls2. The distribution ratio of the fixed inductor Ls1 and the variable inductor Ls2 can also be adjusted, similar to the description in the previous paragraph, and thus will not be described herein.

如第6D圖所示,在部分實施例中,諧振電感單元144中的可變電感器Ls2亦可為一可飽和磁芯電感器。通過改變流經可飽和磁芯電感器的電流,可以使可飽和磁芯電感器的電感值隨之改變。如此一來,諧振電路140便可透過可飽和磁芯的磁飽和特性,改變勵磁電感單元146與諧振電感單元144的電感比值h。As shown in FIG. 6D, in some embodiments, the variable inductor Ls2 in the resonant inductor unit 144 can also be a saturable core inductor. By varying the current flowing through the saturable core inductor, the inductance of the saturable core inductor can be changed. In this way, the resonant circuit 140 can change the inductance ratio h of the magnetizing inductance unit 146 and the resonant inductor unit 144 through the magnetic saturation characteristic of the saturable core.

此外,需要說明的是,在不衝突的情況下,第5A圖~第5D圖中所繪示的勵磁電感單元146以及第6A圖~第6D圖中所繪示的諧振電感單元144亦可以相互組合。圖式中所繪示的電路僅為示例之用,係簡化以使說明簡潔並便於理解,並非用以限制本案。In addition, it should be noted that, in the case of no conflict, the magnetizing inductance unit 146 illustrated in FIGS. 5A to 5D and the resonant inductor unit 144 illustrated in FIGS. 6A to 6D may also be used. Combine with each other. The circuits illustrated in the drawings are for illustrative purposes only and are simplified for simplicity and ease of understanding and are not intended to limit the present invention.

換言之,如第7圖所繪示,在部分實施例中,諧振電感單元144、勵磁電感單元146可分別包含可變電感器Ls與可變電感器Lm,或是彼此串聯或並聯的固定電感器Ls1、可變電感器Ls2,以及彼此串聯或並聯的固定電感器Lm1、可變電感器Lm2。值得注意的是,當諧振電感單元144、勵磁電感單元146分別包含可變電感器Ls與可變電感器Lm時,可藉由調整可變電感器Ls與可變電感器Lm具有不同的變化率,來達成各種應用的需求,其採用的磁芯材料與相關操作已於先前實施例中詳細說明,故於此不再贅述。In other words, as shown in FIG. 7 , in some embodiments, the resonant inductor unit 144 and the magnetizing inductor unit 146 may respectively include the variable inductor Ls and the variable inductor Lm, or may be connected in series or in parallel with each other. The fixed inductor Ls1, the variable inductor Ls2, and the fixed inductor Lm1 and the variable inductor Lm2 connected in series or in parallel with each other. It should be noted that when the resonant inductor unit 144 and the magnetizing inductor unit 146 respectively include the variable inductor Ls and the variable inductor Lm, the variable inductor Ls and the variable inductor Lm can be adjusted. There are different rates of change to meet the needs of various applications, and the magnetic core materials and related operations employed have been described in detail in the previous embodiments, and thus will not be described again.

綜上所述,藉由上述各個實施例中於諧振電感單元或/及勵磁電感單元中設置可變電感器的諧振電路,便可隨負載不同而自動調整勵磁電感單元與諧振電感單元的電感比值處於適當大小,以取得轉換器不同的輸出特性曲線。此外,部分實施例中,更可藉此調整轉換器的諧振頻率與品質因數,以取得轉換器不同的輸出特性曲線。In summary, by providing the resonant circuit of the variable inductor in the resonant inductor unit or/and the field magnetizing unit in the above embodiments, the field magnetizing unit and the resonant inductor unit can be automatically adjusted according to the load. The inductance ratio is at an appropriate size to obtain different output characteristics of the converter. In addition, in some embodiments, the resonant frequency and the quality factor of the converter can be adjusted to obtain different output characteristic curves of the converter.

雖然本揭示內容已以實施方式揭露如上,然其並非用以限定本揭示內容,任何熟習此技藝者,在不脫離本揭示內容之精神和範圍內,當可作各種更動與潤飾,因此本揭示內容之保護範圍當視後附之申請專利範圍所界定者為準。The present disclosure has been disclosed in the above embodiments, and is not intended to limit the disclosure, and the present disclosure may be variously modified and retouched without departing from the spirit and scope of the present disclosure. The scope of protection of the content is subject to the definition of the scope of the patent application.

100‧‧‧轉換器100‧‧‧ converter

110‧‧‧直流電壓源110‧‧‧DC voltage source

120‧‧‧切換電路120‧‧‧Switching circuit

140‧‧‧諧振電路140‧‧‧Resonance circuit

142‧‧‧諧振電容單元142‧‧‧Resonant capacitor unit

144‧‧‧諧振電感單元144‧‧‧Resonant Inductance Unit

146‧‧‧勵磁電感單元146‧‧‧Excitation Inductance Unit

160‧‧‧變壓器160‧‧‧Transformers

180‧‧‧整流電路180‧‧‧Rectifier circuit

Co‧‧‧輸出電容Co‧‧‧ output capacitor

Np‧‧‧原邊繞組Np‧‧‧ primary winding

Ns1、Ns2‧‧‧副邊繞組Ns1, Ns2‧‧‧ secondary winding

S1、S2‧‧‧開關S1, S2‧‧‧ switch

D1、D2‧‧‧二極體D1, D2‧‧‧ diode

CS1、CS2‧‧‧驅動訊號CS1, CS2‧‧‧ drive signals

Sig1‧‧‧切換訊號Sig1‧‧‧Switching signal

Vin‧‧‧輸入電壓Vin‧‧‧Input voltage

Vo‧‧‧輸出電壓Vo‧‧‧ output voltage

L1~L12‧‧‧曲線L1~L12‧‧‧ Curve

Ls、Ls1、Ls2、Lm、Lm1、Lm2‧‧‧電感器Ls, Ls1, Ls2, Lm, Lm1, Lm2‧‧‧ inductors

第1圖為根據本揭示內容部分實施例所繪示的轉換器的示意圖。 第2圖、第3圖為根據本揭示內容部分實施例所繪示的轉換器的操作示意圖。 第4A圖、第4B圖以及第4C圖為根據本揭示內容部分實施例所繪示的直流增益與正規化頻率的關係圖。 第5A圖~第5D圖為根據本揭示內容部份實施例所繪示的諧振電路的示意圖。 第6A圖~第6D圖為根據本揭示內容其他部份實施例所繪示的諧振電路的示意圖。 第7圖為根據本揭示內容其他部份實施例所繪示的諧振電路的示意圖。1 is a schematic diagram of a converter depicted in accordance with some embodiments of the present disclosure. 2 and 3 are schematic diagrams showing the operation of the converter according to some embodiments of the present disclosure. 4A, 4B, and 4C are diagrams showing the relationship between the DC gain and the normalized frequency according to some embodiments of the present disclosure. 5A-5D are schematic diagrams of a resonant circuit according to some embodiments of the present disclosure. 6A-6D are schematic diagrams of a resonant circuit according to other embodiments of the present disclosure. FIG. 7 is a schematic diagram of a resonant circuit according to other embodiments of the present disclosure.

Claims (15)

一種轉換器,包含: 一切換電路,用以將一直流輸入電壓轉換為一切換訊號; 一諧振電路,電性連接於該切換電路,用以接收該切換訊號以提供一原邊電流; 一變壓器,包含: 一原邊繞組,電性連接於該諧振電路; 一副邊繞組;以及 一整流電路,電性連接於該變壓器的該副邊繞組,用以對該副邊繞組輸出的一副邊電流進行整流以提供一輸出電壓; 其中該諧振電路包含一可變電感器,以調整轉換器的特性曲線。A converter comprising: a switching circuit for converting a DC input voltage into a switching signal; a resonant circuit electrically coupled to the switching circuit for receiving the switching signal to provide a primary current; The method includes: a primary winding electrically connected to the resonant circuit; a secondary winding; and a rectifier circuit electrically connected to the secondary winding of the transformer for outputting a secondary side of the secondary winding The current is rectified to provide an output voltage; wherein the resonant circuit includes a variable inductor to adjust the characteristic curve of the converter. 如請求項1所述之轉換器,其中該轉換器用以調整該可變電感器的電感值以控制該轉換器的直流增益。The converter of claim 1, wherein the converter is configured to adjust an inductance value of the variable inductor to control a DC gain of the converter. 如請求項1所述之轉換器,其中該諧振電路包含: 一諧振電容單元,以串聯形式電性連接於該原邊繞組; 一諧振電感單元,以串聯形式電性連接於該原邊繞組;以及 一勵磁電感單元,以並聯形式電性連接於該原邊繞組。The converter of claim 1, wherein the resonant circuit comprises: a resonant capacitor unit electrically connected in series to the primary winding; a resonant inductor unit electrically connected in series to the primary winding; And a field inductive unit electrically connected to the primary winding in parallel. 如請求項3所述之轉換器,其中該諧振電感單元與該勵磁電感單元中任一者包含該可變電感器,且該諧振電路透過該可變電感器調整該勵磁電感單元與該諧振電感單元的電感比值。The converter of claim 3, wherein the resonant inductor unit and the magnetizing inductor unit comprise the variable inductor, and the resonant circuit adjusts the field magnetizing unit through the variable inductor The ratio of the inductance to the resonant inductor unit. 如請求項3所述之轉換器,其中該諧振電感單元包含該可變電感器,且該諧振電路透過該可變電感器調整該轉換器的品質因數。The converter of claim 3, wherein the resonant inductor unit comprises the variable inductor, and the resonant circuit adjusts a quality factor of the converter through the variable inductor. 如請求項5所述之轉換器,其中該諧振電感單元更包含一固定電感器,該固定電感器以串聯或並聯方式電性耦接於該可變電感器,該固定電感器的磁芯材料異於該可變電感器的磁芯材料。The converter of claim 5, wherein the resonant inductor unit further comprises a fixed inductor electrically coupled to the variable inductor in series or in parallel, the core of the fixed inductor The material is different from the core material of the variable inductor. 如請求項6所述之轉換器,其中該固定電感器包含一鐵氧體磁芯電感器。The converter of claim 6 wherein the fixed inductor comprises a ferrite core inductor. 如請求項3所述之轉換器,其中該勵磁電感單元包含該可變電感器。The converter of claim 3, wherein the magnetizing inductance unit comprises the variable inductor. 如請求項8所述之轉換器,其中該勵磁電感單元更包含一固定電感器,該固定電感器以串聯或並聯方式電性耦接於該可變電感器,該固定電感器的磁芯材料異於該可變電感器的磁芯材料。The converter of claim 8, wherein the excitation inductor unit further comprises a fixed inductor electrically coupled to the variable inductor in series or in parallel, the magnetic of the fixed inductor The core material is different from the core material of the variable inductor. 如請求項9所述之轉換器,其中該固定電感器包含一鐵氧體磁芯電感器。The converter of claim 9, wherein the fixed inductor comprises a ferrite core inductor. 如請求項1所述之轉換器,其中該可變電感器包含一磁粉芯電感器,其導磁率隨著直流磁場強度變化而變化。The converter of claim 1, wherein the variable inductor comprises a magnetic powder core inductor whose magnetic permeability changes as the strength of the DC magnetic field changes. 如請求項1所述之轉換器,其中該可變電感器包含一可飽和磁芯電感器。The converter of claim 1 wherein the variable inductor comprises a saturable core inductor. 如請求項1所述之轉換器,其中該切換電路包含: 一第一開關,該第一開關的一第一端電性耦接於該直流輸入電壓的正極端,該第一開關的一第二端電性耦接於該諧振電路;以及 一第二開關,該第二開關的一第一端電性耦接於該第一開關的該第二端,該第二開關的一第二端電性耦接於該直流輸入電壓的負極端。The converter of claim 1, wherein the switching circuit comprises: a first switch, a first end of the first switch is electrically coupled to a positive terminal of the DC input voltage, and a first switch The second end is electrically coupled to the resonant circuit; and a second switch, a first end of the second switch is electrically coupled to the second end of the first switch, and a second end of the second switch Electrically coupled to the negative terminal of the DC input voltage. 如請求項1所述之轉換器,其中該變壓器中的該副邊繞組包含一第一副邊繞組與一第二副邊繞組,其中該第二副邊繞組的起始端電性耦接於該第一副邊繞組的結束端。The converter of claim 1, wherein the secondary winding of the transformer comprises a first secondary winding and a second secondary winding, wherein a starting end of the second secondary winding is electrically coupled to the The end of the first secondary winding. 如請求項14所述之轉換器,其中該整流電路包含: 一第一二極體,該第一二極體的一陽極端電性耦接於該第一副邊繞組的起始端,該第一二極體的一陰極端電性耦接於一輸出電容的一正極端;以及 一第二二極體,該第二二極體的一陽極端電性耦接於該第二副邊繞組的結束端,該第二二極體的一陰極端電性耦接於該第一二極體的該陰極端; 其中該第一副邊繞組的結束端與該第二副邊繞組的起始端電性耦接於該輸出電容的一負極端。The converter of claim 14, wherein the rectifier circuit comprises: a first diode, an anode end of the first diode is electrically coupled to a start end of the first secondary winding, the first a cathode end of the diode is electrically coupled to a positive terminal of an output capacitor; and a second diode, an anode end of the second diode is electrically coupled to the end of the second secondary winding a cathode end of the second diode is electrically coupled to the cathode end of the first diode; wherein an end of the first secondary winding and an initial end of the second secondary winding The first end of the output capacitor is coupled to the negative terminal.
TW106112543A 2017-04-14 2017-04-14 Converter TWI631802B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106112543A TWI631802B (en) 2017-04-14 2017-04-14 Converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106112543A TWI631802B (en) 2017-04-14 2017-04-14 Converter

Publications (2)

Publication Number Publication Date
TWI631802B TWI631802B (en) 2018-08-01
TW201838300A true TW201838300A (en) 2018-10-16

Family

ID=63959824

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106112543A TWI631802B (en) 2017-04-14 2017-04-14 Converter

Country Status (1)

Country Link
TW (1) TWI631802B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI688195B (en) * 2019-06-19 2020-03-11 宏碁股份有限公司 Power supply device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI482407B (en) * 2012-10-25 2015-04-21 Chicony Power Tech Co Ltd Power converting device
WO2014116641A1 (en) * 2013-01-24 2014-07-31 Murata Manufacturing Co., Ltd. Inrush current control during starting of resonant converters
TW201545454A (en) * 2014-05-30 2015-12-01 Wistron Corp LLC resonant converter
KR20160021953A (en) * 2014-08-18 2016-02-29 주식회사 솔루엠 Circuit for varying inductandce and power supplying apparatus using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI688195B (en) * 2019-06-19 2020-03-11 宏碁股份有限公司 Power supply device

Also Published As

Publication number Publication date
TWI631802B (en) 2018-08-01

Similar Documents

Publication Publication Date Title
CN108736726B (en) Converter
US10269484B2 (en) Magnetic component and power conversion device using the same
US10211745B2 (en) Resonant LLC converter with a multi-leg transformer with gapped center leg
US7388760B2 (en) Switching power supply circuit
US20190043661A1 (en) Power conversion device
US7285875B2 (en) Resonant converter with outputs of different polarities
US20110248812A1 (en) Current-controlled variable inductor
WO2005109618A1 (en) Resonant switching power supply device
US20230113753A1 (en) Dc/dc converter and method for controlling output voltage thereof
US7138787B2 (en) DC/DC converter
RU2517378C1 (en) Resonance power amplifier
JP6745911B2 (en) Power converter
CN111010044B (en) Magnetically integrated double-active-bridge converter
CN105790589B (en) A kind of multi-output switching converter of high-efficiency high-precision
TWI631802B (en) Converter
KR20140033708A (en) Integrated magnetic circuit and the method of reducing magnetic density by shifting phase
CN109787371B (en) Magnetic integrated differential class E rectifier for wireless power transmission system
US10985574B2 (en) Resonant power transfer
CN103997217A (en) Fixed-frequency series resonant converter based on flat inductor
CN114944710A (en) Wireless charging device without communication and cascade DC-DC converter
TWI554016B (en) LLC resonant converter with saturable resonant inductor
CN208143082U (en) A kind of doubleway output reverse exciting switching voltage regulator cross regulation rate circuit
WO2016046826A1 (en) Resonant transformers and their applications
JP2014150690A (en) Current resonance type switching power source
CN113014112B (en) Control circuit, control method and power converter