TW201835819A - Neural network model training method and device, transaction behavior risk identification method and device - Google Patents
Neural network model training method and device, transaction behavior risk identification method and device Download PDFInfo
- Publication number
- TW201835819A TW201835819A TW106140070A TW106140070A TW201835819A TW 201835819 A TW201835819 A TW 201835819A TW 106140070 A TW106140070 A TW 106140070A TW 106140070 A TW106140070 A TW 106140070A TW 201835819 A TW201835819 A TW 201835819A
- Authority
- TW
- Taiwan
- Prior art keywords
- gbdt
- sample
- sample data
- path information
- data
- Prior art date
Links
- 238000003062 neural network model Methods 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000012549 training Methods 0.000 title claims abstract description 35
- 238000003066 decision tree Methods 0.000 claims abstract description 53
- 238000012545 processing Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 6
- 230000006399 behavior Effects 0.000 description 65
- 230000008569 process Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 4
- 238000007477 logistic regression Methods 0.000 description 3
- 238000007637 random forest analysis Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computational Linguistics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Evolutionary Biology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
Abstract
Description
本發明係有關電腦技術領域,尤其有關一種神經網路模型訓練、交易行為風險識別方法及裝置。The invention relates to the field of computer technology, in particular to a neural network model training, a transaction behavior risk identification method and device.
在傳統技術中,在搜集到樣本資料之後,直接根據樣本資料以及樣本資料的樣本標籤來訓練神經網路模型。然而,上述搜集的樣本資料通常會包括多個維度的資訊,這會導致神經網路模型訓練的效率比較低。In the conventional technique, after collecting sample data, the neural network model is directly trained based on the sample data and the sample tags of the sample data. However, the sample data collected above usually includes information of multiple dimensions, which leads to the low efficiency of neural network model training.
本發明描述了一種神經網路模型訓練、交易行為風險識別方法及裝置, 可以提高神經網路模型訓練的效率。 第一態樣,提供了一種神經網路模型訓練方法,包括: 將預先收集的多個樣本資料登錄到梯度提升決策樹GBDT中,以確定每個樣本資料在所述GBDT中對應的路徑資訊;所述每個樣本資料具有對應的樣本標籤; 根據所述每個樣本資料在所述GBDT中對應的路徑資訊以及樣本標籤,對神經網路模型進行訓練。 第二態樣,提供了一種交易行為風險識別方法,包括: 獲取用戶的交易行為資料; 將所述交易行為資料登錄到梯度提升決策樹GBDT中,以確定所述交易行為資料在所述GBDT中對應的路徑資訊; 將所述路徑資訊輸入到神經網路模型中; 輸出交易行為風險識別結果。 第三態樣,提供了一種神經網路模型訓練裝置,包括: 確定單元,用以將預先收集的多個樣本資料登錄到梯度提升決策樹GBDT中,以確定每個樣本資料在所述GBDT中對應的路徑資訊;所述每個樣本資料具有對應的樣本標籤; 訓練單元,用以根據所述確定單元確定的所述每個樣本資料在所述GBDT中對應的路徑資訊以及樣本標籤,對神經網路模型進行訓練。 第四態樣,提供了一種交易行為風險識別裝置,包括: 獲取單元,用以獲取用戶的交易行為資料; 確定單元,用以將所述獲取單元獲取的所述交易行為資料登錄到梯度提升決策樹GBDT中,以確定所述交易行為資料在所述GBDT中對應的路徑資訊; 輸入單元,用以將所述確定單元確定的所述路徑資訊輸入到神經網路模型中; 輸出單元,用以輸出交易行為風險識別結果。 本發明提供的神經網路模型訓練、交易行為風險識別方法及裝置,將預先收集的多個樣本資料登錄到梯度提升決策樹GBDT中,以確定每個樣本資料在GBDT中對應的路徑資訊。根據每個樣本資料在GBDT中對應的路徑資訊以及樣本標籤,對神經網路模型進行訓練。亦即,本發明首先根據GBDT來確定路徑資訊,之後根據路徑資訊以及樣本標籤來訓練神經網路模型,而根據GBDT本身的特點可知,其一條路徑資訊通常會包含樣本資料中多個維度的資訊,由此,可以提高神經網路模型訓練的效率。The invention describes a neural network model training and transaction behavior risk identification method and device, which can improve the efficiency of neural network model training. The first aspect provides a neural network model training method, including: logging a plurality of pre-collected sample data into a gradient promotion decision tree GBDT to determine path information corresponding to each sample data in the GBDT; Each of the sample materials has a corresponding sample tag; and the neural network model is trained according to the path information and the sample tag corresponding to each of the sample data in the GBDT. The second aspect provides a transaction behavior risk identification method, including: acquiring a transaction behavior data of a user; logging the transaction behavior data into a gradient promotion decision tree GBDT to determine the transaction behavior data in the GBDT Corresponding path information; inputting the path information into the neural network model; and outputting the transaction behavior risk identification result. In a third aspect, a neural network model training apparatus is provided, comprising: a determining unit, configured to log a plurality of pre-collected sample data into a gradient promotion decision tree GBDT to determine each sample data in the GBDT. Corresponding path information; each of the sample data has a corresponding sample tag; a training unit, configured to: according to the path information and the sample tag of the sample data in the GBDT determined by the determining unit, The network model is trained. The fourth aspect provides a transaction behavior risk identification device, including: an obtaining unit, configured to acquire a transaction behavior data of a user; and a determining unit, configured to log the transaction behavior data acquired by the acquiring unit to a gradient promotion decision In the tree GBDT, the path information corresponding to the transaction behavior data in the GBDT is determined; the input unit is configured to input the path information determined by the determining unit into the neural network model; and the output unit is configured to: Output transaction behavior risk identification results. The neural network model training and transaction behavior risk identification method and device provided by the invention register a plurality of pre-collected sample data into the gradient promotion decision tree GBDT to determine corresponding path information of each sample data in the GBDT. The neural network model is trained according to the path information and sample tags corresponding to each sample data in the GBDT. That is, the present invention first determines the path information according to the GBDT, and then trains the neural network model according to the path information and the sample tag. According to the characteristics of the GBDT itself, one path information usually includes information of multiple dimensions in the sample data. Thus, the efficiency of neural network model training can be improved.
下面結合附圖,對本發明的實施例進行描述。 本發明實施例提供的神經網路模型訓練方法適用於對深度神經網路(Deep Neural Network, DNN)或者人工神經網路(Artificial Neural Network,ANN)等神經網路模型進行訓練的情況。訓練好的神經網路模型可以用來進行模式識別以及分類的情況,如,可以用來對交易行為進行風險識別。 圖1為本發明一種實施例提供的神經網路模型訓練方法流程圖。所述方法的執行主體可以為具有處理能力的設備:伺服器或者系統或者裝置,如圖1所示,所述方法具體包括: 步驟110,將預先收集的多個樣本資料登錄到梯度提升決策樹(Gradient Boosting Decision Tree,GBDT)中,以確定每個樣本資料在GBDT中對應的路徑資訊。 在執行步驟110之前,可以先訓練好GBDT模型。具體的訓練過程後續進行說明。 步驟110中,以訓練的神經網路模型用於交易行為風險識別的情況為例來說,上述樣本資料可以是指用戶的交易行為資料。具體地,可以是從支付寶系統的後臺資料庫中搜集樣本資料。此處,樣本資料可以歸屬於如下五個類別的用戶資料:1)用戶的歷史行為資訊。如,a,若干天(如,180天)內用戶來電次數;b,最後一次登錄城市;c,最後一次登錄距今時間;d,若干天(如,90天)內登錄次數等。2)用戶的交易資訊。如,a,若干天(如,90天)平均支付金額;b,若干天(如,180天)內支付天數;c,若干天(如,180天)內支付金額;d,最後一次支付距今時間等。3)用戶的基本資訊。如,a,用戶是否單身;b,用戶是否裝修;c,用戶是否已婚;d,用戶年齡;e,用戶註冊時長;f,用戶教育水準等。4)用戶的遠端程序呼叫(Remote Procedure Call,RPC)行為資訊。此處的RPC行為資訊是指用戶在使用用戶端的時候,用戶端與伺服器之間的RPC調用。在一種實現方式中,可以搜集每個用戶在最近一個給定時間視窗的這些操作。如,可以搜集用戶近2天訪問的RPC介面的次數變數。5)用戶的統一資源定位器(Uniform Resourc e Locator,URL)位址資訊。 對上述收集的多個樣本資料,如果某樣本資料與目前用戶不相關或者該樣本資料能給用戶帶來負面影響的,則將該樣本資料分類為正樣本資料。如,某一交易行為由非用戶本人操作的或者對用戶的帳戶帶來一定的損失且報案的,則將該交易行為資料標記為正樣本資料。否則,如果某樣本資料為用戶本人正常的交易行為資料,則將該樣本資料標記為負樣本資料。 需要說明的是,通常負樣本資料比較容易搜集。如,可以很容易從支付寶系統的後臺資料庫中搜集到正常支付行為的資料。所以,樣本資料集合中負樣本資料會占絕大多數的比重,如,大於99.999%。然而,當負樣本資料的比重比較高時,訓練的神經網路模型往往會有偏差,如,只能識別安全的交易行為,而不能識別有風險的交易行為,這影響了交易行為風險識別的準確性。 為了能提升交易行為風險識別的準確性,可以對樣本資料進行預處理。在一種實現方式中,可以對正樣本資料進行升取樣處理;和/或,對負樣本資料進行降取樣處理。其中,對正樣本資料進行升取樣處理可以包括:透過複製等方式增加正樣本資料的數量。對負樣本資料進行降取樣處理可以包括:透過刪除等方式減小負樣本資料的數量。在一個例子中,可以將正樣本資料與負樣本資料的比例調整為1:300。 還需要說明的是,對上述預處理後的樣本資料,還可以為正、負樣本資料添加對應的樣本標籤。具體地,為正樣本資料添加正樣本標籤,為負樣本資料添加負樣本標籤。 步驟110中,將預先收集的多個樣本資料登錄到GBDT中具體可以包括:針對每個樣本資料,可以先根據該樣本資料,確定多個特徵對應的特徵值。之後,將特徵的特徵值輸入到GBDT的決策樹中。 此處的特徵可以歸屬於多個類別。在一種實現方式中,上述特徵中的部分特徵可以採用現有交易行為風險識別模型線上沉澱的模型變數,該模型變數歸屬於如下三個類別:1)用戶的歷史行為資訊。2)用戶的交易資訊。3)用戶的基本資訊。 然而,上述模型變數需要根據業務資料來確定,而業務資料通常來自不同業務部門,其採集和整理需要一定的時間,所以僅透過上述模型變數不能得到用戶最新的狀態,從而也不能對用戶最新的交易行為進行風險識別。為解決該問題,本發明中增加了歸屬於用戶的RPC行為資訊的特徵和歸屬於用戶的URL位址資訊的特徵。 綜上,本發明的特徵可以為歸屬於如下五個類別的特徵:1)用戶的歷史行為資訊。2)用戶的交易資訊。3)用戶的基本資訊。4)用戶的RPC行為資訊。5)用戶的URL位址資訊。其中,每個類別如上所述,在此不復贅述。 對上述設定的特徵,在根據具體的樣本資料,確定其對應的特徵值之後,就可以將特徵值輸入到GBDT中。此處的GBDT可以由多棵決策樹組成,每棵決策樹包括多個節點,每個節點與一個特徵相對應。以一棵決策樹為例來說,該決策樹可以如圖2所示,圖2中,節點1、節點2和節點3分別與特徵:“用戶性別是否是男”、“用戶年齡大於20歲”以及“交易金額是否超過1000元”相對應。在將特徵的特徵值輸入決策樹之後,就可以在決策樹中確定出多條路徑資訊。如,假設樣本資料包含用戶性別是男,用戶年齡大於20歲,交易金額超過1000元時,確定出的路徑資訊可以如圖2中的粗線所示。 作為示例性說明,圖2中只是展示了一條路徑資訊,實際上樣本資料登錄GBDT時,可以確定出多條路徑資訊,本發明在此不復贅述。 需要說明的是,本發明中,在將該特徵值輸入到GBDT之前,還可以將該特徵值表示為one-hot形式的特徵向量。在還確定特徵值對應的特徵向量的情況下,上述將特徵值輸入到GBDT中可以替換為:將特徵值對應的特徵向量輸入到決策樹中,以確定相應的路徑資訊。其中,確定特徵值的特徵向量的過程可以舉例如下: 以特徵為“用戶性別”為例來說,如果用戶性別為男,亦即,特徵的特徵值為“男”,則該特徵值對應的特徵向量可以為:[0 1]。如果用戶性別為女,亦即,特徵的特徵值為“女”,則該特徵值對應的特徵向量可以為:[1 0]。 再以特徵為用戶的RPC行為資訊為例來說,其特徵值對應的特徵向量的確定可以透過如下兩種方式來實現:第一種實現方式中,首先設定規則:出現過則標識為1,否則為0。具體地,假設預設的RPC行為資訊為:a,b和c。而某個樣本資料包含用戶兩天內的RPC行為資訊為:a,a和b,亦即,特徵值為:a,a和b。則對應的特徵向量可以為:[1 1 0]。在另一種實現方式中,可以設定規則:統計預設的RPC行為資訊的頻次,然後歸一化。具體地,假設預設的RPC行為資訊為:a,b和c。而某個樣本資料包含用戶兩天內的RPC行為資訊為:a,a,b,b和c,亦即,特徵值為:a,a,b,b和c。則對應的特徵向量可以為:2,2和1。因為需要歸一化,所以最終的特徵向量為:[0.4 0.4 0.2]。 需要說明的是,上述將特徵值表示為特徵向量屬於傳統的習知技術,在此不復贅述。 需要說明的是,為了提升神經網路模型的準確性,本發明中設定了比較多的特徵,從而會確定多個特徵值。對於越來越多的特徵值,其處理往往需要花費很多的時間,受限於同時觀察的特徵值的個數,人很難對多個特徵值之間的關係進行深入的分析,並手工產生新的特徵值。而本發明透過將樣本資料登錄GBDT來得到路徑資訊,該路徑資訊由於包含了多個特徵值。從而可以大大地減小特徵值的數量,由此可以顯著地減少人工的操作。 步驟120,根據每個樣本資料對應的路徑資訊以及樣本標籤,對神經網路模型進行訓練。 此處的神經網路模型可以包括DNN或者ANN等。其中,DNN最近幾年發展迅速,相比傳統使用的淺層模型(如,邏輯迴歸(Logistic Regression,LR), 隨機森林(Random forest,RF)),DNN有著其特有的先進性:模型表達能力強大,適合大資料和分散式訓練。因此,本說明書中,以訓練DNN為例來進行說明。 在本發明中,DNN的訓練過程可以如圖3所示,圖3中,DNN的輸入層用來輸入GBDT中的各條路徑資訊,而輸出層即可輸出第一預測結果。可以理解的是,針對每個樣本資料,亦即,在將該樣本資料對應的路徑資訊輸入到DNN之後,DNN都會輸出相應的第一預測結果。對樣本集合中的多個樣本資料,若第一預測結果與樣本資料的樣本標籤相符合的概率達到預設閾值,此處的預設閾值可以根據經驗值來予以設定,則可以認為已經得到了最佳化的DNN。 可以理解的是,隨著路徑資訊的個數的不同,圖3中DNN的層數是可以改變的。 透過實驗發明,本發明訓練得到的神經網路模型會比其他模型(LR或者RF)的效果都好。同時特徵處理的時間大大地減少了,整體建模流程變快了很多。 以下對如何訓練GBDT模型進行說明: 在根據每個樣本資料,確定多個特徵對應的特徵值之後,可以將多個特徵對應的特徵值輸入GBDT的各個決策樹中。之後將各個決策樹的結果累加起來以確定第二預測結果。可以理解的是,針對每個樣本資料,GBDT模型都會輸出相應的第二預測結果。對樣本集合中的多個樣本資料,若第二預測結果與樣本資料的樣本標籤相符合的概率達到預設閾值,此處的預設閾值可以根據經驗值來予以設定,則可以認為已經得到了最佳化的GBDT模型。而若第二預測結果與樣本資料的樣本標籤相符合的概率未達到預設閾值,則可以透過調整決策樹的數目、決策樹的深度以及正則化項(用來表示特徵)來繼續執行上述輸入和輸出的操作,直至達到預設閾值為止。 綜上,本發明具有如下幾方面的優點: 1)由於本發明的特徵包括了類別為用戶RPC行為資訊的特徵,因此本發明訓練的神經網路模型能夠滿足時效性要求,亦即,能夠識別用戶最新的交易行為。 2)本發明訓練的神經網路模型的準確性比傳統的淺層模型高。 3)透過將樣本資料登錄GBDT,獲得了路徑資訊。而一條路徑資訊由多個特徵值組合而成,亦即,一條路徑資訊包含了樣本資料的多個維度的資訊,由此,可以極大地減小DNN輸入層輸入的資料量,從而可以提高神經網路模型訓練的效率。 需要說明的是,在透過圖1所示的各步驟訓練得到神經網路模型之後,就可以將該神經網路模型部署到線上,並對用戶的交易行為進行風險識別了。 圖4為本發明提供的交易行為風險識別方法的過程示意圖。如圖4所示,該方法可以包括: 步驟410,獲取用戶的交易行為資料。 此處的交易行為資料與上述樣本資料的定義相同,在此不復贅述。 步驟420,將交易行為資料登錄到梯度提升決策樹GBDT中,以確定交易行為資料在GBDT中對應的路徑資訊。 上述GBDT由多棵決策樹組成,每棵決策樹包括多個節點,每個節點與一個特徵相對應。步驟420中將交易行為資料登錄到梯度提升決策樹GBDT中,以確定交易行為資料在GBDT中對應的路徑資訊的步驟具體上可以包括:根據交易行為資料,確定多個特徵對應的特徵值;根據特徵值,在決策樹中確定路徑資訊。其中,確定路徑資訊的過程可以參照圖2,在此不復贅述。 步驟430,將路徑資訊輸入到神經網路模型中。 亦即,將步驟420中確定的路徑資訊輸入DNN的輸入層中。 步驟440,輸出交易行為風險識別結果。 具體地,由DNN的輸出層輸出交易行為風險識別結果。此處,如果識別結果為風險的交易行為,則可以發起報警。在支付情況下,若識別結果為風險的支付行為,則可以凍結該用戶帳戶以防止財產流失。與上述神經網路模型訓練方法對應地,本發明實施例還提供的一種神經網路模型訓練裝置,如圖5所示,該裝置包括: 確定單元501,用以將預先收集的多個樣本資料登錄到梯度提升決策樹GBDT中,以確定每個樣本資料在GBDT中對應的路徑資訊。 此處,每個樣本資料具有對應的樣本標籤。 訓練單元502,用以根據確定單元501確定的每個樣本資料在GBDT中對應的路徑資訊以及樣本標籤,對神經網路模型進行訓練。 可選地,GBDT由多棵決策樹組成,每棵決策樹包括多個節點,每個節點與一個特徵相對應。 確定單元501具體上用以: 對多個樣本資料中的每個樣本資料,根據樣本資料,確定多個特徵對應的特徵值。 此處,特徵可以包括:用戶的遠端程序呼叫RPC行為資訊和/或用戶的統一資源定位器URL位址資訊。 根據特徵值,在決策樹中確定路徑資訊。 可選地,樣本標籤可以包括:正樣本標籤和負樣本標籤。上述裝置還可以包括: 處理單元503,用以對樣本標籤為正樣本標籤的樣本資料進行升取樣處理;和/或, 對樣本標籤為負樣本標籤的樣本資料進行降取樣處理。 本發明實施例裝置的各功能模組的功能,可以透過上述方法實施例的各步驟來實現,因此,本發明提供的裝置的具體操作過程,在此不復贅述。 本發明提供的神經網路模型訓練裝置,確定單元501將預先收集的多個樣本資料登錄到梯度提升決策樹GBDT中,以確定每個樣本資料在GBDT中對應的路徑資訊。訓練單元502根據每個樣本資料在GBDT中對應的路徑資訊以及樣本標籤,對神經網路模型進行訓練。由此,可以提高神經網路模型訓練的效率。 與上述交易行為風險識別方法對應地,本發明實施例還提供的一種交易行為風險識別裝置,如圖6所示,該裝置包括: 獲取單元601,用以獲取用戶的交易行為資料。 確定單元602,用以將獲取單元601獲取的交易行為資料登錄到梯度提升決策樹GBDT中,以確定交易行為資料在GBDT中對應的路徑資訊。 輸入單元603,用以將確定單元602確定的路徑資訊輸入到神經網路模型中。 輸出單元604,用以輸出交易行為風險識別結果。 可選地,GBDT由多棵決策樹組成,每棵決策樹包括多個節點,每個節點與一個特徵相對應; 確定單元602具體上用以: 根據交易行為資料,確定多個特徵對應的特徵值。 根據特徵值,在決策樹中確定路徑資訊。 其中,特徵可以包括:用戶的遠端程序呼叫RPC行為資訊和/或用戶的統一資源定位器URL位址資訊。 本發明實施例裝置的各功能模組的功能,可以透過上述方法實施例的各步驟來實現,因此,本發明提供的裝置的具體操作過程,在此不復贅述。 本發明提供的交易行為風險識別裝置,可以提高交易行為風險識別的效率和準確性。 本領域技術人員應該可以意識到,在上述一個或多個示例中,本發明所描述的功能可以用硬體、軟體、韌體或它們的任意組合來實現。當使用軟體來實現時,可以將這些功能儲存在電腦可讀媒體中或者作為電腦可讀媒體上的一個或多個指令或代碼來進行傳輸。 以上所述的具體實施方式,對本發明的目的、技術方案和有益效果進行了進一步詳細說明,所應理解的是,以上所述僅為本發明的具體實施方式而已,並不用來限定本發明的保護範圍,凡在本發明的技術方案的基礎之上,所做的任何修改、等同替換、改進等,均應包括在本發明的保護範圍之內。Embodiments of the present invention will be described below with reference to the accompanying drawings. The neural network model training method provided by the embodiment of the invention is applicable to training a neural network model such as a deep neural network (DNN) or an artificial neural network (ANN). A well-trained neural network model can be used for pattern recognition and classification, for example, to identify risks in trading behavior. FIG. 1 is a flowchart of a neural network model training method according to an embodiment of the present invention. The executor of the method may be a device with a processing capability: a server or a system or a device. As shown in FIG. 1 , the method specifically includes: Step 110: Registering a plurality of sample data collected in advance into a gradient promotion decision tree (Gradient Boosting Decision Tree, GBDT) to determine the path information corresponding to each sample data in GBDT. Before performing step 110, the GBDT model can be trained first. The specific training process will be described later. In step 110, for example, the case where the trained neural network model is used for transaction behavior risk identification, the sample data may refer to the transaction behavior data of the user. Specifically, the sample data may be collected from a background database of the Alipay system. Here, the sample data can be attributed to the following five categories of user data: 1) User's historical behavior information. For example, a, the number of user calls within a few days (eg, 180 days); b, the last time to log in to the city; c, the last time to log in; d, the number of logins in a few days (eg, 90 days). 2) User's transaction information. For example, a, the average payment amount for several days (eg, 90 days); b, the number of days paid within a few days (eg, 180 days); c, the amount paid within a few days (eg, 180 days); d, the last payment distance Waiting this time. 3) Basic information of the user. For example, a, whether the user is single; b, whether the user is decorated; c, whether the user is married; d, user age; e, user registration duration; f, user education level, and the like. 4) User's Remote Procedure Call (RPC) behavior information. The RPC behavior information here refers to the RPC call between the client and the server when the user uses the client. In one implementation, these operations for each user at a given time window may be collected. For example, the number of times of the RPC interface accessed by the user in the past 2 days can be collected. 5) User Uniform Resourc e Locator (URL) address information. For the sample data collected above, if a sample data is not related to the current user or the sample data can negatively affect the user, the sample data is classified into positive sample data. For example, if a transaction is operated by a non-user or brings a certain loss to the user's account and is reported, the transaction behavior data is marked as positive sample data. Otherwise, if a sample data is the user's normal transaction behavior data, the sample data is marked as negative sample data. It should be noted that the negative sample data is usually easier to collect. For example, it is easy to collect information on normal payment behavior from the back-end database of the Alipay system. Therefore, the negative sample data in the sample data set will account for the majority, for example, greater than 99.999%. However, when the proportion of negative sample data is relatively high, the trained neural network model tends to be biased. For example, it can only identify safe trading behaviors, but can not identify risky trading behaviors, which affects the risk identification of trading behaviors. accuracy. In order to improve the accuracy of transaction risk identification, the sample data can be preprocessed. In one implementation, the positive sample data may be upsampled; and/or the negative sample data may be downsampled. The upsampling processing of the positive sample data may include: increasing the quantity of the positive sample data by means of copying or the like. Downsampling the negative sample data may include reducing the amount of negative sample data by deleting or the like. In one example, the ratio of positive and negative sample data can be adjusted to 1:300. It should also be noted that, for the pre-processed sample data, a corresponding sample label may also be added for the positive and negative sample data. Specifically, a positive sample label is added for the positive sample data, and a negative sample label is added for the negative sample data. In step 110, the registering the plurality of sample data collected in advance into the GBDT may include: determining, for each sample data, the feature values corresponding to the plurality of features according to the sample data. The feature values of the feature are then entered into the decision tree of the GBDT. Features here can be attributed to multiple categories. In an implementation manner, some of the above features may adopt a model variable precipitated on the existing transaction behavior risk identification model, and the model variable belongs to the following three categories: 1) historical behavior information of the user. 2) User's transaction information. 3) Basic information of the user. However, the above model variables need to be determined according to the business data, and the business data usually comes from different business departments, and it takes a certain time to collect and organize the data. Therefore, the latest state of the user cannot be obtained only through the above model variables, and thus the latest information of the user cannot be obtained. Trading behavior for risk identification. To solve this problem, the present invention adds features of the RPC behavior information attributed to the user and features of the URL address information attributed to the user. In summary, the features of the present invention may be characterized by the following five categories: 1) historical behavior information of the user. 2) User's transaction information. 3) Basic information of the user. 4) User's RPC behavior information. 5) User's URL address information. Each category is as described above and will not be described here. For the feature set above, after determining the corresponding feature value according to the specific sample data, the feature value can be input into the GBDT. The GBDT here can be composed of multiple decision trees. Each decision tree includes multiple nodes, and each node corresponds to one feature. Taking a decision tree as an example, the decision tree can be as shown in FIG. 2. In FIG. 2, node 1, node 2, and node 3 respectively have characteristics: "whether the user gender is male" or "user is older than 20 years old. "and whether the transaction amount exceeds 1,000 yuan" corresponds. After the feature values of the feature are input into the decision tree, multiple path information can be determined in the decision tree. For example, if the sample data contains the user gender is male, the user age is greater than 20 years, and the transaction amount exceeds 1000 yuan, the determined path information can be as shown by the thick line in FIG. 2 . As an exemplary illustration, only one path information is shown in FIG. 2. In fact, when the sample data is registered in the GBDT, multiple path information can be determined, and the present invention will not be described herein. It should be noted that, in the present invention, before the feature value is input to the GBDT, the feature value may also be represented as a feature vector in the one-hot form. In the case that the feature vector corresponding to the feature value is also determined, the input of the feature value into the GBDT may be replaced by: inputting the feature vector corresponding to the feature value into the decision tree to determine the corresponding path information. The process of determining the feature vector of the feature value can be exemplified as follows: Taking the feature as “user gender” as an example, if the user gender is male, that is, the feature value of the feature is “male”, the feature value corresponds to The feature vector can be: [0 1]. If the user gender is female, that is, the feature value of the feature is "female", the feature vector corresponding to the feature value may be: [1 0]. Taking the RPC behavior information characterized by the user as an example, the determination of the feature vector corresponding to the feature value can be implemented in the following two ways: In the first implementation manner, the rule is first set: if it appears, the identifier is 1, Otherwise 0. Specifically, assume that the preset RPC behavior information is: a, b, and c. The sample data contains the RPC behavior information of the user within two days: a, a and b, that is, the characteristic values are: a, a and b. Then the corresponding feature vector can be: [1 1 0]. In another implementation, rules can be set: the frequency of the preset RPC behavior information is counted and then normalized. Specifically, assume that the preset RPC behavior information is: a, b, and c. A sample data contains the RPC behavior information of the user within two days: a, a, b, b, and c, that is, the characteristic values are: a, a, b, b, and c. Then the corresponding feature vector can be: 2, 2 and 1. Because of the need for normalization, the final eigenvector is: [0.4 0.4 0.2]. It should be noted that the above description of the feature value as the feature vector belongs to the conventional prior art, and will not be described herein. It should be noted that in order to improve the accuracy of the neural network model, a relatively large number of features are set in the present invention, so that a plurality of feature values are determined. For more and more eigenvalues, the processing often takes a lot of time. Due to the number of eigenvalues observed at the same time, it is difficult for people to deeply analyze the relationship between multiple eigenvalues and manually generate them. New feature value. The present invention obtains path information by logging the sample data into the GBDT, and the path information includes a plurality of feature values. Thereby, the number of feature values can be greatly reduced, whereby the manual operation can be remarkably reduced. Step 120: Train the neural network model according to the path information and the sample tag corresponding to each sample data. The neural network model here may include DNN or ANN and the like. Among them, DNN has developed rapidly in recent years. Compared with traditional shallow models (such as Logistic Regression (LR), Random Forest (RF)), DNN has its unique advancement: model expression ability. Powerful for big data and decentralized training. Therefore, in the present specification, the training DNN is taken as an example for explanation. In the present invention, the training process of the DNN can be as shown in FIG. 3. In FIG. 3, the input layer of the DNN is used to input each path information in the GBDT, and the output layer can output the first prediction result. It can be understood that, for each sample data, that is, after the path information corresponding to the sample data is input to the DNN, the DNN outputs a corresponding first prediction result. For a plurality of sample data in the sample set, if the probability that the first prediction result matches the sample label of the sample data reaches a preset threshold, the preset threshold value herein may be set according to the empirical value, and may be considered to have been obtained. Optimized DNN. It can be understood that the number of layers of the DNN in FIG. 3 can be changed as the number of path information is different. Through experimental invention, the neural network model trained by the present invention is better than other models (LR or RF). At the same time, the time for feature processing is greatly reduced, and the overall modeling process is much faster. The following describes how to train the GBDT model: After determining the feature values corresponding to the multiple features according to each sample data, the feature values corresponding to the multiple features can be input into the decision trees of the GBDT. The results of the various decision trees are then summed to determine the second prediction. It can be understood that for each sample data, the GBDT model will output a corresponding second prediction result. For a plurality of sample data in the sample set, if the probability that the second prediction result matches the sample label of the sample data reaches a preset threshold, the preset threshold value herein may be set according to the empirical value, and may be considered to have been obtained. Optimized GBDT model. If the probability that the second prediction result matches the sample label of the sample data does not reach the preset threshold, the input can be continued by adjusting the number of decision trees, the depth of the decision tree, and the regularization term (used to represent the feature). And the output operation until the preset threshold is reached. In summary, the present invention has the following advantages: 1) Since the features of the present invention include features of the user RPC behavior information, the neural network model trained by the present invention can meet the timeliness requirement, that is, can identify The user's latest trading behavior. 2) The neural network model trained by the present invention is more accurate than the conventional shallow model. 3) The path information is obtained by logging the sample data to GBDT. And a path information is composed of a plurality of feature values, that is, a path information contains information of multiple dimensions of the sample data, thereby greatly reducing the amount of data input by the DNN input layer, thereby improving the nerve The efficiency of network model training. It should be noted that after the neural network model is trained through the steps shown in FIG. 1, the neural network model can be deployed to the line, and the risk behavior of the user's transaction behavior is identified. FIG. 4 is a schematic diagram of a process of a transaction behavior risk identification method provided by the present invention. As shown in FIG. 4, the method may include: Step 410: Acquire a transaction behavior data of a user. The transaction behavior data here is the same as the definition of the above sample materials, and will not be repeated here. Step 420: Log the transaction behavior data into the gradient promotion decision tree GBDT to determine the path information corresponding to the transaction behavior data in the GBDT. The above GBDT is composed of a plurality of decision trees, each decision tree includes a plurality of nodes, and each node corresponds to one feature. In step 420, the transaction behavior data is registered in the gradient promotion decision tree GBDT, and the step of determining the path information corresponding to the transaction behavior data in the GBDT may specifically include: determining, according to the transaction behavior data, the feature values corresponding to the plurality of features; The feature value determines the path information in the decision tree. The process of determining the path information may refer to FIG. 2, and details are not described herein. In step 430, the path information is input into the neural network model. That is, the path information determined in step 420 is input into the input layer of the DNN. Step 440, outputting a transaction behavior risk identification result. Specifically, the transaction behavior risk identification result is output by the output layer of the DNN. Here, if the recognition result is a risky trading behavior, an alarm can be initiated. In the case of payment, if the recognition result is a risky payment behavior, the user account can be frozen to prevent property loss. Corresponding to the above-mentioned neural network model training method, the embodiment of the present invention further provides a neural network model training device, as shown in FIG. 5, the device includes: a determining unit 501, configured to collect a plurality of sample materials collected in advance Log in to the gradient promotion decision tree GBDT to determine the path information corresponding to each sample data in the GBDT. Here, each sample data has a corresponding sample label. The training unit 502 is configured to train the neural network model according to the path information and the sample tag corresponding to each sample data determined by the determining unit 501 in the GBDT. Optionally, the GBDT is composed of a plurality of decision trees, each decision tree includes a plurality of nodes, and each node corresponds to one feature. The determining unit 501 is specifically configured to: determine, for each sample data of the plurality of sample materials, the feature values corresponding to the plurality of features according to the sample data. Here, the feature may include: the user's remote program calls the RPC behavior information and/or the user's Uniform Resource Locator URL address information. The path information is determined in the decision tree based on the feature values. Optionally, the sample tag may include: a positive sample tag and a negative sample tag. The device may further include: a processing unit 503, configured to perform upsampling processing on the sample data whose sample label is a positive sample label; and/or perform down sampling processing on the sample data in which the sample label is a negative sample label. The functions of the functional modules of the device in the embodiments of the present invention can be implemented through the steps of the foregoing method embodiments. Therefore, the specific operation process of the device provided by the present invention is not described herein. The neural network model training device provided by the present invention, the determining unit 501 registers a plurality of sample data collected in advance into the gradient promotion decision tree GBDT to determine path information corresponding to each sample data in the GBDT. The training unit 502 trains the neural network model according to the path information and the sample tag corresponding to each sample data in the GBDT. Thereby, the efficiency of the neural network model training can be improved. Corresponding to the foregoing transaction behavior risk identification method, the embodiment of the present invention further provides a transaction behavior risk identification device. As shown in FIG. 6, the device includes: an obtaining unit 601, configured to acquire transaction behavior data of the user. The determining unit 602 is configured to log the transaction behavior data acquired by the obtaining unit 601 into the gradient promotion decision tree GBDT to determine the path information corresponding to the transaction behavior data in the GBDT. The input unit 603 is configured to input the path information determined by the determining unit 602 into the neural network model. The output unit 604 is configured to output a transaction behavior risk identification result. Optionally, the GBDT is composed of multiple decision trees, each decision tree includes multiple nodes, and each node corresponds to one feature. The determining unit 602 is specifically configured to: determine characteristics corresponding to multiple features according to transaction behavior data. value. The path information is determined in the decision tree based on the feature values. The feature may include: the remote program of the user calls the RPC behavior information and/or the uniform resource locator URL address information of the user. The functions of the functional modules of the device in the embodiments of the present invention can be implemented through the steps of the foregoing method embodiments. Therefore, the specific operation process of the device provided by the present invention is not described herein. The transaction behavior risk identification device provided by the invention can improve the efficiency and accuracy of the transaction behavior risk identification. Those skilled in the art will appreciate that in one or more of the above examples, the functions described herein can be implemented in hardware, software, firmware, or any combination thereof. When implemented using software, these functions can be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium. The embodiments, the technical solutions, and the beneficial effects of the present invention are further described in detail in the foregoing detailed description. It is to be understood that the foregoing description is only The scope of the protection, any modifications, equivalent substitutions, improvements, etc., which are made on the basis of the technical solutions of the present invention, are included in the scope of the present invention.
501‧‧‧確定單元501‧‧‧Determining unit
502‧‧‧訓練單元502‧‧‧ training unit
503‧‧‧處理單元503‧‧‧Processing unit
601‧‧‧獲取單元601‧‧‧Acquisition unit
602‧‧‧確定單元602‧‧‧Determining unit
603‧‧‧輸入單元603‧‧‧ input unit
604‧‧‧輸出單元604‧‧‧Output unit
為了更清楚地說明本發明實施例的技術方案,下面將對實施例描述中所需要使用的附圖作簡單地介紹,顯而易見地,下面描述中的附圖僅僅是本發明的一些實施例,對於本領域普通技術人員來講,在不付出創造性勞動的前提下,還可以根據這些附圖而獲得其他的附圖。 圖1為本發明一種實施例提供的神經網路模型訓練方法流程圖; 圖2為本發明提供的決策樹的示意圖; 圖3為本發明提供的訓練DNN的過程示意圖; 圖4為本發明提供的交易行為風險識別方法示意圖; 圖5為本發明一種實施例提供的神經網路模型訓練裝置示意圖; 圖6為本發明另一種實施例提供的交易行為風險識別裝置示意圖。In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the drawings used in the description of the embodiments will be briefly described below. It is obvious that the drawings in the following description are only some embodiments of the present invention, Those skilled in the art can also obtain other drawings based on these drawings without paying any creative work. 1 is a flowchart of a neural network model training method according to an embodiment of the present invention; FIG. 2 is a schematic diagram of a decision tree provided by the present invention; FIG. 3 is a schematic diagram of a process for training a DNN according to the present invention; FIG. 5 is a schematic diagram of a neural network model training device according to an embodiment of the present invention; FIG. 6 is a schematic diagram of a transaction behavior risk identification device according to another embodiment of the present invention.
Claims (14)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710153115.8 | 2017-03-15 | ||
CN201710153115.8A CN108629413B (en) | 2017-03-15 | 2017-03-15 | Neural network model training and transaction behavior risk identification method and device |
??201710153115.8 | 2017-03-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201835819A true TW201835819A (en) | 2018-10-01 |
TWI689874B TWI689874B (en) | 2020-04-01 |
Family
ID=63522791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106140070A TWI689874B (en) | 2017-03-15 | 2017-11-20 | Method and device for neural network model training and transaction behavior risk identification |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN108629413B (en) |
TW (1) | TWI689874B (en) |
WO (1) | WO2018166457A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI723528B (en) * | 2019-02-01 | 2021-04-01 | 開曼群島商創新先進技術有限公司 | Computer-executed event risk assessment method and device, computer-readable storage medium and computing equipment |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109389494B (en) * | 2018-10-25 | 2021-11-05 | 北京芯盾时代科技有限公司 | Loan fraud detection model training method, loan fraud detection method and device |
CN109615454A (en) * | 2018-10-30 | 2019-04-12 | 阿里巴巴集团控股有限公司 | Determine the method and device of user's finance default risk |
CN109583475B (en) * | 2018-11-02 | 2023-06-30 | 创新先进技术有限公司 | Abnormal information monitoring method and device |
CN110046179B (en) * | 2018-12-25 | 2023-09-08 | 创新先进技术有限公司 | Mining method, device and equipment for alarm dimension |
CN109559232A (en) * | 2019-01-03 | 2019-04-02 | 深圳壹账通智能科技有限公司 | Transaction data processing method, device, computer equipment and storage medium |
CN109784403B (en) * | 2019-01-16 | 2022-07-05 | 武汉斗鱼鱼乐网络科技有限公司 | Method for identifying risk equipment and related equipment |
CN110033092B (en) * | 2019-01-31 | 2020-06-02 | 阿里巴巴集团控股有限公司 | Data label generation method, data label training device, event recognition method and event recognition device |
CN111667290B (en) * | 2019-03-08 | 2024-06-18 | 北京京东尚科信息技术有限公司 | Business display method and device and computer readable storage medium |
CN110232400A (en) * | 2019-04-30 | 2019-09-13 | 冶金自动化研究设计院 | A kind of gradient promotion decision neural network classification prediction technique |
CN110390041B (en) * | 2019-07-02 | 2022-05-20 | 上海上湖信息技术有限公司 | Online learning method and device and computer readable storage medium |
CN110942248B (en) * | 2019-11-26 | 2022-05-31 | 支付宝(杭州)信息技术有限公司 | Training method and device for transaction wind control network and transaction risk detection method |
CN111290922B (en) * | 2020-03-03 | 2023-08-22 | 中国工商银行股份有限公司 | Service operation health monitoring method and device |
CN111291900A (en) * | 2020-03-05 | 2020-06-16 | 支付宝(杭州)信息技术有限公司 | Method and device for training risk recognition model |
CN111723083B (en) * | 2020-06-23 | 2024-04-05 | 北京思特奇信息技术股份有限公司 | User identity recognition method and device, electronic equipment and storage medium |
CN111667028B (en) * | 2020-07-09 | 2024-03-12 | 腾讯科技(深圳)有限公司 | Reliable negative sample determination method and related device |
CN111931690B (en) * | 2020-08-28 | 2024-08-13 | Oppo广东移动通信有限公司 | Model training method, device, equipment and storage medium |
CN112161173B (en) * | 2020-09-10 | 2022-05-13 | 国网河北省电力有限公司检修分公司 | Power grid wiring parameter detection device and detection method |
CN112667940B (en) * | 2020-10-15 | 2022-02-18 | 广东电子工业研究院有限公司 | Webpage text extraction method based on deep learning |
CN112541076B (en) * | 2020-11-09 | 2024-03-29 | 北京百度网讯科技有限公司 | Method and device for generating expanded corpus in target field and electronic equipment |
CN113610354A (en) * | 2021-07-15 | 2021-11-05 | 北京淇瑀信息科技有限公司 | Policy distribution method and device for third-party platform user and electronic equipment |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102890803B (en) * | 2011-07-21 | 2016-01-06 | 阿里巴巴集团控股有限公司 | The defining method of the abnormal process of exchange of electronic goods and device thereof |
US20130054417A1 (en) * | 2011-08-30 | 2013-02-28 | Qualcomm Incorporated | Methods and systems aggregating micropayments in a mobile device |
CN105279691A (en) * | 2014-07-25 | 2016-01-27 | 中国银联股份有限公司 | Financial transaction detection method and equipment based on random forest model |
CN106296195A (en) * | 2015-05-29 | 2017-01-04 | 阿里巴巴集团控股有限公司 | A kind of Risk Identification Method and device |
CN105844501A (en) * | 2016-05-18 | 2016-08-10 | 上海亿保健康管理有限公司 | Consumption behavior risk control system and method |
CN105975992A (en) * | 2016-05-18 | 2016-09-28 | 天津大学 | Unbalanced data classification method based on adaptive upsampling |
CN106096727B (en) * | 2016-06-02 | 2018-12-07 | 腾讯科技(深圳)有限公司 | A kind of network model building method and device based on machine learning |
CN106506454B (en) * | 2016-10-10 | 2019-11-12 | 江苏通付盾科技有限公司 | fraud service identification method and device |
CN106447333A (en) * | 2016-11-29 | 2017-02-22 | 中国银联股份有限公司 | Fraudulent trading detection method and server |
-
2017
- 2017-03-15 CN CN201710153115.8A patent/CN108629413B/en active Active
- 2017-11-20 TW TW106140070A patent/TWI689874B/en active
-
2018
- 2018-03-14 WO PCT/CN2018/078906 patent/WO2018166457A1/en active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI723528B (en) * | 2019-02-01 | 2021-04-01 | 開曼群島商創新先進技術有限公司 | Computer-executed event risk assessment method and device, computer-readable storage medium and computing equipment |
Also Published As
Publication number | Publication date |
---|---|
CN108629413A (en) | 2018-10-09 |
CN108629413B (en) | 2020-06-16 |
TWI689874B (en) | 2020-04-01 |
WO2018166457A1 (en) | 2018-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201835819A (en) | Neural network model training method and device, transaction behavior risk identification method and device | |
CN110765117B (en) | Fraud identification method, fraud identification device, electronic equipment and computer readable storage medium | |
TWI706333B (en) | Fraud transaction identification method, device, server and storage medium | |
US11748416B2 (en) | Machine-learning system for servicing queries for digital content | |
JP7337949B2 (en) | Handling Categorical Field Values in Machine Learning Applications | |
CN110083623B (en) | Business rule generation method and device | |
WO2014108004A1 (en) | Method and system for identifying microblog user identity | |
WO2019019746A1 (en) | Method and apparatus for processing insurance claim settlement, computer device and storage medium | |
KR20170035892A (en) | Recognition of behavioural changes of online services | |
CN108111399B (en) | Message processing method, device, terminal and storage medium | |
CN111970400B (en) | Crank call identification method and device | |
CN114389834A (en) | Method, device, equipment and product for identifying API gateway abnormal call | |
CN117971606B (en) | Log management system and method based on elastic search | |
US20210357772A1 (en) | System and method for time series pattern recognition | |
CN114692778B (en) | Multi-mode sample set generation method, training method and device for intelligent inspection | |
CN112053245B (en) | Information evaluation method and system | |
CN114048512B (en) | Method and device for processing sensitive data | |
CN115526500A (en) | Benefit-administration information pushing method, benefit-administration information pushing device, benefit-administration information pushing equipment, benefit-administration information pushing medium and program product | |
CN112069392B (en) | Method and device for preventing and controlling network-related crime, computer equipment and storage medium | |
CN113010664B (en) | Data processing method and device and computer equipment | |
CN114998002A (en) | Risk operation prediction method and device | |
CN111695117B (en) | Webshell script detection method and device | |
CN113569879A (en) | Training method of abnormal recognition model, abnormal account recognition method and related device | |
US20190130505A1 (en) | Techniques for real-time transactional data analysis | |
CN113312354B (en) | Data table identification method, device, equipment and storage medium |