TW201834382A - System and method able to determine a condition of a photovoltaic module over time and related media - Google Patents

System and method able to determine a condition of a photovoltaic module over time and related media Download PDF

Info

Publication number
TW201834382A
TW201834382A TW106142224A TW106142224A TW201834382A TW 201834382 A TW201834382 A TW 201834382A TW 106142224 A TW106142224 A TW 106142224A TW 106142224 A TW106142224 A TW 106142224A TW 201834382 A TW201834382 A TW 201834382A
Authority
TW
Taiwan
Prior art keywords
module
data
photovoltaic module
photovoltaic
image
Prior art date
Application number
TW106142224A
Other languages
Chinese (zh)
Inventor
索斯丹 特拉克
恩 麥斯威爾
羅伯特 巴杜斯
喬根 韋伯
Original Assignee
澳商Bt影像有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/366,014 external-priority patent/US20180159469A1/en
Priority claimed from PCT/AU2016/051183 external-priority patent/WO2018098516A1/en
Application filed by 澳商Bt影像有限公司 filed Critical 澳商Bt影像有限公司
Publication of TW201834382A publication Critical patent/TW201834382A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

Apparatus and methods are presented for determining the condition of photovoltaic modules at one or more points in time, in particular using line-scanning luminescence imaging techniques. One or more photoluminescence and/or electroluminescence images of a module are acquired and processed using one or more algorithms to provide module data, including the detection of defects that may cause or have caused module failure. Also presented is a system and method for determining the condition of photovoltaic modules, preferably throughout the production, transport, installation and service life of the photovoltaic modules.

Description

確定光伏模組隨時間推移的狀況的系統和方法和相關介質  System and method and associated medium for determining the condition of a photovoltaic module over time  

本發明關於一種用於確定光伏模組的狀況的設備和方法,具體地,使用發光成像技術。本發明的一些實施方式已經被開發用於檢查或以其它方式確定包括矽光伏電池的光伏模組的狀況,並且參考本申請進行描述。然而,應理解,本發明不限於這個特定的使用領域。 The present invention relates to an apparatus and method for determining the condition of a photovoltaic module, in particular, using luminescence imaging techniques. Some embodiments of the present invention have been developed to inspect or otherwise determine the condition of a photovoltaic module including a germanium photovoltaic cell, and are described with reference to the present application. However, it should be understood that the invention is not limited to this particular field of use.

在整個說明書中對先前技術的任何論述不應以任何方式認為是承認此類先前技術是廣為人知的或者構成本領域公知常識的一部分。 Any discussion of prior art throughout the specification should not be considered in any way as an admission that such prior art is well-known or part of the common general knowledge in the art.

光伏模組(下文中稱為“模組”或“複數個模組”)正在成為全球發電組合中越來越重要的組成部分。據估計,全球目前安裝的模組數量超過10億個,並以每年10%到20%的速度增長。大多數安裝的模組包含六十或七十二個單晶矽或多晶矽光伏電池(下文中稱為“電池”或“複數個電池”)的矩形陣列,儘管基於薄膜材料的模組如碲化鎘、銅銦鎵硒(CIGS)或非晶矽也是相對常見的,如具有更 多或更少數量矽電池的模組。圖1以示意性平面圖示出典型的模組100,該模組包括60個矽電池102的矩形陣列,其被布線為20個電池串聯連接的三個組列104,並且具有用於提取藉由吸收電池中的太陽輻射所生成的電荷載流子的電觸點106。每個組列104具有並聯連接的旁路二極管108,其用於限制有缺陷或暫時陰影電池的擴大影響。藉由排列成六乘十緊密堆積的矩形網格的六十個150×150毫米電池,模組100將具有約1.0米的總寬度110和約1.65米的總長度112。如圖2中的示意性平面圖所示,薄膜模組200通常包括串聯連接的窄條形電池202的陣列,在每個末端具有電觸點106。通常藉由使用薄膜沉積技術在基板204(如塗有透明導電氧化物的玻璃)上沉積摻雜的半導體材料,利用通常使用雷射光劃線技術產生的電池結構,來將薄膜模組形成為寬範圍的尺寸。 Photovoltaic modules (hereafter referred to as "modules" or "plural modules") are becoming an increasingly important part of the global power generation portfolio. It is estimated that the number of modules currently installed in the world exceeds 1 billion and is growing at a rate of 10% to 20% per year. Most installed modules contain a rectangular array of sixty or seventy-two single-crystal germanium or polycrystalline germanium photovoltaic cells (hereinafter referred to as "batteries" or "plurality of cells"), although thin film-based modules such as deuteration Cadmium, copper indium gallium selenide (CIGS) or amorphous germanium are also relatively common, such as modules with more or fewer germanium batteries. 1 shows a typical module 100 in a schematic plan view, the module comprising a rectangular array of 60 neodymium cells 102 wired into three groups 104 of 20 cells connected in series, and having a Electrical contact 106 of the charge carriers generated by the absorption of solar radiation in the battery. Each set of columns 104 has bypass diodes 108 connected in parallel for limiting the expanded effects of defective or temporarily shadowed cells. The module 100 will have a total width 110 of about 1.0 meter and a total length 112 of about 1.65 meters by sixty 150 x 150 mm cells arranged in a rectangular grid of six by ten closely packed. As shown in the schematic plan view of FIG. 2, the film module 200 typically includes an array of narrow strip cells 202 connected in series with electrical contacts 106 at each end. The thin film module is typically formed into a wide width by depositing a doped semiconductor material on a substrate 204 (such as a glass coated with a transparent conductive oxide) using a thin film deposition technique using a battery structure typically produced using laser light scribing techniques. The size of the range.

模組通常旨在具有約二十或二十五年的使用壽命並且通常具有涵蓋這些時間標度的保修期。然而,有幾種失效模式可能會不僅影響模組內單個電池的性能,而且也影響周圍電池甚至整個模組的性能。一些失效模式也可能導致熱斑,並伴有相關的火災或模組進一步損壞的風險。據稱,在一些情況下,安裝過程中高達10%的模組將在其保修期內出現故障,這是一個巨大的商業問題。在沒有發電或者通常根據允許每年固定百分比下降的公式計算的發電量下降到低於保證水平的情況下,模組的“故障”可能是徹底的故障。 Modules are typically intended to have a service life of approximately twenty or twenty five years and typically have a warranty covering these time scales. However, there are several failure modes that can affect not only the performance of individual cells in a module, but also the performance of surrounding cells or even entire modules. Some failure modes can also cause hot spots with the risk of associated fire or further damage to the module. It is said that in some cases, up to 10% of the modules in the installation process will fail during their warranty period, which is a huge business problem. A module's "fault" may be a complete failure in the absence of power generation or a power generation that is normally calculated according to a formula that allows a fixed percentage reduction per year to fall below a guaranteed level.

單個電池的失效模式的示例包括可能與金屬接觸圖案的斷裂或金屬圖案與矽或其它電池材料之間的接觸不良有關的裂紋、分流和局部區域的過度串聯電阻。電池之間的電連接的斷開也可以完全或部分地隔離模組中的一個或複數個電池。此類失效模式可能由例如電池或模組製造錯誤引起或者由於在模組運輸或安裝期間的不正確處理而引起。它們也可以在現場引起及/或生長數月和數年,例如藉由水和氧氣的進入,或模組中有機材料的不可避免的熱循環和UV退化。裂紋是一種特別隱蔽的失效模式,因為它們傾向於隨著時間的推移而增長。例如,在模組製造或裝運期間引起的電池中的小裂紋在模組安裝時可能對性能沒有可察覺的影響,但是例如由於熱循環或其它環境壓力而可能增長。已知各種所謂的光誘導退化機理,其在光照時隨時間推移降低光照模組的電氣性能。已經發現了這種退化的許多物理機理,例如涉及單晶矽電池中普遍存在的硼-氧缺陷。另一種退化機理是電位引起的退化,這是電池與模組的玻璃表面和框架之間的巨大電壓差的結果。另一種可能的退化機理是乙烯乙酸乙烯酯(EVA)聚合物的氧化引起的混濁,乙烯乙酸乙烯酯(EVA)聚合物通常用於將矽電池密封在模組內。 Examples of failure modes for a single battery include cracks, shunts, and excessive series resistance of localized regions that may be associated with breakage of the metal contact pattern or poor contact between the metal pattern and the crucible or other battery material. Disconnection of the electrical connections between the batteries may also completely or partially isolate one or more of the modules. Such failure modes may be caused by, for example, battery or module manufacturing errors or due to improper handling during module shipping or installation. They can also be induced and/or grown in the field for months and years, such as by the ingress of water and oxygen, or the inevitable thermal cycling and UV degradation of organic materials in the module. Cracks are a particularly concealed failure mode because they tend to grow over time. For example, small cracks in the battery caused during module manufacture or shipment may have no appreciable impact on performance when the module is installed, but may grow, for example, due to thermal cycling or other environmental stresses. Various so-called light-induced degradation mechanisms are known which reduce the electrical performance of the illumination module over time during illumination. Many physical mechanisms of such degradation have been discovered, such as boron-oxygen defects that are ubiquitous in single crystal germanium cells. Another degradation mechanism is potential-induced degradation, which is a result of the large voltage difference between the glass surface of the cell and the module and the frame. Another possible degradation mechanism is turbidity caused by oxidation of ethylene vinyl acetate (EVA) polymers, which are commonly used to seal tantalum cells within modules.

因此,特別是為了保修的目的,為了不僅在工廠中而且在裝運之前、在安裝之前和在其安裝之後的使用壽命期間,能夠檢查或確定模組的狀況,以識別模組的有缺陷或隔離的電池或與發電性能的不希望的變化有關的任何其它 特徵。能夠確定任何已識別問題的根本原因應是特別理想的。 Therefore, especially for the purpose of warranty, in order to identify or determine the condition of the module not only in the factory but also before, during and after the installation, to identify defective or isolated modules Battery or any other feature related to undesired changes in power generation performance. It is especially desirable to be able to determine the root cause of any identified problem.

最為人所知的用於檢測模組的方法是電流和電壓(I-V)測試,其測量在模擬或實際太陽光照條件下特定模組的電流(I)和電壓(V)特性,從而給出其太陽能轉換能力和效率的詳細描述。瞭解模組的I-V特性,特別是其最大功率點(MPP),對於確定其預期的輸出性能和太陽能效率以及其價值至關重要。作為模組製造的常規部分,所有模組均進行I-V性能測試。 The best known method for detecting modules is the current and voltage (IV) test, which measures the current (I) and voltage (V) characteristics of a particular module under simulated or actual solar conditions. A detailed description of solar energy conversion capabilities and efficiencies. Understanding the I-V characteristics of a module, especially its maximum power point (MPP), is critical to determining its expected output performance and solar efficiency and its value. As a general part of module manufacturing, all modules are tested for I-V performance.

其它常見的模組檢測技術包括在紫外線或可見光照下使用照相機進行目視檢查、熱成像和電致發光,M.Köntges在2014年2月25-26日在科羅拉多州戈爾登在《2014年光伏模組可靠性研討會》第362-388頁在“回顧電致發光和熱成像影像的實用性和效用(Reviewing the practicality and utility of electroluminescence and thermography images)”中描述了後兩種模式。基本上在模組內或模組之間尋找溫差的熱成像目前是在現場即在安裝之後檢查模組的最常用技術。它可能不一定有足夠的分辨率來確定故障的原因,但有缺陷的模組可以被移除以便在模組的“解剖”實驗室中進一步調查,例如使用I-V測試或電致發光成像。熱成像的另一個缺陷在於它只能識別已經引起電氣性能顯著退化的故障。換句話說,它不適用於識別可用於預測模組失效的更微妙的影響。例如,熱成像不能檢測電池中尚未長大以阻礙電流流動的裂紋。 Other common module detection techniques include visual inspection, thermal imaging, and electroluminescence using a camera under ultraviolet or visible light, M. Köntges, Photovoltaic, Colorado, Colorado, February 25-26, 2014. The latter two modes are described in "Reviewing the practicality and utility of electroluminescence and thermography images" on page 362-388 of the Module Reliability Symposium. Thermal imaging, which basically looks for temperature differences within or between modules, is currently the most common technique for inspecting modules at the site, ie after installation. It may not necessarily have sufficient resolution to determine the cause of the failure, but the defective module can be removed for further investigation in the module's "anatomy" laboratory, for example using I-V testing or electroluminescence imaging. Another drawback of thermal imaging is that it only identifies faults that have caused significant degradation in electrical performance. In other words, it does not apply to identifying the more subtle effects that can be used to predict module failure. For example, thermal imaging cannot detect cracks in the battery that have not grown to impede current flow.

用於現場監控模組的另一種方法是使用與模組集成或在逆變器中的專用電路記錄其實時性能,前述專用電路例如測量模組的功率輸出以及其工作電流和電壓。該測試在整個延長的週期內測量模組的功率產量,並且可以警告經營者模組中的故障或甚至模組內組列中的故障,但是不確定故障的原因。類似於熱成像,這種方法通常只能發現已經發展到導致電輸出顯著偏離額定模組性能的水平的故障。 Another method for field monitoring modules is to record their real-time performance using a dedicated circuit integrated with the module or in the inverter, such as the power output of the measurement module and its operating current and voltage. The test measures the power production of the module over the extended period of time and can alert the operator to a fault in the module or even a fault in the queue within the module, but is uncertain of the cause of the fault. Similar to thermal imaging, this approach typically only finds faults that have evolved to levels that cause the electrical output to significantly deviate from the performance of the rated module.

全場電致發光(EL)成像可用於檢測並定位單個電池中的各種缺陷並推斷電池間連接的斷開或錯誤的存在,其中在全場電致發光(EL)成像中,使用CCD照相機等測量藉由正向偏置模組的接觸端子注入的電荷載流子的輻射複合引起的帶帶發光的空間分佈。圖3以示意性側視圖示出用於從光伏模組100獲取全場EL影像的典型系統300,該典型系統包括用於藉由接觸端子將電流注入到模組中的電源302、用於檢測從模組內的電池102發射的EL 306的區域照相機304以及用於儲存從照相機讀出的影像的記憶體308。由於矽是非常差的發光體,所以全場EL成像系統通常還需要用於排除環境光的防光的外殼310。由於區域照相機304所需的大工作距離312,全場EL成像系統通常是龐大的,這是其通常局限於模組解剖實驗室或工廠檢查而非現場模組檢查的一個原因。如果使用複數個區域照相機304來捕獲從模組100的不同部分發射的EL,則工作距離312可以稍微減小,但是這增加了設備的成本。 Full field electroluminescence (EL) imaging can be used to detect and locate various defects in a single cell and to infer the presence of disconnection or erroneous connections between cells, where CCD cameras, etc. are used in full field electroluminescence (EL) imaging. The spatial distribution of the band illumination caused by the radiation recombination of the charge carriers injected by the contact terminals of the forward biasing module is measured. 3 shows, in a schematic side view, a typical system 300 for acquiring full field EL images from a photovoltaic module 100, the exemplary system including a power source 302 for injecting current into the module by contact terminals, for An area camera 304 that detects the EL 306 emitted from the battery 102 in the module and a memory 308 for storing images read from the camera are detected. Since helium is a very poor illuminator, a full field EL imaging system typically also requires a light-proof housing 310 for removing ambient light. Due to the large working distance 312 required by the zone camera 304, the full field EL imaging system is typically bulky, which is one reason why it is typically limited to modular anatomy laboratories or factory inspections rather than field module inspections. If a plurality of zone cameras 304 are used to capture the ELs emitted from different portions of the module 100, the working distance 312 can be slightly reduced, but this adds to the cost of the device.

全場EL成像對與模組失效有關的許多缺陷敏感,包括電池的金屬接觸圖案中的裂紋、分流和斷裂以及載流子複合缺陷如位錯和雜質,這些缺陷降低電荷載流子壽命並因此使電池性能退化。事實上,所有的缺陷都會降低EL發射並因此在EL影像中比無背景缺陷的材料更暗,所以很難區分不同類型的缺陷。影像處理算法可以用來自動區分具有不同強度、位置、形狀、尺寸的暗特徵和其它特性,但是如果存在大量的可能也會重疊的特徵類型,這些算法的精度和精確度可能會受到影響。 Full-field EL imaging is sensitive to many defects associated with module failure, including cracks, shunts and fractures in the metal contact pattern of the cell, as well as carrier recombination defects such as dislocations and impurities, which reduce charge carrier lifetime and therefore Degrade battery performance. In fact, all defects reduce EL emission and are therefore darker in EL images than materials without background defects, so it is difficult to distinguish between different types of defects. Image processing algorithms can be used to automatically distinguish between dark features and other features with different intensities, positions, shapes, sizes, but the accuracy and precision of these algorithms may be affected if there are a large number of feature types that may overlap.

EL成像的一般屬性在於發光只能從電激勵可以接近的電池區域產生。該效果在圖4中示出,圖4示出了用圖3所示類型的設備獲取的具有六十個多晶矽電池102的模組100的EL影像。幾個電池看起來完全黑暗,可能是因為它們在外面被分流,例如在製造期間的互連錯誤,使得電荷載流子不能被注入到所述電池中。雖然這種發光模式在揭示模組故障的存在方面是有用的,但是暗電池可能包含明顯不會被檢測到的裂紋等缺陷。在另一個示例中,如果任何兩個電池之間的互連完全斷開,則整個模組將在EL成像下看起來完全黑暗。通常,模組中一些或所有電池不存在發光會限制可用於缺陷檢測或故障診斷的資訊量。 A general property of EL imaging is that illumination can only be produced from areas of the battery that are electrically accessible. This effect is illustrated in FIG. 4, which shows an EL image of a module 100 having sixty polycrystalline germanium cells 102 taken with a device of the type illustrated in FIG. Several batteries appear to be completely dark, probably because they are shunted outside, such as interconnect errors during manufacturing, such that charge carriers cannot be injected into the battery. While this illumination mode is useful in revealing the presence of a module failure, dark batteries may contain defects such as cracks that are clearly not detected. In another example, if the interconnection between any two batteries is completely broken, the entire module will look completely dark under EL imaging. Often, the absence of illumination in some or all of the batteries in the module limits the amount of information available for defect detection or troubleshooting.

另一種可應用於檢測電池和模組的基於發光的技術是光致發光(PL)成像,其不同於EL成像在於電荷載流子是藉由注入高強度光而不是藉由電來生成。在公布的美國專利申請號2015/0155829A1中描述了基於PL的模組檢查技 術。在該技術中,在模組的工作點以選定的頻率電調製時,待測模組被太陽光照射並用區域照相機成像。這對從光照電池發出的PL應用類似的調製,使得鎖定技術能夠將PL訊號與環境光分開。看起來,該技術操作的能力取決於可用太陽光的量,並且與全場EL成像一樣,該設備通常是龐大的。此外,由於太陽光在很寬的光譜範圍內具有顯著的強度,即使採用最佳的鎖定技術,影像的空間分辨率也相對較差。此類低分辨率的影像對於隔離單個缺陷通常是無用的,而只能識別可能具有低發電量的具有低PL發射的電池。 Another luminescence-based technique that can be applied to detect cells and modules is photoluminescence (PL) imaging, which differs from EL imaging in that charge carriers are generated by injecting high intensity light rather than by electricity. A PL-based module inspection technique is described in the published U.S. Patent Application No. 2015/0155829 A1. In this technique, when the operating point of the module is electrically modulated at a selected frequency, the module to be tested is illuminated by sunlight and imaged with an area camera. This applies a similar modulation to the PL emitted from the illuminated battery, enabling the locking technique to separate the PL signal from the ambient light. It appears that the ability of the technology to operate depends on the amount of sunlight available, and like full field EL imaging, the device is typically bulky. In addition, because of the significant intensity of sunlight over a wide spectral range, even with the best locking techniques, the spatial resolution of the image is relatively poor. Such low resolution images are generally useless to isolate a single defect, but only batteries with low PL emissions that may have low power generation.

用於在工廠中、在安裝之前、在使用中和在模組解剖實驗室中檢查或確定光伏模組的狀況的設備和方法存在改進的需要,以可靠地檢測和定位對光伏模組的性能產生不利影響的失效模式的發生。還需要用於在光伏模組的整個使用壽命期間確定光伏模組的一個或複數個狀況如特徵或缺陷,如用於確定是否可能已經發生失效模式或者何時可能發生失效模式的系統。 There is an improved need for equipment and methods for inspecting or determining the condition of a photovoltaic module in a factory, prior to installation, in use, and in a modular anatomy laboratory to reliably detect and locate the performance of a photovoltaic module The occurrence of a failure mode that adversely affects. There is also a need for a system for determining one or more conditions, such as features or defects, of a photovoltaic module throughout the life of the photovoltaic module, such as a system for determining whether a failure mode has occurred or when a failure mode may occur.

本發明的目的是克服或改善先前技術的至少一個缺點或者提供有用的替代方案。本發明的目的是以較佳的形式提供用於在工廠中、在安裝之前、在使用中或在模組解剖實驗室中檢查或確定光伏模組的狀態的改進的設備和方法。較佳地,本發明的另一個目的是以較佳的形式提供用於貫穿光伏模組的生產、運輸、安裝和使用壽命確定光伏 模組的一個或複數個狀況如特徵或缺陷的系統和方法。 It is an object of the present invention to overcome or ameliorate at least one of the disadvantages of the prior art or to provide a useful alternative. It is an object of the present invention to provide improved apparatus and methods for inspecting or determining the state of a photovoltaic module in a factory, prior to installation, in use, or in a modular anatomy laboratory. Preferably, another object of the present invention is to provide a system and method for determining one or more conditions, such as features or defects, of a photovoltaic module throughout the production, transportation, installation, and service life of a photovoltaic module in a preferred form. .

根據本發明的第一方面,提供了用於檢查光伏模組的設備,前述設備包括:電源,用於向光伏模組施加電激勵以從前述光伏模組生成電致發光;檢測器,用於檢測由前述光伏模組的第一區域發射的電致發光;掃描機構,用於在施加前述電激勵時沿著前述光伏模組掃描前述第一區域;以及計算裝置,由可執行指令編程以用於在沿著前述光伏模組掃描前述第一區域時,由前述檢測器接收從前述光伏模組的至少一部分發射的電致發光的影像。 According to a first aspect of the present invention, there is provided an apparatus for inspecting a photovoltaic module, the apparatus comprising: a power source for applying an electrical stimulus to the photovoltaic module to generate electroluminescence from the photovoltaic module; and a detector for Detecting electroluminescence emitted by the first region of the photovoltaic module; scanning mechanism for scanning the first region along the photovoltaic module when applying the electrical excitation; and computing means for programming by executable instructions The electroluminescence image emitted from at least a portion of the photovoltaic module is received by the detector when the first region is scanned along the photovoltaic module.

在某些實施例中,檢測器包括線性照相機(line camera)或TDI照相機。在其它實施例中,檢測器包括接觸式成像感測器。 In some embodiments, the detector comprises a line camera or a TDI camera. In other embodiments, the detector includes a contact imaging sensor.

在某些實施例中,掃描機構包括用於移動光伏模組的機構。在其它實施例中,掃描機構包括用於移動檢測器的機構。在其它實施例中,掃描機構包括與檢測器可操作地關聯的光學元件,前述光學元件適於在檢測器保持靜止時沿著光伏模組移動。較佳地,掃描機構被配置成使得在沿著光伏模組掃描第一區域時,前述第一區域和檢測器之間的光路長度保持基本上恒定。 In some embodiments, the scanning mechanism includes a mechanism for moving the photovoltaic module. In other embodiments, the scanning mechanism includes a mechanism for moving the detector. In other embodiments, the scanning mechanism includes an optical element operatively associated with the detector, the optical element being adapted to move along the photovoltaic module while the detector remains stationary. Preferably, the scanning mechanism is configured such that the optical path length between the aforementioned first region and the detector remains substantially constant as the first region is scanned along the photovoltaic module.

在較佳實施例中,前述設備還包括一個或複數個溫度感測器,其用於在沿著光伏模組掃描第一區域時在前述第 一區域附近監測光伏模組的溫度,以使得能夠對由檢測器檢測到的電致發光訊號進行溫度校正。 In a preferred embodiment, the apparatus further includes one or more temperature sensors for monitoring the temperature of the photovoltaic module in the vicinity of the first region when scanning the first region along the photovoltaic module to enable Temperature correction is performed on the electroluminescence signal detected by the detector.

較佳地,前述設備還包括光源,其用於利用適於由光伏模組生成光致發光的光來照射光伏模組的第二區域,使得在沿著光伏模組掃描第二區域時,可以獲取由光伏模組的至少一部分發射的光致發光的影像。在某些實施例中,光源和檢測器被配置成使得可以用檢測器獲取光致發光的影像。在其它實施例中,前述設備還包括用於獲取光致發光的影像的第二檢測器。 Preferably, the foregoing apparatus further includes a light source for illuminating the second region of the photovoltaic module with light suitable for generating photoluminescence by the photovoltaic module, such that when scanning the second region along the photovoltaic module, Obtaining a photoluminescence image emitted by at least a portion of the photovoltaic module. In some embodiments, the light source and detector are configured such that a photoluminescence image can be acquired with the detector. In other embodiments, the aforementioned apparatus further includes a second detector for acquiring an image of the photoluminescence.

在某些實施例中,前述設備被配置成從光伏模組獲取I-V測試資料或者獲取光伏模組的至少一部分的光學影像或者獲取由於對光伏模組施加電激勵而由光伏模組的至少一部分發射的熱輻射的影像。 In some embodiments, the aforementioned device is configured to acquire IV test data from a photovoltaic module or to acquire an optical image of at least a portion of the photovoltaic module or to acquire at least a portion of the photovoltaic module due to application of electrical excitation to the photovoltaic module. An image of the heat radiation.

在較佳實施例中,前述設備還包括用於處理由前述設備獲取的一個或複數個電致發光影像及/或光致發光影像的電腦,前述電腦被編程以分類或區分不同類型的特徵或缺陷,或生成一個或複數個重疊影像以用於突出顯示一種或複數種類型的特徵或缺陷,或計算發生一種或複數種類型的特徵或缺陷的一個或複數個指標,或基於藉由發生在光伏模組中識別的所發生的各種類型的特徵或缺陷而估算的預期性能來對前述光伏模組進行質量分類。在某些實施例中,前述設備還包括用於比較利用前述設備獲取的光伏模組的兩個或更多個影像的電腦,前述兩個或更多個影像從包括電致發光影像、光致發光影像、光學影像或熱影像 的組中選擇。 In a preferred embodiment, the apparatus further includes a computer for processing one or more electroluminescent images and/or photoluminescence images acquired by the aforementioned device, the computer being programmed to classify or distinguish between different types of features or Defects, or generating one or more overlapping images for highlighting one or more types of features or defects, or calculating one or more indicators of one or more types of features or defects, or based on The aforementioned photovoltaic modules are mass categorized by the expected performance of the various types of features or defects identified in the photovoltaic module. In some embodiments, the aforementioned apparatus further includes a computer for comparing two or more images of the photovoltaic module acquired using the aforementioned device, the two or more images including electroluminescence images, photoinduced Choose from a group of illuminating images, optical images, or thermal images.

根據本發明的第二方面,提供了用於檢查光伏模組的設備,前述設備包括:光源,用於利用適於由前述光伏模組生成光致發光的光照射光伏模組的第二區域;檢測器,用於檢測從前述光伏模組的第一區域發射的光致發光;掃描機構,用於沿著前述光伏模組掃描前述第一區域和前述第二區域;以及計算裝置,由可執行指令編程以用於在沿著前述光伏模組掃描前述第一區域和第二區域時,從前述檢測器接收由前述光伏模組的至少一部分發射的光致發光的影像。 According to a second aspect of the present invention, there is provided an apparatus for inspecting a photovoltaic module, the apparatus comprising: a light source for illuminating a second region of the photovoltaic module with light suitable for generating photoluminescence from the photovoltaic module; a detector for detecting photoluminescence emitted from a first region of the photovoltaic module; a scanning mechanism for scanning the first region and the second region along the foregoing photovoltaic module; and a computing device executable by The instructions are programmed to receive a photoluminescence image emitted by at least a portion of the photovoltaic module from the detector when the first region and the second region are scanned along the photovoltaic module.

前述設備較佳地被配置成使得在使用中,前述第一區域和前述第二區域至少部分重疊。 The aforementioned apparatus is preferably configured such that, in use, the aforementioned first area and the aforementioned second area at least partially overlap.

在某些實施例中,檢測器包括線性照相機或TDI照相機。在其它實施例中,檢測器包括接觸式成像感測器。 In some embodiments, the detector comprises a linear camera or a TDI camera. In other embodiments, the detector includes a contact imaging sensor.

在某些實施例中,掃描機構包括用於移動光伏模組的機構。在其它實施例中,掃描機構包括用於移動檢測器及/或光源的機構。在其它實施例中,掃描機構包括與檢測器可操作地關聯的光學元件,前述光學元件適於在檢測器保持靜止時沿著光伏模組移動。較佳地,掃描機構被配置成使得在沿著光伏模組掃描第一區域和第二區域時,前述第一區域和檢測器之間的光路長度保持基本恒定。 In some embodiments, the scanning mechanism includes a mechanism for moving the photovoltaic module. In other embodiments, the scanning mechanism includes a mechanism for moving the detector and/or light source. In other embodiments, the scanning mechanism includes an optical element operatively associated with the detector, the optical element being adapted to move along the photovoltaic module while the detector remains stationary. Preferably, the scanning mechanism is configured such that the optical path length between the aforementioned first region and the detector remains substantially constant as the first region and the second region are scanned along the photovoltaic module.

在較佳實施例中,前述設備被配置成獲取由光伏模組 的至少一部分發射的電致發光的影像以作為向前述光伏模組施加電激勵的結果,或者從光伏模組獲取I-V測試資料或者獲取光伏模組的至少一部分的光學影像或者獲取由於對光伏模組施加電激勵而由光伏模組的至少一部分發射的熱輻射的影像。 In a preferred embodiment, the apparatus is configured to acquire an image of the electroluminescence emitted by at least a portion of the photovoltaic module as a result of applying electrical excitation to the photovoltaic module, or to obtain IV test data from the photovoltaic module or Obtaining an optical image of at least a portion of the photovoltaic module or acquiring an image of thermal radiation emitted by at least a portion of the photovoltaic module due to electrical excitation applied to the photovoltaic module.

較佳地,前述設備還包括用於處理由前述設備獲取的一個或複數個光致發光影像及/或電致發光影像的電腦,前述電腦被編程以分類或區分不同類型的特徵或缺陷,或生成一個或複數個重疊影像以用於突出顯示一種或複數種類型的特徵或缺陷或,計算發生一種或複數種類型的特徵或缺陷的一個或複數個指標,或基於藉由在光伏模組中識別的所發生的各種類型的特徵或缺陷而估算的預期性能來對前述光伏模組進行質量分類。在某些實施例中,前述設備還包括用於比較利用前述設備獲取的光伏模組的兩個或更多個影像的電腦,前述兩個或更多個影像從包括電致發光影像、光致發光影像、光學影像和熱影像的組中選擇。 Preferably, the apparatus further includes a computer for processing one or more photoluminescence images and/or electroluminescence images acquired by the aforementioned device, the computer being programmed to classify or distinguish different types of features or defects, or Generating one or more overlapping images for highlighting one or more types of features or defects or calculating one or more indicators of one or more types of features or defects, or based on being in a photovoltaic module The aforementioned photovoltaic modules are mass categorized by identifying the expected performance of the various types of features or defects that occur. In some embodiments, the aforementioned apparatus further includes a computer for comparing two or more images of the photovoltaic module acquired using the aforementioned device, the two or more images including electroluminescence images, photoinduced Choose from a group of illuminating images, optical images, and thermal images.

根據本發明的第三方面,提供了用於檢查光伏模組的方法,前述方法包括以下步驟:對前述光伏模組施加電激勵以從前述光伏模組生成電致發光;用檢測器檢測從前述光伏模組的第一區域發射的電致發光;在施加前述電激勵時沿著前述光伏模組掃描前述第一區域;以及 在沿著前述光伏模組掃描前述第一區域時,從前述檢測器接收從前述光伏模組的至少一部分發射的電致發光的影像。 According to a third aspect of the present invention, there is provided a method for inspecting a photovoltaic module, the method comprising the steps of: applying an electrical excitation to the photovoltaic module to generate electroluminescence from the photovoltaic module; detecting with the detector from the foregoing Electroluminescence emitted by the first region of the photovoltaic module; scanning the first region along the photovoltaic module when the electrical excitation is applied; and detecting from the detector when scanning the first region along the photovoltaic module Receiving an image of the electroluminescence emitted from at least a portion of the aforementioned photovoltaic module.

在某些實施例中,掃描第一區域的步驟包括移動光伏模組。在其它實施例中,掃描第一區域的步驟包括移動檢測器。在其它實施例中,掃描第一區域的步驟包括在檢測器保持靜止時移動與前述檢測器可操作地關聯的光學元件。較佳地,在沿著光伏模組掃描第一區域時,前述第一區域和檢測器之間的光路長度保持基本上恒定。 In some embodiments, the step of scanning the first region comprises moving the photovoltaic module. In other embodiments, the step of scanning the first region includes moving the detector. In other embodiments, the step of scanning the first region includes moving the optical element operatively associated with the aforementioned detector while the detector remains stationary. Preferably, the optical path length between the aforementioned first region and the detector remains substantially constant as the first region is scanned along the photovoltaic module.

在較佳實施例中,前述方法還包括以下步驟:在沿著光伏模組掃描第一區域時,監測在第一區域附近的光伏模組的溫度;以及對由檢測器檢測到的電致發光訊號進行溫度校正。 In a preferred embodiment, the method further includes the steps of: monitoring the temperature of the photovoltaic module in the vicinity of the first region while scanning the first region along the photovoltaic module; and detecting the electroluminescence detected by the detector The signal is temperature corrected.

較佳地,前述方法還包括以下步驟:用適合於從前述光伏模組生成光致發光的光照射前述光伏模組的第二區域;以及在沿著前述光伏模組掃描前述第二區域時,獲取從前述光伏模組的至少一部分發射的光致發光的影像。 Preferably, the method further includes the steps of: illuminating the second region of the photovoltaic module with light suitable for generating photoluminescence from the photovoltaic module; and scanning the second region along the photovoltaic module. Obtaining a photoluminescence image emitted from at least a portion of the aforementioned photovoltaic module.

在某些實施例中,前述方法還包括從光伏模組獲取I-V測試資料的步驟或者獲取光伏模組的至少一部分的光學影像的步驟或者獲取從光伏模組的至少一部分發射的熱輻射的影像的步驟以作為向前述模組施加電激勵的結果。 In some embodiments, the foregoing method further includes the steps of: acquiring an IV test data from the photovoltaic module or acquiring an optical image of at least a portion of the photovoltaic module or acquiring an image of the thermal radiation emitted from at least a portion of the photovoltaic module; The steps serve as a result of applying electrical excitation to the aforementioned module.

在較佳實施例中,前述方法還包括以下步驟:處理從光伏模組獲取的一個或複數個電致發光影像及/或光致發 光影像以分類或區分不同類型的特徵或缺陷、或生成一個或複數個重疊影像以用於突出顯示一種或複數種類型的特徵或缺陷、或計算發生一種或複數種類型的特徵或缺陷的一個或複數個指標、或基於藉由光伏模組中識別的所發生的各種類型的特徵或缺陷而估算的預期性能來對前述光伏模組進行質量分類。在某些實施例中,前述方法還包括以下步驟:比較從光伏模組獲取的兩個或更多個影像,前述影像從包括電致發光影像、光致發光影像、光學影像和熱影像的組中選擇。 In a preferred embodiment, the method further includes the steps of: processing one or more electroluminescent images and/or photoluminescence images acquired from the photovoltaic module to classify or distinguish different types of features or defects, or generate one Or a plurality of overlapping images for highlighting one or more types of features or defects, or for calculating one or more indicators of one or more types of features or defects, or for identifying by a photovoltaic module The expected performance of the various types of features or defects that occur is estimated to classify the aforementioned photovoltaic modules. In some embodiments, the method further includes the step of comparing two or more images acquired from the photovoltaic module from the group comprising electroluminescent images, photoluminescence images, optical images, and thermal images. Choose among.

根據本發明的第四方面,提供了用於檢查光伏模組的方法,前述方法包括以下步驟:用適合於從前述光伏模組生成光致發光的光照射前述光伏模組的第二區域;利用檢測器檢測從前述光伏模組的第一區域發射的光致發光;沿著前述光伏模組掃描前述第一和第二區域;以及在沿著前述光伏模組掃描前述第一區域和第二區域時,從前述檢測器接收從前述光伏模組的至少一部分發射的光致發光的影像。 According to a fourth aspect of the present invention, there is provided a method for inspecting a photovoltaic module, the method comprising the steps of: illuminating a second region of the photovoltaic module with light suitable for generating photoluminescence from the photovoltaic module; utilizing Detecting, by the detector, photoluminescence emitted from a first region of the photovoltaic module; scanning the first and second regions along the photovoltaic module; and scanning the first region and the second region along the photovoltaic module A photoluminescence image emitted from at least a portion of the photovoltaic module is received from the detector.

較佳地,前述第一區域和第二區域至少部分重疊。 Preferably, the aforementioned first area and second area at least partially overlap.

在某些實施例中,掃描第一區域和第二區域的步驟包括移動光伏模組。在其它實施例中,掃描第一區域和第二區域的步驟包括移動檢測器及/或光源。在其它實施例中,掃描第一和第二區域的步驟包括在檢測器保持靜止時移動 與前述檢測器可操作地關聯的光學元件。較佳地,在沿著光伏模組掃描第一區域和第二區域時,前述第一區域和檢測器之間的光路長度保持基本上恒定。 In some embodiments, the step of scanning the first region and the second region comprises moving the photovoltaic module. In other embodiments, the step of scanning the first region and the second region includes moving the detector and/or the light source. In other embodiments, the step of scanning the first and second regions includes moving the optical element operatively associated with the aforementioned detector while the detector remains stationary. Preferably, the optical path length between the aforementioned first region and the detector remains substantially constant as the first region and the second region are scanned along the photovoltaic module.

在某些實施例中,前述方法還包括獲取從光伏模組的至少一部分發射的電致發光的影像以作為向前述光伏模組施加電激勵的結果的步驟,或者從光伏模組獲取I-V測試資料的步驟或者獲取光伏模組的至少一部分的光學影像的步驟或者獲取從光伏模組的至少一部分發射的熱輻射的影像的步驟以作為向光伏模組施加電激勵的結果。 In some embodiments, the method further includes the step of acquiring an image of the electroluminescence emitted from at least a portion of the photovoltaic module as a result of applying electrical excitation to the photovoltaic module, or obtaining an IV test data from the photovoltaic module. The step of either obtaining an optical image of at least a portion of the photovoltaic module or obtaining an image of thermal radiation emitted from at least a portion of the photovoltaic module as a result of applying electrical excitation to the photovoltaic module.

較佳地,前述方法還包括以下步驟:處理從光伏模組獲取的一個或複數個光致發光影像及/或電致發光影像以分類或區分不同類型的特徵或缺陷、或生成一個或複數個重疊影像以用於突出顯示一種或複數種類型的特徵或缺陷、或計算發生一種或複數種類型的特徵或缺陷的一個或複數個指標、或基於藉由光伏模組中識別的所發生的各種類型的特徵或缺陷而估算的預期性能來對前述光伏模組進行質量分類。在某些實施例中,前述方法還包括以下步驟:比較從光伏模組獲取的兩個或更多個影像,前述影像從包括電致發光影像、光致發光影像、光學影像和熱影像的組中選擇。 Preferably, the foregoing method further comprises the steps of: processing one or more photoluminescence images and/or electroluminescence images acquired from the photovoltaic module to classify or distinguish different types of features or defects, or generate one or more Overlapping images for highlighting one or more types of features or defects, or calculating one or more indicators of one or more types of features or defects, or based on various occurrences identified by photovoltaic modules The expected performance of the type of feature or defect is estimated to classify the aforementioned photovoltaic modules. In some embodiments, the method further includes the step of comparing two or more images acquired from the photovoltaic module from the group comprising electroluminescent images, photoluminescence images, optical images, and thermal images. Choose among.

根據本發明的第五方面,提供了能夠隨時間推移確定光伏模組的狀況的系統,前述系統包括:一個或複數個處理器;以及記憶體,其儲存包括指令的電腦可執行程式代碼, 前述指令在由前述一個或複數個處理器執行時將前述一個或複數個處理器配置成:接收由檢查設備在第一時間點生成的模組資料,其中前述檢查設備被配置成生成前述光伏模組的模組資料;接收與前述模組資料相關聯的一個或複數個元資料項,前述一個或複數個元資料項包括關於前述模組資料或前述光伏模組中的至少一者的資訊;將前述模組資料和前述一個或複數個元資料項儲存在網路可訪問的儲存裝置中;至少部分地基於前述模組資料和前述一個或複數個元資料項來確定前述光伏模組的狀況。 According to a fifth aspect of the present invention, there is provided a system capable of determining a condition of a photovoltaic module over time, the system comprising: one or a plurality of processors; and a memory storing computer executable program code including instructions, The instructions, when executed by the one or more processors, configure the one or more processors to: receive module data generated by the inspection device at a first point in time, wherein the inspection device is configured to generate the aforementioned photovoltaic module Module data; receiving one or more metadata items associated with the module data, the one or more metadata items including information about the module data or at least one of the foregoing photovoltaic modules; The foregoing module data and the one or more metadata items are stored in a network accessible storage device; and the status of the photovoltaic module is determined based at least in part on the module data and the one or more metadata items.

前述模組資料較佳地包括電致發光影像、光致發光影像、光學影像、熱影像和I-V測試資料中的一者或多者。 The aforementioned module data preferably includes one or more of an electroluminescence image, a photoluminescence image, an optical image, a thermal image, and an I-V test data.

在較佳實施例中,檢查設備包括:檢測器,其用於檢測從光伏模組發射的光致發光和從前述光伏模組發射的電致發光中的至少一者;掃描機構,其用於在檢測期間掃描光伏模組的區域;以及計算裝置,其由可執行指令編程以從前述檢測器接收光伏模組的至少一部分的光致發光影像和電致發光影像中的至少一者以作為模組資料。 In a preferred embodiment, the inspection apparatus includes: a detector for detecting at least one of photoluminescence emitted from the photovoltaic module and electroluminescence emitted from the photovoltaic module; a scanning mechanism for Scanning an area of the photovoltaic module during the inspection; and computing means programmed by the executable instructions to receive at least one of the photoluminescence image and the electroluminescence image of at least a portion of the photovoltaic module from the detector as a mode Group information.

較佳地,前述一個或複數個處理器還被配置成:接收由檢查設備或不同的檢查設備在第二時間點生成 的附加模組資料;以及至少部分地基於將來自第一時間點的模組資料與附加模組資料進行比較來確定光伏模組在第二時間點的狀況。 Preferably, the one or more processors are further configured to: receive additional module data generated by the inspection device or different inspection devices at a second point in time; and based at least in part on the mode to be from the first point in time The group data is compared with the additional module data to determine the status of the photovoltaic module at the second time point.

在較佳實施例中,前述一個或複數個處理器還被配置成藉由將前述模組資料與在較早時間前述光伏模組生成的在前模組資料進行比較來確定前述光伏模組的狀況。較佳地,前述一個或複數個處理器還被配置成基於前述狀況來確定以下中的至少一者:光伏模組的等級;光伏模組是否有故障;光伏模組是否有可能發生故障;以及光伏模組中的故障的原因。 In a preferred embodiment, the one or more processors are further configured to determine the photovoltaic module by comparing the module data with the previous module data generated by the photovoltaic module at an earlier time. situation. Preferably, the one or more processors are further configured to determine at least one of the following based on the foregoing conditions: a level of the photovoltaic module; whether the photovoltaic module is faulty; and whether the photovoltaic module is likely to fail; The cause of the failure in the photovoltaic module.

較佳地,前述一個或複數個處理器還被配置成基於前述狀況向與前述光伏模組的製造、運輸、安裝、操作或檢查相關聯的至少一個實體的計算裝置發送通訊資訊,前述通訊資訊指示所確定的狀況。在較佳實施例中,前述一個或複數個處理器還被配置成向感興趣方的計算裝置發送以下中的至少一者:所確定的關於光伏模組的模組資料、在前模組資料或分析資料,以及針對複數個光伏模組接收到的累計模組資料。 Preferably, the one or more processors are further configured to transmit communication information to the computing device of at least one entity associated with the manufacture, transportation, installation, operation or inspection of the aforementioned photovoltaic module based on the foregoing conditions, the communication information Indicates the status determined. In a preferred embodiment, the one or more processors are further configured to transmit to the computing device of the interested party at least one of the following: the determined module data about the photovoltaic module, the previous module data. Or analysis data, and cumulative module data received for multiple PV modules.

根據本發明的第六方面,提供了能夠隨時間推移確定光伏模組的狀況的方法,前述方法包括:藉由一個或複數個處理器接收由檢查設備在第一時間點生成的模組資料,其中前述檢查設備被配置成生成前述光伏模組的模組資料; 藉由一個或複數個處理器接收與前述模組資料相關聯的一個或複數個元資料項,前述一個或複數個元資料項包括關於前述模組資料和前述光伏模組中的至少一者的資訊;藉由一個或複數個處理器將前述模組資料和前述一個或複數個元資料項儲存在網路可訪問的儲存裝置中;至少部分地基於前述模組資料和前述一個或複數個元資料項藉由一個或複數個處理器來確定前述光伏模組的狀況。 According to a sixth aspect of the present invention, there is provided a method for determining a condition of a photovoltaic module over time, the method comprising: receiving, by one or more processors, module data generated by the inspection device at a first time point, The foregoing inspection device is configured to generate module data of the foregoing photovoltaic module; and receive one or more metadata items associated with the module data by one or more processors, the one or more metadata items Include information about at least one of the foregoing module data and the aforementioned photovoltaic module; storing the module data and the one or more metadata items in a network accessible storage device by one or more processors Determining the condition of the aforementioned photovoltaic module by one or more processors based at least in part on the aforementioned module data and the aforementioned one or more metadata items.

前述模組資料較佳地包括電致發光影像、光致發光影像、光學影像、熱影像和I-V測試資料中的一者或多者。 The aforementioned module data preferably includes one or more of an electroluminescence image, a photoluminescence image, an optical image, a thermal image, and an I-V test data.

在較佳實施例中,檢查設備包括:檢測器,其用於檢測從光伏模組發射的光致發光或從前述光伏模組發射的電致發光中的至少一者;掃描機構,其用於在檢測期間掃描光伏模組的區域;以及計算裝置,其由可執行指令編程以從前述檢測器接收光伏模組的至少一部分的光致發光影像或電致發光影像中的至少一者以作為模組資料。 In a preferred embodiment, the inspection apparatus includes: a detector for detecting at least one of photoluminescence emitted from the photovoltaic module or electroluminescence emitted from the photovoltaic module; a scanning mechanism for Scanning an area of the photovoltaic module during the inspection; and computing means programmed by the executable instructions to receive at least one of the photoluminescence image or the electroluminescence image of at least a portion of the photovoltaic module from the detector as a mode Group information.

較佳地,前述方法還包括以下步驟:接收由檢查設備或不同的檢查設備在第二時間點生成的附加模組資料;以及至少部分地基於將來自第一時間點的模組資料與附加模組資料進行比較來確定光伏模組在第二時間點的狀況。 Preferably, the foregoing method further comprises the steps of: receiving additional module data generated by the inspection device or different inspection devices at a second point in time; and based at least in part on the module data and the additional mode to be from the first time point The group data are compared to determine the status of the PV module at the second time point.

較佳地,確定光伏模組的狀況包括將模組資料與在較早時間前述光伏模組生成的在前模組資料進行比較。在較佳實施例中,前述方法還包括基於前述狀況來確定以下中的至少一者的步驟:光伏模組的等級;光伏模組是否有故障;光伏模組是否有可能發生故障;以及光伏模組中的故障的原因。 Preferably, determining the condition of the photovoltaic module comprises comparing the module data with the previous module data generated by the aforementioned photovoltaic module at an earlier time. In a preferred embodiment, the method further includes the step of determining at least one of the following: a level of the photovoltaic module; a failure of the photovoltaic module; a failure of the photovoltaic module; and a photovoltaic module The cause of the failure in the group.

在某些實施例中,前述方法還包括基於前述狀況向與前述光伏模組的製造、運輸、安裝、操作或檢查相關聯的至少一個實體的計算裝置發送通訊資訊,前述通訊資訊指示所確定的狀況。在某些實施例中,前述方法還包括向感興趣方的計算裝置發送以下中的至少一者的步驟:所確定的關於光伏模組的模組資料、在前模組資料或分析資料,以及針對複數個光伏模組接收到的累計模組資料。 In some embodiments, the method further includes transmitting communication information to the computing device of the at least one entity associated with the manufacture, transportation, installation, operation, or inspection of the aforementioned photovoltaic module based on the foregoing conditions, the communication information indicating the determined situation. In some embodiments, the method further includes the step of transmitting to the computing device of the interested party at least one of: the determined module data about the photovoltaic module, the previous module data or the analysis data, and Accumulated module data received by a plurality of photovoltaic modules.

100‧‧‧模組 100‧‧‧ modules

102、202‧‧‧電池 102, 202‧‧‧Battery

104‧‧‧組列 104‧‧‧Group

106‧‧‧電觸點 106‧‧‧Electrical contacts

108‧‧‧旁路二極管 108‧‧‧Bypass diode

110‧‧‧寬度 110‧‧‧Width

112‧‧‧長度(全長) 112‧‧‧ Length (full length)

200‧‧‧薄膜模組 200‧‧‧film module

204‧‧‧基板 204‧‧‧Substrate

300‧‧‧系統 300‧‧‧ system

302‧‧‧電源 302‧‧‧Power supply

304、502、502A、522、528、704‧‧‧照相機 304, 502, 502A, 522, 528, 704‧‧‧ camera

306‧‧‧電致發光(EL) 306‧‧‧Electroluminescence (EL)

308‧‧‧記憶體 308‧‧‧ memory

310‧‧‧外殼 310‧‧‧ Shell

312‧‧‧工作距離 312‧‧‧Working distance

500、600、700、800、900‧‧‧設備 500, 600, 700, 800, 900‧‧‧ equipment

504、804‧‧‧發光 504, 804‧‧ ‧ luminous

506‧‧‧第一區域 506‧‧‧First area

508‧‧‧掃描機構 508‧‧‧ scanning agency

510‧‧‧計算裝置 510‧‧‧ computing device

512‧‧‧終端 512‧‧‧ Terminal

514、520‧‧‧光源 514, 520‧‧‧ light source

516‧‧‧第二區域 516‧‧‧Second area

518‧‧‧軟刷 518‧‧‧Soft brush

524‧‧‧光 524‧‧‧Light

526‧‧‧溫度感應器 526‧‧‧temperature sensor

602‧‧‧成像感應器 602‧‧‧ imaging sensor

604‧‧‧PL行掃描頭 604‧‧‧PL line scan head

606‧‧‧輸出窗口 606‧‧‧ Output window

608‧‧‧微棒形透鏡陣列 608‧‧‧Micro Bar Lens Array

610‧‧‧微型光學陣列 610‧‧‧Micro Optical Array

702、702-A‧‧‧箭頭 702, 702-A‧‧‧ arrows

706‧‧‧中紅外輻射 706‧‧‧ Mid-infrared radiation

708‧‧‧組件 708‧‧‧ components

802‧‧‧光學元件 802‧‧‧ optical components

806‧‧‧轉向鏡 806‧‧‧ turning mirror

902‧‧‧靜止位置 902‧‧‧still position

904‧‧‧太陽光模擬器 904‧‧‧Sunlight Simulator

906‧‧‧電源和控制器 906‧‧‧Power and controller

908‧‧‧功率監測單元 908‧‧‧Power Monitoring Unit

1000、1002、1100、1102、1112、1114‧‧‧影像 1000, 1002, 1100, 1102, 1112, 1114‧‧ images

1004、1206、1404‧‧‧網路 1004, 1206, 1404‧‧‧ network

1006‧‧‧條紋 1006‧‧‧ stripes

1008‧‧‧匯流條 1008‧‧‧ bus bar

1104‧‧‧位錯簇 1104‧‧‧Dislocation cluster

1106‧‧‧暗紋 1106‧‧‧Dark lines

1108‧‧‧電池片段 1108‧‧‧Battery clip

1110‧‧‧裂紋 1110‧‧‧ crack

1116‧‧‧金屬接觸指狀物 1116‧‧‧Metal contact fingers

1118‧‧‧晶粒結構 1118‧‧‧ grain structure

1200‧‧‧系統 1200‧‧‧ system

1202、1444‧‧‧儲存裝置 1202, 1444‧‧‧ storage devices

1204‧‧‧實體 1204‧‧‧ entity

1208‧‧‧感興趣方 1208‧‧‧ interested parties

1210‧‧‧製造商 1210‧‧‧Manufacturer

1212‧‧‧運輸商 1212‧‧‧Transporter

1214‧‧‧安裝人員 1214‧‧‧Installers

1216‧‧‧模組經營者 1216‧‧‧Modular operators

1218‧‧‧模組解剖實驗室 1218‧‧‧Modular Anatomy Laboratory

1220‧‧‧太陽能金融實體 1220‧‧‧Solar financial entity

1222‧‧‧太陽能保險實體 1222‧‧‧ solar insurance entity

1224‧‧‧項目業主 1224‧‧‧Project owner

1226‧‧‧太陽能市場報告團體 1226‧‧‧Solar Market Reporting Group

1228‧‧‧質量保證機構 1228‧‧‧Quality Assurance Agency

1300‧‧‧服務提供商 1300‧‧‧Service Provider

1302‧‧‧箭頭 1302‧‧‧ arrow

1304‧‧‧上傳 1304‧‧‧ Upload

1306‧‧‧儲存 1306‧‧‧Storage

1310‧‧‧收取費用 1310‧‧‧ charges

1312‧‧‧檢索 1312‧‧ Search

1314‧‧‧提供 Provided by 1314‧‧

1400‧‧‧架構 1400‧‧‧ architecture

1402‧‧‧服務計算裝置 1402‧‧‧Service Computing Unit

1406‧‧‧客戶端計算裝置 1406‧‧‧Client computing device

1408‧‧‧模組資料 1408‧‧‧Modular data

1410‧‧‧控制程式 1410‧‧‧Control program

1412、1420、1432、1450、1462‧‧‧電腦可讀介質 1412, 1420, 1432, 1450, 1462‧‧‧ computer readable media

1414、1422、1434、1448、1460‧‧‧處理器 1414, 1422, 1434, 1448, 1460‧‧ ‧ processors

1416、1424、1436、1452、1464‧‧‧通訊接口 1416, 1424, 1436, 1452, 1464‧‧‧ communication interface

1418‧‧‧客戶端應用 1418‧‧‧ client application

1426‧‧‧服務程式 1426‧‧‧Service Program

1428‧‧‧分析程式 1428‧‧‧Analytical program

1438‧‧‧分析資料 1438‧‧‧Analytical data

1440‧‧‧影像資料 1440‧‧‧Image data

1442‧‧‧元資料 1442‧‧‧ metadata

1446‧‧‧儲存控制器 1446‧‧‧Storage Controller

1454‧‧‧儲存管理程式 1454‧‧‧Storage management program

1458‧‧‧計算裝置 1458‧‧‧ Computing device

1466‧‧‧感興趣方應用 1466‧‧‧ interested parties application

1500、1600、1700、1800、1900‧‧‧過程 1500, 1600, 1700, 1800, 1900 ‧ ‧ process

1502~1512、1602~1608、1702~1708‧‧‧步驟 1502~1512, 1602~1608, 1702~1708‧‧‧ steps

1802~1808、1902~1904‧‧‧步驟 1802~1808, 1902~1904‧‧‧ steps

結合圖式,從示例性實施例和所附申請專利範圍的後續描述中,本發明的益處和優點對於本發明所屬領域的技術人員來說應變得顯而易見。在圖式中,在不同圖式中使用相同的元件符號表示相似或相同的項目或特徵。 The benefits and advantages of the present invention will become apparent to those skilled in the art from this invention. In the drawings, the same reference numerals are used to refer to the

圖1以示意性平面圖示出基於矽電池的模組。 Figure 1 shows a battery based module in a schematic plan view.

圖2以示意性平面圖示出薄膜模組。 Figure 2 shows a film module in a schematic plan view.

圖3以示意性側視圖示出用於獲取模組的EL影像的常規設備。 Figure 3 shows, in a schematic side view, a conventional apparatus for acquiring an EL image of a module.

圖4示出用圖3所示類型的設備獲取的基於矽電池的 模組的EL影像。 Figure 4 shows an EL image of a helium-based battery module taken with a device of the type shown in Figure 3.

圖5A、圖5B和圖5C分別示出根據本發明實施例的用於檢查模組的設備的示意性平面圖、示意性側視圖和3D影像。 5A, 5B, and 5C respectively show a schematic plan view, a schematic side view, and a 3D image of an apparatus for inspecting a module according to an embodiment of the present invention.

圖5D以示意性側視圖示出圖5A至圖5C所示的設備的變型。 Figure 5D shows a variation of the apparatus shown in Figures 5A through 5C in a schematic side view.

圖6A和圖6B以示意平面圖和側視圖示出了根據本發明另一實施例的用於檢查模組的設備。 6A and 6B show, in a schematic plan view and a side view, an apparatus for inspecting a module in accordance with another embodiment of the present invention.

圖6C以示意性側視圖示出了緊湊的PL行掃描頭。 Figure 6C shows a compact PL line scan head in a schematic side view.

圖7A以示意側視圖示出根據本發明另一實施例的用於檢查模組的設備。 Figure 7A shows, in a schematic side view, an apparatus for inspecting a module in accordance with another embodiment of the present invention.

圖7B以示意性側視圖示出圖7A所示的設備的變型。 Figure 7B shows a variation of the apparatus shown in Figure 7A in a schematic side view.

圖8A以示意側視圖示出根據本發明另一實施例的用於檢查模組的設備。 Figure 8A shows, in a schematic side view, an apparatus for inspecting a module in accordance with another embodiment of the present invention.

圖8B以示意性側視圖示出圖8A所示的設備的變型。 Figure 8B shows a variation of the apparatus shown in Figure 8A in a schematic side view.

圖9以示意性側視圖示出根據本發明的又一實施例的用於檢查模組的設備。 Figure 9 shows, in a schematic side view, an apparatus for inspecting a module in accordance with yet another embodiment of the present invention.

圖10A示出包含多晶矽電池的模組的行掃描PL影像。 Figure 10A shows a line scan PL image of a module comprising a polycrystalline germanium battery.

圖10B示出從圖10A的影像提取的單個電池的影像。 FIG. 10B shows an image of a single battery extracted from the image of FIG. 10A.

圖11A示出從完整模組的行掃描EL影像提取的多晶矽電池的影像。 Figure 11A shows an image of a polycrystalline silicon battery extracted from a line scan EL image of a complete module.

圖11B示出從完整模組的行掃描PL影像提取的與圖11A中的電池相同的電池的影像。 FIG. 11B shows an image of the same battery as that of the battery of FIG. 11A extracted from the line scan PL image of the complete module.

圖11C和圖11D分別示出模組中四個矽電池的角落區 域的行掃描EL和行掃描PL影像。 11C and 11D respectively show the line scan EL and the line scan PL image of the corner areas of the four xenon cells in the module.

圖12示出用於確定光伏模組的例如在其整個使用壽命期間的狀態的系統的高級示例。 Figure 12 shows a high level example of a system for determining the state of a photovoltaic module, for example, throughout its useful life.

圖13示出用於圖12的系統的操作的基於雲的軟件即服務(SaaS)模型。 Figure 13 illustrates a cloud-based software as a service (SaaS) model for the operation of the system of Figure 12.

圖14示出根據一些實施方式的圖12的系統的示例性物理和邏輯架構。 FIG. 14 illustrates an exemplary physical and logical architecture of the system of FIG. 12, in accordance with some embodiments.

圖15為示出根據一些實施方式的用於隨時間推移確定模組的狀況的示例過程的流程圖。 15 is a flow chart showing an example process for determining the condition of a module over time, in accordance with some embodiments.

圖16、圖17、圖18和圖19為示出根據一些實施方式的用於生成模組資料的示例過程的流程圖。 16, 17, 18, and 19 are flow diagrams illustrating example processes for generating module material, in accordance with some embodiments.

現在將參考圖式僅以舉例的方式描述本發明的較佳實施例。 Preferred embodiments of the present invention will now be described, by way of example only, with reference to the drawings.

用於模組檢查的發光成像設備 Illumination imaging device for module inspection

圖5A和圖5B以示意性平面圖和側視圖示出根據本發明實施例的用於檢查或確定包括具有六十個矽電池102的二維陣列的模組100的狀況的設備500。在圖5C中示出設備500的3D影像。設備500包括:電源302,其用於經由電觸點106向模組100施加電激勵以從模組生成電致發光306;線性照相機或時延積分(Time Delay and Integration;TDI)照相機形式的檢測器502,其用於檢測從模組的第一區域506發射的EL;掃描機構508,如傳送帶、滾輪或空氣軸承,其用於移動模組100使得沿著模組掃描第一區域 506;以及適當編程的計算裝置510,其用於與掃描同步地逐行讀出照相機502,以獲得從模組的至少一部分發射的EL的影像。較佳地,如圖所示,第一區域506橫跨模組的寬度110延伸,並且沿著模組的全長112被掃描,使得模組100的整個前表面被成像。通常,由電激勵生成的電致發光306將主要是來自電池102的帶到帶EL,但是不應該排除從模組的其它部件生成EL的可能性。用於檢測來自矽電池的帶到帶發光的合適照相機包括矽和InGaAs照相機。圖5C還示出用於經營者的對設備500的控制或用於向經營者呈現所獲取的影像的終端512。應理解,圖5A至圖5C所示的行掃描EL成像設備500可以比如圖3所示的先前技術的區域成像EL設備(系統300)更緊湊。儘管所生成的EL 306最好用如圖所示的線性照相機或TDI照相機502那樣的多像素檢測器來檢測,但是也可以用被配置成在與移動模組100的方向垂直的方向來回移動的單元件檢測器進行檢測。 5A and 5B show, in a schematic plan view and a side view, an apparatus 500 for inspecting or determining a condition of a module 100 including a two-dimensional array of sixty neon cells 102, in accordance with an embodiment of the present invention. A 3D image of device 500 is shown in Figure 5C. Apparatus 500 includes a power source 302 for applying electrical excitation to module 100 via electrical contacts 106 to generate electroluminescence 306 from the module; linear camera or Time Delay and Integration (TDI) camera detection 502 for detecting EL emitted from the first region 506 of the module; a scanning mechanism 508, such as a conveyor belt, roller or air bearing, for moving the module 100 such that the first region 506 is scanned along the module; A suitably programmed computing device 510 is used to read the camera 502 line by line in synchronization with the scan to obtain an image of the EL emitted from at least a portion of the module. Preferably, as shown, the first region 506 extends across the width 110 of the module and is scanned along the full length 112 of the module such that the entire front surface of the module 100 is imaged. In general, the electroluminescence 306 generated by electrical excitation will be primarily from the belt to the strip EL of the battery 102, but the possibility of generating EL from other components of the module should not be excluded. Suitable cameras for detecting belt-to-band illumination from neodymium batteries include neodymium and InGaAs cameras. Figure 5C also shows the terminal 512 for the operator's control of the device 500 or for presenting the acquired image to the operator. It should be understood that the line scanning EL imaging apparatus 500 illustrated in FIGS. 5A through 5C may be more compact, such as the prior art area imaging EL apparatus (system 300) illustrated in FIG. Although the generated EL 306 is preferably detected by a multi-pixel detector such as a linear camera or TDI camera 502 as shown, it may be configured to move back and forth in a direction perpendicular to the direction of the mobile module 100. A single component detector performs the test.

藉由向電觸點106(端子)施加相對適中的正向偏壓(典型地稍微高於開路電壓(Voc)),可以從模組100的矽電池102生成標準帶到帶EL。例如,約40V至50V的正向偏壓通常足以用於從具有六十個矽電池102每個矽電池102具有約0.63V的Voc的模組生成EL。還有可能向模組施加反向偏壓,因為已知在大的反向偏壓下矽電池顯示擊穿行為,其表現為來自有源電池區域的發光,從而潛在地提供模組上的附加資訊。然而,所需的電壓顯著高於正向偏壓 的EL,典型地為至少5V至10V並且每個電池高達15V以上,即對於六十個電池模組而言為幾百至超過1000V,這可能引起安全問題。這與實際造成電池損傷的大的反向偏壓的可能性一起可限制反向偏壓EL以在模組解剖實驗室中使用,除非被檢查的模組包含更少的電池。為了施加足夠大的反向偏壓以用於生成擊穿行為,通常有必要斷開或以其它方式禁用受檢模組100的任何旁路二極管108。這應該是可能的,因為旁路二極管通常位於接線盒中,但是進一步建議基於反向偏壓EL成像的測試將被保留以用於如模組解剖之類的特殊情況,而不是用於模組的質量檢測。 A standard strip to strip EL can be generated from the tantalum cell 102 of the module 100 by applying a relatively moderate forward bias (typically slightly above the open circuit voltage (Voc)) to the electrical contact 106 (terminal). For example, a forward bias of about 40V to 50V is typically sufficient for generating an EL from a module having sixty neon cells 102 each having a Voc of about 0.63V. It is also possible to apply a reverse bias to the module because it is known that under a large reverse bias, the battery exhibits a breakdown behavior that manifests itself as illumination from the active battery area, potentially providing additional on the module. News. However, the required voltage is significantly higher than the forward biased EL, typically at least 5V to 10V and up to 15V per battery, ie hundreds to over 1000V for sixty battery modules, which may Causes security issues. This, along with the possibility of a large reverse bias that actually causes battery damage, can limit the reverse bias EL for use in a modular anatomy lab unless the module being inspected contains fewer batteries. In order to apply a sufficiently large reverse bias for generating a breakdown behavior, it is often necessary to disconnect or otherwise disable any of the bypass diodes 108 of the module under test 100. This should be possible because the bypass diodes are usually located in the junction box, but it is further recommended that tests based on reverse bias EL imaging be retained for special cases such as module anatomy, rather than for modules. Quality inspection.

在較佳實施例中,前述設備還包括光源514,其用於利用適合於從電池102以及可能還從模組的其它部件(如背板聚合物)生成PL的光照射模組100的第二區域516。對於矽電池,光源514例如可以包括雷射光二極管陣列或LED陣列,其發射紅光或在例如600nm至980nm的範圍內的近紅外區域中發光。光源514和照相機502被配置成使得照相機獲取從模組100的至少一部分發出的PL的影像,因為掃描機構508沿著模組掃描第二區域516和第一區域506。較佳地,如圖所示,第二區域516橫跨模組的寬度110延伸,並且沿著模組的全長112被掃描,使得模組100的整個前表面被成像。如下面進一步論述的,如圖5A所示,光源和照相機較佳地被配置成使得在使用中,第一區域506和第二區域516至少部分重疊,儘管如果足夠比例的光生電荷載流子能夠移出光照區域516,但這是不 重要的。設備500中還可以包括另外的光學器件,如用於將來自光源514的光聚焦到第二區域516上的棒形透鏡,在光源514前方以防止長波長尾部輻射達到照相機502的短通濾波器和照相機502前面的阻擋雜散激勵光的長通濾波器。一個或複數個可互換的濾光器可以設置在光源514及/或照相機502的前面,以用於選擇性地激勵及/或檢測一方面來自電池102的基體材料或者另一方面來自模組中的一些其它材料(如背板聚合物)的PL。另選地,設備500可以包含具有不同激勵或檢測帶的附加光源或檢測器,其用於激勵或檢測來自模組的各個部件的PL。 In a preferred embodiment, the apparatus further includes a light source 514 for utilizing a second of the light illumination module 100 adapted to generate a PL from the battery 102 and possibly also from other components of the module, such as a backplane polymer. Area 516. For neon cells, light source 514 may, for example, comprise a laser photodiode array or an array of LEDs that emit red light or emit light in a near infrared region, for example, in the range of 600 nm to 980 nm. Light source 514 and camera 502 are configured such that the camera acquires an image of the PL emitted from at least a portion of module 100 because scanning mechanism 508 scans second region 516 and first region 506 along the module. Preferably, as shown, the second region 516 extends across the width 110 of the module and is scanned along the full length 112 of the module such that the entire front surface of the module 100 is imaged. As further discussed below, as shown in Figure 5A, the light source and camera are preferably configured such that, in use, the first region 506 and the second region 516 at least partially overlap, although if a sufficient proportion of the photogenerated charge carriers are capable of The illumination area 516 is removed, but this is not important. Additional optics may also be included in device 500, such as a rod lens for focusing light from source 514 onto second region 516, a short pass filter in front of source 514 to prevent long wavelength tail radiation from reaching camera 502. And a long pass filter in front of the camera 502 that blocks stray excitation light. One or more interchangeable filters may be disposed in front of the light source 514 and/or the camera 502 for selectively energizing and/or detecting the substrate material from the battery 102 on the one hand or from the module on the other hand. The PL of some other materials (such as backsheet polymers). Alternatively, device 500 can include additional light sources or detectors with different excitation or detection bands for energizing or detecting PL from various components of the module.

如圖5A和圖5B所示,在某些實施例中,使用單個照相機502來檢測所生成的PL或EL,在這種情況下,模組100可以兩次穿過設備500,例如向前然後向後以順序獲取PL和EL影像。模組也可以不止一次穿過設備以獲取兩個或更多個PL影像,例如,其中使用不同的光照強度、光照波長或檢測波長或者兩個或更多個EL影像生成PL,例如藉由施加不同的電壓。圖5D以示意性側視圖示出設備500包含用於檢測由電源302生成的EL的第一照相機502A和用於檢測由光源514生成的PL 504的第二照相機502的變型。如圖所示,兩個照相機可以由相同的計算裝置510讀取,或者藉由單獨的計算裝置讀取。具有兩個照相機能夠獲取單獨的PL和EL影像,而不必使模組穿過設備兩次或者顛倒掃描機構508的方向。較佳地,如果掃描平行於模組長度112或者模組寬度,則兩個照相機502、 502A在掃描方向上分開等於或大於模組長度112或者模組寬度的距離,使得光激勵和電激勵可以隔離各自施加。例如,一旦模組100已經藉由光源514的光照區域,則僅電源302將被激活。 As shown in Figures 5A and 5B, in some embodiments, a single camera 502 is used to detect the generated PL or EL, in which case the module 100 can pass through the device 500 twice, for example, forward and then The PL and EL images are acquired in order in the backward direction. The module may also pass through the device more than once to acquire two or more PL images, for example, where different illumination intensities, illumination wavelengths or detection wavelengths or two or more EL images are used to generate the PL, for example by application Different voltages. FIG. 5D shows in a schematic side view a variation of apparatus 500 comprising a first camera 502A for detecting EL generated by power source 302 and a second camera 502 for detecting PL 504 generated by light source 514. As shown, the two cameras can be read by the same computing device 510 or by a separate computing device. Having two cameras is capable of acquiring separate PL and EL images without having to pass the module through the device twice or reverse the direction of the scanning mechanism 508. Preferably, if the scan is parallel to the module length 112 or the module width, the two cameras 502, 502A are separated in the scanning direction by a distance equal to or greater than the module length 112 or the module width, so that the light excitation and the electrical excitation can be Isolation is applied separately. For example, once the module 100 has been illuminated by the light source 514, only the power source 302 will be activated.

在較佳實施例中,照相機502和光源514安裝在如圖5A和圖5B所示的基本上防光的外殼310內,以將環境光保持在照相機外面或照相機包含激勵光524。如圖5C所示,在某些實施例中,外殼310的底部邊緣具有軟刷518或類似物,例如黑布,以用於改善光密封。在圖5D所示的變型中,可以提供覆蓋照相機502和502A的單個外殼,或者可以為每個照相機提供單獨的外殼。 In the preferred embodiment, camera 502 and light source 514 are mounted within substantially light-proof housing 310 as shown in Figures 5A and 5B to maintain ambient light outside of the camera or camera includes excitation light 524. As shown in Figure 5C, in certain embodiments, the bottom edge of the outer casing 310 has a soft brush 518 or the like, such as a black cloth, for improved light sealing. In the variation shown in Figure 5D, a single housing covering cameras 502 and 502A may be provided, or a separate housing may be provided for each camera.

用於生成電致發光的電源302的電激勵將傾向於加熱電池102,這會影響它們的發光效率。因此,當獲取模組100的行掃描EL影像時,如果在較高溫度下從電池生成稍後在掃描中收集的EL,則可以對前述影像施加溫度梯度效應。此假像可以藉由在一個或複數個溫度感測器526如在外殼310內間隔開的紅外溫度計進行掃描期間監測第一區域506附近的模組100的溫度而得以改善。然後,計算裝置510或另一個計算裝置可以將溫度校正施加於由照相機502檢測到的電致發光訊號,例如,使用電池102的已知發光溫度係數。這種溫度梯度效應不太可能發生在如圖3所示的區域成像EL成像系統中,其中照相機304同時從模組100的所有部分收集EL。當獲取模組的行掃描PL影像時也不太可能發生這種溫度梯度效應,因為來自光源 514的任何局部加熱應該同等地施加於模組正被成像時的每個部分。 The electrical excitation of the power source 302 used to generate electroluminescence will tend to heat the battery 102, which can affect their luminous efficiency. Therefore, when the line scan EL image of the module 100 is acquired, if the EL collected later in the scan is generated from the battery at a higher temperature, a temperature gradient effect can be applied to the aforementioned image. This artifact can be improved by monitoring the temperature of the module 100 near the first region 506 during scanning of one or more temperature sensors 526 such as infrared thermometers spaced within the housing 310. The computing device 510 or another computing device can then apply temperature correction to the electroluminescent signal detected by the camera 502, for example, using the known illumination temperature coefficient of the battery 102. This temperature gradient effect is less likely to occur in the area imaging EL imaging system as shown in FIG. 3, where the camera 304 simultaneously collects EL from all portions of the module 100. This temperature gradient effect is also less likely to occur when acquiring a line scan PL image of a module, as any localized heating from source 514 should be equally applied to each portion of the module as it is being imaged.

可選地,如圖5B中所示,設備500可以包括視覺系統,前述視覺系統包括光源520(如白光LED的線性陣列)以及合適的線性照相機或TDI照相機522,其用於在藉由前述設備被掃描時,獲取模組100的至少一部分的光學(即,反射)影像。照相機522可以由相同的計算裝置510或不同的計算裝置讀出。如下面更詳細解釋的,由該視覺系統獲取的光學影像可以提供關於模組100中的缺陷或其它特徵的進一步資訊。在其它實施例中,用於PL成像的光源514和照相機502可以適合於獲取光學影像,例如藉由用中性密度濾光片降低強度並去除否則會將光照和檢測帶分開的任何截止或帶通濾光片。在另一個變型中,設備500可以包括近紅外透射視覺系統,前述近紅外透射視覺系統在模組100的相對側上具有合適的光源520和線性照相機或TDI照相機528。此透射視覺系統可以用於例如在包含雙面電池並且在兩側具有玻璃的模組中進行微裂紋檢測。 Alternatively, as shown in Figure 5B, device 500 can include a vision system that includes a light source 520 (such as a linear array of white LEDs) and a suitable linear camera or TDI camera 522 for use with the aforementioned device When scanned, an optical (ie, reflected) image of at least a portion of the module 100 is acquired. Camera 522 can be read by the same computing device 510 or a different computing device. As explained in more detail below, the optical image acquired by the vision system can provide further information regarding defects or other features in the module 100. In other embodiments, the light source 514 and camera 502 for PL imaging may be adapted to acquire an optical image, such as by reducing the intensity with a neutral density filter and removing any cut-off or bands that would otherwise separate the illumination from the detection band. Pass filter. In another variation, apparatus 500 can include a near-infrared transmission vision system having a suitable light source 520 and a linear camera or TDI camera 528 on opposite sides of module 100. This transmission vision system can be used, for example, to perform microcrack detection in a module that includes a double-sided battery and has glass on both sides.

藉由光和電激勵的組合可以生成發光。例如,電源302可以被操作以在光源514照射模組100時將電流注入到模組100中。廣義上說,在獲取發光影像期間注入或提取電流促進了電荷載流子的移動,以用於進一步區分載流子壽命缺陷和串聯電阻缺陷。下面在“影像分析”部分論述一些潛在的應用。在替代實施例中,從設備500中省略電源 302,使得僅藉由光激勵生成發光。在此背景下,並且如在公佈的美國專利申請號2015/0168303A1中更詳細解釋的,可以藉由配置設備500來模擬EL影像,使得在使用中,第一區域506,即“成像”條紋和第二區域516,即“發光”條紋不重疊,而是改為彼此移位。在此背景下,從光生電荷載流子中檢測到發光,前述電荷載流子在輻射重新組合之前橫向遷移出“光照”條紋(第二區域516)。一般來說,這種橫向遷移的主要貢獻將在於大部分載流子藉由發射極層和電池102的基極傳送,並且電流流過前表面和後表面金屬化層,以及藉由基體材料擴散的少數載流子也扮演小角色。在某些實施例中,設備500配備有用於改變第一區域506和第二區域516在模組100上重疊的程度的機構。經由光激勵來模擬EL影像而不是簡單地向模組施加電壓的一種情況有利之處在於設備被設計成在模組單次藉由時從前述模組獲取EL和PL影像。由於施加到模組的狹窄區域(第二區域)516的光激勵的影響比施加到電觸點106的電激勵的影響更加局部化,所以兩個光源/照相機單元可以相對靠近地放置在一起,從而產生更緊湊的設備和更快的掃描。相比之下,在圖5D所示的設備500中,“PL”照相機502和“EL”照相機502A應當在掃描方向上分開等於或大於模組尺寸的距離,使得可以在電激勵無助於由“PL”照相機502捕獲的發光504的情況下獲取EL影像。 Luminescence can be generated by a combination of light and electrical excitation. For example, power source 302 can be operated to inject current into module 100 as light source 514 illuminates module 100. Broadly speaking, injecting or extracting current during acquisition of a luminescent image promotes the movement of charge carriers for further differentiation between carrier lifetime defects and series resistance defects. Some potential applications are discussed below in the "Image Analysis" section. In an alternate embodiment, power source 302 is omitted from device 500 such that illumination is only generated by optical excitation. In this context, and as explained in more detail in the published U.S. Patent Application No. 2015/0168303 A1, the EL image can be simulated by configuring the device 500 such that, in use, the first region 506, ie "imaging" stripes and The second regions 516, ie the "lighting" stripes do not overlap, but instead are displaced from each other. In this context, luminescence is detected from the photogenerated charge carriers that laterally migrate out of the "light" fringes (second region 516) before the radiation recombines. In general, the main contribution of this lateral migration will be that most of the carriers are transported through the emitter layer and the base of the cell 102, and current flows through the front and back surface metallization layers, as well as through the diffusion of the matrix material. The minority carriers also play a small role. In some embodiments, device 500 is equipped with a mechanism for varying the extent to which first region 506 and second region 516 overlap on module 100. One advantage of simulating an EL image via light excitation rather than simply applying a voltage to the module is that the device is designed to acquire EL and PL images from the aforementioned modules when the module is single-passed. Since the effect of the light excitation applied to the narrow region (second region) 516 of the module is more localized than the effect of the electrical excitation applied to the electrical contact 106, the two light source/camera units can be placed relatively close together, This results in a more compact device and faster scanning. In contrast, in the apparatus 500 shown in FIG. 5D, the "PL" camera 502 and the "EL" camera 502A should be separated by a distance equal to or larger than the module size in the scanning direction so that the electric excitation can be assisted by The EL image is acquired in the case of the light emission 504 captured by the "PL" camera 502.

獲取的發光影像可以被儲存在計算裝置510上以用於在相同或不同的計算裝置上進行後續處理,或者在監視器 512上顯示以供經營者解釋。如下前述,在較佳實施例中,使用一個或複數個軟件算法來處理發光影像,例如,在呈現給經營者進行解釋或者觸發自動警報或者傳輸到資料庫以供以後查看或者與在不同時間從模組獲取的影像進行比較之前突出顯示各種類型的缺陷或特徵。 The acquired illuminating images can be stored on computing device 510 for subsequent processing on the same or different computing devices or displayed on monitor 512 for interpretation by the operator. As described above, in the preferred embodiment, one or more software algorithms are used to process the illuminating image, for example, presented to the operator for interpretation or triggering an automatic alert or transmitted to a database for later viewing or at a different time. The images acquired by the module are highlighted to highlight various types of defects or features.

如圖5A的平面圖所示,從模組100生成的發光由橫向範圍比模組寬度110短得多的線性照相機或TDI照相機形式的檢測器502進行檢測。容易獲得對於矽帶到帶的發光(silicon band-to-band luminescence)具有更高的靈敏度的具有增強的近紅外響應的行和TDI照相機,並且TDI照相機特別有利之處在於由於藉由複數個像素行的訊號的求和而提供提高的增益。然而,這種配置也具有缺點,如需要數十釐米級的相對較大的工作距離,以及檢測到的來自對應於“成像”條紋(第一區域506)的視場邊緣的強度的轉降。到線性照相機或TDI照相機502的發光的路徑長度可以比圖5B中示意性地示出的發光路徑長度長得多,並且應理解,可以根據需要包括一個或複數個折疊反射鏡以將光路包含在適當尺寸的外殼310內。 As shown in the plan view of FIG. 5A, the illumination generated from the module 100 is detected by a linear camera in the lateral range or a detector 502 in the form of a TDI camera that is much shorter than the module width 110. It is easy to obtain a line with an enhanced near-infrared response and a TDI camera with higher sensitivity for silicon band-to-band luminescence, and the TDI camera is particularly advantageous in that it is due to a plurality of pixels The summation of the lines of signals provides an increased gain. However, this configuration also has disadvantages such as requiring a relatively large working distance of the order of tens of centimeters, and a detected drop in intensity from the edge of the field of view corresponding to the "imaged" fringes (first region 506). The path length of the illumination to the linear camera or TDI camera 502 can be much longer than the length of the illumination path schematically shown in Figure 5B, and it should be understood that one or more folding mirrors can be included as needed to include the optical path in An appropriately sized outer casing 310.

在圖6A和圖6B的示意性平面圖和側視圖中示出的替代設備600中,使用接觸式成像感測器602形式的檢測器檢測發光,以由計算裝置510與掃描同步地讀出,以獲得從模組的至少一部分發出的發光的影像。接觸式成像感測器可以例如包括像素陣列,其具有足夠長以跨越模組100的全寬度110的集成微棒形透鏡陣列。幾乎不限長度的接 觸式成像感測器可以藉由將複數個較短的CMOS感測器芯片對接在一起而構成,如美國專利號8,058,602前述。儘管CMOS感測器芯片通常用於接觸式成像感測器,但是也可以使用其它類型的感測器,例如CCD感測器。在只有EL的配置中,即不具有光源514的情況下,接觸式成像感測器602可以容易地放置在距模組的蓋玻璃近到幾毫米的位置。如果需要稍微大一些的間隔,可以使用附加的或另選的聚焦光學器件,例如,以提供對光源514的光照524的更好接近,以用於從前述模組生成PL。另選地,如圖6C中的示意性側視圖所示,光源514可以與接觸式成像感測器602緊密集成,以提供高度緊湊的PL行掃描頭604,前述PL行掃描頭可以放置在距模組蓋玻璃近到幾毫米的位置。在一個示例中,具有寬度在0.1至幾毫米範圍內的輸出窗口606的光源514可以直接位於接觸式成像感測器602的微棒形透鏡陣列608的鄰近或者在其橫向幾微米內。為了聚焦光源514的輸出,光源514可以具有微型光學陣列610,其例如可以具有與微棒形透鏡陣列608相同的間距。 In an alternative device 600, shown in the schematic plan and side views of Figures 6A and 6B, a detector in the form of a contact imaging sensor 602 is used to detect illumination for readout by the computing device 510 in synchronization with the scan to An image of the illumination emitted from at least a portion of the module is obtained. The contact imaging sensor can, for example, comprise an array of pixels having an integrated microrod lens array that is long enough to span the full width 110 of the module 100. An almost unlimited length of contact imaging sensor can be constructed by docking a plurality of shorter CMOS sensor chips together as described in U.S. Patent No. 8,058,602. Although CMOS sensor chips are commonly used for contact imaging sensors, other types of sensors, such as CCD sensors, can also be used. In an EL-only configuration, i.e., without the light source 514, the contact imaging sensor 602 can be easily placed a few millimeters from the cover glass of the module. If a slightly larger spacing is desired, additional or alternative focusing optics may be used, for example, to provide better access to illumination 524 of light source 514 for generating PL from the aforementioned modules. Alternatively, as shown in the schematic side view in FIG. 6C, the light source 514 can be tightly integrated with the contact imaging sensor 602 to provide a highly compact PL line scan head 604 that can be placed at a distance from the PL line scan head. The module cover glass is close to a few millimeters. In one example, the light source 514 having an output window 606 having a width in the range of 0.1 to a few millimeters can be directly adjacent to or within a few microns of the microrod lens array 608 of the contact imaging sensor 602. To focus the output of the light source 514, the light source 514 can have a miniature optical array 610 that can have, for example, the same pitch as the microrod lens array 608.

不管是配置EL成像還是PL成像,使用接觸式成像感測器602都能夠實現緊湊的模組檢查設備。在適用於包含二維電池陣列的模組的另一變型中,檢測器可以為被設置成用於檢測來自每行電池的發光的單獨的CMOS感測器芯片的形式。商業接觸式成像感測器系統通常被設計成用於在可見光譜區域中操作,並且將僅對矽發光帶的短波長端 敏感。靈敏度的降低可以藉由使用具有平行於掃描方向的長軸的矩形感測器像素陣列來補償,較佳地與具有將光從具有約1:1縱橫比(長寬比)或基本上是圓形的樣本區域聚集到矩形感測器像素上的元件的微光學陣列組合。由於在公佈的PCT專利申請號WO 2011/017776A1中論述的原因,對長波長發光的不敏感實際上可以有利於提高空間分辨率。 Whether configured for EL imaging or PL imaging, the use of contact imaging sensor 602 enables a compact module inspection device. In another variation suitable for use with a module comprising a two-dimensional battery array, the detector may be in the form of a separate CMOS sensor chip that is configured to detect illumination from each row of cells. Commercial contact imaging sensor systems are typically designed to operate in the visible region of the spectrum and will only be sensitive to the short wavelength end of the xenon band. The reduction in sensitivity can be compensated by using a rectangular sensor pixel array having a long axis parallel to the scan direction, preferably with having a light from about 1:1 aspect ratio (aspect ratio) or substantially a circle The shaped sample regions are gathered into a micro-optical array combination of elements on the rectangular sensor pixels. Insensitivity to long wavelength illumination can actually facilitate improved spatial resolution for the reasons discussed in the published PCT patent application no. WO 2011/017776 A1.

用於從模組的表面附近收集發光的許多其它檢測配置也是可能的,例如使用光纖帶或集成光學波導來將發光引導到像素陣列,根據需要逐漸變細以匹配像素陣列的尺寸。 Many other detection configurations for collecting illumination from near the surface of the module are also possible, such as using fiber optic ribbon or integrated optical waveguides to direct illumination to the pixel array, tapering as needed to match the size of the pixel array.

應注意,如圖5A至圖5C所描繪的設備500被配置成跨越模組100的短尺寸110,使得模組在平行於其長尺寸112的方向上被傳送。與跨越長尺寸的替代方案(例如更簡單的光學設計或容易將電源302連接到電觸點106)相比,上述配置是更方便的配置可能有幾個原因。然而,行掃描發光成像設備不能被設計成在平行於短尺寸110的方向上掃描模組的原因在於沒有根本原因,例如使用足夠長的接觸式成像感測器系統,並且在速度方面,這樣做實際上是有利的。在所有其它條件相同的情況下,1.0米×1.65米的模組沿其短尺寸掃描的速度比其長尺寸要快40%。 It should be noted that the apparatus 500 as depicted in Figures 5A-5C is configured to span the short dimension 110 of the module 100 such that the module is transported in a direction parallel to its long dimension 112. The above configuration is a more convenient configuration for several reasons than alternatives that span long dimensions, such as a simpler optical design or the ease of connecting power supply 302 to electrical contacts 106. However, the reason why the line scan illuminating imaging device cannot be designed to scan the module in a direction parallel to the short dimension 110 is that there is no root cause, such as using a contact imaging sensor system that is long enough, and in terms of speed, It is actually beneficial. Under all other conditions, a 1.0 m x 1.65 m module scans 40% faster along its short dimension.

在圖5A至圖6C所示的設備500、600中,在照相機502或接觸式成像感測器602和光源514保持靜止時,模組100在掃描機構508如傳送帶等上移動。在一些示例中,用於沿著模組掃描第一區域506和第二區域516的掃描機 構508包括用於移動模組100的機構如傳送帶、滾輪或空氣軸承。如果檢測器或光源包含精密的光學器件,則此佈置是有利的,並且通常適合於在模組可以在例如製造期間或之後、在裝運之前或之後、在安裝之前或在模組解剖實驗室中移動的如何情況下進行模組檢查。 In the apparatus 500, 600 shown in Figures 5A through 6C, when the camera 502 or the contact imaging sensor 602 and the light source 514 remain stationary, the module 100 moves over a scanning mechanism 508, such as a conveyor belt or the like. In some examples, scanning mechanism 508 for scanning first region 506 and second region 516 along the module includes mechanisms for moving module 100 such as a conveyor belt, rollers, or air bearings. This arrangement is advantageous if the detector or source contains precision optics and is generally suitable for use in modules that may be, for example, during or after manufacture, before or after shipment, prior to installation, or in a modular anatomy laboratory. How to perform a module check when moving.

圖7A以示意性側視圖示出根據本發明另一實施例的用於檢查或確定模組100的狀態的設備700。如前所述,該設備包括用於從電池102和模組的可能的其它部件生成PL的光源514,用於檢測所生成的PL的線性照相機或TDI照相機形式的檢測器502,以及適當編程的計算裝置510,其用於與沿著模組100的光照和成像區域的掃描同步地逐行讀出照相機,以獲得從模組的至少一部分發出的PL的影像。然而,在這種情況下,如箭頭702所示,藉由移動光源514和照相機502來執行掃描。在所示的實施例中,光源514和照相機502被固定地附接在基本上防光的外殼310內,外殼310適於在包括軌道或滾輪等的掃描機構508上沿著模組100移動。該佈置允許模組100保持靜止、適於在模組固定就位例如在屋頂上的情況下或者如果方便的話模組處於固定的位置檢查模組後安裝。儘管所生成的發光最好用如圖所示的線陣或TDI照相機502那樣的多像素檢測器來檢測,但是也可以用被配置成在垂直於移動外殼310的方向的方向來回移動的單元件檢測器進行檢測。在某些實施例中,設備700還包括電源302,電源302用於經由電觸點106將電流注入到模組或從模組提取電流以用 於生成EL。在替代實施例中,例如當檢查安裝的模組時,前述設備可以與現有的電氣基礎設施協作以向模組施加電激勵。在其它實施例中,在僅藉由電激勵生成發光的情況下,光源514被省略。可選地,設備700可以包括熱成像線性照相機或TDI照相機704,其用於檢測由於對模組施加電激勵而從模組100中的熱斑發射的中紅外輻射706。如果熱成像照相機704的視場足夠靠近照相機502的視場,則熱成像照相機還可以執行上面參考圖5B論述的溫度感測器526的溫度監測功能。 FIG. 7A shows, in a schematic side view, an apparatus 700 for inspecting or determining the state of a module 100 in accordance with another embodiment of the present invention. As previously mentioned, the apparatus includes a light source 514 for generating a PL from the battery 102 and possible other components of the module, a detector 502 in the form of a linear camera or TDI camera for detecting the generated PL, and suitably programmed A computing device 510 for reading the camera line by line in synchronization with the illumination of the module 100 and the scanning of the imaging region to obtain an image of the PL emitted from at least a portion of the module. However, in this case, scanning is performed by moving the light source 514 and the camera 502 as indicated by arrow 702. In the illustrated embodiment, light source 514 and camera 502 are fixedly attached within a substantially light-resistant housing 310 that is adapted to move along module 100 on a scanning mechanism 508 that includes a track or roller. This arrangement allows the module 100 to remain stationary, suitable for installation when the module is fixed in place, such as on a roof, or if the module is in a fixed position inspection module if convenient. Although the generated illumination is preferably detected by a multi-pixel detector such as a line array or TDI camera 502 as shown, it is also possible to use a unit that is configured to move back and forth in a direction perpendicular to the direction of the moving housing 310. The detector performs the test. In some embodiments, device 700 further includes a power source 302 for injecting current into or out of the module via electrical contacts 106 for generating EL. In an alternate embodiment, such as when inspecting installed modules, the aforementioned devices can cooperate with existing electrical infrastructure to apply electrical excitation to the modules. In other embodiments, the source 514 is omitted where illumination is only generated by electrical excitation. Alternatively, device 700 may include a thermal imaging linear camera or TDI camera 704 for detecting mid-infrared radiation 706 emitted from hot spots in module 100 as a result of applying electrical excitation to the module. If the field of view of the thermal imaging camera 704 is sufficiently close to the field of view of the camera 502, the thermal imaging camera can also perform the temperature monitoring function of the temperature sensor 526 discussed above with respect to FIG. 5B.

圖7B以示意性側視圖示出圖7A中所示的設備700的變型,其中包括光源514和照相機502以及熱成像照相機704(如果存在的話)的組件708被配置成在掃描機構508如在基本上防光的外殼310內的軌道上沿著模組100移動。 Figure 7B shows, in a schematic side view, a variation of the apparatus 700 shown in Figure 7A, wherein the component 708 comprising the light source 514 and the camera 502 and the thermal imaging camera 704 (if present) is configured to be at the scanning mechanism 508 as in The track within the substantially light-resistant housing 310 moves along the module 100.

出於機械穩定性的原因,可能希望保持探測器的固定。圖8A以示意性側視圖示出根據本發明另一實施例的用於檢查或確定模組100的狀態的設備800。在該實施例中,如箭頭702所示,線性照相機或TDI照相機形式的檢測器502被固定在放置在模組100上或其周圍的基本上防光的外殼310內,而包括光源514和與照相機502可操作關聯的光學元件802的組件708適於在包括導軌或滾輪等的掃描機構508上沿著模組100移動。例如可以為離軸抛物面反射鏡的光學元件802被設計成將發光804引導至照相機502以用於檢測並且由適當編程的計算裝置510與掃描機構508上的組件708的移動同步地連續讀出。本領域 的技術人員將會想到許多適合於將發光804引導至照相機的光學元件如棱鏡和光纖帶。如前前述,也可以經由來自電源302的電激勵從模組100生成發光。 For reasons of mechanical stability, it may be desirable to keep the detector stationary. FIG. 8A shows, in a schematic side view, an apparatus 800 for inspecting or determining the state of a module 100 in accordance with another embodiment of the present invention. In this embodiment, as indicated by arrow 702, a detector 502 in the form of a linear camera or TDI camera is secured within a substantially light-proof housing 310 placed on or around the module 100, including the light source 514 and The assembly 708 of the camera 502 operative associated optical component 802 is adapted to move along the module 100 on a scanning mechanism 508 that includes a rail or roller. Optical element 802, which may be an off-axis parabolic mirror, for example, is designed to direct illumination 804 to camera 502 for detection and continuous readout by synchronous programming of device 708 on scanning mechanism 508 by appropriately programmed computing device 510. Those skilled in the art will appreciate many optical components such as prisms and fiber optic ribbons suitable for directing the illumination 804 to the camera. Light emission from the module 100 can also be generated via electrical excitation from the power source 302 as previously described.

圖8B以示意性側視圖示出圖8A所示的設備800的變型,其中在掃描期間發光804行進到照相機502的距離保持基本恒定。如前前述,在照相機502保持靜止,例如,固定地附接到放置在模組100上或其周圍的基本上不透光的外殼310時,掃描機構508使得包括光源514和與線性照相機或TDI照相機502可操作地關聯的光學元件802的組件708沿著模組100移動。然而,在該實施例中,由光源514或電源302生成的發光804經由轉向鏡806被引導至照相機502,轉向鏡806在掃描機構508上以如由箭頭702和702-A的相對長度指示的組件708的速度的一半速度移動。這確保了收集的發光804行進到照相機502的距離,即成像區域和照相機之間的光路長度在掃描期間保持基本恒定,從而潛在地改善了照相機上的聚焦。需注意,這也是如圖5B、圖5D、圖6B、圖7A和圖7B所示的前述的實施例的情況。檢測到的發光訊號由適當編程的計算裝置510與組件708和轉向鏡806的移動同步地從照相機502讀出,以獲得從模組的至少一部分發出的發光的影像。 FIG. 8B shows a variation of the apparatus 800 shown in FIG. 8A in a schematic side view in which the distance traveled by the illumination 804 to the camera 502 during the scan remains substantially constant. As previously described, while the camera 502 remains stationary, for example, fixedly attached to a substantially opaque outer casing 310 placed on or around the module 100, the scanning mechanism 508 includes a light source 514 and a linear camera or TDI Component 708 of optical component 802 operatively associated with camera 502 moves along module 100. However, in this embodiment, illumination 804 generated by light source 514 or power source 302 is directed to camera 502 via steering mirror 806, which is indicated on scanning mechanism 508 as indicated by the relative lengths of arrows 702 and 702-A. The speed of component 708 moves at half the speed. This ensures that the collected illumination 804 travels to the camera 502 at a distance that the optical path length between the imaging area and the camera remains substantially constant during the scan, potentially improving focus on the camera. It is to be noted that this is also the case of the foregoing embodiment as shown in FIGS. 5B, 5D, 6B, 7A, and 7B. The detected illuminating signal is read from camera 502 by appropriately programmed computing device 510 in synchronization with movement of component 708 and turning mirror 806 to obtain an image of the illuminating light emitted from at least a portion of the module.

應理解,除了照相機之外或代替照相機,類似於圖8A和圖8B所示的具有光源的設備保持靜止也是可能的,例如使用移動反射鏡沿著待測模組掃描光照區域。 It should be understood that it is also possible to keep the device with the light source similar to that shown in Figures 8A and 8B in addition to or in lieu of the camera, for example using a moving mirror to scan the illuminated area along the module to be tested.

圖9以示意性側視圖示出根據本發明又一實施例的用 於檢查或確定模組100的狀態的設備900。該實施例類似於圖8A中所示的實施例在於,由光源514或電源302從電池102和模組的可能的其它部件生成的發光804由靜止線性照相機或TDI照相機形式的檢測器502檢測。然而,在該實施例中,包括光源514和反射鏡(光學元件802)的可移動組件708可以被移動到靜止位置902,以允許模組100暴露於由LED、鹵素燈或類似物組成並由電源和控制器906控制的太陽光模擬器904。該太陽光模擬器904可以用來在一定範圍的條件下模擬模組100的太陽光照,而功率監測單元908測量模組的包括其I-V特性的功率性能。如下面詳細描述的,可以將這些資料中的一些或全部傳送到集中式儲存系統及/或在局部用以作出關於例如是否繼續安裝給定模組的決定。 Figure 9 shows, in a schematic side view, an apparatus 900 for inspecting or determining the state of a module 100 in accordance with yet another embodiment of the present invention. This embodiment is similar to the embodiment shown in Figure 8A in that the illumination 804 generated by the light source 514 or the power source 302 from the battery 102 and possibly other components of the module is detected by a detector 502 in the form of a still linear camera or TDI camera. However, in this embodiment, the movable component 708 including the light source 514 and the mirror (optical element 802) can be moved to the rest position 902 to allow the module 100 to be exposed to LEDs, halogen lamps, or the like and consist of A power and controller 906 controls the solar simulator 904. The solar simulator 904 can be used to simulate the solar illumination of the module 100 under a range of conditions, while the power monitoring unit 908 measures the power performance of the module including its I-V characteristics. As described in detail below, some or all of these materials may be communicated to the centralized storage system and/or used locally to make decisions regarding, for example, whether to continue installing a given module.

在圖5A至圖9所示的每個實施例中,從檢測器502讀出的發光影像以及可能的光學或熱影像也可以在電腦中儲存及/或處理,該電腦可以被標識為與用於讀出檢測器、用於顯示、自動報警或進一步分析的計算裝置510一起或分開。 In each of the embodiments shown in FIGS. 5A-9, the illuminating image and possible optical or thermal images read from the detector 502 can also be stored and/or processed in a computer, which can be identified as being used. The computing device 510 for reading out the detector, for display, automatic alarming or further analysis is together or separately.

影像分析 Image analysis

圖10A示出使用圖5A至圖5C所示類型的設備500從具有六十個多晶矽電池的模組的大部分獲取的行掃描PL影像1000。影像1000完整示出六十個電池中的四十個電池。圖10B示出從影像1000中提取的單個電池的影像1002。在模組在光源和照相機組件下面移動時,使用來自 LED陣列的近紅外光照生成PL並且在30秒內捕獲模組影像1000。模組影像1000具有約700萬像素,表示每個電池超過1百萬像素,從而提供用於識別單個電池中的缺陷或其它特徵的優異空間分辨率,如單電池行掃描PL影像1002所示。該影像揭示了與裂紋相關聯的廣泛暗線的網路1004以及指示斷裂的金屬觸點的垂直於匯流條1008延伸的複數個亮條紋1006。與EL影像相比,行掃描PL影像的特別有用的特徵在於,與周圍材料即背景的PL發射相比,導致載流子壽命局部降低的缺陷如裂紋、位錯或雜質顯得相對暗,而造成串聯電阻局部增加的缺陷顯得相對亮。這種“對比度倒置”效應有利於區分不同類型的缺陷,並且由於在具有局部高串聯電阻的電池區域中至和沿著金屬導電路徑的光生電荷載流子的橫向傳送被阻礙而出現此效應。這增加了載流子的局部濃度並因此增加了這些區域的發光量。例如,在具有與存在裂紋、雜質或位錯有關的載流子複合位點的高密度的區域中,藉由局部複合減少載流子的數量,使得這些區域顯得相對暗。 FIG. 10A illustrates a line scan PL image 1000 taken from a majority of a module having sixty polysilicon cells using apparatus 500 of the type illustrated in FIGS. 5A-5C. Image 1000 shows a complete representation of forty of the sixty batteries. FIG. 10B shows an image 1002 of a single battery extracted from image 1000. When the module is moved under the light source and camera assembly, the near-infrared illumination from the LED array is used to generate the PL and capture the module image 1000 within 30 seconds. The module image 1000 has about 7 million pixels, representing more than 1 megapixel per cell, providing excellent spatial resolution for identifying defects or other features in a single cell, as shown by the single cell line scan PL image 1002. The image reveals a network 1004 of broad dark lines associated with cracks and a plurality of bright stripes 1006 extending perpendicular to the bus bars 1008 indicating the broken metal contacts. A particularly useful feature of line-scanned PL images compared to EL images is that defects such as cracks, dislocations, or impurities that cause localized decrease in carrier lifetime appear relatively dark compared to the surrounding material, ie, the background PL emission. The local increase in series resistance appears to be relatively bright. This "contrast inversion" effect facilitates the differentiation of different types of defects and occurs due to the obstruction of lateral transport of photogenerated charge carriers to and along the metal conductive path in cell regions having local high series resistance. This increases the local concentration of the carriers and thus increases the amount of luminescence of these regions. For example, in regions of high density having carrier recombination sites associated with the presence of cracks, impurities or dislocations, the number of carriers is reduced by local recombination such that these regions appear relatively dark.

一旦已經獲取模組的一個或複數個發光或其它影像,就可以使用影像處理技術來識別和量化出現在模組的電池或其它部分中的缺陷或其它特徵。有兩個主要任務:缺陷檢測和缺陷分類。檢測是第一步,並且其涉及找到候選缺陷並將其從周圍分開。然後分類步驟確定缺陷的類型,例如,破裂的指狀紋、裂紋等。對於這兩個步驟,必須對強度與背景不同的像素區域進行測量,這些測量值在下文稱 為“指標”。示例指標包括相對強度、大小、形狀、取向、紋理和位置。並非由影像處理技術識別的所有特徵都必然是會降低模組性能的缺陷,但重要的是可以可靠地識別性能下降的缺陷。 Once one or more of the illumination or other images of the module have been acquired, image processing techniques can be used to identify and quantify defects or other features present in the battery or other portions of the module. There are two main tasks: defect detection and defect classification. Detection is the first step and it involves finding candidate defects and separating them from the surroundings. The sorting step then determines the type of defect, for example, a cracked finger pattern, a crack, and the like. For these two steps, it is necessary to measure the pixel areas with different intensities from the background, which are referred to below as "indicators". Example metrics include relative strength, size, shape, orientation, texture, and position. Not all features that are not recognized by image processing techniques are necessarily defects that degrade the performance of the module, but it is important to reliably identify defects in performance degradation.

用於缺陷檢測和分類的最常用指標之一是相對強度,即候選缺陷與其周圍相比多暗或多亮。這導致電池的基於EL的成像的基本限制,其中所有缺陷比周圍區域顯得更暗。在這種情況下,“相對強度”指標不具有較強的區分能力,即,它不是用於區分一種缺陷類型與另一種缺陷類型的穩健指標。相比之下,並如圖10B所示,在行掃描PL影像中,某些缺陷類型具有倒置的對比度。具體地,串聯電阻缺陷顯得很亮,而複合缺陷顯得較暗。在這種情況下,“相對強度”指標具有較強的區分能力並且可以用來穩健地區分不同類型的缺陷。 One of the most common metrics for defect detection and classification is the relative intensity, ie how dark or bright the candidate defect is compared to its surroundings. This leads to a fundamental limitation of EL-based imaging of batteries in which all defects appear darker than the surrounding area. In this case, the "relative strength" indicator does not have a strong distinguishing ability, that is, it is not a robust indicator for distinguishing one type of defect from another. In contrast, and as shown in FIG. 10B, in a line scan PL image, certain defect types have an inverted contrast. Specifically, series resistance defects appear bright, while composite defects appear dark. In this case, the "relative strength" indicator has a strong distinguishing ability and can be used to stably distinguish between different types of defects.

除了其它指標之外,影像處理算法可以使用不同相對強度、大小、形狀、取向、紋理或位置來自動區分候選缺陷。然而,應理解,如果樣本具有可能在空間上重疊的幾種類型的候選缺陷,尤其是如果候選缺陷全部比背景更暗,則這種算法的準確度和精度可能受到影響。在這種情況下,行掃描PL影像中的“對比度倒置”效應在提供可用於區分不同類別缺陷的附加指標方面非常有益,從而大大提高了影像處理算法的準確度和精度。參考圖11A至圖11D中所示的影像進一步論述用於電池和模組檢查的行掃描PL和EL成像的相對優點。 In addition to other metrics, image processing algorithms can use different relative intensities, sizes, shapes, orientations, textures, or positions to automatically distinguish candidate defects. However, it should be understood that the accuracy and precision of such an algorithm may be affected if the sample has several types of candidate defects that may overlap spatially, especially if the candidate defects are all darker than the background. In this case, the "contrast inversion" effect in the line scan PL image is very useful in providing additional indicators that can be used to distinguish between different types of defects, thereby greatly improving the accuracy and precision of the image processing algorithm. The relative advantages of line scan PL and EL imaging for battery and module inspection are further discussed with reference to the images shown in Figures 11A-11D.

圖11A示出從用如圖5A至圖5C所示的設備500獲取的60個電池模組的行掃描EL影像提取的多晶矽電池的行掃描EL影像1100。在模組100以50mm/s的速度移動藉由具有增強的近紅外響應的矽CCD行掃描照相機502的視場時,向模組的電觸點106施加39.5V的正向偏壓(相當於開路電壓的1.045倍)。圖11B示出用相同的照相機獲取的相同電池的行掃描PL影像1102,其中PL藉由來自光源514的約為4Sun的光照強度從移動模組生成,光源514包括在模組的短邊上聚焦於6mm寬的條紋516的1.2m長的近紅外LED陣列。 FIG. 11A shows a line scan EL image 1100 of a polycrystalline silicon battery extracted from a line scan EL image of 60 battery modules acquired with the apparatus 500 shown in FIGS. 5A to 5C. When the module 100 is moved at a speed of 50 mm/s by the field of view of the CCD CCD line scan camera 502 having an enhanced near-infrared response, a forward bias of 39.5 V is applied to the electrical contacts 106 of the module (equivalent to 1.045 times the open circuit voltage). Figure 11B shows a line scan PL image 1102 of the same battery taken with the same camera, wherein PL is generated from the moving module by a light intensity of about 4 Sun from source 514, which includes focusing on the short side of the module. A 1.2 m long near-infrared LED array of 6 mm wide strips 516.

行掃描EL影像1100示出與周圍材料的發射相比顯得相對暗的大量特徵,包括與裂紋相關聯的廣泛的線的網路1004、位錯簇1104、由斷裂的金屬指狀物引起的從匯流條1008垂直延伸的若干暗紋1106以及指示電隔離的電池片段1108的大的完全暗的三角形區域。裂紋的網路1004和位錯簇1104在行掃描PL影像1102中顯得同樣暗,因為它們充當局部降低載流子壽命的複合中心。另一方面,斷裂的金屬指狀物現在由亮條紋1006顯現,並且隔離的電池片段1108也顯得相對亮,因為從這些區域橫向傳送出光生電荷載流子被部分或完全阻礙。這說明了EL影像和行掃描PL影像之間的另一個顯著差異。如前面參考圖4所論述的,EL只能從電激勵可訪問的電池或電池區域生成。相比之下,可以看出PL可以在所有電池區域產生。如藉由在隔離的電池片段1108內識別裂紋1110所示,從完全隔 離的電池區域內生成PL的能力提供了可能與確定電池或模組失效原因相關的附加資訊。 The line scan EL image 1100 shows a number of features that appear relatively dark compared to the emission of surrounding material, including a wide line of networks 1004 associated with cracks, dislocation clusters 1104, and the resulting defects from broken metal fingers. A plurality of dark lines 1106 extending vertically from the bus bar 1008 and a large, completely dark triangular area indicating the electrically isolated battery segment 1108. The cracked network 1004 and dislocation clusters 1104 appear equally dark in the line scan PL image 1102 because they act as a recombination center that locally reduces carrier lifetime. On the other hand, the broken metal fingers now appear as bright stripes 1006, and the isolated battery segments 1108 also appear relatively bright, as the photogenerated charge carriers are laterally or completely blocked from laterally transporting from these regions. This illustrates another significant difference between EL images and line scan PL images. As previously discussed with reference to Figure 4, the EL can only be generated from an electrically energized accessible battery or battery area. In contrast, it can be seen that PL can be produced in all battery areas. The ability to generate PL from a completely isolated battery region, as illustrated by identifying cracks 1110 within the isolated battery segment 1108, provides additional information that may be relevant to determining the cause of battery or module failure.

藉由比較圖11C和圖11D,可以證明相似的效果,圖11C和圖11D分別示出了模組內的四個多晶矽電池102的拐角區域的行掃描EL影像1112和行掃描PL影像1114。每個電池的邊緣和角落在行掃描PL影像1114中清晰可見,而在行掃描EL影像1112中難以辨別它們,因為藉由在更遠離金屬接觸指狀物1116的區域中電激勵來生成更少的電荷載流子。這種效果對於裂紋的早期檢測是特別重要的,裂紋通常在電池邊緣開始,並因此更有可能在行掃描PL影像中被檢測到。這兩個影像均揭示了電池中的許多其它特徵,如左下電池中的若干位錯簇1104和右下電池中的一些晶粒結構1118。在行掃描PL影像1114中更容易辨別金屬接觸指狀物1116。沿著左上電池中的一個指狀物的局部高串聯電阻的區域顯揭示出行掃描EL影像1112中的相對暗的條紋1106和行掃描PL影像1114中的相對亮的條紋1006,這與先前提到的對比度倒置一致。 A similar effect can be demonstrated by comparing FIG. 11C with FIG. 11D, and FIG. 11C and FIG. 11D respectively show a line scan EL image 1112 and a line scan PL image 1114 of the corner regions of the four polysilicon cells 102 in the module. The edges and corners of each cell are clearly visible in the line scan PL image 1114, which is difficult to discern in the line scan EL image 1112 because less is generated by electro-active in regions further away from the metal contact fingers 1116. Charge carriers. This effect is particularly important for early detection of cracks, which typically begin at the edge of the cell and are therefore more likely to be detected in line scan PL images. Both of these images reveal many other features in the battery, such as several dislocation clusters 1104 in the lower left cell and some grain structures 1118 in the lower right cell. The metal contact fingers 1116 are more easily discernible in the line scan PL image 1114. The area of the local high series resistance along one of the upper left cells reveals relatively dark stripes 1106 in the line scan EL image 1112 and relatively bright stripes 1006 in the line scan PL image 1114, as previously mentioned The contrast is inverted and consistent.

應指出,儘管行掃描PL影像可以說比EL影像更適合於識別由於對比度倒置效應在受檢電池或模組中的不同類型的缺陷,但是存在EL成像可能更適合的一些模組失效模式。例如,如圖4所示,藉由互連錯誤與模組隔離的另外的完整電池在行掃描PL影像中可能顯得非常正常,但在EL影像中將顯得完全黑暗。例如,在局部斷開的類似方式的電池中,如果相鄰電池之間的複數個電池互連中的 一個被中斷,則將顯示某些匯流條周圍的區域比EL影像中的其它區域顯得更亮的特徵圖案。有時這種類型的圖案足以識別特定的故障機理。然而,在其它情況下,匯流條周圍的暗圖案可能由其它效應引起,如由從邊緣或角磚切割的多晶矽片中的高雜質濃度引起的暗邊區域。這種不確定性可以藉由在分析中引入行掃描PL影像來解決:如果在EL影像和行掃描PL影像兩者中的匯流條周圍的區域顯得暗,則將由於增強的複合,例如在邊緣或角落晶片中,而如果在行掃描PL影像中相同區域顯得正常(即沒有減小的強度),則將是由於電池互連問題。應理解,由於兩種成像模式之間的協同作用,如圖5A至圖9中所示的組合的行掃描PL和EL成像設備具有相當大的價值,因為其這可以產生比任一孤立成像模式更多的資訊。進一步的資訊還可以從藉由不同的激勵條件如不同的電壓或電流注入生成的EL的影像或者利用不同的光照強度或波長帶生成或者在不同的波長帶中檢測到的PL的影像或者藉由光和電激勵的各種組合生成的發光影像獲得。可以比較發光影像的不同組合,例如,藉由計算逐像素的強度差異或比率來檢測或突出顯示某些缺陷或其它特徵。 It should be noted that although line scan PL images can be said to be more suitable than EL images to identify different types of defects in the tested battery or module due to contrast inversion effects, there are some module failure modes that EL imaging may be more suitable. For example, as shown in Figure 4, another complete battery isolated from the module by interconnect errors may appear to be very normal in a line scan PL image, but will appear completely dark in the EL image. For example, in a similarly-disconnected battery that is partially disconnected, if one of the plurality of battery interconnections between adjacent cells is interrupted, the area around some of the bus bars will be displayed more than the other areas in the EL image. Bright feature pattern. Sometimes this type of pattern is sufficient to identify a particular failure mechanism. However, in other cases, the dark pattern around the bus bar may be caused by other effects, such as dark side regions caused by high impurity concentrations in the polycrystalline silicon wafer cut from the edge or corner brick. This uncertainty can be solved by introducing a line scan PL image in the analysis: if the area around the bus bar in both the EL image and the line scan PL image appears dark, it will be due to enhanced recombination, for example at the edge Or in a corner wafer, and if the same area in the line scan PL image appears normal (ie, there is no reduced intensity), it will be due to battery interconnect problems. It should be understood that the combined line scan PL and EL imaging apparatus as shown in Figures 5A through 9 has considerable value due to the synergy between the two imaging modes, as it can produce an image that is more than any isolated imaging mode. More information. Further information may also be from images of ELs generated by different excitation conditions such as different voltages or current injections or images of PLs generated using different illumination intensities or wavelength bands or detected in different wavelength bands or by Luminescence images generated by various combinations of light and electrical excitation are obtained. Different combinations of illuminating images can be compared, for example, by calculating or highlighting certain defects or other features by pixel-by-pixel intensity differences or ratios.

在組合的電激勵和光激勵的一個具體示例中,並且參考圖5D,當光源514對模組施加光照時,將電流注入到模組100中將產生有助於由照相機502檢測到的發光504的電和光激勵。結果將是“偏置的”行掃描PL影像,其將顯示如圖11A所示的EL影像的一些特性,以及如圖11B 所示的正常的“非偏置”行掃描PL影像的一些特性,其混合取決於電激勵和光激勵的相對大小。這例如可以使得PL成像模式能夠檢測否則將不能夠檢測到的電池互連錯誤,使得如果由於任何其它原因不需要EL成像,則可能僅需要模組藉由檢查設備500一次。理想地,在沒有丟失上述參考圖11A至圖11D所論述的“對比度倒置”效應的情況下,當獲取偏置的行掃描PL影像時施加的電激勵的水平應該足以顯示揭示出電池互連錯誤。 In one specific example of combined electrical excitation and optical excitation, and with reference to FIG. 5D, when light source 514 applies illumination to the module, injecting current into module 100 will produce illumination 504 that facilitates detection by camera 502. Electrical and optical excitation. The result will be an "offset" line scan PL image that will show some of the characteristics of the EL image as shown in Figure 11A, as well as some of the characteristics of a normal "non-biased" line scan PL image as shown in Figure 11B. The mixing depends on the relative magnitude of the electrical excitation and the optical excitation. This may, for example, enable the PL imaging mode to detect battery interconnect errors that would otherwise be undetectable, such that if EL imaging is not required for any other reason, then only the module may need to be checked by the device 500 once. Ideally, the level of electrical excitation applied when acquiring an offset line scan PL image should be sufficient to reveal a battery interconnect error without losing the "contrast inversion" effect discussed above with reference to Figures 11A-11D. .

另一種可能性是在光源514正在向模組100施加光照時,例如藉由電阻器或有源負載提取流過模組的電觸點106(模組端子)的電流。通常,如果電池組列104中的所有電池102至少部分被光照,而該組列中的一個或複數個電池正被成像,則這將僅產生有用的資訊,如增強的“對比度倒置”效應。參考圖5A,如果模組100在平行於其短尺寸110的方向上被掃描並且來自光源514的光散焦使得“被光照”條紋516足夠寬以至少部分地照射組列104中的所有電池,則可以實現前述的增強的“對比度倒置”效應。 Another possibility is to extract current flowing through the electrical contacts 106 (module terminals) of the module, for example by a resistor or active load, while the light source 514 is applying illumination to the module 100. Typically, if all of the batteries 102 in the battery array 104 are at least partially illuminated and one or more of the set of cells are being imaged, this will only produce useful information, such as an enhanced "contrast inversion" effect. Referring to FIG. 5A, if the module 100 is scanned in a direction parallel to its short dimension 110 and the light from the source 514 is defocused such that the "illuminated" stripe 516 is wide enough to at least partially illuminate all of the cells in the set 104, The aforementioned enhanced "contrast inversion" effect can then be achieved.

儘管通常設想用於模組檢查的發光將主要由電池材料生成,例如,矽基電池模組中的矽二極管材料,本發明的意想不到和期望特徵在於,在一些情況下,可以生成和檢測來自模組中的其它材料的發光,特別是藉由仔細選擇光源、檢測器或相關的光學器件。例如,可以促使位於電池後面的背板聚合物材料發出PL,前述背板聚合物材料可以 為例如聚對苯二甲酸乙二醇酯、聚偏二氟乙烯、聚醯胺或其複合物。其可以為電池提供對比的背景,也可以提供電池之間的金屬互連,由於金屬材料中PL的含量較低,所以電池之間的金屬互連通常會顯得較暗。另一個示例為電池上的接觸指狀物,甚至在燒製之後其可以包含來自絲網印刷金屬糊的殘餘有機材料,這些材料可以被製成發光,從而再次與矽PL形成有用的對比。如果金屬材料在其表面上具有金屬氧化物並且通常是這種情況,那麼即使金屬互連也可以發光。不發光的模組部件仍然可以對一個或複數個模組影像產生可檢測的影響。在一個示例中,在模組內密封矽電池的乙烯乙酸乙烯酯(EVA)聚合物的氧化引起的混濁可由發光或光學影像中的特徵的模糊來檢測,藉由在不同時間獲取的影像的比較可能會有更加明顯的效果。由模組的各個部件發出的PL中的意想不到的對比度的一種用途是提供金屬互連和電池,或者更具體地金屬互連和電池上印刷的匯流條之間的對準測試。另一種應用是在金屬互連結構中查找斷裂。另一種應用是探測每個PL發射材料的PL發射中的不均勻性,其可以與可能指示實際或潛在缺陷的變化材料特性相關聯。 Although it is generally contemplated that illumination for module inspection will be primarily generated from battery materials, such as germanium diode materials in germanium-based battery modules, an unexpected and desirable feature of the present invention is that, in some cases, it can be generated and detected from Luminescence of other materials in the module, especially by careful selection of light sources, detectors or associated optics. For example, the backing plate polymeric material located behind the battery can be caused to emit PL, and the aforementioned backing plate polymeric material can be, for example, polyethylene terephthalate, polyvinylidene fluoride, polyamidamine or a composite thereof. It can provide a contrasting background for the battery, as well as metal interconnections between the cells. Due to the low content of PL in the metal material, the metal interconnection between the cells will typically appear darker. Another example is a contact finger on a battery that can contain residual organic material from a screen printed metal paste even after firing, which materials can be made to illuminate, thereby again forming a useful contrast with 矽PL. If the metal material has a metal oxide on its surface and this is usually the case, even the metal interconnection can emit light. Module components that are not illuminated can still have a detectable effect on one or more of the module images. In one example, turbidity caused by oxidation of an ethylene vinyl acetate (EVA) polymer that seals a tantalum battery within a module can be detected by blurring of features in the illuminating or optical image, as compared by images acquired at different times. There may be more obvious effects. One use of the unexpected contrast in the PL emitted by the various components of the module is to provide alignment testing between the metal interconnect and the battery, or more specifically the metal interconnect and the bus bar printed on the battery. Another application is to look for fractures in metal interconnect structures. Another application is to detect inhomogeneities in the PL emissions of each PL emissive material, which can be associated with varying material properties that may indicate actual or potential defects.

在某些實施例中,模組檢查或狀況確定設備被配置成除了獲取EL或PL影像之外還獲取光學(即,反射或透射)影像,例如藉由具有如圖5B所示的附加光源520和線性照相機或TDI照相機522或528,以用於獲得關於待測模組的進一步資訊。例如,光學影像與發光影像之間的比較 可以用於區分在光學影像中通常不可見的載流子複合缺陷如位錯和在兩個影像中通常是可見的粒子邊界。在另一個示例中,光學影像可以揭示出可能被位錯簇隱藏的裂紋。而且,高分辨率光學影像可以揭示出金屬線中的缺陷,其可以與行掃描PL影像中所示的高串聯電阻區域或與EL影像中的區域的黑暗程度相關聯。另外,至少響應於可用光源的發射帶,光學影像可以突出顯示不發光的模組部件的缺陷。不發光模組部件可以包括封裝部件如蓋玻璃、邊緣密封劑或蓋玻璃與電池之間的聚合物密封劑。封裝部件中的缺陷可能允許氧氣及/或水傳送到電池或互連,這將最終導致功率下降的缺陷,如電斷開或載流子複合缺陷。藉由將關於光學影像的不發光部件的資訊與複數個故障模組的一個或複數個發光影像的資訊相結合,可以建立即使在電池和互連受到影響之前也可以僅基於光學影像提前警告潛在的模組失效的關係。 In some embodiments, the module inspection or condition determination device is configured to acquire an optical (ie, reflected or transmitted) image in addition to acquiring an EL or PL image, such as by having an additional light source 520 as shown in FIG. 5B. And a linear camera or TDI camera 522 or 528 for obtaining further information about the module to be tested. For example, a comparison between an optical image and a luminescent image can be used to distinguish between carrier composite defects that are typically not visible in an optical image, such as dislocations, and particle boundaries that are typically visible in both images. In another example, an optical image can reveal cracks that may be hidden by dislocation clusters. Moreover, high resolution optical images can reveal defects in the metal lines that can be associated with the high series resistance regions shown in the line scan PL image or with the darkness of the regions in the EL image. Additionally, at least in response to the emission band of the available light source, the optical image can highlight defects in the module component that is not illuminated. The non-illuminated module component can include a package component such as a cover glass, an edge sealant, or a polymeric sealant between the cover glass and the battery. Defects in the packaged components may allow oxygen and/or water to pass to the battery or interconnect, which will ultimately lead to defects in power reduction, such as electrical disconnection or carrier recombination defects. By combining the information about the non-illuminating components of the optical image with the information of one or more of the plurality of illuminating images of the faulty module, it is possible to establish an early warning based on the optical image only before the battery and the interconnect are affected. The relationship of module failures.

在其它實施例中,模組檢查或狀況確定設備另外被配置成獲取從模組的至少一部分發射的熱輻射的影像,例如,藉由具有如圖7A和圖7B所示的熱成像線性照相機或TDI照相機704,以用於檢測從待測模組中的熱斑發射的中紅外輻射706。 In other embodiments, the module inspection or condition determination device is additionally configured to acquire an image of thermal radiation emitted from at least a portion of the module, for example, by having a thermal imaging linear camera as shown in Figures 7A and 7B or A TDI camera 704 is provided for detecting mid-infrared radiation 706 emitted from hot spots in the module to be tested.

模組狀況確定系統 Module status determination system

在許多情況下,如圖5A至圖9所示的行掃描成像設備可以用於藉由獲取由光激勵或電激勵生成的發光影像或兩者的組合並且可選地藉由光學或熱學影像或I-V測試資 料來檢查模組。例如,它們可以在模組工廠中用來在生產期間檢查模組,例如,在密封聚合物材料和玻璃之前檢查電池組列或電池的疊層以進行糾正,例如替換具有與過量水平的串聯電阻相關的缺陷或過度水平的裂紋或其它載流子複合缺陷的電池。他們也可以在模組工廠中用作已完成模組的最終測試以用於質量控制(QC)或質量保證(QA)目的。其它示例應用是在運輸之後或在安裝之前檢查模組以檢查由於粗暴運輸造成的損壞,或者在安裝之後立即檢查由於粗暴處理或不正確的附接方法造成的損壞。所安裝的模組也可以在其使用壽命期間進行檢查,例如作為定期檢查計劃的一部分,或在發生嚴重冰雹等不利事件之後進行檢查。最後,行掃描成像設備可以用於在模組解剖實驗室中檢查有缺陷的模組,往往作為保修索賠的先決條件。前述設備的不同版本可以被設計成用於不同的應用。例如,圖5A至圖6C所示類型的“可移動模組”設備的較小的、更便攜的版本可以被設計成在工廠或實驗室環境之外使用,例如,在裝運之後和安裝之前檢查模組。 In many cases, the line scan imaging apparatus as shown in Figures 5A-9 can be used to obtain a luminescence image generated by light excitation or electrical excitation or a combination of both and optionally by optical or thermal imaging or IV test data to check the module. For example, they can be used in module factories to inspect modules during production, for example, to check the stack of cells or cells for correction before sealing the polymer material and glass, for example to replace series resistors with excess levels A battery with associated defects or excessive levels of cracks or other carrier composite defects. They can also be used as final tests for completed modules in a module factory for quality control (QC) or quality assurance (QA) purposes. Other example applications are to inspect the module after shipping or prior to installation to check for damage due to rough shipping or to check for damage due to rough handling or improper attachment methods immediately after installation. The installed modules can also be inspected during their service life, for example as part of a regular inspection program or after adverse events such as severe hail. Finally, line scan imaging devices can be used to inspect defective modules in a modular anatomy lab, often as a prerequisite for warranty claims. Different versions of the aforementioned devices can be designed for different applications. For example, a smaller, more portable version of the "movable module" device of the type shown in Figures 5A through 6C can be designed to be used outside of a factory or laboratory environment, for example, after shipment and prior to installation. Module.

除了其它目的之外,前述設備對於故障的保修和確定是有利的,以保持在從生產線到其使用壽命結束的這些以及可能的其它階段從給定模組獲取的影像的記錄。 Among other things, the foregoing apparatus is advantageous for warranty and determination of faults to maintain a record of images taken from a given module at these and possibly other stages from the production line to the end of its useful life.

圖12示出用於確定光伏模組的例如在其整個使用壽命期間的狀態的系統1200的高級示例。系統的中心為網路可訪問儲存裝置1202,其儲存從複數個模組獲取的影像和其它資料。此外,“處理的影像”,即已經使用一種或複 數種算法處理以檢測各種缺陷和其它特徵的影像也可以儲存在網路可訪問的儲存裝置1202中。在一些示例中,可以使用本文描述的模組檢查設備的複數個實例來確定複數個模組的各種類型的模組資料。如以下另外論述,所確定的模組資料可以被上傳或以其它方式藉由一個或複數個網路1206如有線或無線資料鏈路發送到網路可訪問儲存裝置1202。如果模組檢查設備被適當地配備以在安裝之後監測模組發電,或者如果模組在製造時或在安裝之前用I-V測試系統進行檢查,則此類資料的示例可以包括光致發光影像及/或電致發光影像,並且還可以包括光學影像或熱影像以及發電和I-V測試資料。發送到網路可訪問儲存裝置1202的資料可以由複數個實體1204中的不同實體獲取,前述實體涉及模組的供應和操作或者故障模組的檢查並且包括製造商1210、運輸商1212、安裝人員1214、模組經營者1216和模組解剖實驗室1218。網路可訪問儲存裝置1202中的資料可以由位於一個或複數個位置的一個或複數個伺服器或資料中心儲存和管理。 FIG. 12 illustrates a high level example of a system 1200 for determining a state of a photovoltaic module, such as during its entire useful life. The center of the system is a network accessible storage device 1202 that stores images and other data retrieved from a plurality of modules. In addition, "processed images", i.e., images that have been processed using one or more algorithms to detect various defects and other features, may also be stored in network accessible storage device 1202. In some examples, multiple instances of the module inspection device described herein can be used to determine various types of module data for a plurality of modules. As discussed further below, the determined module data can be uploaded or otherwise transmitted to the network accessible storage device 1202 by one or more networks 1206, such as wired or wireless data links. Examples of such data may include photoluminescence images and/or if the module inspection equipment is properly equipped to monitor module power generation after installation, or if the module is inspected at the time of manufacture or prior to installation with an IV test system. Or electroluminescence images, and may also include optical or thermal images as well as power generation and IV test data. The data sent to the network accessible storage device 1202 may be obtained by a different entity in a plurality of entities 1204 that relate to the provisioning and operation of the module or the inspection of the failed module and include the manufacturer 1210, the transporter 1212, the installer 1214, module operator 1216 and module dissection laboratory 1218. The data in the network accessible storage device 1202 can be stored and managed by one or more servers or data centers located in one or more locations.

光伏模組通常具有獨特的或以其它方式單獨區分的識別條形碼或數字代碼以用於ID目的,其可以在發光或光學影像中可辨別或作為元資料手動輸入以與影像或其它模組資料一起上傳,或如果變頻器配備齊全,則從變頻器無線地廣播。在一些示例中,與模組檢查事件相關聯的複數個元資料項與影像和其它模組資料一起上傳,前述資料包括影像獲取設備ID、經營者ID、影像獲取的時間和地點、 成像模式(例如,EL,PL,光學或熱學)、環境狀況如溫度和相對濕度以及經營者評論中的一者或多者。可以被上傳以用於儲存在網路可訪問儲存裝置1202的其它元資料項可以包括關於模組的製造的資訊,如電池的供應商、電池的序列號、電池的類型以及單個電池的I-V測試資料。元資料還可以包括關於用於模組組裝的材料和工藝的詳細資訊,例如,供應商和包括晶圓原料在內的原材料類型,以及如電爐的電池加工設備和狀態以及晶圓切割設備。最終,為了從狀況確定系統中獲得最大的價值,儲存的資料可能跨越整個光伏價值鏈。 Photovoltaic modules typically have unique or otherwise separately identified identification barcodes or digital codes for ID purposes, which may be discernible in illuminating or optical images or manually entered as metadata for use with images or other module data. Upload, or if the drive is fully equipped, broadcast wirelessly from the drive. In some examples, the plurality of metadata items associated with the module check event are uploaded with the image and other module data, including the image acquisition device ID, the operator ID, the time and location of the image acquisition, and the imaging mode ( For example, EL, PL, optical or thermal), one or more of environmental conditions such as temperature and relative humidity, and operator reviews. Other metadata items that may be uploaded for storage in the network accessible storage device 1202 may include information regarding the manufacture of the module, such as the supplier of the battery, the serial number of the battery, the type of battery, and the IV test of the individual battery. data. The metadata can also include detailed information about the materials and processes used for module assembly, such as the supplier and the type of raw materials including wafer materials, as well as battery processing equipment and states such as electric furnaces, and wafer cutting equipment. Ultimately, in order to get the most value out of the status determination system, the stored data may span the entire PV value chain.

儲存在網路可訪問儲存裝置1202中的記錄可以包括模組在安裝之後的地理位置。將這些資訊與特定位置的天氣記錄結合,能夠開發出將缺陷類型與天氣歷史相關聯的算法,或者幫助評估保修索賠。 The records stored in the network accessible storage device 1202 may include the geographic location of the modules after installation. Combine this information with weather records at specific locations to develop algorithms that correlate defect types to weather history or to help evaluate warranty claims.

可以使得儲存在網路可訪問儲存裝置1202的模組資料被涉及模組供應、操作及/或檢查的任何實體1204以及其它感興趣方1208如太陽能金融實體1220、太陽能保險實體1222、太陽能項目業主1224、太陽能市場報告團體1226以及標準和質量保證機構1228訪問以用於各種目的。這些目的包括例如:當模組未能提供其保證的發電時,確定哪個實體出現故障;允許保險和財務團體挖掘資料以將風險因素應用於模組供應鏈中的各個實體;允許標準或市場報告團體挖掘資料以將質量因素應用於模組供應鏈中的各個實體;允許項目業主、安裝人員、保險公司或金融 機構在安裝前堅持使用帶有經過驗證的測試記錄的模組;並允許製造商提供已藉由基於發光成像的QC和QA程式的預先認證的高質量模組。模組資料還可以為任何供應、操作及/或檢查實體1204或感興趣方1208提供用於增值分析的大資料,以用於改進製造、潛在改進電池設計、特定模組對於不同環境的適用性、某些模組製造商、運輸商或安裝者以及最終客戶營銷的可靠性或其它方面的目的。包含受檢模組完整歷史的資料記錄(除模組製造之外,包括關於晶片和電池製造的資訊)可幫助跟蹤特定模組失效模式,以使用特定材料、工藝、工藝設備、供應商等。 Any entity 1204 that stores module data stored in the network accessible storage device 1202 may be involved in module provisioning, operation, and/or inspection, as well as other interested parties 1208 such as solar financial entity 1220, solar insurance entity 1222, solar project owner 1224, Solar Market Reporting Group 1226 and Standards and Quality Assurance Agency 1228 are accessed for various purposes. These purposes include, for example, determining which entity has failed when the module fails to provide its guaranteed power generation; allowing insurance and finance groups to mine data to apply risk factors to entities in the module supply chain; allowing standards or market reporting Group mining data to apply quality factors to entities in the module supply chain; allowing project owners, installers, insurance companies, or financial institutions to adhere to modules with validated test records prior to installation; and allowing manufacturers Provides pre-certified high quality modules that have been programmed with luminescence based QC and QA programs. The module data can also provide large data for value-added analysis to any supply, operation, and/or inspection entity 1204 or interested party 1208 for improved manufacturing, potentially improved battery design, and suitability of particular modules for different environments. , the reliability or other purposes of certain module manufacturers, carriers or installers, and end-customer marketing. Data records containing the complete history of the module under test (in addition to module manufacturing, including information on wafer and battery manufacturing) can help track specific module failure modes to use specific materials, processes, process equipment, suppliers, and more.

在較佳實施例中,上傳到網路可訪問儲存裝置1202的影像在配備有合適的機器可讀程式代碼的電腦上用一個或複數個算法來處理,以定性或定量地識別感興趣的缺陷。例如對於發光影像,可以應用邊緣檢測算法來識別通常指示缺陷的相對於背景具有較高或較低強度的局部區域。其它算法可以分類或區分不同類型的缺陷,例如,基於特性形狀、在不同激勵條件下生成的兩個或更多個發光影像的比較或者發光影像和光學影像的比較。然後可以生成突出顯示不同類型的缺陷的重疊影像。其它算法可以用於量化特定類型的缺陷。在一個示例中,可以應用裂紋檢測算法來計算一個或複數個指標,例如待測模組中的每個電池中裂紋的數量或總長度。可以應用其它算法來識別斷裂的指狀物並計算如每個電池中斷裂指狀物的數量的指標,或者識別和列舉電隔離的電池或電池區域或者計算載 流子重組缺陷的指標,如位錯或雜質-豐富的電池區域。還可以使用另一種算法,特別是在模組製造結束時,其基於從模組中識別的各種類型的缺陷的出現估算的預期性能,對模組將應用質量分類。來自給定發光、光學或熱影像的這些和其它影像處理結果可以與該影像以及任何I-V測試資料一起儲存。 In a preferred embodiment, images uploaded to the network accessible storage device 1202 are processed by one or more algorithms on a computer equipped with suitable machine readable program code to qualitatively or quantitatively identify defects of interest. . For example, for a luminescent image, an edge detection algorithm can be applied to identify a localized region that has a higher or lower intensity relative to the background, typically indicating a defect. Other algorithms may classify or distinguish between different types of defects, for example, based on characteristic shapes, comparisons of two or more illuminating images generated under different excitation conditions, or comparisons of illuminating images and optical images. You can then generate overlapping images that highlight different types of defects. Other algorithms can be used to quantify specific types of defects. In one example, a crack detection algorithm can be applied to calculate one or more metrics, such as the number or total length of cracks in each cell in the module under test. Other algorithms can be applied to identify broken fingers and calculate an indicator such as the number of broken fingers in each cell, or identify and enumerate electrically isolated cells or battery regions or calculate indicators of carrier recombination defects, such as Wrong or impurity - rich battery area. It is also possible to use another algorithm, in particular at the end of the module manufacture, which classifies the application quality for the module based on the expected performance estimated from the occurrence of various types of defects identified in the module. These and other image processing results from a given illuminating, optical or thermal image can be stored with the image and any I-V test data.

在其它實施例中,代替或除了與網路可訪問儲存裝置1202相關聯的服務提供商的計算裝置之外,由獲取影像的供應、操作及/或檢查實體1204應用影像處理算法並且計算分析資料。在其它實施例中,可以在任何供應、操作及/或檢查實體1204及/或感興趣方1208的請求下分析所儲存的影像。 In other embodiments, instead of or in addition to the computing device of the service provider associated with the network accessible storage device 1202, the image processing algorithm is applied and the analytical data is calculated by the acquisition, operation, and/or inspection entity 1204. . In other embodiments, the stored images may be analyzed at the request of any of the provisioning, operating, and/or inspection entities 1204 and/or interested parties 1208.

應理解,在不同的時間,例如在運輸之前和之後獲取的給定模組的影像和資料可以例如藉由減法或藉由計算強度比來比較以突出顯示任何新的缺陷,以幫助確定模組失效的原因和時間。除此之外或另選地,可以在從這些影像和資料獲得的一個或複數個指標之間進行比較。“差異”或“比率”影像對於區分新形成的缺陷如裂紋或斷裂的金屬指狀物與載流子重組缺陷如從開始就存在於電池材料中的位錯可能特別有用。影像元資料也可以提供有用的資訊,例如以識別具有統計意義的顯著性的複數個模組失效是否與特定的製造商1210、運輸商1212或安裝人員1214相關聯。 It should be understood that images and data for a given module acquired at different times, such as before and after shipping, can be compared, for example, by subtraction or by calculating the intensity ratio to highlight any new defects to aid in determining the module. The cause and time of the failure. Additionally or alternatively, a comparison can be made between one or more of the indicators obtained from the images and materials. "Differential" or "ratio" images may be particularly useful for distinguishing newly formed defects such as cracked or broken metal fingers from carrier recombination defects such as dislocations present in the battery material from the beginning. The image metadata may also provide useful information, such as to identify whether a plurality of module failures that are statistically significant are associated with a particular manufacturer 1210, a carrier 1212, or an installer 1214.

在某些實施例中,用於各種模組分組的統計資料,例 如,來自特定製造商1210或由特定運輸商1212裝運的模組可以由與網路可訪問儲存裝置1202相關聯的服務提供商的計算裝置按常規或根據感興趣方1208或供應、操作及/或檢查實體1204的請求進行計算。處理後的模組資料的更複雜的比較也是可能的,包括例如根據本領域已知的ANOVA(方差分析)或其它統計分析,將從影像獲得的資料或用於選擇一個或複數個模組的相關指標與從一般模組群體獲得的資料進行比較。類似的統計分析可以應用於單個電池。例如,可以將一個或複數個模組的PL影像分割成獨立的電池影像,其在藉由平均或獲得電池影像的中值來計算電池模板之前可以任選地對失真進行校正。為此目的,將模組影像分割成單獨的電池影像,其在被饋送到模板計算之前可選地對失真進行校正,然後使用平均中值或任何其它方法分析個體影像以創建“正常電池”的電池影像。然後可以根據ANOVA分析或類似方法排除懷疑有缺陷的電池,即PL影像強烈偏離模板的電池,以提供代表“正常電池”的影像。然後可以將單個電池影像與“正常電池”影像進行比較,這使得能夠從預期的正常性能中量化電池性能的偏差。 In some embodiments, statistics for various module groupings, such as modules shipped from a particular manufacturer 1210 or by a particular carrier 1212, may be by a service provider associated with the network accessible storage device 1202. The computing device performs the calculations as usual or upon request by the interested party 1208 or the provisioning, operating, and/or inspection entity 1204. More complex comparisons of processed module data are also possible, including, for example, ANOVA (ANOVA) or other statistical analysis known in the art, data obtained from images or used to select one or more modules. Relevant indicators are compared with data obtained from the general module group. A similar statistical analysis can be applied to a single battery. For example, the PL image of one or more modules can be segmented into separate battery images that can optionally be corrected before the battery template is calculated by averaging or obtaining the median of the battery image. For this purpose, the module image is segmented into individual battery images that are optionally corrected for distortion before being fed to the template calculation, and then the individual images are analyzed using average median or any other method to create a "normal battery" Battery image. The suspected defective battery can then be removed according to ANOVA analysis or a similar method, ie, a battery with a PL image strongly deviating from the template to provide an image representative of a "normal battery." A single battery image can then be compared to a "normal battery" image, which enables quantification of battery performance deviations from expected normal performance.

可以基於一個或複數個影像處理和分析結果作出可行的判定。此類判定包括例如基於預期的性能將模組評級為有缺陷、對模組進行評分,如果檢測到模組失效,則確定可能的實體出現故障,及/或將模組從使用中移除,例如決定不裝運或安裝它。在一些實施例中,這些判定可以在網 路可訪問儲存裝置1202進行,該網路可訪問儲存裝置1202可以用作作為雲服務操作的集中式影像儲存和處理服務,即藉由圖12中表示的IT網路和後端伺服器/處理單元作為雲1202。然後可以將可行的判定傳達給適當的經營者。在其它實施例中,可以在模組生產期間作出可行的判定,例如移除有缺陷的電池或組列並在將電池密封在模組封裝中的不可逆步驟之前將其替換。 A feasible decision can be made based on one or more image processing and analysis results. Such determinations include, for example, rating the module as defective based on expected performance, scoring the module, determining a possible entity failure if a module failure is detected, and/or removing the module from use, For example, decide not to ship or install it. In some embodiments, these determinations can be made at network accessible storage 1202, which can be used as a centralized image storage and processing service for cloud service operations, ie, represented by FIG. The IT network and back-end server/processing unit act as cloud 1202. The feasible decision can then be communicated to the appropriate operator. In other embodiments, a viable determination can be made during module production, such as removing a defective battery or group of columns and replacing it before replacing the battery in an irreversible step in the module package.

一般而言,除了其它因素之外,與在網路可訪問儲存裝置1202儲存模組資料如影像資料和關聯的元資料以及分析資料相關的成本取決於所儲存的資料文件的大小、所需的資料可訪問性和所需的儲存時間,前述儲存時間根據模組的使用壽命可以預計為二十年或二十五年或者甚至更長。不管可以應用的任何資料壓縮算法,模組的影像資料文件的大小通常將隨著空間分辨率,即像素的數量而縮放。更高分辨率的影像可以提供優異的缺陷檢測結果,但是儲存可能更昂貴,從而需要權衡。如果成像系統所提供的空間分辨率超出了要求,則可以使用像素合併來降低分辨率,並從而降低影像文件的大小。例如,來自2×2個像素組的計數可以被組合以將影像文件大小減小四分之一。在一個具體示例中,本申請人已經發現,可以將2×2個像素合併應用於如圖10A中所示的模組的700萬像素發光影像,與原始的未合併影像相比不會顯著影響影像處理算法的結果。 In general, among other factors, the cost associated with storing module data such as image data and associated metadata and analytics data in the network accessible storage device 1202 depends on the size of the stored data file and the required data. Data accessibility and required storage time, which can be expected to be twenty or twenty five years or even longer depending on the useful life of the module. Regardless of any data compression algorithm that can be applied, the size of the image data file of the module will typically scale with spatial resolution, ie the number of pixels. Higher resolution images provide excellent defect detection results, but storage can be more expensive and requires trade-offs. If the spatial resolution provided by the imaging system exceeds the requirements, pixel merging can be used to reduce the resolution and thereby reduce the size of the image file. For example, counts from 2 x 2 pixel groups can be combined to reduce the image file size by a quarter. In one specific example, the Applicant has discovered that 2 x 2 pixels can be combined for a 7 megapixel illuminating image of the module as shown in Figure 10A, which does not significantly affect the original uncombined image. The result of the image processing algorithm.

在另一種減少資料儲存要求和成本的方法中,本申請 人已經開發了使用每像素10位的專有資料格式(藉由相關的編解碼器)。前述方法在影像顯示或處理之前被解碼為16位,這涉及小的計算開銷但是提供顯著的儲存節省。影像壓縮在分辨率方面是無損的,使得在與網路可訪問儲存裝置1202相關聯的處理器中進行影像的處理及/或比較不受影響。在一個特定的示例中,本申請人確定以無壓縮形式儲存兩種影像,例如行掃描EL和行掃描PL影像,需要約100兆字節的儲存空間,而壓縮影像僅需要25兆字節。 In another approach to reducing data storage requirements and costs, the Applicant has developed a proprietary data format using 10 bits per pixel (by associated codecs). The foregoing method is decoded to 16 bits prior to image display or processing, which involves small computational overhead but provides significant storage savings. Image compression is lossless in terms of resolution such that processing and/or comparison of images in the processor associated with network accessible storage device 1202 is unaffected. In one particular example, the Applicant determined that storing two images in an uncompressed format, such as a line scan EL and a line scan PL image, requires approximately 100 megabytes of storage space, while compressed images require only 25 megabytes.

在用於降低儲存成本的另一種方法中,可以將模組資料初始儲存在更快的存取儲存中,直到受檢模組已經被安裝,並且此後被移到更便宜、更慢的存取儲存中。 In another method for reducing storage costs, module data can be initially stored in faster access storage until the module being tested has been installed and thereafter moved to cheaper, slower access. Stored.

在一些示例中,圖12中示出的狀況確定系統1200可以作為基於網路的軟件即服務(SaaS)模型來操作。在圖13中所示的一個特定實施例中,如1302所示,負責或以其它方式與模組狀態確定系統相關聯的服務提供商1300可以向涉及模組的供應、操作及/或檢查的一個或複數個實體1204提供(例如,租賃、出售等)模組檢查設備500、600、700、800或900。實體1204及/或檢查設備500-900將模組影像資料1304上傳到服務提供商1300,以在網路可訪問儲存裝置1202等處進行處理、分析和儲存1306。服務提供商1300可以向網路可訪問儲存裝置1202的經營者支付資料儲存,並且可以藉由向感興趣方1208如評估保修索賠的太陽能保險公司或者如上列舉的一些其它感興趣方1208收取費用1310來補償成本。服務提供商1300或感興 趣方1208可以檢索1312並提供1314所請求的模組資料及/或分析資料。在替代實施例中,服務提供商1300可以將模組檢查設備500-900提供給供應、操作及/或檢查實體1204而不需要預付費用,並且可以向實體1204收取費用以用於上傳1304或以其它方式提供模組資料。在其它實施例中,使用模組檢查設備500-900的服務提供商1300和供應、操作及/或檢查實體1204可以協商更高的設備租賃或銷售成本以換取訪問模組資料的較低費用。在替代實施例中,服務提供商1300向一方1204提供模組檢查設備而不需要預付費用,並且收取費用以用於影像資料上傳1304並且向想要在未來任何時間訪問影像資料的任何其它方收取另一費用。可以考慮其它費用和收費的變型。 In some examples, the status determination system 1200 shown in FIG. 12 can operate as a network-based software as a service (SaaS) model. In one particular embodiment shown in FIG. 13, as shown at 1302, the service provider 1300 responsible for or otherwise associated with the module state determination system can provide for provisioning, operation, and/or inspection of modules. One or more entities 1204 provide (eg, rent, sell, etc.) module inspection devices 500, 600, 700, 800, or 900. The entity 1204 and/or the inspection device 500-900 uploads the module image material 1304 to the service provider 1300 for processing, analysis, and storage 1306 at the network accessible storage device 1202 or the like. The service provider 1300 can pay for the storage of information to the operator of the network accessible storage device 1202 and can charge a fee 1310 to the interested party 1208, such as a solar insurance company that evaluates the warranty claim or some other interested parties 1208 listed above. To compensate for the cost. The service provider 1300 or the interested party 1208 can retrieve 1312 and provide the module data and/or analysis data requested by 1314. In an alternate embodiment, the service provider 1300 can provide the module inspection device 500-900 to the provisioning, operating, and/or inspection entity 1204 without the need for pre-paid, and can charge the entity 1204 for uploading 1304 or Other methods provide module data. In other embodiments, the service provider 1300 and the provisioning, operation, and/or inspection entity 1204 using the module inspection device 500-900 can negotiate higher equipment rental or sales costs in exchange for lower fees for accessing module data. In an alternate embodiment, the service provider 1300 provides the module check device to the party 1204 without the need for pre-paid, and charges a fee for the video material upload 1304 and charges any other party who wishes to access the video material at any time in the future. Another fee. Other variants of fees and charges can be considered.

圖14示出根據一些實施方式的用於確定光伏模組(圖14中未示出)的狀況的系統1200的示例物理和邏輯架構1400。架構1400包括服務提供商的一個或複數個服務計算裝置1402,如以上關於圖13論述的服務提供商1300或另一服務提供商。一個或複數個服務計算裝置1402能夠藉由具有網路可訪問儲存裝置1202的一個或複數個網路1404進行通訊。此外,一個或複數個服務計算裝置1402能夠藉由一個或複數個網路1404與涉及光伏模組的供應、操作及/或檢查的實體1204進行通訊。例如,一個或複數個服務計算裝置1402可以與涉及光伏模組的供應、操作及/或檢查的實體1204的客戶端計算裝置1406及/或與模組檢查設備500-900相關聯的計算裝置510進行通訊。 FIG. 14 illustrates an example physical and logical architecture 1400 of a system 1200 for determining conditions of a photovoltaic module (not shown in FIG. 14), in accordance with some embodiments. The architecture 1400 includes one or a plurality of service computing devices 1402 of a service provider, such as the service provider 1300 or another service provider discussed above with respect to FIG. One or more of the service computing devices 1402 can communicate via one or more networks 1404 having network accessible storage devices 1202. In addition, one or more of the service computing devices 1402 can communicate with the entity 1204 that is involved in the provisioning, operation, and/or inspection of the photovoltaic modules by one or more of the networks 1404. For example, one or more of the service computing devices 1402 can be associated with the client computing device 1406 of the entity 1204 that is involved in the provision, operation, and/or inspection of the photovoltaic module and/or the computing device 510 associated with the module inspection device 500-900. Communicate.

在一些示例中,與檢查設備500-900相關聯的計算裝置510可以被配置成藉由一個或複數個網路1404將模組資料1408,例如在現場獲得的模組資料1408直接發送到服務計算裝置1402。例如,控制程式1410可以被儲存或以其它方式保持在計算裝置510中的一個或複數個電腦可讀介質(CRM)1412中。控制程式1410可以由計算裝置510的一個或複數個處理器1414執行以獲得現場的模組資料1408。例如,控制程式1410可以被執行以操作照相機、掃描機構和上述的其它部件,以獲得關於被檢查設備500-900中的一者或多者檢查的一個或複數個光伏模組的模組資料1408。如上所述,模組資料1408可以包括一個或複數個PL及/或EL影像、光學影像或其它類型的影像、I-V測試資料等。此外,如上所述,模組資料1408可以包括關於被測試的光伏模組、正在執行的測試、執行測試的檢查設備的元資料和/或其它元資料。 In some examples, computing device 510 associated with inspection device 500-900 can be configured to send module material 1408, such as module material 1408 obtained in the field, directly to service computing by one or more networks 1404. Device 1402. For example, control program 1410 can be stored or otherwise retained in one or more computer readable media (CRM) 1412 in computing device 510. Control program 1410 can be executed by one or more processors 1414 of computing device 510 to obtain module data 1408 for the field. For example, the control program 1410 can be executed to operate the camera, the scanning mechanism, and other components described above to obtain module data 1408 for one or more photovoltaic modules inspected by one or more of the devices 500-900 being inspected. . As noted above, the module data 1408 can include one or more PL and/or EL images, optical images or other types of images, I-V test data, and the like. Moreover, as described above, the module material 1408 can include metadata and/or other metadata about the photovoltaic module being tested, the test being performed, the inspection device performing the test.

控制程式1410的執行可以使得處理器1414使用一個或複數個無線及/或有線通訊接口1416連接到一個或複數個網路1404,以將模組資料1408發送到服務計算裝置1402。在一些情況下,模組資料1408可以實時發送,例如在檢查設備500-900生成模組資料1408時。在其它情況下,模組資料1408可以批量發送,如在達到特定的觸發點之後/在收集到特定量的資料之後、在某個時間點過去之後等等。因此,一個或複數個服務計算裝置1402可以接收模組資料1408、將模組資料1408儲存在網路可訪問儲存裝 置1202處並且對模組資料1408執行分析或其它操作。 Execution of control program 1410 may cause processor 1414 to connect to one or more of network 1404 using one or more wireless and/or wired communication interfaces 1416 to transmit module material 1408 to service computing device 1402. In some cases, the module data 1408 can be sent in real time, such as when the inspection device 500-900 generates the module data 1408. In other cases, the module material 1408 can be sent in bulk, such as after a particular trigger point is reached/after a certain amount of data has been collected, after a certain point in time has elapsed, and the like. Accordingly, one or more of the service computing devices 1402 can receive the module data 1408, store the module data 1408 at the network accessible storage device 1202, and perform analysis or other operations on the module data 1408.

除此之外或另選地,模組資料1408可以由客戶端計算裝置1406從檢查設備500-900的計算裝置510接收。隨後,客戶端計算裝置1406可以將模組資料1408發送到服務計算裝置1402以將其儲存在網路可訪問儲存裝置1202上。例如,客戶端計算裝置1406可以包括儲存或以其它方式保持在一個或複數個CRM 1420上的客戶端應用1418。客戶端應用1418可以由客戶端計算裝置1406的一個或複數個處理器1422執行,如從檢查設備500-900接收模組資料1408並將模組資料1408發送到服務計算裝置1402。客戶端應用1418可以使得處理器1422使用一個或複數個無線及/或有線通訊接口1424連接到一個或複數個網路1404,以將模組資料1408發送到服務計算裝置1402。在一些情況下,客戶端應用1418可以由服務計算裝置1402下載或以其它方式提供給客戶端裝置1406。例如,客戶端應用1418可以為專門配置客戶端計算裝置1406以接收和處理來自檢查設備500-900的模組資料1408並將模組資料1408發送到服務計算裝置1402的程式。 Additionally or alternatively, the module material 1408 can be received by the client computing device 1406 from the computing device 510 of the inspection device 500-900. The client computing device 1406 can then send the module material 1408 to the service computing device 1402 to store it on the network accessible storage device 1202. For example, client computing device 1406 can include a client application 1418 that is stored or otherwise maintained on one or more CRMs 1420. The client application 1418 can be executed by one or more processors 1422 of the client computing device 1406, such as receiving module data 1408 from the inspection device 500-900 and transmitting the module material 1408 to the service computing device 1402. The client application 1418 can cause the processor 1422 to connect to one or more of the networks 1404 using one or more wireless and/or wired communication interfaces 1424 to transmit the module material 1408 to the service computing device 1402. In some cases, client application 1418 can be downloaded or otherwise provided to client device 1406 by service computing device 1402. For example, the client application 1418 can be a program that specifically configures the client computing device 1406 to receive and process the module data 1408 from the inspection device 500-900 and send the module data 1408 to the service computing device 1402.

在一些示例中,供應、操作及/或檢查實體1204中的一者或多者可以各自操作檢查設備500-900和客戶端計算裝置1406。例如,模組製造商可以使用檢查設備500-900來獲得關於每個製造模組的第一模組資料,並且該第一模組資料可以被發送到服務計算裝置1402以儲存在網路可訪問儲存裝置1202處。隨後,在將特定模組運送到安裝位 置之後,可以再次使用檢查設備500-900檢查該模組,以獲得關於該模組的第二模組資料,前述第二模組資料可以被發送到服務計算裝置1402以用於儲存在網路可訪問儲存裝置1202處。另外,在安裝之後,可以使用檢查設備500-900再次檢查特定模組以獲得關於該模組的第三模組資料,前述第三模組資料可以被發送到服務計算裝置1402以用於儲存在網路可訪問儲存裝置1202處。另外,在安裝之後,可以使用檢查設備500-900定期地重新檢查特定模組以獲得關於該模組的附加模組資料,前述附加模組資料可以被發送到服務計算裝置1402以用於儲存在網路可訪問儲存裝置1202處。此外,如果確定該特定模組具有故障狀況,則可以由模組解剖實驗室實體使用檢查設備500-900再次檢查該特定模組以獲得附加模組資料,前述附加模組資料可以被發送到服務計算裝置1402以用於儲存在網路可訪問儲存裝置1202處。可以將在不同時間點獲得的模組資料彼此比較,以確定何時可能發生導致模組的損壞、失效或其它故障狀況的事件,例如用於確定模組的故障狀況的可能原因。 In some examples, one or more of the provisioning, operating, and/or inspection entities 1204 can each operate the inspection device 500-900 and the client computing device 1406. For example, the module manufacturer can use the inspection device 500-900 to obtain first module data for each manufacturing module, and the first module data can be sent to the service computing device 1402 for storage on the network. At storage device 1202. Then, after the specific module is transported to the installation location, the module can be inspected again using the inspection device 500-900 to obtain the second module data about the module, and the second module data can be sent to the service. Computing device 1402 is for storage at network accessible storage device 1202. Additionally, after installation, the particular module can be checked again using the inspection device 500-900 to obtain third module data about the module, and the third module data can be sent to the service computing device 1402 for storage. The network can access the storage device 1202. Additionally, after installation, the particular module can be re-examined periodically using inspection equipment 500-900 to obtain additional module information about the module, which can be sent to service computing device 1402 for storage at The network can access the storage device 1202. In addition, if it is determined that the specific module has a fault condition, the module anatomy laboratory entity can check the specific module again to obtain additional module data by using the inspection device 500-900, and the additional module data can be sent to the service. Computing device 1402 is for storage at network accessible storage device 1202. Module data obtained at different points in time can be compared to each other to determine when events that cause damage, failure, or other fault conditions of the module may occur, such as a possible cause for determining a fault condition of the module.

在一些示例中,服務計算裝置1402可以包括被儲存在或以其它方式保持在一個或複數個CRM 1432上的服務程式1426和分析程式1428。例如,服務程式1426可以由一個或複數個處理器1434執行以配置服務計算裝置1402以從檢查設備500-900及/或客戶端裝置1406接收和處理模組資料1408並將模組資料1408發送到網路可訪問儲存裝 置1202。服務計算裝置1402可以例如包括一個或複數個通訊接口1436,其被配置成藉由一個或複數個網路1404與檢查設備500-900、客戶端計算裝置1406、網路可訪問儲存裝置1202等通訊。 In some examples, service computing device 1402 can include service program 1426 and analysis program 1428 that are stored or otherwise maintained on one or more CRMs 1432. For example, the service program 1426 can be executed by one or more processors 1434 to configure the service computing device 1402 to receive and process the module data 1408 from the inspection device 500-900 and/or the client device 1406 and send the module data 1408 to The network can access the storage device 1202. The service computing device 1402 can, for example, include one or more communication interfaces 1436 configured to communicate with the inspection device 500-900, the client computing device 1406, the network accessible storage device 1202, etc., by one or more networks 1404. .

另外,分析程式1428可以由一個或複數個處理器1434執行以用於分析模組資料1408以確定分析資料1438。分析資料1438可以指示特定模組的狀況和/或整體趨勢、單個或複數個模組中的失效原因等。例如,分析程式1428在由一個或複數個處理器1434執行時,可使得處理器將在第一時間點為特定模組接收到的模組資料1408與在第二時間點為該模組接收到的模組資料1408進行比較以確定光伏模組的質量等級、光伏模組是否具有故障、光伏模組是否可能發生故障或光伏模組中的故障的原因中的至少一者。另外,分析資料1438可以指示製造和安裝鏈中首先識別出故障狀況的點以用於確定出可能是故障狀況的原因的實體。因此,分析資料1438可以能夠識別失效原因或其它故障狀況,以能夠改進用於改進模組的質量及/或可靠性的過程。 Additionally, analysis program 1428 can be executed by one or more processors 1434 for analyzing module data 1408 to determine analysis data 1438. The analysis data 1438 can indicate the status and/or overall trend of a particular module, the cause of failure in a single or multiple modules, and the like. For example, the analysis program 1428, when executed by one or more processors 1434, may cause the processor to receive the module data 1408 received for the particular module at the first time point and receive the module data at the second time point. The module data 1408 is compared to determine at least one of a quality level of the photovoltaic module, whether the photovoltaic module has a fault, whether the photovoltaic module is likely to fail, or a cause of a failure in the photovoltaic module. Additionally, the analysis profile 1438 can indicate the point in the manufacturing and installation chain that first identifies the fault condition for use in determining an entity that may be the cause of the fault condition. Thus, the analytical data 1438 can be able to identify the cause of the failure or other fault condition to enable improved procedures for improving the quality and/or reliability of the module.

包括影像資料1440和元資料1442的分析資料1438和模組資料1408可以存被儲在與網路可訪問儲存裝置1202相關聯的複數個儲存裝置1444上的網路可訪問儲存裝置1202上。在一些示例中,網路可訪問儲存裝置1202可以為服務提供商1300提供儲存容量,並為其它人提供儲存服務。網路可訪問儲存裝置1202可以包括儲存陣列如網 路附加儲存(NAS)系統、儲存區域網路(SAN)系統或儲存虛擬化系統。此外,網路可訪問儲存裝置1202可以與一個或複數個服務計算裝置1402位於同一位置,或者可以位於服務計算裝置1402的遠端或其它外部位置。 Analysis data 1438 and module data 1408, including image data 1440 and metadata 1442, may be stored on network accessible storage device 1202 on a plurality of storage devices 1444 associated with network accessible storage device 1202. In some examples, network accessible storage device 1202 can provide storage capacity for service provider 1300 and provide storage services for others. Network accessible storage device 1202 may include a storage array such as a network attached storage (NAS) system, a storage area network (SAN) system, or a storage virtualization system. Moreover, network accessible storage device 1202 can be co-located with one or more of service computing devices 1402, or can be located at a remote location or other external location of service computing device 1402.

在所示示例中,網路可訪問儲存裝置1202包括被稱為儲存控制器1446的一個或複數個儲存計算裝置,儲存控制器1446可以包括一個或複數個伺服器或任何其它合適的計算裝置,如關於服務計算裝置1402論述的任一示例。儲存控制器1446可以各自包括一個或複數個處理器1448、一個或複數個電腦可讀介質1450以及一個或複數個通訊接口1452。此外,儲存控制器1446的電腦可讀介質1450可以用於儲存可由處理器1448執行的任何數量的功能組件。在許多實施方式中,這些功能組件包括可由處理器1448執行的指令、模組或程式,並且在被執行時,前述指令、模組或程式具體地對處理器1448進行編程以執行本文歸因於儲存控制器1446的動作。例如,儲存管理程式1454可以控制或以其它方式管理模組資料1408的儲存並在耦合至儲存控制器1446的複數個儲存裝置1444中分析資料1438。 In the illustrated example, network accessible storage device 1202 includes one or more storage computing devices, referred to as storage controller 1446, which may include one or more servers or any other suitable computing device. As with any example discussed with respect to service computing device 1402. Storage controller 1446 can each include one or more processors 1448, one or more computer readable media 1450, and one or more communication interfaces 1452. Moreover, computer readable medium 1450 of storage controller 1446 can be used to store any number of functional components that are executable by processor 1448. In many embodiments, these functional components include instructions, modules or programs that are executable by processor 1448, and when executed, the aforementioned instructions, modules or programs specifically program processor 1448 to perform the purposes herein. The action of the controller 1446 is stored. For example, the storage management program 1454 can control or otherwise manage the storage of the module data 1408 and analyze the data 1438 in a plurality of storage devices 1444 coupled to the storage controller 1446.

另外,在一些情況下,儲存裝置1444可以包括一個或複數個物理儲存裝置陣列。例如,儲存控制器1446可以控制一個或複數個陣列,如用於配置RAID(獨立磁盤的冗餘陣列)配置或其它期望的儲存配置中的陣列。儲存控制器1446可以將基於物理儲存裝置1444的邏輯單元提供給服 務計算裝置1402,並且可以管理儲存在底層物理裝置(儲存裝置1444)上的資料。物理裝置(儲存裝置1444)可以為任何類型的儲存裝置,如硬盤驅動器、固態裝置、光學裝置、磁帶等等或其組合。 Additionally, in some cases, storage device 1444 can include one or a plurality of physical storage device arrays. For example, storage controller 1446 can control one or more arrays, such as arrays for configuring RAID (redundant array of independent disks) configurations or other desired storage configurations. The storage controller 1446 can provide the logical unit based on the physical storage device 1444 to the service computing device 1402 and can manage the data stored on the underlying physical device (storage device 1444). The physical device (storage device 1444) can be any type of storage device, such as a hard disk drive, a solid state device, an optical device, a magnetic tape, or the like, or a combination thereof.

另外,一個或複數個服務計算裝置1402可能夠藉由一個或複數個網路1404與一個或複數個感興趣方1208的計算裝置1458進行通訊。感興趣方的計算裝置1458包括一個或複數個處理器1460、一個或複數個電腦可讀介質(CRM)1462和一個或複數個通訊接口1464。感興趣方(IP)應用1466可以被儲存或以其它方式保持在CRM 1462上,並且可以由一個或複數個處理器1460執行,例如,用於與服務計算裝置1402通訊及/或從服務計算裝置1402接收分析資料1438。 Additionally, one or more of the service computing devices 1402 can be capable of communicating with one or more computing devices 1458 of interested parties 1208 by one or more networks 1404. The computing device 1458 of the interested party includes one or more processors 1460, one or more computer readable media (CRM) 1462, and one or more communication interfaces 1464. The interested party (IP) application 1466 can be stored or otherwise maintained on the CRM 1462 and can be executed by one or more processors 1460, for example, for communicating with the service computing device 1402 and/or from the service computing device The 1402 receives the analytical data 1438.

在一些示例中,一個或複數個服務計算裝置1402和儲存控制器1446可以包括複數個物理伺服器或其它類型的計算裝置,其可以以任意種方式來實施。在例如伺服器的情況下,模組、程式、其它功能組件和資料儲存的一部分可以在伺服器上如在伺服器集群中實現,例如在伺服器場或資料中心、雲託管的計算服務等等,但是可以附加地或可選地使用其它電腦體系結構。此外,在一些示例中,客戶端計算裝置1406及/或感興趣方計算裝置1458可以為一個或複數個伺服器,或者另選地,可以為個人電腦、膝上型電腦、工作站、平板計算裝置、移動裝置、智能電話、可穿戴計算裝置或能夠藉由網路發送資料的任何其它類型 的計算裝置。 In some examples, one or more of service computing device 1402 and storage controller 1446 can include a plurality of physical servers or other types of computing devices, which can be implemented in any manner. In the case of, for example, a server, modules, programs, other functional components, and portions of data storage can be implemented on a server, such as in a server cluster, such as in a server farm or data center, cloud-hosted computing services, and the like. However, other computer architectures may be used additionally or alternatively. Moreover, in some examples, client computing device 1406 and/or interested party computing device 1458 can be one or more servers, or alternatively, can be a personal computer, laptop, workstation, tablet computing device , a mobile device, a smart phone, a wearable computing device, or any other type of computing device capable of transmitting material over a network.

處理器1414、1422、1434、1448及/或1460中的每一者可以為單個處理單元或複數個處理單元,並且可以包括單個或複數個計算單元或複數個處理核。前述處理器可以被實現為基於操作指令操縱訊號的一個或複數個中央處理單元、微處理器、微電腦、微控制器、數字訊號處理器、狀態機、邏輯電路和/或任何裝置。例如,前述處理器可以為被具體編程或配置成執行本文所述的算法和處理的任何合適類型的一個或複數個硬件處理器和/或邏輯電路。前述處理器可以被配置成獲取和執行儲存在其各自的電腦可讀介質1412、1420、1432、1450及/或1462中的電腦可讀指令,這些電腦可讀指令可以對處理器進行編程以執行本文描述的功能。 Each of the processors 1414, 1422, 1434, 1448, and/or 1460 can be a single processing unit or a plurality of processing units, and can include a single or multiple computing units or a plurality of processing cores. The aforementioned processor may be implemented as one or more central processing units, microprocessors, microcomputers, microcontrollers, digital signal processors, state machines, logic circuits, and/or any devices that manipulate signals based on operational instructions. For example, the aforementioned processor may be any suitable type of one or more hardware processors and/or logic circuits that are specifically programmed or configured to perform the algorithms and processes described herein. The aforementioned processor may be configured to acquire and execute computer readable instructions stored in its respective computer readable medium 1412, 1420, 1432, 1450, and/or 1462, which may program the processor to perform The features described in this article.

電腦可讀介質1412、1420、1432、1450及/或1462可以包括以任何類型的技術實現的易失性和非易失性記憶體及/或可移動和不可移動介質,以用於儲存如電腦可讀指令、資料結構、程式模組或其它資料的資訊。例如,電腦可讀介質可以包括但不限於RAM、ROM、EEPROM、閃存或其它儲存記憶體技術、光儲存裝置、固態儲存裝置、磁帶、磁盤儲存裝置、RAID儲存系統、儲存陣列、附接網路的儲存裝置、儲存區域網路、雲儲存裝置或可用於儲存所需資訊並可由計算裝置訪問的任何其它介質。根據各個計算裝置的配置,電腦可讀介質可以為有形的非暫時性介質,其程度在於,當提及時,非暫時性電腦可讀介質 (non-transitory computer-readable media)排除如能量、載波訊號、電磁波及/或訊號本身的介質。 The computer readable media 1412, 1420, 1432, 1450, and/or 1462 can include volatile and nonvolatile memory and/or removable and non-removable media implemented in any type of technology for storage, such as a computer. Information on readable instructions, data structures, program modules or other materials. For example, computer readable media can include, but is not limited to, RAM, ROM, EEPROM, flash memory or other storage memory technology, optical storage devices, solid state storage devices, magnetic tape, magnetic disk storage devices, RAID storage systems, storage arrays, attached networks Storage device, storage area network, cloud storage device or any other medium that can be used to store the required information and be accessible by the computing device. Depending on the configuration of the various computing devices, the computer readable medium can be a tangible, non-transitory medium, to the extent that, when mentioned, non-transitory computer-readable media excludes energy, carrier signals. , electromagnetic waves and / or the signal itself.

在一些情況下,電腦可讀介質1412、1420、1432、1450及/或1462可以與關聯的計算裝置處於相同的位置,而在其它示例中,電腦可讀介質可以為分開的或部分地遠離關聯的計算裝置。此外,如上所述,電腦可讀介質1412、1420、1432、1450及/或1462可以用於儲存可由相應的關聯處理器執行的任何數量的功能組件。在許多實施方式中,這些功能組件,例如控制程式1410、客戶端應用1418、服務程式1426、分析程式1428、儲存管理程式1454和感興趣方應用1466包括可由相應處理器執行的指令、模組或程式,並且在被執行時,前述指令、模組或程式具體地編程處理器以執行本文歸因於各個計算裝置的動作。 In some cases, computer readable media 1412, 1420, 1432, 1450, and/or 1462 can be in the same location as the associated computing device, while in other examples, the computer readable media can be separate or partially remote from the association. Computing device. Moreover, as noted above, computer readable media 1412, 1420, 1432, 1450, and/or 1462 can be used to store any number of functional components that can be executed by a respective associated processor. In many embodiments, these functional components, such as control program 1410, client application 1418, service program 1426, analysis program 1428, storage management program 1454, and interested party application 1466, include instructions, modules, or modules that can be executed by respective processors. The program, and when executed, the aforementioned instructions, modules or programs specifically program the processor to perform the actions attributed to the various computing devices herein.

通訊接口1416、1424、1436、1452及/或1464可以包括一個或複數個接口和硬件組件,其使得能夠例如藉由一個或複數個網路1404與各種其它裝置進行通訊。因此,通訊接口可以包括或可以耦合至提供到網路1404的連接的一個或複數個端口以與其它計算裝置進行通訊。例如,如在本文其它地方另外列舉的,通訊接口可以允許藉由LAN(局域網)、WAN(廣域網)、因特網、有線網路、蜂窩網路、無線網路(例如Wi-Fi)和有線網路(例如,光纖信道、光纖、乙太網)、直接連接以及近距離通訊如藍牙等中的一者或多者進行通訊。另外,一個或複數個網路1404可以包括有線及/或無線通訊技術。用於網路1404的部件可以至 少部分地取決於網路的類型、選擇的環境、期望的性能等。本文藉由網路進行通訊的協議是公知的,將不會詳細論述。此外,雖然已經參考圖14描述了系統架構的示例,但是受益於本文的公開內容,許多其它軟件及/或硬件配置對於本領域技術人員應是顯而易見的。 Communication interfaces 1416, 1424, 1436, 1452, and/or 1464 can include one or more interfaces and hardware components that enable communication with various other devices, such as by one or more networks 1404. Thus, the communication interface can include or can be coupled to one or more ports of the connection provided to network 1404 to communicate with other computing devices. For example, as otherwise enumerated elsewhere herein, the communication interface may allow for LAN (Local Area Network), WAN (Wide Area Network), Internet, wired network, cellular network, wireless network (eg Wi-Fi), and wired network. One or more of (eg, Fibre Channel, fiber optic, Ethernet), direct connection, and near field communication, such as Bluetooth, communicate. Additionally, one or more of the networks 1404 can include wired and/or wireless communication technologies. The components used for network 1404 may depend, at least in part, on the type of network, the environment selected, the desired performance, and the like. The protocols for communication over the network are well known and will not be discussed in detail. Moreover, while an example of a system architecture has been described with reference to FIG. 14, many other software and/or hardware configurations will be apparent to those skilled in the art from this disclosure.

在下面的實例中描述圖12所示的模組狀態確定系統1200的操作。 The operation of the module state determination system 1200 shown in Fig. 12 is described in the following examples.

實例1 Example 1

單晶矽模組的製造商1210在包裝和運輸之前使用行掃描EL/PL檢查設備對完成的模組進行質量控制測試。特定的模組可藉由前置條形碼在行掃描PL影像中識別,也可藉由模組框架邊緣的數字代碼進行識別,這些代碼可包含在元資料中。將自動影像處理算法應用於所獲取的EL和PL影像表明,特定模組沒有裂紋、最小串聯電阻問題以及沒有互連問題。因此,該模組被包裝和裝運,而如果裂紋的水平高於預定的閾值,它將被拒絕和報廢。該模組還使用太陽模擬器進行了功率輸出測試,發現該模組屬於300W模組類別。該額定功率輸出是模組定價的基礎。 The manufacturer of the single crystal germanium module 1210 performs quality control testing of the completed module using a line scan EL/PL inspection device prior to packaging and shipping. The specific module can be identified in the line scan PL image by the front bar code, or by the digital code at the edge of the module frame, and the code can be included in the metadata. Applying an automatic image processing algorithm to the acquired EL and PL images indicates that the particular module has no cracks, minimal series resistance problems, and no interconnect problems. Therefore, the module is packaged and shipped, and if the level of the crack is above a predetermined threshold, it will be rejected and scrapped. The module also used a solar simulator to perform a power output test and found that the module belongs to the 300W module category. This rated power output is the basis for module pricing.

來自發光成像測試和功率測試的特定資料被發送到狀況確定系統的服務提供商1300以用於儲存在網路可訪問儲存裝置1202中。所發送的模組資料1408包括:(i)行掃描PL影像;(ii)行掃描EL影像;(iii)I-V曲線;(iv)測試的時間和日期;(v)經營者ID;(vi)工廠和生產線ID;(vii)模組ID;(viii)來自經處理的EL和PL影像的裂紋指標;(ix) 來自經處理的EL和PL影像的串聯電阻指標;(x)來自經處理的EL和PL影像的電池互連指標;以及(xi)來自經處理的EL和PL影像的載流子重組缺陷指標。 Specific data from the luminescence imaging test and power test is sent to the service provider 1300 of the condition determination system for storage in the network accessible storage device 1202. The transmitted module data 1408 includes: (i) line scan PL image; (ii) line scan EL image; (iii) IV curve; (iv) time and date of the test; (v) operator ID; (vi) Factory and line ID; (vii) module ID; (viii) crack indicator from processed EL and PL images; (ix) series resistance index from processed EL and PL images; (x) from processed Battery interconnect indicators for EL and PL images; and (xi) carrier recombination defect indicators from processed EL and PL images.

在稍後的時間,同一個模組在商業太陽能安裝場地從其包裝中被拆開。安裝人員1214使用行掃描EL/PL檢查設備的便攜式版本在安裝之前檢查每個模組,目的是識別在模組的使用期間已經有缺陷或可能失效的模組。他們這樣做的動機與更換模組的成本有關。在這個地點更換單個有缺陷的太陽能模組的成本估計為800美元,即每瓦2.67美元,包括用於模組解剖報告的每瓦1.66美元的成本,基於這個報告可以提出保修索賠。許多製造商的保修要求在進行任何索賠之前進行昂貴的解剖測試和報告,這是為了防止保修索賠。由於這種成本,為安裝提供資金的項目業主1224堅持要求安裝人員1214花費1.33美元,即每瓦0.0044美元(包括人工)在安裝之前用行掃描EL/PL檢查設備測試每個模組。任何未藉由測試的模組將被退還給製造商1210以獲得退款或更換模組。這個要求是基於這樣一個計算,即如果只有0.15%的模組在其25年的使用壽命期間失效,那麼在安裝之前識別有缺陷的模組比在失效之後替換它們是更低成本的選擇。用於行掃描EL和PL模組檢查的便攜式現場單元除了I-V測試之外,還執行與出廠版本相同的測試。在安裝現場生成以下模組資料1408並上傳給服務提供商1300:(i)行掃描PL影像;(ii)行掃描EL影像;(iii)測試的時間和日期;(iv)經營者ID;(v)模組ID;(vi) 來自經處理的EL和PL影像的裂紋指標;(vii)來自經處理的EL和PL影像的串聯電阻指標;(viii)來自經處理的EL和PL影像的電池互連指標;以及(ix)來自經處理的EL和PL影像的載流子重組缺陷指標。 At a later time, the same module was unpacked from its packaging at a commercial solar installation site. The installer 1214 uses the portable version of the line scan EL/PL inspection device to inspect each module prior to installation in order to identify modules that have been defective or may have failed during use of the module. Their motivation for doing so is related to the cost of replacing the module. The cost of replacing a single defective solar module at this location is estimated at $800, or $2.67 per watt, including $1.66 per watt for module anatomy reporting, based on which a warranty claim can be filed. Many manufacturers' warranties require expensive anatomical testing and reporting prior to making any claims in order to prevent warranty claims. Because of this cost, project owner 1224, which funds the installation, insists that installer 1214 cost $1.33, or $0.0044 per watt (including labor) to test each module with a line scan EL/PL inspection device prior to installation. Any module that has not been tested will be returned to the manufacturer 1210 for a refund or replacement module. This requirement is based on the calculation that if only 0.15% of the modules fail during their 25-year lifetime, it is a lower cost option to identify defective modules prior to installation than to replace them after failure. The portable field unit for line scan EL and PL module inspection performs the same tests as the factory version in addition to the I-V test. The following module data 1408 is generated at the installation site and uploaded to the service provider 1300: (i) line scan PL image; (ii) line scan EL image; (iii) time and date of the test; (iv) operator ID; v) module ID; (vi) crack indicator from processed EL and PL images; (vii) series resistance index from processed EL and PL images; (viii) battery from processed EL and PL images Interconnect indicators; and (ix) carrier recombination defect indicators from processed EL and PL images.

在安裝現場對受檢模組的“缺陷”進行初步測試是基於上述列表的結果(vi)至(ix)。模組藉由了這些測試,每個缺陷級別都小於模組拒收的預定閾值。然而,在繼續進行安裝之前,在上傳模組資料(i)至(ix)之後,在服務提供商1300的服務計算裝置1402中進行另一組資料分析以檢查模組資料在運輸之前和安裝點之間的顯著變化以檢查運輸過程中發生的損壞。差異影像是藉由在“工廠”和“現場”PL影像中逐像素地減去強度來進行計算,並且對於兩個EL影像也是如此。另選地,比率影像可以經由“工廠”和“現場”影像的逐像素強度比來計算。這些“差異”影像極有可能突出顯示裝運期間發生的對模組的任何改變,例如由於粗暴的處理。在每個差異/比率影像上運行影像處理算法以計算裂紋、串聯電阻、電池互連和載流子複合缺陷的指標。每個指標均具有預定的閾值,在該閾值以上,模組將被視為有缺陷而不適合安裝。 Preliminary testing of the "defects" of the module under inspection at the installation site is based on the results of the above list (vi) to (ix). The module uses these tests, each defect level is less than the predetermined threshold for module rejection. However, before proceeding with the installation, after uploading the module data (i) to (ix), another set of data analysis is performed in the service computing device 1402 of the service provider 1300 to check the module data before and at the installation point. Significant changes between them to check for damage that occurred during transportation. The difference image is calculated by subtracting the intensity pixel by pixel in the "factory" and "live" PL images, and also for the two EL images. Alternatively, the ratio image can be calculated from the pixel-by-pixel intensity ratio of the "factory" and "live" images. These "difference" images are highly likely to highlight any changes to the module that occurred during shipment, for example due to rough handling. An image processing algorithm was run on each of the difference/ratio images to calculate the crack, series resistance, cell interconnect, and carrier composite defect indicators. Each indicator has a predetermined threshold above which the module will be considered defective and unsuitable for installation.

實例2 Example 2

在太陽能發電場(模組經營者1216)中安裝模組十年之後,其電力輸出降至低於保證值,保證值從其原始值計算,允許每年下降0.8%。太陽能發電場服務人員拆下並更換模組,並根據製造商1210的保修條件的要求,將有缺陷的模 組發送到模組解剖實驗室1218以識別失效原因,並且如果可能的話識別實體有故障。解剖實驗室工作人員使用行掃描EL/PL檢查設備和I-V功率測試單元生成以下資料:(i)行掃描PL影像;(ii)行掃描EL影像;(iii)I-V曲線;(iv)測試的時間和日期;(v)經營者ID;(vi)解剖實驗室ID;(vii)模組ID;(viii)來自經處理的EL和PL影像的裂紋指標;(ix)來自經處理的EL和PL影像的串聯電阻指標;(x)來自經處理的EL和PL影像的電池互連指標;以及(xi)來自經處理的EL和PL影像的載流子重組缺陷指標。 After installing the module in the solar farm (modular operator 1216) for ten years, its power output fell below the guaranteed value, and the guaranteed value was calculated from its original value, allowing a drop of 0.8% per year. The solar farm service personnel removes and replaces the module and sends the defective module to the module dissection laboratory 1218 to identify the cause of the failure and, if possible, identify the faulty entity, as required by the manufacturer's 1210 warranty conditions. . The anatomical laboratory staff used the line scan EL/PL inspection device and the IV power test unit to generate the following data: (i) line scan PL image; (ii) line scan EL image; (iii) IV curve; (iv) test time And date; (v) operator ID; (vi) dissection laboratory ID; (vii) module ID; (viii) crack indicator from processed EL and PL images; (ix) from processed EL and PL The series resistance index of the image; (x) the battery interconnect indicator from the processed EL and PL images; and (xi) the carrier recombination defect indicator from the processed EL and PL images.

I-V測試資料證實,該模組生成低於預期的功率。用行掃描EL/PL檢查設備進行的檢查識別出可能是由於裂紋造成電隔離的幾個電池中的許多區域。這些區域在EL影像中顯得相對暗,因為沒有電流被推入到這些區域中,並且由串聯電阻和電池互連算法自動檢測和報告。PL影像揭示出似乎是造成這些孤立區域的複數個裂紋,其中裂紋藉由裂紋檢測算法自動檢測並報告為定量指標。在這一點上,模組解剖實驗室1218可以自信地報告模組失效是由於幾個電池中的開裂造成,儘管沒有實體可能被識別為可能造成電池故障的實體。然後將來自模組解剖實驗室的測試資料1408上傳給服務提供商1300,以將最近測量的資料與在安裝之前和在模組工廠獲取的資料進行比較。 The I-V test data confirmed that the module generated lower than expected power. Inspections performed with line scan EL/PL inspection equipment identified many areas of several batteries that may be electrically isolated due to cracks. These areas appear relatively dark in the EL image because no current is pushed into these areas and is automatically detected and reported by series resistance and battery interconnect algorithms. The PL image reveals a number of cracks that appear to cause these isolated regions, where the cracks are automatically detected by the crack detection algorithm and reported as quantitative indicators. At this point, the module dissection lab 1218 can confidently report that module failure is due to cracking in several batteries, although no entity may be identified as an entity that may cause a battery failure. The test material 1408 from the module dissection laboratory is then uploaded to the service provider 1300 to compare the most recently measured data with the data obtained prior to installation and at the module factory.

由服務提供商1300的服務計算裝置1402計算幾個“差異”影像或者“比率”影像如下:(A)PL影像(解剖實驗室)與PL影像(工廠);(B)EL影像(解剖實驗室)與EL 影像(工廠);(C)PL影像(解剖實驗室)與PL影像(預安裝);以及(D)EL影像(解剖實驗室)與EL影像(預安裝)。在這種情況下,發現在安裝之前或者在工廠中新製造的模組中沒有裂紋存在。太陽能發電場經營者1216因此得出結論,裂紋不是製造商1210或運輸者1212的故障,因此保修索賠是不恰當的。相反,這可能是由於在安裝或使用/保養過程中或者最近的一次冰雹造成的。在太陽能發電場經營者(模組經營者1216)向項目業主1224提供了相關結果之後,項目業主最終要求保險公司更換模組的成本。如果需要,保險實體1222可以從服務提供商1300請求其自己的結果副本。 Several "difference" images or "ratio" images are calculated by the service computing device 1402 of the service provider 1300 as follows: (A) PL images (anatomical laboratory) and PL images (factory); (B) EL images (anatomy laboratory) ) and EL images (factory); (C) PL images (anatomical laboratory) and PL images (pre-installed); and (D) EL images (anatomical laboratory) and EL images (pre-installed). In this case, it was found that no cracks were present in the newly manufactured module before installation or in the factory. The solar farm operator 1216 therefore concludes that the crack is not a failure of the manufacturer 1210 or the transporter 1212, so the warranty claim is not appropriate. Instead, this may be due to hail during installation or use/maintenance or the most recent hail. After the solar farm operator (module operator 1216) provided the relevant results to the project owner 1224, the project owner finally asked the insurance company to replace the cost of the module. The insurance entity 1222 may request its own copy of the result from the service provider 1300 if needed.

實例3 Example 3

標準和質量保證機構1228聘請資料分析公司從服務提供商1300獲得並分析來自已經在市場上兩年的特定製造商的特定型號的所有模組的模組資料1408,其中已經有20000000個單元被安裝在歐洲或澳大利亞。製造商1210已經基於用工廠在行掃描檢查設備獲取的經處理的EL和PL影像為以下指標設置了特定的“合格/不合格”閾值:(i)裂紋指標;(ii)串聯電阻指標;(iii)電池互連指標;以及(i-v)載流子重組缺陷指標。在每一種情況下,合格/不合格閾值被設定得相對高,因為否則由於製造商1210既沒有預算也沒有專業知識來將各種缺陷的發生率降低到接近於零,因此拒收率將不經濟地高。市場擔心製造商1210允許的缺陷水平可能導致在其使用壽命期間模組失效的發生率 高得令人無法接受。 The Standards and Quality Assurance Agency 1228 employs a data analysis company to obtain and analyze from the service provider 1300 module data 1408 for all modules of a particular model of a particular manufacturer that has been on the market for two years, of which 20 million units have been installed. In Europe or Australia. Manufacturer 1210 has set a specific "pass/fail" threshold based on the processed EL and PL images acquired by the factory at the line scan inspection device: (i) crack indicator; (ii) series resistance index; Iii) battery interconnection indicators; and (iv) carrier recombination defect indicators. In each case, the pass/fail threshold is set relatively high, because otherwise the manufacturer 1210 has neither budget nor expertise to reduce the incidence of various defects to near zero, so the reject rate will be uneconomical. The ground is high. The market is concerned that the level of defects allowed by the manufacturer 1210 may result in an unacceptably high rate of module failure during its useful life.

因此,分析公司收集了這些模組的所有可用資料,包括工廠測試、預安裝測試資料和失效的模組解剖報告。該分析公司首先發現,發送給模組解剖實驗室的模組有三個主要的失效原因:(i)電池互連問題已導致澳大利亞安裝的一些模組中存在電隔離問題和徹底的模組失效,而在歐洲安裝的模組則更少;(ii)在澳大利亞和歐洲,相對高水平的載流子重組缺陷出現在功率輸出低於預期但並未完全失效的模組中;(3)較少數量的模組具有可能由於處理事件、冰雹或其它“上帝的行為”而造成的裂紋和其它失效模式。 As a result, the Analytical Company collected all available data for these modules, including factory testing, pre-installed test data, and failed module anatomy reports. The analysis company first discovered that the modules sent to the module anatomy lab had three major causes of failure: (i) Battery interconnect problems have led to electrical isolation problems and complete module failures in some modules installed in Australia. There are fewer modules installed in Europe; (ii) in Australia and Europe, relatively high levels of carrier recombination defects occur in modules with lower power output than expected but not completely failed; (3) less The number of modules has cracks and other failure modes that may be caused by handling events, hail or other "God's behavior."

更深入的分析,包括模組解剖實驗室、工廠和預安裝測試結果的比較提供了進一步有用的資訊。首先,觀察到主要在澳大利亞失效的模組中發現的電池互連問題在安裝之前不存在。這表明由於工廠內材料或加工問題導致的系統性失效模式,加劇了澳大利亞太陽能設備的高溫。其次,觀察到載流子複合缺陷在安裝之前不存在,並且主要限於模組邊緣的電池外部。這與在模組邊緣由於水侵入而造成的那些電池中的化學反應一致,這再次表明模組製造中的材料或加工故障。 More in-depth analysis, including a comparison of modular anatomy labs, factory and pre-installed test results, provides further useful information. First, it was observed that battery interconnect problems found primarily in modules that were ineffective in Australia did not exist prior to installation. This indicates a systemic failure mode due to material or processing problems in the plant, which exacerbates the high temperatures of Australian solar installations. Secondly, it was observed that the carrier composite defects did not exist prior to installation and were mainly limited to the outside of the battery at the edge of the module. This is consistent with chemical reactions in those cells that are caused by water intrusion at the edge of the module, again indicating material or processing failures in module fabrication.

因此,模組製造商1210被認為是有過錯的,因此負責更換該型號的所有失效的模組。製造商承諾向項目業主1224提供替換模組庫,並調查這些系統性失效模式的原因。最終藉由使用關鍵材料如模組邊緣密封劑的替代供應商以及修改電池互連的焊接工藝來彌補失效模式。 Therefore, the module manufacturer 1210 is considered to be at fault and is therefore responsible for replacing all failed modules of the model. The manufacturer is committed to providing a replacement module library to project owner 1224 and investigating the reasons for these system failure modes. The failure mode is ultimately compensated for by using key materials such as alternative suppliers of module edge sealants and soldering processes that modify battery interconnects.

圖15至圖19為示出根據一些實施方式的示例過程的流程圖。這些過程被示為邏輯流程圖中的塊的集合,其表示操作序列,其中的一些或全部可以以硬件、軟件或其組合來實現。在軟件的背景下,前述塊可以表示儲存在一個或複數個電腦可讀介質上的電腦可執行指令,當由一個或複數個處理器執行時,對處理器進行編程以執行前述操作。通常,電腦可執行指令包括執行特定功能或實現特定資料類型的例程、程式、對象、組件、資料結構等。描述塊的順序不應被解釋為限制。可以以任何順序及/或並行地組合任何數量的前述塊來實現前述過程或替代過程,而不是所有的塊都需要被執行。出於論述的目的,參考本文的示例中描述的環境、框架和系統來描述這些過程,儘管這些過程可以在各種各樣的其它環境、框架和系統中實現。 15 through 19 are flow diagrams illustrating example processes in accordance with some embodiments. These processes are illustrated as a collection of blocks in a logic flow diagram that represent a sequence of operations, some or all of which may be implemented in hardware, software, or a combination thereof. In the context of software, the foregoing blocks may represent computer executable instructions stored on one or more computer readable media, and when executed by one or more processors, the processor is programmed to perform the foregoing operations. Generally, computer-executable instructions include routines, programs, objects, components, data structures, etc. that perform particular functions or implement particular types of data. The order in which the blocks are described should not be construed as limiting. Any of the foregoing blocks may be combined in any order and/or in parallel to implement the foregoing process or alternative process, rather than all blocks needing to be performed. For purposes of discussion, these processes are described with reference to the environments, frameworks, and systems described in the examples herein, although such processes can be implemented in a wide variety of other environments, frameworks, and systems.

圖15為示出根據一些實施方式的用於隨時間推移確定模組的狀況的示例過程1500的流程圖。在一些示例中,過程1500可以由服務計算裝置1402中的至少一者或一些其它合適的計算裝置來執行。 15 is a flow chart showing an example process 1500 for determining a condition of a module over time, in accordance with some embodiments. In some examples, process 1500 can be performed by at least one of service computing devices 1402 or some other suitable computing device.

在1502處,計算裝置可以接收由檢查設備在第一時間點生成的模組資料,其中前述檢查設備被配置成生成前述光伏模組的模組資料。模組資料可以例如從模組檢查設備及/或製造、運輸、安裝或操作模組或者檢查發生故障的模組的實體的客戶端計算裝置接收。 At 1502, the computing device can receive module data generated by the inspection device at a first point in time, wherein the inspection device is configured to generate module data of the aforementioned photovoltaic module. The module data may be received, for example, from a module inspection device and/or a client computing device that manufactures, transports, installs or operates the module or checks the entity of the failed module.

在1504處,計算裝置可以接收與前述模組資料相關聯的一個或複數個元資料項,前述一個或複數個元資料項包 括關於模組資料或光伏模組中的至少一者的資訊。元資料可以例如包括關於模組ID、執行的測試、製造商資訊、運輸者資訊、安裝人員資訊、經營者資訊等等的資訊。 At 1504, the computing device can receive one or more metadata items associated with the module data, the one or more metadata items including information regarding at least one of the module data or the photovoltaic module. The metadata may include, for example, information about the module ID, the tests performed, the manufacturer information, the carrier information, the installer information, the operator information, and the like.

在1506處,計算裝置可以將模組資料和一個或複數個元資料項儲存在網路可訪問儲存裝置。在複數個不同時間點接收到的模組的模組資料可以被儲存在例如網路儲存位置,以使得能夠分析和確定模組在不同的時間點的狀態。 At 1506, the computing device can store the module data and one or more metadata items in a network accessible storage device. The module data of the modules received at a plurality of different time points can be stored, for example, in a network storage location to enable analysis and determination of the state of the modules at different points in time.

在1508處,計算裝置可以至少部分地基於前述模組資料和一個或複數個元資料項來確定光伏模組的狀況。例如,計算裝置可以藉由將前述模組資料與在較早時間前述光伏模組生成的在前模組資料進行比較來確定光伏模組的狀況。此外,計算裝置可以基於該狀況來確定以下中的至少一者:光伏模組的等級;光伏模組是否有故障;光伏模組是否有可能發生故障;或光伏模組中的故障的原因。另外,作為另一個示例,計算裝置可以接收由同一檢查設備或不同的檢查設備在第二時間點生成的附加模組資料,並且計算裝置可以至少部分地基於將來自第一時間點的模組資料與附加模組資料進行比較來確定在第二時間點的光伏模組的狀況。 At 1508, the computing device can determine the condition of the photovoltaic module based at least in part on the aforementioned module data and one or more metadata items. For example, the computing device can determine the status of the photovoltaic module by comparing the module data with the previous module data generated by the aforementioned photovoltaic module at an earlier time. In addition, the computing device can determine at least one of the following based on the condition: a level of the photovoltaic module; whether the photovoltaic module is faulty; whether the photovoltaic module is likely to fail; or a cause of the failure in the photovoltaic module. Additionally, as another example, the computing device can receive additional module data generated by the same inspection device or a different inspection device at a second point in time, and the computing device can be based, at least in part, on the module data to be from the first point in time A comparison is made with additional module data to determine the condition of the photovoltaic module at the second point in time.

在1510處,計算裝置可以基於該狀況向與前述光伏模組的製造、運輸、安裝、操作或檢查相關聯的至少一個實體的計算裝置發送指示所確定的狀況的通訊。 At 1510, the computing device can transmit a communication indicating the determined condition to the computing device of the at least one entity associated with the manufacture, transportation, installation, operation, or inspection of the aforementioned photovoltaic module based on the condition.

在1512處,計算裝置可以向感興趣方的計算裝置發送模組資料、在前模組資料,針對光伏模組確定的分析資料 或針對複數個光伏接收的聚集模組資料中的至少一者。 At 1512, the computing device can transmit the module data, the previous module data, the analysis data determined for the photovoltaic module, or the aggregate module data for the plurality of photovoltaic receptions to the computing device of the interested party.

如前所述,模組資料可以例如由檢查設備500、600、700、800或900生成。在一些實施方式中,檢查設備500-900可以處於計算裝置510、終端512或其它計算裝置的控制下。也就是說,計算裝置可以操作照相機502、光源514、電源302和掃描機構508中的一些或全部,以及用於光學成像的各種可選部件如光源520和照相機522,熱成像照相機704,太陽光模擬器904和相關聯的電源和控制器906以及功率監測單元908,以及可能存在的各種可調節的光學部件如濾波器和反射鏡。 As previously mentioned, the module material can be generated, for example, by the inspection device 500, 600, 700, 800 or 900. In some embodiments, the inspection device 500-900 can be under the control of the computing device 510, terminal 512, or other computing device. That is, the computing device can operate some or all of camera 502, light source 514, power source 302, and scanning mechanism 508, as well as various optional components for optical imaging such as light source 520 and camera 522, thermal imaging camera 704, sunlight. Simulator 904 and associated power and controller 906 and power monitoring unit 908, as well as various adjustable optical components such as filters and mirrors that may be present.

圖16至圖19為示出根據一些實施方式的用於生成模組資料的示例過程1600、1700、1800和1900的流程圖。在一些示例中,過程1600-1900中的每者可以由計算裝置510或其它合適的計算裝置執行。 16 through 19 are flow diagrams illustrating example processes 1600, 1700, 1800, and 1900 for generating module material, in accordance with some embodiments. In some examples, each of the processes 1600-1900 can be performed by the computing device 510 or other suitable computing device.

首先轉向圖16所示的示例過程1600,在1602處,計算裝置可以操作電源,以將電激勵施加到光伏模組以從光伏模組生成電致發光。在1604處,計算裝置可以操作用於檢測在跨越光伏模組的第一尺寸延伸的第一區域中從光伏模組發射的電致發光的檢測器。在1606處,計算裝置可以操作掃描機構,以在施加電激勵時沿光伏模組的第二尺寸掃描第一區域。在1608,當沿著第二尺寸掃描第一區域時,計算裝置可以從檢測器接收從光伏模組發射的電致發光的影像。 Turning first to the example process 1600 shown in FIG. 16, at 1602, the computing device can operate a power source to apply electrical excitation to the photovoltaic module to generate electroluminescence from the photovoltaic module. At 1604, the computing device is operative to detect a detector of electroluminescence emitted from the photovoltaic module in a first region that extends across a first dimension of the photovoltaic module. At 1606, the computing device can operate the scanning mechanism to scan the first region along a second dimension of the photovoltaic module when electrical excitation is applied. At 1608, the computing device can receive an image of the electroluminescence emitted from the photovoltaic module from the detector when the first region is scanned along the second dimension.

現在轉向圖17中所示的示例過程1700,在1702處, 計算裝置可以操作光源,以用於利用適合於從光伏模組生成光致發光的光來照射光伏模組的第一區域,前述第一區域延伸穿過光伏模組的第一尺寸。在1704處,計算裝置可以操作用於檢測在跨越光伏模組的第一尺寸延伸的第二區域中從光伏模組發射的光致發光的檢測器。在1706處,計算裝置可以操作掃描機構以沿著光伏模組的第二尺寸掃描第一區域和第二區域。在1708處,在沿著第二尺寸掃描第一區域和第二區域時,計算裝置可以從檢測器接收從光伏模組發射的光致發光的影像。 Turning now to the example process 1700 shown in FIG. 17, at 1702, the computing device can operate a light source for illuminating a first region of the photovoltaic module with light suitable for generating photoluminescence from the photovoltaic module, the aforementioned A region extends through the first dimension of the photovoltaic module. At 1704, the computing device is operable to detect a photoluminescent detector emitted from the photovoltaic module in a second region that extends across a first dimension of the photovoltaic module. At 1706, the computing device can operate the scanning mechanism to scan the first region and the second region along a second dimension of the photovoltaic module. At 1708, upon scanning the first region and the second region along the second dimension, the computing device can receive the photoluminescence image emitted from the photovoltaic module from the detector.

現在轉向圖18中所示的示例過程1800,在1802處,電腦可以處理用模組檢查設備獲取的一個或複數個電致發光影像及/或光致發光影像,以對不同類型的特徵或缺陷進行分類或區分。在1804處,電腦可以生成一個或複數個重疊影像以用於突出顯示一種或複數種類型的特徵或缺陷。在1806處,電腦可以計算發生一種或複數種類型的特徵或缺陷的一個或複數個指標。在1808處,電腦可以基於從發生在光伏模組中識別的各種類型的特徵或缺陷的估算的預期性能,對光伏模組應用質量分類。 Turning now to the example process 1800 shown in FIG. 18, at 1802, the computer can process one or more electroluminescent images and/or photoluminescence images acquired by the module inspection device for different types of features or defects. Sort or differentiate. At 1804, the computer can generate one or more overlapping images for highlighting one or more types of features or defects. At 1806, the computer can calculate one or more indicators of one or more types of features or defects. At 1808, the computer can apply a quality classification to the photovoltaic module based on an estimated expected performance from various types of features or defects identified in the photovoltaic module.

現在轉向圖19所示的示例過程1900,在1902處,電腦可以獲得用模組檢查設備獲取的光伏模組的兩個或更多個影像,前述影像從包括電致發光影像、光致發光影像、光學影像或熱影像的組中選擇。在步驟1904處,電腦可以比較在步驟1902中獲得的兩個或更多個影像。 Turning now to the example process 1900 shown in FIG. 19, at 1902, the computer can obtain two or more images of the photovoltaic module acquired by the module inspection device, including the electroluminescent image, the photoluminescence image. Select from a group of optical images or thermal images. At step 1904, the computer can compare the two or more images obtained in step 1902.

本文描述的示例過程僅是為了論述目的而提供的過程 的示例。鑒於本文的公開內容,許多其它變化對於本領域技術人員來說應是顯而易見的。此外,雖然本文的公開內容闡述了用於執行前述過程的合適的框架、體系結構和環境的若干示例,但是本文的實施方式不限於所示出和論述的特定示例。此外,如所描述的以及如圖式所示,本公開提供了各種示例實施方式。然而,本公開不限於在本文描述和示出的實施方式,而是可以擴展到其它實施方式,如本領域技術人員應知道的或者將會是已知的。 The example processes described herein are merely examples of processes that are provided for purposes of discussion. Many other variations will be apparent to those skilled in the art in view of this disclosure. In addition, while the disclosure herein sets forth a few examples of suitable frameworks, architectures, and environments for performing the foregoing processes, the embodiments herein are not limited to the specific examples shown and discussed. Moreover, as described and illustrated in the drawings, the present disclosure provides various example embodiments. However, the present disclosure is not limited to the embodiments described and illustrated herein, but may be extended to other embodiments, as will be appreciated by those skilled in the art or will be known.

本文描述的各種指令、過程和技術可以在電腦可執行指令如儲存在電腦可讀介質上並由本文的處理器執行的程式模組的一般背景下考慮。通常,程式模組包括用於執行特定任務或實現特定抽象資料類型的例程、程式、對象、組件、資料結構、可執行代碼等。這些程式模組等可以作為本地代碼來執行,或者可以如在虛擬機中或在其它即時編譯執行環境中下載和執行。典型地,程式模組的功能可以根據需要在各種實施方式中組合或分配。這些模組和技術的實施方式可以儲存在電腦儲存介質上或者藉由某種形式的通訊介質來傳輸。因此,本文中的索引佈置可以在物理硬件上實現、可以在虛擬實施方式中使用、可以用作物理或虛擬機上的總體重複資料刪除系統的一部分及/或可以作為其它重複資料刪除實施方式(例如,SAN)或在一些非重複資料刪除環境中如大規模內存索引的組件。 The various instructions, processes, and techniques described herein can be considered in the general context of computer-executable instructions, such as program modules stored on a computer readable medium and executed by a processor of the present invention. Typically, a program module includes routines, programs, objects, components, data structures, executable code, and the like for performing particular tasks or implementing particular abstract data types. These program modules and the like can be executed as native code or can be downloaded and executed as in a virtual machine or in other just-in-time compilation execution environments. Typically, the functionality of the program modules can be combined or distributed in various embodiments as desired. Embodiments of these modules and techniques can be stored on a computer storage medium or transmitted by some form of communication medium. Thus, the indexing arrangements herein may be implemented on physical hardware, may be used in a virtual implementation, may be used as part of an overall deduplication system on a physical or virtual machine, and/or may serve as other deduplication implementations ( For example, SAN) or components in large non-repetitive data deletion environments such as large-scale memory indexing.

雖然本發明主要以矽電池為基礎的模組進行描述,但是本發明的原理不限於這種類型的模組。具體地,藉由選 擇具有合適的波長帶和光照強度的光源以及具有適當的靈敏度和檢測帶的照相機,PL和EL成像技術通常可以被用於檢查基於除了矽之外的材料的模組。對於基於直接帶隙半導體如碲化鎘的的薄膜模組,發光成像技術可能更容易應用,因為與矽相比,這些材料往往具有更高的發光效率。 Although the invention has been described primarily in terms of a neon battery based module, the principles of the invention are not limited to this type of module. In particular, by selecting a light source having a suitable wavelength band and illumination intensity and a camera with appropriate sensitivity and detection bands, PL and EL imaging techniques can generally be used to inspect modules based on materials other than germanium. For thin film modules based on direct bandgap semiconductors such as cadmium telluride, luminescence imaging techniques may be easier to apply because these materials tend to have higher luminous efficiencies than ruthenium.

儘管本發明已經特別參考其某些較佳實施例進行了描述,但是本發明的變化和修改可以在所附申請專利範圍的精神和範圍內進行。 Although the present invention has been described with reference to certain preferred embodiments thereof, modifications and variations of the invention may be made within the spirit and scope of the appended claims.

Claims (20)

一種能夠確定光伏模組隨時間推移的狀況的系統,包括:一個或複數個處理器;以及記憶體,儲存包括指令的電腦可執行程式代碼,前述指令在由前述一個或複數個處理器執行時將前述一個或複數個處理器配置成:接收由檢查設備在第一時間點生成的模組資料,其中,前述檢查設備配置成生成用於前述光伏模組的前述模組資料;接收與前述模組資料相關聯的一個或複數個元資料項,前述一個或複數個元資料項包括關於前述模組資料和前述光伏模組中的至少一者的資訊;將前述模組資料和前述一個或複數個元資料項儲存在網路可訪問的儲存裝置中;以及至少部分地基於前述模組資料和前述一個或複數個元資料項來確定前述光伏模組的狀況。  A system capable of determining a condition of a photovoltaic module over time, comprising: one or more processors; and a memory storing computer executable program code including instructions, when the instructions are executed by one or more of the aforementioned processors Configuring the one or more processors to receive module data generated by the inspection device at a first time point, wherein the inspection device is configured to generate the foregoing module data for the photovoltaic module; One or more metadata items associated with the group data, the one or more metadata items including information about the module data and at least one of the foregoing photovoltaic modules; and the foregoing module data and the foregoing one or more The metadata items are stored in a network accessible storage device; and the status of the aforementioned photovoltaic module is determined based at least in part on the aforementioned module data and the one or more metadata items.   如請求項1所記載之能夠確定光伏模組隨時間推移的狀況的系統,其中前述模組資料包括電致發光影像、光致發光影像、光學影像、熱影像和電流和電壓(I-V)測試資料中的一者或多者。  The system as claimed in claim 1 is capable of determining the condition of the photovoltaic module over time, wherein the module data includes electroluminescence images, photoluminescence images, optical images, thermal images, and current and voltage (IV) test data. One or more of them.   如請求項1或2所記載之能夠確定光伏模組隨時間推移的狀況的系統,其中前述檢查設備包括:檢測器,前述檢測器用於檢測由前述光伏模組發 射的光致發光和由前述光伏模組發射的電致發光中的至少一者;掃描機構,前述掃描機構用於在前述檢測期間掃描前述光伏模組的區域;以及計算裝置,前述計算裝置由可執行指令編程,以從前述檢測器接收前述光伏模組的至少一部分的光致發光影像和電致發光影像中的至少一者以作為前述模組資料。  A system as claimed in claim 1 or 2, wherein the inspection device comprises: a detector for detecting photoluminescence emitted by the aforementioned photovoltaic module and by the aforementioned photovoltaic At least one of electroluminescence emitted by the module; a scanning mechanism for scanning an area of the photovoltaic module during the detecting; and a computing device programmed by the executable instruction to detect from the foregoing The device receives at least one of a photoluminescence image and an electroluminescence image of at least a portion of the photovoltaic module as the module data.   如請求項1或2所記載之能夠確定光伏模組隨時間推移的狀況的系統,其中前述一個或複數個處理器還配置成:接收由檢查設備或不同的檢查設備在第二時間點生成的附加模組資料;以及至少部分地基於將來自第一時間點的前述模組資料與前述附加模組資料進行比較來確定光伏模組在前述第二時間點的狀況。  A system as claimed in claim 1 or 2, wherein the one or more processors are further configured to receive the second time point generated by the inspection device or the different inspection device. Additional module data; and based at least in part on comparing the aforementioned module data from the first point in time with the additional module data to determine the condition of the photovoltaic module at the second time point.   如請求項1至4中任一項所記載之能夠確定光伏模組隨時間推移的狀況的系統,其中前述一個或複數個處理器還配置成藉由將前述模組資料與前述光伏模組在較早時間生成的在前模組資料進行比較來確定前述光伏模組的狀況。  The system as claimed in any one of claims 1 to 4, wherein the one or more processors are further configured to be configured by using the module data with the aforementioned photovoltaic module. The previous module data generated earlier is compared to determine the condition of the aforementioned photovoltaic module.   如請求項1至5中任一項所記載之能夠確定光伏模組隨時間推移的狀況的系統,其中前述一個或複數個處理器還配置為基於前述狀況確定以下中的至少一者: 前述光伏模組的等級;前述光伏模組是否有故障;前述光伏模組是否有可能發生故障;以及前述光伏模組故障的原因。  A system as claimed in any one of claims 1 to 5, wherein the one or more processors are further configured to determine at least one of the following based on the foregoing conditions: The level of the module; whether the aforementioned photovoltaic module is faulty; whether the aforementioned photovoltaic module is likely to malfunction; and the cause of the failure of the aforementioned photovoltaic module.   如請求項1至6中任一項所記載之能夠確定光伏模組隨時間推移的狀況的系統,其中前述一個或複數個處理器還配置成基於前述狀況向與前述光伏模組的製造、運輸、安裝、操作或檢查相關聯的至少一個實體的計算裝置發送通訊資訊,前述通訊資訊指示所確定的狀況。  A system as claimed in any one of claims 1 to 6, wherein the one or more processors are further configured to manufacture and transport the photovoltaic module according to the foregoing conditions. The computing device that installs, operates, or checks the associated at least one entity transmits communication information indicating the determined condition.   如請求項1至7中任一項所記載之能夠確定光伏模組隨時間推移的狀況的系統,其中前述一個或複數個處理器還配置成向感興趣方的計算裝置發送以下中的至少一者:所確定的關於前述光伏模組的前述模組資料、在前模組資料或分析資料;以及針對複數個光伏模組而接收到的累計模組資料。  A system for determining a condition of a photovoltaic module over time as recited in any one of claims 1 to 7, wherein the one or more processors are further configured to transmit at least one of the following to a computing device of the interested party. The determined module data, the previous module data or the analysis data of the foregoing photovoltaic module, and the accumulated module data received for the plurality of photovoltaic modules.   一種能夠確定光伏模組隨時間推移的狀況的方法,包括以下步驟:藉由一個或複數個處理器接收由檢查設備在第一時間點生成的模組資料,其中,前述檢查設備配置成生成前述光伏模組的前述模組資料;藉由前述一個或複數個處理器接收與前述模組資料相關聯的一個或複數個元資料項,前述一個或複 數個元資料項包括關於前述模組資料和前述光伏模組中的至少一者的資訊;藉由一個或複數個處理器將前述模組資料和前述一個或複數個元資料項儲存在網路可訪問的儲存裝置中;以及至少部分地基於前述模組資料和前述一個或複數個元資料項且藉由前述一個或複數個處理器來確定前述光伏模組的狀況。  A method for determining a condition of a photovoltaic module over time, comprising the steps of: receiving, by one or more processors, module data generated by an inspection device at a first time point, wherein the inspection device is configured to generate the foregoing The module data of the photovoltaic module; receiving, by the one or more processors, one or more metadata items associated with the module data, the one or more metadata items including the module data and Information of at least one of the foregoing photovoltaic modules; storing the module data and the one or more metadata items in a network accessible storage device by one or more processors; and based at least in part on The foregoing module data and the one or more metadata items are determined by the one or more processors to determine the condition of the foregoing photovoltaic module.   如請求項9所記載之能夠確定光伏模組隨時間推移的狀況的方法,其中前述模組資料包括電致發光影像、光致發光影像、光學影像、熱影像和電流和電壓(I-V)測試資料中的一者或多者。  The method of claim 9, wherein the module data includes electroluminescence images, photoluminescence images, optical images, thermal images, and current and voltage (IV) test data. One or more of them.   如請求項9或10所記載之能夠確定光伏模組隨時間推移的狀況的方法,其中前述檢查設備包括:檢測器,前述檢測器用於檢測由前述光伏模組發射的光致發光和由前述光伏模組發射的電致發光中的至少一者;掃描機構,前述掃描機構用於在檢測期間掃描前述光伏模組的區域;以及計算裝置,前述計算裝置由可執行指令編程,以從前述檢測器接收前述光伏模組的至少一部分的光致發光影像和電致發光影像中的至少一者以作為前述模組資料。  A method for determining a condition of a photovoltaic module over time as recited in claim 9 or 10, wherein said inspection device comprises: a detector for detecting photoluminescence emitted by said photovoltaic module and said photovoltaic At least one of electroluminescence emitted by the module; a scanning mechanism for scanning an area of the photovoltaic module during detection; and a computing device programmed by executable instructions to operate from the detector Receiving at least one of a photoluminescence image and an electroluminescence image of at least a portion of the photovoltaic module as the module data.   如請求項9至11中任一項所記載之能夠確定光伏模組 隨時間推移的狀況的方法,其中前述方法還包括以下步驟:接收由前述檢查設備或不同的檢查設備在第二時間點生成的附加模組資料;以及至少部分地基於將來自第一時間點的模組資料與前述附加模組資料進行比較來確定光伏模組在第二時間點的狀況。  A method for determining a condition of a photovoltaic module over time as recited in any one of claims 9 to 11, wherein the method further comprises the step of: receiving at a second time point by the aforementioned inspection device or a different inspection device Additional module data; and based at least in part on comparing the module data from the first point in time with the additional module data to determine the condition of the photovoltaic module at the second point in time.   如請求項9至12中任一項所記載之能夠確定光伏模組隨時間推移的狀況的方法,其中確定前述光伏模組的狀況包括將前述模組資料與前述光伏模組在較早時間生成的在前模組資料進行比較的步驟。  A method for determining a condition of a photovoltaic module over time as recited in any one of claims 9 to 12, wherein determining the condition of the photovoltaic module comprises generating the module data and the photovoltaic module at an earlier time The steps of comparing the previous module data.   如請求項9至13中任一項所記載之能夠確定光伏模組隨時間推移的狀況的方法,其中前述方法還包括基於前述狀況來確定以下中的至少一者的步驟:前述光伏模組的等級;前述光伏模組是否有故障;前述光伏模組是否有可能發生故障;以及前述光伏模組故障的原因。  A method for determining a condition of a photovoltaic module over time as recited in any one of claims 9 to 13, wherein the method further comprises the step of determining at least one of: the foregoing photovoltaic module based on the foregoing condition Level; whether the aforementioned photovoltaic module is faulty; whether the aforementioned photovoltaic module is likely to malfunction; and the cause of the failure of the aforementioned photovoltaic module.   如請求項9至14中任一項所記載之能夠確定光伏模組隨時間推移的狀況的方法,其中前述方法還包括以下步驟:基於前述狀況,向與前述光伏模組的製造、運輸、安裝、操作或檢查相關聯的至少一個實體的計算裝置發送通訊資訊,前述通訊資訊指示所確定的狀況。  A method for determining a condition of a photovoltaic module over time as described in any one of claims 9 to 14, wherein the method further comprises the steps of: manufacturing, transporting, and installing the photovoltaic module according to the foregoing conditions; The computing device that operates or checks the associated at least one entity transmits communication information indicating the determined condition.   如請求項9至15中任一項所記載之能夠確定光伏模組隨時間推移的狀況的方法,其中前述方法還包括向感興趣方的計算裝置發送以下中的至少一中的步驟:所確定的關於前述光伏模組的前述模組資料、在前模組資料或分析資料,以及針對複數個光伏模組所接收到的累計模組資料。  The method of claim 1, wherein the method further comprises the step of transmitting at least one of: The foregoing module data, the previous module data or the analysis data of the foregoing photovoltaic module, and the accumulated module data received by the plurality of photovoltaic modules.   一種非暫時性電腦可讀介質,用於儲存指令,在由一個或複數個處理器執行前述指令時,前述指令將一個或複數個處理器配置成:接收由檢查設備在第一時間點生成的模組資料,其中,前述檢查設備配置成生成用於光伏模組的模組資料;接收與前述模組資料相關聯的一個或複數個元資料項,前述一個或複數個元資料項包括關於前述模組資料和前述光伏模組中的至少一者的資訊;將前述模組資料和前述一個或複數個元資料項儲存在網路可訪問的儲存裝置中;以及至少部分地基於前述模組資料和前述一個或複數個元資料項來確定前述光伏模組的狀況。  A non-transitory computer readable medium for storing instructions, wherein when the instructions are executed by one or more processors, the instructions configure one or more processors to receive: generated by the inspection device at a first point in time Module data, wherein the foregoing inspection device is configured to generate module data for the photovoltaic module; and receive one or more metadata items associated with the module data, the one or more metadata items including the foregoing Information of at least one of the module data and the aforementioned photovoltaic module; storing the module data and the one or more metadata items in a network accessible storage device; and based at least in part on the module data And one or more of the foregoing metadata items to determine the condition of the aforementioned photovoltaic module.   如請求項17所記載之複數種非暫時性電腦可讀介質,其中前述模組資料包括電致發光影像、光致發光影像、光學影像、熱影像和電流和電壓(I-V)測試資料中的一者或多者。  The non-transitory computer readable medium of claim 17, wherein the module data comprises one of electroluminescence image, photoluminescence image, optical image, thermal image, and current and voltage (IV) test data. Or more.   如請求項17所記載之複數種非暫時性電腦可讀介質 ,其中前述一個或複數個處理器還被配置成:接收由前述檢查設備或不同的檢查設備在第二時間點生成的附加模組資料;以及至少部分地基於將來自第一時間點的模組資料與前述附加模組資料進行比較來確定前述光伏模組在前述第二時間點的狀況。  The non-transitory computer readable medium of claim 17, wherein the one or more processors are further configured to: receive an additional module generated by the foregoing inspection device or a different inspection device at a second time point And determining, based at least in part on, comparing the module data from the first point in time with the additional module data to determine the condition of the photovoltaic module at the second time point.   如請求項17所記載之複數種非暫時性電腦可讀介質,其中前述一個或複數個處理器還被配置成藉由將前述模組資料與前述光伏模組在較早時間生成的在前模組資料進行比較來確定前述光伏模組的狀況。  The non-transitory computer readable medium of claim 17, wherein the one or more processors are further configured to generate the previous module by using the module data with the aforementioned photovoltaic module at an earlier time. The group data is compared to determine the condition of the aforementioned photovoltaic module.  
TW106142224A 2016-12-01 2017-12-01 System and method able to determine a condition of a photovoltaic module over time and related media TW201834382A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US15/366,014 US20180159469A1 (en) 2016-12-01 2016-12-01 Determining the condition of photovoltaic modules
??PCT/AU2016/051183 2016-12-01
PCT/AU2016/051183 WO2018098516A1 (en) 2016-12-01 2016-12-01 Determining the condition of photovoltaic modules
US15/366,014 2016-12-01

Publications (1)

Publication Number Publication Date
TW201834382A true TW201834382A (en) 2018-09-16

Family

ID=64426433

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106142224A TW201834382A (en) 2016-12-01 2017-12-01 System and method able to determine a condition of a photovoltaic module over time and related media

Country Status (1)

Country Link
TW (1) TW201834382A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI691142B (en) * 2019-06-20 2020-04-11 廣達電腦股份有限公司 Smart battery device and charging method
TWI727785B (en) * 2020-05-06 2021-05-11 有成精密股份有限公司 Solar module detection system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI691142B (en) * 2019-06-20 2020-04-11 廣達電腦股份有限公司 Smart battery device and charging method
US11171500B2 (en) 2019-06-20 2021-11-09 Quanta Computer Inc. Smart battery device and charging method
TWI727785B (en) * 2020-05-06 2021-05-11 有成精密股份有限公司 Solar module detection system

Similar Documents

Publication Publication Date Title
AU2018101283A4 (en) Determining the Condition of Photovoltaic Modules
US20180159469A1 (en) Determining the condition of photovoltaic modules
US20180159468A1 (en) Determining the condition of photovoltaic modules
TW201834381A (en) Apparatus and method for inspecting a photovoltaic module
Aghaei et al. Innovative automated control system for PV fields inspection and remote control
Tsanakas et al. Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: A review of research and future challenges
Bhoopathy et al. Outdoor photoluminescence imaging of photovoltaic modules with sunlight excitation
de Oliveira et al. Aerial infrared thermography for low-cost and fast fault detection in utility-scale PV power plants
Høiaas et al. Inspection and condition monitoring of large-scale photovoltaic power plants: A review of imaging technologies
US8698083B2 (en) Solar cell evaluation method, evaluation device, maintenance method, maintenance system, and method of manufacturing solar cell module
US8355563B2 (en) Photovoltaic devices inspection apparatus and method of determining defects in photovoltaic device
Doll et al. Photoluminescence for defect detection on full-sized photovoltaic modules
Guada et al. Daylight luminescence system for silicon solar panels based on a bias switching method
Mühleisen et al. Scientific and economic comparison of outdoor characterisation methods for photovoltaic power plants
EP3248283A1 (en) Luminescence imaging systems and methods for evaluating photovoltaic devices
Rajput et al. Quantitative estimation of electrical performance parameters of individual solar cells in silicon photovoltaic modules using electroluminescence imaging
US9576860B2 (en) Method and apparatus providing inline photoluminescence analysis of a photovoltaic device
TW201834382A (en) System and method able to determine a condition of a photovoltaic module over time and related media
Kunz et al. Outdoor luminescence imaging of field-deployed PV modules
Ciocia et al. Realization and Use of an IR Camera for Laboratory and On-field Electroluminescence Inspections of Silicon Photovoltaic Modules
Meena et al. Investigation of dominant degradation mode in field‐aged photovoltaic modules using novel differential current‐voltage analysis approach
Freire et al. Degradation analysis of an operating PV module on a Farm Sanctuary
Wu et al. Durability evaluation of PV modules using image processing tools
WO2023272479A1 (en) Power station operation and maintenance system, power station operation and maintenance method, and photovoltaic power station
Kim et al. Automatic detection of malfunctioning photovoltaic modules using unmanned aerial vehicle thermal infrared images