TW201833924A - Memory control circuit unit, memory storage device and signal receiving method - Google Patents

Memory control circuit unit, memory storage device and signal receiving method Download PDF

Info

Publication number
TW201833924A
TW201833924A TW106107658A TW106107658A TW201833924A TW 201833924 A TW201833924 A TW 201833924A TW 106107658 A TW106107658 A TW 106107658A TW 106107658 A TW106107658 A TW 106107658A TW 201833924 A TW201833924 A TW 201833924A
Authority
TW
Taiwan
Prior art keywords
signal
voltage
memory
impedance
volatile memory
Prior art date
Application number
TW106107658A
Other languages
Chinese (zh)
Other versions
TWI615844B (en
Inventor
黃明前
馬嘉隆
黃子嘉
Original Assignee
群聯電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 群聯電子股份有限公司 filed Critical 群聯電子股份有限公司
Priority to TW106107658A priority Critical patent/TWI615844B/en
Priority to US15/591,114 priority patent/US9990983B2/en
Application granted granted Critical
Publication of TWI615844B publication Critical patent/TWI615844B/en
Priority to US15/955,701 priority patent/US10304521B2/en
Publication of TW201833924A publication Critical patent/TW201833924A/en

Links

Landscapes

  • Memory System (AREA)
  • Dram (AREA)
  • Logic Circuits (AREA)

Abstract

A memory control circuit unit, a memory storage device and a signal receiving method are provided. In one exemplary embodiment, a memory interface of the memory control circuit unit receives first signal from a volatile memory and adjust a voltage value of the first signal to a voltage range, where a central value of the voltage range is different from a default voltage value, and the default voltage value is equal to half of a sum of a voltage value of a supply voltage of the memory interface circuit and a voltage value of a reference ground value. Then, the memory interface generates an input signal according to a voltage relative relation between the first signal and an internal reference voltage.

Description

記憶體控制電路單元、記憶體儲存裝置及訊號接收方法Memory control circuit unit, memory storage device and signal receiving method

本發明是有關於一種訊號接收技術,且特別是有關於一種記憶體控制電路單元、記憶體儲存裝置及訊號接收方法。The present invention relates to a signal receiving technology, and more particularly to a memory control circuit unit, a memory storage device, and a signal receiving method.

數位相機、行動電話與MP3播放器在這幾年來的成長十分迅速,使得消費者對儲存媒體的需求也急速增加。由於可複寫式非揮發性記憶體模組(rewritable non-volatile memory module)(例如,快閃記憶體)具有資料非揮發性、省電、體積小,以及無機械結構等特性,所以非常適合內建於上述所舉例的各種可攜式多媒體裝置中。Digital cameras, mobile phones and MP3 players have grown very rapidly in recent years, and the demand for storage media has increased rapidly. Because the rewritable non-volatile memory module (for example, flash memory) has the characteristics of non-volatile data, power saving, small size, and no mechanical structure, it is very suitable. It is built into various portable multimedia devices exemplified above.

部分類型的儲存裝置同時配置有可複寫式非揮發性記憶體模組與動態隨機存取記憶體(Dynamic random access memory, DRAM)等揮發性記憶體,以提供資料的長期儲存與暫時緩衝。在配置有揮發性記憶體的儲存裝置中,作為揮發性記憶體之訊號接收端的記憶體介面電路中普遍設置有終結電阻,以維持來自揮發性記憶體之高速訊號的訊號品質。但是,終結電阻之設置卻也提高訊號接收端的功率消耗。Some types of storage devices are also equipped with rewritable non-volatile memory modules and dynamic random access memory (DRAM) volatile memory to provide long-term storage and temporary buffering of data. In a memory device configured with a volatile memory, a termination resistor is generally provided in the memory interface circuit as a signal receiving end of the volatile memory to maintain the signal quality of the high-speed signal from the volatile memory. However, the setting of the termination resistor also increases the power consumption at the signal receiving end.

本發明提供一種記憶體控制電路單元、記憶體儲存裝置及訊號接收方法,可降低記憶體介面電路從揮發性記憶體接收訊號時的功率消耗。The invention provides a memory control circuit unit, a memory storage device and a signal receiving method, which can reduce the power consumption of the memory interface circuit when receiving signals from the volatile memory.

本發明的一範例實施例提供一種記憶體控制電路單元,其用以控制揮發性記憶體,所述記憶體控制電路單元包括記憶體控制器與記憶體介面電路。所述記憶體介面電路耦接至所述記憶體控制器。所述記憶體介面電路用以接收來自所述揮發性記憶體的第一訊號。所述記憶體介面電路更用以響應於所述記憶體介面電路的內部阻抗而將所述第一訊號的電壓值調整至一電壓範圍。所述電壓範圍的中間值不等於預設電壓值。所述預設電壓值為所述記憶體介面電路的供應電壓之電壓值與參考接地電壓之電壓值之總和的一半。所述記憶體介面電路更用以根據所述第一訊號與內部參考電壓之間的電壓相對關係產生輸入訊號。An exemplary embodiment of the present invention provides a memory control circuit unit for controlling volatile memory. The memory control circuit unit includes a memory controller and a memory interface circuit. The memory interface circuit is coupled to the memory controller. The memory interface circuit is configured to receive a first signal from the volatile memory. The memory interface circuit is further configured to adjust a voltage value of the first signal to a voltage range in response to an internal impedance of the memory interface circuit. The intermediate value of the voltage range is not equal to the preset voltage value. The preset voltage value is half of a sum of a voltage value of a supply voltage of the memory interface circuit and a voltage value of a reference ground voltage. The memory interface circuit is further configured to generate an input signal according to a voltage relationship between the first signal and an internal reference voltage.

在本發明的一範例實施例中,所述記憶體介面電路包括阻抗元件,其用以提供所述內部阻抗,其中所述阻抗元件的第一端耦接至所述第一訊號的接收路徑,且所述阻抗元件的第二端耦接至所述供應電壓或所述參考接地電壓。In an exemplary embodiment of the present invention, the memory interface circuit includes an impedance component for providing the internal impedance, wherein the first end of the impedance component is coupled to the receiving path of the first signal, And the second end of the impedance element is coupled to the supply voltage or the reference ground voltage.

在本發明的一範例實施例中,在接收所述第一訊號之前,所述記憶體介面電路更用以接收來自所述揮發性記憶體的第二訊號。所述記憶體介面電路更用以對所述第二訊號執行分壓操作以產生所述內部參考電壓。In an exemplary embodiment of the present invention, the memory interface circuit is further configured to receive a second signal from the volatile memory before receiving the first signal. The memory interface circuit is further configured to perform a voltage dividing operation on the second signal to generate the internal reference voltage.

在本發明的一範例實施例中,所述記憶體介面電路更用以發送預設讀取指令序列以指示讀取所述揮發性記憶體的預設資料。所述揮發性記憶體用以根據所述預設讀取指令序列產生所述第二訊號。In an exemplary embodiment of the invention, the memory interface circuit is further configured to send a preset read command sequence to indicate that the preset data of the volatile memory is read. The volatile memory is configured to generate the second signal according to the preset read command sequence.

在本發明的一範例實施例中,所述記憶體介面電路包括比較電路。所述比較電路用以比較所述內部參考電壓與所述第一訊號的所述電壓值以產生所述輸入訊號。In an exemplary embodiment of the invention, the memory interface circuit includes a comparison circuit. The comparison circuit is configured to compare the internal reference voltage with the voltage value of the first signal to generate the input signal.

在本發明的一範例實施例中,所述記憶體介面電路包括第一連接介面、第二連接介面及參考電壓產生器。所述第一連接介面用以耦接至所述記憶體控制器。所述第二連接介面用以耦接至所述揮發性記憶體。所述參考電壓產生器耦接至所述第一連接介面與所述第二連接介面。所述參考電壓產生器用以經由所述第一連接介面偵測所述內部阻抗、經由所述第二連接介面偵測所述揮發性記憶體的外部阻抗並根據所述偵測結果產生所述內部參考電壓。In an exemplary embodiment of the invention, the memory interface circuit includes a first connection interface, a second connection interface, and a reference voltage generator. The first connection interface is configured to be coupled to the memory controller. The second connection interface is configured to be coupled to the volatile memory. The reference voltage generator is coupled to the first connection interface and the second connection interface. The reference voltage generator is configured to detect the internal impedance via the first connection interface, detect an external impedance of the volatile memory via the second connection interface, and generate the internal according to the detection result Reference voltage.

在本發明的一範例實施例中,所述參考電壓產生器包括電壓偵測電路,其用以響應於所述內部阻抗與所述外部阻抗而偵測所述記憶體介面電路中的阻抗元件的第一電壓。所述第一電壓的電壓值正相關於所述供應電壓之所述電壓值。In an exemplary embodiment of the present invention, the reference voltage generator includes a voltage detecting circuit for detecting an impedance element in the memory interface circuit in response to the internal impedance and the external impedance. The first voltage. The voltage value of the first voltage is positively related to the voltage value of the supply voltage.

在本發明的一範例實施例中,所述參考電壓產生器更包括分壓電路與電壓輸出電路。所述分壓電路耦接至所述電壓偵測電路並且用以對所述電壓偵測電路之輸出端的第二電壓執行分壓操作。所述電壓輸出電路耦接至所述分壓電路並且用以響應於所述分壓電路之輸出端的第三電壓而產生所述內部參考電壓。In an exemplary embodiment of the invention, the reference voltage generator further includes a voltage dividing circuit and a voltage output circuit. The voltage dividing circuit is coupled to the voltage detecting circuit and configured to perform a voltage dividing operation on the second voltage of the output end of the voltage detecting circuit. The voltage output circuit is coupled to the voltage dividing circuit and configured to generate the internal reference voltage in response to a third voltage at an output of the voltage dividing circuit.

本發明的另一範例實施例提供一種記憶體儲存裝置,其包括連接介面單元、可複寫式非揮發性記憶體模組、揮發性記憶體及記憶體控制電路單元。所述連接介面單元用以耦接至主機系統。所述記憶體控制電路單元耦接至所述連接介面單元、所述可複寫式非揮發性記憶體模組及所述揮發性記憶體。所述記憶體控制電路單元用以接收來自所述揮發性記憶體的第一訊號。所述記憶體控制電路單元更用以響應於所述記憶體控制電路單元的內部阻抗而將所述第一訊號的電壓值調整至一電壓範圍。所述電壓範圍的中間值不等於預設電壓值。所述預設電壓值為所述記憶體介面電路的供應電壓之電壓值與參考接地電壓之電壓值之總和的一半。所述記憶體控制電路單元更用以根據所述第一訊號與內部參考電壓之間的電壓相對關係產生輸入訊號。Another exemplary embodiment of the present invention provides a memory storage device including a connection interface unit, a rewritable non-volatile memory module, a volatile memory, and a memory control circuit unit. The connection interface unit is configured to be coupled to a host system. The memory control circuit unit is coupled to the connection interface unit, the rewritable non-volatile memory module, and the volatile memory. The memory control circuit unit is configured to receive a first signal from the volatile memory. The memory control circuit unit is further configured to adjust a voltage value of the first signal to a voltage range in response to an internal impedance of the memory control circuit unit. The intermediate value of the voltage range is not equal to the preset voltage value. The preset voltage value is half of a sum of a voltage value of a supply voltage of the memory interface circuit and a voltage value of a reference ground voltage. The memory control circuit unit is further configured to generate an input signal according to a voltage relationship between the first signal and an internal reference voltage.

在本發明的一範例實施例中,所述記憶體控制電路單元包括阻抗元件,其用以提供所述內部阻抗。所述阻抗元件的第一端耦接至所述第一訊號的接收路徑,且所述阻抗元件的第二端耦接至所述供應電壓或所述參考接地電壓。In an exemplary embodiment of the invention, the memory control circuit unit includes an impedance element for providing the internal impedance. The first end of the impedance element is coupled to the receiving path of the first signal, and the second end of the impedance element is coupled to the supply voltage or the reference ground voltage.

在本發明的一範例實施例中,所述阻抗元件的第三端用以接收致能訊號,其中所述阻抗元件響應於所述致能訊號而提供所述內部阻抗。In an exemplary embodiment of the invention, the third end of the impedance element is configured to receive an enable signal, wherein the impedance element provides the internal impedance in response to the enable signal.

在本發明的一範例實施例中,所述致能訊號的致能時間正相關於經由所述第一訊號連續傳輸的多個位元的總數。In an exemplary embodiment of the invention, the enabling time of the enable signal is positively related to the total number of consecutive bits transmitted via the first signal.

在本發明的一範例實施例中,在接收所述第一訊號之前,所述記憶體控制電路單元更用以接收來自所述揮發性記憶體的第二訊號。所述記憶體控制電路單元更用以對所述第二訊號執行分壓操作以產生所述內部參考電壓。In an exemplary embodiment of the present invention, before receiving the first signal, the memory control circuit unit is further configured to receive a second signal from the volatile memory. The memory control circuit unit is further configured to perform a voltage dividing operation on the second signal to generate the internal reference voltage.

在本發明的一範例實施例中,所述記憶體控制電路單元更用以發送預設讀取指令序列以指示讀取所述揮發性記憶體的預設資料。所述揮發性記憶體用以根據所述預設讀取指令序列產生所述第二訊號。In an exemplary embodiment of the invention, the memory control circuit unit is further configured to send a preset read command sequence to instruct to read the preset data of the volatile memory. The volatile memory is configured to generate the second signal according to the preset read command sequence.

在本發明的一範例實施例中,所述記憶體控制電路單元包括比較電路。所述比較電路用以比較所述內部參考電壓與所述第一訊號的所述電壓值以產生所述輸入訊號。In an exemplary embodiment of the invention, the memory control circuit unit includes a comparison circuit. The comparison circuit is configured to compare the internal reference voltage with the voltage value of the first signal to generate the input signal.

在本發明的一範例實施例中,所述揮發性記憶體用以提供外部阻抗。所述第一訊號的所述電壓值更響應於所述外部阻抗而被調整至所述電壓範圍。In an exemplary embodiment of the invention, the volatile memory is used to provide an external impedance. The voltage value of the first signal is further adjusted to the voltage range in response to the external impedance.

本發明的另一範例實施例提供一種訊號接收方法,其用於包括揮發性記憶體的記憶體儲存裝置,所述訊號接收方法包括:由記憶體介面電路接收來自所述揮發性記憶體的第一訊號;響應於所述記憶體介面電路的內部阻抗將所述第一訊號的電壓值調整至一電壓範圍,其中所述電壓範圍的中間值不等於預設電壓值,且所述預設電壓值為所述記憶體介面電路的供應電壓之電壓值與參考接地電壓之電壓值之總和的一半;以及根據所述第一訊號與內部參考電壓之間的電壓相對關係產生輸入訊號。Another exemplary embodiment of the present invention provides a signal receiving method for a memory storage device including a volatile memory, the signal receiving method including: receiving, by the memory interface circuit, the first memory from the volatile memory a signal; adjusting a voltage value of the first signal to a voltage range in response to an internal impedance of the memory interface circuit, wherein an intermediate value of the voltage range is not equal to a preset voltage value, and the preset voltage The value is a half of a sum of a voltage value of a supply voltage of the memory interface circuit and a voltage value of a reference ground voltage; and an input signal is generated according to a voltage relationship between the first signal and an internal reference voltage.

在本發明的一範例實施例中,所述的訊號接收方法更包括:由所述記憶體介面電路的阻抗元件提供所述內部阻抗,其中所述阻抗元件的第一端耦接至所述第一訊號的接收路徑,且所述阻抗元件的第二端耦接至所述供應電壓或所述參考接地電壓。In an exemplary embodiment of the present invention, the signal receiving method further includes: providing the internal impedance by an impedance component of the memory interface circuit, wherein a first end of the impedance component is coupled to the first a receiving path of a signal, and the second end of the impedance element is coupled to the supply voltage or the reference ground voltage.

在本發明的一範例實施例中,所述的訊號接收方法更包括:由所述阻抗元件的第三端接收致能訊號;以及由所述阻抗元件響應於所述致能訊號而提供所述內部阻抗。In an exemplary embodiment of the present invention, the signal receiving method further includes: receiving, by the third end of the impedance element, an enable signal; and providing, by the impedance element, the signal in response to the enable signal Internal impedance.

在本發明的一範例實施例中,所述的訊號接收方法更包括:控制所述致能訊號的致能時間,使得所述致能時間正相關於經由所述第一訊號連續傳輸的多個位元的總數。In an exemplary embodiment of the present invention, the signal receiving method further includes: controlling an enabling time of the enabling signal, so that the enabling time is positively correlated with multiple consecutive transmissions via the first signal The total number of bits.

在本發明的一範例實施例中,所述的訊號接收方法更包括:在接收所述第一訊號之前,由所述記憶體介面電路接收來自所述揮發性記憶體的第二訊號;以及對所述第二訊號執行分壓操作以產生所述內部參考電壓。In an exemplary embodiment of the present invention, the signal receiving method further includes: receiving, by the memory interface circuit, a second signal from the volatile memory before receiving the first signal; The second signal performs a voltage division operation to generate the internal reference voltage.

在本發明的一範例實施例中,所述的訊號接收方法更包括:發送預設讀取指令序列以指示讀取所述揮發性記憶體的預設資料;以及由所述揮發性記憶體根據所述預設讀取指令序列產生所述第二訊號。In an exemplary embodiment of the present invention, the signal receiving method further includes: transmitting a preset read command sequence to indicate reading the preset data of the volatile memory; and determining, by the volatile memory The preset read command sequence generates the second signal.

在本發明的一範例實施例中,根據所述第一訊號與所述內部參考電壓之間的所述電壓相對關係產生所述輸入訊號的步驟包括:比較所述內部參考電壓與所述第一訊號的所述電壓值;以及根據比較結果產生所述輸入訊號。In an exemplary embodiment of the present invention, the step of generating the input signal according to the voltage relative relationship between the first signal and the internal reference voltage comprises: comparing the internal reference voltage with the first The voltage value of the signal; and generating the input signal according to the comparison result.

在本發明的一範例實施例中,所述的訊號接收方法更包括:由所述揮發性記憶體提供外部阻抗;以及響應於所述外部阻抗將所述第一訊號的所述電壓值調整至所述電壓範圍。In an exemplary embodiment of the present invention, the signal receiving method further includes: providing an external impedance by the volatile memory; and adjusting the voltage value of the first signal to the external impedance to The voltage range.

在本發明的一範例實施例中,所述揮發性記憶體包括第四代雙倍資料率同步動態隨機存取記憶體。In an exemplary embodiment of the invention, the volatile memory comprises a fourth generation double data rate synchronous dynamic random access memory.

基於上述,本發明提出在記憶體介面電路中設置特定的接收端電路來將來自於揮發性記憶體的第一訊號的電壓值調整至所述電壓範圍並使用合適的內部參考電壓來分析第一訊號。藉此,可維持所產生的輸入訊號的正確性,並可減少接收第一訊號時的功率消耗。Based on the above, the present invention proposes to set a specific receiving end circuit in the memory interface circuit to adjust the voltage value of the first signal from the volatile memory to the voltage range and analyze the first using a suitable internal reference voltage. Signal. Thereby, the correctness of the generated input signal can be maintained, and the power consumption when receiving the first signal can be reduced.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

以下提出多個範例實施例來說明本發明,然而本發明不僅限於所例示的多個範例實施例。又範例實施例之間也允許有適當的結合。在本案說明書全文(包括申請專利範圍)中所使用的「耦接」一詞可指任何直接或間接的連接手段。舉例而言,若文中描述第一裝置耦接於第二裝置,則應該被解釋成該第一裝置可以直接連接於該第二裝置,或者該第一裝置可以透過其他裝置或某種連接手段而間接地連接至該第二裝置。此外,「訊號」一詞可指至少一電流、電壓、電荷、溫度、資料、或任何其他一或多個訊號。The following examples are presented to illustrate the invention, but the invention is not limited to the illustrated exemplary embodiments. Also suitable combinations are allowed between the example embodiments. The term "coupled" as used throughout the specification (including the scope of the patent application) may be used in any direct or indirect connection. For example, if the first device is described as being coupled to the second device, it should be construed that the first device can be directly connected to the second device, or the first device can be connected through other devices or some kind of connection means. Connected to the second device indirectly. Furthermore, the term "signal" may refer to at least one current, voltage, charge, temperature, data, or any other one or more signals.

圖1是根據本發明的一範例實施例所繪示的記憶體儲存裝置的示意圖。請參照圖1,記憶體儲存裝置10包括記憶體控制電路單元11與揮發性記憶體12。記憶體控制電路單元11可以是封裝為一個晶片或由佈設於至少一電路板上的電子電路組成。在本範例實施例中,揮發性記憶體12是第四代雙倍資料率同步動態隨機存取記憶體(Double Data Rate 4 Synchronous Dynamic Random Access Memory, DDR 4 SDRAM)。在另一範例實施例中,揮發性記憶體12亦可以包括其他類型的揮發性記憶體,例如,第三代雙倍資料率同步動態隨機存取記憶體(DDR 3 SDRAM)等。此外,揮發性記憶體12的總數可以是一或多個。FIG. 1 is a schematic diagram of a memory storage device according to an exemplary embodiment of the invention. Referring to FIG. 1, the memory storage device 10 includes a memory control circuit unit 11 and a volatile memory 12. The memory control circuit unit 11 may be packaged as a wafer or composed of electronic circuits disposed on at least one circuit board. In the present exemplary embodiment, the volatile memory 12 is a fourth-generation Double Data Rate 4 Synchronous Dynamic Random Access Memory (DDR 4 SDRAM). In another exemplary embodiment, the volatile memory 12 may also include other types of volatile memory, such as third generation double data rate synchronous dynamic random access memory (DDR 3 SDRAM). Further, the total number of volatile memories 12 may be one or more.

記憶體控制電路單元11與揮發性記憶體12被安裝於記憶體儲存裝置10中的一或多個電路板上。記憶體控制電路單元11支援對於揮發性記憶體12的資料存取操作。在一範例實施例中,記憶體控制電路單元11被視為揮發性記憶體12的控制晶片,而揮發性記憶體12被視為記憶體控制電路單元11的快取(cache)記憶體或緩衝記憶體(buffer)。The memory control circuit unit 11 and the volatile memory 12 are mounted on one or more circuit boards in the memory storage device 10. The memory control circuit unit 11 supports a data access operation for the volatile memory 12. In an exemplary embodiment, the memory control circuit unit 11 is regarded as a control chip of the volatile memory 12, and the volatile memory 12 is regarded as a cache memory or buffer of the memory control circuit unit 11. Memory (buffer).

記憶體控制電路單元11包括記憶體控制器111及記憶體介面電路112。記憶體控制器111耦接至記憶體介面電路112。記憶體控制器112用於控制揮發性記憶體12。在一範例實施例中,記憶體控制器112亦稱為動態隨機存取記憶體控制器(DRAM controller)。The memory control circuit unit 11 includes a memory controller 111 and a memory interface circuit 112. The memory controller 111 is coupled to the memory interface circuit 112. The memory controller 112 is used to control the volatile memory 12. In an exemplary embodiment, memory controller 112 is also referred to as a DRAM controller.

記憶體介面電路112用以將記憶體控制器111連接至揮發性記憶體12。當欲從揮發性記憶體12中讀取資料或儲存資料至揮發性記憶體12中時,記憶體控制器111會經由記憶體介面電路112發送一指令序列給揮發性記憶體12。當揮發性記憶體12接收到此指令序列時,揮發性記憶體12會儲存對應於此指令序列的寫入資料或者經由記憶體介面電路112回傳對應於此指令序列的讀取資料給記憶體控制器111。此外,在記憶體介面電路112中,寫入資料或讀取資料是以資料訊號的形式傳輸。例如,資料訊號可用來傳輸包括位元“1”與位元“0”的位元資料。The memory interface circuit 112 is used to connect the memory controller 111 to the volatile memory 12. When the data is to be read from the volatile memory 12 or stored in the volatile memory 12, the memory controller 111 sends a sequence of instructions to the volatile memory 12 via the memory interface circuit 112. When the volatile memory 12 receives the command sequence, the volatile memory 12 stores the write data corresponding to the command sequence or returns the read data corresponding to the command sequence to the memory via the memory interface circuit 112. Controller 111. In addition, in the memory interface circuit 112, writing data or reading data is transmitted in the form of a data signal. For example, the data signal can be used to transfer bit data including bit "1" and bit "0".

在本範例實施例中,揮發性記憶體12是雙倍資料率同步動態隨機存取記憶體,因此記憶體介面電路112之時脈訊號的上升緣(rising edges)與下降緣(falling edges)皆可以用來解析(例如,取樣)來自揮發性記憶體12的資料訊號。換言之,在一個時脈周期(clock cycle)內,記憶體介面電路112可以對揮發性記憶體12執行兩次的資料寫入或讀取。In the present exemplary embodiment, the volatile memory 12 is a double data rate synchronous dynamic random access memory, so the rising edges and falling edges of the clock signal of the memory interface circuit 112 are both It can be used to parse (eg, sample) data signals from volatile memory 12. In other words, within one clock cycle, the memory interface circuit 112 can perform two data writes or reads to the volatile memory 12.

在本範例實施例中,記憶體介面電路112符合短截線串聯端接邏輯(Stub Series Terminated Logic, SSTL)I/O標準,例如SSTL-2、SSTL-3、SSTL-15或SSTL-18等。在本範例實施例中,記憶體介面電路112包括連接介面1311(亦稱為第一連接介面)與連接介面1312(亦稱為第二連接介面)。連接介面1311用以連接記憶體控制器111與記憶體介面電路112,並且連接介面1312用以連接記憶體介面電路112與揮發性記憶體12。在本範例實施例中,連接介面1312包括多個導電接腳(pin)。記憶體介面電路112經由此些導電接腳連接至揮發性記憶體12。在本範例實施例中,此些導電接腳至少包括一個用於傳輸資料訊號的接腳(亦稱為資料接腳)。例如,資料接腳可以是DQ接腳。藉此,資料訊號可經由此資料接腳在記憶體介面電路112與揮發性記憶體12之間傳輸。在另一範例實施例中,此些導電接腳還可以包括其他功能性接腳,只要符合所採用的連接標準即可。此外,在一範例實施例中,連接介面1311亦可包括至少一個導電接腳。連接介面1311中的導電接腳的總數可相同或不同於連接介面1312中的導電接腳的總數。In the present exemplary embodiment, the memory interface circuit 112 conforms to a Stub Series Terminated Logic (SSTL) I/O standard, such as SSTL-2, SSTL-3, SSTL-15, or SSTL-18. . In the present exemplary embodiment, the memory interface circuit 112 includes a connection interface 1311 (also referred to as a first connection interface) and a connection interface 1312 (also referred to as a second connection interface). The connection interface 1311 is used to connect the memory controller 111 and the memory interface circuit 112, and the connection interface 1312 is used to connect the memory interface circuit 112 and the volatile memory 12. In the present exemplary embodiment, the connection interface 1312 includes a plurality of conductive pins. The memory interface circuit 112 is connected to the volatile memory 12 via the conductive pins. In this exemplary embodiment, the conductive pins include at least one pin (also referred to as a data pin) for transmitting data signals. For example, the data pin can be a DQ pin. Thereby, the data signal can be transmitted between the memory interface circuit 112 and the volatile memory 12 via the data pin. In another exemplary embodiment, the conductive pins may also include other functional pins as long as the connection standards used are met. Moreover, in an exemplary embodiment, the connection interface 1311 may also include at least one conductive pin. The total number of conductive pins in the connection interface 1311 may be the same or different than the total number of conductive pins in the connection interface 1312.

圖2是根據本發明的一範例實施例所繪示的記憶體介面電路的示意圖。請參照圖1與圖2,記憶體介面電路112會接收來自揮發性記憶體12的訊號SRX(亦稱為第一訊號)。然後,記憶體介面電路112會分析訊號SRX並產生訊號SIN(亦稱為輸入訊號)。例如,根據訊號SIN的樣態,記憶體控制器111可以辨識訊號SRX所代表的位元資料是位元“0”或“1”。2 is a schematic diagram of a memory interface circuit according to an exemplary embodiment of the invention. Referring to FIG. 1 and FIG. 2, the memory interface circuit 112 receives the signal SRX (also referred to as the first signal) from the volatile memory 12. The memory interface circuit 112 then analyzes the signal SRX and generates a signal SIN (also referred to as an input signal). For example, according to the state of the signal SIN, the memory controller 111 can recognize that the bit data represented by the signal SRX is the bit "0" or "1".

在本範例實施例中,記憶體介面電路112包括阻抗元件21、阻抗元件22及比較電路23。比較電路23耦接至阻抗元件21與阻抗元件22。阻抗元件21的第一端耦接至訊號SRX的接收路徑,而阻抗元件21的第二端耦接至記憶體介面電路112的供應電壓VDD。此外,阻抗元件22的第一端也耦接至訊號SRX的接收路徑,而阻抗元件22的第二端則耦接至記憶體介面電路112的參考接地電壓GND。從另一角度來看,阻抗元件21與22是串接在記憶體介面電路112的供應電壓VDD與參考接地電壓GND之間。In the present exemplary embodiment, the memory interface circuit 112 includes an impedance element 21, an impedance element 22, and a comparison circuit 23. The comparison circuit 23 is coupled to the impedance element 21 and the impedance element 22. The first end of the impedance element 21 is coupled to the receiving path of the signal SRX, and the second end of the impedance element 21 is coupled to the supply voltage VDD of the memory interface circuit 112. In addition, the first end of the impedance element 22 is also coupled to the receiving path of the signal SRX, and the second end of the impedance element 22 is coupled to the reference ground voltage GND of the memory interface circuit 112. From another point of view, the impedance elements 21 and 22 are connected in series between the supply voltage VDD of the memory interface circuit 112 and the reference ground voltage GND.

阻抗元件21與22用以提供阻抗至訊號SRX的接收路徑。在本範例實施例中,阻抗元件21與22提供的阻抗亦稱為記憶體介面電路112的內部阻抗。例如,此內部阻抗可以具有一個電阻值或電抗值。在本範例實施例中,阻抗元件21與22提供的阻抗具有相同(或接近)的電阻值或電抗值。在另一範例實施例中,阻抗元件21提供的阻抗與22提供的阻抗則具有不同的電阻值或電抗值。在一範例實施例中,阻抗元件21與22的至少其中之一亦稱為記憶體介面電路112的晶片內終結(on-die termination, ODT)阻抗元件。The impedance elements 21 and 22 are used to provide a path of impedance to the signal SRX. In the present exemplary embodiment, the impedance provided by impedance elements 21 and 22 is also referred to as the internal impedance of memory interface circuit 112. For example, the internal impedance can have a resistance value or a reactance value. In the present exemplary embodiment, the impedances provided by impedance elements 21 and 22 have the same (or close) resistance or reactance values. In another exemplary embodiment, the impedance provided by impedance element 21 and the impedance provided by 22 have different resistance values or reactance values. In an exemplary embodiment, at least one of the impedance elements 21 and 22 is also referred to as an on-die termination (OTT) impedance element of the memory interface circuit 112.

在本範例實施例中,阻抗元件21包括至少一電晶體TA,且阻抗元件22包括至少一電晶體TB。電晶體TA與TB可共同或分別提供此內部阻抗的等效阻抗。然而,在另一範例實施例中,阻抗元件21與22亦可以分別包括至少一個電阻等可用以提供電阻值或電抗值的電子元件。In the present exemplary embodiment, the impedance element 21 includes at least one transistor TA, and the impedance element 22 includes at least one transistor TB. The transistors TA and TB can provide the equivalent impedance of this internal impedance together or separately. However, in another exemplary embodiment, the impedance elements 21 and 22 may also include at least one electrical component that can be used to provide a resistance value or a reactance value, respectively.

在本範例實施例中,阻抗元件21的第三端用以接收訊號ENA,並且阻抗元件22的第三端用以接收訊號ENB。訊號ENA為用以啟動阻抗元件21的致能訊號,並且訊號ENB為用以啟動阻抗元件22的致能訊號。當接收到訊號ENA時,阻抗元件21會被啟動。若阻抗元件21被啟動,則訊號SRX的接收路徑與供應電壓VDD之間的路徑(亦稱為第一阻抗路徑)會被導通,並且訊號SRX會受到阻抗元件21所提供之阻抗的影響。反之,若未接收到訊號ENA,則阻抗元件21不被啟動,且訊號SRX不會受到阻抗元件21所提供之阻抗的影響。換言之,阻抗元件21可響應於訊號ENA而提供內部阻抗至訊號SRX的接收路徑。In the exemplary embodiment, the third end of the impedance element 21 is for receiving the signal ENA, and the third end of the impedance element 22 is for receiving the signal ENB. The signal ENA is an enable signal for activating the impedance element 21, and the signal ENB is an enable signal for activating the impedance element 22. When the signal ENA is received, the impedance element 21 is activated. If the impedance element 21 is activated, the path between the receiving path of the signal SRX and the supply voltage VDD (also referred to as the first impedance path) is turned on, and the signal SRX is affected by the impedance provided by the impedance element 21. On the other hand, if the signal ENA is not received, the impedance element 21 is not activated, and the signal SRX is not affected by the impedance provided by the impedance element 21. In other words, the impedance element 21 can provide an internal impedance to the receive path of the signal SRX in response to the signal ENA.

另一方面,當接收到訊號ENB時,阻抗元件22會被啟動。若阻抗元件22被啟動,則訊號SRX的接收路徑與參考接地電壓GND之間的路徑(亦稱為第二阻抗路徑)會被導通,並且訊號SRX會受到阻抗元件22所提供之阻抗的影響。反之,若未接收到訊號ENB,則阻抗元件22不被啟動,且訊號SRX不會受到阻抗元件22所提供之阻抗的影響。換言之,阻抗元件22可響應於訊號ENB而提供內部阻抗至訊號SRX的接收路徑。On the other hand, when the signal ENB is received, the impedance element 22 is activated. If the impedance element 22 is activated, the path between the receive path of the signal SRX and the reference ground voltage GND (also referred to as the second impedance path) will be turned on, and the signal SRX will be affected by the impedance provided by the impedance element 22. Conversely, if the signal ENB is not received, the impedance element 22 is not activated and the signal SRX is not affected by the impedance provided by the impedance element 22. In other words, the impedance element 22 can provide an internal impedance to the receive path of the signal SRX in response to the signal ENB.

圖3是根據本發明的一範例實施例所繪示的第一訊號的示意圖。請參照圖2與圖3,在某一時間範圍內,若阻抗元件21與22同時處於啟動狀態(即,訊號ENA與ENB同時存在),則響應於阻抗元件21與22所共同提供的阻抗,訊號SRX的電壓值會被調整至一個電壓範圍(亦稱為預設電壓範圍)。此預設電壓範圍的上臨界電壓會接近(或等於)供應電壓VDD的電壓值,並且此預設電壓範圍的下臨界電壓會接近(或等於)參考接地電壓GND的電壓值,如圖3所示。換言之,受到阻抗元件21與22所共同提供的阻抗之影響,訊號SRX的電壓值會在供應電壓VDD的電壓值與參考接地電壓GND的電壓值之間起伏。但是,須注意的是,訊號SRX的電壓值不會高於供應電壓VDD的電壓值,也不會低於參考接地電壓GND的電壓值。FIG. 3 is a schematic diagram of a first signal according to an exemplary embodiment of the invention. Referring to FIG. 2 and FIG. 3, in a certain time range, if the impedance elements 21 and 22 are simultaneously activated (ie, the signals ENA and ENB are simultaneously present), in response to the impedance provided by the impedance elements 21 and 22, The voltage value of the signal SRX is adjusted to a voltage range (also known as the preset voltage range). The upper threshold voltage of the preset voltage range is close to (or equal to) the voltage value of the supply voltage VDD, and the lower threshold voltage of the preset voltage range is close to (or equal to) the voltage value of the reference ground voltage GND, as shown in FIG. Show. In other words, affected by the impedance provided by the impedance elements 21 and 22, the voltage value of the signal SRX fluctuates between the voltage value of the supply voltage VDD and the voltage value of the reference ground voltage GND. However, it should be noted that the voltage value of the signal SRX is not higher than the voltage value of the supply voltage VDD nor lower than the voltage value of the reference ground voltage GND.

另一方面,一個訊號VREF(亦稱為內部參考電壓)會被用來決定當前訊號SRX是用來傳遞位元“1”或“0”。例如,在圖3的範例實施例中,訊號VREF的電壓值(約)等於供應電壓VDD的電壓值與參考接地電壓GND的電壓值之間的一個中間值(亦稱為預設電壓值)。例如,此預設電壓值(約)等於供應電壓VDD的電壓值與參考接地電壓GND的電壓值之總和的一半。若當前訊號SRX的電壓值高於訊號VREF的電壓值,表示當前訊號SRX是用來傳遞位元“1”。若當前訊號SRX的電壓值低於訊號VREF的電壓值,表示當前訊號SRX是用來傳遞位元“0”。On the other hand, a signal VREF (also known as the internal reference voltage) is used to determine whether the current signal SRX is used to pass the bit "1" or "0". For example, in the exemplary embodiment of FIG. 3, the voltage value of the signal VREF (about) is equal to an intermediate value (also referred to as a preset voltage value) between the voltage value of the supply voltage VDD and the voltage value of the reference ground voltage GND. For example, the preset voltage value (about) is equal to half the sum of the voltage value of the supply voltage VDD and the voltage value of the reference ground voltage GND. If the voltage value of the current signal SRX is higher than the voltage value of the signal VREF, it indicates that the current signal SRX is used to transfer the bit "1". If the voltage value of the current signal SRX is lower than the voltage value of the signal VREF, it indicates that the current signal SRX is used to transfer the bit "0".

須注意的是,在圖3的另一範例實施例中,若當前訊號SRX的電壓值高於訊號VREF的電壓值,亦可視為當前訊號SRX是用來傳遞位元“0”。若當前訊號SRX的電壓值低於訊號VREF的電壓值,亦可視為當前訊號SRX是用來傳遞位元“1”。It should be noted that, in another exemplary embodiment of FIG. 3, if the voltage value of the current signal SRX is higher than the voltage value of the signal VREF, the current signal SRX may be regarded as a bit "0". If the voltage value of the current signal SRX is lower than the voltage value of the signal VREF, it can be regarded that the current signal SRX is used to transmit the bit "1".

具體來看,記憶體介面電路112會根據訊號SRX與訊號VREF之間的電壓相對關係來產生訊號SIN。例如,比較電路23可包括一運算放大器(operational amplifier, OPA)。比較電路23會接收訊號SRX與訊號VREF並比較訊號SRX與訊號VREF的電壓值。藉由比較訊號SRX與訊號VREF的電壓值,訊號SRX與訊號VREF之間的電壓相對關係可被獲得。若訊號SRX與訊號VREF之間的電壓相對關係為訊號SRX的電壓值高於訊號VREF的電壓值,則對應於某一位元資料(例如,位元“1”)的訊號SIN會被輸出。若訊號SRX與訊號VREF之間的電壓相對關係為訊號SRX的電壓值低於訊號VREF的電壓值,則對應於另一位元資料(例如,位元“0”)的訊號SIN會被輸出。換言之,根據訊號SRX與訊號VREF之間的電壓相對關係,訊號SRX所傳遞的位元資料可被獲得。Specifically, the memory interface circuit 112 generates the signal SIN according to the voltage relative relationship between the signal SRX and the signal VREF. For example, the comparison circuit 23 can include an operational amplifier (OPA). The comparison circuit 23 receives the signal SRX and the signal VREF and compares the voltage values of the signal SRX and the signal VREF. By comparing the voltage values of the signal SRX and the signal VREF, the voltage relative relationship between the signal SRX and the signal VREF can be obtained. If the voltage relationship between the signal SRX and the signal VREF is such that the voltage value of the signal SRX is higher than the voltage value of the signal VREF, the signal SIN corresponding to a certain bit data (for example, the bit "1") is output. If the voltage relationship between the signal SRX and the signal VREF is such that the voltage value of the signal SRX is lower than the voltage value of the signal VREF, the signal SIN corresponding to another bit data (for example, the bit "0") is output. In other words, according to the voltage relationship between the signal SRX and the signal VREF, the bit data transmitted by the signal SRX can be obtained.

在本範例實施例中,記憶體介面電路112還會根據當前記憶體介面電路112提供的阻抗(即,內部阻抗)與揮發性記憶體12提供的阻抗(亦稱為外部阻抗)而動態產生訊號VREF。例如,揮發性記憶體12中也設置有至少一個阻抗元件,其用以提供此外部阻抗。在一範例實施例中,揮發性記憶體12中用以提供此外部阻抗的阻抗元件亦稱為離線晶片驅動(off-chip driver, OCD)阻抗元件。更具體來看,在圖3的範例實施例中,來自揮發性記憶體12的訊號SRX實際上是同時受到記憶體介面電路112的內部阻抗與揮發性記憶體12的外部阻抗之影響,使得訊號SRX的電壓值被調整至圖3的預設電壓範圍。In the present exemplary embodiment, the memory interface circuit 112 also dynamically generates signals according to the impedance (ie, internal impedance) provided by the current memory interface circuit 112 and the impedance (also referred to as external impedance) provided by the volatile memory 12. VREF. For example, at least one impedance element is also provided in the volatile memory 12 for providing this external impedance. In an exemplary embodiment, the impedance element in the volatile memory 12 for providing this external impedance is also referred to as an off-chip driver (OCD) impedance element. More specifically, in the exemplary embodiment of FIG. 3, the signal SRX from the volatile memory 12 is actually affected by the internal impedance of the memory interface circuit 112 and the external impedance of the volatile memory 12, so that the signal The voltage value of SRX is adjusted to the preset voltage range of FIG.

在一範例實施例中,當欲產生訊號VREF時,揮發性記憶體12會傳送符合一特定條件的訊號(亦稱為第二訊號)至記憶體介面電路112。記憶體介面電路112可於訊號SRX的接收路徑接收第二訊號。換言之,第二訊號也會受到記憶體介面電路112的內部阻抗與揮發性記憶體12的外部阻抗之影響。然後,記憶體介面電路112會對第二訊號執行分壓操作,從而產生訊號VREF。In an exemplary embodiment, when the signal VREF is to be generated, the volatile memory 12 transmits a signal (also referred to as a second signal) that meets a specific condition to the memory interface circuit 112. The memory interface circuit 112 can receive the second signal on the receiving path of the signal SRX. In other words, the second signal is also affected by the internal impedance of the memory interface circuit 112 and the external impedance of the volatile memory 12. Then, the memory interface circuit 112 performs a voltage division operation on the second signal to generate a signal VREF.

在一範例實施例中,第二訊號是指用於傳送至少一個特定位元的訊號。例如,在一範例實施例中,此特定位元是位元“0”,故第二訊號的電壓值會相同(或接近)於圖3中預設電壓範圍的下臨界電壓。然後,根據即時偵測到的供應電壓VDD來對第二訊號執行分壓操作,訊號VREF可被動態地產生。In an exemplary embodiment, the second signal refers to a signal for transmitting at least one particular bit. For example, in an exemplary embodiment, the particular bit is bit "0", so the voltage value of the second signal will be the same (or close) to the lower threshold voltage of the preset voltage range in FIG. Then, according to the instantaneously detected supply voltage VDD, a voltage dividing operation is performed on the second signal, and the signal VREF can be dynamically generated.

圖4是根據本發明的一範例實施例所繪示的參考電壓產生電路的示意圖。請參照圖1至圖4,在一範例實施例中,記憶體介面電路112還包括參考電壓產生電路40,其耦接至連接介面1311與1312。例如,參考電壓產生電路40的輸入端耦接至訊號SRX的接收路徑,並且參考電壓產生電路40的輸出端耦接至比較電路23。藉此,參考電壓產生電路40可經由連接介面1311偵測記憶體介面電路112的內部阻抗並經由連接介面1312偵測揮發性記憶體12的外部阻抗然後根據偵測結果產生訊號VREF。FIG. 4 is a schematic diagram of a reference voltage generating circuit according to an exemplary embodiment of the invention. Referring to FIG. 1 to FIG. 4 , in an exemplary embodiment, the memory interface circuit 112 further includes a reference voltage generating circuit 40 coupled to the connection interfaces 1311 and 1312 . For example, the input end of the reference voltage generating circuit 40 is coupled to the receiving path of the signal SRX, and the output end of the reference voltage generating circuit 40 is coupled to the comparing circuit 23. Therefore, the reference voltage generating circuit 40 can detect the internal impedance of the memory interface circuit 112 via the connection interface 1311 and detect the external impedance of the volatile memory 12 via the connection interface 1312 and then generate the signal VREF according to the detection result.

在圖4的範例實施例中,參考電壓產生電路40包括電壓偵測電路41、分壓電路42及電壓輸出電路43。當記憶體介面電路112耦接至揮發性記憶體12時,電壓偵測電路41會耦接至阻抗元件R1與阻抗元件R2之間。其中,阻抗元件R1表示提供記憶體介面電路112之內部阻抗的等效電阻,而阻抗元件R2表示提供揮發性記憶體12之外部阻抗的等效電阻。In the exemplary embodiment of FIG. 4, the reference voltage generating circuit 40 includes a voltage detecting circuit 41, a voltage dividing circuit 42, and a voltage output circuit 43. When the memory interface circuit 112 is coupled to the volatile memory 12, the voltage detecting circuit 41 is coupled between the impedance element R1 and the impedance element R2. The impedance element R1 represents an equivalent resistance that provides the internal impedance of the memory interface circuit 112, and the impedance element R2 represents an equivalent resistance that provides the external impedance of the volatile memory 12.

當記憶體介面電路112接收到第二訊號時,電壓偵測電路41會響應於阻抗元件R1提供之內部阻抗與阻抗元件R2提供之外部阻抗而在阻抗元件R1與阻抗元件R2之間偵測到訊號V1(即,第二訊號)並產生訊號V2。在一範例實施例中,訊號V1是指阻抗元件R1之一端的電壓(亦稱為第一電壓),其電壓值正相關於耦接於阻抗元件R1之另一端的供應電壓VDD之電壓值。此外,訊號V2亦稱為第二電壓。例如,訊號V2的電壓值會被鎖定在訊號V1的電壓值。例如,訊號V2的電壓值會相同(或接近)訊號V1的電壓值。以圖3為例,訊號V2的電壓值會相同(或接近)於預設電壓範圍的下臨界電壓。When the memory interface circuit 112 receives the second signal, the voltage detecting circuit 41 detects between the impedance element R1 and the impedance element R2 in response to the internal impedance provided by the impedance element R1 and the external impedance provided by the impedance element R2. Signal V1 (ie, the second signal) and generates a signal V2. In an exemplary embodiment, the signal V1 refers to a voltage (also referred to as a first voltage) at one end of the impedance element R1, and the voltage value thereof is positively related to the voltage value of the supply voltage VDD coupled to the other end of the impedance element R1. In addition, the signal V2 is also referred to as a second voltage. For example, the voltage value of signal V2 will be locked to the voltage value of signal V1. For example, the voltage value of the signal V2 will be the same (or close to) the voltage value of the signal V1. Taking FIG. 3 as an example, the voltage value of the signal V2 will be the same (or close to) the lower threshold voltage of the preset voltage range.

分壓電路42耦接至電壓偵測電路41並且用以對電壓偵測電路41之輸出端的訊號V2執行分壓操作。例如,分壓電路42包括阻抗元件R3與R4。阻抗元件R3的第一端耦接至供應電壓VDD,阻抗元件R4的第一端耦接至電壓偵測電路41以接收訊號V2,並且阻抗元件R3的第二端耦接至阻抗元件R4的第二端。此外,阻抗元件R3與R4提供相同(或相近)的阻抗值。分壓電路42會根據供應電壓VDD與訊號V2執行分壓操作並產生訊號V3(亦稱為第三電壓)。訊號V3的電壓值會(約)等於供應電壓VDD的電壓值與訊號V2的電壓值之總和的一半。The voltage dividing circuit 42 is coupled to the voltage detecting circuit 41 and configured to perform a voltage dividing operation on the signal V2 at the output end of the voltage detecting circuit 41. For example, the voltage dividing circuit 42 includes impedance elements R3 and R4. The first end of the impedance element R3 is coupled to the supply voltage VDD, the first end of the impedance element R4 is coupled to the voltage detecting circuit 41 to receive the signal V2, and the second end of the impedance element R3 is coupled to the first of the impedance element R4. Two ends. In addition, impedance elements R3 and R4 provide the same (or similar) impedance values. The voltage dividing circuit 42 performs a voltage dividing operation according to the supply voltage VDD and the signal V2 and generates a signal V3 (also referred to as a third voltage). The voltage value of the signal V3 is (about) equal to half the sum of the voltage value of the supply voltage VDD and the voltage value of the signal V2.

電壓輸出電路43耦接至分壓電路42並且響應於分壓電路42之輸出端的訊號V3產生訊號VREF。例如,訊號VREF的電壓值會被鎖定在訊號V3的電壓值。例如,訊號VREF的電壓值會相同(或接近)於訊號V3的電壓值。然後,訊號VREF可被提供至圖2的比較電路23。此外,在一範例實施例中,訊號VREF的電壓值或產生參數可被記錄於一寄存器(register)等儲存元件。藉此,在停止接收第二訊號之後,電壓輸出電路43(或,記憶體介面電路112)仍可持續根據所記錄的電壓值或產生參數來產生訊號VREF。另外,在一範例實施例中,在停止接收第二訊號之後,電壓偵測電路41與分壓電路42的至少其中之一可被禁能(disable)以省電。The voltage output circuit 43 is coupled to the voltage dividing circuit 42 and generates a signal VREF in response to the signal V3 at the output of the voltage dividing circuit 42. For example, the voltage value of the signal VREF will be locked to the voltage value of the signal V3. For example, the voltage value of the signal VREF will be the same (or close to) the voltage value of the signal V3. Then, the signal VREF can be supplied to the comparison circuit 23 of FIG. Moreover, in an exemplary embodiment, the voltage value or generation parameter of the signal VREF can be recorded in a storage element such as a register. Thereby, after stopping receiving the second signal, the voltage output circuit 43 (or the memory interface circuit 112) can still generate the signal VREF according to the recorded voltage value or the generated parameter. In addition, in an exemplary embodiment, after stopping receiving the second signal, at least one of the voltage detecting circuit 41 and the voltage dividing circuit 42 may be disabled to save power.

在一範例實施例中,根據第二訊號來產生訊號VREF之操作亦可視為是一個內部參考訊號產生操作。例如,此內部參考訊號產生操作會在實際使用訊號VREF來產生訊號SIN之前執行並且用來動態地決定訊號VREF的電壓值。亦即,在一範例實施例中,在接收第一訊號之前,記憶體介面電路112會接收第二訊號並根據第二訊號來決定後續用於解析第一訊號的內部參考訊號的電壓值。In an exemplary embodiment, the operation of generating the signal VREF according to the second signal may also be regarded as an internal reference signal generating operation. For example, the internal reference signal generation operation is performed before the signal VREF is actually used to generate the signal SIN and is used to dynamically determine the voltage value of the signal VREF. That is, in an exemplary embodiment, before receiving the first signal, the memory interface circuit 112 receives the second signal and determines a subsequent voltage value for parsing the internal reference signal of the first signal according to the second signal.

在一範例實施例中,記憶體控制器111會經由記憶體介面電路112發送至少一預設讀取指令至揮發性記憶體12。此預設讀取指令用以指示讀取揮發性記憶體12之一預設資料。此預設資料包括至少一個特定位元(例如,位元“0”)。根據此預設讀取指令,揮發性記憶體12會產生上述第二訊號。In an exemplary embodiment, the memory controller 111 sends at least one predetermined read command to the volatile memory 12 via the memory interface circuit 112. The preset read command is used to instruct reading of one of the preset data of the volatile memory 12. This preset material includes at least one specific bit (for example, bit "0"). According to the preset read command, the volatile memory 12 generates the second signal.

在一範例實施例中,根據此預設讀取指令,揮發性記憶體12會自動儲存此預設資料並接續執行讀取此預設資料之操作以產生上述第二訊號。藉此,記憶體控制器111不會在發送預設讀取指令之前,發送額外的寫入指令來指示將預設資料存入揮發性記憶體12中。此外,在一範例實施例中,根據此預設讀取指令,揮發性記憶體12不需實際執行資料存取操作即可產生上述第二訊號。或者,在另一範例實施例中,此預設資料亦可以是由記憶體控制器111在發送預設讀取指令之前,發送額外的寫入指令來指示將預設資料存入揮發性記憶體12中,本發明不加以限制。In an exemplary embodiment, according to the preset read command, the volatile memory 12 automatically stores the preset data and continues to perform the operation of reading the preset data to generate the second signal. Thereby, the memory controller 111 does not send an additional write command to instruct the preset data to be stored in the volatile memory 12 before transmitting the preset read command. In addition, in an exemplary embodiment, according to the preset read command, the volatile memory 12 can generate the second signal without actually performing a data access operation. Alternatively, in another exemplary embodiment, the preset data may also be sent by the memory controller 111 to send a preset read command to indicate that the preset data is stored in the volatile memory. In the 12th, the invention is not limited.

在一範例實施例中,阻抗元件21與22只會擇一被啟動。例如,在某一時間範圍內,若訊號ENA存在並且阻抗元件21被啟動,則訊號ENB將不存在。此時,啟動的阻抗元件21可提供內部阻抗至訊號SRX的接收路徑,而未被啟動的阻抗元件22不提供內部阻抗。或者,在某一時間範圍內,若訊號ENB存在並且阻抗元件22被啟動,則訊號ENA將不存在。此時,啟動的阻抗元件22可提供內部阻抗至訊號SRX的接收路徑,而未被啟動的阻抗元件21不提供內部阻抗。透過只啟動阻抗元件21與22的其中之一,可降低接收訊號SRX時記憶體介面電路112的功率消耗。In an exemplary embodiment, impedance elements 21 and 22 are only selectively activated. For example, in a certain time range, if the signal ENA is present and the impedance element 21 is activated, the signal ENB will not be present. At this time, the activated impedance element 21 can provide an internal impedance to the receive path of the signal SRX, while the unactivated impedance element 22 does not provide an internal impedance. Alternatively, within a certain time range, if the signal ENB is present and the impedance element 22 is activated, the signal ENA will not be present. At this time, the activated impedance element 22 can provide an internal impedance to the receive path of the signal SRX, while the unactivated impedance element 21 does not provide an internal impedance. By starting only one of the impedance elements 21 and 22, the power consumption of the memory interface circuit 112 when receiving the signal SRX can be reduced.

在一範例實施例中,訊號ENA或ENB的一致能時間亦可動態地調整。例如,訊號ENA或ENB的致能時間可正相關於經由訊號SRX連續傳輸的多個位元的總數。須注意的是,上述致能時間指的是訊號的存在時間。例如,訊號ENA的致能時間會正相關於阻抗元件21處於啟動狀態的時間長度,而訊號ENB的致能時間則會正相關於阻抗元件22處於啟動狀態的時間長度。In an exemplary embodiment, the coincidence time of the signal ENA or ENB can also be dynamically adjusted. For example, the enable time of the signal ENA or ENB may be positively related to the total number of consecutive bits transmitted via the signal SRX. It should be noted that the above enabling time refers to the existence time of the signal. For example, the enable time of the signal ENA will be positively related to the length of time the impedance element 21 is in the active state, and the enable time of the signal ENB will be positively related to the length of time the impedance element 22 is in the activated state.

在一範例實施例中,假設訊號SRX的傳輸規範為連續傳送n個位元的位元資料。例如,n可以是4、8、16或32或更大或更小。若n越大,則訊號ENA或ENB的致能時間會越長。藉此,可確保在完整接收來自揮發性記憶體12的位元資料之前,阻抗元件21與22的(至少)其中之一會持續處於啟動狀態。在完整接收來自揮發性記憶體12的位元資料之後,訊號ENA或ENB可被停止提供。藉此,可進一步降低接收訊號SRX時記憶體介面電路112的功率消耗。In an exemplary embodiment, it is assumed that the transmission specification of the signal SRX is to continuously transmit bit data of n bits. For example, n can be 4, 8, 16 or 32 or more or less. If n is larger, the enable time of the signal ENA or ENB will be longer. Thereby, it is ensured that (at least) one of the impedance elements 21 and 22 will remain in the activated state before the bit data from the volatile memory 12 is completely received. After the bit data from the volatile memory 12 is completely received, the signal ENA or ENB can be stopped. Thereby, the power consumption of the memory interface circuit 112 when receiving the signal SRX can be further reduced.

在一範例實施例中,阻抗元件21與22只會擇一被設置於記憶體介面電路112中。藉此,可降低接收訊號SRX時記憶體介面電路112的功率消耗,也可進一步減少記憶體介面電路112中接收端電路的布局面積。In an exemplary embodiment, impedance elements 21 and 22 are only selectively disposed in memory interface circuit 112. Thereby, the power consumption of the memory interface circuit 112 when receiving the signal SRX can be reduced, and the layout area of the receiving end circuit in the memory interface circuit 112 can be further reduced.

圖5是根據本發明的另一範例實施例所繪示的記憶體介面電路的示意圖。圖6是根據本發明的另一範例實施例所繪示的第一訊號的示意圖。請參照圖5與圖6,在本範例實施例中,記憶體介面電路112中設置有阻抗元件21,但未設置阻抗元件22。訊號SRX的電壓值會響應於阻抗元件21提供的內部阻抗而被調整至一個電壓範圍(亦稱為第一電壓範圍)。第一電壓範圍具有一個上臨界電壓VIH(亦稱為第一臨界電壓)與一個下臨界電壓VIL(亦稱為第二臨界電壓)。上臨界電壓VIH的電壓值高於下臨界電壓VIL的電壓值。換言之,在圖5與圖6的範例實施例中,訊號SRX的電壓值會受阻抗元件21提供的內部阻抗之影響而在第一電壓範圍內起伏,視所傳輸的位元資料而定。此外,在圖5與圖6的一範例實施例中,訊號SRX的電壓值不會超出第一電壓範圍。FIG. 5 is a schematic diagram of a memory interface circuit according to another exemplary embodiment of the invention. FIG. 6 is a schematic diagram of a first signal according to another exemplary embodiment of the invention. Referring to FIG. 5 and FIG. 6, in the exemplary embodiment, the memory interface circuit 112 is provided with the impedance element 21, but the impedance element 22 is not disposed. The voltage value of the signal SRX is adjusted to a voltage range (also referred to as a first voltage range) in response to the internal impedance provided by the impedance element 21. The first voltage range has an upper threshold voltage VIH (also referred to as a first threshold voltage) and a lower threshold voltage VIL (also referred to as a second threshold voltage). The voltage value of the upper threshold voltage VIH is higher than the voltage value of the lower threshold voltage VIL. In other words, in the exemplary embodiment of FIGS. 5 and 6, the voltage value of the signal SRX is fluctuated within the first voltage range by the internal impedance provided by the impedance element 21, depending on the transmitted bit material. Moreover, in an exemplary embodiment of FIGS. 5 and 6, the voltage value of the signal SRX does not exceed the first voltage range.

須注意的是,在圖5與圖6的範例實施例中,第一電壓範圍不同於圖3中的預設電壓範圍,且第一電壓範圍的一中間值不同於一個預設電壓VCEN的電壓值。例如,第一電壓範圍的中間值可能會高於預設電壓VCEN的電壓值。其中,第一電壓範圍的中間值等於上臨界電壓VIH的電壓值與下臨界電壓VIL的電壓值之總和的一半,而預設電壓VCEN的電壓值(即,預設電壓值)則等於供應電壓VDD的電壓值與參考接地電壓GND的電壓值之總和的一半。此外,上臨界電壓VIH的電壓值可能會相同(或接近)於供應電壓VDD的電壓值。須注意的是,雖然圖6是繪示下臨界電壓VIL的電壓值高於預設電壓VCEN的電壓值,但是,在圖6的另一範例實施例中,下臨界電壓VIL的電壓值亦可能低於預設電壓VCEN的電壓值,視所配置的內部阻抗與外部阻抗而定。It should be noted that in the exemplary embodiments of FIG. 5 and FIG. 6, the first voltage range is different from the preset voltage range in FIG. 3, and an intermediate value of the first voltage range is different from the voltage of one preset voltage VCEN. value. For example, the intermediate value of the first voltage range may be higher than the voltage value of the preset voltage VCEN. Wherein, the intermediate value of the first voltage range is equal to half of the sum of the voltage value of the upper threshold voltage VIH and the voltage value of the lower threshold voltage VIL, and the voltage value of the preset voltage VCEN (ie, the preset voltage value) is equal to the supply voltage The voltage value of VDD is half of the sum of the voltage values of the reference ground voltage GND. In addition, the voltage value of the upper threshold voltage VIH may be the same (or close to) the voltage value of the supply voltage VDD. It should be noted that although FIG. 6 is a graph showing that the voltage value of the lower threshold voltage VIL is higher than the voltage value of the preset voltage VCEN, in another exemplary embodiment of FIG. 6, the voltage value of the lower threshold voltage VIL may also be The voltage value lower than the preset voltage VCEN depends on the configured internal impedance and external impedance.

在圖5與圖6的範例實施例中,訊號VREF也是由記憶體介面電路112動態地產生。例如,根據圖4的範例實施例,訊號V2(或訊號V1)的電壓值會相同(或接近)於圖6中下臨界電壓VIL的電壓值。在根據訊號V2與供應電壓VDD執行分壓操作後,訊號VREF可被產生。例如,訊號VREF的電壓值會相同(或接近)於第一電壓範圍的中間值,如圖6所示。關於產生訊號VREF的具體細節可參照前述說明,在此便不贅述。In the exemplary embodiment of FIGS. 5 and 6, signal VREF is also dynamically generated by memory interface circuit 112. For example, according to the exemplary embodiment of FIG. 4, the voltage value of the signal V2 (or the signal V1) will be the same (or close) to the voltage value of the lower threshold voltage VIL in FIG. After the voltage dividing operation is performed according to the signal V2 and the supply voltage VDD, the signal VREF can be generated. For example, the voltage value of the signal VREF will be the same (or close to) the intermediate value of the first voltage range, as shown in FIG. For specific details of the generation of the signal VREF, reference may be made to the foregoing description, and will not be described herein.

此外,在圖5的另一範例實施例中,阻抗元件21亦可以是由至少一個電阻等可用以提供電阻值或電抗值的電子元件來實施。藉此,阻抗元件21可持續提供內部阻抗致訊號SRX的接收路徑,而可不受控於訊號ENA。In addition, in another exemplary embodiment of FIG. 5, the impedance element 21 may also be implemented by at least one resistor or the like that can be used to provide a resistance value or a reactance value. Thereby, the impedance element 21 can continue to provide the receiving path of the internal impedance signal SRX without being controlled by the signal ENA.

圖7是根據本發明的另一範例實施例所繪示的記憶體介面電路的示意圖。圖8是根據本發明的另一範例實施例所繪示的第一訊號的示意圖。請參照圖7與圖8,在本範例實施例中,記憶體介面電路112中設置有阻抗元件22,但未設置阻抗元件21。訊號SRX的電壓值會響應於阻抗元件22提供的內部阻抗而被調整至另一個電壓範圍(亦稱為第二電壓範圍)。第二電壓範圍亦具有一個上臨界電壓VIH與一個下臨界電壓VIL。上臨界電壓VIH的電壓值高於下臨界電壓VIL的電壓值。換言之,在圖7與圖8的範例實施例中,訊號SRX的電壓值會受阻抗元件22提供的內部阻抗之影響而在第二電壓範圍內起伏,視所傳輸的位元資料而定。此外,在圖7與圖8的一範例實施例中,訊號SRX的電壓值不會超出第二電壓範圍。FIG. 7 is a schematic diagram of a memory interface circuit according to another exemplary embodiment of the invention. FIG. 8 is a schematic diagram of a first signal according to another exemplary embodiment of the invention. Referring to FIG. 7 and FIG. 8, in the exemplary embodiment, the memory interface circuit 112 is provided with the impedance element 22, but the impedance element 21 is not disposed. The voltage value of the signal SRX is adjusted to another voltage range (also referred to as a second voltage range) in response to the internal impedance provided by the impedance element 22. The second voltage range also has an upper threshold voltage VIH and a lower threshold voltage VIL. The voltage value of the upper threshold voltage VIH is higher than the voltage value of the lower threshold voltage VIL. In other words, in the exemplary embodiment of FIGS. 7 and 8, the voltage value of the signal SRX is affected by the internal impedance provided by the impedance element 22 and fluctuates within the second voltage range, depending on the transmitted bit material. Moreover, in an exemplary embodiment of FIGS. 7 and 8, the voltage value of the signal SRX does not exceed the second voltage range.

須注意的是,在圖7與圖8的範例實施例中,第二電壓範圍不同於圖3中的預設電壓範圍,且第二電壓範圍的一中間值不同於預設電壓VCEN的電壓值。其中,第二電壓範圍的中間值等於上臨界電壓VIH的電壓值與下臨界電壓VIL的電壓值之總和的一半。例如,第二電壓範圍的中間值可能會低於預設電壓VCEN的電壓值。此外,下臨界電壓VIL的電壓值可能會相同(或接近)參考接地電壓GND的電壓值。須注意的是,雖然圖8是繪示上臨界電壓VIH的電壓值低於預設電壓VCEN的電壓值,但是,在圖8的另一範例實施例中,上臨界電壓VIH的電壓值亦可能高於預設電壓VCEN的電壓值,視所配置的內部阻抗與外部阻抗而定。It should be noted that in the exemplary embodiments of FIG. 7 and FIG. 8, the second voltage range is different from the preset voltage range in FIG. 3, and an intermediate value of the second voltage range is different from the voltage value of the preset voltage VCEN. . Wherein, the intermediate value of the second voltage range is equal to half of the sum of the voltage value of the upper threshold voltage VIH and the voltage value of the lower threshold voltage VIL. For example, the intermediate value of the second voltage range may be lower than the voltage value of the preset voltage VCEN. In addition, the voltage value of the lower threshold voltage VIL may be the same (or close to) the voltage value of the reference ground voltage GND. It should be noted that although FIG. 8 is a graph showing that the voltage value of the upper threshold voltage VIH is lower than the voltage value of the preset voltage VCEN, in another exemplary embodiment of FIG. 8, the voltage value of the upper threshold voltage VIH may also be The voltage value higher than the preset voltage VCEN depends on the configured internal impedance and external impedance.

在圖7與圖8的範例實施例中,訊號VREF也是由記憶體介面電路112動態地產生。例如,根據圖4的範例實施例,訊號V2(或訊號V1)的電壓值會相同(或接近)於圖8中上臨界電壓VIH的電壓值。若將分壓電路42所耦接的供應電壓VDD替換為參考接地電壓GND,則在根據訊號V2與參考接地電壓GND執行分壓操作後,訊號VREF可被產生。例如,訊號VREF的電壓值會相同(或接近)於第二電壓範圍的中間值,如圖8所示。In the exemplary embodiment of FIGS. 7 and 8, the signal VREF is also dynamically generated by the memory interface circuit 112. For example, according to the exemplary embodiment of FIG. 4, the voltage value of the signal V2 (or the signal V1) will be the same (or close to) the voltage value of the upper threshold voltage VIH in FIG. If the supply voltage VDD coupled to the voltage dividing circuit 42 is replaced with the reference ground voltage GND, the signal VREF can be generated after the voltage dividing operation is performed according to the signal V2 and the reference ground voltage GND. For example, the voltage value of the signal VREF will be the same (or close to) the intermediate value of the second voltage range, as shown in FIG.

此外,在圖7的另一範例實施例中,阻抗元件22亦可以是由至少一個電阻等可用以提供電阻值或電抗值的電子元件來實施。藉此,阻抗元件22可持續提供內部阻抗致訊號SRX的接收路徑,而可不受控於訊號ENB。Moreover, in another exemplary embodiment of FIG. 7, the impedance element 22 may also be implemented by at least one resistor or the like that can be used to provide a resistance value or a reactance value. Thereby, the impedance element 22 can continue to provide the receiving path of the internal impedance signal SRX without being controlled by the signal ENB.

圖9是根據本發明的另一範例實施例所繪示的記憶體儲存裝置的示意圖。請參照圖9,記憶體儲存裝置90例如是固態硬碟(Solid State Drive, SSD)等同時包含可複寫式非揮發性記憶體模組906與非揮發性記憶體908的記憶體儲存裝置。記憶體儲存裝置90可以與一主機系統一起使用,而主機系統可將資料寫入至記憶體儲存裝置90或從記憶體儲存裝置90中讀取資料。所提及的主機系統為可實質地與記憶體儲存裝置90配合以儲存資料的任意系統,例如,桌上型電腦、筆記型電腦、數位相機、攝影機、通訊裝置、音訊播放器、視訊播放器或平板電腦等。FIG. 9 is a schematic diagram of a memory storage device according to another exemplary embodiment of the invention. Referring to FIG. 9, the memory storage device 90 is, for example, a solid state drive (SSD) or the like, and includes a rewritable non-volatile memory module 906 and a non-volatile memory 908. The memory storage device 90 can be used with a host system that can write data to or read data from the memory storage device 90. The host system mentioned is any system that can substantially cooperate with the memory storage device 90 to store data, such as a desktop computer, a notebook computer, a digital camera, a video camera, a communication device, an audio player, and a video player. Or a tablet, etc.

具體來看,記憶體儲存裝置90包括連接介面單元902、記憶體控制電路單元904、可複寫式非揮發性記憶體模組906及揮發性記憶體908。連接介面單元902用於將記憶體儲存裝置90連接至主機系統。在本範例實施例中,連接介面單元902是相容於序列先進附件(Serial Advanced Technology Attachment, SATA)標準。然而,必須瞭解的是,本發明不限於此,連接介面單元502亦可以是符合並列先進附件(Parallel Advanced Technology Attachment, PATA)標準、高速周邊零件連接介面(Peripheral Component Interconnect Express, PCI Express)標準、通用序列匯流排(Universal Serial Bus, USB)標準或其他適合的標準。連接介面單元902可與記憶體控制電路單元904封裝在一個晶片中,或者連接介面單元902也可以是佈設於一包含記憶體控制電路單元904之晶片外。Specifically, the memory storage device 90 includes a connection interface unit 902, a memory control circuit unit 904, a rewritable non-volatile memory module 906, and a volatile memory 908. The connection interface unit 902 is used to connect the memory storage device 90 to the host system. In the present exemplary embodiment, the connection interface unit 902 is compatible with the Serial Advanced Technology Attachment (SATA) standard. However, it should be understood that the present invention is not limited thereto, and the connection interface unit 502 may also be a Parallel Advanced Technology Attachment (PATA) standard, a Peripheral Component Interconnect Express (PCI Express) standard. Universal Serial Bus (USB) standard or other suitable standard. The connection interface unit 902 can be packaged in a chip with the memory control circuit unit 904, or the connection interface unit 902 can also be disposed outside a wafer including the memory control circuit unit 904.

記憶體控制電路單元904用以根據主機系統的指令在可複寫式非揮發性記憶體模組906中進行資料的寫入、讀取與抹除等運作。可複寫式非揮發性記憶體模組906是耦接至記憶體控制電路單元904並且用以儲存主機系統所寫入之資料。可複寫式非揮發性記憶體模組906可以是單階記憶胞(Single Level Cell, SLC)NAND型快閃記憶體模組(即,一個記憶胞中可儲存1個位元的快閃記憶體模組)、多階記憶胞(Multi Level Cell, MLC)NAND型快閃記憶體模組(即,一個記憶胞中可儲存2個位元的快閃記憶體模組)、複數階記憶胞(Triple Level Cell,TLC)NAND型快閃記憶體模組(即,一個記憶胞中可儲存3個位元的快閃記憶體模組)、其他快閃記憶體模組或其他具有相同特性的記憶體模組。The memory control circuit unit 904 is configured to perform operations such as writing, reading, and erasing data in the rewritable non-volatile memory module 906 according to an instruction of the host system. The rewritable non-volatile memory module 906 is coupled to the memory control circuit unit 904 and is used to store data written by the host system. The rewritable non-volatile memory module 906 can be a single-level memory cell (SLC) NAND-type flash memory module (ie, one memory cell can store one bit of flash memory). Module), Multi Level Cell (MLC) NAND flash memory module (ie, a flash memory module that can store 2 bits in a memory cell), and complex memory cells ( Triple Level Cell, TLC) NAND flash memory module (ie, a flash memory module that can store 3 bits in a memory cell), other flash memory modules, or other memory with the same characteristics Body module.

在本範例實施例中,記憶體控制電路單元904也具有與圖1至圖8之範例實施例所提及的記憶體控制電路單元11相同或相似的功能及/或電子電路結構,並且揮發性記憶體908相同或相似於圖1之範例實施例所提及的揮發性記憶體12。因此,關於記憶體控制電路單元904與揮發性記憶體908之說明請參照圖1至圖8之範例實施例即可,在此便不贅述。In the present exemplary embodiment, the memory control circuit unit 904 also has the same or similar function and/or electronic circuit structure as the memory control circuit unit 11 mentioned in the exemplary embodiments of FIGS. 1 to 8, and is volatile. Memory 908 is the same or similar to volatile memory 12 as mentioned in the exemplary embodiment of FIG. Therefore, for the description of the memory control circuit unit 904 and the volatile memory 908, please refer to the exemplary embodiments of FIG. 1 to FIG. 8 , and details are not described herein.

值得一提的是,圖2、圖4、圖5及圖7所繪示的電子電路結構僅為部分範例實施例中記憶體介面電路的示意圖,而非用以限定本發明。在部分未提及的應用中,更多的電子元件可以被加入至記憶體介面電路中,以提供額外的功能。此外,在部分未提及的應用中,記憶體介面電路之電路布局及/或元件耦接關係也可以被適當地改變,以符合實務上的需求。It is worth mentioning that the electronic circuit structure illustrated in FIG. 2, FIG. 4, FIG. 5 and FIG. 7 is only a schematic diagram of the memory interface circuit in some exemplary embodiments, and is not intended to limit the present invention. In some applications not mentioned, more electronic components can be added to the memory interface circuitry to provide additional functionality. Moreover, in some applications not mentioned, the circuit layout and/or component coupling relationship of the memory interface circuit can also be appropriately changed to meet practical requirements.

圖10是根據本發明的一範例實施例所繪示的訊號接收方法的流程圖。此訊號接收方法可適用於圖1或圖9之範例實施例所提及的記憶體儲存裝置。以下將以圖1的記憶體儲存裝置10搭配圖10來進行說明。FIG. 10 is a flowchart of a signal receiving method according to an exemplary embodiment of the invention. This signal receiving method can be applied to the memory storage device mentioned in the exemplary embodiment of FIG. 1 or 9. Hereinafter, the memory storage device 10 of Fig. 1 will be described with reference to Fig. 10 .

請參照圖1與圖10,在步驟S1001中,由記憶體介面電路112接收來自揮發性記憶體12的第一訊號。在步驟S1002中,由記憶體介面電路112響應於記憶體介面電路112的內部阻抗將第一訊號的電壓值調整至一電壓範圍。例如,此電壓範圍可以是圖6所示的第一電壓範圍或圖8所示的第二電壓範圍。在步驟S1003中,由記憶體介面電路112根據第一訊號與內部參考電壓之間的電壓相對關係產生輸入訊號。Referring to FIG. 1 and FIG. 10, in step S1001, the first signal from the volatile memory 12 is received by the memory interface circuit 112. In step S1002, the voltage value of the first signal is adjusted by the memory interface circuit 112 to a voltage range in response to the internal impedance of the memory interface circuit 112. For example, this voltage range may be the first voltage range shown in FIG. 6 or the second voltage range shown in FIG. In step S1003, the memory interface circuit 112 generates an input signal according to a voltage relationship between the first signal and the internal reference voltage.

然而,圖10中各步驟已詳細說明如上,在此便不再贅述。值得注意的是,圖10中各步驟可以實作為多個程式碼或是電路,本發明不加以限制。此外,圖10的方法可以搭配以上範例實施例使用,也可以單獨使用,本發明不加以限制。However, the steps in FIG. 10 have been described in detail above, and will not be described again here. It should be noted that the steps in FIG. 10 can be implemented as multiple codes or circuits, and the present invention is not limited. In addition, the method of FIG. 10 may be used in combination with the above exemplary embodiments, or may be used alone, and the present invention is not limited thereto.

綜上所述,本發明提出在記憶體介面電路中設置特定的接收端電路來將來自於揮發性記憶體的第一訊號的電壓值調整至一個特定電壓範圍並使用合適的內部參考電壓來分析第一訊號。藉此,可維持所產生的輸入訊號的正確性,並可減少接收第一訊號時的功率消耗。In summary, the present invention proposes to set a specific receiving end circuit in the memory interface circuit to adjust the voltage value of the first signal from the volatile memory to a specific voltage range and analyze it using a suitable internal reference voltage. The first signal. Thereby, the correctness of the generated input signal can be maintained, and the power consumption when receiving the first signal can be reduced.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

10、90‧‧‧記憶體儲存裝置10, 90‧‧‧ memory storage device

11、904‧‧‧記憶體控制電路單元11, 904‧‧‧ memory control circuit unit

111‧‧‧記憶體控制器111‧‧‧Memory Controller

112‧‧‧記憶體介面電路112‧‧‧Memory interface circuit

12、908‧‧‧揮發性記憶體12, 908‧‧‧ volatile memory

21、22、R1、R2、R3、R4‧‧‧阻抗元件21, 22, R1, R2, R3, R4‧‧‧ impedance components

23‧‧‧比較電路23‧‧‧Comparative circuit

ENA、ENB、SRX、SIN、VREF、V1、V2、V3‧‧‧訊號ENA, ENB, SRX, SIN, VREF, V1, V2, V3‧‧‧ signals

TA、TB‧‧‧電晶體TA, TB‧‧‧ transistor

OPA‧‧‧運算放大器OPA‧‧‧Operational Amplifier

VDD‧‧‧供應電壓VDD‧‧‧ supply voltage

GND‧‧‧參考接地電壓GND‧‧‧reference ground voltage

40‧‧‧參考電壓產生電路40‧‧‧reference voltage generation circuit

41‧‧‧電壓偵測電路41‧‧‧Voltage detection circuit

42‧‧‧分壓電路42‧‧‧voltage circuit

43‧‧‧電壓輸出電路43‧‧‧Voltage output circuit

VCEN‧‧‧預設電壓VCEN‧‧‧Preset voltage

VIH‧‧‧上臨界電壓VIH‧‧‧ upper threshold voltage

VIL‧‧‧下臨界電壓VIL‧‧‧ lower threshold voltage

902‧‧‧連接介面單元902‧‧‧Connecting interface unit

906‧‧‧可複寫式非揮發性記憶體模組906‧‧‧Reusable non-volatile memory module

S1001‧‧‧步驟(由記憶體介面電路接收來自揮發性記憶體的第一訊號)S1001‧‧‧Step (receiving the first signal from the volatile memory by the memory interface circuit)

S1002‧‧‧步驟(響應於記憶體介面電路的內部阻抗將第一訊號的電壓值調整至一電壓範圍)S1002‧‧‧Step (adjusting the voltage value of the first signal to a voltage range in response to the internal impedance of the memory interface circuit)

S1003‧‧‧步驟(根據第一訊號與內部參考電壓之間的電壓相對關係產生輸入訊號)S1003‧‧‧Step (generating an input signal according to the voltage relationship between the first signal and the internal reference voltage)

圖1是根據本發明的一範例實施例所繪示的記憶體儲存裝置的示意圖。 圖2是根據本發明的一範例實施例所繪示的記憶體介面電路的示意圖。 圖3是根據本發明的一範例實施例所繪示的第一訊號的示意圖。 圖4是根據本發明的一範例實施例所繪示的參考電壓產生電路的示意圖。 圖5是根據本發明的另一範例實施例所繪示的記憶體介面電路的示意圖。 圖6是根據本發明的另一範例實施例所繪示的第一訊號的示意圖。 圖7是根據本發明的另一範例實施例所繪示的記憶體介面電路的示意圖。 圖8是根據本發明的另一範例實施例所繪示的第一訊號的示意圖。 圖9是根據本發明的另一範例實施例所繪示的記憶體儲存裝置的示意圖。 圖10是根據本發明的一範例實施例所繪示的訊號接收方法的流程圖。FIG. 1 is a schematic diagram of a memory storage device according to an exemplary embodiment of the invention. 2 is a schematic diagram of a memory interface circuit according to an exemplary embodiment of the invention. FIG. 3 is a schematic diagram of a first signal according to an exemplary embodiment of the invention. FIG. 4 is a schematic diagram of a reference voltage generating circuit according to an exemplary embodiment of the invention. FIG. 5 is a schematic diagram of a memory interface circuit according to another exemplary embodiment of the invention. FIG. 6 is a schematic diagram of a first signal according to another exemplary embodiment of the invention. FIG. 7 is a schematic diagram of a memory interface circuit according to another exemplary embodiment of the invention. FIG. 8 is a schematic diagram of a first signal according to another exemplary embodiment of the invention. FIG. 9 is a schematic diagram of a memory storage device according to another exemplary embodiment of the invention. FIG. 10 is a flowchart of a signal receiving method according to an exemplary embodiment of the invention.

Claims (30)

一種記憶體控制電路單元,用以控制一揮發性記憶體,該記憶體控制電路單元包括: 一記憶體控制器;以及 一記憶體介面電路,耦接至該記憶體控制器, 其中該記憶體介面電路用以接收來自該揮發性記憶體的一第一訊號, 其中該記憶體介面電路更用以響應於該記憶體介面電路的一內部阻抗而將該第一訊號的一電壓值調整至一電壓範圍, 其中該電壓範圍的一中間值不等於一預設電壓值, 其中該預設電壓值為該記憶體介面電路的一供應電壓之電壓值與一參考接地電壓之電壓值之總和的一半, 其中該記憶體介面電路更用以根據該第一訊號與一內部參考電壓之間的一電壓相對關係產生一輸入訊號。A memory control circuit unit for controlling a volatile memory, the memory control circuit unit comprising: a memory controller; and a memory interface circuit coupled to the memory controller, wherein the memory The interface circuit is configured to receive a first signal from the volatile memory, wherein the memory interface circuit is further configured to adjust a voltage value of the first signal to one in response to an internal impedance of the memory interface circuit a voltage range, wherein an intermediate value of the voltage range is not equal to a predetermined voltage value, wherein the preset voltage value is half of a sum of a voltage value of a supply voltage of the memory interface circuit and a voltage value of a reference ground voltage The memory interface circuit is further configured to generate an input signal according to a voltage relationship between the first signal and an internal reference voltage. 如申請專利範圍第1項所述的記憶體控制電路單元,其中該記憶體介面電路包括一阻抗元件,其用以提供該內部阻抗, 其中該阻抗元件的第一端耦接至該第一訊號的一接收路徑,其中該阻抗元件的第二端耦接至該供應電壓或該參考接地電壓。The memory control circuit unit of claim 1, wherein the memory interface circuit includes an impedance component for providing the internal impedance, wherein the first end of the impedance component is coupled to the first signal a receiving path, wherein the second end of the impedance element is coupled to the supply voltage or the reference ground voltage. 如申請專利範圍第2項所述的記憶體控制電路單元,其中該阻抗元件的第三端用以接收一致能訊號,其中該阻抗元件響應於該致能訊號而提供該內部阻抗。The memory control circuit unit of claim 2, wherein the third end of the impedance element is configured to receive a uniform energy signal, wherein the impedance element provides the internal impedance in response to the enable signal. 如申請專利範圍第3項所述的記憶體控制電路單元,其中該致能訊號的一致能時間正相關於經由該第一訊號連續傳輸的多個位元的一總數。The memory control circuit unit of claim 3, wherein the enabling time of the enable signal is positively correlated with a total number of the plurality of bits continuously transmitted via the first signal. 如申請專利範圍第1項所述的記憶體控制電路單元,其中在接收該第一訊號之前,該記憶體介面電路更用以接收來自該揮發性記憶體的一第二訊號, 其中該記憶體介面電路更用以對該第二訊號執行一分壓操作以產生該內部參考電壓。The memory control circuit unit of claim 1, wherein the memory interface circuit is further configured to receive a second signal from the volatile memory before receiving the first signal, wherein the memory The interface circuit is further configured to perform a voltage division operation on the second signal to generate the internal reference voltage. 如申請專利範圍第5項所述的記憶體控制電路單元,其中該記憶體介面電路更用以發送一預設讀取指令序列以指示讀取該揮發性記憶體的一預設資料, 其中該揮發性記憶體用以根據該預設讀取指令序列產生該第二訊號。The memory control circuit unit of claim 5, wherein the memory interface circuit is further configured to send a preset read command sequence to indicate a preset data of the volatile memory, wherein the The volatile memory is configured to generate the second signal according to the preset read command sequence. 如申請專利範圍第1項所述的記憶體控制電路單元,其中該記憶體介面電路包括一比較電路, 其中該比較電路用以比較該內部參考電壓與該第一訊號的該電壓值以產生該輸入訊號。The memory control circuit unit of claim 1, wherein the memory interface circuit comprises a comparison circuit, wherein the comparison circuit is configured to compare the internal reference voltage with the voltage value of the first signal to generate the Enter the signal. 如申請專利範圍第1項所述的記憶體控制電路單元,其中該揮發性記憶體用以提供一外部阻抗, 其中該第一訊號的該電壓值更響應於該外部阻抗而被調整至該電壓範圍。The memory control circuit unit of claim 1, wherein the volatile memory is configured to provide an external impedance, wherein the voltage value of the first signal is further adjusted to the voltage in response to the external impedance. range. 如申請專利範圍第1項所述的記憶體控制電路單元,其中該揮發性記憶體包括一第四代雙倍資料率同步動態隨機存取記憶體。The memory control circuit unit of claim 1, wherein the volatile memory comprises a fourth generation double data rate synchronous dynamic random access memory. 如申請專利範圍第1項所述的記憶體控制電路單元,其中該記憶體介面電路包括: 一第一連接介面,用以耦接至該記憶體控制器; 一第二連接介面,用以耦接至該揮發性記憶體;以及 一參考電壓產生器,耦接至該第一連接介面與該第二連接介面, 其中該參考電壓產生器用以經由該第一連接介面偵測該內部阻抗、經由該第二連接介面偵測該揮發性記憶體的一外部阻抗並根據該偵測結果產生該內部參考電壓。The memory control circuit unit of claim 1, wherein the memory interface circuit comprises: a first connection interface for coupling to the memory controller; and a second connection interface for coupling Connecting to the volatile memory; and a reference voltage generator coupled to the first connection interface and the second connection interface, wherein the reference voltage generator is configured to detect the internal impedance via the first connection interface, via The second connection interface detects an external impedance of the volatile memory and generates the internal reference voltage according to the detection result. 如申請專利範圍第10項所述的記憶體控制電路單元,其中該參考電壓產生器包括: 一電壓偵測電路,用以響應於該內部阻抗與該外部阻抗而偵測該記憶體介面電路中的一阻抗元件的一第一電壓, 其中該第一電壓的一電壓值正相關於該供應電壓之該電壓值。The memory control circuit unit of claim 10, wherein the reference voltage generator comprises: a voltage detecting circuit for detecting the memory interface circuit in response to the internal impedance and the external impedance a first voltage of an impedance component, wherein a voltage value of the first voltage is positively related to the voltage value of the supply voltage. 如申請專利範圍第11項所述的記憶體控制電路單元,其中該參考電壓產生器更包括: 一分壓電路,耦接至該電壓偵測電路並且用以對該電壓偵測電路之輸出端的一第二電壓執行一分壓操作;以及 一電壓輸出電路,耦接至該分壓電路並且用以響應於該分壓電路之輸出端的一第三電壓而產生該內部參考電壓。The memory control circuit unit of claim 11, wherein the reference voltage generator further comprises: a voltage dividing circuit coupled to the voltage detecting circuit and configured to output the voltage detecting circuit A second voltage of the terminal performs a voltage dividing operation; and a voltage output circuit coupled to the voltage dividing circuit and configured to generate the internal reference voltage in response to a third voltage at an output of the voltage dividing circuit. 一種記憶體儲存裝置,包括: 一連接介面單元,用以耦接至一主機系統; 一可複寫式非揮發性記憶體模組; 一揮發性記憶體;以及 一記憶體控制電路單元,耦接至該連接介面單元、該可複寫式非揮發性記憶體模組及該揮發性記憶體, 其中該記憶體控制電路單元用以接收來自該揮發性記憶體的一第一訊號, 其中該記憶體控制電路單元更用以響應於該記憶體控制電路單元的一內部阻抗而將該第一訊號的一電壓值調整至一電壓範圍, 其中該電壓範圍的一中間值不等於一預設電壓值, 其中該預設電壓值為該記憶體介面電路的一供應電壓之電壓值與一參考接地電壓之電壓值之總和的一半, 其中該記憶體控制電路單元更用以根據該第一訊號與一內部參考電壓之間的一電壓相對關係產生一輸入訊號。A memory storage device includes: a connection interface unit for coupling to a host system; a rewritable non-volatile memory module; a volatile memory; and a memory control circuit unit coupled The memory control circuit unit is configured to receive a first signal from the volatile memory, wherein the memory device is configured to receive the first signal from the volatile memory The control circuit unit is further configured to adjust a voltage value of the first signal to a voltage range in response to an internal impedance of the memory control circuit unit, wherein an intermediate value of the voltage range is not equal to a predetermined voltage value, The preset voltage value is half of a sum of a voltage value of a supply voltage of the memory interface circuit and a voltage value of a reference ground voltage, wherein the memory control circuit unit is further configured to use the first signal and an internal A voltage relative relationship between the reference voltages produces an input signal. 如申請專利範圍第13項所述的記憶體儲存裝置,其中該記憶體控制電路單元包括一阻抗元件,其用以提供該內部阻抗, 其中該阻抗元件的第一端耦接至該第一訊號的一接收路徑,其中該阻抗元件的第二端耦接至該供應電壓或該參考接地電壓。The memory storage device of claim 13, wherein the memory control circuit unit includes an impedance component for providing the internal impedance, wherein the first end of the impedance component is coupled to the first signal a receiving path, wherein the second end of the impedance element is coupled to the supply voltage or the reference ground voltage. 如申請專利範圍第14項所述的記憶體儲存裝置,其中該阻抗元件的第三端用以接收一致能訊號,其中該阻抗元件響應於該致能訊號而提供該內部阻抗。The memory storage device of claim 14, wherein the third end of the impedance element is configured to receive a uniform energy signal, wherein the impedance element provides the internal impedance in response to the enable signal. 如申請專利範圍第15項所述的記憶體儲存裝置,其中該致能訊號的一致能時間正相關於經由該第一訊號連續傳輸的多個位元的一總數。The memory storage device of claim 15, wherein the enabling time of the enabling signal is positively correlated with a total number of the plurality of bits continuously transmitted via the first signal. 如申請專利範圍第13項所述的記憶體儲存裝置,其中在接收該第一訊號之前,該記憶體控制電路單元更用以接收來自該揮發性記憶體的一第二訊號, 其中該記憶體控制電路單元更用以對該第二訊號執行一分壓操作以產生該內部參考電壓。The memory storage device of claim 13, wherein the memory control circuit unit is further configured to receive a second signal from the volatile memory, wherein the memory is received before the receiving the first signal The control circuit unit is further configured to perform a voltage dividing operation on the second signal to generate the internal reference voltage. 如申請專利範圍第17項所述的記憶體儲存裝置,其中該記憶體控制電路單元更用以發送一預設讀取指令序列以指示讀取該揮發性記憶體的一預設資料, 其中該揮發性記憶體用以根據該預設讀取指令序列產生該第二訊號。The memory storage device of claim 17, wherein the memory control circuit unit is further configured to send a preset read command sequence to indicate reading a preset data of the volatile memory, wherein the The volatile memory is configured to generate the second signal according to the preset read command sequence. 如申請專利範圍第13項所述的記憶體儲存裝置,其中該記憶體控制電路單元包括一比較電路, 其中該比較電路用以比較該內部參考電壓與該第一訊號的該電壓值以產生該輸入訊號。The memory storage device of claim 13, wherein the memory control circuit unit comprises a comparison circuit, wherein the comparison circuit is configured to compare the internal reference voltage with the voltage value of the first signal to generate the Enter the signal. 如申請專利範圍第13項所述的記憶體儲存裝置,其中該揮發性記憶體用以提供一外部阻抗, 其中該第一訊號的該電壓值更響應於該外部阻抗而被調整至該電壓範圍。The memory storage device of claim 13, wherein the volatile memory is configured to provide an external impedance, wherein the voltage value of the first signal is further adjusted to the voltage range in response to the external impedance. . 如申請專利範圍第13項所述的記憶體儲存裝置,其中該揮發性記憶體包括一第四代雙倍資料率同步動態隨機存取記憶體。The memory storage device of claim 13, wherein the volatile memory comprises a fourth generation double data rate synchronous dynamic random access memory. 一種訊號接收方法,用於包括一揮發性記憶體的一記憶體儲存裝置,該訊號接收方法包括: 由一記憶體介面電路接收來自該揮發性記憶體的一第一訊號; 響應於該記憶體介面電路的一內部阻抗將該第一訊號的一電壓值調整至一電壓範圍,其中該電壓範圍的一中間值不等於一預設電壓值,其中該預設電壓值為該記憶體介面電路的一供應電壓之電壓值與一參考接地電壓之電壓值之總和的一半;以及 根據該第一訊號與一內部參考電壓之間的一電壓相對關係產生一輸入訊號。A signal receiving method for a memory storage device including a volatile memory, the signal receiving method comprising: receiving a first signal from the volatile memory by a memory interface circuit; responsive to the memory An internal impedance of the interface circuit adjusts a voltage value of the first signal to a voltage range, wherein an intermediate value of the voltage range is not equal to a predetermined voltage value, wherein the predetermined voltage value is a memory interface circuit And comparing a voltage value of a supply voltage to a voltage value of a reference ground voltage; and generating an input signal according to a voltage relationship between the first signal and an internal reference voltage. 如申請專利範圍第22項所述的訊號接收方法,更包括: 由該記憶體介面電路的一阻抗元件提供該內部阻抗, 其中該阻抗元件的第一端耦接至該第一訊號的一接收路徑,其中該阻抗元件的第二端耦接至該供應電壓或該參考接地電壓。The signal receiving method of claim 22, further comprising: providing the internal impedance by an impedance component of the memory interface circuit, wherein the first end of the impedance component is coupled to a receiving of the first signal a path, wherein the second end of the impedance element is coupled to the supply voltage or the reference ground voltage. 如申請專利範圍第23項所述的訊號接收方法,更包括: 由該阻抗元件的第三端接收一致能訊號;以及 由該阻抗元件響應於該致能訊號而提供該內部阻抗。The method for receiving a signal according to claim 23, further comprising: receiving, by the third end of the impedance element, a uniform energy signal; and providing the internal impedance by the impedance element in response to the enable signal. 如申請專利範圍第24項所述的訊號接收方法,更包括: 控制該致能訊號的一致能時間,使得該致能時間正相關於經由該第一訊號連續傳輸的多個位元的一總數。The method for receiving a signal according to claim 24, further comprising: controlling a consistent energy time of the enable signal, such that the enable time is positively correlated with a total number of consecutive bits transmitted through the first signal. . 如申請專利範圍第22項所述的訊號接收方法,更包括: 在接收該第一訊號之前,由該記憶體介面電路接收來自該揮發性記憶體的一第二訊號;以及 對該第二訊號執行一分壓操作以產生該內部參考電壓。The method for receiving a signal according to claim 22, further comprising: receiving, by the memory interface circuit, a second signal from the volatile memory before receiving the first signal; and the second signal A voltage division operation is performed to generate the internal reference voltage. 如申請專利範圍第26項所述的訊號接收方法,更包括: 發送一預設讀取指令序列以指示讀取該揮發性記憶體的一預設資料;以及 由該揮發性記憶體根據該預設讀取指令序列產生該第二訊號。The method for receiving a signal according to claim 26, further comprising: transmitting a preset read command sequence to indicate reading a preset data of the volatile memory; and determining, by the volatile memory The read command sequence is generated to generate the second signal. 如申請專利範圍第22項所述的訊號接收方法,其中根據該第一訊號與該內部參考電壓之間的該電壓相對關係產生該輸入訊號的步驟包括: 比較該內部參考電壓與該第一訊號的該電壓值;以及 根據一比較結果產生該輸入訊號。The method for receiving a signal according to claim 22, wherein the step of generating the input signal according to the voltage relationship between the first signal and the internal reference voltage comprises: comparing the internal reference voltage with the first signal The voltage value; and generating the input signal according to a comparison result. 如申請專利範圍第22項所述的訊號接收方法,更包括: 由該揮發性記憶體提供一外部阻抗;以及 響應於該外部阻抗將該第一訊號的該電壓值調整至該電壓範圍。The signal receiving method of claim 22, further comprising: providing an external impedance from the volatile memory; and adjusting the voltage value of the first signal to the voltage range in response to the external impedance. 如申請專利範圍第22項所述的訊號接收方法,其中該揮發性記憶體包括一第四代雙倍資料率同步動態隨機存取記憶體。The signal receiving method according to claim 22, wherein the volatile memory comprises a fourth generation double data rate synchronous dynamic random access memory.
TW106107658A 2016-06-20 2017-03-09 Memory control circuit unit, memory storage device and signal receiving method TWI615844B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW106107658A TWI615844B (en) 2017-03-09 2017-03-09 Memory control circuit unit, memory storage device and signal receiving method
US15/591,114 US9990983B2 (en) 2016-06-20 2017-05-10 Memory control circuit unit, memory storage device and signal receiving method
US15/955,701 US10304521B2 (en) 2016-06-20 2018-04-18 Memory control circuit unit, memory storage device and signal receiving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106107658A TWI615844B (en) 2017-03-09 2017-03-09 Memory control circuit unit, memory storage device and signal receiving method

Publications (2)

Publication Number Publication Date
TWI615844B TWI615844B (en) 2018-02-21
TW201833924A true TW201833924A (en) 2018-09-16

Family

ID=62014637

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106107658A TWI615844B (en) 2016-06-20 2017-03-09 Memory control circuit unit, memory storage device and signal receiving method

Country Status (1)

Country Link
TW (1) TWI615844B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898634A (en) * 1997-06-17 1999-04-27 Micron Technology, Inc. Integrated circuit with supply voltage detector
US7697365B2 (en) * 2007-07-13 2010-04-13 Silicon Storage Technology, Inc. Sub volt flash memory system
US20120218034A1 (en) * 2011-02-28 2012-08-30 Sebastian Turullols Voltage calibration method and apparatus
KR20140072637A (en) * 2012-12-05 2014-06-13 삼성전자주식회사 method for operating non-volatile memory device and memory controller
US9257164B2 (en) * 2013-03-14 2016-02-09 Altera Corporation Circuits and methods for DQS autogating

Also Published As

Publication number Publication date
TWI615844B (en) 2018-02-21

Similar Documents

Publication Publication Date Title
US9805787B2 (en) Calibration circuit and memory device including the same
KR20190099933A (en) Memory Device determining operation mode based on external voltage and Operating Method thereof
TWI766016B (en) Memory system having impedance calibration circuit
TWI601155B (en) Memory interface, memory control circuit unit, memory storage device and clock generation method
TW201913665A (en) Memory system having impedance calibration circuit
TWI801508B (en) Data output buffer
KR20190029011A (en) Memory system having data output driver
CN107516536B (en) Memory interface, control circuit unit, memory device and clock generation method
US10418088B2 (en) Power reduction technique during read/write bursts
US9531365B1 (en) Signal generator adjusting a duty cycle and semiconductor apparatus using the same
CN108628774B (en) Memory control circuit unit, memory storage device and signal receiving method
CN107545918B (en) Memory control circuit unit, memory device and reference voltage generation method
TWI615844B (en) Memory control circuit unit, memory storage device and signal receiving method
US10037788B2 (en) Semiconductor devices and semiconductor systems
TWI713042B (en) Memory interface circuit, memory storage device and configuration status checking method
US10304521B2 (en) Memory control circuit unit, memory storage device and signal receiving method
US10566037B1 (en) Automated voltage and timing margin measurement for NAND flash interface
CN112309444B (en) Memory interface circuit, memory storage device and setting state detection method
TWI600017B (en) Memory control circuit unit, memory storage device and reference voltage generation method
US9722597B2 (en) Initialization signal generation device and nonvolatile memory apparatus using the same
US10255967B1 (en) Power reduction technique during write bursts
US10991416B1 (en) Capacitance-based compensation circuitry
US20230063891A1 (en) Output Driver with Strength Matched Power Gating