TW201833368A - Methods of forming a dielectric layer and methods of fabricating a semiconductor device - Google Patents

Methods of forming a dielectric layer and methods of fabricating a semiconductor device Download PDF

Info

Publication number
TW201833368A
TW201833368A TW106107157A TW106107157A TW201833368A TW 201833368 A TW201833368 A TW 201833368A TW 106107157 A TW106107157 A TW 106107157A TW 106107157 A TW106107157 A TW 106107157A TW 201833368 A TW201833368 A TW 201833368A
Authority
TW
Taiwan
Prior art keywords
dielectric layer
forming
group
alkyl
mol
Prior art date
Application number
TW106107157A
Other languages
Chinese (zh)
Other versions
TWI726061B (en
Inventor
黃宣惠
金銘云
曺侖廷
李相益
全相勇
鄭仁京
鄭元雄
崔晶植
Original Assignee
三星電子股份有限公司
Dnf有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三星電子股份有限公司, Dnf有限公司 filed Critical 三星電子股份有限公司
Priority to TW106107157A priority Critical patent/TWI726061B/en
Publication of TW201833368A publication Critical patent/TW201833368A/en
Application granted granted Critical
Publication of TWI726061B publication Critical patent/TWI726061B/en

Links

Abstract

A method of forming a dielectric layer includes forming a preliminary dielectric layer on a substrate using a silicon precursor and performing an energy treatment on the preliminary dielectric layer to form a dielectric layer. In the dielectric layer, a ratio of Si-CH3 bonding unit to Si-O bonding unit ranges from 0.5 to 5.

Description

形成介電層的方法及製造半導體裝置的方法Method of forming dielectric layer and method of manufacturing semiconductor device

本發明的一些實例實施例是有關於一種半導體裝置以及其製造方法,特別是有關於一種使用矽前驅物形成低k介電層的方法以及使用所述方法製造半導體裝置的方法。Some example embodiments of the present invention are directed to a semiconductor device and a method of fabricating the same, and more particularly to a method of forming a low-k dielectric layer using a hafnium precursor and a method of fabricating a semiconductor device using the method.

半導體裝置由於其相對較小的尺寸、多功能性和/或相對較低的成本特徵而成為電子工業中的重要元件。一般來說,半導體裝置分類成用於存儲資料的記憶裝置、用於處理資料的邏輯裝置以及用於執行各種功能的混合裝置。Semiconductor devices are an important component in the electronics industry due to their relatively small size, versatility, and/or relatively low cost characteristics. Generally, a semiconductor device is classified into a memory device for storing data, a logic device for processing data, and a hybrid device for performing various functions.

隨著電子工業發展,越來越需要具有較高汲極密度以及較高性能的半導體裝置。為了滿足這種需求,必需降低製程裕量(例如在微影製程中)。雖然為了克服這種困難已經進行許多研究,但是降低製程裕量導致半導體裝置製造出現若干困難。With the development of the electronics industry, there is an increasing demand for semiconductor devices having higher buckling density and higher performance. In order to meet this demand, it is necessary to reduce the process margin (for example, in the lithography process). Although many studies have been conducted to overcome this difficulty, reducing the process margin has caused several difficulties in the manufacture of semiconductor devices.

本發明概念的一些實例實施例提供一種形成具有相對較低介電常數以及相對較高機械強度的低k介電層的方法。Some example embodiments of the inventive concept provide a method of forming a low-k dielectric layer having a relatively low dielectric constant and relatively high mechanical strength.

本發明概念的一些實例實施例提供一種製造半導體裝置的方法,所述半導體裝置經配置以使得其互連線的寄生電容相對較低。Some example embodiments of the inventive concept provide a method of fabricating a semiconductor device configured such that a parasitic capacitance of its interconnect line is relatively low.

根據本發明概念的一些實例實施例,一種形成介電層的方法包含在基底上使用含有由以下化學式1表示的化合物的矽前驅物形成初始介電層以及對初始介電層進行能量處理以形成介電層。在介電層中,Si-CH3 鍵結單元與Si-O鍵結單元的比率在0.5到5範圍內。 [化學式1] According to some example embodiments of the inventive concepts, a method of forming a dielectric layer includes forming an initial dielectric layer on a substrate using a hafnium precursor containing a compound represented by the following Chemical Formula 1 and performing energy treatment on the initial dielectric layer to form Dielectric layer. In the dielectric layer, the ratio of the Si-CH 3 bonding unit to the Si-O bonding unit is in the range of 0.5 to 5. [Chemical Formula 1]

其中在化學式1中,n是1或2,R1 、R2 、R3 、R5 以及R6 中的至少兩個是-O-R7 且其它各自獨立地是氫、(C1 -C10 )烷基、(C3 -C10 )烯基、(C3 -C10 )炔基以及(C1 -C10 )烷氧基之一,R7 是氫、(C1 -C10 )烷基、(C3 -C10 )烯基以及(C3 -C10 )炔基之一,且R4 是致孔劑基團,包括(C3 -C10 )烯基、(C3 -C10 )炔基、(C3 -C10 )芳基、(C3 -C10 )雜芳基、(C3 -C10 )環烷基、(C3 -C10 )環烯基、(C3 -C10 )環炔基、(C3 -C10 )雜環烷基、(C3 -C10 )芳基(C1 -C10 )烷基、(C3 -C10 )環烷基(C1 -C10 )烷基以及(C3 -C10 )雜環烷基(C1 -C10 )烷基之一。Wherein in Chemical Formula 1, n is 1 or 2, at least two of R 1 , R 2 , R 3 , R 5 and R 6 are -OR 7 and the others are each independently hydrogen, (C 1 -C 10 ) One of an alkyl group, a (C 3 -C 10 )alkenyl group, a (C 3 -C 10 )alkynyl group, and a (C 1 -C 10 ) alkoxy group, R 7 is hydrogen, (C 1 -C 10 )alkyl , (C 3 -C 10 )alkenyl and one of (C 3 -C 10 )alkynyl, and R 4 is a porogen group, including (C 3 -C 10 )alkenyl, (C 3 -C 10 Alkynyl, (C 3 -C 10 )aryl, (C 3 -C 10 )heteroaryl, (C 3 -C 10 )cycloalkyl, (C 3 -C 10 )cycloalkenyl, (C 3 -C 10 )cycloalkynyl, (C 3 -C 10 )heterocycloalkyl, (C 3 -C 10 )aryl(C 1 -C 10 )alkyl, (C 3 -C 10 )cycloalkyl ( One of C 1 -C 10 )alkyl and (C 3 -C 10 )heterocycloalkyl(C 1 -C 10 )alkyl.

根據本發明概念的一些實例實施例,一種形成介電層的方法包含在基底上使用含有由以下化學式1表示的化合物的矽前驅物形成介電層, [化學式1] According to some example embodiments of the inventive concepts, a method of forming a dielectric layer includes forming a dielectric layer on a substrate using a hafnium precursor containing a compound represented by the following Chemical Formula 1, [Chemical Formula 1]

其中,在化學式1中,n是1或2,R1 、R2 、R3 、R5 以及R6 中的至少兩個是-O-R7 且其它各自獨立地是氫、(C1 -C10 )烷基、(C3 -C10 )烯基、(C3 -C10 )炔基以及(C1 -C10 )烷氧基之一,R7 是氫、(C1 -C10 )烷基、(C3 -C10 )烯基以及(C3 -C10 )炔基之一,且R4 是致孔劑基團,包括(C3 -C10 )芳基、(C3 -C10 )雜芳基、(C3 -C10 )環烯基、(C3 -C10 )環炔基、(C3 -C10 )雜環烷基、(C3 -C10 )芳基(C1 -C10 )烷基、(C3 -C10 )環烷基(C1 -C10 )烷基以及(C3 -C10 )雜環烷基(C1 -C10 )烷基之一。Wherein, in Chemical Formula 1, n is 1 or 2, at least two of R 1 , R 2 , R 3 , R 5 and R 6 are -OR 7 and the others are each independently hydrogen, (C 1 -C 10 Alkyl, (C 3 -C 10 )alkenyl, (C 3 -C 10 )alkynyl and one of (C 1 -C 10 )alkoxy, R 7 is hydrogen, (C 1 -C 10 ) alkane a group of (C 3 -C 10 )alkenyl and (C 3 -C 10 )alkynyl, and R 4 is a porogen group, including (C 3 -C 10 )aryl, (C 3 -C 10 ) heteroaryl, (C 3 -C 10 )cycloalkenyl, (C 3 -C 10 )cycloalkynyl, (C 3 -C 10 )heterocycloalkyl, (C 3 -C 10 )aryl ( C 1 -C 10 )alkyl, (C 3 -C 10 )cycloalkyl(C 1 -C 10 )alkyl, and (C 3 -C 10 )heterocycloalkyl(C 1 -C 10 )alkyl One.

根據本發明概念的一些實例實施例,一種形成介電層的方法包含在基底上使用含有由以下化學式1表示的化合物的矽前驅物形成初始介電層以及對初始介電層進行能量處理以形成介電層。介電層具有6 GPa到15 GPa範圍內的楊氏模量(Young's modulus)。 [化學式1] According to some example embodiments of the inventive concepts, a method of forming a dielectric layer includes forming an initial dielectric layer on a substrate using a hafnium precursor containing a compound represented by the following Chemical Formula 1 and performing energy treatment on the initial dielectric layer to form Dielectric layer. The dielectric layer has a Young's modulus in the range of 6 GPa to 15 GPa. [Chemical Formula 1]

其中,在化學式1中,n是1或2,R1 、R2 、R3 、R5 以及R6 中的至少三個是甲氧基且其它各自獨立地是氫、(C1 -C10 )烷基、(C3 -C10 )烯基、(C3 -C10 )炔基以及(C1 -C10 )烷氧基之一,且R4 是致孔劑基團,包括(C3 -C10 )烯基、(C3 -C10 )炔基、(C3 -C10 )芳基、(C3 -C10 )雜芳基、(C3 -C10 )環烷基、(C3 -C10 )環烯基、(C3 -C10 )環炔基、(C3 -C10 )雜環烷基、(C3 -C10 )芳基(C1 -C10 )烷基、(C3 -C10 )環烷基(C1 -C10 )烷基以及(C3 -C10 )雜環烷基(C1 -C10 )烷基之一。Wherein, in Chemical Formula 1, n is 1 or 2, and at least three of R 1 , R 2 , R 3 , R 5 and R 6 are a methoxy group and the others are each independently hydrogen, (C 1 - C 10 Alkyl, (C 3 -C 10 )alkenyl, (C 3 -C 10 )alkynyl, and (C 1 -C 10 )alkoxy, and R 4 is a porogen group, including (C) 3- C 10 )alkenyl, (C 3 -C 10 )alkynyl, (C 3 -C 10 )aryl, (C 3 -C 10 )heteroaryl, (C 3 -C 10 )cycloalkyl, (C 3 -C 10 )cycloalkenyl, (C 3 -C 10 )cycloalkynyl, (C 3 -C 10 )heterocycloalkyl, (C 3 -C 10 )aryl (C 1 -C 10 ) One of an alkyl group, a (C 3 -C 10 )cycloalkyl (C 1 -C 10 )alkyl group, and a (C 3 -C 10 )heterocycloalkyl group (C 1 -C 10 )alkyl group.

根據本發明概念的一些實例實施例,一種製造半導體裝置的方法包含在基底上使用矽前驅物形成矽絕緣層,所述矽前驅物包含具有Si-(CH2 )n-Si結構的分子,以及在所述矽絕緣層中形成至少一個互連線。在此,n是1或2,矽前驅物含有經配置以與分子中的至少一個Si原子組合的致孔劑基團,以及至少兩個經配置以與分子中的Si原子組合的(C1 -C5 )烷氧基。致孔劑基團包含(C3 -C10 )烯基、(C3 -C10 )炔基、(C3 -C10 )芳基、(C3 -C10 )雜芳基、(C3 -C10 )環烷基、(C3 -C10 )環烯基、(C3 -C10 )環炔基、(C3 -C10 )雜環烷基、(C3 -C10 )芳基(C1 -C10 )烷基、(C3 -C10 )環烷基(C1 -C10 )烷基以及(C3 -C10 )雜環烷基(C1 -C10 )烷基之一。According to some example embodiments of the inventive concepts, a method of fabricating a semiconductor device includes forming a germanium insulating layer on a substrate using a hafnium precursor, the germanium precursor comprising a molecule having a Si—(CH 2 )n—Si structure, and At least one interconnect line is formed in the tantalum insulating layer. Here, n is 1 or 2, the ruthenium precursor contains a porogen group configured to combine with at least one Si atom in the molecule, and at least two are configured to combine with the Si atom in the molecule (C 1 -C 5 ) alkoxy group. The porogen group comprises (C 3 -C 10 )alkenyl, (C 3 -C 10 )alkynyl, (C 3 -C 10 )aryl, (C 3 -C 10 )heteroaryl, (C 3 -C 10 )cycloalkyl, (C 3 -C 10 )cycloalkenyl, (C 3 -C 10 )cycloalkynyl, (C 3 -C 10 )heterocycloalkyl, (C 3 -C 10 )aryl (C 1 -C 10 )alkyl, (C 3 -C 10 )cycloalkyl(C 1 -C 10 )alkyl, and (C 3 -C 10 )heterocycloalkyl(C 1 -C 10 )alkane One of the bases.

根據本發明概念的一些實例實施例,一種形成介電層的方法包含使用含有由以下化學式1表示的化合物的矽前驅物形成介電層: [化學式1] According to some example embodiments of the inventive concepts, a method of forming a dielectric layer includes forming a dielectric layer using a hafnium precursor containing a compound represented by the following Chemical Formula 1: [Chemical Formula 1]

其中,在化學式1中, n為1或2, R1 、R2 、R3 、R5 以及R6 中的至少三者是甲氧基且其它各自獨立地是氫、(C1 -C10 )烷基、(C3 -C10 )烯基、(C3 -C10 )炔基以及(C1 -C10 )烷氧基之一,以及 R4 是(C3 -C10 )烯基、(C3 -C10 )炔基、(C3 -C10 )芳基、(C3 -C10 )雜芳基、(C3 -C10 )環烯基、(C3 -C10 )環炔基、(C3 -C10 )雜環烷基、(C3 -C10 )芳基(C1 -C10 )烷基、(C3 -C10 )環烷基(C1 -C10 )烷基以及(C3 -C10 )雜環烷基(C1 -C10 )烷基之一。Wherein, in Chemical Formula 1, n is 1 or 2, and at least three of R 1 , R 2 , R 3 , R 5 and R 6 are a methoxy group and the others are each independently hydrogen, (C 1 - C 10 Alkyl, (C 3 -C 10 )alkenyl, (C 3 -C 10 )alkynyl, and (C 1 -C 10 )alkoxy, and R 4 is (C 3 -C 10 )alkenyl (C 3 -C 10 )alkynyl, (C 3 -C 10 )aryl, (C 3 -C 10 )heteroaryl, (C 3 -C 10 )cycloalkenyl, (C 3 -C 10 ) Cycloalkynyl, (C 3 -C 10 )heterocycloalkyl, (C 3 -C 10 )aryl(C 1 -C 10 )alkyl, (C 3 -C 10 )cycloalkyl (C 1 -C 10 ) one of an alkyl group and a (C 3 -C 10 )heterocycloalkyl (C 1 -C 10 )alkyl group.

圖1A以及圖2是截面圖,其圖解說明了根據本發明概念的實例實施例形成低k介電層的方法。圖1B是截面圖,其示意性地圖解說明瞭經配置可執行圖1A的沉積製程的腔室。1A and 2 are cross-sectional views illustrating a method of forming a low-k dielectric layer in accordance with example embodiments of the inventive concepts. FIG. 1B is a cross-sectional view schematically illustrating a chamber configured to perform the deposition process of FIG. 1A.

參見圖1A以及圖1B,初始介電層PDL可以在基底100上形成。基底100可以是半導體基底,其由矽、鍺、矽-鍺或化合物半導體材料中的至少一個形成或包含矽、鍺、矽-鍺或化合物半導體材料中的至少一個。Referring to FIGS. 1A and 1B, an initial dielectric layer PDL may be formed on the substrate 100. The substrate 100 may be a semiconductor substrate formed of or comprising at least one of ruthenium, osmium, iridium-ruthenium or a compound semiconductor material.

首先可以製備用於形成初始介電層PDL的矽前驅物。矽前驅物可以含有具有致孔劑基團的分子。致孔劑基團可以直接與矽原子組合。詳細地說,矽前驅物可以含有具有Si-(CH2 )n -Si(其中n是1或2)結構的分子,且致孔劑基團可以直接與此類分子中的矽原子組合。舉例來說,矽前驅物可以含有至少一種由以下化學式1表示的化合物。 [化學式1] First, a hafnium precursor for forming the initial dielectric layer PDL can be prepared. The ruthenium precursor may contain molecules having porogen groups. The porogen group can be combined directly with the ruthenium atom. In detail, the ruthenium precursor may contain a molecule having a structure of Si-(CH 2 ) n -Si (where n is 1 or 2), and the porogen group may be directly combined with a ruthenium atom in such a molecule. For example, the ruthenium precursor may contain at least one compound represented by the following Chemical Formula 1. [Chemical Formula 1]

其中n是1或2。R1 、R2 、R3 、R5 以及R6 中的至少兩個是-O-R7 ,且其它各自獨立地是氫、(C1 -C10 )烷基、(C3 -C10 )烯基、(C3 -C10 )炔基或(C1 -C10 )烷氧基。在此,R7 是氫、(C1 -C10 )烷基、(C3 -C10 )烯基或(C3 -C10 )炔基。舉例來說,在其中R2 以及R3 各是-O-R7 的情況下,化合物可以由以下化學式2表示。 [化學式2] Where n is 1 or 2. At least two of R 1 , R 2 , R 3 , R 5 and R 6 are -OR 7 and the others are independently hydrogen, (C 1 -C 10 )alkyl, (C 3 -C 10 ) alkene A (C 3 -C 10 ) alkynyl group or a (C 1 -C 10 ) alkoxy group. Here, R 7 is hydrogen, (C 1 -C 10 )alkyl, (C 3 -C 10 )alkenyl or (C 3 -C 10 )alkynyl. For example, in the case where R 2 and R 3 are each -OR 7 , the compound can be represented by the following Chemical Formula 2. [Chemical Formula 2]

在化學式2中,R1 、R2 、R3 、R5 以及R6 中的至少兩個是(C1 -C5 )烷氧基。換句話說,在-O-R7 中,R7 是(C1 -C5 )烷基。更詳細地說,R1 、R2 、R3 、R5 以及R6 中的至少三個是甲氧基。在此,R1 、R2 、R3 、R5 以及R6 中的其它者是(C1 -C5 )烷基。在這種情況下,化合物可以由以下化學式3表示。 [化學式3] In Chemical Formula 2, at least two of R 1 , R 2 , R 3 , R 5 and R 6 are (C 1 -C 5 ) alkoxy groups. In other words, in -OR 7 , R 7 is (C 1 -C 5 )alkyl. In more detail, at least three of R 1 , R 2 , R 3 , R 5 and R 6 are a methoxy group. Here, the other of R 1 , R 2 , R 3 , R 5 and R 6 is (C 1 -C 5 )alkyl. In this case, the compound can be represented by the following Chemical Formula 3. [Chemical Formula 3]

在化學式3中,R4 是致孔劑基團。詳細地說,R4 是(C3 -C10 )烯基、(C3 -C10 )炔基、(C3 -C10 )芳基、(C3 -C10 )雜芳基、(C3 -C10 )環烷基、(C3 -C10 )環烯基、(C3 -C10 )環炔基、(C3 -C10 )雜環烷基、(C3 -C10 )芳基(C1 -C10 )烷基、(C3 -C10 )環烷基(C1 -C10 )烷基,或(C3 -C10 )雜環烷基(C1 -C10 )烷基。In Chemical Formula 3, R 4 is a porogen group. In detail, R 4 is (C 3 -C 10 )alkenyl, (C 3 -C 10 )alkynyl, (C 3 -C 10 )aryl, (C 3 -C 10 )heteroaryl, (C 3- C 10 )cycloalkyl, (C 3 -C 10 )cycloalkenyl, (C 3 -C 10 )cycloalkynyl, (C 3 -C 10 )heterocycloalkyl, (C 3 -C 10 ) Aryl (C 1 -C 10 )alkyl, (C 3 -C 10 )cycloalkyl(C 1 -C 10 )alkyl, or (C 3 -C 10 )heterocycloalkyl (C 1 -C 10 )alkyl.

在此,芳基、雜芳基、環烷基、環烯基、環炔基以及雜環烷基未經取代或各自獨立地經選自由以下組成之群的一或多個取代:(C1 -C10 )烷基、(C3 -C10 )烯基、(C3 -C10 )炔基、(C1 -C10 )烷氧基、鹵素、氰基、硝基以及羥基。另外,雜芳基以及雜環烷基各自獨立地包含一或多個選自由以下組成之群的雜原子:-NR8 -、-O-以及-S-。在此,R8 是氫或(C1 -C10 )烷基。Herein, the aryl, heteroaryl, cycloalkyl, cycloalkenyl, cycloalkynyl and heterocycloalkyl are unsubstituted or each independently substituted with one or more selected from the group consisting of: (C 1 -C 10 )alkyl, (C 3 -C 10 )alkenyl, (C 3 -C 10 )alkynyl, (C 1 -C 10 )alkoxy, halogen, cyano, nitro and hydroxy. Further, the heteroaryl group and the heterocycloalkyl group each independently comprise one or more hetero atoms selected from the group consisting of -NR 8 -, -O-, and -S-. Here, R 8 is hydrogen or (C 1 -C 10 )alkyl.

舉例來說,R4 是1-丙烯基、2-丙烯基、1-丁烯基、2-丁烯基、3-丁烯基、1-甲基-2-丙烯基、2-甲基-2-丙烯基、1-戊烯基、2-戊烯基、3-戊烯基、4-戊烯基、1-甲基-2-丁烯基、2-甲基-2-丁烯基、1-己烯基、2-己烯基、3-己烯基、4-己烯基、5-己烯基、苯基、二甲苯基、環丙基、環丁基、環戊基、環己基、環庚基、環辛基、環戊烯基、環戊二烯基、環己二烯基、環庚二烯基、雙環庚基、雙環庚烯基、環氧環己烷基、環氧環戊烷基、萜品烯基、檸檬烯基、環氧丁烯、苯乙烯或富烯(fulvene)。For example, R 4 is 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-2-propenyl, 2-methyl- 2-propenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl , 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, phenyl, xylyl, cyclopropyl, cyclobutyl, cyclopentyl, Cyclohexyl, cycloheptyl, cyclooctyl, cyclopentenyl, cyclopentadienyl, cyclohexadienyl, cycloheptadienyl, bicycloheptyl, bicycloheptenyl, epoxycyclohexane, Epoxycyclopentyl, terpineyl, limonyl, epoxybutene, styrene or fulvene.

R4 可以具有環烴結構。詳細地說,R4 是(C3 -C10 )芳基、(C3 -C10 )雜芳基、(C3 -C10 )環烯基、(C3 -C10 )環炔基、(C3 -C10 )雜環烷基、(C3 -C10 )芳基(C1 -C10 )烷基、(C3 -C10 )環烷基(C1 -C10 )烷基或(C3 -C10 )雜環烷基(C1 -C10 )烷基。在這種情況下,可以使介電層中所形成的孔隙數增加,如下文將描述。R 4 may have a cyclic hydrocarbon structure. In detail, R 4 is (C 3 -C 10 ) aryl, (C 3 -C 10 )heteroaryl, (C 3 -C 10 )cycloalkenyl, (C 3 -C 10 )cycloalkynyl, (C 3 -C 10 )heterocycloalkyl, (C 3 -C 10 )aryl(C 1 -C 10 )alkyl, (C 3 -C 10 )cycloalkyl(C 1 -C 10 )alkyl Or (C 3 -C 10 )heterocycloalkyl(C 1 -C 10 )alkyl. In this case, the number of voids formed in the dielectric layer can be increased as will be described below.

化學式1的化合物可以具有100到500範圍內的分子量。化學式1的化合物在100℃可以具有0.1托到100托的蒸氣壓。換句話說,化學式1的化合物可以具有相對較高的蒸氣壓,且這使得更穩定地執行化學氣相沉積(CVD)或原子層沉積(ALD)製程成為可能。化學式1的化合物可以在100℃-500℃的製程條件下熱解。換句話說,化學式1的化合物在相對較高的溫度下不容易分解。即,化學式1的化合物具有改善的熱穩定性。The compound of Chemical Formula 1 may have a molecular weight in the range of 100 to 500. The compound of Chemical Formula 1 may have a vapor pressure of from 0.1 Torr to 100 Torr at 100 °C. In other words, the compound of Chemical Formula 1 can have a relatively high vapor pressure, and this makes it possible to perform a chemical vapor deposition (CVD) or an atomic layer deposition (ALD) process more stably. The compound of Chemical Formula 1 can be pyrolyzed under a process condition of from 100 ° C to 500 ° C. In other words, the compound of Chemical Formula 1 does not readily decompose at relatively high temperatures. That is, the compound of Chemical Formula 1 has improved thermal stability.

在實例實施例中,化學式1的化合物可以是以下化合物中的至少一種。 In an example embodiment, the compound of Chemical Formula 1 may be at least one of the following compounds.

初始介電層PDL可以使用矽前驅物作為源氣體SG、通過沉積製程DP形成。沉積製程DP可以包含化學氣相沉積(CVD)製程或原子層沉積(ALD)製程。舉例來說,CVD製程可以是電漿增強型CVD(PE-CVD)製程,且ALD製程可以是電漿增強型ALD(PE-ALD)製程。The initial dielectric layer PDL can be formed by a deposition process DP using a hafnium precursor as the source gas SG. The deposition process DP may comprise a chemical vapor deposition (CVD) process or an atomic layer deposition (ALD) process. For example, the CVD process can be a plasma enhanced CVD (PE-CVD) process, and the ALD process can be a plasma enhanced ALD (PE-ALD) process.

詳細地說,返回參看圖1B,基底可以安置在腔室200中。舉例來說,腔室200可以是電漿腔室。基底可以裝載在板片210上。在實例實施例中,板片210可以用作下電極。板片210可以用於將基底加熱到約0℃-500℃的溫度。舉例來說,可以將基底加熱到約200℃的溫度。In detail, referring back to FIG. 1B, a substrate may be disposed in the chamber 200. For example, chamber 200 can be a plasma chamber. The substrate can be loaded on the sheet 210. In an example embodiment, the sheet 210 can be used as a lower electrode. The sheet 210 can be used to heat the substrate to a temperature of between about 0 °C and 500 °C. For example, the substrate can be heated to a temperature of about 200 °C.

可以將源氣體SG以及反應氣體RG供應到腔室200中。在此,源氣體SG可以是或含有矽前驅物,且反應氣體RG可以是或含有氧化劑。舉例來說,反應氣體RG可以含有O2 、O3 、N2 O或CO2 中的至少一種。在實例實施例中,矽前驅物可以在蒸發器中蒸發成氣相,由此形成源氣體SG。舉例來說,源氣體SG可以通過在蒸發器中加熱矽前驅物而形成。The source gas SG and the reaction gas RG may be supplied into the chamber 200. Here, the source gas SG may be or contain a ruthenium precursor, and the reaction gas RG may be or contain an oxidant. For example, the reaction gas RG may contain at least one of O 2 , O 3 , N 2 O, or CO 2 . In an example embodiment, the hafnium precursor may be vaporized into a vapor phase in an evaporator, thereby forming a source gas SG. For example, the source gas SG can be formed by heating a ruthenium precursor in an evaporator.

由於如上文所述,矽前驅物具有相對較高的蒸氣壓,因此可以在預定的蒸發器溫度下將相對大量的矽前驅物轉變成源氣體SG。相應地,可以容易地將相對大量的源氣體SG供應到腔室200中,且這可以有效地且穩定地執行沉積製程DP。Since the ruthenium precursor has a relatively high vapor pressure as described above, a relatively large amount of ruthenium precursor can be converted to the source gas SG at a predetermined evaporator temperature. Accordingly, a relatively large amount of source gas SG can be easily supplied into the chamber 200, and this can perform the deposition process DP efficiently and stably.

同時,可以根據沉積製程DP的製程條件來改變源氣體SG的量。舉例來說,為了增加源氣體SG的量,必需提高供應到腔室200中的源氣體SG的壓力。就此而言,可以提高蒸發器的溫度。在這種情況下,由於矽前驅物的熱穩定性相對改善,因此可以通過提高蒸發器溫度(例如提高到200℃到500℃)而基本上抑制或阻止矽前驅物化學結構發生變化。因此,這可以使初始介電層PDL具有無缺陷的結構。At the same time, the amount of the source gas SG can be changed according to the process conditions of the deposition process DP. For example, in order to increase the amount of the source gas SG, it is necessary to increase the pressure of the source gas SG supplied into the chamber 200. In this regard, the temperature of the evaporator can be increased. In this case, since the thermal stability of the ruthenium precursor is relatively improved, it is possible to substantially suppress or prevent the change in the chemical structure of the ruthenium precursor by increasing the evaporator temperature (for example, increasing to 200 ° C to 500 ° C). Therefore, this can make the initial dielectric layer PDL have a defect-free structure.

可以將源氣體SG連同供應到蒸發器中的載氣一起供應到腔室200中。載氣可以包含至少一種惰性氣體(例如氦氣、氖氣、氬氣、氪氣、氙氣或氡氣)。載氣的流速可以在100 cc/min到800 cc/min範圍內,且反應氣體RG的流速可以在5 cc/min到100 cc/min範圍內。The source gas SG may be supplied into the chamber 200 together with a carrier gas supplied to the evaporator. The carrier gas may comprise at least one inert gas (e.g., helium, neon, argon, helium, neon or xenon). The flow rate of the carrier gas can range from 100 cc/min to 800 cc/min, and the flow rate of the reaction gas RG can range from 5 cc/min to 100 cc/min.

在沉積製程DP期間,腔室200可以經控制而具有0.1托-10托的內部壓力。腔室200中的上電極220可以連接到RF發生器230。在沉積製程DP期間,RF發生器230可以經配置以將電功率(例如1W-1000W的功率以及5MHz-20MHz的頻率)施加到上電極220。During the deposition process DP, the chamber 200 can be controlled to have an internal pressure of 0.1 Torr to 10 Torr. The upper electrode 220 in the chamber 200 can be connected to the RF generator 230. During the deposition process DP, the RF generator 230 can be configured to apply electrical power (eg, 1 W-1000 W power and 5 MHz-20 MHz frequency) to the upper electrode 220.

在其中矽前驅物用於形成初始介電層PDL的情況下,初始介電層PDL中可以存在致孔劑基團。In the case where the ruthenium precursor is used to form the initial dielectric layer PDL, a porogen group may be present in the initial dielectric layer PDL.

參見圖2,可以對初始介電層PDL進行能量處理ET以形成介電層DL。能量處理ET可以包含使用各種類型的能量(例如熱能或光能)使初始介電層PDL固化。舉例來說,可以使用熱退火製程或紫外光(UV)固化製程進行能量處理ET。Referring to FIG. 2, the initial dielectric layer PDL may be subjected to energy processing ET to form a dielectric layer DL. The energy treatment ET can include curing the initial dielectric layer PDL using various types of energy, such as thermal or optical energy. For example, the energy treatment ET can be performed using a thermal annealing process or an ultraviolet (UV) curing process.

可以進行熱退火製程以將基底在約200℃-800℃的熱處理腔室中加熱約10分鐘到240分鐘。熱退火製程可以在約500℃到約600℃範圍內的溫度下進行。可以使用UV燈(應用約10W到200W的功率)對基底執行UV固化製程0.1分鐘到120分鐘。在此,基底的溫度可以在0℃到700℃範圍內。A thermal annealing process can be performed to heat the substrate in a heat treatment chamber of about 200 ° C to 800 ° C for about 10 minutes to 240 minutes. The thermal annealing process can be carried out at a temperature ranging from about 500 ° C to about 600 ° C. The UV curing process can be performed on the substrate using a UV lamp (applying a power of about 10 W to 200 W) for 0.1 minute to 120 minutes. Here, the temperature of the substrate may range from 0 °C to 700 °C.

能量處理ET可以從初始介電層PDL中除去致孔劑基團。詳細地說,可以進行能量處理ET以使初始介電層PDL中的Si-R4 鍵斷裂,且從而可以使致孔劑基團(R4 )揮發且從初始介電層PDL中除去。除去致孔劑基團可以使介電層DL中形成孔隙。換句話說,可以在致孔劑基團的位置處形成孔隙,且因此,介電層DL可以具有多孔結構。The energy treatment ET can remove the porogen groups from the initial dielectric layer PDL. In detail, energy treatment ET may be performed to break the Si-R 4 bond in the initial dielectric layer PDL, and thereby the porogen group (R 4 ) may be volatilized and removed from the initial dielectric layer PDL. Removal of the porogen groups can form pores in the dielectric layer DL. In other words, pores may be formed at the position of the porogen group, and thus, the dielectric layer DL may have a porous structure.

可以形成具有8%-35%孔隙率的介電層DL。在此,孔隙率定義為介電層DL中的孔隙體積與總體積的比率。在介電層DL中,可以形成具有約0.5 nm-5 nm平均直徑的孔隙。另外,孔隙的半徑分佈曲線可以具有選自約0.1 nm到2.5 nm範圍的半高全寬(Full-Width-at-Half-Maximum,FWHM),如圖10中所示。其意味著相對較大孔隙與相對較小孔隙之間的孔徑差可以選自約0.1 nm到2.5 nm的範圍。換句話說,介電層DL中的孔隙可以具有均一的尺寸。A dielectric layer DL having a porosity of 8% to 35% can be formed. Here, the porosity is defined as the ratio of the pore volume to the total volume in the dielectric layer DL. In the dielectric layer DL, pores having an average diameter of about 0.5 nm to 5 nm can be formed. Additionally, the radius profile of the pores may have a Full-Width-at-Half-Maximum (FWHM) selected from the range of about 0.1 nm to 2.5 nm, as shown in FIG. It means that the difference in pore size between the relatively large pores and the relatively small pores may be selected from the range of about 0.1 nm to 2.5 nm. In other words, the pores in the dielectric layer DL may have a uniform size.

介電層DL可以是介電常數為2.2-3的低k介電層。介電層DL還可以具有約6 GPa-15 GPa的楊氏模量。換句話說,介電層DL不僅可以具有多孔結構,而且具有高機械強度。同時,在化學式1中的R1 、R2 、R3 、R5 以及R6 中的至少三者是甲氧基的情況下,介電層DL可以具有約6 GPa-15 GPa(例如約8 GPa-15 GPa)的楊氏模量。The dielectric layer DL may be a low-k dielectric layer having a dielectric constant of 2.2-3. The dielectric layer DL may also have a Young's modulus of about 6 GPa to 15 GPa. In other words, the dielectric layer DL can have not only a porous structure but also high mechanical strength. Meanwhile, in the case where at least three of R 1 , R 2 , R 3 , R 5 and R 6 in Chemical Formula 1 are a methoxy group, the dielectric layer DL may have about 6 GPa to 15 GPa (for example, about 8) Young's modulus of GPa-15 GPa).

介電層DL可以含有SiOCH。在這種情況下,介電層DL可以具有1 原子百分比(at%)到40 at%範圍內的碳含量。介電層DL可以使得Si-CH3 鍵結單元與Si-O鍵結單元的比率在0.5到5範圍內的方式形成。介電層DL可以使得Si-CH3 鍵結單元與Si-O鍵結單元的比率在1到4範圍內的方式形成。換句話說,可以形成含有相對大量的Si-CH3 鍵的介電層DL。Si-CH3 鍵的存在可以有助於介電層DL中產生Si-O籠型結構。Si-O籠型結構可以是包含Si-O鍵的晶體結構,所述Si-O鍵圍繞著位於結構中心的奈米空隙呈三維排列。在此,介電層DL的孔隙率越高,則介電層DL的介電常數越低。另外,Si-CH3 鍵結單元與Si-O鍵結單元的比率越高,則介電層DL中的Si-CH3 鍵數目或密度越大。介電層DL的這些特性使得通過電漿阻止或抑制介電層DL受損成為可能,這可以用於在介電層DL中形成互連結構的製程中。換句話說,可以抑制介電層DL中出現電漿誘發的損傷。The dielectric layer DL may contain SiOCH. In this case, the dielectric layer DL may have a carbon content ranging from 1 atomic percent (at%) to 40 at%. The dielectric layer DL may be formed in such a manner that the ratio of the Si—CH 3 bonding unit to the Si—O bonding unit is in the range of 0.5 to 5. The dielectric layer DL may be formed in such a manner that the ratio of the Si—CH 3 bonding unit to the Si—O bonding unit is in the range of 1 to 4. In other words, a dielectric layer DL containing a relatively large amount of Si-CH 3 bonds can be formed. The presence of a Si-CH 3 bond can contribute to the formation of a Si-O cage structure in the dielectric layer DL. The Si-O cage structure may be a crystal structure containing Si-O bonds arranged in three dimensions around the nanovoids located at the center of the structure. Here, the higher the porosity of the dielectric layer DL, the lower the dielectric constant of the dielectric layer DL. Further, the higher the ratio of the Si—CH 3 bonding unit to the Si—O bonding unit, the larger the number or density of Si—CH 3 bonds in the dielectric layer DL. These characteristics of the dielectric layer DL make it possible to prevent or suppress damage to the dielectric layer DL by plasma, which can be used in the process of forming an interconnect structure in the dielectric layer DL. In other words, it is possible to suppress the occurrence of plasma-induced damage in the dielectric layer DL.

除Si-O籠型結構之外,介電層DL中的基於矽酮的結構還可以包含Si-O網狀結構。Si-O網狀結構可以是包含隨機排列的Si-O鍵結單元的複雜網狀結構。Si-O網狀結構的存在可以促成介電層DL的機械強度增加。根據通過傅裡葉轉換紅外光譜法(Fourier transform infrared spectroscopy,FT-IR)獲得的實驗結果,Si-O網狀結構的峰面積(約1040 cm-1 )是13到16,且Si-O籠型結構的峰面積(約1140 cm-1 )是7到12。在此,Si-O籠型結構與Si-O網狀結構的比率可以在0.5到1範圍內。更詳細地說,Si-O籠型結構與Si-O網狀結構的比率可以在0.6到1範圍內。在這種情況下,介電層DL可以兼具高機械強度和低介電常數。In addition to the Si-O cage structure, the anthrone-based structure in the dielectric layer DL may further comprise a Si-O network structure. The Si-O network structure may be a complex network structure containing randomly arranged Si-O bonding units. The presence of the Si-O network structure can contribute to an increase in the mechanical strength of the dielectric layer DL. According to the experimental results obtained by Fourier transform infrared spectroscopy (FT-IR), the peak area of the Si-O network structure (about 1040 cm -1 ) is 13 to 16, and the Si-O cage The peak area of the type structure (about 1140 cm -1 ) is 7 to 12. Here, the ratio of the Si-O cage structure to the Si-O network structure may be in the range of 0.5 to 1. In more detail, the ratio of the Si-O cage structure to the Si-O network structure may be in the range of 0.6 to 1. In this case, the dielectric layer DL can have both high mechanical strength and low dielectric constant.

下文中,參照圖1A以及圖2所述的矽前驅物以及介電層將參照詳細的實驗實例來描述。以下實驗實例中的化合物是使用1 H核磁共振(NMR)光譜法分析。Hereinafter, the tantalum precursor and the dielectric layer described with reference to FIGS. 1A and 2 will be described with reference to detailed experimental examples. The compounds in the experimental examples below were analyzed using 1 H nuclear magnetic resonance (NMR) spectroscopy.

實例Instance 11 :製備:preparation 1-((1-(( 雙環庚烯基Bicycloheptenyl )) 二乙氧基矽烷基Diethoxydecyl )-2-()-2-( 甲基二乙氧基矽烷基Methyldiethoxydecyl )) 甲烷Methane

步驟1.製備1-(三氯矽烷基)-2-(甲基二氯矽烷基)甲烷Step 1. Preparation of 1-(trichlorodecylalkyl)-2-(methyldichloroindolyl)methane

將乙腈(1500 mL)以及(氯甲基)二氯甲基矽烷(500 g,3.06 mol,1.0當量)添加到經火焰乾燥的5000 mL舒倫克瓶(Schlenk flask)中且加熱到70℃。將三乙胺(340.37 g,3.36 mol,1.1當量)添加到反應溶液中,且然後向燒瓶中緩慢添加三氯矽烷(455.61 g,3.36 mol,1.1當量),同時維持溫度在70℃。在70℃攪拌反應溶液5小時,過濾,且然後用正戊烷(1500 mL)處理四次。將所得溶液減壓以除去溶劑且純化(在28℃以及1.01托),獲得無色的MeCl2 Si-CH2 -SiCl3 液體(160.54 g,產率:20%)。Acetonitrile (1500 mL) and (chloromethyl)dichloromethylnonane (500 g, 3.06 mol, 1.0 eq.) were added to a flame dried 5000 mL Schlenk flask and heated to 70 °C. Triethylamine (340.37 g, 3.36 mol, 1.1 equivalent) was added to the reaction solution, and then trichloromethane (455.61 g, 3.36 mol, 1.1 eq.) was slowly added to the flask while maintaining the temperature at 70 °C. The reaction solution was stirred at 70 ° C for 5 hours, filtered, and then treated with n-pentane (1500 mL) four times. (: 20% 160.54 g, yield) and the resulting solution to remove the solvent and purified (28 ℃ and at 1.01 torr) to give a colorless MeCl 2 Si-CH 2 -SiCl 3 liquid under reduced pressure.

1 H-NMR(C6 D6 )δ 0.38(3H), 0.69(2H)。 1 H-NMR (C 6 D 6 ) δ 0.38 (3H), 0.69 (2H).

步驟2.製備1-(雙(二甲基氨基)氯矽烷基)-2-(雙(二甲基氨基)甲基矽烷基)甲烷Step 2. Preparation of 1-(bis(dimethylamino)chloroindolyl)-2-(bis(dimethylamino)methyldecyl)methane

將3000 mL正戊烷以及步驟1中所製備的1-(三氯矽烷基)-2-(甲基二氯矽烷基)甲烷(160.54 g,0.61 mol,1.0當量)添加到經火焰乾燥的5000 mL舒倫克瓶中,且將二乙胺(330.84 g,7.34 mol,12.0當量)緩慢添加到燒瓶中,同時維持溫度在0℃。將反應溶液加熱到室溫(20℃)且攪拌3小時。過濾反應溶液,減壓以除去溶劑,且在78℃以及0.8托下純化,獲得無色的Me(NMe2 )2 Si-CH2 -Si(NMe2 )2 Cl液體(163.48 g,產率:90%)。3000 mL of n-pentane and 1-(trichlorodecyl)-2-(methyldichlorodecylalkyl)methane (160.54 g, 0.61 mol, 1.0 eq.) prepared in Step 1 were added to the flame dried 5000 In a mL Schlenk bottle, diethylamine (330.84 g, 7.34 mol, 12.0 equivalents) was slowly added to the flask while maintaining the temperature at 0 °C. The reaction solution was heated to room temperature (20 ° C) and stirred for 3 hours. The reaction solution was filtered under reduced pressure to remove the solvent, and purified at 78 deg.] C and 0.8 torr in the obtained colorless Me (NMe 2) 2 Si- CH 2 -Si (NMe 2) 2 Cl liquid (163.48 g, yield: 90 %).

1 H-NMR(C6 D6 )δ 0.18(3H), 0.30(2H), 2.43-2.47(24H)。 1 H-NMR (C 6 D 6 ) δ 0.18 (3H), 0.30 (2H), 2.43-2.47 (24H).

步驟3.製備1-(雙(二甲基氨基)矽烷基)-2-(雙(二甲基氨基)甲基矽烷基)甲烷Step 3. Preparation of 1-(bis(dimethylamino)decyl)-2-(bis(dimethylamino)methyldecyl)methane

將LiAlH4 (7.31 g,0.19 mol,0.35當量)添加到經火焰乾燥的1000 mL舒倫克瓶中,且將THF(300 mL)緩慢添加到燒瓶中,同時維持溫度在-30℃。將步驟2中所製備的1-(雙(二甲基氨基)氯矽烷基)-2-(雙(二甲基氨基)甲基矽烷基)甲烷(163.48 g,0.55 mol,1.0當量)緩慢添加到燒瓶中,同時維持溫度在-30℃。將反應溶液加熱到室溫(20℃)且攪拌5小時。過濾反應溶液,減壓以除去溶劑,且在56℃以及0.5托下純化,獲得無色的Me(NMe2 )2 Si-CH2 -Si(NMe2 )2 H液體(108.38 g,產率:75%)。LiAlH 4 (7.31 g, 0.19 mol, 0.35 eq.) was added to a flame dried 1000 mL Schlenk bottle, and THF (300 mL) was slowly added to the flask while maintaining the temperature at -30 °C. 1-(Bis(dimethylamino)chloroindolyl)-2-(bis(dimethylamino)methyldecyl)methane (163.48 g, 0.55 mol, 1.0 eq.) prepared in Step 2 was slowly added. Into the flask while maintaining the temperature at -30 °C. The reaction solution was heated to room temperature (20 ° C) and stirred for 5 hours. The reaction solution was filtered under reduced pressure to remove the solvent, and purification at 0.5 torr and at 56 ℃ obtain colorless Me (NMe 2) 2 Si- CH 2 -Si (NMe 2) 2 H liquid (108.38 g, yield: 75 %).

1 H-NMR(C6 D6 )δ 0.04(2H), 0.16(3H), 2.44-2.48(24H), 4.48(1H)。 1 H-NMR (C 6 D 6 ) δ 0.04 (2H), 0.16 (3H), 2.44-2.48 (24H), 4.48 (1H).

步驟4.製備1-(二乙氧基矽烷基)-2-(二乙氧基(甲基)矽烷基)甲烷Step 4. Preparation of 1-(diethoxydecyl)-2-(diethoxy(methyl)decylalkyl)methane

將步驟3中所製備的1-(雙(二甲基氨基)矽烷基)-2-(雙(二甲基氨基)甲基矽烷基)甲烷(108.38 g,0.41 mol,1.0當量)以及正戊烷(1000 mL)添加到經火焰乾燥的3000 mL舒倫克瓶中,且將乙醇(76.07 g,1.65 mol,4.0當量)緩慢添加到燒瓶中,同時維持溫度在0℃。將反應溶液加熱到室溫(20℃)且攪拌5小時。過濾反應溶液,減壓以除去溶劑,且在46℃以及0.6托下純化,獲得無色的Me(EtO)2 Si-CH2 -Si(OEt)2 H液體(99.01 g,產率:90%)。1-(Bis(dimethylamino)decyl)-2-(bis(dimethylamino)methyldecyl)methane (108.38 g, 0.41 mol, 1.0 eq.) and n-pentane prepared in the step 3 Alkane (1000 mL) was added to a flame dried 3000 mL Schlenk bottle, and ethanol (76.07 g, 1.65 mol, 4.0 eq.) was slowly added to the flask while maintaining the temperature at 0 °C. The reaction solution was heated to room temperature (20 ° C) and stirred for 5 hours. The reaction solution was filtered, and the solvent was removed under reduced pressure, and purified at 46 ° C and 0.6 Torr to obtain a colorless Me(EtO) 2 Si-CH 2 -Si(OEt) 2 H liquid (99.01 g, yield: 90%) .

1 H-NMR(C6 D6 )δ 0.12(2H), 0.25(3H), 1.15(12H), 3.78(8H), 4.92(1H)。 1 H-NMR (C 6 D 6 ) δ 0.12 (2H), 0.25 (3H), 1.15 (12H), 3.78 (8H), 4.92 (1H).

步驟5.製備1-((雙環庚烯基)二乙氧基矽烷基)-2-(甲基二乙氧基矽烷基)甲烷Step 5. Preparation of 1-((bicycloheptenyl)diethoxydecyl)-2-(methyldiethoxydecyl)methane

將步驟4中所製備的1-(二乙氧基矽烷基)-2-(二乙氧基(甲基)矽烷基)甲烷(99.01 g,0.37 mol,1.0當量)以及作為催化劑的二氯(1,5-環辛二烯)鉑(II)添加到經火焰乾燥的1000 mL舒倫克瓶中。將反應溶液加熱到60℃,且然後向燒瓶中緩慢添加降冰片二烯(34.23 g,0.37 mol,1.0當量)。在60℃攪拌反應溶液5小時且在90℃以及0.27托下純化,獲得由以下化學式表示的無色液體化合物(99.93 g,產率:75%)。 1-(Diethoxydecyl)-2-(diethoxy(methyl)decylalkyl)methane (99.01 g, 0.37 mol, 1.0 eq.) prepared in Step 4 and dichloride as a catalyst ( 1,5-cyclooctadiene)platinum (II) was added to a flame dried 1000 mL Schlenk bottle. The reaction solution was heated to 60 ° C, and then norbornadiene (34.23 g, 0.37 mol, 1.0 equivalent) was slowly added to the flask. The reaction solution was stirred at 60 ° C for 5 hours and purified at 90 ° C and 0.27 Torr to obtain a colorless liquid compound (99.93 g, yield: 75%) represented by the following formula.

1 H-NMR(C6 D6 )δ -0.004(外, 2H), 0.05(內, 2H), 0.16(外, 3H), 0.24(內, 3H), 1.13(外, 內, 18H), 3.57-3.67(外, 內, 12H), 1.34-1.80, 2.78-2.88, 5.91-6.19(雙環庚烯基, 9H)。 1 H-NMR(C 6 D 6 )δ -0.004 (external, 2H), 0.05 (inner, 2H), 0.16 (external, 3H), 0.24 (inner, 3H), 1.13 (outside, in, 18H), 3.57 -3.67 (outside, inner, 12H), 1.34-1.80, 2.78-2.88, 5.91-6.19 (bicycloheptenyl, 9H).

實例Instance 22 :製備:preparation 1-((1-(( 雙環庚烯基Bicycloheptenyl )) 二乙氧基矽烷基Diethoxydecyl )-2-()-2-( 甲基二乙氧基矽烷基Methyldiethoxydecyl )) 乙烷Ethane

步驟1.製備1-(三氯矽烷基)-2-(甲基二氯矽烷基)乙烷Step 1. Preparation of 1-(trichlorodecylalkyl)-2-(methyldichlorodecylalkyl)ethane

將三氯乙烯基矽烷(200 g,1.24 mol,1.0當量)以及作為催化劑的氯鉑酸(H2 Cl6 Pt·6H2 O)添加到經火焰乾燥的3000 mL舒倫克瓶中,且然後將反應溶液加熱到60℃。向反應溶液中緩慢添加二氯甲基矽烷(156.7 g,1.36 mol,1.1當量)。使混合溶液回流8小時,獲得MeCl2 Si-CH2 CH2 -SiCl3 (384.81 g,產率:98%)。Trichlorovinyl decane (200 g, 1.24 mol, 1.0 eq.) and chloroplatinic acid (H 2 Cl 6 Pt·6H 2 O) as a catalyst were added to a flame dried 3000 mL Schlenk bottle, and then The reaction solution was heated to 60 °C. Dichloromethyl decane (156.7 g, 1.36 mol, 1.1 equivalent) was slowly added to the reaction solution. The mixed solution was refluxed for 8 hours to obtain MeCl 2 Si-CH 2 CH 2 -SiCl 3 (384.81 g, yield: 98%).

1 H-NMR(C6 D6 )δ 0.21(3H), 0.86(2H), 1.06(2H)。 1 H-NMR (C 6 D 6 ) δ 0.21 (3H), 0.86 (2H), 1.06 (2H).

步驟2.製備1-(雙(二甲基氨基)氯矽烷基)-2-(雙(二甲基氨基)甲基矽烷基)乙烷Step 2. Preparation of 1-(bis(dimethylamino)chloroindolyl)-2-(bis(dimethylamino)methyldecyl)ethane

將步驟1中所製備的1-(三氯矽烷基)-2-(甲基二氯矽烷基)乙烷(384.81 g,1.39 mol,1.0當量)以及正戊烷(3000 mL)添加到經火焰乾燥的5000 mL舒倫克瓶中,且將二甲胺(501.87 g,11.13 mol,8.0當量)緩慢添加到燒瓶中,同時維持溫度在0℃。將反應溶液加熱到室溫(20℃)且攪拌3小時。過濾反應溶液,減壓以除去溶劑,且然後獲得無色的Me(NMe2 )2 Si-CH2 CH2 -Si(NMe2 )2 Cl液體(367.88 g,產率:85%)。Add 1-(trichloroindolyl)-2-(methyldichlorodecylalkyl)ethane (384.81 g, 1.39 mol, 1.0 eq.) and n-pentane (3000 mL) prepared in Step 1 to a flame. In a dry 5000 mL Schlenk bottle, dimethylamine (501.87 g, 11.13 mol, 8.0 equivalents) was slowly added to the flask while maintaining the temperature at 0 °C. The reaction solution was heated to room temperature (20 ° C) and stirred for 3 hours. The reaction solution was filtered, and the solvent was removed under reduced pressure, and then a colorless Me(NMe 2 ) 2 Si-CH 2 CH 2 -Si(NMe 2 ) 2 Cl liquid (367.88 g, yield: 85%) was obtained.

1 H-NMR(C6 D6 )δ 0.07(3H), 0.78-0.91(4H), 2.45(24H)。 1 H-NMR (C 6 D 6 ) δ 0.07 (3H), 0.78-0.91 (4H), 2.45 (24H).

步驟3.製備1-(雙(二甲基氨基)矽烷基)-2-(雙(二甲基氨基)甲基矽烷基)乙烷Step 3. Preparation of 1-(bis(dimethylamino)decyl)-2-(bis(dimethylamino)methyldecyl)ethane

將LiAlH4 (15.71 g,0.41 mol,0.35當量)添加到經火焰乾燥的2000 mL舒倫克瓶中,且然後向燒瓶中緩慢添加THF(500 mL),同時維持溫度在-30℃。將步驟2中所製備的1-(雙(二甲基氨基)氯矽烷基)-2-(雙(二甲基氨基)甲基矽烷基)乙烷(357.88 g,1.18 mol,1.0當量)緩慢添加到燒瓶中,同時維持溫度在-30℃。將反應溶液加熱到室溫(20℃)且攪拌5小時。過濾反應溶液,減壓以除去溶劑,且在73℃以及1.66托下純化,獲得無色液體Me(NMe2 )2 Si-CH2 CH2 -Si(NMe2 )2 H(245.36 g,產率:75%)。LiAlH 4 (15.71 g, 0.41 mol, 0.35 eq.) was added to a flame dried 2000 mL Schlenk bottle, and then THF (500 mL) was slowly added to the flask while maintaining the temperature at -30 °C. 1-(bis(dimethylamino)chloroindolyl)-2-(bis(dimethylamino)methyldecyl)ethane (357.88 g, 1.18 mol, 1.0 eq.) prepared in step 2 was slowly Add to the flask while maintaining the temperature at -30 °C. The reaction solution was heated to room temperature (20 ° C) and stirred for 5 hours. The reaction solution was filtered, and the solvent was evaporated under reduced pressure, and purified at 73 ° C and 1.66 Torr to give a colorless liquid Me(NMe 2 ) 2 Si-CH 2 CH 2 -Si(NMe 2 ) 2 H (245.36 g, yield: 75%).

1 H-NMR(C6 D6 )δ 0.10(3H), 0.69(4H), 2.47(12H), 2.52(12H), 4.59(1H)。 1 H-NMR (C 6 D 6 ) δ 0.10 (3H), 0.69 (4H), 2.47 (12H), 2.52 (12H), 4.59 (1H).

步驟4.製備1-(二乙氧基矽烷基)-2-(二乙氧基(甲基)矽烷基)乙烷Step 4. Preparation of 1-(diethoxydecyl)-2-(diethoxy(methyl)decylalkyl)ethane

將步驟3中所製備的1-(雙(二甲基氨基)矽烷基)-2-(雙(二甲基氨基)甲基矽烷基)乙烷(245.36 g,0.89 mol,1.0當量)以及正戊烷(1000 mL)添加到經火焰乾燥的3000 mL舒倫克瓶中,且然後向燒瓶中緩慢添加乙醇(163.48 g,3.55 mol,4.0當量),同時維持溫度在0℃。將反應溶液加熱到室溫(20℃)且攪拌5小時。過濾反應溶液,減壓以除去溶劑,且然後獲得無色的Me(EtO)2 Si-CH2 CH2 -Si(OEt)2 H液體(218.99 g,產率:88%)。1-(Bis(dimethylamino)decyl)-2-(bis(dimethylamino)methyldecyl)ethane prepared in Step 3 (245.36 g, 0.89 mol, 1.0 eq.) and Pentane (1000 mL) was added to a flame dried 3000 mL Schlenk bottle, and then ethanol (163.48 g, 3.55 mol, 4.0 eq.) was slowly added to the flask while maintaining the temperature at 0 °C. The reaction solution was heated to room temperature (20 ° C) and stirred for 5 hours. The reaction solution was filtered, and the solvent was removed under reduced pressure, and then a colorless product of Me(EtO) 2 Si-CH 2 CH 2 -Si(OEt) 2 H (218.99 g, yield: 88%) was obtained.

1 H-NMR(C6 D6 )δ 0.11(3H), 0.81(4H), 1.10-1.14(12H), 3.64-3.66(4H), 3.71-3.73(4H), 4.80(1H)。 1 H-NMR (C 6 D 6) δ 0.11 (3H), 0.81 (4H), 1.10-1.14 (12H), 3.64-3.66 (4H), 3.71-3.73 (4H), 4.80 (1H).

步驟5.製備1-((2-環庚烯基)二乙氧基矽烷基)-2-(甲基二乙氧基矽烷基)乙烷Step 5. Preparation of 1-((2-cycloheptenyl)diethoxydecylalkyl)-2-(methyldiethoxydecyl)ethane

將步驟4中所製備的1-(二乙氧基矽烷基)-2-(二乙氧基(甲基)矽烷基)乙烷(218.99 g,0.78 mol,1.0當量)以及作為催化劑的二氯(1,5-環辛二烯)鉑(II)添加到經火焰乾燥的1000 mL舒倫克瓶中。將反應溶液加熱到60℃,且然後向燒瓶中緩慢添加降冰片二烯(71.93 g,0.78 mol,1.0當量)。在60℃攪拌混合溶液5小時,在95℃以及0.18托下純化,獲得由以下化學式表示的無色液體化合物(203.65 g,產率:70%)。 1-(Diethoxydecylalkyl)-2-(diethoxy(methyl)decylalkyl)ethane prepared in Step 4 (218.99 g, 0.78 mol, 1.0 equivalent) and dichloride as a catalyst (1,5-cyclooctadiene)platinum (II) was added to a flame dried 1000 mL Schlenk bottle. The reaction solution was heated to 60 ° C, and then norbornadiene (71.93 g, 0.78 mol, 1.0 equivalent) was slowly added to the flask. The mixed solution was stirred at 60 ° C for 5 hours, and purified at 95 ° C and 0.18 Torr to obtain a colorless liquid compound (203.65 g, yield: 70%) represented by the following chemical formula.

1 H-NMR(C6 D6 )δ 0.16(3H), 0.84(4H), 1.15(12H), 3.70(8H), 0.6-3.05, 5.91-6.12(雙環庚烯基, 9H)。 1 H-NMR (C 6 D 6 ) δ 0.16 (3H), 0.84 (4H), 1.15 (12H), 3.70 (8H), 0.6-3.05, 5.91-6.12 (bicycloheptenyl, 9H).

實例Instance 33 : 製備preparation 1-(1-( 苯基乙氧Phenyl ethoxylate 基甲基矽烷基Methyl decyl )-2-()-2-( 甲基二乙氧基矽烷基Methyldiethoxydecyl )) 乙烷Ethane

步驟1.製備二乙基氨基甲基苯基氯矽烷Step 1. Preparation of diethylaminomethylphenylchlorodecane

將戊烷(1500 mL)以及二氯甲基苯基矽烷(150 g,0.79 mol,1.0當量)添加到經火焰乾燥的5000 mL舒倫克瓶中,且向燒瓶中緩慢添加二乙胺(114.8 g,1.57 mol,2.0當量),同時維持溫度在0℃。將反應溶液加熱到室溫(20℃)且攪拌12小時。過濾反應溶液,減壓以除去溶劑,且然後獲得二乙基氨基甲基苯基氯矽烷(159.12 g,產率:89%)。Pentane (1500 mL) and dichloromethylphenyl decane (150 g, 0.79 mol, 1.0 eq.) were added to a flame dried 5000 mL Schlenk bottle, and diethylamine was slowly added to the flask (114.8) g, 1.57 mol, 2.0 eq.) while maintaining the temperature at 0 °C. The reaction solution was heated to room temperature (20 ° C) and stirred for 12 hours. The reaction solution was filtered, and the solvent was removed under reduced pressure, and then diethylaminomethylphenylchloromethane (159.12 g, yield: 89%) was obtained.

1 H-NMR(C6 D6 )δ 0.5(3H), 0.89(6H), 2.75(4H), 7.16(3H), 7.78(2H)。 1 H-NMR (C 6 D 6 ) δ 0.5 (3H), 0.89 (6H), 2.75 (4H), 7.16 (3H), 7.78 (2H).

步驟2.製備二乙基氨基甲基矽烷Step 2. Preparation of diethylaminomethyl decane

將LiAlH4 (7.42 g,0.2 mol,0.28當量)添加到經火焰乾燥的3000 mL舒倫克瓶中,且向燒瓶中添加THF(1500 mL),同時維持溫度在-10℃。向反應溶液中緩慢添加步驟1中所製備的乙基氨基甲基苯基氯矽烷(159 g,0.70 mol,1.0當量)。將反應溶液緩慢加熱到室溫(70℃)且攪拌12小時。將所得溶液減壓以除去溶劑且添加己烷(1000 mL)。所得溶液攪拌30分鐘,過濾,減壓以除去溶劑,且然後獲得二乙基氨基甲基矽烷(67.53 g,產率:50%)。LiAlH 4 (7.42 g, 0.2 mol, 0.28 equivalent) was added to a flame dried 3000 mL Schlenk bottle, and THF (1500 mL) was added to the flask while maintaining the temperature at -10 °C. Ethylaminomethylphenylchloromethane (159 g, 0.70 mol, 1.0 equivalent) prepared in the step 1 was slowly added to the reaction solution. The reaction solution was slowly heated to room temperature (70 ° C) and stirred for 12 hours. The resulting solution was depressurized to remove the solvent and hexane (1000 mL) was added. The resulting solution was stirred for 30 minutes, filtered, and the solvent was evaporated under reduced pressure, and then diethylaminomethyl decane (67.53 g, yield: 50%).

1 H-NMR(C6 D6 )δ 0.31(3H), 0.97(6H), 2.79(4H), 5.13(1H), 7.28(3H), 7.63(2H)。 1 H-NMR (C 6 D 6 ) δ 0.31 (3H), 0.97 (6H), 2.79 (4H), 5.13 (1H), 7.28 (3H), 7.63 (2H).

步驟3.製備乙氧基甲基矽烷Step 3. Preparation of ethoxymethyl decane

將步驟2中所製備的二乙基氨基矽烷(67.53 g,0.35 mol,1.0當量)以及正戊烷(1500 mL)添加到經火焰乾燥的5000 mL舒倫克瓶中,且向燒瓶中緩慢添加乙醇(32.18 g,0.7 mol,2.0當量),同時維持溫度在0℃。將反應溶液加熱到室溫,攪拌12小時,過濾,減壓以除去溶劑,且然後獲得乙氧基甲基矽烷(40.65 g,產率:70%)。Diethylaminononane (67.53 g, 0.35 mol, 1.0 eq.) and n-pentane (1500 mL) prepared in Step 2 were added to a flame dried 5000 mL Schlenk bottle and slowly added to the flask. Ethanol (32.18 g, 0.7 mol, 2.0 eq.) while maintaining the temperature at 0 °C. The reaction solution was heated to room temperature, stirred for 12 hours, filtered, and the solvent was removed under reduced pressure, and then ethoxymethyl decane (40.65 g, yield: 70%) was obtained.

1 H-NMR(C6 D6 ) δ 0.33(3H), 1.12(3H), 3.58(2H), 5.21(1H), 7.2(3H), 7.53(2H)。 1 H-NMR (C 6 D 6 ) δ 0.33 (3H), 1.12 (3H), 3.58 (2H), 5.21 (1H), 7.2 (3H), 7.53 (2H).

步驟4.製備二乙氧基甲基(乙烯基)矽烷Step 4. Preparation of diethoxymethyl (vinyl) decane

將二氯甲基(乙烯基)矽烷(50 g,0.35 mol,1.0當量)以及正戊烷(1500 mL)添加到經火焰乾燥的3000 mL舒倫克瓶中,且然後向燒瓶中緩慢添加三乙胺(73.52 g,0.73 mol,2.05當量),同時維持溫度在0℃。隨後,將乙醇(33.47 g,0.73 mol,2.05當量)緩慢添加到反應溶液中。將反應溶液加熱到室溫,攪拌12小時,過濾,減壓以除去溶劑,且然後獲得二乙氧基甲基(乙烯基)矽烷(39 g,產率:68%)。Dichloromethyl(vinyl)decane (50 g, 0.35 mol, 1.0 eq.) and n-pentane (1500 mL) were added to a flame dried 3000 mL Schlenk bottle, and then three were slowly added to the flask. Ethylamine (73.52 g, 0.73 mol, 2.05 eq.) while maintaining the temperature at 0 °C. Subsequently, ethanol (33.47 g, 0.73 mol, 2.05 equivalent) was slowly added to the reaction solution. The reaction solution was heated to room temperature, stirred for 12 hours, filtered, and the solvent was removed under reduced pressure, and then diethoxymethyl(vinyl) decane (39 g, yield: 68%) was obtained.

1 H-NMR(C6 D6 ) δ 0.18(3H), 1.13(6H), 3.71(4H), 5.8 - 6.3(3H)。 1 H-NMR (C 6 D 6 ) δ 0.18 (3H), 1.13 (6H), 3.71 (4H), 5.8 - 6.3 (3H).

步驟5.製備1-(苯基乙氧基甲基矽烷基)-2-(二乙氧基甲基矽烷基)乙烷Step 5. Preparation of 1-(phenylethoxymethyl decyl)-2-(diethoxymethyl decyl) ethane

將步驟3中所製備的乙氧基甲基矽烷(40.65 g,0.24 mol,1.0當量)以及作為催化劑的氯鉑酸(H2 Cl6 Pt·6H2 O)添加到經火焰乾燥的5000 mL舒倫克瓶中。將反應溶液加熱到60℃,且將步驟4中所製備的二乙氧基甲基(乙烯基)矽烷(39 g,0.24 mol,1.0當量)緩慢添加到燒瓶中。使反應溶液回流8小時,獲得由以下化學式表示的化合物(75 g,產率:94%)。 Ethoxymethyl decane (40.65 g, 0.24 mol, 1.0 eq.) prepared in the step 3 and chloroplatinic acid (H 2 Cl 6 Pt·6H 2 O) as a catalyst were added to the flame-dried 5000 mL shu In the bottle of Lenk. The reaction solution was heated to 60 ° C, and diethoxymethyl(vinyl)decane (39 g, 0.24 mol, 1.0 equivalent) prepared in Step 4 was slowly added to the flask. The reaction solution was refluxed for 8 hours to obtain a compound represented by the following chemical formula (75 g, yield: 94%).

1 H-NMR(C6 D6 )δ 0.11(3H), 0.34(3H), 0.96(2H), 0.99(2H), 1.11(9H), 3.61(2H), 3.66(4H), 7.21(3H), 7.59(2H)。 1 H-NMR(C 6 D 6 )δ 0.11(3H), 0.34(3H), 0.96(2H), 0.99(2H), 1.11(9H), 3.61(2H), 3.66(4H), 7.21(3H) , 7.59 (2H).

實例Instance 44 :製備:preparation 1-((1-(( 雙環庚烯基Bicycloheptenyl )) 乙氧Ethoxygen 基甲基矽烷基Methyl decyl )-2-()-2-( 三乙氧基矽烷基Triethoxydecyl )) 甲烷Methane

步驟1.製備1-(甲基氯矽烷基)-2-(三氯矽烷基)甲烷Step 1. Preparation of 1-(methylchloroindolyl)-2-(trichlorodecanealkyl)methane

將鎂(Mg)(34.37 g,1.41 mol,1.3當量)以及100 mL THF添加到經火焰乾燥的5000 mL舒倫克瓶中且加熱到60℃。向反應溶液中緩慢添加(氯甲基)三氯矽烷(200 g,1.09 mol,1.0當量)以及二氯甲基矽烷(187.63 g,1.63 mol,1.5當量)的混合溶液。在60℃攪拌反應溶液10小時,過濾,且然後用正戊烷(1500 mL)處理四次。將溶液減壓以除去溶劑且純化(在38℃以及0.8托下),獲得無色的Cl3 Si-CH2 -SiMeCl(H)液體(99.20 g,產率:40%)。Magnesium (Mg) (34.37 g, 1.41 mol, 1.3 equivalents) and 100 mL of THF were added to a flame dried 5000 mL Schlenk bottle and heated to 60 °C. To the reaction solution, a mixed solution of (chloromethyl)trichloromethane (200 g, 1.09 mol, 1.0 equivalent) and dichloromethylnonane (187.63 g, 1.63 mol, 1.5 equivalent) was slowly added. The reaction solution was stirred at 60 ° C for 10 hours, filtered, and then treated with n-pentane (1500 mL) four times. The solution was depressurized to remove the solvent and purified (at 38 ° C and 0.8 Torr) to obtain a colorless Cl 3 Si-CH 2 -SiMeCl (H) liquid (99.20 g, yield: 40%).

1 H-NMR(C6 D6 )δ 0.12(3H), 0.41-0.58(2H), 4.78(1H)。 1 H-NMR (C 6 D 6 ) δ 0.12 (3H), 0.41 - 0.58 (2H), 4.78 (1H).

步驟2.製備1-(乙氧基(甲基)氯矽烷基)-2-(三乙氧基矽烷基)甲烷Step 2. Preparation of 1-(ethoxy(methyl)chloroindolyl)-2-(triethoxydecyl)methane

將正戊烷(2000 mL)以及步驟1中所製備的1-(甲基氯矽烷基)-2-(三氯矽烷基)甲烷(99.20 g,0.44 mol,1.0當量)添加到經火焰乾燥的5000 mL舒倫克瓶中,且將三乙胺(220.07 g,2.18 mol,5.0當量)以及乙醇(100.20 g,2.18 mol,5.0當量)緩慢添加到燒瓶中,同時維持溫度在0℃。將反應溶液加熱到室溫(20℃)且攪拌5小時。過濾反應溶液,減壓以除去溶劑,且在42℃以及0.4托下,獲得無色的(EtO)3 Si-CH2 -SiMe(OEt)(H)液體(104.32 g,產率:90%)。Add n-pentane (2000 mL) and 1-(methylchloroindolyl)-2-(trichlorodecanealkyl)methane (99.20 g, 0.44 mol, 1.0 eq.) prepared in Step 1 to flame dried In a 5000 mL Schlenk bottle, triethylamine (220.07 g, 2.18 mol, 5.0 equivalents) and ethanol (100.20 g, 2.18 mol, 5.0 equivalents) were slowly added to the flask while maintaining the temperature at 0 °C. The reaction solution was heated to room temperature (20 ° C) and stirred for 5 hours. The reaction solution was filtered, and the solvent was evaporated under reduced pressure, and, at 42 ° C and 0.4 Torr, a colorless (EtO) 3 Si-CH 2 -SiMe (OEt) (H) liquid (104.32 g, yield: 90%) was obtained.

1 H-NMR(C6 D6 )δ 0.08-0.11(2H), 0.42(3H), 1.09-1.18(12H), 3.57-3.65(2H), 3.71-3.84(6H), 4.98(1H)。 1 H-NMR (C 6 D 6 ) δ 0.08-0.11 (2H), 0.42 (3H), 1.09-1.18 (12H), 3.57-3.65 (2H), 3.71-3.84 (6H), 4.98 (1H).

步驟3.製備1-((雙環庚烯基)乙氧基甲基矽烷基)-2-(三乙氧基矽烷基)甲烷Step 3. Preparation of 1-((bicycloheptenyl)ethoxymethyldecyl)-2-(triethoxydecyl)methane

將步驟2中所製備的1-(乙氧基(甲基)氯矽烷基)-2-(三乙氧基矽烷基)甲烷(104.32 g,0.39 mol,1.0當量)連同作為催化劑的二氯(1,5-環辛二烯)鉑(II)一起添加到經火焰乾燥的1000 mL舒倫克瓶中。將反應溶液加熱到60℃且緩慢添加降冰片二烯(36.07 g,0.39 mol,1.0當量)。在60℃攪拌溶液5小時且在90℃以及0.23托下純化,獲得由以下化學式表示的無色液體化合物(105.29 g,產率:75%)。 1-(ethoxy(methyl)chloroindolyl)-2-(triethoxydecylalkyl)methane (104.32 g, 0.39 mol, 1.0 eq.) prepared in Step 2 together with dichloride as catalyst ( 1,5-cyclooctadiene)platinum (II) was added together to a flame dried 1000 mL Schlenk bottle. The reaction solution was heated to 60 ° C and norbornadiene (36.07 g, 0.39 mol, 1.0 equivalent) was slowly added. The solution was stirred at 60 ° C for 5 hours and at 90 ° C and 0.23 Torr to obtain a colorless liquid compound (105.29 g, yield: 75%) represented by the following chemical formula.

1 H-NMR(C6 D6 )δ 0.01(外, 2H), 0.05(內, 2H), 0.24(外, 3H), 0.34(內, 3H), 1.16-1.42(外, 內, 24H), 3.65-3.79(外, 內, 16H), 1.18-2.17, 2.80-3.12, 5.94-6.22(雙環庚烯基, 9H)。 1 H-NMR (C 6 D 6 ) δ 0.01 (external, 2H), 0.05 (inner, 2H), 0.24 (external, 3H), 0.34 (inner, 3H), 1.16-1.42 (outside, in, 24H), 3.65-3.79 (outer, inner, 16H), 1.18-2.17, 2.80-3.12, 5.94-6.22 (bicycloheptenyl, 9H).

實例Instance 55 :製備:preparation 1-((2-1-((2- 環庚烯基Cycloheptenyl )) 乙氧Ethoxygen 基甲基矽烷基Methyl decyl )-2-()-2-( 甲基二乙氧基矽烷基Methyldiethoxydecyl )) 甲烷Methane

步驟1.製備1-(甲基氯矽烷基)-2-(二氯甲基矽烷基)甲烷Step 1. Preparation of 1-(methylchloroindolyl)-2-(dichloromethylindolyl)methane

將鎂(Mg)(28.99 g,1.19 mol,1.3當量)以及THF(100 mL)添加到經火焰乾燥的5000 mL舒倫克瓶中且將反應溶液加熱到60℃。將(氯甲基)二氯甲基矽烷(150 g,0.92 mol,1.0當量)以及二氯甲基矽烷(158.29 g,1.38 mol,1.5當量)的混合溶液緩慢添加到反應溶液中。在60℃攪拌反應溶液10小時,過濾,且然後用正戊烷(1500 mL)處理四次。將溶液減壓以除去溶劑且純化(在40℃以及2.8托),獲得無色的MeCl2 Si-CH2 -SiMeCl(H)液體(123.82 g,產率:65%)。Magnesium (Mg) (28.99 g, 1.19 mol, 1.3 equivalents) and THF (100 mL) were added to a flame dried 5000 mL Schlenk bottle and the reaction solution was heated to 60 °C. A mixed solution of (chloromethyl)dichloromethylnonane (150 g, 0.92 mol, 1.0 equivalent) and dichloromethylnonane (158.29 g, 1.38 mol, 1.5 equivalent) was slowly added to the reaction solution. The reaction solution was stirred at 60 ° C for 10 hours, filtered, and then treated with n-pentane (1500 mL) four times. The solution was depressurized to remove the solvent and purified (at 40 ° C and 2.8 Torr) to give a colorless MeCl 2 Si-CH 2 -SiMeCl (H) liquid (123.82 g, yield: 65%).

1 H-NMR(C6 D6 )δ 0.18(3H), 0.37(2H), 0.47(3H), 4.83(1H)。 1 H-NMR (C 6 D 6 ) δ 0.18 (3H), 0.37 (2H), 0.47 (3H), 4.83 (1H).

步驟2.製備1-(乙氧基(甲基)氯矽烷基)-2-(二乙氧基甲基矽烷基)甲烷Step 2. Preparation of 1-(ethoxy(methyl)chloroindolyl)-2-(diethoxymethyldecyl)methane

將步驟1中所製備的1-(甲基氯矽烷基)-2-(二氯甲基矽烷基)甲烷(123.82 g,0.60 mol,1.0當量)以及正戊烷(2000 mL)添加到經火焰乾燥的5000 mL舒倫克瓶中,且向燒瓶中緩慢添加三乙胺(187.05 g,1.85 mol,3.1當量)以及乙醇(85.16 g,1.85 mol,3.1當量),同時維持溫度在0℃。將反應溶液加熱到室溫(20℃)且攪拌5小時。過濾反應溶液,減壓以除去溶劑,且在76℃以及0.24托下純化,獲得無色的Me(EtO)2 Si-CH2 -SiMe(OEt)(H)液體(119.85 g,產率:85%)。Add 1-(methylchloroindolyl)-2-(dichloromethylindenyl)methane (123.82 g, 0.60 mol, 1.0 eq.) and n-pentane (2000 mL) prepared in Step 1 to a flame. In a dry 5000 mL Schlenk bottle, triethylamine (187.05 g, 1.85 mol, 3.1 eq.) and ethanol (85.16 g, 1.85 mol, 3.1 eq.) were slowly added to the flask while maintaining the temperature at 0 °C. The reaction solution was heated to room temperature (20 ° C) and stirred for 5 hours. The reaction solution was filtered, and the solvent was removed under reduced pressure, and purified at 76 ° C and 0.24 Torr to obtain a colorless Me(EtO) 2 Si-CH 2 -SiMe(OEt)(H) liquid (119.85 g, yield: 85%) ).

1 H-NMR(C6 D6 )δ 0.08(2H), 0.17(3H), 0.38(3H), 1.13(12H), 3.61-3.83(8H), 4.68(1H)。 1 H-NMR (C 6 D 6 ) δ 0.08 (2H), 0.17 (3H), 0.38 (3H), 1.13 (12H), 3.61-3.83 (8H), 4.68 (1H).

步驟3.製備1-((2-環庚烯基)乙氧基甲基矽烷基)-2-(二乙氧基甲基矽烷基)甲烷Step 3. Preparation of 1-((2-cycloheptenyl)ethoxymethyldecyl)-2-(diethoxymethyldecyl)methane

將步驟2中所製備的1-(乙氧基(甲基)氯矽烷基)-2-(二乙氧基甲基矽烷基)甲烷(119.85 g,0.51 mol,1.0當量)以及作為催化劑的二氯(1,5-環辛二烯)鉑(II)添加到經火焰乾燥的1000 mL舒倫克瓶中。將反應溶液加熱到60℃,且然後將降冰片二烯(46.70 g,0.51 mol,1.0當量)緩慢添加到反應溶液中。在60℃攪拌反應溶液5小時且在88℃以及0.18托下純化,獲得由以下化學式表示的無色液體化合物(116.58 g,產率:70%)。 1-(ethoxy(methyl)chloroindolyl)-2-(diethoxymethyldecyl)methane (119.85 g, 0.51 mol, 1.0 equivalent) prepared in the step 2 and as a catalyst Chloro(1,5-cyclooctadiene)platinum (II) was added to a flame dried 1000 mL Schlenk bottle. The reaction solution was heated to 60 ° C, and then norbornadiene (46.70 g, 0.51 mol, 1.0 equivalent) was slowly added to the reaction solution. The reaction solution was stirred at 60 ° C for 5 hours and purified at 88 ° C and 0.18 Torr to obtain a colorless liquid compound (116.58 g, yield: 70%) represented by the following formula.

1 H-NMR(C6 D6 )δ 0.04(外, 2H), 0.06(內,, 2H), 0.17(外, 3H), 0.25(內, 3H), 1.14(外, 內, 18H), 3.57-3.69(外, 內, 12H), 0.54, 1.70-1.82, 2.79-2.94, 5.95-6.19(雙環庚烯基, 9H)。 1 H-NMR (C 6 D 6 ) δ 0.04 (external, 2H), 0.06 (inner, 2H), 0.17 (outside, 3H), 0.25 (inner, 3H), 1.14 (outside, in, 18H), 3.57 -3.69 (outer, inner, 12H), 0.54, 1.70-1.82, 2.79-2.94, 5.95-6.19 (bicycloheptenyl, 9H).

實例Instance 66 到實例To instance 1010 :使用實例: use case 11 To 55 的矽前驅物形成介電層矽 precursor forms a dielectric layer

將基底安置於PE-CVD腔室中。將基底加熱升溫到200℃且維持在200℃直到完成沉積製程。將矽前驅物連同載氣(例如400 sccm氬氣)一起以475 cc/min的流速供應到腔室中,且在此,使用實例1到實例5中的每一個所製備的化合物作為矽前驅物。另外,將作為反應氣體的氧氣(例如氧化劑)供應到腔室中。氧氣以20 cc/min的流速供應。對腔室中的上電極施加13.56 MHz以及50 W的RF功率。腔室的內部壓力控制在0.8托。從而在基底上沉積初始介電層。The substrate is placed in a PE-CVD chamber. The substrate was heated to 200 ° C and maintained at 200 ° C until the deposition process was completed. The ruthenium precursor is supplied to the chamber together with a carrier gas (for example, 400 sccm of argon gas) at a flow rate of 475 cc/min, and here, the compound prepared using each of Examples 1 to 5 is used as a ruthenium precursor. . In addition, oxygen (for example, an oxidant) as a reaction gas is supplied into the chamber. Oxygen was supplied at a flow rate of 20 cc/min. 13.56 MHz and 50 W of RF power were applied to the upper electrode in the chamber. The internal pressure of the chamber was controlled at 0.8 Torr. Thereby an initial dielectric layer is deposited on the substrate.

對具有初始介電層的基底進行熱退火製程(N2 ,15SLM)或UV固化製程。在500℃溫度下執行熱退火製程2小時。對溫度加熱升到400℃的基底執行UV固化製程10分鐘。通過此類能量處理從初始介電層中除去致孔劑基團而形成多孔介電層。The substrate having the initial dielectric layer is subjected to a thermal annealing process (N 2 , 15 SLM) or a UV curing process. The thermal annealing process was performed at a temperature of 500 ° C for 2 hours. A UV curing process was performed on the substrate heated to 400 ° C for 10 minutes. The porogen groups are removed from the initial dielectric layer by such energy treatment to form a porous dielectric layer.

分別使用實例1到實例5的化合物形成介電層(實例6到實例10),且然後測量其介電常數和楊氏模數。使用紅外光譜儀分析介電層(實例6到實例10)的化學結構。在使用紅外光譜儀的分析中,介電層(實例6到實例10)經控制而具有400 nm的相同厚度,且使用橢偏儀測量介電層(實例6到實例10)的厚度。另外,使用X射線光電子光譜(X-ray photoelectron spectroscopy,XPS)系統測量介電層(實例6到實例10)的碳含量。A dielectric layer (Example 6 to Example 10) was formed using the compounds of Examples 1 to 5, respectively, and then the dielectric constant and Young's modulus were measured. The chemical structure of the dielectric layers (Examples 6 to 10) was analyzed using an infrared spectrometer. In the analysis using an infrared spectrometer, the dielectric layers (Examples 6 to 10) were controlled to have the same thickness of 400 nm, and the thickness of the dielectric layers (Examples 6 to 10) was measured using an ellipsometer. In addition, the carbon content of the dielectric layers (Examples 6 to 10) was measured using an X-ray photoelectron spectroscopy (XPS) system.

使用實例1的矽前驅物所形成的第一介電層(實例6)具有2.32的介電常數以及8.59 GPa的楊氏模量。第一介電層具有25 at%的碳含量、1.4 nm的平均孔隙直徑、0.45 nm的FWHM(孔隙半徑分佈)以及22%的孔隙率。The first dielectric layer (Example 6) formed using the ruthenium precursor of Example 1 had a dielectric constant of 2.32 and a Young's modulus of 8.59 GPa. The first dielectric layer has a carbon content of 25 at%, an average pore diameter of 1.4 nm, a FWHM (pore radius distribution) of 0.45 nm, and a porosity of 22%.

使用實例2的矽前驅物所形成的第二介電層(實例7)具有2.38的介電常數以及7.95 GPa的楊氏模量。第二介電層具有30 at%的碳含量、1.8 nm的平均孔隙直徑、0.65 nm的FWHM(孔隙半徑分佈)以及28%的孔隙率。The second dielectric layer (Example 7) formed using the hafnium precursor of Example 2 had a dielectric constant of 2.38 and a Young's modulus of 7.95 GPa. The second dielectric layer has a carbon content of 30 at%, an average pore diameter of 1.8 nm, a FWHM (pore radius distribution) of 0.65 nm, and a porosity of 28%.

使用實例3的矽前驅物所形成的第三介電層(實例8)具有2.40的介電常數以及7.86 GPa的楊氏模量。第三介電層具有20 at%的碳含量、1.2 nm的平均孔隙直徑以及17%的孔隙率。The third dielectric layer (Example 8) formed using the hafnium precursor of Example 3 had a dielectric constant of 2.40 and a Young's modulus of 7.86 GPa. The third dielectric layer has a carbon content of 20 at%, an average pore diameter of 1.2 nm, and a porosity of 17%.

測量第三介電層(實例8)中的孔隙半徑,且圖10繪示了測量所得的孔隙半徑分佈。在圖10所示的孔隙半徑分佈曲線中,FWHM是約0.55 nm。這種結果意味著第三介電層中形成了均一的小尺寸孔隙。The pore radius in the third dielectric layer (Example 8) was measured, and FIG. 10 depicts the measured pore radius distribution. In the pore radius distribution curve shown in Fig. 10, the FWHM is about 0.55 nm. This result means that uniform small-sized pores are formed in the third dielectric layer.

使用實例4的矽前驅物所形成的第四介電層(實例9)具有2.35的介電常數以及9.85 GPa的楊氏模量。第四介電層具有27 at%的碳含量、1 nm的平均孔隙直徑、0.35 nm的FWHM(孔隙半徑分佈)以及25%的孔隙率。The fourth dielectric layer (Example 9) formed using the ruthenium precursor of Example 4 had a dielectric constant of 2.35 and a Young's modulus of 9.85 GPa. The fourth dielectric layer has a carbon content of 27 at%, an average pore diameter of 1 nm, a FWHM (pore radius distribution) of 0.35 nm, and a porosity of 25%.

使用實例5的矽前驅物所形成的第五介電層(實例10)具有2.41的介電常數以及7.75 GPa的楊氏模量。第五介電層具有20 at%的碳含量、1.5 nm的平均孔隙直徑、0.55 nm的FWHM(孔隙半徑分佈)以及20%的孔隙率。The fifth dielectric layer (Example 10) formed using the ruthenium precursor of Example 5 had a dielectric constant of 2.41 and a Young's modulus of 7.75 GPa. The fifth dielectric layer has a carbon content of 20 at%, an average pore diameter of 1.5 nm, a FWHM (pore radius distribution) of 0.55 nm, and a porosity of 20%.

下表1示出了通過紅外光譜儀所測量的第一介電層到第五介電層(實例6到實例10)的分析資料。Table 1 below shows analytical data of the first to fifth dielectric layers (Examples 6 to 10) measured by an infrared spectrometer.

[表1] [Table 1]

由於作為熱退火製程或UV固化製程從初始介電層分子中除去致孔劑基團,因此形成具有高孔隙率以及低介電常數的實例6到實例10的介電層,如表1中所示。具體地說,實例6的介電層具有最低介電常數以及最高機械強度。由於實例1的矽前驅物的分子結構含有橋碳(-CH2 -)以及四個烷氧基,因此實例6的介電層經形成而具有相對較大量的Si-O網狀結構。因此,實例6的介電層具有如上文所述的高機械強度。另外,實例6的介電層經形成而具有相對較高含量的Si-CH3 鍵結單元,且因此,其具有相對較大量的Si-O籠型結構。因此,實例6的介電層具有如上文所述的低介電常數。Since the porogen groups are removed from the initial dielectric layer molecules as a thermal annealing process or a UV curing process, the dielectric layers of Examples 6 to 10 having high porosity and low dielectric constant are formed, as shown in Table 1. Show. Specifically, the dielectric layer of Example 6 has the lowest dielectric constant and the highest mechanical strength. Since the molecular structure of the ruthenium precursor of Example 1 contained bridge carbon (-CH 2 -) and four alkoxy groups, the dielectric layer of Example 6 was formed to have a relatively large amount of Si-O network structure. Thus, the dielectric layer of Example 6 has a high mechanical strength as described above. In addition, the dielectric layer of Example 6 was formed to have a relatively high content of Si-CH 3 bonding units, and therefore, it had a relatively large amount of Si-O cage structure. Thus, the dielectric layer of Example 6 has a low dielectric constant as described above.

根據本發明概念的實例實施例,可以形成碳以及氧原子含量高的介電層。舉例來說,在初始介電層的沉積製程期間,初始介電層中可以形成許多Si-CH3 鍵結單元。由Si-O鍵結單元組成的Si-O網狀結構可以被Si-CH3 鍵結單元打斷,且從而可以在結構中形成奈米空隙。換句話說,Si-CH3 鍵結單元引起的Si-O網狀結構斷裂可以形成Si-O籠型結構。According to an example embodiment of the inventive concept, a dielectric layer having a high carbon content and an oxygen atom content may be formed. For example, during an initial deposition process of the dielectric layer, the dielectric layer may initially form a plurality of Si-CH 3 bond unit. The Si-O network structure composed of Si-O bonding units can be interrupted by Si-CH 3 bonding units, and thus nanovoids can be formed in the structure. In other words, the Si-O network structure fracture caused by the Si-CH 3 bonding unit can form a Si-O cage structure.

另外,根據本發明概念的實例實施例的介電層中的Si-CH3 鍵結單元與Si-O鍵結單元的比率相對較高。Si-CH3 鍵結單元與Si-O鍵結單元的比率越高,則每個介電層中的Si-CH3 鍵數目就越多。在介電層中形成互連線的製程中,這可能使得抑制電漿發生損傷。即,可抑制電漿誘發的損傷。In addition, the ratio of the Si—CH 3 bonding unit to the Si—O bonding unit in the dielectric layer according to example embodiments of the inventive concepts is relatively high. The higher the ratio of Si-CH 3 bonding units to Si-O bonding units, the greater the number of Si-CH 3 bonds in each dielectric layer. In the process of forming interconnections in the dielectric layer, this may cause damage to the plasma. That is, it is possible to suppress plasma-induced damage.

根據本發明概念的實例實施例的矽前驅物可以具有含有致孔劑基團的分子結構,且這可能使得在介電層中形成許多Si-O籠型結構。因此,在使用矽前驅物形成介電層的情況下,可以在不使用供應孔隙產生材料的額外步驟的情況下形成多孔介電層。另外,根據本發明概念的實例實施例的矽前驅物可以具有含有橋碳鍵(-(CH2 )n -)的分子結構且可以含有烷氧基而非多個烷基,且從而,矽前驅物可以具有改善的熱穩定性。The ruthenium precursor according to example embodiments of the inventive concepts may have a molecular structure containing a porogen group, and this may cause a plurality of Si-O cage structures to be formed in the dielectric layer. Therefore, in the case where a germanium precursor is used to form a dielectric layer, a porous dielectric layer can be formed without using an additional step of supplying a pore-generating material. In addition, the ruthenium precursor according to an example embodiment of the inventive concept may have a molecular structure containing a bridge carbon bond (-(CH 2 ) n -) and may contain an alkoxy group instead of a plurality of alkyl groups, and thus, a ruthenium precursor The material can have improved thermal stability.

因此,在根據本發明概念的實例實施例的矽前驅物用於形成介電層的情況下,介電層可以經形成而具有相對較低的介電常數以及適用於互連結構的高機械強度。Therefore, in the case where a germanium precursor according to an example embodiment of the inventive concept is used to form a dielectric layer, the dielectric layer can be formed to have a relatively low dielectric constant and high mechanical strength suitable for the interconnect structure. .

實例Instance 1111 :製備:preparation 1-((1-(( 雙環庚烯基Bicycloheptenyl )) 甲基甲氧基矽烷基Methylmethoxyalkyl -2-(-2-( 三甲氧基矽烷基Trimethoxydecyl )) 甲烷Methane

步驟1.製備1-(甲基氯矽烷基)-2-(三氯矽烷基)甲烷Step 1. Preparation of 1-(methylchloroindolyl)-2-(trichlorodecanealkyl)methane

將鎂(Mg)(34.37 g,1.41 mol,1.3當量)以及100 mL THF添加到經火焰乾燥的5000 mL舒倫克瓶中且加熱到60℃。向反應溶液中緩慢添加(氯甲基)三氯矽烷(200 g,1.09 mol,1.0當量)以及二氯甲基矽烷(187.63 g,1.63 mol,1.5當量)的混合溶液。在60℃攪拌反應溶液10小時,過濾,且然後用正戊烷(1500 mL)處理四次。將溶液減壓以除去溶劑且純化(在38℃以及0.8托下),獲得無色的Cl3 Si-CH2 -SiMeCl(H)液體(99.20 g,產率:40%)。Magnesium (Mg) (34.37 g, 1.41 mol, 1.3 equivalents) and 100 mL of THF were added to a flame dried 5000 mL Schlenk bottle and heated to 60 °C. To the reaction solution, a mixed solution of (chloromethyl)trichloromethane (200 g, 1.09 mol, 1.0 equivalent) and dichloromethylnonane (187.63 g, 1.63 mol, 1.5 equivalent) was slowly added. The reaction solution was stirred at 60 ° C for 10 hours, filtered, and then treated with n-pentane (1500 mL) four times. The solution was depressurized to remove the solvent and purified (at 38 ° C and 0.8 Torr) to obtain a colorless Cl 3 Si-CH 2 -SiMeCl (H) liquid (99.20 g, yield: 40%).

1 H-NMR(C6 D6 )δ 0.12(3H), 0.41-0.58(2H), 4.78(1H)。 1 H-NMR (C 6 D 6 ) δ 0.12 (3H), 0.41 - 0.58 (2H), 4.78 (1H).

步驟2.製備1-(甲氧基(甲基)氯矽烷基)-2-(三甲氧基矽烷基)甲烷Step 2. Preparation of 1-(methoxy(methyl)chloroindolyl)-2-(trimethoxydecyl)methane

將步驟1中所製備的1-(甲基氯矽烷基)-2-(三氯矽烷基)甲烷(99.20 g,0.44 mol,1.0當量)以及正戊烷(2000 mL)添加到經火焰乾燥的5000 mL舒倫克瓶中,且向反應溶液中緩慢添加三乙胺(220.07 g,2.18 mol,5.0當量)以及甲醇(69.85 g,2.18 mol,5.0當量)的同時,維持溫度在0℃。將反應溶液加熱到室溫(20℃)且攪拌5小時。過濾反應溶液,減壓以除去溶劑,且在30℃以及0.46托下純化,獲得無色的(MeO)3 Si-CH2 -SiMe(OMe)(H)液體(82.38 g,產率:89%)。Add 1-(methylchloroindolyl)-2-(trichlorodecanealkyl)methane (99.20 g, 0.44 mol, 1.0 eq.) and n-pentane (2000 mL) prepared in Step 1 to flame dried In a 5000 mL Schlenk bottle, triethylamine (220.07 g, 2.18 mol, 5.0 equivalents) and methanol (69.85 g, 2.18 mol, 5.0 equivalents) were slowly added to the reaction solution while maintaining the temperature at 0 °C. The reaction solution was heated to room temperature (20 ° C) and stirred for 5 hours. The reaction solution was filtered, and the solvent was evaporated under reduced pressure, and purified at 30 ° C and 0.46 Torr to obtain a colorless (MeO) 3 Si-CH 2 -SiMe (OMe) (H) liquid (82.38 g, yield: 89%) .

1 H-NMR(C6 D6 )δ 0.05-0.09(2H), 0.31(3H), 3.33-3.42(12H), 4.96(1H)。 1 H-NMR (C 6 D 6 ) δ 0.05-0.09 (2H), 0.31 (3H), 3.33-3.42 (12H), 4.96 (1H).

步驟3.製備1-((雙環庚烯基)甲氧基甲基矽烷基-2-(三甲氧基矽烷基)甲烷Step 3. Preparation of 1-((bicycloheptenyl)methoxymethyldecyl-2-(trimethoxydecyl)methane

將步驟2中所製備的1-(甲氧基(甲基)氯矽烷基)-2-(三甲氧基矽烷基)甲烷(82.38 g,0.39 mol,1.0當量)以及作為催化劑的二氯(1,5-環辛二烯)鉑(II)添加到經火焰乾燥的1000 mL舒倫克瓶中。將反應溶液加熱到60℃且緩慢添加降冰片二烯(36.07 g,0.39 mol,1.0當量)。在60℃攪拌反應溶液5小時且在64℃以及0.52托下純化,獲得由以下化學式表示的無色液體化合物(88.85 g,產率:75%)。 1-(Methoxy(methyl)chloroindolyl)-2-(trimethoxydecylalkyl)methane (82.38 g, 0.39 mol, 1.0 eq.) prepared in Step 2 and dichloride as a catalyst (1) , 5-cyclooctadiene)platinum (II) was added to a flame dried 1000 mL Schlenk bottle. The reaction solution was heated to 60 ° C and norbornadiene (36.07 g, 0.39 mol, 1.0 equivalent) was slowly added. The reaction solution was stirred at 60 ° C for 5 hours and purified at 64 ° C and 0.52 Torr to obtain a colorless liquid compound (88.85 g, yield: 75%) represented by the following formula.

1 H-NMR(C6 D6 )δ -0.01(外, 內, 2H), 0.22-0.31(外, 內, 3H), 3.36-3.47(外, 內, 9H), 1.06-1.92, 2.78-2.98, 5.92-5.97(雙環庚烯基, 9H)。 1 H-NMR(C 6 D 6 )δ -0.01 (outer, inner, 2H), 0.22-0.31 (outer, inner, 3H), 3.36-3.47 (outer, inner, 9H), 1.06-1.92, 2.78-2.98 , 5.92-5.97 (bicycloheptenyl, 9H).

實例Instance 1212 :製備:preparation 1-((1-(( 雙環庚烯基Bicycloheptenyl )) 甲基甲氧基矽烷基Methylmethoxyalkyl )-2-()-2-( 三甲氧基矽烷基Trimethoxydecyl )) 乙烷Ethane

步驟1.製備1-(三氯矽烷基)-2-(甲基二氯矽烷基)乙烷Step 1. Preparation of 1-(trichlorodecylalkyl)-2-(methyldichlorodecylalkyl)ethane

將三氯乙烯基矽烷(200 g,1.24 mol,1.0當量)以及作為催化劑的氯鉑酸(H2 Cl6 Pt·6H2 O)添加到經火焰乾燥的3000 mL舒倫克瓶中,且然後將反應溶液加熱到60℃。向反應溶液中緩慢添加二氯甲基矽烷(156.7 g,1.36 mol,1.1當量)。使混合溶液回流8小時,獲得MeCl2 Si-CH2 CH2 -SiCl3 (384.81 g,產率:98%)。Silane vinyl trichlorosilane (200 g, 1.24 mol, 1.0 equiv) was added as a catalyst and chloroplatinic acid (H 2 Cl 6 Pt · 6H 2 O) to a flame dried Schlenk flask, followed by 3000 mL, and then The reaction solution was heated to 60 °C. Dichloromethyl decane (156.7 g, 1.36 mol, 1.1 equivalent) was slowly added to the reaction solution. The mixed solution was refluxed for 8 hours to obtain MeCl 2 Si-CH 2 CH 2 -SiCl 3 (384.81 g, yield: 98%).

1 H-NMR(C6 D6 )δ 0.21(3H), 0.86(2H), 1.06(2H)。 1 H-NMR (C 6 D 6 ) δ 0.21 (3H), 0.86 (2H), 1.06 (2H).

步驟2.製備1-(雙(二甲基氨基)氯矽烷基)-2-(雙(二甲基氨基)甲基矽烷基)乙烷Step 2. Preparation of 1-(bis(dimethylamino)chloroindolyl)-2-(bis(dimethylamino)methyldecyl)ethane

將步驟1中所製備的1-(三氯矽烷基)-2-(甲基二氯矽烷基)乙烷(384.81 g,1.39 mol,1.0當量)以及3000 mL正戊烷添加到經火焰乾燥的5000 mL舒倫克瓶中,且將二甲胺(501.87 g,11.13 mol,8.0當量)緩慢添加到燒瓶中,同時維持溫度在0℃。將反應溶液加熱到室溫(20℃)且攪拌3小時。過濾反應溶液,減壓以除去溶劑,且純化,獲得無色的Me(NMe2 )2 Si-CH2 CH2 -Si(NMe2 )2 Cl液體(357.88 g,產率:85%)。1-(Trichlorodecyl)-2-(methyldichlorodecylalkyl)ethane (384.81 g, 1.39 mol, 1.0 eq.) and 3000 mL of n-pentane prepared in Step 1 were added to the flame dried In a 5000 mL Schlenk bottle, dimethylamine (501.87 g, 11.13 mol, 8.0 equivalents) was slowly added to the flask while maintaining the temperature at 0 °C. The reaction solution was heated to room temperature (20 ° C) and stirred for 3 hours. The reaction solution was filtered to remove the solvent, and purified to obtain colorless Me (NMe 2) 2 Si- CH 2 CH 2 -Si (NMe 2) 2 Cl pressure liquid (357.88 g, yield: 85%).

1 H-NMR(C6 D6 )δ 0.07(3H), 0.78-0.91(4H), 2.45(24H)。 1 H-NMR (C 6 D 6 ) δ 0.07 (3H), 0.78-0.91 (4H), 2.45 (24H).

步驟3.製備1-(雙(二甲基氨基)矽烷基)-2-(雙(二甲基氨基)甲基矽烷基)乙烷Step 3. Preparation of 1-(bis(dimethylamino)decyl)-2-(bis(dimethylamino)methyldecyl)ethane

將LiAlH4 (15.71 g,0.41 mol,0.35當量)添加到經火焰乾燥的2000 mL舒倫克瓶中,且然後向燒瓶中緩慢添加THF(500 mL),同時維持溫度在-30℃。將步驟2中所製備的1-(雙(二甲基氨基)氯矽烷基)-2-(雙(二甲基氨基)甲基矽烷基)乙烷(357.88 g,1.18 mol,1.0當量)緩慢添加到燒瓶中,同時維持溫度在-30℃。將反應溶液加熱到室溫(20℃)且攪拌5小時。過濾反應溶液,減壓以除去溶劑,且在73℃以及1.66托下純化,獲得無色的Me(NMe2 )2 Si-CH2 CH2 -Si(NMe2 )2 H液體(245.36 g,產率:75%)。LiAlH 4 (15.71 g, 0.41 mol, 0.35 eq.) was added to a flame dried 2000 mL Schlenk bottle, and then THF (500 mL) was slowly added to the flask while maintaining the temperature at -30 °C. 1-(bis(dimethylamino)chloroindolyl)-2-(bis(dimethylamino)methyldecyl)ethane (357.88 g, 1.18 mol, 1.0 eq.) prepared in step 2 was slowly Add to the flask while maintaining the temperature at -30 °C. The reaction solution was heated to room temperature (20 ° C) and stirred for 5 hours. The reaction solution was filtered, and the solvent was evaporated under reduced pressure, and purified at 73 ° C and 1.66 Torr to obtain a colorless Me(NMe 2 ) 2 Si-CH 2 CH 2 -Si(NMe 2 ) 2 H liquid (245.36 g, yield :75%).

1 H-NMR(C6 D6 )δ 0.10(3H), 0.69(4H), 2.47(12H), 2.52(12H), 4.59(1H)。 1 H-NMR (C 6 D 6 ) δ 0.10 (3H), 0.69 (4H), 2.47 (12H), 2.52 (12H), 4.59 (1H).

步驟4.製備1-(二乙氧基矽烷基)-2-(二乙氧基(甲基)矽烷基)乙烷Step 4. Preparation of 1-(diethoxydecyl)-2-(diethoxy(methyl)decylalkyl)ethane

將步驟3中所製備的1-(雙(二甲基氨基)矽烷基)-2-(雙(二甲基氨基)甲基矽烷基)乙烷(245.36 g,0.89 mol,1.0當量)以及正戊烷(1000 mL)添加到經火焰乾燥的3000 mL舒倫克瓶中,且將甲醇(113.7 g,3.55 mol,4.0當量)緩慢添加到燒瓶中,同時維持溫度在0℃。將反應溶液加熱到室溫(20℃)且攪拌5小時。過濾反應溶液,減壓以除去溶劑,且然後獲得無色的Me(MeO)2 Si-CH2 CH2 -Si(OMe)2 H液體(104.16 g,產率:87%)。1-(Bis(dimethylamino)decyl)-2-(bis(dimethylamino)methyldecyl)ethane prepared in Step 3 (245.36 g, 0.89 mol, 1.0 eq.) and Pentane (1000 mL) was added to a flame dried 3000 mL Schlenk bottle, and methanol (113.7 g, 3.55 mol, 4.0 eq.) was slowly added to the flask while maintaining the temperature at 0 °C. The reaction solution was heated to room temperature (20 ° C) and stirred for 5 hours. The reaction solution was filtered, and the solvent was removed under reduced pressure, and then a colorless Me(MeO) 2 Si-CH 2 CH 2 -Si(OMe) 2 H liquid (104.16 g, yield: 87%) was obtained.

1 H-NMR(C6 D6 )δ 0.08(3H), 0.80(4H), 3.48-3.68(12H), 4.78(1H)。 1 H-NMR (C 6 D 6 ) δ 0.08 (3H), 0.80 (4H), 3.48-3.68 (12H), 4.78 (1H).

步驟5.製備1-((2-環庚烯基)二甲氧基矽烷基)-2-(甲基二甲氧基矽烷基)乙烷Step 5. Preparation of 1-((2-cycloheptenyl)dimethoxydecyl)-2-(methyldimethoxydecyl)ethane

將步驟4中所製備的1-(二甲氧基矽烷基)-2-(二甲氧基(甲基)矽烷基)乙烷(104.16 g,0.46 mol,1.0當量)連同作為催化劑的二氯(1,5-環辛二烯)鉑(II)一起添加到經火焰乾燥的1000 mL舒倫克瓶中。將反應溶液加熱到60℃且緩慢添加降冰片二烯(42.77 g,0.46 mol,1.0當量)。在60℃混合溶液攪拌5小時且在88℃以及0.18托下純化,獲得由以下化學式表示的無色液體化合物(104.84 g,產率:72%)。 1-(Dimethoxydecylalkyl)-2-(dimethoxy(methyl)decylalkyl)ethane (104.16 g, 0.46 mol, 1.0 eq.) prepared in Step 4 together with dichloride as a catalyst (1,5-cyclooctadiene)platinum (II) was added together to a flame dried 1000 mL Schlenk bottle. The reaction solution was heated to 60 ° C and norbornadiene (42.77 g, 0.46 mol, 1.0 equivalent) was slowly added. The mixed solution was stirred at 60 ° C for 5 hours and purified at 88 ° C and 0.18 Torr to obtain a colorless liquid compound (104.84 g, yield: 72%) represented by the following chemical formula.

1 H-NMR(C6 D6 )δ 0.08(3H), 0.85-0.92(4H), 3.66-3.75(12H), 0.52-3.12, 5.88-6.10(雙環庚烯基, 9H)。 1 H-NMR (C 6 D 6) δ 0.08 (3H), 0.85-0.92 (4H), 3.66-3.75 (12H), 0.52-3.12, 5.88-6.10 ( bicyclo heptenyl, 9H).

實例Instance 1313 :製備:preparation 1-((1-(( 雙環庚烯基Bicycloheptenyl )) 二甲氧基矽烷基Dimethoxydecyl )-2-()-2-( 甲基二甲氧基矽烷基Methyldimethoxydecyl )) 甲烷Methane

步驟1.製備1-(三氯矽烷基)-2-(甲基二氯矽烷基)甲烷Step 1. Preparation of 1-(trichlorodecylalkyl)-2-(methyldichloroindolyl)methane

將乙腈(1500 mL)以及(氯甲基)二氯甲基矽烷(500 g,3.06 mol,1.0當量)添加到經火焰乾燥的5000 mL舒倫克瓶中且加熱到70℃。將三乙胺(340.37 g,3.36 mol,1.1當量)添加到反應溶液中,且然後向燒瓶中緩慢添加三氯矽烷(455.61 g,3.36 mol,1.1當量),同時維持溫度在70℃。在70℃攪拌反應溶液5小時,過濾,且然後用正戊烷(1500 mL)處理四次。將溶液減壓以除去溶劑且純化(在28℃以及1.01托),獲得無色的MeCl2 Si-CH2 -SiCl3 液體(160.54 g,產率:20%)。Acetonitrile (1500 mL) and (chloromethyl)dichloromethylnonane (500 g, 3.06 mol, 1.0 eq.) were added to a flame dried 5000 mL Schlenk bottle and heated to 70 °C. Triethylamine (340.37 g, 3.36 mol, 1.1 equivalent) was added to the reaction solution, and then trichloromethane (455.61 g, 3.36 mol, 1.1 eq.) was slowly added to the flask while maintaining the temperature at 70 °C. The reaction solution was stirred at 70 ° C for 5 hours, filtered, and then treated with n-pentane (1500 mL) four times. The solution was depressurized to remove the solvent and purified (at 28 ° C and 1.01 Torr) to obtain a colorless MeCl 2 Si-CH 2 -SiCl 3 liquid (160.54 g, yield: 20%).

1 H-NMR(C6 D6 )δ 0.38(3H), 0.69(2H)。 1 H-NMR (C 6 D 6 ) δ 0.38 (3H), 0.69 (2H).

步驟2.製備1-(雙(二甲基氨基)氯矽烷基)-2-(雙(二甲基氨基)甲基矽烷基)甲烷Step 2. Preparation of 1-(bis(dimethylamino)chloroindolyl)-2-(bis(dimethylamino)methyldecyl)methane

將步驟1中所製備的1-(三氯矽烷基)-2-(甲基二氯矽烷基)甲烷(160.54 g,0.61 mol,1.0當量)以及正戊烷(3000 mL)添加到經火焰乾燥的5000 mL舒倫克瓶中,且將二乙胺(330.84 g,7.34 mol,12.0當量)緩慢添加到燒瓶中,同時維持溫度在0℃。將反應溶液加熱到室溫(20℃)且攪拌3小時。過濾反應溶液,減壓以除去溶劑,且在78℃以及0.8托下純化,獲得無色的Me(NMe2 )2 Si-CH2 -Si(NMe2 )2 Cl液體(163.48 g,產率:90%)。Add 1-(trichlorodecanealkyl)-2-(methyldichloroindenyl)methane (160.54 g, 0.61 mol, 1.0 eq.) and n-pentane (3000 mL) prepared in Step 1 to flame drying In a 5000 mL Schlenk bottle, diethylamine (330.84 g, 7.34 mol, 12.0 equivalents) was slowly added to the flask while maintaining the temperature at 0 °C. The reaction solution was heated to room temperature (20 ° C) and stirred for 3 hours. The reaction solution was filtered under reduced pressure to remove the solvent, and purified at 78 deg.] C and 0.8 torr in the obtained colorless Me (NMe 2) 2 Si- CH 2 -Si (NMe 2) 2 Cl liquid (163.48 g, yield: 90 %).

1 H-NMR(C6 D6 )δ 0.18(3H), 0.30(2H), 2.43-2.47(24H)。 1 H-NMR (C 6 D 6 ) δ 0.18 (3H), 0.30 (2H), 2.43-2.47 (24H).

步驟3.製備1-(雙(二甲基氨基)矽烷基)-2-(雙(二甲基氨基)甲基矽烷基)甲烷Step 3. Preparation of 1-(bis(dimethylamino)decyl)-2-(bis(dimethylamino)methyldecyl)methane

將LiAlH4 (7.31 g,0.19 mol,0.35當量)添加到經火焰乾燥的1000 mL舒倫克瓶中,且然後向燒瓶中緩慢添加THF(300 mL),同時維持溫度在-30℃。將步驟2中所製備的1-(雙(二甲基氨基)氯矽烷基)-2-(雙(二甲基氨基)甲基矽烷基)甲烷(163.48 g,0.55 mol,1.0當量)緩慢添加到燒瓶中,同時維持溫度在-30℃。將反應溶液加熱到室溫(20℃)且攪拌5小時。過濾反應溶液,減壓以除去溶劑,且在56℃以及0.5托下純化,獲得無色的Me(NMe2 )2 Si-CH2 -Si(NMe2 )2 H液體(108.38 g,產率:75%)。LiAlH 4 (7.31 g, 0.19 mol, 0.35 eq.) was added to a flame dried 1000 mL Schlenk bottle, and then THF (300 mL) was slowly added to the flask while maintaining the temperature at -30 °C. 1-(Bis(dimethylamino)chloroindolyl)-2-(bis(dimethylamino)methyldecyl)methane (163.48 g, 0.55 mol, 1.0 eq.) prepared in Step 2 was slowly added. Into the flask while maintaining the temperature at -30 °C. The reaction solution was heated to room temperature (20 ° C) and stirred for 5 hours. The reaction solution was filtered under reduced pressure to remove the solvent, and purification at 0.5 torr and at 56 ℃ obtain colorless Me (NMe 2) 2 Si- CH 2 -Si (NMe 2) 2 H liquid (108.38 g, yield: 75 %).

1 H-NMR(C6 D6 )δ 0.04(2H), 0.16(3H), 2.44-2.48(24H), 4.48(1H)。 1 H-NMR (C 6 D 6 ) δ 0.04 (2H), 0.16 (3H), 2.44-2.48 (24H), 4.48 (1H).

步驟4.製備1-(二甲氧基矽烷基)-2-(二甲氧基(甲基)矽烷基)甲烷Step 4. Preparation of 1-(dimethoxydecyl)-2-(dimethoxy(methyl)decylalkyl)methane

將步驟3中所製備的1-(雙(二甲基氨基)矽烷基)-2-(雙(二甲基氨基)甲基矽烷基)甲烷(108.38 g,0.41 mol,1.0當量)以及正戊烷(1000 mL)添加到經火焰乾燥的3000 mL舒倫克瓶中,且然後向燒瓶中緩慢添加甲醇(52.87 g,1.65 mol,4.0當量),同時維持溫度在0℃。將反應溶液加熱到室溫(20℃)且攪拌5小時。過濾反應溶液,減壓以除去溶劑,且在46℃以及0.48托下純化,獲得無色的Me(MeO)2 Si-CH2 -Si(OMe)2 H液體(78.49 g,產率:91%)。1-(Bis(dimethylamino)decyl)-2-(bis(dimethylamino)methyldecyl)methane (108.38 g, 0.41 mol, 1.0 eq.) and n-pentane prepared in the step 3 Alkane (1000 mL) was added to a flame dried 3000 mL Schlenk bottle, and then methanol (52.87 g, 1.65 mol, 4.0 eq.) was slowly added to the flask while maintaining the temperature at 0 °C. The reaction solution was heated to room temperature (20 ° C) and stirred for 5 hours. The reaction solution was filtered, and the solvent was evaporated under reduced pressure, and purified at 46 ° C and 0.48 Torr to obtain a colorless Me(MeO) 2 Si-CH 2 -Si(OMe) 2 H liquid (78.49 g, yield: 91%) .

1 H-NMR(C6 D6 )δ 0.07(2H), 0.21(3H), 3.35-3.38(9H), 4.82(1H)。 1 H-NMR (C 6 D 6 ) δ 0.07 (2H), 0.21 (3H), 3.35-3.38 (9H), 4.82 (1H).

步驟5.製備1-((雙環庚烯基)二甲氧基矽烷基)-2-(甲基二甲氧基矽烷基)甲烷Step 5. Preparation of 1-((bicycloheptenyl)dimethoxydecylalkyl)-2-(methyldimethoxydecyl)methane

將步驟4中所製備的1-(二甲氧基矽烷基)-2-(二甲氧基(甲基)矽烷基)甲烷(78.49 g,0.37 mol,1.0當量)以及作為催化劑的二氯(1,5-環辛二烯)鉑(II)添加到經火焰乾燥的1000 mL舒倫克瓶中。將反應溶液加熱到60℃,且然後向反應溶液中緩慢添加降冰片二烯(34.38 g,0.37 mol,1.0當量)。在60℃攪拌反應溶液5小時且在93℃以及0.56托下純化,獲得由以下化學式表示的無色液體化合物(87.30 g,產率:78%)。 1-(Dimethoxydecylalkyl)-2-(dimethoxy(methyl)decylalkyl)methane (78.49 g, 0.37 mol, 1.0 eq.) prepared in Step 4 and dichloride as a catalyst ( 1,5-cyclooctadiene)platinum (II) was added to a flame dried 1000 mL Schlenk bottle. The reaction solution was heated to 60 ° C, and then norbornadiene (34.38 g, 0.37 mol, 1.0 equivalent) was slowly added to the reaction solution. The reaction solution was stirred at 60 ° C for 5 hours and purified at 93 ° C and 0.56 Torr to obtain a colorless liquid compound (87.30 g, yield: 78%) represented by the following formula.

1 H-NMR(C6 D6 )δ -0.04(外, 內, 2H), 0.25-0.27(外, 內, 3H), 3.34-3.40(外, 內, 9H), 0.61-1.89, 2.78-3.08, 5.95-6.16(雙環庚烯基, 9H)。 1 H-NMR(C 6 D 6 )δ -0.04 (outer, inner, 2H), 0.25-0.27 (outer, inner, 3H), 3.34-3.40 (outer, inner, 9H), 0.61-1.89, 2.78-3.08 , 5.95-6.16 (bicycloheptenyl, 9H).

實驗實例Experimental example 11

圖9繪示了分別在實例4以及實例11中製備的化合物的所測量蒸氣壓。Figure 9 depicts the measured vapor pressures of the compounds prepared in Examples 4 and 11, respectively.

如圖9中所示,實例11的化合物(即,含有其中烷氧基是甲氧基的分子)的蒸氣壓高於實例4(即,含有其中烷氧基是乙氧基的分子)的蒸氣壓。換句話說,在其中甲氧基用作矽前驅物中的烷氧基的情況下,所得化合物具有相對較高的蒸氣壓,使得其在介電層沉積製程中更穩定。As shown in Figure 9, the compound of Example 11 (i.e., a molecule containing a molecule in which the alkoxy group is a methoxy group) has a vapor pressure higher than that of Example 4 (i.e., a molecule containing an alkoxy group in which an alkoxy group is an ethoxy group). Pressure. In other words, in the case where the methoxy group is used as the alkoxy group in the ruthenium precursor, the resulting compound has a relatively high vapor pressure, making it more stable in the dielectric layer deposition process.

實例Instance 1414 到實例To instance 1616 :使用實例: use case 1111 的矽前驅物形成的介電層Dielectric layer formed by the ruthenium precursor

實例14到實例16的介電層是通過與參照實例6到實例10所述基本上相同的方法形成,除外之處是使用實例11中所製備的化合物用作介電層的矽前驅物。熱退火製程作為能量處理執行2小時。在實例14到實例16中,在不同溫度下執行熱退火製程。在實例14到實例16中,製程溫度分別是500℃、550℃以及600℃。The dielectric layers of Examples 14 through 16 were formed by substantially the same procedures as described with reference to Examples 6 to 10, except that the compound prepared in Example 11 was used as the ruthenium precursor of the dielectric layer. The thermal annealing process was performed as an energy treatment for 2 hours. In Examples 14 to 16, the thermal annealing process was performed at different temperatures. In Examples 14 to 16, the process temperatures were 500 ° C, 550 ° C, and 600 ° C, respectively.

在實例14的介電層中,Si-O籠與Si-O網的比率是0.61。另外,實例14的介電層具有2.46的介電常數以及6.87 GPa的楊氏模量。In the dielectric layer of Example 14, the ratio of Si-O cage to Si-O mesh was 0.61. Additionally, the dielectric layer of Example 14 had a dielectric constant of 2.46 and a Young's modulus of 6.87 GPa.

在實例15的介電層中,Si-O籠與Si-O網的比率是0.65。另外,實例15的介電層具有2.25的介電常數以及11.2 GPa的楊氏模量。In the dielectric layer of Example 15, the ratio of Si-O cage to Si-O mesh was 0.65. Additionally, the dielectric layer of Example 15 had a dielectric constant of 2.25 and a Young's modulus of 11.2 GPa.

在實例16的介電層中,Si-O籠與Si-O網的比率是0.75。另外,實例16的介電層具有2.3的介電常數以及12.5 GPa的楊氏模量。In the dielectric layer of Example 16, the ratio of Si-O cage to Si-O mesh was 0.75. Additionally, the dielectric layer of Example 16 had a dielectric constant of 2.3 and a Young's modulus of 12.5 GPa.

在實例11的矽前驅物的分子結構中,烷氧基可以是甲氧基。根據實例14到實例16的結果,在其中含有甲氧基的矽前驅物用於形成介電層的情況下,熱退火製程的製程溫度的提高使得介電層中的Si-O籠與Si-O網的比率增大。具體地說,當熱退火製程在550℃溫度下執行時(實例15),介電層具有最低的介電常數以及改進的機械強度。In the molecular structure of the ruthenium precursor of Example 11, the alkoxy group may be a methoxy group. According to the results of Examples 14 to 16, in the case where a ruthenium precursor containing a methoxy group is used to form a dielectric layer, the process temperature of the thermal annealing process is increased such that Si-O cage and Si- in the dielectric layer The ratio of O nets increases. Specifically, when the thermal annealing process was performed at a temperature of 550 ° C (Example 15), the dielectric layer had the lowest dielectric constant and improved mechanical strength.

實驗實例Experimental example 22

下表2提供實例9的介電層(即,使用實例4的矽前驅物形成)與實例15的介電層之間的比較。與實例4的矽前驅物相比,實例11的矽前驅物含有甲氧基而非乙氧基。下表3展示了通過XPS系統測量的實例9以及實例11的介電層的碳、氧以及矽含量。Table 2 below provides a comparison between the dielectric layer of Example 9 (i.e., the formation of the hafnium precursor of Example 4) and the dielectric layer of Example 15. The ruthenium precursor of Example 11 contained a methoxy group instead of an ethoxy group as compared to the ruthenium precursor of Example 4. Table 3 below shows the carbon, oxygen and helium contents of the dielectric layers of Examples 9 and 11 as measured by the XPS system.

[表2] [Table 2]

[表3] ;[table 3] ;

參見表2,在其中實例11的矽前驅物(即,含有甲氧基)用於形成介電層的情況下,形成Si-O籠與Si-O網比率高的介電層(相較於在實例4的矽前驅物(即,含有乙氧基)的情況下)。由於如上文所述,Si-O籠型結構中形成了奈米空隙,因此Si-O籠型結構的增加使得降低介電層的介電常數成為可能。Referring to Table 2, in the case where the hafnium precursor of Example 11 (i.e., containing a methoxy group) is used to form a dielectric layer, a dielectric layer having a high ratio of Si-O cage to Si-O mesh is formed (compared to In the case of the ruthenium precursor of Example 4 (i.e., containing an ethoxy group). Since the nanovoids are formed in the Si-O cage structure as described above, the increase in the Si-O cage structure makes it possible to lower the dielectric constant of the dielectric layer.

實例11的矽前驅物(即,含有甲氧基)的碳含量低於實例4的矽前驅物(即,含有乙氧基)。然而,如表3中所示,使用實例11的矽前驅物所形成的實例15的介電層的碳含量高於使用實例4的矽前驅物所形成的實例9的介電層的碳含量。即,與實例9的介電層相比,實例15的介電層經形成而具有更低的介電常數以及更高的機械強度。The ruthenium precursor of Example 11 (i.e., containing methoxy) had a lower carbon content than the ruthenium precursor of Example 4 (i.e., contained ethoxy). However, as shown in Table 3, the carbon content of the dielectric layer of Example 15 formed using the ruthenium precursor of Example 11 was higher than the carbon content of the dielectric layer of Example 9 formed using the ruthenium precursor of Example 4. That is, the dielectric layer of Example 15 was formed to have a lower dielectric constant and higher mechanical strength than the dielectric layer of Example 9.

實例Instance 1717 到實例To instance 1919 :使用實例: use case 1313 的矽前驅物形成介電層矽 precursor forms a dielectric layer

將基底安置於PE-CVD腔室中。將基底加熱升溫到250℃且維持在250℃直到沉積製程完成為止。將矽前驅物連同載氣(例如400 sccm氬氣)一起以475 cc/min的流速供應到腔室中,且在此,使用實例13中所製備的化合物作為矽前驅物。另外,將作為反應氣體的氧氣(例如氧化劑)供應到腔室中。氧氣的流速是30 cc/min。對腔室中的上電極施加13.56 MHz以及50 W的RF功率。將腔室的內部壓力調節到1托。在腔室中,在基底上沉積初始介電層。在550℃溫度下,對具有初始介電層的基底執行熱退火製程(N2 ,15SLM)2小時。從而在基底上形成實例17的多孔介電層。The substrate is placed in a PE-CVD chamber. The substrate was heated to 250 ° C and maintained at 250 ° C until the deposition process was completed. The ruthenium precursor was supplied to the chamber together with a carrier gas (for example, 400 sccm of argon gas) at a flow rate of 475 cc/min, and here, the compound prepared in Example 13 was used as the ruthenium precursor. In addition, oxygen (for example, an oxidant) as a reaction gas is supplied into the chamber. The flow rate of oxygen is 30 cc/min. 13.56 MHz and 50 W of RF power were applied to the upper electrode in the chamber. The internal pressure of the chamber was adjusted to 1 Torr. In the chamber, an initial dielectric layer is deposited on the substrate. A thermal annealing process (N 2 , 15 SLM) was performed on the substrate having the initial dielectric layer for 2 hours at a temperature of 550 ° C. The porous dielectric layer of Example 17 was thus formed on the substrate.

在實例18的多孔介電層的情況下,初始介電層是在180℃的基底溫度下沉積,反應物(即,氧)氧氣的流速是25 cc/min,且腔室的內部壓力是1.5托。除這些差異之外,實例18的多孔介電層是使用與實例17相同的方法形成。In the case of the porous dielectric layer of Example 18, the initial dielectric layer was deposited at a substrate temperature of 180 ° C, the flow rate of reactant (ie, oxygen) oxygen was 25 cc/min, and the internal pressure of the chamber was 1.5. Trust. Except for these differences, the porous dielectric layer of Example 18 was formed using the same method as in Example 17.

在實例19的多孔介電層的情況下,反應物(即,氧)氧氣的流速是25 cc/min且腔室的內部壓力是1.5托。除這些差異之外,實例19的多孔介電層是使用與實例17相同的方法形成。In the case of the porous dielectric layer of Example 19, the flow rate of the reactant (i.e., oxygen) oxygen was 25 cc/min and the internal pressure of the chamber was 1.5 Torr. Except for these differences, the porous dielectric layer of Example 19 was formed using the same method as in Example 17.

在實例19的多孔介電層的情況下,在200℃的基底溫度下沉積初始介電層,反應物(即,氧)氧氣的流速是25 cc/min,且以使得基底加熱升溫到400℃的方式執行能量處理,且然後執行UV固化製程10分鐘。除這些差異之外,實例20的多孔介電層是使用與實例17相同的方法形成。In the case of the porous dielectric layer of Example 19, the initial dielectric layer was deposited at a substrate temperature of 200 ° C, the flow rate of the reactant (ie, oxygen) oxygen was 25 cc / min, and the substrate was heated to 400 ° C. The energy treatment was performed in a manner, and then the UV curing process was performed for 10 minutes. Except for these differences, the porous dielectric layer of Example 20 was formed using the same method as in Example 17.

在實例17的介電層中,Si-O籠與Si-O網的比率是0.75。另外,實例17的介電層具有2.3的介電常數以及11.0 GPa的楊氏模量。In the dielectric layer of Example 17, the ratio of Si-O cage to Si-O mesh was 0.75. Additionally, the dielectric layer of Example 17 had a dielectric constant of 2.3 and a Young's modulus of 11.0 GPa.

在實例18的介電層中,Si-O籠與Si-O網的比率是0.8。另外,實例18的介電層具有2.4的介電常數以及15 GPa的楊氏模量。In the dielectric layer of Example 18, the ratio of Si-O cage to Si-O mesh was 0.8. Additionally, the dielectric layer of Example 18 had a dielectric constant of 2.4 and a Young's modulus of 15 GPa.

在實例19的介電層中,Si-O籠與Si-O網的比率是0.82。另外,實例19的介電層具有2.4的介電常數以及14 GPa的楊氏模量。In the dielectric layer of Example 19, the ratio of Si-O cage to Si-O mesh was 0.82. Additionally, the dielectric layer of Example 19 had a dielectric constant of 2.4 and a Young's modulus of 14 GPa.

在實例20的介電層中,Si-O籠與Si-O網的比率是0.85。另外,實例20的介電層具有2.2的介電常數以及12.3 GPa的楊氏模量。In the dielectric layer of Example 20, the ratio of Si-O cage to Si-O mesh was 0.85. Additionally, the dielectric layer of Example 20 had a dielectric constant of 2.2 and a Young's modulus of 12.3 GPa.

圖3、圖5以及圖7是平面圖,其圖解說明了根據本發明概念的實例實施例製造半導體裝置的方法。圖4A、圖6A以及圖8A分別是沿著圖3、圖5以及圖7的線I-I'所取的截面圖,且圖4B、圖6B以及圖8B分別是沿著圖3、圖5以及圖7的線II-II'所取的截面圖。3, 5, and 7 are plan views illustrating a method of fabricating a semiconductor device in accordance with example embodiments of the inventive concepts. 4A, 6A, and 8A are cross-sectional views taken along line I-I' of Figs. 3, 5, and 7, respectively, and Figs. 4B, 6B, and 8B are along Figs. 3 and 5, respectively. And a cross-sectional view taken along line II-II' of Fig. 7.

參見圖3、圖4A以及圖4B,可以在基底100上形成積體電路IC。基底100可以是由矽、鍺、矽-鍺或複合半導體材料中的至少一種形成的半導體基底。Referring to FIGS. 3, 4A, and 4B, an integrated circuit IC can be formed on the substrate 100. The substrate 100 may be a semiconductor substrate formed of at least one of tantalum, niobium, tantalum-ruthenium or a composite semiconductor material.

積體電路IC可以包含多個電晶體TR。電晶體TR的形成可以包含形成界定主動區域的裝置隔離層ST以及形成閘極介電層GI、閘電極GE以及位於主動區域上的覆蓋圖案CP。閘電極GE可以形成於主動區域上,閘極介電層GI可以提供於閘電極GE與基底100之間,且覆蓋圖案CP可以經形成而覆蓋閘電極GE的頂表面。可以在閘電極GE的兩側形成雜質區域DR。舉例來說,可以通過用雜質摻雜基底100來形成雜質區域DR。The integrated circuit IC may include a plurality of transistors TR. The formation of the transistor TR may include forming a device isolation layer ST defining the active region and forming a gate dielectric layer GI, a gate electrode GE, and a capping pattern CP on the active region. The gate electrode GE may be formed on the active region, the gate dielectric layer GI may be provided between the gate electrode GE and the substrate 100, and the capping pattern CP may be formed to cover the top surface of the gate electrode GE. An impurity region DR may be formed on both sides of the gate electrode GE. For example, the impurity region DR may be formed by doping the substrate 100 with impurities.

隨後,可以在基底100上形成第一絕緣層110以及第二絕緣層120以覆蓋電晶體TR。第二絕緣層120可以經形成而直接覆蓋第一絕緣層110。第二絕緣層120可以是或包含使用參照圖1A以及圖2所述的方法所形成的低k介電層。舉例來說,第二絕緣層120可以是多孔SiOCH層。第一絕緣層110也可以是使用參照圖1A以及圖2所述的方法所形成的多孔SiOCH層。在實例實施例中,第一絕緣層110可以由氧化矽層形成或包含氧化矽層,所述氧化矽層可以使用其它已知的矽前驅物形成。Subsequently, a first insulating layer 110 and a second insulating layer 120 may be formed on the substrate 100 to cover the transistor TR. The second insulating layer 120 may be formed to directly cover the first insulating layer 110. The second insulating layer 120 can be or comprise a low-k dielectric layer formed using the method described with reference to FIGS. 1A and 2. For example, the second insulating layer 120 may be a porous SiOCH layer. The first insulating layer 110 may also be a porous SiOCH layer formed using the method described with reference to FIGS. 1A and 2 . In an example embodiment, the first insulating layer 110 may be formed of a hafnium oxide layer or comprise a hafnium oxide layer, which may be formed using other known hafnium precursors.

參見圖5、圖6A以及圖6B,第二絕緣層120可以進行圖案化以形成互連孔洞IH,且在此,互連孔洞IH各自可以具有在第二方向D2上伸長的形狀。互連孔洞IH中的至少一個可以包含方向向基底100延伸的豎直貫穿孔洞VPH。舉例來說,第一絕緣層110的一部分可以通過第二絕緣層120的圖案化製程來圖案化。舉例來說,可以形成穿過第一絕緣層110且曝露雜質區域DR的一部分的豎直貫穿孔洞VPH。作為另一實例,可以形成穿過第一絕緣層110且曝露閘電極GE的頂表面的一部分的豎直貫穿孔洞VPH。Referring to FIGS. 5, 6A, and 6B, the second insulating layer 120 may be patterned to form interconnect holes IH, and here, the interconnect holes IH may each have a shape elongated in the second direction D2. At least one of the interconnecting holes IH may include a vertical through hole VPH that extends toward the substrate 100. For example, a portion of the first insulating layer 110 may be patterned by a patterning process of the second insulating layer 120. For example, a vertical through hole VPH that passes through the first insulating layer 110 and exposes a portion of the impurity region DR may be formed. As another example, a vertical through hole VPH that passes through the first insulating layer 110 and exposes a portion of the top surface of the gate electrode GE may be formed.

根據本發明概念的實例實施例,第二絕緣層120可以具有相對較高的機械強度。這在按高圖案密度形成互連孔洞IH的圖案化製程中可以抑制或阻止第二絕緣層120塌陷或維持第二絕緣層120的原始結構。According to an example embodiment of the inventive concept, the second insulating layer 120 may have a relatively high mechanical strength. This can suppress or prevent the second insulating layer 120 from collapsing or maintaining the original structure of the second insulating layer 120 in the patterning process of forming the interconnect holes IH in a high pattern density.

參見圖7、圖8A以及圖8B,可以分別形成填充互連孔洞IH的互連線ML。舉例來說,互連線ML的形成可以包含在基底100上形成阻擋層。阻擋層可以經形成而共形地覆蓋互連孔洞IH。阻擋層可以由Ti或TiN中的至少一種形成或包含Ti或TiN中的至少一種。Referring to FIG. 7, FIG. 8A, and FIG. 8B, interconnection lines ML filling the interconnection holes IH may be formed, respectively. For example, the formation of the interconnect lines ML can include forming a barrier layer on the substrate 100. The barrier layer may be formed to conformally cover the interconnect hole IH. The barrier layer may be formed of at least one of Ti or TiN or contain at least one of Ti or TiN.

接下來,可以在基底100上形成導電層。導電層可以經形成而填充具有阻擋層的互連孔洞IH。導電層可以由至少一種金屬材料(例如銅(Cu)或鎢(W))形成或包含至少一種金屬材料。舉例來說,導電層可以通過電鍍製程形成。在實例實施例中,導電層的形成可以包含在阻擋層上形成晶種層(未圖示),以及然後使用晶種層進行電鍍製程。Next, a conductive layer can be formed on the substrate 100. The conductive layer may be formed to fill the interconnected holes IH having the barrier layer. The conductive layer may be formed of or comprise at least one metal material such as copper (Cu) or tungsten (W). For example, the conductive layer can be formed by an electroplating process. In an example embodiment, the forming of the conductive layer may include forming a seed layer (not shown) on the barrier layer, and then performing a plating process using the seed layer.

可以對導電層以及阻擋層進行平坦化以在每個互連孔洞IH中形成互連線ML以及阻擋圖案BP。在實例實施例中,互連線ML可以經形成而具有與第二絕緣層120共平面的頂表面。The conductive layer and the barrier layer may be planarized to form an interconnection ML and a barrier pattern BP in each of the interconnection holes IH. In an example embodiment, the interconnect lines ML may be formed to have a top surface that is coplanar with the second insulating layer 120.

在互連線ML圖案密度相對較高的情況下,半導體裝置可能受擾於互連線ML之間的高寄生電容。互連線ML之間的寄生電容越高,則半導體裝置的RC延遲特性越差。然而,在其中具有低介電常數的多孔層用作第二絕緣層120(如上文所述)的情況下,可以有效地減少互連線ML之間的寄生電容。In the case where the interconnect line ML pattern density is relatively high, the semiconductor device may be disturbed by high parasitic capacitance between the interconnect lines ML. The higher the parasitic capacitance between the interconnect lines ML, the worse the RC delay characteristics of the semiconductor device. However, in the case where a porous layer having a low dielectric constant is used as the second insulating layer 120 (as described above), the parasitic capacitance between the interconnection lines ML can be effectively reduced.

雖然未繪示,但是可以在第二絕緣層120上進一步堆疊絕緣層以及互連層。Although not shown, an insulating layer and an interconnect layer may be further stacked on the second insulating layer 120.

根據本發明概念的實例實施例,揭露了一種使用矽前驅物形成低k介電層的方法。使用這種方法可以使得介電層具有低介電常數以及高機械強度。新穎的矽前驅物可以具有改善的熱穩定性且可以形成具有許多孔隙的介電層。在其中低k介電層用於覆蓋互連線的情況下,由於其機械強度高而可以穩固地支撐互連線,且由於其介電常數低而可以減少互連線之間的電容。In accordance with an example embodiment of the inventive concept, a method of forming a low-k dielectric layer using a hafnium precursor is disclosed. Using this method, the dielectric layer can have a low dielectric constant and high mechanical strength. Novel germanium precursors can have improved thermal stability and can form dielectric layers with many pores. In the case where the low-k dielectric layer is used to cover the interconnect lines, the interconnect lines can be stably supported due to its high mechanical strength, and the capacitance between the interconnect lines can be reduced due to its low dielectric constant.

雖然本發明概念的實例實施例已經具體展示且描述,但是所屬領域的技術人員應瞭解,可以對其中的形式和細節上進行變化而不脫離隨附權利要求書的精神和範圍。While the embodiments of the present invention have been shown and described, the embodiments of the present invention

100‧‧‧基底100‧‧‧Base

110‧‧‧第一絕緣層110‧‧‧First insulation

120‧‧‧第二絕緣層120‧‧‧Second insulation

200‧‧‧腔室200‧‧‧ chamber

210‧‧‧板片210‧‧‧ plates

220‧‧‧上電極220‧‧‧Upper electrode

230‧‧‧RF發生器230‧‧‧RF generator

BP‧‧‧阻擋圖案BP‧‧‧Block pattern

CP‧‧‧覆蓋圖案CP‧‧‧ cover pattern

DL‧‧‧介電層DL‧‧‧ dielectric layer

DP‧‧‧沉積製程DP‧‧‧ deposition process

DR‧‧‧雜質區域DR‧‧‧ impurity area

ET‧‧‧能量處理ET‧‧‧Energy treatment

GE‧‧‧閘電極GE‧‧‧ gate electrode

GI‧‧‧閘極介電層GI‧‧‧ gate dielectric layer

IC‧‧‧積體電路IC‧‧‧ integrated circuit

IH‧‧‧互連孔洞IH‧‧‧Interconnecting holes

I-I'‧‧‧線I-I'‧‧‧ line

II-II'‧‧‧線II-II'‧‧‧ line

ML‧‧‧互連線ML‧‧‧interconnect line

PDL‧‧‧初始介電層PDL‧‧‧ initial dielectric layer

RG‧‧‧反應氣體RG‧‧‧reaction gas

SG‧‧‧源氣體SG‧‧‧ source gas

ST‧‧‧裝置隔離層ST‧‧‧ device isolation

TR‧‧‧電晶體TR‧‧‧O crystal

VPH‧‧‧豎直貫穿孔洞VPH‧‧‧ vertical through the hole

圖1A以及圖2是截面圖,其圖解說明了根據本發明概念的實例實施例形成低k介電層的方法。 圖1B是截面圖,其示意性地圖解說明瞭經配置可執行圖1A的沉積製程的腔室。 圖3、圖5以及圖7是平面圖,其圖解說明了根據本發明概念的實例實施例製造半導體裝置的方法。 圖4A、圖6A以及圖8A是分別沿著圖3、圖5以及圖7的線I-I'所取的截面圖。 圖4B、圖6B以及圖8B是分別沿著圖3、圖5以及圖7的線II-II'所取的截面圖。 圖9根據本發明概念的實例實施例圖示了矽前驅物的蒸氣壓。 圖10根據本發明概念的實例實施例圖示了介電層的孔隙半徑分佈。1A and 2 are cross-sectional views illustrating a method of forming a low-k dielectric layer in accordance with example embodiments of the inventive concepts. FIG. 1B is a cross-sectional view schematically illustrating a chamber configured to perform the deposition process of FIG. 1A. 3, 5, and 7 are plan views illustrating a method of fabricating a semiconductor device in accordance with example embodiments of the inventive concepts. 4A, 6A, and 8A are cross-sectional views taken along line II' of Figs. 3, 5, and 7, respectively. 4B, 6B, and 8B are cross-sectional views taken along line II-II' of Figs. 3, 5, and 7, respectively. Figure 9 illustrates the vapor pressure of a ruthenium precursor in accordance with an example embodiment of the inventive concept. Figure 10 illustrates a pore radius distribution of a dielectric layer in accordance with an example embodiment of the inventive concept.

Claims (25)

一種形成介電層的方法,其包括: 在基底上使用含有由以下化學式1表示的化合物的矽前驅物形成初始介電層;以及 對所述初始介電層進行能量處理以形成介電層, [化學式1]其中,在所述化學式1中, n為1或2, R1 、R2 、R3 、R5 以及R6 中的至少兩個是-O-R7 且其它各自獨立地是氫、(C1 -C10 )烷基、(C3 -C10 )烯基、(C3 -C10 )炔基以及(C1 -C10 )烷氧基之一, R7 是氫、(C1 -C10 )烷基、(C3 -C10 )烯基以及(C3 -C10 )炔基之一,以及 R4 是致孔劑基團,包含(C3 -C10 )烯基、(C3 -C10 )炔基、(C3 -C10 )芳基、(C3 -C10 )雜芳基、(C3 -C10 )環烷基、(C3 -C10 )環烯基、(C3 -C10 )環炔基、(C3 -C10 )雜環烷基、(C3 -C10 )芳基(C1 -C10 )烷基、(C3 -C10 )環烷基(C1 -C10 )烷基以及(C3 -C10 )雜環烷基(C1 -C10 )烷基之一, 其中Si-CH3 鍵結單元與Si-O鍵結單元的比率是在0.5到5範圍內。A method of forming a dielectric layer, comprising: forming an initial dielectric layer on a substrate using a hafnium precursor containing a compound represented by the following Chemical Formula 1; and performing energy treatment on the initial dielectric layer to form a dielectric layer, [Chemical Formula 1] Wherein, in the chemical formula 1, n is 1 or 2, at least two of R 1 , R 2 , R 3 , R 5 and R 6 are -OR 7 and the others are each independently hydrogen, (C 1 - C 10 ) alkyl, (C 3 -C 10 )alkenyl, (C 3 -C 10 )alkynyl and one of (C 1 -C 10 )alkoxy, R 7 is hydrogen, (C 1 -C 10 Alkyl, (C 3 -C 10 )alkenyl and one of (C 3 -C 10 )alkynyl, and R 4 is a porogen group comprising (C 3 -C 10 )alkenyl, (C 3 -C 10 ) alkynyl, (C 3 -C 10 )aryl, (C 3 -C 10 )heteroaryl, (C 3 -C 10 )cycloalkyl, (C 3 -C 10 )cycloalkenyl, (C 3 -C 10 )cycloalkynyl, (C 3 -C 10 )heterocycloalkyl, (C 3 -C 10 )aryl(C 1 -C 10 )alkyl, (C 3 -C 10 ) ring One of an alkyl (C 1 -C 10 )alkyl group and a (C 3 -C 10 )heterocycloalkyl (C 1 -C 10 )alkyl group, wherein the Si—CH 3 bonding unit and the Si—O bonding unit The ratio is in the range of 0.5 to 5. 如申請專利範圍第1項所述的形成介電層的方法,其中R4 中的所述芳基、雜芳基、環烷基、環烯基、環炔基以及雜環烷基未經取代或各自獨立地經以下中的至少一個取代:(C1 -C10 )烷基、(C3 -C10 )烯基、(C3 -C10 )炔基、(C1 -C10 )烷氧基、鹵素、氰基、硝基以及羥基。The method of forming a dielectric layer according to claim 1, wherein the aryl group, heteroaryl group, cycloalkyl group, cycloalkenyl group, cycloalkynyl group and heterocycloalkyl group in R 4 are unsubstituted. Or each independently substituted with at least one of: (C 1 -C 10 )alkyl, (C 3 -C 10 )alkenyl, (C 3 -C 10 )alkynyl, (C 1 -C 10 ) alkane Oxygen, halogen, cyano, nitro and hydroxy. 如申請專利範圍第1項所述的形成介電層的方法,其中R4 中的所述雜芳基以及雜環烷基各自獨立地包含至少一個雜原子,所述雜原子包含-NR8 -、-O-以及-S-之一,且R8 是氫以及(C1 -C10 )烷基之一。The method of forming a dielectric layer according to claim 1, wherein the heteroaryl group and the heterocycloalkyl group in R 4 each independently comprise at least one hetero atom, the hetero atom comprising -NR 8 - And one of -O- and -S-, and R 8 is one of hydrogen and (C 1 -C 10 )alkyl. 如申請專利範圍第1項所述的形成介電層的方法,其中R1 、R2 、R3 、R5 以及R6 中的至少兩個是(C1 -C5 )烷氧基,且其它是(C1 -C5 )烷基。The method of forming a dielectric layer according to claim 1 , wherein at least two of R 1 , R 2 , R 3 , R 5 and R 6 are (C 1 -C 5 ) alkoxy groups, and The other is (C 1 -C 5 )alkyl. 如申請專利範圍第4項所述的形成介電層的方法,其中R1 、R2 、R3 、R5 以及R6 中的至少三個是甲氧基,且其它是(C1 -C5 )烷基。The method of forming a dielectric layer according to claim 4, wherein at least three of R 1 , R 2 , R 3 , R 5 and R 6 are methoxy groups, and the others are (C 1 -C) 5 ) an alkyl group. 如申請專利範圍第1項所述的形成介電層的方法,其中R4 是1-丙烯基、2-丙烯基、1-丁烯基、2-丁烯基、3-丁烯基、1-甲基-2-丙烯基、2-甲基-2-丙烯基、1-戊烯基、2-戊烯基、3-戊烯基、4-戊烯基、1-甲基-2-丁烯基、2-甲基-2-丁烯基、1-己烯基、2-己烯基、3-己烯基、4-己烯基、5-己烯基、苯基、二甲苯基、環丙基、環丁基、環戊基、環己基、環庚基、環辛基、環戊烯基、環戊二烯基、環己二烯基、環庚二烯基、雙環庚基、雙環庚烯基、環氧環己烷基、環氧環戊烷基、萜品烯基、檸檬烯基、環氧丁烯、苯乙烯以及富烯之一。The method of forming a dielectric layer according to claim 1, wherein R 4 is 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1 -Methyl-2-propenyl, 2-methyl-2-propenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-2- Butenyl, 2-methyl-2-butenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, phenyl, xylene , cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclopentenyl, cyclopentadienyl, cyclohexadienyl, cycloheptadienyl, bicycloheptane One of a base, a bicycloheptenyl group, an epoxycyclohexane group, an epoxycyclopentyl group, a terpineyl group, a limonyl group, an epoxybutene, a styrene, and a fulvene. 如申請專利範圍第1項所述的形成介電層的方法,其中所述化合物在100℃具有0.1托到100托的蒸氣壓。The method of forming a dielectric layer according to claim 1, wherein the compound has a vapor pressure of from 0.1 Torr to 100 Torr at 100 °C. 如申請專利範圍第1項所述的形成介電層的方法,其中所述形成初始介電層是通過使用氧氣、臭氧、一氧化二氮以及二氧化碳中的至少一種作為反應氣體進行化學氣相沉積來形成所述初始介電層。The method of forming a dielectric layer according to claim 1, wherein the forming the initial dielectric layer is performed by chemical vapor deposition using at least one of oxygen, ozone, nitrous oxide, and carbon dioxide as a reactive gas. To form the initial dielectric layer. 如申請專利範圍第1項所述的形成介電層的方法,其中所述進行能量處理是在200℃到800℃範圍內的溫度下進行熱退火製程。The method of forming a dielectric layer according to claim 1, wherein the performing the energy treatment is a thermal annealing process at a temperature ranging from 200 ° C to 800 ° C. 如申請專利範圍第1項所述的形成介電層的方法,其中所述進行能量處理是進行紫外光固化製程,且所述基底具有0℃到700℃範圍內的溫度。The method of forming a dielectric layer according to claim 1, wherein the performing the energy treatment is an ultraviolet curing process, and the substrate has a temperature ranging from 0 ° C to 700 ° C. 如申請專利範圍第1項所述的形成介電層的方法,其中所述介電層的碳含量是在1原子百分比到40原子百分比範圍內。The method of forming a dielectric layer according to claim 1, wherein the dielectric layer has a carbon content ranging from 1 atomic percent to 40 atomic percent. 如申請專利範圍第1項所述的形成介電層的方法,其中所述介電層中的孔隙的平均直徑是在0.5 nm到5 nm範圍內。The method of forming a dielectric layer according to claim 1, wherein the average diameter of the pores in the dielectric layer is in the range of 0.5 nm to 5 nm. 如申請專利範圍第1項所述的形成介電層的方法,其中所述介電層中的孔隙的總體積是在所述介電層的總體積的8%到35%範圍內。The method of forming a dielectric layer according to claim 1, wherein the total volume of the voids in the dielectric layer is in the range of 8% to 35% of the total volume of the dielectric layer. 如申請專利範圍第1項所述的形成介電層的方法,其中所述介電層具有6GPa-15 GPa的楊氏模量。The method of forming a dielectric layer according to claim 1, wherein the dielectric layer has a Young's modulus of 6 GPa to 15 GPa. 如申請專利範圍第1項所述的形成介電層的方法,其中所述介電層中的Si-O籠型結構與Si-O網狀結構的比率是在0.5到1範圍內。The method of forming a dielectric layer according to claim 1, wherein a ratio of the Si-O cage structure to the Si-O network structure in the dielectric layer is in the range of 0.5 to 1. 一種製造半導體裝置的方法,所述方法包括: 在基底上使用矽前驅物形成矽絕緣層,所述矽前驅物包含: 具有Si-(CH2 )n -Si結構的分子,其中n是1或2, 經配置以與所述分子中的至少一個Si原子組合的致孔劑基團,所述致孔劑基團包含(C3 -C10 )烯基、(C3 -C10 )炔基、(C3 -C10 )芳基、(C3 -C10 )雜芳基、(C3 -C10 )環烷基、(C3 -C10 )環烯基、(C3 -C10 )環炔基、(C3 -C10 )雜環烷基、(C3 -C10 )芳基(C1 -C10 )烷基、(C3 -C10 )環烷基(C1 -C10 )烷基以及(C3 -C10 )雜環烷基(C1 -C10 )烷基之一,以及 至少兩個經配置以與所述分子中的Si原子組合的(C1 -C5 )烷氧基;以及 在所述矽絕緣層中形成至少一個互連線。A method of fabricating a semiconductor device, the method comprising: forming a germanium insulating layer using a germanium precursor on a substrate, the germanium precursor comprising: a molecule having a Si-(CH 2 ) n -Si structure, wherein n is 1 or 2. A porogen group configured to combine with at least one Si atom in the molecule, the porogen group comprising (C 3 -C 10 )alkenyl, (C 3 -C 10 )alkynyl (C 3 -C 10 )aryl, (C 3 -C 10 )heteroaryl, (C 3 -C 10 )cycloalkyl, (C 3 -C 10 )cycloalkenyl, (C 3 -C 10 a cycloalkynyl group, (C 3 -C 10 )heterocycloalkyl, (C 3 -C 10 )aryl(C 1 -C 10 )alkyl, (C 3 -C 10 )cycloalkyl (C 1 - One of C 10 )alkyl and (C 3 -C 10 )heterocycloalkyl (C 1 -C 10 )alkyl, and at least two (C 1 - configured to combine with Si atoms in the molecule a C 5 ) alkoxy group; and at least one interconnect line is formed in the tantalum insulating layer. 如申請專利範圍第16項所述的製造半導體裝置的方法,其中所述矽絕緣層中的Si-CH3 鍵結單元與Si-O鍵結單元的比率是在0.5到5範圍內。The method of manufacturing a semiconductor device according to claim 16, wherein a ratio of the Si—CH 3 bonding unit to the Si—O bonding unit in the tantalum insulating layer is in a range of 0.5 to 5. 如申請專利範圍第16項所述的製造半導體裝置的方法,其中所述矽絕緣層中的Si-O籠型結構與Si-O網狀結構的比率是在0.5到1範圍內。The method of manufacturing a semiconductor device according to claim 16, wherein a ratio of the Si-O cage structure to the Si-O network structure in the tantalum insulating layer is in the range of 0.5 to 1. 如申請專利範圍第16項所述的製造半導體裝置的方法,其中所述矽絕緣層具有2.2-3的介電常數以及6 GPa -15 GPa的楊氏模量。The method of manufacturing a semiconductor device according to claim 16, wherein the tantalum insulating layer has a dielectric constant of 2.2 to 3 and a Young's modulus of 6 GPa -15 GPa. 如申請專利範圍第16項所述的製造半導體裝置的方法,其中所述形成至少一個互連線包括: 對所述矽絕緣層進行圖案化,以在所述矽絕緣層中形成至少一個互連孔洞;以及 形成導電層以填充所述至少一個互連孔洞。The method of fabricating a semiconductor device according to claim 16, wherein the forming the at least one interconnect line comprises: patterning the tantalum insulating layer to form at least one interconnect in the tantalum insulating layer a hole; and forming a conductive layer to fill the at least one interconnected hole. 如申請專利範圍第20項所述的製造半導體裝置的方法,其中所述形成至少一個互連線還包括在所述形成導電層之前形成覆蓋所述至少一個互連孔洞的阻擋層。The method of fabricating a semiconductor device according to claim 20, wherein the forming the at least one interconnect line further comprises forming a barrier layer covering the at least one interconnected hole before the forming the conductive layer. 一種方法,其包括: 使用含有由以下化學式1表示的化合物的矽前驅物形成介電層: [化學式1]其中,在所述化學式1中, n為1或2, R1 、R2 、R3 、R5 以及R6 中的至少三種是甲氧基且其它各自獨立地是氫、(C1 -C10 )烷基、(C3 -C10 )烯基、(C3 -C10 )炔基以及(C1 -C10 )烷氧基之一,以及 R4 是(C3 -C10 )烯基、(C3 -C10 )炔基、(C3 -C10 )芳基、(C3 -C10 )雜芳基、(C3 -C10 )環烯基、(C3 -C10 )環炔基、(C3 -C10 )雜環烷基、(C3 -C10 )芳基(C1 -C10 )烷基、(C3 -C10 )環烷基(C1 -C10 )烷基以及(C3 -C10 )雜環烷基(C1 -C10 )烷基之一。A method comprising: forming a dielectric layer using a ruthenium precursor containing a compound represented by the following Chemical Formula 1: [Chemical Formula 1] Wherein, in the chemical formula 1, n is 1 or 2, and at least three of R 1 , R 2 , R 3 , R 5 and R 6 are a methoxy group and the others are each independently hydrogen, (C 1 -C) 10 ) one of an alkyl group, a (C 3 -C 10 )alkenyl group, a (C 3 -C 10 )alkynyl group, and a (C 1 -C 10 )alkoxy group, and R 4 is a (C 3 -C 10 ) alkene , (C 3 -C 10 )alkynyl, (C 3 -C 10 )aryl, (C 3 -C 10 )heteroaryl, (C 3 -C 10 )cycloalkenyl, (C 3 -C 10 a cycloalkynyl group, (C 3 -C 10 )heterocycloalkyl, (C 3 -C 10 )aryl(C 1 -C 10 )alkyl, (C 3 -C 10 )cycloalkyl (C 1 - C 10 ) an alkyl group and one of (C 3 -C 10 )heterocycloalkyl (C 1 -C 10 )alkyl groups. 如申請專利範圍第22項所述的形成介電層的方法,其中所述形成介電層包括: 在基底上使用所述矽前驅物形成初始介電層;以及 對所述初始介電層進行能量處理。The method of forming a dielectric layer according to claim 22, wherein the forming the dielectric layer comprises: forming an initial dielectric layer using the germanium precursor on a substrate; and performing the initial dielectric layer Energy processing. 如申請專利範圍第22項所述的形成介電層的方法,其中所述介電層中的孔隙總體積是在所述介電層的總體積的8%到35%範圍內。The method of forming a dielectric layer according to claim 22, wherein the total pore volume in the dielectric layer is in the range of 8% to 35% of the total volume of the dielectric layer. 如申請專利範圍第22項所述的形成介電層的方法,其中所述介電層中的Si-O籠型結構與Si-O網狀結構的比率是在0.5到1範圍內。The method of forming a dielectric layer according to claim 22, wherein a ratio of the Si-O cage structure to the Si-O network structure in the dielectric layer is in the range of 0.5 to 1.
TW106107157A 2017-03-06 2017-03-06 Methods of forming a dielectric layer and methods of fabricating a semiconductor device TWI726061B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106107157A TWI726061B (en) 2017-03-06 2017-03-06 Methods of forming a dielectric layer and methods of fabricating a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106107157A TWI726061B (en) 2017-03-06 2017-03-06 Methods of forming a dielectric layer and methods of fabricating a semiconductor device

Publications (2)

Publication Number Publication Date
TW201833368A true TW201833368A (en) 2018-09-16
TWI726061B TWI726061B (en) 2021-05-01

Family

ID=64426292

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106107157A TWI726061B (en) 2017-03-06 2017-03-06 Methods of forming a dielectric layer and methods of fabricating a semiconductor device

Country Status (1)

Country Link
TW (1) TWI726061B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1632956A1 (en) * 2004-09-07 2006-03-08 Rohm and Haas Electronic Materials, L.L.C. Compositions comprising an organic polysilica and an arylgroup-capped polyol, and methods for preparing porous organic polysilica films
KR20120080926A (en) * 2011-01-10 2012-07-18 삼성전자주식회사 Method of manufacturing semiconductor device having a porous low-k dieletric film

Also Published As

Publication number Publication date
TWI726061B (en) 2021-05-01

Similar Documents

Publication Publication Date Title
TW506055B (en) Method of making low-k carbon doped silicon oxide
US6572923B2 (en) Asymmetric organocyclosiloxanes and their use for making organosilicon polymer low-k dielectric film
US6440876B1 (en) Low-K dielectric constant CVD precursors formed of cyclic siloxanes having in-ring SI—O—C, and uses thereof
JP6578353B2 (en) Carbosilane-substituted amine precursor for SI-containing film deposition and method thereof
JP5248316B2 (en) Method for forming dielectric film and novel precursor for carrying out the method
TWI550121B (en) Vapor deposition methods of sicoh low-k films
JP2019530235A (en) Compositions and methods for deposition of silicon oxide films
US10134583B2 (en) Methods of forming a low-k dielectric layer and methods of fabricating a semiconductor device using the same
TWI680982B (en) Functionalized cyclosilazanes as precursors for high growth rate silicon-containing films
JP2010114452A (en) Porous low dielectric constant composition and method of manufacturing and using the same
JP6868640B2 (en) SI-containing film-forming composition and method for producing and using it
TWI776823B (en) Metal complexes containing cyclopentadienyl ligands and method of forming metal-containing film
TW200909606A (en) Novel silicon precursors to make ultra low-k films with high mechanical properties by plasma enhanced chemical vapor deposition
JP5353845B2 (en) Cyclic siloxane compound
JP4960439B2 (en) Novel pore-forming precursor composition and porous dielectric layer obtained therefrom
TWI676632B (en) Alkoxysilacyclic or acyloxysilacyclic compounds and methods for depositing films using same
TW201833368A (en) Methods of forming a dielectric layer and methods of fabricating a semiconductor device
CN109722648A (en) Silicon heterocyclic compound and method for depositing silicon-containing film using the same
JP5019742B2 (en) Cyclic siloxane compound, Si-containing film forming material, and use thereof
CN108735574B (en) Method for forming dielectric layer and method for manufacturing semiconductor device
JP2018182077A (en) Method of forming low-permittivity film and method of manufacturing semiconductor element using the same
JP4341560B2 (en) Si-containing film forming material, Si-containing film, method for producing Si-containing film, and semiconductor device
KR102409869B1 (en) Silicon compounds and methods for depositing films using same
TW202413380A (en) Precursor comprisi ng for yttrium or actinoid containg thin film, deposition method of film and semiconductor device of the same
KR20230086947A (en) Precursor for low-k silicon-containing film deposition, deposition method of low-k silicon-containing film and semiconductor device of the same