TW201832219A - Display System and Method for Displaying an Image - Google Patents

Display System and Method for Displaying an Image Download PDF

Info

Publication number
TW201832219A
TW201832219A TW106105012A TW106105012A TW201832219A TW 201832219 A TW201832219 A TW 201832219A TW 106105012 A TW106105012 A TW 106105012A TW 106105012 A TW106105012 A TW 106105012A TW 201832219 A TW201832219 A TW 201832219A
Authority
TW
Taiwan
Prior art keywords
signal
time interval
display system
wave
backlight driving
Prior art date
Application number
TW106105012A
Other languages
Chinese (zh)
Other versions
TWI629679B (en
Inventor
林信男
黃重裕
Original Assignee
明基電通股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 明基電通股份有限公司 filed Critical 明基電通股份有限公司
Priority to TW106105012A priority Critical patent/TWI629679B/en
Application granted granted Critical
Publication of TWI629679B publication Critical patent/TWI629679B/en
Publication of TW201832219A publication Critical patent/TW201832219A/en

Links

Abstract

A method for displaying an image includes acquiring a data clock signal and a vertical synchronization signal, generating a backlight driving signal according to the vertical synchronization signal, displaying the image by using the display device according to the data clock signal, the vertical synchronization signal, and the backlight driving signal. The backlight driving signal includes a composite wave synthesized by at least one pulse width modulation signal.

Description

顯示系統及顯示影像的方法Display system and method of displaying images

本發明描述一種顯示系統及顯示影像的方法,尤指一種消除動態模糊的顯示影像之方法。The present invention describes a display system and a method of displaying an image, and more particularly, a method of eliminating a dynamic blurred display image.

液晶顯示裝置(Liquid Crystal Display,LCD)及有機發光二極體(Organic light emitting diode,OLED)顯示裝置因具有外型輕薄、省電以及無輻射等優點,目前已被普遍地應用於多媒體播放器、行動電話、個人數位助理、電腦顯示器、或平面電視等電子產品上。Liquid crystal display (LCD) and organic light emitting diode (OLED) display devices have been widely used in multimedia players due to their advantages of thinness, power saving and no radiation. , mobile phones, personal digital assistants, computer monitors, or flat-panel TVs and other electronic products.

傳統的顯示器在顯示影像時,會利用脈寬調變訊號驅動背光源。並持續地開啟或關閉背光,因此使用者在觀賞畫面時容易感覺到畫面閃爍而降低視覺品質。特別在頻率需求較高或顯示較為高速動態的影像時,容易發生動態模糊(Motion Blur)而降低畫面品質。再者,由於背光源開啟的時間,使用者可能會看見畫面影像更新的暫態現象,因此,對於使用者而言,容易看到不討喜的畫面閃爍現象。並且,即便在高速的畫面閃爍下使用者未察覺畫面有閃爍現象,在觀賞一段時間後仍將造成使用者眼睛疲勞甚至在視覺上受到傷害。Conventional displays use a pulse width modulation signal to drive the backlight when displaying an image. The backlight is continuously turned on or off, so that the user can easily feel the flickering of the screen while viewing the screen and reduce the visual quality. Especially in the case of high frequency requirements or high-speed dynamic images, it is easy to cause Motion Blur and reduce the picture quality. Moreover, due to the time when the backlight is turned on, the user may see a transient phenomenon of the image update, and therefore, it is easy for the user to see the flickering phenomenon of the screen. Moreover, even if the user does not notice that the picture flickers under the high-speed screen flicker, the user's eyes may be fatigued or even visually injured after watching for a while.

本發明一實施例提出一種顯示影像的方法,包含取得資料時脈訊號,取得垂直同步訊號,依據垂直同步訊號,產生背光驅動訊號,顯示系統根據資料時脈訊號、垂直同步訊號及背光驅動訊號顯示影像。資料時脈訊號包含第一方波,垂直同步訊號包含第二方波,第一方波對應之第一時間區間與第二方波對應之第二時間區間無交集。背光驅動訊號包含複合波,複合波是由第三方波與至少一個突波合成。An embodiment of the present invention provides a method for displaying an image, comprising: acquiring a clock signal of a data, obtaining a vertical synchronization signal, generating a backlight driving signal according to the vertical synchronization signal, and displaying the system according to the data clock signal, the vertical synchronization signal, and the backlight driving signal. image. The data clock signal includes a first square wave, and the vertical synchronization signal includes a second square wave, and the first time interval corresponding to the first square wave has no intersection with the second time interval corresponding to the second square wave. The backlight driving signal includes a composite wave, which is synthesized by a third-party wave and at least one glitch.

本發明另一實施例提出一種顯示系統,包含背光驅動裝置以及背光模組。背光驅動裝置用以根據分電流訊號、背光驅動訊號及最大電流設定訊號,產生開關控制訊號及電流控制訊號。背光模組耦接於背光驅動裝置,用以根據開關控制訊號及電流控制訊號驅動至少一串發光二極體串。背光驅動裝置包含驅動電路,驅動電路透過複數個電阻所組成之分壓電路接收分電流訊號,透過電阻電容電路接收背光驅動訊號,以及透過電阻接收最大電流設定訊號,且背光驅動訊號包含至少一個脈波調變訊號所組成的複合波。Another embodiment of the present invention provides a display system including a backlight driving device and a backlight module. The backlight driving device is configured to generate a switch control signal and a current control signal according to the divided current signal, the backlight driving signal and the maximum current setting signal. The backlight module is coupled to the backlight driving device for driving at least one string of LED strings according to the switch control signal and the current control signal. The backlight driving device includes a driving circuit. The driving circuit receives the divided current signal through a voltage dividing circuit composed of a plurality of resistors, receives the backlight driving signal through the resistor and capacitor circuit, and receives the maximum current setting signal through the resistor, and the backlight driving signal includes at least one A composite wave composed of pulse-wave modulation signals.

第1圖係為本發明之顯示系統100之實施例的方塊圖。顯示系統100包含處理裝置10、影像驅動裝置11、畫素陣列12、背光驅動裝置13以及背光模組14。處理裝置10可為任何形式的運算元件,例如處理晶片(Scalar)、中央處理器、微處理器、可程序化控制單元等等。影像驅動裝置11耦接於處理裝置10,用於產生驅動畫素陣列12所需的電壓。背光驅動裝置13耦接於處理裝置10,用於產生驅動背光模組14所需的電壓。影像驅動裝置11可為任何形式的掃描線/資料線驅動裝置,或是包含移位暫存器的驅動裝置。影像驅動裝置11可使用列驅動模式(Row by Row)來驅動畫素陣列12。畫素陣列12可為任何具有顯示色彩功能的元件。背光驅動裝置13可為任何依據至少一個脈波調變訊號(Pulse Width Modulation,PWM)驅動背光模組14的驅動裝置。背光模組14可為任何具備發光功能的裝置。舉例而言,背光模組14可為至少一串發光二極體(Light-Emitting Diodes,LEDs)。當顯示系統100在顯示影像時,處理裝置10可產生資料時脈訊號、垂直同步訊號以及背光驅動訊號。資料時脈訊號包含至少一個第一方波,而處理裝置10可在第一方波對應之第一時間區間內,控制影像驅動裝置11產生驅動電壓,以驅動畫素陣列12中每一列畫素(掃描線對應的畫素)。垂直同步訊號包含至少一個第二方波,且資料時脈訊號之第一方波對應之第一時間區間與垂直同步訊號之第二方波對應之第二時間區間無交集。換句話說,垂直同步訊號之第二方波的位置,是在資料時脈訊號之連續地兩個第一方波的中間。背光驅動訊號包含至少一個複合波,且複合波是由第三方波與至少一個突波合成。顯示系統100即可根據資料時脈訊號、垂直同步訊號及背光驅動訊號顯示影像。1 is a block diagram of an embodiment of a display system 100 of the present invention. The display system 100 includes a processing device 10, a video driving device 11, a pixel array 12, a backlight driving device 13, and a backlight module 14. Processing device 10 can be any form of computing component, such as a processing chip (Scalar), a central processing unit, a microprocessor, a programmable control unit, and the like. The image driving device 11 is coupled to the processing device 10 for generating a voltage required to drive the pixel array 12. The backlight driving device 13 is coupled to the processing device 10 for generating a voltage required to drive the backlight module 14. The image driving device 11 can be any type of scanning line/data line driving device or a driving device including a shift register. The image driving device 11 can drive the pixel array 12 using a column drive mode (Row by Row). The pixel array 12 can be any component having a display color function. The backlight driving device 13 can be any driving device that drives the backlight module 14 according to at least one Pulse Width Modulation (PWM). The backlight module 14 can be any device having a light emitting function. For example, the backlight module 14 can be at least one string of Light-Emitting Diodes (LEDs). When the display system 100 is displaying an image, the processing device 10 can generate a data clock signal, a vertical synchronization signal, and a backlight driving signal. The data clock signal includes at least one first square wave, and the processing device 10 can control the image driving device 11 to generate a driving voltage in the first time interval corresponding to the first square wave to drive each column of pixels in the pixel array 12. (pixel corresponding to the scan line). The vertical synchronization signal includes at least one second square wave, and the first time interval corresponding to the first square wave of the data clock signal has no intersection with the second time interval corresponding to the second square wave of the vertical synchronization signal. In other words, the position of the second square wave of the vertical sync signal is in the middle of two consecutive first square waves of the data clock signal. The backlight driving signal includes at least one composite wave, and the composite wave is synthesized by a third-party wave and at least one surge. The display system 100 can display images according to the data clock signal, the vertical sync signal, and the backlight driving signal.

在顯示系統100中,資料時脈訊號、垂直同步訊號以及背光驅動訊號的相對位置經過適當設計,可以緩和傳統的顯示系統中動態模糊造成的影像失真問題,描述於下。在傳統的顯示系統中(為了區隔顯示系統100,後文所描述的傳統顯示系統之元件暫不以代號表示),背光模組被開啟的模式可為恆開啟,或是開啟的週期非常大。換句話說,傳統的顯示系統中,在資料時脈訊號之第一方波對應之第一時間區間內,背光模組會維持開啟。此時,如前述,由於處理裝置會在第一方波對應之第一時間區間內,控制影像驅動裝置產生驅動電壓,以驅動畫素陣列中每一列畫素。因此,畫素的極性(例如液晶畫素的極性)在第一時間區間內並非穩態。然而,因為傳統的顯示系統的背光模組會維持開啟,因此人眼將看見畫素陣列中,每一列畫素的極性被更新的過程。因此,在傳統的顯示系統中,當影像幀(Frame)的頻率需求較高時或是畫面具有高速移動的影像時,就會發生殘影的現象。亦即,傳統的顯示系統會發生動態模糊所造成的影像失真問題。而在本發明的顯示系統100中,處理裝置10所產生的資料時脈訊號之第一方波對應之第一時間區間與垂直同步訊號之第二方波對應之第二時間區間無交集。換句話說,當背光驅動訊號與垂直同步訊號一致時,雖然畫素的極性在第一時間區間內並非穩態,但是在第一時間區間後即可保持穩定。而背光驅動訊號及依據垂直同步訊號,在第一時間區間後才開啟。因此,人眼可視的畫素陣列12中,不會看到每一列畫素的極性被更新的過程。因此,即便在影像幀的頻率需求較高時,顯示系統100也可以有效地緩和動態模糊造成的影像失真問題。然而,對比於傳統的顯示系統中持續開啟的背光模組,顯示系統100的背光模組14所開啟的工作週期(Duty Cycle)較小,因此會產生顯示亮度偏暗的問題。為了在緩和動態模糊的條件下,也同時克服顯示亮度偏暗的問題。本發明的背光驅動訊號可經由適當設計來提升顯示亮度。為了描述更為明確,以下將說明顯示系統100中,背光驅動裝置13以及背光模組14的硬體架構,以及背光驅動訊號將如何設計以提升顯示亮度。In the display system 100, the relative positions of the data clock signal, the vertical sync signal, and the backlight driving signal are appropriately designed to alleviate the image distortion caused by dynamic blur in the conventional display system, which is described below. In the conventional display system (in order to distinguish the display system 100, the components of the conventional display system described later are not represented by codes), the mode in which the backlight module is turned on can be always on, or the period of opening is very large. . In other words, in the conventional display system, the backlight module will remain on during the first time interval corresponding to the first square wave of the data clock signal. At this time, as described above, the processing device controls the image driving device to generate a driving voltage to drive each column of pixels in the pixel array in the first time interval corresponding to the first square wave. Therefore, the polarity of the pixels (such as the polarity of the liquid crystal pixels) is not steady state in the first time interval. However, since the backlight module of the conventional display system is kept on, the human eye will see the process in which the polarity of each column of pixels is updated in the pixel array. Therefore, in the conventional display system, when the frequency requirement of the frame is high or when the image has a high-speed moving image, the phenomenon of image sticking occurs. That is to say, the conventional display system may cause image distortion caused by dynamic blur. In the display system 100 of the present invention, the first time interval corresponding to the first square wave of the data clock signal generated by the processing device 10 does not intersect with the second time interval corresponding to the second square wave of the vertical synchronization signal. In other words, when the backlight drive signal coincides with the vertical sync signal, although the polarity of the pixel is not steady in the first time interval, it remains stable after the first time interval. The backlight driving signal and the vertical synchronization signal are turned on after the first time interval. Therefore, in the pixel array 12 visible to the human eye, the process in which the polarity of each column of pixels is updated is not seen. Therefore, even when the frequency requirement of the image frame is high, the display system 100 can effectively alleviate the image distortion problem caused by the motion blur. However, compared with the backlight module that is continuously turned on in the conventional display system, the duty cycle of the backlight module 14 of the display system 100 is small, so that the display brightness is dark. In order to alleviate the dynamic blur, the problem of display brightness is also overcome. The backlight driving signal of the present invention can be appropriately designed to enhance display brightness. For a more detailed description, the hardware architecture of the backlight driving device 13 and the backlight module 14 in the display system 100, and how the backlight driving signal will be designed to improve the display brightness will be described below.

第2圖為顯示系統100中,背光驅動裝置13與背光模組14的電路圖。背光驅動裝置13包含驅動電路17,用以根據分電流訊號、背光驅動訊號及最大電流設定訊號,產生開關控制訊號及電流控制訊號。各訊號的定義如下。分電流訊號為驅動電路17的分電流訊號腳位ADIM所接收的訊號,用來設定流經背光模組14中的發光二極體串的電流大小。驅動電路17的分電流訊號腳位ADIM可透過分壓電路15接收分電流訊號。分壓電路15可由電阻R1及R2所組成。然而,分壓電路15的硬體亦可以合理變換為其他具有分壓功能的電路。背光驅動訊號為驅動電路17的背光驅動訊號腳位PWMP所接收的訊號,用來設定背光模組14的工作週期(Duty Cycle)以及驅動電壓大小。驅動電路17的背光驅動訊號腳位PWMP可透過電阻電容電路(RC-Circuit)16接收背光驅動訊號。電阻電容電路16可由電阻R3以及電容C並聯所組成的電阻電容電路16,具有預防漣波以及穩壓的功能。最大電流設定訊號為驅動電路17的最大電流設定訊號腳位Iset所接收的訊號,用來設定背光模組14中的發光二極體串(包含發光二極體D1至DM)所流經的最大電流。驅動電路17的最大電流設定訊號腳位Iset可透過電阻R4接收最大電流設定訊號。在驅動電路17的分電流訊號腳位ADIM接收了分電流訊號、背光驅動訊號腳位PWMP接收了背光驅動訊號、以及最大電流設定訊號腳位Iset接收了最大電流設定訊號之後,驅動電路17的開關控制訊號腳位Comp即可產生開關控制訊號,透過電阻R5控制背光模組14內的開關SW。並且,驅動電路17的電流控制訊號腳位Isen也可產生電流控制訊號,控制背光模組14內的發光二極體串(包含發光二極體D1至DM)的對地電壓。換句話說,由於發光二極體串(包含發光二極體D1至DM)的對地電壓與高電壓VCC的電壓差可被電流控制訊號的電位控制,因此等同於控制了流經背光模組14內的發光二極體串的電流。在顯示系統100中,發光二極體串可由發光二極體D1至DM以串聯的形式組成,且M為大於1的正整數。然而,本發明的背光模組14並不限制用單一串發光二極體D1至DM,多串的發光二極體也屬於本發明所揭露的範疇。如前述,為了同時緩和動態模糊以及顯示亮度偏暗的問題,本發明的背光驅動訊號可經由適當設計來提升顯示亮度。詳細的原理以及各種實施例將描述於下。FIG. 2 is a circuit diagram of the backlight driving device 13 and the backlight module 14 in the display system 100. The backlight driving device 13 includes a driving circuit 17 for generating a switch control signal and a current control signal according to the divided current signal, the backlight driving signal and the maximum current setting signal. The definition of each signal is as follows. The divided current signal is a signal received by the divided current signal pin ADIM of the driving circuit 17 for setting the current flowing through the LED string in the backlight module 14. The divided current signal pin ADIM of the driving circuit 17 can receive the divided current signal through the voltage dividing circuit 15. The voltage dividing circuit 15 can be composed of resistors R1 and R2. However, the hardware of the voltage dividing circuit 15 can also be reasonably converted into other circuits having a voltage dividing function. The backlight driving signal is a signal received by the backlight driving signal pin PWMP of the driving circuit 17 for setting the duty cycle of the backlight module 14 and the driving voltage. The backlight driving signal pin PWMP of the driving circuit 17 can receive the backlight driving signal through the RC-Circuit 16. The resistor-capacitor circuit 16 can be a resistor-capacitor circuit 16 composed of a resistor R3 and a capacitor C in parallel, and has a function of preventing chopping and voltage stabilization. The maximum current setting signal is a signal received by the maximum current setting signal pin Iset of the driving circuit 17, and is used to set the maximum current of the LED string (including the LEDs D1 to DM) in the backlight module 14. Current. The maximum current setting signal pin Iset of the driving circuit 17 can receive the maximum current setting signal through the resistor R4. After the divided current signal pin ADIM of the driving circuit 17 receives the divided current signal, the backlight driving signal pin PWMP receives the backlight driving signal, and the maximum current setting signal pin Iset receives the maximum current setting signal, the switch of the driving circuit 17 The control signal pin Comp can generate a switch control signal, and the switch SW in the backlight module 14 is controlled through the resistor R5. Moreover, the current control signal pin Isen of the driving circuit 17 can also generate a current control signal to control the ground voltage of the LED string (including the LEDs D1 to DM) in the backlight module 14. In other words, since the voltage difference between the ground voltage and the high voltage VCC of the LED string (including the LEDs D1 to DM) can be controlled by the potential of the current control signal, it is equivalent to controlling the flow through the backlight module. The current of the LED string within 14. In the display system 100, the light emitting diode strings may be composed of the light emitting diodes D1 to DM in series, and M is a positive integer greater than one. However, the backlight module 14 of the present invention does not limit the use of a single string of light-emitting diodes D1 to DM, and a plurality of strings of light-emitting diodes are also within the scope of the present invention. As described above, in order to simultaneously alleviate the problem of dynamic blurring and display brightness dimming, the backlight driving signal of the present invention can be appropriately designed to enhance display brightness. The detailed principles and various embodiments are described below.

第3圖為顯示系統100中,資料時脈訊號、垂直同步訊號、以及背光驅動訊號之第一種波形圖。如前述,資料時脈訊號之第一方波(清楚地定義為,影像區F1對應的第一方波為DT1,而影像區F2對應的第一方波為DT2)對應之第一時間區間與垂直同步訊號之第二方波VT2對應之第二時間區間無交集。換句話說,垂直同步訊號之第二方波VT2會在第一方波DT1以及第一方波DT2之間被致能。在第3圖中,背光驅動訊號包含了由第三方波BT3以及至少一個突波RP所組成的複合波CW3。第三方波BT3的升緣部分對應的時間等於第二方波VT2的升緣部分對應的時間,且第三方波BT3的降緣部分對應的時間等於第二方波VT2的降緣部分對應的時間。並且,複合波CW3中之突波RP的數量、位置以及振幅並無限制,只要在合理的變換範圍內均屬於本發明的範疇。並且,背光驅動訊號之第三方波BT3可為脈波調變訊號,且脈波調變訊號的最高工作週期(Peak Duty Cycle)可為1/20。如第3圖所述,在影像區F1中,畫素陣列12中的畫素極性在資料時脈訊號之第一方波DT1所對應的第一時間區間內會有擾動。然而,由於背光模組14會在複合波CW3之對應的第三時間區間才會開啟,且第三時間區間在第一時間區間之後,因此,對於使用者而言,人眼可視區S1看不見畫素陣列12中的畫素極性的擾動變化。換句話說,人眼可視區S1看見的畫面,為畫素陣列12中的畫素極性已經調整完畢後的穩態影像。因此,對於人眼可視區S1的影像而言,可以緩和甚至消除動態模糊造成的影像失真問題。並且,由於背光驅動訊號引入了功率較大的複合波CW3,等同於在有限的第三時間區間提升了背光模組14的驅動電壓,因此具有提升背光模組14所顯示之平均亮度的功能。而之後的影像區F2的運作模式也視類似於影像區F1,因此於此將不再贅述。補充說明,可以理解的,第三方波BT3的升緣部分對應的時間與第三方波BT3的降緣部分對應的時間可以皆在第二方波VT2的時間區段內。FIG. 3 is a first waveform diagram of the data clock signal, the vertical sync signal, and the backlight driving signal in the display system 100. As described above, the first square wave of the data clock signal (clearly defined as the first square wave corresponding to the image area F1 is DT1, and the first square wave corresponding to the image area F2 is DT2) corresponds to the first time interval and The second time interval corresponding to the second square wave VT2 of the vertical synchronization signal has no intersection. In other words, the second square wave VT2 of the vertical sync signal is enabled between the first square wave DT1 and the first square wave DT2. In FIG. 3, the backlight driving signal includes a composite wave CW3 composed of a third-party wave BT3 and at least one surge RP. The time corresponding to the rising edge portion of the third-party wave BT3 is equal to the time corresponding to the rising edge portion of the second square wave VT2, and the time corresponding to the falling edge portion of the third-party wave BT3 is equal to the time corresponding to the falling-edge portion of the second square wave VT2. . Further, the number, position, and amplitude of the surge RP in the composite wave CW3 are not limited, and are within the scope of the present invention within a reasonable range of conversion. Moreover, the third-party wave BT3 of the backlight driving signal can be a pulse modulation signal, and the maximum duty cycle (Peak Duty Cycle) of the pulse modulation signal can be 1/20. As shown in FIG. 3, in the image area F1, the pixel polarity in the pixel array 12 is disturbed in the first time interval corresponding to the first square wave DT1 of the data clock signal. However, since the backlight module 14 is turned on in the corresponding third time interval of the composite wave CW3, and the third time interval is after the first time interval, the human eye visible area S1 is invisible to the user. The perturbation change of the pixel polarity in the pixel array 12. In other words, the picture seen by the human eye visible area S1 is a steady-state image after the pixel polarity in the pixel array 12 has been adjusted. Therefore, for the image of the human eye visible area S1, the image distortion problem caused by the dynamic blur can be alleviated or even eliminated. Moreover, since the backlight driving signal introduces a multi-composite composite wave CW3, which is equivalent to increasing the driving voltage of the backlight module 14 in a limited third time interval, it has the function of improving the average brightness displayed by the backlight module 14. The operation mode of the image area F2 afterwards is also similar to the image area F1, and thus will not be described herein. In addition, it can be understood that the time corresponding to the rising edge portion of the third-party wave BT3 and the time corresponding to the falling edge portion of the third-party wave BT3 may all be within the time segment of the second square wave VT2.

第4圖為顯示系統100中,資料時脈訊號、垂直同步訊號、以及背光驅動訊號之第二種波形圖。類似地,資料時脈訊號之第一方波(清楚地定義為,影像區F1對應的第一方波為DT1,而影像區F2對應的第一方波為DT2)對應之第一時間區間與垂直同步訊號之第二方波VT2對應之第二時間區間無交集。換句話說,垂直同步訊號之第二方波VT2會在第一方波DT1以及第一方波DT2之間被致能。在第4圖中,背光驅動訊號包含了由第三方波BT3以及至少一個突波RP所組成的複合波CW3。與第3圖不同之處為,複合波CW3之降緣部分對應的時間在第二方波VT2對應之第二時間區間外,且複合波CW3之升緣部分對應的時間在第二方波VT2對應之第二時間區間內。如第4圖所示,由於複合波CW3之降緣部分對應的時間在第二方波VT2對應之第二時間區間外,因此複合波CW3對應之第三時間區間可能會與資料時脈訊號的第一方波DT2對應之第一時間區間稍微重疊。換句話說,人眼可視區S1除了可以看到於第一方波DT1對應之第一時區間內的穩態極性的畫素陣列12之影像外,還可能看到第一方波DT2之時間內的畫素極性擾動狀態(暫態)。然而,在一般顯示器中,螢幕的上面區域以及下面區域並非焦點區域。如前述,影像驅動裝置11可使用列驅動模式(Row by Row)來驅動畫素陣列12。因此,人眼可視區S1所看到第一方波DT2之時間內的畫素極性擾動狀態,僅為顯示器中,螢幕上面區域之畫素所發生的極性擾動狀態。因此,對於人眼可視區S1的影像而言,也可以緩和動態模糊造成的影像失真問題。並且,由於背光驅動訊號引入了功率較大的複合波CW3,等同於在有限的第三時間區間提升了背光模組14的驅動電壓,因此具有提升背光模組14所顯示之平均亮度的功能。而人眼可視區S0的顯像原理也類似於人眼可視區S1,因此於此將不再贅述。補充說明,可以理解的,第三方波BT3的升緣部分對應的時間可以在第二方波VT2的時間區段內。FIG. 4 is a second waveform diagram of the data clock signal, the vertical sync signal, and the backlight driving signal in the display system 100. Similarly, the first square wave of the data clock signal (clearly defined as the first square wave corresponding to the image area F1 is DT1, and the first square wave corresponding to the image area F2 is DT2) corresponds to the first time interval and The second time interval corresponding to the second square wave VT2 of the vertical synchronization signal has no intersection. In other words, the second square wave VT2 of the vertical sync signal is enabled between the first square wave DT1 and the first square wave DT2. In FIG. 4, the backlight driving signal includes a composite wave CW3 composed of a third-party wave BT3 and at least one surge RP. The difference from FIG. 3 is that the time corresponding to the falling edge portion of the composite wave CW3 is outside the second time interval corresponding to the second square wave VT2, and the time corresponding to the rising edge portion of the composite wave CW3 is in the second square wave VT2. Corresponding to the second time interval. As shown in FIG. 4, since the time corresponding to the falling edge portion of the composite wave CW3 is outside the second time interval corresponding to the second square wave VT2, the third time interval corresponding to the composite wave CW3 may be related to the data clock signal. The first time interval corresponding to the first square wave DT2 slightly overlaps. In other words, in addition to the image of the steady-state polar pixel array 12 in the first time interval corresponding to the first square wave DT1, the human eye visible area S1 may also see the time of the first square wave DT2. The pixel's polarity perturbation state (transient). However, in a general display, the upper and lower areas of the screen are not the focus areas. As described above, the image driving device 11 can drive the pixel array 12 using a column drive mode (Row by Row). Therefore, the pixel polarity perturbation state of the first square wave DT2 seen by the human eye visible area S1 is only the polarity perturbation state of the pixels in the upper area of the display. Therefore, for the image of the human eye visible area S1, the image distortion problem caused by the dynamic blur can also be alleviated. Moreover, since the backlight driving signal introduces a multi-composite composite wave CW3, which is equivalent to increasing the driving voltage of the backlight module 14 in a limited third time interval, it has the function of improving the average brightness displayed by the backlight module 14. The imaging principle of the visible area S0 of the human eye is also similar to the visible area S1 of the human eye, and thus will not be described herein. In addition, it can be understood that the time corresponding to the rising edge portion of the third-party wave BT3 may be within the time zone of the second square wave VT2.

第5圖為顯示系統100中,資料時脈訊號、垂直同步訊號、以及背光驅動訊號之第三種波形圖。類似地,資料時脈訊號之第一方波(清楚地定義為,影像區F1對應的第一方波為DT1,而影像區F2對應的第一方波為DT2)對應之第一時間區間與垂直同步訊號之第二方波VT2對應之第二時間區間無交集。換句話說,垂直同步訊號之第二方波VT2會在第一方波DT1以及第一方波DT2之間被致能。在第5圖中,背光驅動訊號包含了由第三方波BT3以及至少一個突波RP所組成的複合波CW3。與第3圖不同之處為,複合波CW3之升緣部分對應的時間在第二方波VT2對應之第二時間區間外,且複合波CW3之降緣部分對應的時間在第二方波VT2對應之第二時間區間內。如第5圖所示,由於複合波CW3之升緣部分對應的時間在第二方波VT2對應之第二時間區間外,因此複合波CW3對應之第三時間區間可能會與資料時脈訊號的第一方波DT1對應之第一時間區間稍微重疊。換句話說,人眼可視區S1可能看到第一方波DT1之時間內的畫素極性擾動狀態(暫態)。然而,在一般顯示器中,螢幕的上面區域以及下面區域並非焦點區域。如前述,影像驅動裝置11可使用列驅動模式(Row by Row)來驅動畫素陣列12。因此,人眼可視區S1所看到第一方波DT2之時間內的畫素極性擾動狀態,僅為顯示器中,螢幕下面區域之畫素所發生的極性擾動狀態。因此,對於人眼可視區S1的影像而言,也可以緩和動態模糊造成的影像失真問題。並且,由於背光驅動訊號引入了功率較大的複合波CW3,等同於在有限的第三時間區間提升了背光模組14的驅動電壓,因此具有提升背光模組14所顯示之平均亮度的功能。而人眼可視區S0的顯像原理也類似於人眼可視區S1,因此於此將不再贅述。補充說明,可以理解的,第三方波BT3的降緣部分對應的時間可以在第二方波VT2的時間區段內。FIG. 5 is a third waveform diagram of the data clock signal, the vertical sync signal, and the backlight driving signal in the display system 100. Similarly, the first square wave of the data clock signal (clearly defined as the first square wave corresponding to the image area F1 is DT1, and the first square wave corresponding to the image area F2 is DT2) corresponds to the first time interval and The second time interval corresponding to the second square wave VT2 of the vertical synchronization signal has no intersection. In other words, the second square wave VT2 of the vertical sync signal is enabled between the first square wave DT1 and the first square wave DT2. In FIG. 5, the backlight driving signal includes a composite wave CW3 composed of a third-party wave BT3 and at least one surge RP. The difference from FIG. 3 is that the time corresponding to the rising edge portion of the composite wave CW3 is outside the second time interval corresponding to the second square wave VT2, and the time corresponding to the falling edge portion of the composite wave CW3 is in the second square wave VT2. Corresponding to the second time interval. As shown in FIG. 5, since the time corresponding to the rising edge portion of the composite wave CW3 is outside the second time interval corresponding to the second square wave VT2, the third time interval corresponding to the composite wave CW3 may be related to the data clock signal. The first time interval corresponding to the first square wave DT1 slightly overlaps. In other words, the human eye visible area S1 may see the pixel polarity perturbation state (transient state) during the first square wave DT1. However, in a general display, the upper and lower areas of the screen are not the focus areas. As described above, the image driving device 11 can drive the pixel array 12 using a column drive mode (Row by Row). Therefore, the pixel polarity perturbation state of the first square wave DT2 seen by the human eye visible area S1 is only the polarity perturbation state of the pixels in the display area under the screen. Therefore, for the image of the human eye visible area S1, the image distortion problem caused by the dynamic blur can also be alleviated. Moreover, since the backlight driving signal introduces a multi-composite composite wave CW3, which is equivalent to increasing the driving voltage of the backlight module 14 in a limited third time interval, it has the function of improving the average brightness displayed by the backlight module 14. The imaging principle of the visible area S0 of the human eye is also similar to the visible area S1 of the human eye, and thus will not be described herein. In addition, it can be understood that the time corresponding to the falling edge portion of the third-party wave BT3 may be within the time zone of the second square wave VT2.

第6圖為顯示系統100中,資料時脈訊號、垂直同步訊號、以及背光驅動訊號之第四種波形圖。類似地,資料時脈訊號之第一方波(清楚地定義為,影像區F1對應的第一方波為DT1,而影像區F2對應的第一方波為DT2)對應之第一時間區間與垂直同步訊號之第二方波VT2對應之第二時間區間無交集。換句話說,垂直同步訊號之第二方波VT2會在第一方波DT1以及第一方波DT2之間被致能。在第5圖中,背光驅動訊號包含了由第三方波BT3以及至少一個突波RP所組成的複合波CW3。與第3圖不同之處為,複合波CW3之升緣部分對應的時間在第二方波VT2對應之第二時間區間外,且複合波CW3之降緣部分對應的時間也在第二方波VT2對應之第二時間區間外。換句話說,第二方波VT2對應之第二時間區間在複合波CW3對應之第三時間區內。如第6圖所示,由於第二方波VT2對應之第二時間區間在複合波CW3對應之第三時間區內,因此複合波CW3對應之第三時間區間可能會與資料時脈訊號的第一方波DT1及DT2對應之時間區間稍微重疊。換句話說,人眼可視區S1可能看到第一方波DT1及DT2之時間內的畫素極性擾動狀態(暫態)。然而,在一般顯示器中,螢幕的上面區域以及下面區域並非焦點區域。如前述,影像驅動裝置11可使用列驅動模式(Row by Row)來驅動畫素陣列12。因此,人眼可視區S1所看到第一方波DT2及DT2之時間內的畫素極性擾動狀態,僅為顯示器中,螢幕下面區域之對應第一方波DT2的畫素以及螢幕上面區域之對應第二方波DT2的畫素所發生的極性擾動狀態。對於人眼可視區S1的影像而言,也可以緩和動態模糊造成的影像失真問題。並且,由於背光驅動訊號引入了功率較大的複合波CW3,等同於在有限的第三時間區間提升了背光模組14的驅動電壓,因此具有提升背光模組14所顯示之平均亮度的功能。而人眼可視區S0的顯像原理也類似於人眼可視區S1,因此於此將不再贅述。FIG. 6 is a fourth waveform diagram of the data clock signal, the vertical sync signal, and the backlight driving signal in the display system 100. Similarly, the first square wave of the data clock signal (clearly defined as the first square wave corresponding to the image area F1 is DT1, and the first square wave corresponding to the image area F2 is DT2) corresponds to the first time interval and The second time interval corresponding to the second square wave VT2 of the vertical synchronization signal has no intersection. In other words, the second square wave VT2 of the vertical sync signal is enabled between the first square wave DT1 and the first square wave DT2. In FIG. 5, the backlight driving signal includes a composite wave CW3 composed of a third-party wave BT3 and at least one surge RP. The difference from FIG. 3 is that the time corresponding to the rising edge portion of the composite wave CW3 is outside the second time interval corresponding to the second square wave VT2, and the time corresponding to the falling edge portion of the composite wave CW3 is also the second square wave. VT2 corresponds to the second time interval. In other words, the second time interval corresponding to the second square wave VT2 is in the third time zone corresponding to the composite wave CW3. As shown in FIG. 6, since the second time interval corresponding to the second square wave VT2 is in the third time zone corresponding to the composite wave CW3, the third time interval corresponding to the composite wave CW3 may be the same as the data clock signal. The time intervals corresponding to the square waves DT1 and DT2 slightly overlap. In other words, the human eye visible area S1 may see the pixel polarity perturbation state (transient state) during the first square waves DT1 and DT2. However, in a general display, the upper and lower areas of the screen are not the focus areas. As described above, the image driving device 11 can drive the pixel array 12 using a column drive mode (Row by Row). Therefore, the pixel polarity perturbation state of the first square wave DT2 and DT2 seen by the human eye visible area S1 is only the pixel of the corresponding first square wave DT2 and the upper area of the screen in the lower area of the display. Corresponding to the polarity perturbation state of the pixel of the second square wave DT2. For the image of the human eye visible area S1, the image distortion problem caused by the dynamic blur can also be alleviated. Moreover, since the backlight driving signal introduces a multi-composite composite wave CW3, which is equivalent to increasing the driving voltage of the backlight module 14 in a limited third time interval, it has the function of improving the average brightness displayed by the backlight module 14. The imaging principle of the visible area S0 of the human eye is also similar to the visible area S1 of the human eye, and thus will not be described herein.

第7A圖為顯示系統100中,合成背光驅動訊號所用之第一脈波調變訊號PWM1的示意圖。第7B圖為顯示系統100中,合成背光驅動訊號所用之第二脈波調變訊號PWM2的示意圖。第7C圖為顯示系統100中,合成背光驅動訊號所用之第三脈波調變訊號PWM3的示意圖。第7D圖為顯示系統100中,背光驅動訊號之複合波CW3的示意圖。如前述提及,在顯示系統100中,為了緩和甚至消除動態模糊造成的影像失真。可將背光驅動訊號的工作週期(Duty Cycle)變小,以避免使用者看到畫素極性擾動的情況。然而,背光驅動訊號的工作週期變小表示驅動功率也隨之變小,顯示畫面將偏暗。為了克服畫面偏暗的問題,在前述實施例中,背光驅動訊號引入了功率較大的複合波CW3,等同於在有限的第三時間區間提升了背光模組14的驅動電壓,因此具有提升背光模組14所顯示之平均亮度的功能。為了描述的完整性,以下將說明複合波CW3的產生方式。如第7A圖至第7D圖所述,實施例中的複合波CW3包含了兩個突波,但本發明不限制於突波的數量以及突波的位置。在第7A圖中,第一脈波調變訊號PWM1的升緣部分之時間點為P1,降緣部分之時間點為P2。在第7B圖中,第二脈波調變訊號PWM2的升緣部分之時間點為P3,降緣部分之時間點為P4。在第7C圖中,第三脈波調變訊號PWM3的升緣部分之時間點為P5,降緣部分之時間點為P6。在顯示系統100中,背光驅動訊號的合成方式可由多個脈波調變訊號線性合成。因此,在第一脈波調變訊號PWM1、第二脈波調變訊號PWM2、第三脈波調變訊號PWM3線性合成之後,即可以產生第7D圖之複合波CW3。在第7D圖中,複合波CW3的波形包含了方波部份(第三方波BT3)以及兩個突波部分RP。方波部份(第三方波BT3)的升緣部份的時間點為P1,降緣部分的時間點為P2。兩個突波RP的波形之寬度對應第二脈波調變訊號PWM2以及第三脈波調變訊號PWM3的寬度。兩個突波RP的寬度分別橫跨時間點P3至時間點P4之間,以及時間點P5至時間點P6之間。然而,如前述,任何合理的硬體變更以及技術變換接屬於本發明所揭露的範疇。舉例而言,複合波CW3可包含更多的突波RP,則複合波CW3可使用更多的脈波調變訊號合成。並且,本發明的顯示系統100也適用於直下式(direct back-lit)顯示系統或側照式(edge LED back-lit)顯示系統。並且,在顯示系統100中,背光模組14中之發光元件陣列(例如多個發光二極體燈串D1至DM)的每一發光元件於複合波CW3對應之第三時間區間內同時開啟,且每一個發光元件於複合波CW3對應之第三時間區間外同時關閉。如此,使用者也不會看到因背光模組14逐列驅動發光元件而產生畫面閃爍的情況。FIG. 7A is a schematic diagram of the first pulse modulation signal PWM1 used in the display system 100 to synthesize the backlight driving signal. FIG. 7B is a schematic diagram of the second pulse modulation signal PWM2 used in the display system 100 to synthesize the backlight driving signal. FIG. 7C is a schematic diagram of the third pulse modulation signal PWM3 used in the display system 100 to synthesize the backlight driving signal. FIG. 7D is a schematic diagram of the composite wave CW3 of the backlight driving signal in the display system 100. As mentioned above, in the display system 100, image distortion caused by dynamic blurring is alleviated or even eliminated. The duty cycle of the backlight drive signal can be made smaller to prevent the user from seeing the pixel polarity disturbance. However, the smaller duty cycle of the backlight driving signal indicates that the driving power is also reduced, and the display screen will be dark. In order to overcome the problem of the darkness of the screen, in the foregoing embodiment, the backlight driving signal introduces a composite wave CW3 with a larger power, which is equivalent to increasing the driving voltage of the backlight module 14 in a limited third time interval, thereby improving the backlight. The function of the average brightness displayed by the module 14. For the sake of completeness of the description, the manner in which the composite wave CW3 is generated will be explained below. As described in FIGS. 7A to 7D, the composite wave CW3 in the embodiment includes two surges, but the present invention is not limited to the number of surges and the position of the surge. In Fig. 7A, the time point of the rising edge portion of the first pulse modulation signal PWM1 is P1, and the time point of the falling edge portion is P2. In Fig. 7B, the time point of the rising edge portion of the second pulse modulation signal PWM2 is P3, and the time point of the falling edge portion is P4. In Fig. 7C, the time point of the rising edge portion of the third pulse modulation signal PWM3 is P5, and the time point of the falling edge portion is P6. In the display system 100, the synthesis mode of the backlight driving signal can be linearly synthesized by a plurality of pulse modulation signals. Therefore, after the first pulse modulation signal PWM1, the second pulse modulation signal PWM2, and the third pulse modulation signal PWM3 are linearly combined, the composite wave CW3 of the 7D image can be generated. In Fig. 7D, the waveform of the composite wave CW3 includes a square wave portion (third party wave BT3) and two glitch portions RP. The time point of the rising portion of the square wave portion (third-party wave BT3) is P1, and the time point for the falling edge portion is P2. The width of the waveform of the two glitch RP corresponds to the width of the second pulse modulation signal PWM2 and the third pulse modulation signal PWM3. The widths of the two surges RP span between time point P3 and time point P4, respectively, and between time point P5 and time point P6. However, as mentioned above, any reasonable hardware changes and technical changes are within the scope of the present invention. For example, if the composite wave CW3 can contain more glitch RP, the composite wave CW3 can be synthesized using more pulse modulation signals. Moreover, the display system 100 of the present invention is also applicable to a direct back-lit display system or an edge LED back-lit display system. Moreover, in the display system 100, each of the light-emitting elements of the backlight module 14 (for example, the plurality of light-emitting diode strings D1 to DM) is simultaneously turned on in the third time interval corresponding to the composite wave CW3. And each of the light-emitting elements is simultaneously turned off outside the third time interval corresponding to the composite wave CW3. In this way, the user does not see that the backlight module 14 drives the light-emitting elements column by column to cause flickering of the screen.

為了更進一步降低動態模糊造成的畫面失真問題。顯示系統100也可以使用過驅動(Overdrive,OD)的技術。舉例而言,顯示系統100可以預先建立複數個顯示頻率對應的複數個驅動電壓表(OD-Look up Table,OD-LUT)。例如240Hz(赫茲)對應的OD-LUT、180Hz對應的OD-LUT、144Hz對應的OD-LUT以及60Hz對應的OD-LUT。這些OD-LUT包含了電壓的增益資訊,例如升壓倍率(Gain Factor)的資訊。顯示系統100可以查詢這些OD-LUT,並依據目前頻率所用OD-LUT,將資料時脈訊號內,驅動畫素的驅動電壓升壓。因此,由於驅動畫素的驅動電壓被升壓,因此畫素的極性也將快速地收斂成穩態,可進一步降低動態模糊造成的畫面失真問題。並且,顯示頻率越小,對應的升壓倍率也會較小。顯示頻率越大,對應的升壓倍率也會較大。換句話說,顯示頻率為240Hz對應的升壓倍率會大於顯示頻率為180Hz對應的升壓倍率。顯示頻率為180Hz對應的升壓倍率會大於顯示頻率為144Hz對應的升壓倍率。顯示頻率為144Hz對應的升壓倍率會大於顯示頻率為60Hz對應的升壓倍率。In order to further reduce the problem of picture distortion caused by dynamic blur. Display system 100 can also use overdrive (OD) technology. For example, the display system 100 can pre-establish a plurality of OD-Look up tables (OD-LUTs) corresponding to a plurality of display frequencies. For example, an OD-LUT corresponding to 240 Hz (hertz), an OD-LUT corresponding to 180 Hz, an OD-LUT corresponding to 144 Hz, and an OD-LUT corresponding to 60 Hz. These OD-LUTs contain information on the gain of the voltage, such as Gain Factor. The display system 100 can query these OD-LUTs and boost the driving voltage of the driving pixels in the data clock signal according to the OD-LUT used at the current frequency. Therefore, since the driving voltage of the driving pixel is boosted, the polarity of the pixel will also quickly converge to a steady state, which further reduces the problem of picture distortion caused by dynamic blur. Also, the smaller the display frequency, the smaller the boosting magnification. The larger the display frequency, the larger the boost ratio. In other words, the boosting magnification corresponding to the display frequency of 240 Hz is greater than the boosting magnification corresponding to the display frequency of 180 Hz. The boosting magnification corresponding to the display frequency of 180 Hz is greater than the boosting magnification corresponding to the display frequency of 144 Hz. The boosting magnification corresponding to the display frequency of 144 Hz is greater than the boosting magnification corresponding to the display frequency of 60 Hz.

第8圖為顯示系統100中,調整動態亮度曲線DLC的示意圖。為了在降低動態模糊的條件下,進一步提升顯示畫面的亮度。顯示系統100也可以透過調整動態亮度曲線DLC來達到提升顯示畫面的亮度之效果。如第8圖所示,X軸為輸入灰階值,Y軸為輸出灰階值。顯示系統100的預設整動態亮度曲線可為標準動態亮度曲線SDLC,例如以Gamma 2.0為標準的動態亮度曲線SDLC。X軸的灰階值可分為三個區域,為暗部區域DRN、中調區域MRN以及亮部區域LRN。為了提升畫面亮度,原本預設的標準動態亮度曲線SDLC可適當調整為動態亮度曲線DLC。而調整後的動態亮度曲線DLC的至少一個部份在標準動態亮度曲線SDLC之上。在本實施例中,調整後的動態亮度曲線DLC之暗部區域DRN及亮部區域LRN可在標準動態亮度曲線SDLC之上,而中調區域MRN實質上近似於標準動態亮度曲線SDLC。在本實施例中,暗部區域DRN的灰階值G1之值域可符合0≦G1<10。中調區域MRN的灰階值G2之值域可符合10≦G2<245。亮部區域LRN的灰階值G3之值域可符合245≦G3<255。然而,本發明之暗部區域DRN、中調區域MRN以及亮部區域LRN的灰階值之值域並不被上述的實施例所限制。並且,動態亮度曲線DLC在X軸之灰階值為0的座標下,可稍微高於標準動態亮度曲線SDLC。例如,動態亮度曲線DLC在X軸之灰階值為0的座標下,可與標準動態亮度曲線SDLC有灰階值為2的偏移量Delta。經由將原本的標準動態亮度曲線SDLC調整至動態亮度曲線DLC之後,顯示系統100將可顯示較亮的影像。FIG. 8 is a schematic diagram of adjusting the dynamic brightness curve DLC in the display system 100. In order to reduce the dynamic blur, the brightness of the display screen is further improved. The display system 100 can also achieve the effect of increasing the brightness of the display screen by adjusting the dynamic brightness curve DLC. As shown in Figure 8, the X-axis is the input grayscale value and the Y-axis is the output grayscale value. The preset integral dynamic brightness curve of display system 100 can be a standard dynamic brightness curve SDLC, such as a dynamic brightness curve SDLC based on Gamma 2.0. The gray scale value of the X axis can be divided into three regions, which are a dark region DRN, a midtone region MRN, and a bright region LRN. In order to improve the brightness of the picture, the original preset standard dynamic brightness curve SDLC can be appropriately adjusted to the dynamic brightness curve DLC. At least one portion of the adjusted dynamic brightness curve DLC is above the standard dynamic brightness curve SDLC. In this embodiment, the dark portion region DRN and the bright portion region LRN of the adjusted dynamic brightness curve DLC may be above the standard dynamic brightness curve SDLC, and the midtone region MRN substantially approximates the standard dynamic brightness curve SDLC. In the present embodiment, the value range of the grayscale value G1 of the dark portion region DRN may conform to 0≦G1<10. The value range of the gray scale value G2 of the mid-range region MRN may be 10 ≦ G2 < 245. The value of the grayscale value G3 of the bright region LRN may correspond to 245 ≦ G3 < 255. However, the value range of the gray scale value of the dark portion region DRN, the middle adjustment region MRN, and the bright portion region LRN of the present invention is not limited by the above embodiment. Moreover, the dynamic brightness curve DLC can be slightly higher than the standard dynamic brightness curve SDLC under the coordinate of the X-axis gray-scale value of 0. For example, the dynamic luminance curve DLC may have an offset Delta of a grayscale value of 2 from the standard dynamic luminance curve SDLC under the coordinate of the X-axis grayscale value of zero. After adjusting the original standard dynamic brightness curve SDLC to the dynamic brightness curve DLC, the display system 100 will be able to display a brighter image.

綜上所述,本發明描述了一種具有緩和動態模糊造成的影像失真問題的顯示系統。顯示系統的背光模組之致能的時間會與畫素極性於暫態的時間錯開,或是稍微重疊。由於人眼可視區影像的畫素極性趨近於穩態,因此可以有效地防止動態模糊的發生。並且,顯示系統可進一步結合了具有多個顯示頻率對應的多個驅動電壓表之過驅動技術。過驅動技術可升壓驅動畫素的驅動電壓,因此畫素的極性也將快速地成為穩態,可進一步降低動態模糊造成的畫面失真問題。並且,為了進一步改善因緩和動態模糊所造成的顯示畫面亮度的偏暗問題。顯示系統也可調整動態亮度曲線,尤其是拉高暗部區域以及亮部區域的動態亮度曲線。藉由整動態亮度曲線,顯示畫面的亮度也將會得進一步的補償。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。In summary, the present invention describes a display system having a problem of image distortion caused by mitigating motion blur. The time required to display the backlight module of the system is offset from the time when the pixel polarity is transient, or slightly overlapped. Since the pixel polarity of the visible area image of the human eye approaches the steady state, the occurrence of dynamic blur can be effectively prevented. Moreover, the display system can further incorporate an overdrive technique having a plurality of drive voltmeters corresponding to a plurality of display frequencies. Overdrive technology can boost the driving voltage of the pixel, so the polarity of the pixel will also become a steady state quickly, which can further reduce the image distortion caused by dynamic blur. Moreover, in order to further improve the darkness of the brightness of the display screen caused by the mitigation of the motion blur. The display system can also adjust the dynamic brightness curve, especially the dynamic brightness curve of the dark area and the bright area. By adjusting the dynamic brightness curve, the brightness of the displayed picture will be further compensated. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

100‧‧‧顯示系統
10‧‧‧處理裝置
11‧‧‧影像驅動裝置
12‧‧‧畫素陣列
13‧‧‧背光驅動裝置
14‧‧‧背光模組
15‧‧‧分壓電路
16‧‧‧電阻電容電路
17‧‧‧驅動電路
R1、R2、R3、R4、R5、R6及R7‧‧‧電阻
C‧‧‧電容
D1、D2至DM‧‧‧發光二極體
SW‧‧‧開關
VCC‧‧‧高電壓
ADIM‧‧‧分電流訊號腳位
PWMP‧‧‧背光驅動訊號腳位
Iset‧‧‧最大電流設定訊號腳位
Comp‧‧‧開關控制訊號腳位
Isen‧‧‧電流控制訊號腳位
DT1及DT2‧‧‧第一方波
VT2‧‧‧第二方波
BT3‧‧‧第三方波
RP‧‧‧突波
CW3‧‧‧複合波
F1及F2‧‧‧影像區
S0及S1‧‧‧人眼可視區
PWM1‧‧‧第一脈波調變訊號
PWM2‧‧‧第二脈波調變訊號
PWM3‧‧‧第三脈波調變訊號
P1、P2、P3及P4‧‧‧時間點
DLC‧‧‧動態亮度曲線
SDLC‧‧‧標準動態亮度曲線
Delta‧‧‧偏移量
DRN‧‧‧暗部區域
MRN‧‧‧中調區域
LRN‧‧‧亮部區域
100‧‧‧Display system
10‧‧‧Processing device
11‧‧‧Image Drive
12‧‧‧ pixel array
13‧‧‧Backlight drive
14‧‧‧Backlight module
15‧‧‧voltage circuit
16‧‧‧Resistor Capacitor Circuit
17‧‧‧Drive circuit
R1, R2, R3, R4, R5, R6 and R7‧‧‧ resistors
C‧‧‧ capacitor
D1, D2 to DM‧‧‧Light Emitting Diodes
SW‧‧ switch
VCC‧‧‧High voltage
ADIM‧‧‧ divided current signal pin
PWMP‧‧‧Backlight driver signal pin
Iset‧‧‧Max current setting signal pin
Comp‧‧‧ switch control signal pin
Isen‧‧‧current control signal pin
DT1 and DT2‧‧‧ first square wave
VT2‧‧‧ second square wave
BT3‧‧‧ third-party wave
RP‧‧‧ Surge
CW3‧‧‧Composite wave
F1 and F2‧‧‧ image areas
S0 and S1‧‧‧ human eye visible area
PWM1‧‧‧ first pulse modulation signal
PWM2‧‧‧Second pulse modulation signal
PWM3‧‧‧ third pulse modulation signal
P1, P2, P3 and P4‧‧‧ points
DLC‧‧‧ dynamic brightness curve
SDLC‧‧‧ standard dynamic brightness curve
Delta‧‧‧ offset
DRN‧‧‧ dark area
MRN‧‧‧mid area
LRN‧‧‧ highlight area

第1圖係為本發明之顯示系統之實施例的方塊圖。 第2圖係為第1圖顯示系統中,背光驅動裝置與背光模組的電路圖。 第3圖係為第1圖顯示系統中,資料時脈訊號、垂直同步訊號、以及背光驅動訊號之第一種波形圖。 第4圖係為第1圖顯示系統中,資料時脈訊號、垂直同步訊號、以及背光驅動訊號之第二種波形圖。 第5圖係為第1圖顯示系統中,資料時脈訊號、垂直同步訊號、以及背光驅動訊號之第三種波形圖。 第6圖係為第1圖顯示系統中,資料時脈訊號、垂直同步訊號、以及背光驅動訊號之第四種波形圖。 第7A圖係為第1圖顯示系統中,合成背光驅動訊號所用之第一脈波調變訊號的示意圖。 第7B圖係為第1圖顯示系統中,合成背光驅動訊號所用之第二脈波調變訊號的示意圖。 第7C圖係為第1圖顯示系統中,合成背光驅動訊號所用之第三脈波調變訊號的示意圖。 第7D圖係為第1圖顯示系統中,背光驅動訊號之複合波的示意圖。 第8圖係為第1圖顯示系統中,調整動態亮度曲線的示意圖。Figure 1 is a block diagram of an embodiment of a display system of the present invention. Fig. 2 is a circuit diagram of the backlight driving device and the backlight module in the first drawing display system. Figure 3 is the first waveform diagram of the data clock signal, vertical sync signal, and backlight drive signal in the system shown in Figure 1. Figure 4 is a second waveform diagram of the data clock signal, vertical sync signal, and backlight drive signal in the system shown in Figure 1. Figure 5 is a third waveform diagram of the data clock signal, vertical sync signal, and backlight drive signal in the system shown in Figure 1. Figure 6 is a fourth waveform diagram of the data clock signal, vertical sync signal, and backlight drive signal in the system shown in Figure 1. Figure 7A is a schematic diagram showing the first pulse-modulation signal used in synthesizing the backlight driving signal in the system of Figure 1. Fig. 7B is a schematic diagram showing the second pulse-modulation signal used for synthesizing the backlight driving signal in the system of Fig. 1. Figure 7C is a schematic diagram showing the third pulse-modulation signal used in synthesizing the backlight driving signal in the system of Figure 1. Fig. 7D is a schematic diagram showing a composite wave of a backlight driving signal in the system of Fig. 1. Figure 8 is a schematic diagram showing the adjustment of the dynamic brightness curve in the system of Figure 1.

Claims (21)

一種顯示影像的方法,包含: 取得一資料時脈訊號; 取得一垂直同步訊號; 依據該垂直同步訊號,產生一背光驅動訊號;及 一顯示系統根據該資料時脈訊號、該垂直同步訊號及該背光驅動訊號顯示一影像; 其中該資料時脈訊號包含一第一方波,該垂直同步訊號包含一第二方波,該第一方波對應之一第一時間區間與該第二方波對應之一第二時間區間無交集;及 其中該背光驅動訊號包含一複合波,該複合波係由一第三方波與至少一突波合成。A method for displaying an image, comprising: obtaining a data clock signal; obtaining a vertical synchronization signal; generating a backlight driving signal according to the vertical synchronization signal; and a display system according to the data clock signal, the vertical synchronization signal, and the The backlight driving signal displays an image; wherein the data clock signal includes a first square wave, the vertical synchronization signal includes a second square wave, and the first square wave corresponds to the first time interval corresponding to the second square wave One of the second time intervals has no intersection; and wherein the backlight driving signal comprises a composite wave, the composite wave is synthesized by a third-party wave and at least one glitch. 如請求項1所述之方法,其中該複合波對應之一第三時間區間在該第二時間區間內。The method of claim 1, wherein the composite wave corresponds to one of the third time intervals in the second time interval. 如請求項1所述之方法,其中該複合波對應之一第三時間區間的一部分在該第二時間區間外。The method of claim 1, wherein the composite wave corresponds to a portion of one of the third time intervals outside the second time interval. 如請求項3所述之方法,其中該複合波之一降緣部分對應的一時間在該第二時間區間外,且一升緣部分對應的一時間在該第二時間區間內。The method of claim 3, wherein a time corresponding to a falling edge portion of the composite wave is outside the second time interval, and a time corresponding to a rising edge portion is within the second time interval. 如請求項3所述之方法,其中該複合波之一升緣部分對應的一時間在該第二時間區間外,且一降緣部分對應的一時間在該第二時間區間內。The method of claim 3, wherein a time corresponding to a rising edge portion of the composite wave is outside the second time interval, and a time corresponding to a falling edge portion is within the second time interval. 如請求項1所述之方法,其中該第二時間區間在該複合波對應之一第三時間區間內。The method of claim 1, wherein the second time interval is within a third time interval corresponding to the composite wave. 如請求項2至6中任一項所述之方法,另包含: 一背光模組中之一發光元件陣列的每一發光元件於該第三時間區間內同時開啟,且該每一發光元件於該第三時間區間外同時關閉。The method of any one of claims 2 to 6, further comprising: each of the light-emitting elements of one of the backlight modules in the backlight module is simultaneously turned on in the third time interval, and each of the light-emitting elements is The third time interval is closed at the same time. 如請求項1所述之方法,其中該顯示系統係為一直下式(direct back-lit)顯示系統或一側照式(edge LED back-lit)顯示系統。The method of claim 1, wherein the display system is a direct back-lit display system or an edge LED back-lit display system. 如請求項1所述之方法,其中該背光驅動訊號之該第三方波係為一脈波調變訊號,且該脈波調變訊號的一最高工作週期(Peak Duty Cycle)係為1/20。The method of claim 1, wherein the third-party wave system of the backlight driving signal is a pulse modulation signal, and a maximum duty cycle (Peak Duty Cycle) of the pulse modulation signal is 1/20. . 如請求項1所述之方法,其中該背光驅動訊號係由一背光驅動控制裝置產生,且該背光驅動控制裝置係根據至少一個脈波調變訊號產生該背光驅動訊號。The method of claim 1, wherein the backlight driving signal is generated by a backlight driving control device, and the backlight driving control device generates the backlight driving signal according to the at least one pulse modulation signal. 如請求項1所述之方法,另包含: 根據複數個顯示頻率對應的複數個驅動電壓表中之一驅動電壓表,將該資料時脈訊號內的一驅動電壓升壓。The method of claim 1, further comprising: boosting a driving voltage in the data clock signal according to one of the plurality of driving voltage tables corresponding to the plurality of display frequencies. 如請求項11所述之方法,其中該些顯示頻率包含複數個由小到大的顯示頻率,該些驅動電壓表中之每一驅動電壓表包含一升壓倍率,且一較小顯示頻率對應之一升壓倍率小於一較大顯示頻率對應之一升壓倍率。The method of claim 11, wherein the display frequencies comprise a plurality of display frequencies from small to large, each of the driving voltage tables includes a boosting magnification, and a smaller display frequency corresponds to One of the boosting magnifications is less than a larger display frequency corresponding to one of the boosting magnifications. 如請求項1所述之方法,另包含: 調整該顯示系統的一動態亮度曲線,以使該動態亮度曲線的至少一部份在一標準動態亮度曲線之上。The method of claim 1, further comprising: adjusting a dynamic brightness curve of the display system such that at least a portion of the dynamic brightness curve is above a standard dynamic brightness curve. 如請求項13所述之方法,其中該動態亮度曲線包含一暗部區域、一中調區域及一亮部區域,且調整後的該動態亮度曲線之該暗部區域及該亮部區域在該標準動態亮度曲線之上,及該中調區域實質上近似於該標準動態亮度曲線。The method of claim 13, wherein the dynamic brightness curve comprises a dark portion region, a middle adjustment region and a bright portion region, and the adjusted dark portion of the dynamic brightness curve and the bright portion region are in the standard dynamics Above the brightness curve, and the mid-tone region substantially approximates the standard dynamic brightness curve. 一種顯示系統,包含: 一背光驅動裝置,用以根據一分電流訊號、一背光驅動訊號及一最大電流設定訊號,產生一開關控制訊號及一電流控制訊號;及 一背光模組,耦接於該背光驅動裝置,用以根據該開關控制訊號及該電流控制訊號驅動至少一串發光二極體串; 其中該背光驅動裝置包含一驅動電路,該驅動電路透過複數個電阻所組成之一分壓電路接收該分電流訊號,透過一電阻電容電路(RC-Circuit)接收該背光驅動訊號,以及透過一電阻接收該最大電流設定訊號,且該背光驅動訊號包含至少一脈波調變訊號所組成的一複合波。A display system comprising: a backlight driving device for generating a switch control signal and a current control signal according to a minute current signal, a backlight driving signal and a maximum current setting signal; and a backlight module coupled to the backlight module The backlight driving device is configured to drive at least one string of LED strings according to the switch control signal and the current control signal; wherein the backlight driving device comprises a driving circuit, and the driving circuit is divided by a plurality of resistors The circuit receives the divided current signal, receives the backlight driving signal through a resistor-capacitor circuit (RC-Circuit), and receives the maximum current setting signal through a resistor, and the backlight driving signal comprises at least one pulse modulation signal a composite wave. 如請求項15所述之顯示系統,其中該背光驅動訊號根據一資料時脈訊號及一垂直同步訊號產生,且該資料時脈訊號包含一第一方波,該垂直同步訊號包含一第二方波,該第一方波對應之一第一時間區間與該第二方波對應之一第二時間區間無交集。The display system of claim 15, wherein the backlight driving signal is generated according to a data clock signal and a vertical synchronization signal, and the data clock signal includes a first square wave, and the vertical synchronization signal includes a second party The wave, the first time interval corresponding to the first square wave and the second time interval corresponding to the second square wave have no intersection. 如請求項16所述之顯示系統,其中該複合波對應之一第三時間區間在該第二時間區間內。The display system of claim 16, wherein the composite wave corresponds to one of the third time intervals in the second time interval. 如請求項16所述之顯示系統,其中該複合波對應之一第三時間區間的一部分在該第二時間區間外。The display system of claim 16, wherein the composite wave corresponds to a portion of one of the third time intervals outside the second time interval. 如請求項18所述之顯示系統,其中該複合波之一降緣部分對應的一時間在該第二時間區間外,且一升緣部分對應的一時間在該第二時間區間內。The display system of claim 18, wherein a time corresponding to a falling edge portion of the composite wave is outside the second time interval, and a time corresponding to a rising edge portion is within the second time interval. 如請求項18所述之顯示系統,其中該複合波之一升緣部分對應的一時間在該第二時間區間外,且一降緣部分對應的一時間在該第二時間區間內。The display system of claim 18, wherein a time corresponding to a rising edge portion of the composite wave is outside the second time interval, and a time corresponding to a falling edge portion is within the second time interval. 如請求項16所述之顯示系統,其中該第二時間區間在該複合波對應之一第三時間區間內。The display system of claim 16, wherein the second time interval is within a third time interval corresponding to the composite wave.
TW106105012A 2017-02-16 2017-02-16 Display system and method for displaying an image TWI629679B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106105012A TWI629679B (en) 2017-02-16 2017-02-16 Display system and method for displaying an image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106105012A TWI629679B (en) 2017-02-16 2017-02-16 Display system and method for displaying an image

Publications (2)

Publication Number Publication Date
TWI629679B TWI629679B (en) 2018-07-11
TW201832219A true TW201832219A (en) 2018-09-01

Family

ID=63640359

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106105012A TWI629679B (en) 2017-02-16 2017-02-16 Display system and method for displaying an image

Country Status (1)

Country Link
TW (1) TWI629679B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI693825B (en) * 2018-11-01 2020-05-11 明基電通股份有限公司 Display method for reducing a double image effect and display system thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI672534B (en) * 2018-09-19 2019-09-21 奇景光電股份有限公司 Local dimming system and method adaptable to a backlight of a display
TWI768828B (en) * 2021-04-14 2022-06-21 瑞昱半導體股份有限公司 Display device and displaying method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI348141B (en) * 2006-10-16 2011-09-01 Chunghwa Picture Tubes Ltd Light source driving circuit
TW200839692A (en) * 2007-03-21 2008-10-01 Delta Electronics Inc Liquid crystal display apparatus, backlight module and light source driving device thereof
KR101469479B1 (en) * 2011-11-09 2014-12-08 엘지디스플레이 주식회사 Organic light emitting diode display device and method for driving the same
CN103247279B (en) * 2013-05-13 2015-07-01 深圳市华星光电技术有限公司 Light source driving circuit of light emitting diode and backlight module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI693825B (en) * 2018-11-01 2020-05-11 明基電通股份有限公司 Display method for reducing a double image effect and display system thereof

Also Published As

Publication number Publication date
TWI629679B (en) 2018-07-11

Similar Documents

Publication Publication Date Title
US10699649B2 (en) Display device and backlight control method
CN107068068B (en) Display system and the method for showing image
JP6575113B2 (en) Display device
KR102231046B1 (en) Display device and method for driving the same
US7397195B2 (en) Apparatus of light source and adjustable control circuit for LEDs
TWI393111B (en) Method and apparatus for power level control and/or contrast control in a display device
TWI672686B (en) Display device and backlight control method
KR101308479B1 (en) Method and circuit for synchronizing input and output synchronization signals, backlight driver of liquid crystal display device using the same, and method for driving the backlight driver
JP5084948B2 (en) Backlight device
US20070211014A1 (en) Methods and Circuits for Synchronous Operation of Display Backlighting
US9865199B2 (en) Backlight drive circuit
CN108335677A (en) Luminance compensation method, luminance compensating mechanism and display device
US11043171B2 (en) Anti-flicker and motion-blur improvement method and display device thereof
WO2011040010A1 (en) Backlight device and display apparatus
JP2008129584A (en) Liquid crystal display and driving method thereof
KR20070117847A (en) Backlight apparatus for display device and method of adjusting brightness for the same
TWI629679B (en) Display system and method for displaying an image
JP2008096902A (en) Light emitting device and image display device equipped with the same
CN1650219A (en) A liquid crystal display
US11651746B2 (en) Backlight driving device and operating method thereof
JP2012519885A (en) For example, anti-blurring (ANTI-BLUR) device for backlight of liquid crystal display
WO2022141567A1 (en) Display panel and electronic device
JP6508244B2 (en) Display device
TWI654592B (en) Image display method and display system
JP2953589B2 (en) Viewing angle correction method for multi-gradation display of liquid crystal and multi-gradation liquid crystal display device using the same