TW201831656A - Inorganic perovskite quantum dot recipe and method of preparing the same - Google Patents
Inorganic perovskite quantum dot recipe and method of preparing the same Download PDFInfo
- Publication number
- TW201831656A TW201831656A TW106104947A TW106104947A TW201831656A TW 201831656 A TW201831656 A TW 201831656A TW 106104947 A TW106104947 A TW 106104947A TW 106104947 A TW106104947 A TW 106104947A TW 201831656 A TW201831656 A TW 201831656A
- Authority
- TW
- Taiwan
- Prior art keywords
- inorganic perovskite
- perovskite quantum
- quantum dot
- preparing
- mixed solution
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Luminescent Compositions (AREA)
Abstract
Description
本發明是有關於一種鈣鈦礦量子點配方及其製備方法,且特別是有關於一種無機鈣鈦礦量子點配方及其製備方法。The invention relates to a perovskite quantum dot formulation and a preparation method thereof, and in particular to an inorganic perovskite quantum dot formulation and a preparation method thereof.
無機鈣鈦礦量子點具有高量子效率、波長可調性、半高寬窄等優勢。而無機鈣鈦礦量子點可藉由控制不同鹵素的比例與形貌控制,以調控出各種放光波長的量子點,因此可應用於發光二極體、太陽能電池與雷射等。Inorganic perovskite quantum dots have the advantages of high quantum efficiency, wavelength tunability, and a half-height width. Inorganic perovskite quantum dots can be controlled by various ratios and morphology of different halogens to control quantum dots of various emission wavelengths, and thus can be applied to light-emitting diodes, solar cells, and lasers.
全錫式無機鈣鈦礦量子點CsSnBr3 可調控之波長位置為紅光至遠紅外光,然而全錫式鈣鈦礦量子點極不穩定,無法穩定存於空氣中,故量子效率低。因此開發出新穎、具高量子效率的無機鈣鈦礦量子點是目前極需努力的目標。The all-tin-type inorganic perovskite quantum dot CsSnBr 3 can regulate the wavelength from red to far infrared. However, the all-tin perovskite quantum dot is extremely unstable and cannot be stably stored in the air, so the quantum efficiency is low. Therefore, the development of novel, high quantum efficiency inorganic perovskite quantum dots is currently the goal of great efforts.
本發明提供一種無機鈣鈦礦量子點配方,其具有高量子效率。The present invention provides an inorganic perovskite quantum dot formulation having high quantum efficiency.
本發明提供一種製備無機鈣鈦礦量子點配方的方法,其製備的無機鈣鈦礦量子點配方具有高量子效率。The invention provides a method for preparing an inorganic perovskite quantum dot formulation, wherein the prepared inorganic perovskite quantum dot formulation has high quantum efficiency.
本發明的無機鈣鈦礦量子點配方包括以下的名義通式: Cs(Pb1-n Snn )X3 , 其中X為Cl、Br、I或其組合,0< n < 0.05,其中錫為四價錫陽離子。The inorganic perovskite quantum dot formulation of the present invention comprises the following general formula: Cs(Pb 1-n Sn n )X 3 , wherein X is Cl, Br, I or a combination thereof, 0 < n < 0.05, wherein tin is Tetravalent tin cation.
在本發明的一實施例中,無機鈣鈦礦量子點配方的量子效率可大於50%。In an embodiment of the invention, the quantum efficiency of the inorganic perovskite quantum dot formulation can be greater than 50%.
本發明的製備無機鈣鈦礦量子點配方的方法包括以下步驟。首先,將碳酸銫(Cs2 CO3 )、以及油酸(oleic acid,OA)進行混合,以得到第一混合溶液。接著,於真空下對第一混合溶液進行第一加熱製程,以得到第一前驅物溶液。然後,將第一前驅物溶液於氮氣氛圍下進行第二加熱製程,以得到油酸銫前驅物。之後,將第二溶劑、鹵化鉛、鹵化錫以及分散劑進行混合,以得到第二混合溶液。接著,於真空下對第二混合溶液進行第三加熱製程,以得到第三混合溶液。然後,於氮氣氛圍下將油酸與油胺(oleylamine,OAm)的混合溶液加入第三混合溶液中,以得到第四混合溶液。之後,對第四混合溶液進行第四加熱製程,以得到第二前驅物溶液。然後,將油酸銫前驅物加入第二前驅物溶液中,以得到無機鈣鈦礦量子點。The method of preparing an inorganic perovskite quantum dot formulation of the present invention comprises the following steps. First, cesium carbonate (Cs 2 CO 3 ) and oleic acid (OA) are mixed to obtain a first mixed solution. Next, the first mixed solution is subjected to a first heating process under vacuum to obtain a first precursor solution. Then, the first precursor solution was subjected to a second heating process under a nitrogen atmosphere to obtain a lanthanum oleate precursor. Thereafter, the second solvent, lead halide, tin halide, and dispersant are mixed to obtain a second mixed solution. Next, the second mixed solution is subjected to a third heating process under vacuum to obtain a third mixed solution. Then, a mixed solution of oleic acid and oleylamine (OAm) was added to the third mixed solution under a nitrogen atmosphere to obtain a fourth mixed solution. Thereafter, the fourth mixed solution is subjected to a fourth heating process to obtain a second precursor solution. Then, a ruthenium oleate precursor is added to the second precursor solution to obtain an inorganic perovskite quantum dot.
在本發明的一實施例中,上述的第一混合溶液中的碳酸銫、第一溶劑以及油酸的質量體積比(mg:mL:mL)例如是400~500: 20~30: 1~5。In an embodiment of the present invention, the mass to volume ratio (mg:mL:mL) of the cesium carbonate, the first solvent, and the oleic acid in the first mixed solution is, for example, 400 to 500: 20 to 30: 1 to 5 .
在本發明的一實施例中,上述的第一溶劑例如是十八烯(octadecence,ODE)或液態石蠟(paraffin liquid)。In an embodiment of the invention, the first solvent is, for example, octadecene (ODE) or liquid paraffin.
在本發明的一實施例中,上述的第一加熱製程的加熱溫度例如是20℃至160℃,加熱時間例如是1分鐘至90分鐘。In an embodiment of the invention, the heating temperature of the first heating process is, for example, 20 ° C to 160 ° C, and the heating time is, for example, 1 minute to 90 minutes.
在本發明的一實施例中,上述的第二加熱製程的加熱溫度例如是140℃至200℃,加熱時間例如是1分鐘至90分鐘。In an embodiment of the invention, the heating temperature of the second heating process is, for example, 140 ° C to 200 ° C, and the heating time is, for example, 1 minute to 90 minutes.
在本發明的一實施例中,上述的第二溶劑例如是十八烯、油胺或油酸。In an embodiment of the invention, the second solvent is, for example, octadecene, oleylamine or oleic acid.
在本發明的一實施例中,上述的分散劑例如是三正辛基膦、三正辛基氧膦、油酸、油胺或其組合。In an embodiment of the invention, the dispersing agent is, for example, tri-n-octylphosphine, tri-n-octylphosphine oxide, oleic acid, oleylamine or a combination thereof.
在本發明的一實施例中,上述的第二混合溶液中的第二溶劑、鹵化鉛、鹵化錫以及分散劑的體積莫耳比(ml:mol:mol:ml)為20~30: 0.33~1: 0~0.67: 0.1~5。In an embodiment of the present invention, the volume molar ratio (ml:mol:mol:ml) of the second solvent, the lead halide, the tin halide, and the dispersing agent in the second mixed solution is 20-30: 0.33~ 1: 0~0.67: 0.1~5.
在本發明的一實施例中,上述的第三加熱製程的加熱溫度例如是20℃至160℃,加熱時間例如是1分鐘至90分鐘。In an embodiment of the invention, the heating temperature of the third heating process is, for example, 20 ° C to 160 ° C, and the heating time is, for example, 1 minute to 90 minutes.
在本發明的一實施例中,上述的油酸與油胺的混合溶液中的油酸與油胺的體積比例如是1: 1。In an embodiment of the invention, the volume ratio of oleic acid to oleylamine in the mixed solution of oleic acid and oleylamine is, for example, 1:1.
在本發明的一實施例中,上述的第四加熱製程的加熱溫度例如是140℃至200℃。In an embodiment of the invention, the heating temperature of the fourth heating process is, for example, 140 ° C to 200 ° C.
在本發明的一實施例中,上述的油酸銫前驅物與第二前驅物溶液的體積比為1: 10至1: 15。In an embodiment of the invention, the volume ratio of the strontium oleate precursor to the second precursor solution is 1:10 to 1:15.
在本發明的一實施例中,上述的無機鈣鈦礦量子點包括以下的名義通式: Cs(Pbn Sn1-n )X3 , 其中X為Cl、Br、I或其組合,0< n < 0.05,其中Sn為四價陽離子。In an embodiment of the invention, the inorganic perovskite quantum dot comprises the following general formula: Cs(Pb n Sn 1-n )X 3 , wherein X is Cl, Br, I or a combination thereof, 0< n < 0.05, where Sn is a tetravalent cation.
在本發明的一實施例中,無機鈣鈦礦量子點配方的量子效率可大於50%。In an embodiment of the invention, the quantum efficiency of the inorganic perovskite quantum dot formulation can be greater than 50%.
基於上述,本發明所製備的無機鈣鈦礦量子點配方由於摻雜有少量的四價錫陽離子,因此具有相較於未經錫摻雜的無機鈣鈦礦量子點高的量子效率。Based on the above, the inorganic perovskite quantum dot formulation prepared by the present invention has a quantum efficiency higher than that of the inorganic perovskite quantum dots doped with tin because it is doped with a small amount of tetravalent tin cation.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.
圖1為依照本發明之一實施例的一種無機鈣鈦礦量子點配方的製備流程步驟圖。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart showing the preparation process of an inorganic perovskite quantum dot formulation according to an embodiment of the present invention.
請參照圖1。首先,進行步驟S100,將碳酸銫、第一溶劑以及油酸進行混合,以得到第一混合溶液。第一溶劑例如是十八烯或液態石蠟(Paraffin liquid)。在本實施例中,第一混合溶液中的碳酸銫、第一溶劑以及油酸的質量體積比(mg:ml:ml)例如是400~500: 20~30: 1~5。Please refer to Figure 1. First, in step S100, cesium carbonate, a first solvent, and oleic acid are mixed to obtain a first mixed solution. The first solvent is, for example, octadecene or a liquid paraffin. In the present embodiment, the mass-to-volume ratio (mg: ml: ml) of the cesium carbonate, the first solvent, and the oleic acid in the first mixed solution is, for example, 400 to 500: 20 to 30: 1 to 5.
接著,進行步驟S110,於真空下對第一混合溶液進行第一加熱製程,以得到第一前驅物溶液。在本實施例中,第一加熱製程的加熱溫度為20℃至160℃,加熱時間為1分鐘至90分鐘。在一實施例中,第一製程的加熱溫度例如是120℃,加熱時間為1小時。在進行第一加熱製程的過程中,可除去第一混合溶液中的水。Next, in step S110, the first mixed solution is subjected to a first heating process under vacuum to obtain a first precursor solution. In the present embodiment, the heating temperature of the first heating process is from 20 ° C to 160 ° C, and the heating time is from 1 minute to 90 minutes. In one embodiment, the heating temperature of the first process is, for example, 120 ° C, and the heating time is 1 hour. The water in the first mixed solution can be removed during the first heating process.
然後,進行步驟S120,將第一前驅物溶液於氮氣氛圍下進行第二加熱製程,以得到油酸銫前驅物。在本實施例中,第二加熱製程的加熱溫度為140℃至200℃,加熱時間為1分鐘至90分鐘,但不限於此,只要加熱直至碳酸銫與油酸反應完全即可。在一實施例中,第二製程的加熱溫度例如是150℃。Then, in step S120, the first precursor solution is subjected to a second heating process under a nitrogen atmosphere to obtain a lanthanum oleate precursor. In the present embodiment, the heating temperature of the second heating process is 140 ° C to 200 ° C, and the heating time is 1 minute to 90 minutes, but is not limited thereto, as long as it is heated until the reaction of barium carbonate with oleic acid is complete. In one embodiment, the heating temperature of the second process is, for example, 150 °C.
之後,進行步驟S130,將第二溶劑、鹵化鉛、鹵化錫以及分散劑進行混合,以得到第二混合溶液。第二溶劑例如是十八烯、油胺或油酸。分散劑例如是三正辛基膦、三正辛基氧膦、油酸、油胺或其組合。在本實施例中,第二混合溶液中的第二溶劑、鹵化鉛、鹵化錫以及分散劑的體積莫耳比(ml:mol:mol:ml)例如是20~30: 0.33~1: 0~0.67: 0.1~5。可藉由控制鹵化鉛與鹵化錫之間的莫耳比來調整無機鈣鈦礦量子點中鉛與錫的比例。Thereafter, in step S130, the second solvent, the lead halide, the tin halide, and the dispersing agent are mixed to obtain a second mixed solution. The second solvent is, for example, octadecene, oleylamine or oleic acid. The dispersing agent is, for example, tri-n-octylphosphine, tri-n-octylphosphine oxide, oleic acid, oleylamine or a combination thereof. In this embodiment, the volume molar ratio (ml:mol:mol:ml) of the second solvent, the lead halide, the tin halide, and the dispersing agent in the second mixed solution is, for example, 20 to 30: 0.33 to 1:0. 0.67: 0.1~5. The ratio of lead to tin in the inorganic perovskite quantum dots can be adjusted by controlling the molar ratio between the lead halide and the tin halide.
接著,進行步驟S130,於真空下對第二混合溶液進行第三加熱製程,以得到第三混合溶液。在本實施例中,第三加熱製程的加熱溫度為20℃至160℃,加熱時間為1分鐘至90分鐘。在一實施例中,第三製程的加熱溫度例如是120℃,加熱時間為1小時。在進行第三加熱製程的過程中,可除去第二混合溶液中的水。Next, in step S130, the second mixed solution is subjected to a third heating process under vacuum to obtain a third mixed solution. In the present embodiment, the heating temperature of the third heating process is from 20 ° C to 160 ° C, and the heating time is from 1 minute to 90 minutes. In one embodiment, the heating temperature of the third process is, for example, 120 ° C, and the heating time is 1 hour. The water in the second mixed solution can be removed during the third heating process.
然後,進行步驟S140,於氮氣氛圍下將油酸與油胺(oleylamine,OAm)的混合溶液加入第三混合溶液中,以得到第四混合溶液。在本實施例中,油酸與油胺的混合溶液中的油酸與油胺的體積比例如是1: 1。Then, in step S140, a mixed solution of oleic acid and oleylamine (OAm) is added to the third mixed solution under a nitrogen atmosphere to obtain a fourth mixed solution. In the present embodiment, the volume ratio of oleic acid to oleylamine in the mixed solution of oleic acid and oleylamine is, for example, 1:1.
之後,進行步驟S150,對第四混合溶液進行第四加熱製程,以得到第二前驅物溶液。在本實施例中,第四加熱製程的加熱溫度例如是140℃至200℃。Thereafter, step S150 is performed to perform a fourth heating process on the fourth mixed solution to obtain a second precursor solution. In the present embodiment, the heating temperature of the fourth heating process is, for example, 140 ° C to 200 ° C.
然後,進行步驟S160,將油酸銫前驅物加入第二前驅物溶液中,以得到無機鈣鈦礦量子點。在本實施例中,油酸銫前驅物與第二前驅物溶液的體積比為1:10至1:15。在一實施例中,油酸銫前驅物與第二前驅物溶液的體積比為1:13。Then, in step S160, the lanthanum oleate precursor is added to the second precursor solution to obtain an inorganic perovskite quantum dot. In this embodiment, the volume ratio of the lanthanum oleate precursor to the second precursor solution is from 1:10 to 1:15. In one embodiment, the volume ratio of the lanthanum oleate precursor to the second precursor solution is 1:13.
在本實施例中,所製備的無機鈣鈦礦量子點配方具有以下的名義通式: Cs(Pb1-n Snn )X3 , 其中X為Cl、Br、I或其組合,0< n < 0.05,其中Sn為四價陽離子。In this embodiment, the prepared inorganic perovskite quantum dot formulation has the following general formula: Cs(Pb 1-n Sn n )X 3 , wherein X is Cl, Br, I or a combination thereof, 0< n < 0.05, wherein Sn is a tetravalent cation.
在實施例中,無機鈣鈦礦量子點具有高於50%的量子效率。In an embodiment, the inorganic perovskite quantum dots have a quantum efficiency greater than 50%.
在本實施例中,在步驟S160之後,可進一步將油酸銫前驅物與第二前驅物溶液的混合溶液降溫至80℃至200℃並保持1分鐘至150分鐘。之後離心並將所製備的無機鈣鈦礦量子點分散在己烷溶劑中。舉例來說,可將油酸銫前驅物與第二前驅物溶液的混合溶液降溫至120℃並維持1小時。In this embodiment, after step S160, the mixed solution of the lanthanum oleate precursor and the second precursor solution may be further cooled to 80 ° C to 200 ° C for 1 minute to 150 minutes. The centrifugation was then carried out and the prepared inorganic perovskite quantum dots were dispersed in a hexane solvent. For example, a mixed solution of the lanthanum oleate precursor and the second precursor solution can be cooled to 120 ° C for 1 hour.
接下來將以實驗例來說明以本發明的無機鈣鈦礦量子點配方的製備方法所製作的無機鈣鈦礦量子點的特性。然而,在不脫離本發明的精神,可適當地對以下的實驗例中所示的材料、使用方法等進行變更。因此,本發明的範圍不應以以下所示的實驗例來限定解釋。Next, the characteristics of the inorganic perovskite quantum dots produced by the preparation method of the inorganic perovskite quantum dot formulation of the present invention will be described by way of experimental examples. However, the materials, the methods of use, and the like shown in the following experimental examples can be appropriately changed without departing from the spirit of the invention. Therefore, the scope of the present invention should not be construed as limited by the experimental examples shown below.
[無機鈣鈦礦量子點的製備][Preparation of inorganic perovskite quantum dots]
實施例1Example 1
無機鈣鈦礦量子點的製備流程如以下所示:將0.814g的碳酸銫、40 mL的十八烯及2.5 mL之油酸加入100 mL的三頸瓶中。於真空、120℃下加熱1小時以去除水。於氮氣氛圍下加熱至150℃直至碳酸銫與油酸反應完全以得到油酸銫前驅物。The preparation procedure of the inorganic perovskite quantum dots is as follows: 0.814 g of cesium carbonate, 40 mL of octadecene and 2.5 mL of oleic acid were added to a 100 mL three-necked flask. It was heated under vacuum at 120 ° C for 1 hour to remove water. The mixture was heated to 150 ° C under a nitrogen atmosphere until the cesium carbonate was reacted with oleic acid to obtain a cerium oleate precursor.
將5 mL的十八烯、0.063 mmol的溴化錫與0.126 mmol的溴化鉛加入25 mL的三頸瓶中,並加入2 mL的三正辛基膦(trioctylphosphine,TOP)做為分散劑。於真空、120℃下加熱1小時以去除水。將0.5 mL的油胺及0.5 mL的油酸於氮氣氛圍下注射至三頸瓶中,待溶液澄清後提高溫度至140℃~200℃。接著將第0.4 ml的油酸銫前驅物快速注射至三頸瓶中並等待5秒後,降溫至120℃,等待1小時後進行離心並將無機鈣鈦礦量子點分散於己烷溶劑中。5 mL of octadecene, 0.063 mmol of tin bromide and 0.126 mmol of lead bromide were added to a 25 mL three-necked flask, and 2 mL of trioctylphosphine (TOP) was added as a dispersing agent. It was heated under vacuum at 120 ° C for 1 hour to remove water. 0.5 mL of oleylamine and 0.5 mL of oleic acid were injected into a three-necked flask under a nitrogen atmosphere. After the solution was clarified, the temperature was raised to 140 ° C to 200 ° C. Next, 0.4 ml of the lanthanum oleate precursor was quickly injected into the three-necked flask and waited for 5 seconds, then cooled to 120 ° C, and after 1 hour, it was centrifuged and the inorganic perovskite quantum dots were dispersed in a hexane solvent.
實施例2Example 2
使用與實施例1類似的方法製備無機鈣鈦礦量子點,其差別只在於使用0.94 mmol的溴化錫與0.94 mmol的溴化鉛取代實施例1中的0.063 mmol的溴化錫與0.126 mmol的溴化鉛。Inorganic perovskite quantum dots were prepared using a method similar to that of Example 1, except that 0.94 mmol of tin bromide and 0.94 mmol of lead bromide were used instead of 0.063 mmol of tin bromide and 0.126 mmol in Example 1. Lead bromide.
比較例1Comparative example 1
使用與實施例1類似的方法製備無機鈣鈦礦量子點,其差別只在於使用0.126 mmol的溴化錫與0.063 mmol的溴化鉛取代實施例1中的0.063 mmol的溴化錫與0.126 mmol的溴化鉛。Inorganic perovskite quantum dots were prepared using a method similar to that of Example 1, except that 0.126 mmol of tin bromide and 0.063 mmol of lead bromide were used instead of 0.063 mmol of tin bromide and 0.126 mmol in Example 1. Lead bromide.
比較例2Comparative example 2
使用與實施例1類似的方法製備無機鈣鈦礦量子點,其差別只在於使用0.188 mmol的溴化鉛取代實施例1中的0.063mmol的溴化錫與0.126 mmol的溴化鉛。Inorganic perovskite quantum dots were prepared using a method similar to that of Example 1, except that 0.188 mmol of lead bromide was used instead of 0.063 mmol of tin bromide and 0.126 mmol of lead bromide in Example 1.
使用感應偶合電漿光譜原子發射儀(Inductively Coupled Plasma with Atomic Emission Spectroscopy,ICP-AES)分析實施例1、實施例2、比較例1及比較例2所製備的無機鈣鈦礦量子點,以確定無機鈣鈦礦量子點的元素組成,結果如表1所示。The inorganic perovskite quantum dots prepared in Example 1, Example 2, Comparative Example 1 and Comparative Example 2 were analyzed using Inductively Coupled Plasma with Atomic Emission Spectroscopy (ICP-AES) to determine The elemental composition of the inorganic perovskite quantum dots is shown in Table 1.
[表1]
圖2為實施例及比較例的無機鈣鈦礦量子點的X光繞射(X-ray diffraction,XRD)圖。由圖2可以看出,實施例1及實施例2的無機鈣鈦礦量子點具有單一相之正立方體(cubic)的結構。而比較例1的無機鈣鈦礦量子點由於具有較高量的錫摻雜(n=0.034),因此比較例1的無機鈣鈦礦量子點除了具有單一相之正立方體單一相之正立方體外,還有Cs2 SnBr6 的雜相結構。2 is an X-ray diffraction (XRD) pattern of inorganic perovskite quantum dots of Examples and Comparative Examples. As can be seen from Fig. 2, the inorganic perovskite quantum dots of Examples 1 and 2 have a cubic structure of a single phase. The inorganic perovskite quantum dot of Comparative Example 1 has a higher amount of tin doping (n=0.034), so the inorganic perovskite quantum dot of Comparative Example 1 has a positive cube other than a single phase of a single cube. There is also a heterophase structure of Cs 2 SnBr 6 .
圖3為實施例及比較例的無機鈣鈦礦量子點的電子選區繞射(selected area electron diffraction,SAED)圖。由圖3可以看出,比較例1除了具有晶面間距為5.8 Å的正立方體的結構(即d100 =5.8Å)外,還有Cs2 SnBr6 的雜相結構(d113 =3.24Å)。3 is a graph of selected area electron diffraction (SAED) of inorganic perovskite quantum dots of Examples and Comparative Examples. It can be seen from Fig. 3 that in addition to the structure of a positive cube having a plane spacing of 5.8 Å (i.e., d 100 = 5.8 Å), there is a heterophase structure of Cs 2 SnBr 6 (d 113 = 3.24 Å). .
圖4及圖5為實施例、比較例以及標準品的X光進邊緣結構(X-ray absorption near edge structure; XANES)圖。在本實施例中,標準品1為PbO,標準品2為PbO2 。也就是說,標準品1可代表二價鉛離子,而標準品2可代表四價鉛離子。此外,標準品3為SnO,標準品4為SnO2 。也就是說,標準品3可代表二價錫離子,而標準品4可代表四價錫離子。由圖4及圖5可以看出,本發明的無機鈣鈦礦量子點中的鉛為二價鉛離子,而無機鈣鈦礦量子點中的錫為四價錫離子。4 and 5 are X-ray absorption near edge structures (XANES) diagrams of the examples, comparative examples, and standards. In the present embodiment, the standard 1 is PbO and the standard 2 is PbO 2 . That is, Standard 1 can represent divalent lead ions, while Standard 2 can represent tetravalent lead ions. Further, the standard 3 is SnO, and the standard 4 is SnO 2 . That is, Standard 3 can represent divalent tin ions, while Standard 4 can represent tetravalent tin ions. As can be seen from Figures 4 and 5, the lead in the inorganic perovskite quantum dots of the present invention is a divalent lead ion, and the tin in the inorganic perovskite quantum dot is a tetravalent tin ion.
圖6為實施例及比較例的無機鈣鈦礦量子點的電子顯微鏡照片。Fig. 6 is an electron micrograph of inorganic perovskite quantum dots of Examples and Comparative Examples.
由圖6可以看出,實施例1的無機鈣鈦礦量子點具有立方體的外觀結構。而隨著錫的摻雜比例增加,無機鈣鈦礦量子點的均勻性下降。也就是說,當無機鈣鈦礦量子點中錫的莫耳比為0.034以上時,會造成雜相產生。As can be seen from Fig. 6, the inorganic perovskite quantum dot of Example 1 has a cubic appearance structure. As the doping ratio of tin increases, the uniformity of inorganic perovskite quantum dots decreases. That is to say, when the molar ratio of tin in the inorganic perovskite quantum dot is 0.034 or more, a hetero phase is generated.
圖7為實施例及比較例的無機鈣鈦礦量子點的吸光光譜。圖8為實施例及比較例的無機鈣鈦礦量子點的放光光譜。Fig. 7 is an absorption spectrum of inorganic perovskite quantum dots of Examples and Comparative Examples. Fig. 8 is a light emission spectrum of inorganic perovskite quantum dots of Examples and Comparative Examples.
由圖8可以看出,實施例1以及實施例2的無機鈣鈦礦量子點的放光波長約為510 nm ~513 nm。比較例1的無機鈣鈦礦量子點具有較高的錫摻雜,其放光波長約為503,呈現藍位移的現象。As can be seen from FIG. 8, the inorganic perovskite quantum dots of Example 1 and Example 2 have a light-emitting wavelength of about 510 nm to 513 nm. The inorganic perovskite quantum dot of Comparative Example 1 has a high tin doping and a light-emitting wavelength of about 503, which exhibits a blue shift phenomenon.
實施例1、實施例2、比較例1及比較例2的無機鈣鈦礦量子點的放光波長、半高全寬(full width at half maximum,FWHM)以及量子效率列於表2。The light-emitting wavelength, full width at half maximum (FWHM), and quantum efficiency of the inorganic perovskite quantum dots of Example 1, Example 2, Comparative Example 1, and Comparative Example 2 are shown in Table 2.
[表2]
由表2的結果可知,未摻雜錫的無機鈣鈦礦量子點(即比較例2)的量子效率為45%。而輕度錫摻雜的無機鈣鈦礦量子點(即實施例1及實施例2)的量子效率明顯高於未摻雜錫的無機鈣鈦礦量子點(即比較例2)的量子效率,其中實施例1的無機鈣鈦礦量子點的量子效率可高達83%。而比較例1的無機鈣鈦礦量子點具有過高的錫摻雜,造成晶體缺陷,進而使量子效率下降。As is clear from the results of Table 2, the quantum efficiency of the inorganic-doped perovskite quantum dots (i.e., Comparative Example 2) which was not doped with tin was 45%. The quantum efficiency of the light tin doped inorganic perovskite quantum dots (ie, Example 1 and Example 2) is significantly higher than that of the undoped tin inorganic perovskite quantum dots (ie, Comparative Example 2). The quantum efficiency of the inorganic perovskite quantum dots of Example 1 can be as high as 83%. On the other hand, the inorganic perovskite quantum dots of Comparative Example 1 have too high tin doping, causing crystal defects and further deteriorating quantum efficiency.
綜上所述,本發明所製備的無機鈣鈦礦量子點配方由於具有輕度的錫摻雜,因此具有相較於未經錫摻雜的無機鈣鈦礦量子點高的量子效率。In summary, the inorganic perovskite quantum dot formulation prepared by the present invention has a quantum efficiency higher than that of an inorganic perovskite quantum dot doped with tin because of its mild tin doping.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
S100~S160‧‧‧步驟S100~S160‧‧‧Steps
圖1為依照本發明之一實施例的一種無機鈣鈦礦量子點配方的製備流程步驟圖。 圖2為實施例及比較例的無機鈣鈦礦量子點的X光繞射(X-ray diffraction,XRD)圖。 圖3為實施例及比較例的無機鈣鈦礦量子點的電子選區繞射(selected area electron diffraction,SAED)圖。 圖4及圖5為實施例、比較例以及標準品的X光進邊緣結構(X-ray absorption near edge structure; XANES)圖。 圖6為實施例及比較例的無機鈣鈦礦量子點的電子顯微鏡照片。 圖7為實施例及比較例的無機鈣鈦礦量子點的吸光光譜。 圖8為實施例及比較例的無機鈣鈦礦量子點的放光光譜。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart showing the preparation process of an inorganic perovskite quantum dot formulation according to an embodiment of the present invention. 2 is an X-ray diffraction (XRD) pattern of inorganic perovskite quantum dots of Examples and Comparative Examples. 3 is a graph of selected area electron diffraction (SAED) of inorganic perovskite quantum dots of Examples and Comparative Examples. 4 and 5 are X-ray absorption near edge structures (XANES) diagrams of the examples, comparative examples, and standards. Fig. 6 is an electron micrograph of inorganic perovskite quantum dots of Examples and Comparative Examples. Fig. 7 is an absorption spectrum of inorganic perovskite quantum dots of Examples and Comparative Examples. Fig. 8 is a light emission spectrum of inorganic perovskite quantum dots of Examples and Comparative Examples.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106104947A TWI623606B (en) | 2017-02-15 | 2017-02-15 | Inorganic perovskite quantum dot recipe and mothod of preparing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106104947A TWI623606B (en) | 2017-02-15 | 2017-02-15 | Inorganic perovskite quantum dot recipe and mothod of preparing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI623606B TWI623606B (en) | 2018-05-11 |
TW201831656A true TW201831656A (en) | 2018-09-01 |
Family
ID=62951659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106104947A TWI623606B (en) | 2017-02-15 | 2017-02-15 | Inorganic perovskite quantum dot recipe and mothod of preparing the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI623606B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI642760B (en) * | 2018-01-04 | 2018-12-01 | 國立清華大學 | Perovskite quantum dot, preparation method thereof and quantum dot film including the same |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI808178B (en) | 2019-05-21 | 2023-07-11 | 隆達電子股份有限公司 | Wavelength converting material and light emitting device |
CN111943524A (en) * | 2020-06-18 | 2020-11-17 | 湖北大学 | Inorganic CsPbxSn1-x(BryI1-y)3Preparation method of nanowire and photoelectric detector thereof |
CN112993178B (en) * | 2021-02-07 | 2023-05-19 | 凯里学院 | Light emitting diode based on tin-doped cesium lead bromine quantum dot and preparation method thereof |
CN113684025A (en) * | 2021-09-02 | 2021-11-23 | 张家松 | Synthesis method of halide perovskite type nanocrystal quantum dot |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104388089B (en) * | 2014-11-04 | 2017-06-06 | 深圳Tcl新技术有限公司 | A kind of preparation method of hydridization perovskite quanta point material |
CN105523581B (en) * | 2016-02-25 | 2017-06-09 | 吉林大学 | A kind of single size CsPbX3The nanocrystalline preparation method of perovskite |
CN105838366A (en) * | 2016-04-11 | 2016-08-10 | 武汉保丽量彩科技有限公司 | A fluorescent caesium-lead-halogen group perovskite quantum dot material, a preparing method thereof and applications of the material |
CN106365193A (en) * | 2016-08-23 | 2017-02-01 | 南京紫同纳米科技有限公司 | Preparation method of luminescence tin halide perovskite colloid nano-crystals |
-
2017
- 2017-02-15 TW TW106104947A patent/TWI623606B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI642760B (en) * | 2018-01-04 | 2018-12-01 | 國立清華大學 | Perovskite quantum dot, preparation method thereof and quantum dot film including the same |
Also Published As
Publication number | Publication date |
---|---|
TWI623606B (en) | 2018-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI623606B (en) | Inorganic perovskite quantum dot recipe and mothod of preparing the same | |
Tang et al. | Lead‐free halide double perovskite nanocrystals for light‐emitting applications: strategies for boosting efficiency and stability | |
CN111348674B (en) | Cs3Cu2X5Preparation method of (X ═ Cl, Br and I) nanocrystal and product | |
CN111081816B (en) | Perovskite nanocrystalline with alkali metal ion passivated surface defect and preparation and application thereof | |
CN114058367A (en) | Perovskite quantum dot and mesoporous silica composite luminescent material and preparation thereof | |
Chang et al. | Vacancy association of defects in annealed GaAs | |
TW201900852A (en) | Gigantic quantum dots and method of forming the same | |
TWI716986B (en) | Nitride semiconductor device and substrate thereof, method for forming rare earth element-added nitride layer, and red light emitting device | |
Lin et al. | Single-phase alkylammonium cesium lead iodide quasi-2D perovskites for color-tunable and spectrum-stable red LEDs | |
CN104428910B (en) | Luminous semiconductor device based on II VI | |
Balakrishna et al. | Synthesis, structure and optical studies of ZnO: Eu3+, Er3+, Yb3+ thin films: Enhanced up-conversion emission | |
CN105633223A (en) | AlGaN template, preparation method of AlGaN template and semiconductor device on AlGaN template | |
Adhikari et al. | Impact of core–shell perovskite nanocrystals for LED applications: successes, challenges, and prospects | |
Liu et al. | Wavelength-tuneable near-infrared luminescence in mixed tin–lead halide perovskites | |
Ogawa et al. | Band‐gap modification and tunable blue luminescence of wurtzite MgxZn1–xO thin films | |
Duan et al. | Rare-earth ion-doped perovskite quantum dots: synthesis and optoelectronic properties | |
JP2003204080A (en) | Nitride semiconductor element and its growing method | |
CN103972332A (en) | P-type gallium nitride material hole activating method | |
JP2021520433A (en) | Luminescent material | |
TWI755125B (en) | Preparation of high-quality all-inorganic perovskite quantum dot emitters and their applied light-emitting diodes | |
JP6718413B2 (en) | Method for forming Eu-doped ZnGa2O4 phosphor film | |
KR101722052B1 (en) | Preparation method of phosphor, and light emitting display comprising the phosphor thereby | |
KR102350250B1 (en) | Method for preparing metal ion doped gallium nitride quantum dot | |
KR102152623B1 (en) | Display device and manufacturing method thereof | |
JP4374474B2 (en) | Phosphor |