TW201831414A - Methods for laser processing transparent workpieces by forming score lines - Google Patents

Methods for laser processing transparent workpieces by forming score lines Download PDF

Info

Publication number
TW201831414A
TW201831414A TW106142524A TW106142524A TW201831414A TW 201831414 A TW201831414 A TW 201831414A TW 106142524 A TW106142524 A TW 106142524A TW 106142524 A TW106142524 A TW 106142524A TW 201831414 A TW201831414 A TW 201831414A
Authority
TW
Taiwan
Prior art keywords
transparent workpiece
mol
separate
depth
line
Prior art date
Application number
TW106142524A
Other languages
Chinese (zh)
Inventor
羅伯特史帝芬 華格納
克里斯多夫艾倫 維蘭德
Original Assignee
美商康寧公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商康寧公司 filed Critical 美商康寧公司
Publication of TW201831414A publication Critical patent/TW201831414A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/0222Scoring using a focussed radiation beam, e.g. laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Laser Beam Processing (AREA)

Abstract

A method for laser processing a transparent workpiece includes directing a pulsed laser beam into the transparent workpiece at an impingement location on a first surface of the transparent workpiece such that the pulsed laser beam ablates a portion of material of the transparent workpiece at the impingement location. The laser beam has a pulse energy of from about 5 [mu]J to about 50 [mu]J. The method also includes translating the pulsed laser beam relative to the first surface of the transparent workpiece along a desired separation path, thereby ablating additional material of the transparent workpiece to form a score line along the desired separation path, the score line having a score depth of from about 10 [mu]m to about 60 [mu]m.

Description

藉由形成劃痕線來雷射處理透明工件的方法Method for laser processing a transparent workpiece by forming a scribe line

本案說明書通常關於用於雷射處理透明工件的設備和方法,且更特定關於藉由在透明工件中雷射形成劃痕線並沿著劃痕線分離透明工件的方式來分離透明工件。The present specification generally relates to apparatus and methods for laser processing of transparent workpieces, and more particularly to separating transparent workpieces by forming a score line in a laser in a transparent workpiece and separating the transparent workpiece along the score line.

雷射處理材料的領域包含各種應用,涉及不同種類材料的切割、鑽孔、銑切、銲接、熔融等等。在該些製程中,其中一個特別受到關注的是在可用於生產電子裝置的薄膜電晶體(TFT)或顯示器材料用之諸如玻璃、藍寶石或熔融石英材料的製程中切割或分離不同類型的透明基板。The field of laser processing materials encompasses a variety of applications involving cutting, drilling, milling, welding, melting, and the like of different types of materials. Among these processes, one of the particular concerns is the cutting or separation of different types of transparent substrates in processes such as glass, sapphire or fused silica materials that are useful in the production of thin film transistors (TFTs) or display materials for electronic devices. .

由製程開發與成本觀點來看,還有許多機會可以改良切割與分離玻璃基板。對於比目前市場上正在施行的方法更快速、更潔淨、更可重複以及更可靠的分離玻璃基板的方法是非常有興趣的。據此,存在分離玻璃基板的替代改良方法的需求。From the perspective of process development and cost, there are many opportunities to improve the cutting and separation of glass substrates. A method of separating glass substrates that is faster, cleaner, more repeatable, and more reliable than currently being performed on the market is of great interest. Accordingly, there is a need for an alternative improved method of separating glass substrates.

根據一個實施例,一種用於雷射處理透明工件的方法包含:引導脈衝雷射光束至透明工件的第一表面上的撞擊位置處的透明工件中,以使脈衝雷射光束燒蝕撞擊位置處的透明工件的一部分材料。該雷射光束具有約5μJ至約50μJ的脈衝能量。該方法亦包含:相對於透明工件的第一表面沿著期望分離路徑移動脈衝雷射光束,因而燒蝕透明工件的額外材料以沿著期望分離路徑形成劃痕線,該劃痕線具有約10μm至約60μm的劃痕深度。According to one embodiment, a method for laser processing a transparent workpiece includes directing a pulsed laser beam into a transparent workpiece at an impact location on a first surface of a transparent workpiece such that the pulsed laser beam ablates the impact location Part of the material of the transparent workpiece. The laser beam has a pulse energy of from about 5 μJ to about 50 μJ. The method also includes moving the pulsed laser beam along a desired separation path relative to the first surface of the transparent workpiece, thereby ablating additional material of the transparent workpiece to form a scribe line along the desired separation path, the scribe line having about 10 [mu]m To a scratch depth of about 60 μm.

在其他實施例中,分離的透明工件包含:相對於第二表面的第一表面以及延伸在第一表面與第二表面之間的分離邊緣。分離邊緣包含:劃痕表面區域,由第一表面延伸至劃痕深度線;破裂表面區域,由劃痕深度線延伸至第二表面;以及一或多個針排特徵(hackle feature),沿著破裂表面區域由劃痕深度線朝第二表面延伸。一或多個針排特徵的最大針排深度為10μm或更小。此外,分離邊緣包含30μm或更小的邊緣偏差距離。邊緣偏差距離為破裂表面區域的第一界面平面與破裂表面區域的第二界面平面之間的距離。In other embodiments, the separate transparent workpiece includes a first surface relative to the second surface and a separate edge extending between the first surface and the second surface. The separation edge includes: a scratched surface region extending from the first surface to the scratch depth line; a fracture surface region extending from the scratch depth line to the second surface; and one or more hackle features along The ruptured surface area extends from the scratch depth line toward the second surface. The maximum needle row depth of one or more of the needle row features is 10 μm or less. Further, the separation edge contains an edge deviation distance of 30 μm or less. The edge deviation distance is the distance between the first interface plane of the fracture surface area and the second interface plane of the fracture surface area.

在又另一實施例中,一種用於雷射處理透明工件的方法包含:引導脈衝雷射光束至透明工件的第一表面上的撞擊位置處的透明工件中,以使脈衝雷射光束燒蝕撞擊位置處的透明工件的一部分材料。該雷射光束具有約5μJ至約50μJ的脈衝能量。該方法亦包含:相對於透明工件的第一表面沿著期望分離路徑移動脈衝雷射光束,因而燒蝕透明工件的額外材料以沿著期望分離路徑形成劃痕線;以及施加應力至透明工件的劃痕線以沿著劃痕線由透明工件分離至少一個分離的透明工件。該至少一個分離的透明工件包含未拋光的分離邊緣,延伸於該至少一個分離的透明工件的第一表面與第二表面之間。未拋光的分離邊緣更包含:劃痕表面區域,由該至少一個分離的透明工件的第一表面延伸至劃痕深度線;破裂表面區域,由劃痕深度線延伸至該至少一個分離的透明工件的第二表面;以及一或多個針排特徵,沿著破裂表面區域由劃痕深度線朝第二表面延伸。一或多個針排特徵的最大針排深度為10μm或更小。此外,未拋光的分離邊緣包含30μm或更小的邊緣偏差距離。邊緣偏差距離為破裂表面區域的第一界面平面與破裂表面區域的第二界面平面之間的距離。In still another embodiment, a method for laser processing a transparent workpiece includes directing a pulsed laser beam into a transparent workpiece at an impact location on a first surface of the transparent workpiece to ablate the pulsed laser beam A portion of the material of the transparent workpiece at the impact location. The laser beam has a pulse energy of from about 5 μJ to about 50 μJ. The method also includes moving the pulsed laser beam along a desired separation path relative to the first surface of the transparent workpiece, thereby ablating additional material of the transparent workpiece to form a scribe line along the desired separation path; and applying stress to the transparent workpiece The score line separates at least one separate transparent workpiece from the transparent workpiece along the score line. The at least one separate transparent workpiece includes an unpolished separation edge extending between the first surface and the second surface of the at least one separate transparent workpiece. The unpolished separation edge further includes: a scratched surface region extending from the first surface of the at least one separate transparent workpiece to the scratch depth line; the fracture surface region extending from the scratch depth line to the at least one separate transparent workpiece And a second surface; and one or more needle row features extending along the fracture surface region from the scratch depth line toward the second surface. The maximum needle row depth of one or more of the needle row features is 10 μm or less. Further, the unpolished separation edge contains an edge deviation distance of 30 μm or less. The edge deviation distance is the distance between the first interface plane of the fracture surface area and the second interface plane of the fracture surface area.

將在後續實施方式中詳細說明在此所描述的製程與系統的額外特徵與優點,且在此技術領域中具有通常知識者可由此描述內容輕易理解部分額外特徵與優點或由實施在此所描述的實施例,包含實施方式、申請專利範圍與後附圖式,來了解部分額外特徵與優點。Additional features and advantages of the processes and systems described herein will be described in detail in the following embodiments, and those of ordinary skill in the art can readily appreciate some additional features and advantages or are described herein. The embodiments, including the embodiments, the claims, and the following figures, are included to understand some additional features and advantages.

應理解,前述發明內容與後續實施方式均描述各種實施例且意圖提供理解所請標的的本質與特徵的概述或架構。包含後附圖式來提供各種實施例的進一步理解,並將後附圖式併入此說明書中並構成本說明書的一部分。該些圖式說明在此描述的各種實施例,且與說明內容一起解釋所請標的的原理與操作。It is to be understood that the foregoing description of the invention and the embodiments of the present invention The following figures are included to provide a further understanding of the various embodiments, and are incorporated in this specification. The drawings illustrate the various embodiments described herein and, together with the description, explain the principles and operations.

現將詳細參考雷射處理透明工件且隨後使用雷射將透明工件分離為複數個分離的透明工件的方法實施例,該些實施例的實例說明於後附圖式中。儘可能的,將在整個圖式中使用相同的元件符號來代表相同或類似的部分。在第1A圖中描述使用雷射分離透明工件的一個方法實施例。可將由雷射所產生的雷射光束導入透明工件表面並相對於透明工件移動雷射光束以燒蝕透明工件並產生延伸進入透明工件表面的劃痕線。在形成劃痕線之後,可施加應力將透明工件分離為兩個或多個分離的透明工件,該些透明工件各自具有分離邊緣。分離透明工件之前的劃痕線深度與所產生的分離邊緣品質有關。舉例來說,形成具有深度約10微米(μm)至約60μm的劃痕線並隨後分離透明工件形成兩個分離的透明工件,該些分離的透明工件各自包含具有最小針排深度與最小邊緣偏差距離的分離邊緣,使得分離邊緣與破裂擴散平面共平面或幾乎共平面且與透明工件表面正交。例如,當透明工件作為電子元件用之TFT或顯示器玻璃時,最小化針排深度與邊緣偏差距離提供可在最終應用中良好定位的堅固分離邊緣。在此將具體參照後附圖式詳細說明雷射處理透明工件以形成具有最小針排深度與最小邊緣偏差距離的分離的透明工件的方法。An embodiment of a method of laser processing a transparent workpiece and then separating the transparent workpiece into a plurality of separate transparent workpieces using lasers will now be described in detail, examples of which are illustrated in the following figures. Wherever possible, the same reference numerals will be used throughout the drawings to the One method embodiment for separating a transparent workpiece using a laser is described in Figure 1A. A laser beam generated by the laser can be directed to the surface of the transparent workpiece and the laser beam is moved relative to the transparent workpiece to ablate the transparent workpiece and create a score line extending into the surface of the transparent workpiece. After the scribe line is formed, stress can be applied to separate the transparent workpiece into two or more separate transparent workpieces, each having a separate edge. The depth of the score line before separating the transparent workpiece is related to the quality of the resulting separated edge. For example, a scribe line having a depth of about 10 micrometers (μm) to about 60 μm is formed and then the transparent workpiece is separated to form two separate transparent workpieces each having a minimum needle depth and a minimum edge deviation. The separation edge of the distance is such that the separation edge is coplanar or nearly coplanar with the fracture diffusion plane and orthogonal to the surface of the transparent workpiece. For example, when a transparent workpiece is used as a TFT or display glass for electronic components, minimizing the depth of the stitch depth from the edge provides a strong separation edge that can be well positioned in the final application. A method of laser processing a transparent workpiece to form a separate transparent workpiece having a minimum stitch depth and a minimum edge deviation distance will be described in detail herein with particular reference to the following figures.

如在此所使用的,「雷射處理」包含引導雷射光束,例如,脈衝雷射光束,進入透明工件中且沿著期望分離路徑相對於透明工件移動雷射光束。雷射處理的實例包含,例如,使用脈衝雷射光束藉由燒蝕透明工件表面來形成延伸進入透明工件表面的劃痕線及/或,例如,使用紅外線雷射光束沿著劃痕線加熱透明工件。雷射處理可沿著一或多個期望分離線將透明工件分離為複數個分離的透明工件。然而,在一些實施例中,可使用額外非雷射步驟以沿著一或多個期望分離線分離透明工件。As used herein, "laser processing" includes directing a laser beam, such as a pulsed laser beam, into a transparent workpiece and moving the laser beam relative to the transparent workpiece along a desired separation path. Examples of laser processing include, for example, using a pulsed laser beam to ablate a transparent workpiece surface to form a scribe line extending into the surface of the transparent workpiece and/or, for example, using an infrared laser beam to heat transparent along the scribe line Workpiece. The laser processing can separate the transparent workpiece into a plurality of separate transparent workpieces along one or more desired separation lines. However, in some embodiments, an additional non-laser step can be used to separate the transparent workpiece along one or more desired separation lines.

如在此所使用的用語「劃痕線」表示沿著期望路徑形成(例如,燒蝕)在透明工件表面中的裂口(例如,直線、曲線等等),當曝露至適當處理條件時,透明工件可沿著該劃痕線分離為多個分離的透明工件。劃痕線通常由連續裂口所組成,可包含一系列的重疊燒蝕區域,使用在此描述的各種技術將該些重疊燒蝕區域引入透明工件中,例如,利用脈衝雷射光束燒蝕透明工件來形成。此外,例如,可使用經配置以沿著或接近劃痕線來加熱透明工件區域的紅外線雷射或其他雷射並藉由彎曲或施加其他機械應力於該透明工件而沿著劃痕線將透明工件分離。As used herein, the term "scratch line" means that a crack (eg, a line, curve, etc.) is formed (eg, ablated) in the surface of a transparent workpiece along a desired path, transparent when exposed to appropriate processing conditions. The workpiece can be separated into a plurality of separate transparent workpieces along the score line. The scribe line is typically comprised of a continuous slit that can include a series of overlapping ablated regions that are introduced into the transparent workpiece using various techniques described herein, for example, ablating a transparent workpiece with a pulsed laser beam. To form. Further, for example, an infrared laser or other laser configured to heat the transparent workpiece region along or near the score line can be used and transparent along the scribe line by bending or applying other mechanical stresses to the transparent workpiece The workpiece is separated.

如在此所使用的用語「透明工件」表示由透明的玻璃或玻璃-陶瓷所形成的工件,其中如在此所使用的用語「透明」代表該材料具有每毫米材料深度小於約20%的光學吸收,例如,對於特定脈衝雷射波長為每毫米材料深度小於約10%、或例如對於特定脈衝雷射波長為每毫米材料深度小於約1%。透明工件的深度(例如,厚度)可為約50μm至約10mm(例如,約100μm至約5mm、或約500μm至約3mm、或約300μm至約700μm)。舉例來說,透明工件可具有約500μm、700μm、1mm等等的深度。透明工件可包含由玻璃組成物所形成的玻璃工件,例如,硼矽酸鹽玻璃、鈉鈣玻璃、鋁矽酸鹽玻璃、鹼鋁矽酸鹽玻璃、鹼土鋁矽酸鹽玻璃、鹼土硼鋁矽酸鹽玻璃、熔融矽石或結晶材料,例如,藍寶石、矽、砷化鎵或前述結晶材料的組合。作為非限制性實例,透明工件可包含可購自紐約康寧市的康寧公司的康寧Gorilla® 玻璃(例如,編碼2318、編碼2319與編碼2320)。其他透明工件實例可包含可購自紐約康寧市的康寧公司的EAGLE XG® 、CONTEGO與康寧LOTUSTMThe term "transparent workpiece" as used herein denotes a workpiece formed from transparent glass or glass-ceramic, wherein the term "transparent" as used herein means that the material has an optical depth of less than about 20% per millimeter of material. Absorption, for example, is less than about 10% per millimeter of material depth for a particular pulsed laser, or less than about 1% per millimeter of material depth, for example, for a particular pulsed laser wavelength. The depth (eg, thickness) of the transparent workpiece can be from about 50 [mu]m to about 10 mm (eg, from about 100 [mu]m to about 5 mm, or from about 500 [mu]m to about 3 mm, or from about 300 [mu]m to about 700 [mu]m). For example, the transparent workpiece can have a depth of about 500 μm, 700 μm, 1 mm, and the like. The transparent workpiece may comprise a glass workpiece formed of a glass composition, for example, borosilicate glass, soda lime glass, aluminosilicate glass, alkali aluminosilicate glass, alkaline earth aluminosilicate glass, alkaline earth borosilicate a caustic glass, a fused vermiculite or a crystalline material, for example, sapphire, cerium, gallium arsenide or a combination of the foregoing crystalline materials. By way of non-limiting example, the workpiece may comprise a transparent Niuyuekangning available from Corning, Corning City Gorilla ® glass (e.g., coding 2318, 2319 encodes the encoding 2320). Other examples of transparent workpieces may include EAGLE XG ® , CONTEGO and Corning LOTUS TM available from Corning Incorporated, Corning, NY.

在一些實施例中,可在雷射處理透明工件之前或之後經由熱回火或化學強化(例如,經由離子交換)來強化透明工件。在離子交換製程中,例如,藉由將透明工件部分或完全浸沒在離子交換浴中,而將透明工件表面層中的離子由具有相同原子價或氧化態的較大離子所置換。以較大離子置換較小離子導致層的壓縮應力由透明工件的一或多個表面延伸至透明工件中一定的深度,稱為層深度。由層的拉伸應力(稱為中央拉伸)平衡壓縮應力,使得玻璃片中的淨應力為零。在玻璃片表面的壓縮應力形成使玻璃強化並抵抗機械損壞,且因此使裂縫不會延伸穿過層深度而減輕玻璃板的突發故障。在一些實施例中,可使用較大鉀離子交換透明工件表面層中的較小鈉離子。在一些實施例中,表面層中的離子與較大離子為單價鹼金屬陽離子,例如,Li+ (當存在於玻璃中時)、Na+ 、K+ 、Rb+ 與Cs+ 。或者,可使用不同於鹼金屬陽離子的單價陽離子,例如,Ag+ 、Tl+ 、Cu+ 等等,來置換表面層中的單價離子。此外,在一些實施例中,可熱退火透明工件以降低透明工件中的殘留應力。In some embodiments, the transparent workpiece can be strengthened via thermal tempering or chemical strengthening (eg, via ion exchange) either before or after laser processing of the transparent workpiece. In an ion exchange process, ions in the surface layer of the transparent workpiece are replaced by larger ions having the same valence or oxidation state, for example, by partially or completely immersing the transparent workpiece in the ion exchange bath. Replacing smaller ions with larger ions causes the compressive stress of the layer to extend from one or more surfaces of the transparent workpiece to a certain depth in the transparent workpiece, referred to as the layer depth. The compressive stress is balanced by the tensile stress of the layer (referred to as central stretching) such that the net stress in the glass sheet is zero. The compressive stress on the surface of the glass sheet is formed to strengthen the glass and resist mechanical damage, and thus the crack does not extend through the layer depth to mitigate the sudden failure of the glass sheet. In some embodiments, larger potassium ions can be used to exchange smaller sodium ions in the surface layer of the transparent workpiece. In some embodiments, the ions and larger ions in the surface layer are monovalent alkali metal cations, such as Li + (when present in the glass), Na + , K + , Rb +, and Cs + . Alternatively, a monovalent cation other than an alkali metal cation, for example, Ag + , Tl + , Cu + or the like, may be used to replace the monovalent ion in the surface layer. Moreover, in some embodiments, the transparent workpiece can be thermally annealed to reduce residual stress in the transparent workpiece.

現參照第1A圖,示意性描繪置於位移平台80上的透明工件90。透明工件90與位移平台80實質接觸。然而,由於透明工件90中的偏差,部分透明工件90可與位移平台80分離。雷射100置於位移平台80上方並輸出脈衝雷射光束102,脈衝雷射光束102導入透明工件90中。脈衝雷射光束102橫切透明工件90的第一表面96且在第一方向82及/或第二方向84中相對於透明工件90移動,以產生一或多個劃痕線92,該些劃痕線92由透明工件90的第一表面96延伸至透明工件90的整體中。雖然說明脈衝雷射光束102相對於透明工件90的第一表面96為正交,但實施例並非受限於此,且在其他實施例中,脈衝雷射光束102可相對於透明工件90的第一表面96為非正交。此外,可使用機械或真空夾持將透明工件90牢固地維持在位移平台80的位置上。可由真空平板上間隔一些距離的一系列真空孔洞來達成真空夾持。可使用石墨夾具以及對準銷與膠帶的組合將透明工件90與位移平台80耦合而達成機械夾持。Referring now to Figure 1A, a transparent workpiece 90 placed on a displacement platform 80 is schematically depicted. The transparent workpiece 90 is in substantial contact with the displacement platform 80. However, due to variations in the transparent workpiece 90, the partially transparent workpiece 90 can be separated from the displacement platform 80. The laser 100 is placed above the displacement platform 80 and outputs a pulsed laser beam 102 that is directed into the transparent workpiece 90. The pulsed laser beam 102 traverses the first surface 96 of the transparent workpiece 90 and moves relative to the transparent workpiece 90 in the first direction 82 and/or the second direction 84 to produce one or more scribe lines 92. The score line 92 extends from the first surface 96 of the transparent workpiece 90 into the entirety of the transparent workpiece 90. Although the pulsed laser beam 102 is illustrated as being orthogonal with respect to the first surface 96 of the transparent workpiece 90, embodiments are not limited thereto, and in other embodiments, the pulsed laser beam 102 may be relative to the transparent workpiece 90. A surface 96 is non-orthogonal. Additionally, the transparent workpiece 90 can be securely held in position of the displacement platform 80 using mechanical or vacuum clamping. Vacuum clamping can be achieved by a series of vacuum holes spaced a few distances from the vacuum plate. The transparent workpiece 90 can be coupled to the displacement platform 80 using a graphite clamp and a combination of alignment pins and tape to achieve mechanical clamping.

在操作中,可藉由沿著期望分離路徑93將脈衝雷射光束102導入第一表面96上的撞擊位置97處的透明工件90中來形成一部分的劃痕線92。期望分離路徑93為形成劃痕線92之前的劃痕線92的期望位置,且當形成劃痕線92時,期望分離路徑93與劃痕線92共同定位。此外,可藉由沿著期望分離路徑93將脈衝雷射光束102與透明工件90相對於彼此移動來形成完整劃痕線92。舉例來說,脈衝雷射光束102與透明工件90可相對於彼此移動,以沿著期望分離路徑93進行單一掃程或沿著期望分離路徑93進行多次掃程,例如,沿著期望分離路徑93進行一至四次掃程。In operation, a portion of the score line 92 can be formed by introducing the pulsed laser beam 102 along the desired separation path 93 into the transparent workpiece 90 at the impact location 97 on the first surface 96. It is desirable that the separation path 93 be a desired position of the score line 92 prior to the formation of the score line 92, and when the score line 92 is formed, it is desirable that the separation path 93 be co-located with the score line 92. Moreover, the complete scribe line 92 can be formed by moving the pulsed laser beam 102 and the transparent workpiece 90 relative to each other along the desired separation path 93. For example, pulsed laser beam 102 and transparent workpiece 90 can be moved relative to each other to perform a single sweep along desired separation path 93 or multiple sweeps along desired separation path 93, for example, along a desired separation path 93 for one to four sweeps.

在一些實施例中,雷射100可與高架(未圖示)耦接,該高架在第一方向82與第二方向84中移動雷射100。在其他實施例中,雷射100可為靜止且支撐透明工件90的位移平台80在第一方向82與第二方向84中移動。在又其他實施例中,雷射100與位移平台80兩者可相對於彼此移動。透明工件90與雷射100之間的相對位移運動可為約10mm/s至約200mm/s,例如,25mm/s、50mm/s、75mm/s、100mm/s、125mm/s、150mm/s、175mm/s等等。再者,雖然第1A圖中說明的劃痕線92為直線,但劃痕線92亦可為非直線(亦即,沿著第一表面96具有曲率)。舉例來說,可藉由在二維而非一維中(例如,在第一方向82與第二方向84兩者中)將透明工件90或脈衝雷射光束102相對於另一者移動來產生彎曲的劃痕線92。雖然第1A圖描繪將透明工件90分離為兩個矩形透明工件,但應理解,可基於所要求的終端使用者應用根據在此揭露的方法來製造透明工件90的任何構造/形狀的分離的透明工件。舉例來說,透明工件90可分離為具有任意形狀(例如,彎曲邊緣)的個別玻璃物件。In some embodiments, the laser 100 can be coupled to an overhead (not shown) that moves the laser 100 in a first direction 82 and a second direction 84. In other embodiments, the laser 100 can be stationary and the displacement platform 80 supporting the transparent workpiece 90 moves in the first direction 82 and the second direction 84. In still other embodiments, both the laser 100 and the displacement platform 80 are movable relative to each other. The relative displacement movement between the transparent workpiece 90 and the laser 100 can be from about 10 mm/s to about 200 mm/s, for example, 25 mm/s, 50 mm/s, 75 mm/s, 100 mm/s, 125 mm/s, 150 mm/s. , 175mm / s and so on. Furthermore, although the scribe line 92 illustrated in FIG. 1A is a straight line, the scribe line 92 may also be non-linear (ie, having a curvature along the first surface 96). For example, the transparent workpiece 90 or the pulsed laser beam 102 can be generated by moving the transparent workpiece 90 or the pulsed laser beam 102 relative to the other in two dimensions rather than one dimension (eg, in both the first direction 82 and the second direction 84). Curved score line 92. While FIG. 1A depicts the separation of the transparent workpiece 90 into two rectangular transparent workpieces, it should be understood that the separate transparency of any configuration/shape of the transparent workpiece 90 can be fabricated in accordance with the methods disclosed herein based on the desired end user application. Workpiece. For example, the transparent workpiece 90 can be separated into individual glass articles having any shape (eg, curved edges).

現參照第1B圖,更詳細地示例性描繪脈衝雷射光束102。在一些實施例中,利用前述雷射100產生脈衝雷射光束102,且接著利用聚焦光學器件(例如,聚焦透鏡101)聚焦脈衝雷射光束102。應理解,聚焦光學器件可包含額外透鏡或其他光學組件來聚焦並調節脈衝雷射光束102。聚焦脈衝雷射光束102,使得脈衝雷射光束102具有會聚區104,由經聚焦的脈衝雷射光束102的聚焦深度來確定會聚區104。可配置聚焦透鏡101以聚焦脈衝雷射光束102,而形成較小光束腰寬BW,該光束腰寬BW為具有縮小直徑d的部分脈衝雷射光束102。聚焦透鏡101的一個實例包含約100mm的焦距。光束腰寬直徑d小於未聚焦部分直徑D。作為非限制性實例,未聚焦部分直徑D可約1至10mm,例如,3mm、5mm、7mm等等。作為非限制性實例,直徑d可為約5至25μm,例如,8μm、10μm、15μm、20μm等等。光束腰寬BW具有中心C,該中心C為具有較小直徑d的脈衝雷射光束102區域。如下所述,可聚焦脈衝雷射光束102,使得光束腰寬BW的中心C位於或接近(例如,高於或低於)透明工件90的第一表面96或第二表面98。此外,在一些實施例中,光束腰寬BW可位於透明工件90的整體中接近透明工件90的第一表面96或第二表面98。作為非限制性實例,光束腰寬BW可位於透明工件90中距離第一表面96約100μm處。Referring now to Figure 1B, pulsed laser beam 102 is exemplarily depicted in more detail. In some embodiments, pulsed laser beam 102 is generated using the aforementioned laser 100, and then pulsed laser beam 102 is focused using focusing optics (eg, focusing lens 101). It should be understood that the focusing optics may include additional lenses or other optical components to focus and condition the pulsed laser beam 102. The pulsed laser beam 102 is focused such that the pulsed laser beam 102 has a convergence region 104 from which the convergence region 104 is determined by the depth of focus of the focused pulsed laser beam 102. The focusing lens 101 can be configured to focus the pulsed laser beam 102 to form a smaller beam waist width BW which is a partial pulsed laser beam 102 having a reduced diameter d. One example of the focus lens 101 includes a focal length of about 100 mm. The beam waist width diameter d is smaller than the unfocused portion diameter D. As a non-limiting example, the unfocused portion diameter D can be about 1 to 10 mm, for example, 3 mm, 5 mm, 7 mm, and the like. As a non-limiting example, the diameter d can be about 5 to 25 μm, for example, 8 μm, 10 μm, 15 μm, 20 μm, and the like. The beam waist width BW has a center C which is a region of the pulsed laser beam 102 having a smaller diameter d. As described below, the pulsed laser beam 102 can be focused such that the center C of the beam waist width BW is at or near (eg, above or below) the first surface 96 or the second surface 98 of the transparent workpiece 90. Moreover, in some embodiments, the beam waist width BW can be located in the entirety of the transparent workpiece 90 proximate to the first surface 96 or the second surface 98 of the transparent workpiece 90. As a non-limiting example, the beam waist width BW can be located in the transparent workpiece 90 at a distance of about 100 [mu]m from the first surface 96.

雷射100是可操作的,以放射具有適合傳送熱能至一部份透明工件90的波長的脈衝雷射光束102。適合的雷射100包含二極體驅動q切換固態Nd3+ :YAG雷射、Nd3+ :YVO4 雷射等等。在操作中,雷射100可輸出波長為約200nm至約1200nm的脈衝雷射光束102,例如,約200nm至約600nm。在一些實施例中,雷射100可輸出具有下列波長的脈衝雷射光束102,例如,1064nm、1030nm、532nm、530nm、355nm、343nm、或266nm或215nm。在一些實施例中,雷射100可輸出具有可見光範圍中(亦即,約380奈米至約619奈米)的波長的脈衝雷射光束102,例如,約380奈米至約570奈米,例如,約532奈米的波長。The laser 100 is operable to emit a pulsed laser beam 102 having a wavelength suitable for transmitting thermal energy to a portion of the transparent workpiece 90. A suitable laser 100 includes a diode driven q-switched solid state Nd 3+ :YAG laser, Nd 3+ :YVO 4 laser, and the like. In operation, laser 100 can output a pulsed laser beam 102 having a wavelength of from about 200 nm to about 1200 nm, for example, from about 200 nm to about 600 nm. In some embodiments, the laser 100 can output a pulsed laser beam 102 having a wavelength of, for example, 1064 nm, 1030 nm, 532 nm, 530 nm, 355 nm, 343 nm, or 266 nm or 215 nm. In some embodiments, the laser 100 can output a pulsed laser beam 102 having a wavelength in the visible range (ie, from about 380 nm to about 619 nm), for example, from about 380 nm to about 570 nm, For example, a wavelength of about 532 nm.

在操作中,雷射100的脈衝持續時間可在約1奈秒至約50奈秒的範圍中,例如,約15奈秒至約22奈秒。在一些實施例中,脈衝雷射光束102的個別脈衝的脈衝持續時間可在約1皮秒至約100皮秒的範圍中,例如,約5皮秒至約20皮秒,例如,約10皮秒,且個別脈衝的重複頻率可在約1kHz至4MHz的範圍中,例如,在約10kHz至約3MHz、約10kHz至約650kHz或約10kHz至約250kHz的範圍中。除了前述個別脈衝重複頻率的單一脈衝操作,可在兩個脈衝或多個脈衝的脈衝串(burst)(例如,每個脈衝串為3個脈衝、4個脈衝、5個脈衝、10個脈衝、15個脈衝、20個脈衝或更多,例如,每個脈衝串為1至30個脈衝或每個脈衝串為5至20個脈衝)中產生該些脈衝。可以約1奈秒至約50奈秒範圍,例如,約10奈秒至約30奈秒,諸如20奈秒的持續時間分離脈衝串中的脈衝。在其他實施例中,可以高達100皮秒(例如,0.1 皮秒、5皮秒、10皮秒、15皮秒、18皮秒、20皮秒、22皮秒、25皮秒、30皮秒、50皮秒、75皮秒或該些持續時間之間的任何範圍)的持續時間分離脈衝串中的脈衝。對於給定雷射,在單一脈衝串中的相鄰脈衝之間的時間區隔TP 可相對一致(例如,在另一者的約10%中)。In operation, the pulse duration of the laser 100 can range from about 1 nanosecond to about 50 nanoseconds, for example, from about 15 nanoseconds to about 22 nanoseconds. In some embodiments, the pulse duration of individual pulses of pulsed laser beam 102 can range from about 1 picosecond to about 100 picoseconds, for example, from about 5 picoseconds to about 20 picoseconds, for example, about 10 picometers. Seconds, and the repetition frequency of the individual pulses may be in the range of about 1 kHz to 4 MHz, for example, in the range of about 10 kHz to about 3 MHz, about 10 kHz to about 650 kHz, or about 10 kHz to about 250 kHz. In addition to the single pulse operation of the aforementioned individual pulse repetition frequency, a burst of two pulses or multiple pulses may be used (eg, 3 pulses per pulse, 4 pulses, 5 pulses, 10 pulses, These pulses are generated in 15 pulses, 20 pulses or more, for example, 1 to 30 pulses per pulse train or 5 to 20 pulses per pulse train. The pulses in the burst may be separated by a range of from about 1 nanosecond to about 50 nanoseconds, for example, from about 10 nanoseconds to about 30 nanoseconds, such as a duration of 20 nanoseconds. In other embodiments, it can be up to 100 picoseconds (eg, 0.1 picoseconds, 5 picoseconds, 10 picoseconds, 15 picoseconds, 18 picoseconds, 20 picoseconds, 22 picoseconds, 25 picoseconds, 30 picoseconds, A pulse in the burst is separated by a duration of 50 picoseconds, 75 picoseconds or any range between the durations. For a given laser, the time between adjacent pulses in a single pulse train segment T P may be relatively consistent (e.g., at about 10% of the other).

脈衝重複頻率可在約10千赫至約200千赫的範圍中,例如,約40千赫至約100千赫。此外,雷射100具有雷射脈衝串重複頻率,與脈衝串中的第一脈衝以及後續脈衝串中的第一脈衝之間的時間Tb 有關(雷射脈衝串重複頻率=1/Tb )。在一些實施例中,雷射脈衝串重複頻率可在約1kHz至約4MHz的範圍中。在實施例中,雷射脈衝串重複頻率可例如在約10kHz至650kHz的範圍中,例如,200kHz。可根據雷射設計改變精確時間、脈衝持續時間與脈衝串重複頻率,而高密度的短脈衝(Td <20皮秒,且在一些實施例中,Td ≦15皮秒)已展現特別優良的運作。材料上所測量的每個脈衝串的平均雷射功率可為每mm材料厚度至少約40μJ。舉例來說,在實施例中,每個脈衝串的平均雷射功率可為約40μJ/mm至約2500μJ/mm或約500μJ/mm至約2250μJ/mm。在特定實例中,對於0.5mm至0.7mm厚的康寧EAGLE XG® 透明工件,約300μJ至約600μJ的脈衝串可切割及/或分離工件,該脈衝串對應於約428μJ/mm至約1200μJ/mm的示例範圍(亦即,對於0.7mm的EAGLE XG® 玻璃為300μJ/0.7mm且對於0.5mm的EAGLE XG® 玻璃為600μJ/0.5mm)。The pulse repetition frequency can range from about 10 kHz to about 200 kHz, for example, from about 40 kHz to about 100 kHz. Further, the laser 100 having a laser pulse train repetition frequency, the time between the first pulse and the subsequent pulse train in the pulse train about a first pulse T b (laser pulse train repetition frequency = 1 / T b) . In some embodiments, the laser burst repetition frequency can range from about 1 kHz to about 4 MHz. In an embodiment, the laser burst repetition frequency may be, for example, in the range of about 10 kHz to 650 kHz, for example, 200 kHz. The precise time, pulse duration and burst repetition frequency can be varied depending on the laser design, while high density short pulses ( Td < 20 picoseconds, and in some embodiments, Td ≦ 15 picoseconds) have been shown to be particularly good. Operation. The average laser power of each pulse train measured on the material can be at least about 40 [mu]J per mm material thickness. For example, in an embodiment, the average laser power per burst can range from about 40 μJ/mm to about 2500 μJ/mm or from about 500 μJ/mm to about 2250 μJ/mm. In a specific example, for a thickness of 0.5mm to 0.7mm Corning EAGLE XG ® transparent workpiece, from about 300μJ burst to about 600μJ cleavable and / or separation of the workpiece, the burst corresponds to about 428μJ / mm to about 1200μJ / mm examples range (i.e., 0.7mm for the EAGLE XG ® glass 300μJ / 0.7mm to 0.5mm and the EAGLE XG ® glass 600μJ / 0.5mm).

可就脈衝串能量(亦即,包含在脈衝串中的能量,其中每一個脈衝串包含一系列脈衝)或包含在單一雷射脈衝中的能量(其中許多可包含脈衝串)來描述改良透明工件90所需的脈衝能量。每個脈衝串的能量可為約25μJ至約750μJ,例如,約50μJ至約500μJ或約50μJ至約250μJ。對於一些玻璃組成,每個脈衝串的能量可為約100μJ至約250μJ。然而,對於顯示器或TFT玻璃組成而言,每個脈衝串的能量為較高的(例如,根據透明工件90的特定玻璃組成,約300μJ至約500μJ或約400μJ至約600μJ)。對於切割或改良透明材料(例如,玻璃)而言,使用能夠產生此脈衝串的脈衝雷射光束102是有利的。相較於使用藉由單一脈衝雷射的重複頻率以時間區隔的單一脈衝,使用脈衝串次序允許獲得比單一脈衝雷射所能達到的與材料的高強度相互作用更大的時間尺度,該脈衝串次序將雷射能量散佈在脈衝串中的快速脈衝次序上。An improved transparent workpiece can be described in terms of burst energy (ie, energy contained in a burst, where each burst contains a series of pulses) or energy contained in a single laser pulse (many of which can include a pulse train) 90 required pulse energy. The energy of each pulse train can range from about 25 [mu]J to about 750 [mu]J, for example, from about 50 [mu]J to about 500 [mu]J or from about 50 [mu]J to about 250 [mu]J. For some glass compositions, the energy per burst can range from about 100 [mu]J to about 250 [mu]J. However, for a display or TFT glass composition, the energy per pulse train is higher (eg, from about 300 μJ to about 500 μJ or from about 400 μJ to about 600 μJ depending on the particular glass composition of the transparent workpiece 90). For cutting or modifying a transparent material (e.g., glass), it is advantageous to use a pulsed laser beam 102 capable of producing this pulse train. Using a burst order allows for a larger time scale than the single pulse laser can achieve with a high intensity interaction of the material compared to a single pulse that is time separated by a repetition rate of a single pulsed laser. The burst order spreads the laser energy over the fast pulse order in the burst.

當導入透明工件90中的脈衝雷射光束102的雷射強度高於臨界值時,脈衝雷射光束102可包含吸收性非線性光學效應(例如,多光子吸收(MPA)、突崩游離現象等等)。舉例來說,可在或接近脈衝雷射光束102的光束腰寬BW處經由該些吸收性非線性效應改良透明工件90的材料。MPA取決於透明工件材料對高強度電磁場的效應,高強度電磁場由離子化電子且導致光崩解與電漿生成的脈衝雷射光束102所產生。MPA為兩個或多個相同或不同頻率的光子的同時吸收,將分子由一個態樣(通常是基態)激發至較高能量電子態(亦即,離子化)。分子所涉及的較低與較高態樣之間的能量差異等於所涉及的光子能量總和。MPA(亦稱為誘發吸收)可為二級或三級製程(或更高級數),例如,比線性吸收弱幾個數量級。例如,與線性吸收不同的是二級誘發吸收的強度可與光強度的平方成正比,故二級誘發為非線性光學製程。由於多光子吸收為非線性製程,故以雷射脈衝所施加的光學強度快速改變多光子吸收的效應量級。該強度提供由光學脈衝所輸送的瞬時能量通量通過光束腰寬BW的中心C。在操作中,藉由在第一表面96處或在第一表面96下方移動或掃描光束腰寬BW,利用雷射燒蝕將一部分的第一表面96燒蝕,而產生以下詳細描述的缺陷。如在此所使用的「燒蝕」與「雷射燒蝕」代表藉由蒸發而由玻璃物件移除玻璃材料,該蒸發歸因於,例如,利用脈衝雷射光束102經由吸收性非線性光學效應所導入的能量。When the laser intensity of the pulsed laser beam 102 introduced into the transparent workpiece 90 is above a critical value, the pulsed laser beam 102 may contain absorptive nonlinear optical effects (eg, multiphoton absorption (MPA), bluff free phenomenon, etc.) Wait). For example, the material of the transparent workpiece 90 can be modified at or near the beam waist width BW of the pulsed laser beam 102 via these absorptive nonlinear effects. The MPA depends on the effect of the transparent workpiece material on the high-intensity electromagnetic field generated by the pulsed laser beam 102 that ionizes the electrons and causes photodisintegration and plasma generation. MPA is the simultaneous absorption of two or more photons of the same or different frequencies, exciting a molecule from one aspect (usually the ground state) to a higher energy electronic state (ie, ionization). The energy difference between the lower and higher states involved in the molecule is equal to the sum of the photon energies involved. MPA (also known as induced absorption) can be a secondary or tertiary process (or higher order), for example, several orders of magnitude weaker than linear absorption. For example, unlike linear absorption, the intensity of the secondary induced absorption can be proportional to the square of the light intensity, so the secondary induction is a nonlinear optical process. Since multiphoton absorption is a non-linear process, the optical intensity applied by the laser pulse rapidly changes the magnitude of the effect of multiphoton absorption. This intensity provides the instantaneous energy flux delivered by the optical pulse through the center C of the beam waist width BW. In operation, a portion of the first surface 96 is ablated by laser ablation by moving or scanning the beam waist width BW at or below the first surface 96, resulting in a defect as described in detail below. . As used herein, "ablative" and "laser ablation" refer to the removal of a glass material from a glass article by evaporation, which is attributed, for example, to the use of a pulsed laser beam 102 via absorptive nonlinear optics. The energy introduced by the effect.

現參照第2圖,描繪透明工件90沿著期望分離路徑93進行雷射燒蝕。如上所述,可設置雷射100,使得脈衝雷射光束102相對於透明工件90的第一表面96為正交。在第2圖中,描繪雷射100與透明工件90在第一方向82中相對於彼此移動,而產生沿著第一方向82設置的劃痕線92。Referring now to Figure 2, the transparent workpiece 90 is depicted as being subjected to laser ablation along the desired separation path 93. As described above, the laser 100 can be set such that the pulsed laser beam 102 is orthogonal with respect to the first surface 96 of the transparent workpiece 90. In FIG. 2, the depiction of the laser 100 and the transparent workpiece 90 moving relative to each other in the first direction 82 produces a score line 92 disposed along the first direction 82.

現參照第3與4圖,更詳細地描繪透明工件90與形成在透明工件90中的劃痕線92的截面圖。第3圖為沿著第2圖的區段A-A的截面圖且第4圖為沿著第2圖的區段B-B的截面圖。劃痕線92延伸進入透明工件90中至劃痕線底面94。此外,劃痕線92在透明工件90的第一表面96處具有劃痕線寬度W,如第4圖所示。當脈衝雷射光束102相對於透明工件90移動時,藉由雷射燒蝕在透明工件90的第一表面96處與透明工件90的第一表面96下方的材料來形成劃痕線92。舉例來說,在說明性實施例中,聚焦並設置脈衝雷射光束102,使得光束腰寬BW的中心C位於透明工件90的第一表面96處或接近透明工件90的第一表面96。Referring now to Figures 3 and 4, a cross-sectional view of the transparent workpiece 90 and the score line 92 formed in the transparent workpiece 90 is depicted in more detail. Fig. 3 is a cross-sectional view along section A-A of Fig. 2 and Fig. 4 is a cross-sectional view along section B-B of Fig. 2. The score line 92 extends into the transparent workpiece 90 to the bottom line 94 of the score line. In addition, the score line 92 has a score line width W at the first surface 96 of the transparent workpiece 90, as shown in FIG. The scribe line 92 is formed by laser ablation at the first surface 96 of the transparent workpiece 90 and the material below the first surface 96 of the transparent workpiece 90 as the pulsed laser beam 102 moves relative to the transparent workpiece 90. For example, in the illustrative embodiment, the pulsed laser beam 102 is focused and set such that the center C of the beam waist width BW is at or near the first surface 96 of the transparent workpiece 90.

藉由聚焦脈衝雷射光束102,使得脈衝雷射光束102的光束腰寬BW的中心C置於透明工件90的第一表面96處或接近透明工件90的第一表面96,脈衝雷射光束102在撞擊位置97處燒蝕部分透明工件90,該撞擊位置97由第一表面96延伸至劃痕線底面94。脈衝雷射光束102藉由將熱引導至透明工件90而將劃痕線92燒蝕至透明工件90中,這導致透明工件90的材料沿著第一表面96燒蝕。在其他實施例中,脈衝雷射光束102可燒蝕第二表面98處的透明工件90。舉例來說,脈衝雷射光束102可聚焦在透明工件90中,使得光束腰寬BW設置在透明工件90的第二表面98處或接近透明工件90的第二表面98。由於透明工件90在脈衝雷射光束102的波長處為實質透明的,因此可能將光束腰寬BW設置在透明工件90的第二表面98處或透明工件90的第二表面98下方(外側),而不會在透明工件90的整體中或第一表面96處產生缺陷。By focusing the pulsed laser beam 102, the center C of the beam waist width BW of the pulsed laser beam 102 is placed at or near the first surface 96 of the transparent workpiece 90, the pulsed laser beam The partially transparent workpiece 90 is ablated at the impact location 97, and the impact location 97 extends from the first surface 96 to the bottom line 94 of the score line. The pulsed laser beam 102 ablates the score line 92 into the transparent workpiece 90 by directing heat to the transparent workpiece 90, which causes the material of the transparent workpiece 90 to ablate along the first surface 96. In other embodiments, the pulsed laser beam 102 can ablate the transparent workpiece 90 at the second surface 98. For example, the pulsed laser beam 102 can be focused in the transparent workpiece 90 such that the beam waist width BW is disposed at or near the second surface 98 of the transparent workpiece 90. Since the transparent workpiece 90 is substantially transparent at the wavelength of the pulsed laser beam 102, it is possible to place the beam waist width BW at the second surface 98 of the transparent workpiece 90 or below the second surface 98 of the transparent workpiece 90 (outer side). No defects are created in the entirety of the transparent workpiece 90 or at the first surface 96.

如第3與4圖所繪示,劃痕線92延伸劃痕深度95至透明工件90中,該劃痕深度95小於透明工件90的厚度91。劃痕深度95可大致對應於脈衝雷射光束102的會聚區104(參照第1B圖),當雷射光束強度支持非線性交互作用/吸收時,劃痕深度95延伸至透明工件90的厚度91。劃痕深度95亦由下列所影響:雷射100相對於透明工件90的遍歷速度(traversal speed)、透明工件90的組成與厚度、雷射性質以及其他因素,例如,脈衝雷射光束102沿著劃痕線92的通過次數與脈衝雷射光束102重複頻率。在一些實施例中,劃痕深度95可為約10μm至約200μm,例如,約10μm至約100μm、約10μm至約60μm、約10μm至約35μm等等。此外,劃痕深度95可沿著劃痕線92為實質恆定。例如,劃痕深度95可沿著劃痕線92偏離20%或更小,例如,小於15%或更小、10%或更小、5%或更小、4%或更小、3%或更小、2%或更小、1%或更小等等。As depicted in FIGS. 3 and 4, the score line 92 extends the scratch depth 95 into the transparent workpiece 90, which is less than the thickness 91 of the transparent workpiece 90. The scratch depth 95 can generally correspond to the convergence region 104 of the pulsed laser beam 102 (see FIG. 1B). When the laser beam intensity supports nonlinear interaction/absorption, the scratch depth 95 extends to the thickness 91 of the transparent workpiece 90. . The scratch depth 95 is also affected by the traversal speed of the laser 100 relative to the transparent workpiece 90, the composition and thickness of the transparent workpiece 90, the laser properties, and other factors, such as the pulsed laser beam 102 along The number of passes of the score line 92 is repeated with the pulsed laser beam 102. In some embodiments, the scratch depth 95 can be from about 10 [mu]m to about 200 [mu]m, for example, from about 10 [mu]m to about 100 [mu]m, from about 10 [mu]m to about 60 [mu]m, from about 10 [mu]m to about 35 [mu]m, and the like. Moreover, the scratch depth 95 can be substantially constant along the score line 92. For example, the scratch depth 95 can be offset by 20% or less along the score line 92, for example, less than 15% or less, 10% or less, 5% or less, 4% or less, 3%, or Smaller, 2% or less, 1% or less, and so on.

劃痕線92宏觀指出透明工件90的弱化區並建立用於擴展裂紋的路徑,以沿著劃痕線92將透明工件90分離為分離部分。在形成劃痕線92後,可藉由施加機械應力、熱應力或機械應力與熱應力兩者來分離透明工件90。在一些實施例中,例如,可藉由使用四點彎矩設備將透明工件90的劃痕線92置於張力中而施加彎曲力矩(亦即,機械應力)至透明工件90以沿著劃痕線92分離透明工件90。The score line 92 macro indicates the weakened area of the transparent workpiece 90 and establishes a path for expanding the crack to separate the transparent workpiece 90 into separate portions along the score line 92. After the scribe line 92 is formed, the transparent workpiece 90 can be separated by applying mechanical stress, thermal stress, or both mechanical stress and thermal stress. In some embodiments, for example, a bending moment (ie, mechanical stress) can be applied to the transparent workpiece 90 to follow the scratch by placing the scribe line 92 of the transparent workpiece 90 into tension using a four point bending device. Line 92 separates the transparent workpiece 90.

此外,例如,可藉由使用紅外線雷射來加熱透明工件90(亦即,施加熱應力)以沿著劃痕線92分離透明工件90。適合在玻璃中產生熱應力的紅外線雷射通常具有容易被玻璃吸收的波長(例如,具有波長範圍為1.2μm至13μm,例如,範圍為4μm至12μm的雷射)。紅外線雷射光束可為由以下所產生的雷射光束:二氧化碳雷射(CO2 雷射)、一氧化碳雷射(CO雷射)、固態雷射、雷射二極體或前述的組合。此紅外線雷射光束可做為受控熱源,該受控熱源快速提高在劃痕線92處或接近劃痕線92的透明工件90的溫度。此快速加熱可在劃痕線92上或相鄰劃痕線92的透明工件90中建立壓縮應力。由於加熱玻璃表面面積相較於透明工件90的整體表面積是相對較小的,故加熱面積相對較快冷卻。所產生的溫度梯度誘導透明工件90中的拉伸應力足以沿著劃痕線92傳播裂縫並穿過透明工件90的厚度91,而造成沿著劃痕線92的透明工件90的完全分離。不受理論限制,堅信可由具有局部高溫的工件部分中的玻璃膨脹(亦即,變化密度)來產生拉伸應力。或者,可將透明工件90浸入加熱浴中來加熱透明工件90。Further, for example, the transparent workpiece 90 can be separated along the scribe line 92 by heating the transparent workpiece 90 (i.e., applying thermal stress) using an infrared laser. Infrared lasers suitable for generating thermal stress in the glass typically have wavelengths that are readily absorbed by the glass (e.g., have a wavelength in the range of from 1.2 μm to 13 μm, for example, a range of from 4 μm to 12 μm). The infrared laser beam can be a laser beam produced by a carbon dioxide laser (CO 2 laser), a carbon monoxide laser (CO laser), a solid state laser, a laser diode, or a combination of the foregoing. This infrared laser beam can be used as a controlled heat source that rapidly increases the temperature of the transparent workpiece 90 at or near the score line 92. This rapid heating can establish compressive stresses on the score line 92 or in the transparent workpiece 90 of the adjacent score line 92. Since the surface area of the heated glass is relatively small compared to the overall surface area of the transparent workpiece 90, the heated area cools relatively quickly. The resulting temperature gradient induces tensile stress in the transparent workpiece 90 sufficient to propagate the crack along the score line 92 and through the thickness 91 of the transparent workpiece 90, resulting in complete separation of the transparent workpiece 90 along the score line 92. Without being bound by theory, it is believed that the tensile stress can be generated by glass expansion (i.e., varying density) in the portion of the workpiece having a localized high temperature. Alternatively, the transparent workpiece 90 can be immersed in a heating bath to heat the transparent workpiece 90.

現參照第5至7圖,一旦分離,每一個分離的透明工件190包含分離邊緣160,具有邊緣表面162。第5圖描繪分離邊緣160的部分前視圖。第6圖描繪分離邊緣160的部分側視圖。第7圖描繪分離邊緣160的部分透視圖。分離邊緣160延伸於分離的透明工件190的第一表面196與第二表面198之間。在分離透明工件90之前(第1至4圖),透明工件190的第一表面196形成透明工件90的第一表面96的一部分且透明工件190的第二表面198形成透明工件90的第二表面98的一部分。Referring now to Figures 5 through 7, once separated, each separate transparent workpiece 190 includes a split edge 160 having an edge surface 162. FIG. 5 depicts a partial front view of the separation edge 160. Figure 6 depicts a partial side view of the separation edge 160. Figure 7 depicts a partial perspective view of the separation edge 160. The separation edge 160 extends between the first surface 196 and the second surface 198 of the separate transparent workpiece 190. Prior to separating the transparent workpiece 90 (Figs. 1 through 4), the first surface 196 of the transparent workpiece 190 forms a portion of the first surface 96 of the transparent workpiece 90 and the second surface 198 of the transparent workpiece 190 forms the second surface of the transparent workpiece 90. Part of 98.

如第5至7圖中所繪示,分離邊緣160的邊緣表面162包含劃痕表面區域164與破裂表面區域163。劃痕表面區域164由雷射燒蝕所形成且對應於前述透明工件90的劃痕線92。劃痕表面區域164由分離的透明工件190的第一表面196延伸至劃痕深度線166,該劃痕深度線166對應於前述透明工件90的劃痕線底面94。具體來說,在分離透明工件90之前,劃痕表面區域164為劃痕線92的壁面且劃痕深度線166為劃痕線92的劃痕線底面94的一部分。此外,藉由將裂縫沿著劃痕線92傳播穿過透明工件90而形成破裂表面區域163以分離透明工件90。分離邊緣160的破裂表面區域163由劃痕深度線166延伸至分離的透明工件190的第二表面198。具體來說,破裂表面區域163對應於藉由如上所述之施加應力至劃痕線92以沿著劃痕線92分離的透明工件90的部分。As depicted in FIGS. 5-7, the edge surface 162 of the separation edge 160 includes a scored surface area 164 and a fracture surface area 163. The scratched surface area 164 is formed by laser ablation and corresponds to the scribe line 92 of the aforementioned transparent workpiece 90. The scratched surface region 164 extends from the first surface 196 of the separate transparent workpiece 190 to a scratch depth line 166 that corresponds to the scribe line bottom surface 94 of the aforementioned transparent workpiece 90. Specifically, prior to separating the transparent workpiece 90, the scratch surface area 164 is the wall surface of the score line 92 and the scratch depth line 166 is a portion of the score line bottom surface 94 of the score line 92. Further, the rupture surface region 163 is formed by propagating the crack along the scribe line 92 through the transparent workpiece 90 to separate the transparent workpiece 90. The fracture surface region 163 of the separation edge 160 extends from the scratch depth line 166 to the second surface 198 of the separate transparent workpiece 190. In particular, the rupture surface region 163 corresponds to a portion of the transparent workpiece 90 that is separated along the scribe line 92 by applying stress to the scribe line 92 as described above.

現參照第5與7圖,分離邊緣160可包含針排區域170,該針排區域170包含一或多個針排特徵172,由劃痕深度線166沿著分離邊緣160朝分離的透明工件190的第二表面198延伸。如在此所使用的「針排特徵」代表將分離邊緣160的邊緣表面162的非共平面部分165分離的特徵(例如,在裂縫表面上於破裂位置方向中連續的線)。舉例來說,非共平面部分165可為邊緣表面162的不規則定向部分,而針排特徵172連接該些不規則定向部分。雖然並非意圖受限於理論,針排特徵是由裂縫前端方向中的局部偏差所造成,例如為裂縫前端速度變化、驅動裂縫的應力場(例如,在應力場中的局部變化)與材料不均勻性所造成的結果。通常,針排特徵包含分量線(component line),與裂縫傳播的局部方向平行運行。Referring now to Figures 5 and 7, the separation edge 160 can include a needle row region 170 that includes one or more needle row features 172 along the separation depth line 166 along the separation edge 160 toward the separate transparent workpiece 190. The second surface 198 extends. "Needle row feature" as used herein refers to a feature that separates the non-coplanar portions 165 of the edge surface 162 of the separation edge 160 (eg, a line that is continuous in the direction of the fracture location on the surface of the fracture). For example, the non-coplanar portion 165 can be an irregularly oriented portion of the edge surface 162, while the needle row feature 172 connects the irregularly oriented portions. Although not intended to be limited by theory, the needle row feature is caused by local deviations in the direction of the front end of the crack, such as the velocity of the crack front end, the stress field that drives the crack (eg, local variations in the stress field), and material non-uniformity. The result of sex. Typically, the needle row feature includes a component line that runs parallel to the local direction of crack propagation.

作為非限制性實例,一或多個針排特徵172可包含扭轉針排、剪切針排、霧狀針排、應力強度針排等等。雖然並非意圖受限於理論,扭轉針排包含分離裂縫表面部分的針排特徵,每一個扭轉針排已對應於主要張力軸中的側旋或扭轉由原始裂縫平面轉動。舉例來說,當在沿著透明工件90的劃痕線92進行裂縫傳播期間誘導扭轉時,可形成扭轉針排。扭轉針排分離邊緣表面162的非共平面部分165,每一個扭轉針排可藉由對應於主要張力軸(例如,沿著劃痕線92的軸)中的側旋或扭轉進行轉動而形成。例如,可由存在於透明工件90中的可變應力條件來產生主要張力軸中的側旋或扭轉。As a non-limiting example, one or more of the needle row features 172 can include a twisted needle row, a shear needle row, a hazy needle row, a stress intensity needle row, and the like. While not intending to be bound by theory, the twist pin row includes needle row features that separate the surface portions of the crack, each of which has a side turn or twist in the primary tension axis that is rotated by the original crack plane. For example, when twisting is induced during crack propagation along the scribe line 92 of the transparent workpiece 90, a twist pin row can be formed. The non-coplanar portions 165 of the torsion pin separation edge surface 162, each of which can be formed by rotation in a side or twist in the main tension axis (eg, along the axis of the score line 92). For example, side turns or twists in the primary tension axis can be created by variable stress conditions present in the transparent workpiece 90.

每一個針排特徵172由劃痕深度線166朝分離的透明工件190的第二表面198沿著破裂表面區域163延伸。此外,由劃痕深度線166朝第二表面198延伸最遠距離的針排區域170的個別針排特徵172界定針排區域170的最大針排深度174。最小化分離邊緣160的最大針排深度174是有利的。較大的針排特徵172會限制分離邊緣160的強度且會限制精密設置分離的透明工件190的分離邊緣160的能力。在一些實施例中,由雷射燒蝕具有介於約10μm至約60μm的劃痕深度95的劃痕線92來分離透明工件90可最小化最大針排深度174,例如,使得最大針排深度174為約50μm或更小、30μm或更小、20μm或更小、10μm或更小等等。Each needle row feature 172 extends from the scratch depth line 166 toward the second surface 198 of the separate transparent workpiece 190 along the fracture surface region 163. Moreover, the individual needle row features 172 of the needle row region 170 that extend the furthest distance from the scratch depth line 166 toward the second surface 198 define the maximum needle row depth 174 of the needle row region 170. It is advantageous to minimize the maximum needle depth 174 of the separation edge 160. The larger needle row feature 172 will limit the strength of the separation edge 160 and may limit the ability to precisely set the separation edge 160 of the separate transparent workpiece 190. In some embodiments, separating the transparent workpiece 90 by laser ablation of the scratch line 92 having a scratch depth 95 of between about 10 [mu]m and about 60 [mu]m can minimize the maximum needle row depth 174, for example, such that the maximum needle depth is 174 is about 50 μm or less, 30 μm or less, 20 μm or less, 10 μm or less, and the like.

現參照第6與7圖,在一些實施例中,希望分離邊緣160的破裂表面區域163(例如,延伸於劃痕深度線166與第二表面198之間的分離邊緣160部分)正交於分離的透明工件190的第一表面196與第二表面198兩者。舉例來說,希望分離邊緣160的破裂區域與裂縫傳播平面195為共平面(第1A、6與7圖)。裂縫傳播平面195為正交於分離的透明工件190的第一表面196與第二表面198兩者的平面。如第1圖所示,在將透明工件90分離為分離的透明工件190之前,裂縫傳播平面195大致沿著透明工件90的期望分離路徑93延伸。此外,如第6與7圖所示,在將透明工件90分離為分離的透明工件190之後,裂縫傳播平面195延伸正交於第一表面196與第二表面198,穿過劃痕深度線166。Referring now to Figures 6 and 7, in some embodiments, it is desirable to separate the fracture surface region 163 of the edge 160 (e.g., the portion of the separation edge 160 that extends between the scratch depth line 166 and the second surface 198) orthogonal to the separation. Both the first surface 196 and the second surface 198 of the transparent workpiece 190. For example, it is desirable that the rupture zone of the separation edge 160 be coplanar with the fracture propagation plane 195 (Figs. 1A, 6 and 7). The crack propagation plane 195 is a plane that is orthogonal to both the first surface 196 and the second surface 198 of the separate transparent workpiece 190. As shown in FIG. 1, the crack propagation plane 195 extends generally along the desired separation path 93 of the transparent workpiece 90 prior to separating the transparent workpiece 90 into separate transparent workpieces 190. Moreover, as shown in FIGS. 6 and 7, after separating the transparent workpiece 90 into separate transparent workpieces 190, the crack propagation plane 195 extends orthogonal to the first surface 196 and the second surface 198, passing through the scratch depth line 166. .

分離邊緣160相對於第一表面196的正交可由測量分離的透明工件190的破裂表面區域163的邊緣偏差距離180來確認。邊緣偏差距離180為破裂表面區域163的第一邊界平面186與破裂表面區域163的第二邊界平面188之間的距離。第一邊界平面186與第二邊界平面188兩者都平行於裂縫傳播平面195且正交於分離的透明工件190的第一表面196與第二表面198。此外,第一邊界平面186延伸穿過破裂表面區域163的第一邊界點182,且第二邊界平面延伸穿過破裂表面區域163的第二邊界點184。第一邊界點182為沿著分離邊緣160的破裂表面區域163的最內部的位置(例如,向內朝向分離的透明工件190的整體),且第二邊界點184為沿著分離邊緣160的破裂表面區域163的最外部的位置(例如,向外遠離分離的透明工件190的整體)。在繪示於第6與7圖的實例中,第一邊界點182位於分離的透明工件190的第二表面198處,且第二邊界點184位於劃痕深度線166與第二表面198之間。然而,應理解,第一邊界點182與第二邊界點184可位於沿著破裂表面區域163由劃痕深度線166至第二表面198的任何位置處。此外,在邊緣偏差距離180為零的實施例中,第一邊界平面186以及第二邊界平面188與裂縫傳播平面195為共平面。The orthogonality of the separation edge 160 relative to the first surface 196 can be confirmed by measuring the edge deviation distance 180 of the fracture surface area 163 of the separated transparent workpiece 190. The edge deviation distance 180 is the distance between the first boundary plane 186 of the fracture surface region 163 and the second boundary plane 188 of the fracture surface region 163. Both the first boundary plane 186 and the second boundary plane 188 are parallel to the crack propagation plane 195 and orthogonal to the first surface 196 and the second surface 198 of the separate transparent workpiece 190. Furthermore, the first boundary plane 186 extends through the first boundary point 182 of the rupture surface region 163 and the second boundary plane extends through the second boundary point 184 of the rupture surface region 163. The first boundary point 182 is the innermost position along the fracture surface region 163 of the separation edge 160 (eg, toward the entirety of the separated transparent workpiece 190), and the second boundary point 184 is a fracture along the separation edge 160. The outermost position of the surface region 163 (eg, outward away from the entirety of the separate transparent workpiece 190). In the example illustrated in FIGS. 6 and 7, the first boundary point 182 is located at the second surface 198 of the separate transparent workpiece 190 and the second boundary point 184 is located between the scratch depth line 166 and the second surface 198. . However, it should be understood that the first boundary point 182 and the second boundary point 184 can be located anywhere along the fracture surface area 163 from the scratch depth line 166 to the second surface 198. Moreover, in embodiments where the edge deviation distance 180 is zero, the first boundary plane 186 and the second boundary plane 188 are coplanar with the crack propagation plane 195.

在一些實施例中,邊緣偏差距離180可為約100μm或更小、75μm或更小、50μm或更小、40μm或更小、30μm或更小、20μm或更小、10μm或更小等等。最小化分離邊緣160的邊緣偏差距離180是有利的。較大的邊緣偏差距離180會限制分離邊緣160的強度且會限制精密設置分離的透明工件190的分離邊緣160的能力。由雷射燒蝕具有介於約10μm至約60μm的劃痕深度95的劃痕線92來分離透明工件90可最小化邊緣偏差距離180,例如,使得邊緣偏差距離180為約30μm或更小、20μm或更小、10μm或更小等等。此外,最大針排深度174與邊緣偏差距離180相關,使得降低最大針排深度174可減小邊緣偏差距離180。舉例來說,當最大針排深度174為約10μm或更小時,邊緣偏差距離180可為約20μm或更小。雖然並非意圖受限於理論,針排特徵172可由力矩所形成,該力矩使裂縫離開裂縫傳播平面195。因此,針排特徵172為遠離裂縫傳播平面195的較大邊緣偏差的良好指標(例如,較大邊緣偏差距離180)。In some embodiments, the edge deviation distance 180 can be about 100 μm or less, 75 μm or less, 50 μm or less, 40 μm or less, 30 μm or less, 20 μm or less, 10 μm or less, and the like. It is advantageous to minimize the edge deviation distance 180 of the separation edge 160. The larger edge deviation distance 180 will limit the strength of the separation edge 160 and may limit the ability to precisely set the separation edge 160 of the separated transparent workpiece 190. Separating the transparent workpiece 90 by laser ablation of the slash line 92 having a scratch depth 95 of from about 10 [mu]m to about 60 [mu]m may minimize the edge offset distance 180, for example, such that the edge deviation distance 180 is about 30 [mu]m or less, 20 μm or less, 10 μm or less, and the like. Moreover, the maximum stitch depth 174 is related to the edge offset distance 180 such that reducing the maximum stitch depth 174 can reduce the edge offset distance 180. For example, when the maximum needle row depth 174 is about 10 [mu]m or less, the edge deviation distance 180 can be about 20 [mu]m or less. Although not intended to be limited by theory, the needle row feature 172 may be formed by a moment that causes the crack to exit the crack propagation plane 195. Thus, the needle row feature 172 is a good indicator of a large edge deviation away from the crack propagation plane 195 (eg, a larger edge deviation distance 180).

在一些實施例中,由雷射燒蝕具有介於約10μm至約60μm的劃痕深度95的劃痕線92來分離透明工件90亦可最小化裂縫,該裂縫形成在正交於裂縫傳播平面195的方向中,例如,延伸至分離的透明工件190的整體中的裂縫,且可最小化分離透明工件90時所形成的裂縫起始點的數量。再者,在此描述的分離邊緣160可為未拋光分離邊緣。因此,在此描述的最大針排深度174與邊緣偏差距離180為未拋光或未處理分離邊緣160的分離邊緣160的性質。In some embodiments, separating the transparent workpiece 90 by laser ablation of the scratch line 92 having a scratch depth 95 of from about 10 [mu]m to about 60 [mu]m may also minimize cracks that are formed orthogonal to the crack propagation plane. In the direction of 195, for example, a crack extending into the entirety of the separated transparent workpiece 190, and the number of crack initiation points formed when the transparent workpiece 90 is separated can be minimized. Again, the separation edge 160 described herein can be an unpolished separation edge. Thus, the maximum needle row depth 174 and edge deviation distance 180 described herein are properties of the separate edge 160 of the unpolished or untreated separation edge 160.

現參照第8圖,圖表200描繪顯示在將透明工件90分離為分離的透明工件190之前形成在透明工件90的第一表面96中的劃痕線92的劃痕深度95(第3與4圖)與分離透明工件90之後所形成的分離的透明工件190的分離邊緣160的最大針排深度174之間的關係。具體來說,第8圖描繪兩個透明工件90樣品(第一透明工件樣品202與第二透明工件樣品204)的此關係。如第8圖所繪示,第一透明工件樣品202藉由雷射形成劃痕線92為約10μm至約60μm的劃痕深度95來最小化最大針排深度174,而第二透明工件樣品204藉由雷射形成劃痕線92為約10μm至約35μm的劃痕深度95來最小化最大針排深度174。雖然非意圖受限於理論,當劃痕深度95太窄時(例如,小於10μm),在透明工件90中可能不具有足夠的損壞以充分引導裂縫沿著劃痕線92傳播(例如,沿著裂縫傳播平面195)。此外,當劃痕深度95太深時(例如,對於第一透明工件樣品202為大於60μm或對於第二透明工件樣品204為大於35μm),裂縫傳播可開始於沿著劃痕線底面94的多個位置中,而造成較大針排特徵74。再者,應理解,包含其他材料組成的透明工件90可具有不同範圍的劃痕深度95。Referring now to Figure 8, a graph 200 depicts the scratch depth 95 of the score line 92 formed in the first surface 96 of the transparent workpiece 90 prior to separating the transparent workpiece 90 into separate transparent workpieces 190 (Figs. 3 and 4). The relationship between the maximum needle depth 174 of the separation edge 160 of the separate transparent workpiece 190 formed after the separation of the transparent workpiece 90. In particular, Figure 8 depicts this relationship of two transparent workpiece 90 samples (first transparent workpiece sample 202 and second transparent workpiece sample 204). As depicted in FIG. 8, the first transparent workpiece sample 202 minimizes the maximum stitch depth 174 by forming the scratch line 92 from the laser to form the scratch depth 95 of about 10 [mu]m to about 60 [mu]m, while the second transparent workpiece sample 204 The maximum stitch depth 174 is minimized by the laser forming the score line 92 from a scratch depth 95 of from about 10 [mu]m to about 35 [mu]m. Although not intended to be limited by theory, when the scratch depth 95 is too narrow (eg, less than 10 μm), there may not be sufficient damage in the transparent workpiece 90 to sufficiently direct the crack to propagate along the score line 92 (eg, along Crack propagation plane 195). Moreover, when the scratch depth 95 is too deep (eg, greater than 60 μm for the first transparent workpiece sample 202 or greater than 35 μm for the second transparent workpiece sample 204), crack propagation may begin with more along the bottom surface 94 of the score line. In one position, resulting in a larger needle row feature 74. Again, it should be understood that a transparent workpiece 90 comprising other materials may have a different range of scratch depths 95.

在一些實施例中,第一透明工件樣品202可包含實質不具有鹼金屬的玻璃基板,例如,鹼性元素Li2 O、Na2 O與K2 O的總濃度小於約0.1莫耳百分比(mol%)。此外,第一透明工件樣品202可包含,基於氧化物:64.0至71.0mol%的SiO2 、9.0至12.0mol%的Al2 O3 、 7.0至12.0mol%的B2 O3 、1.0至3.0mol%的MgO、6.0至11.5mol%的CaO、0至2.3mol% 的 SrO(例如, 0至1.0mol%)、0至2.3mol%的BaO(例如,0至0.1 mol% 或0至0.05mol%)、0至0.05mol%的As2 O3 (例如,0至0.02mol%)、0至0.05mol%的Sb2 O3 (例如,0至0.02mol%)、0.010至0.033mol%的Fe2 O3 (例如,0.012至0.024mol%)以及0.017至0.112mol%的SnO2 (例如,0.021至0.107mol%)。在一些實施例中,第一透明工件樣品202可包含小於或等於0.002mol%的硫、小於或等於0.4mol%的鹵素,例如氯,且可包含大於或等於0.5的Fe2+ 與Fe3+ 比例。第一透明工件樣品202亦可實質不包含鋇、砷和銻、Y2 O3 或La2 O3 。應理解,上述指定的範圍包含該範圍的端點。In some embodiments, the first transparent workpiece sample 202 can comprise a glass substrate that is substantially free of alkali metal, for example, a total concentration of basic elements Li 2 O, Na 2 O, and K 2 O is less than about 0.1 mole percent (mol) %). Further, the first transparent workpiece sample 202 may include, based on the oxide: 64.0 to 71.0 mol% of SiO 2 , 9.0 to 12.0 mol% of Al 2 O 3 , 7.0 to 12.0 mol% of B 2 O 3 , 1.0 to 3.0 mol. % MgO, 6.0 to 11.5 mol% CaO, 0 to 2.3 mol% SrO (for example, 0 to 1.0 mol%), 0 to 2.3 mol% of BaO (for example, 0 to 0.1 mol% or 0 to 0.05 mol%) ), 0 to 0.05 mol% of As 2 O 3 (for example, 0 to 0.02 mol%), 0 to 0.05 mol% of Sb 2 O 3 (for example, 0 to 0.02 mol%), and 0.010 to 0.033 mol% of Fe 2 O 3 (for example, 0.012 to 0.024 mol%) and 0.017 to 0.112 mol% of SnO 2 (for example, 0.021 to 0.107 mol%). In some embodiments, the first transparent workpiece sample 202 can comprise less than or equal to 0.002 mol% sulfur, less than or equal to 0.4 mol% halogen, such as chlorine, and can include Fe 2+ and Fe 3+ greater than or equal to 0.5. proportion. The first transparent workpiece sample 202 may also substantially exclude germanium, arsenic and antimony, Y 2 O 3 or La 2 O 3 . It should be understood that the above-specified range includes the endpoints of the range.

此外,第一透明工件樣品202可包含小於或等於2.41g/cm3 的密度、大於或等於650℃的應變點以及在0至300℃的溫度範圍的線性熱膨脹係數(CTE),該線性熱膨脹係數滿足以下關係:28×10−7 /°C≦CTE≦35×10−7 /°C。此外,第一透明工件樣品202可滿足以下關係中的一或多者:Σ[RO]/[Al2 O3 ]≧1、Σ[RO]/[Al2 O3 ]≧1.03、Σ[RO]/[Al2 O3 ]≦1.25、及/或Σ[RO]/[Al2 O3 ]≦1.12,其中[Al2 O3 ]為Al2 O3 的mol%,且Σ[RO]為MgO、CaO、SrO與BaO的莫耳百分比總和。再者,第一透明工件樣品202可包含小於0.05氣體介質/cm3 的平均氣體介質位準。Further, the first transparent workpiece sample 202 may include a density less than or equal to 2.41 g/cm 3 , a strain point greater than or equal to 650 ° C, and a linear thermal expansion coefficient (CTE) in a temperature range of 0 to 300 ° C, the linear thermal expansion coefficient The following relationship is satisfied: 28 × 10 −7 / ° C ≦ CTE ≦ 35 × 10 −7 / ° C. Further, the first transparent workpiece sample 202 may satisfy one or more of the following relationships: Σ[RO]/[Al 2 O 3 ]≧1, Σ[RO]/[Al 2 O 3 ]≧1.03, Σ[RO ] / [Al 2 O 3 ] ≦ 1.25, and/or Σ [RO] / [Al 2 O 3 ] ≦ 1.12, wherein [Al 2 O 3 ] is mol% of Al 2 O 3 and Σ [RO] is The sum of the molar percentages of MgO, CaO, SrO and BaO. Further, the first transparent workpiece sample 202 can comprise an average gas medium level of less than 0.05 gaseous medium/cm 3 .

在一些實施例中,第二透明工件樣品204可包含實質不具有鹼金屬的玻璃基板,例如,鹼性元素Li2 O、Na2 O與K2 O的總濃度小於約0.1mol%。此外,第二透明工件樣品204可包含,基於氧化物:63至75mol%的 SiO2 (例如,70.31至72.5mol%、64至71mol%、68.5至72mol%、63至71mol%、68至70.5mol%、69至72.5mol%、68至72mol%、63至75mol%、63至71mol%等等)、11至14.5mol%的Al2 O3 (例如,11至13.5mol%、11.5至13.5mol%、11至14mol%、13至14mol%、13至14.5mol%)、0至5mol%的B2 O3 (例如,1至5mol%、1至4.5mol%、2至4.5mol%、0至2.5mol%、0至3mol%、0至2.8mol%、0至2mol%等等)、0.9至9mol%的MgO(1至6mol%、3至5mol%、3.5至5mol%)、 4至11mol%的Ca(例如,4至6.5mol%、4至8mol%、5至6.5mol%、5.25至6.5mol%、5.25至11mol%等等)、0至6.5mol%的SrO (例如,0至4.5mol%、0至2mol%、3至5mol%等等)以及0至9mol%的BaO(0至4.5mol%、1至9 mol%、2.5至4.5mol%、1.5至5mol%等等)。此外,第二透明工件樣品204亦可包含0至0.1mol%的Li2 O、Na2 O、K2 O或前述的組合。此外,透明工件可包含0至0.05mol%的Sb2 O3 、0至0.005mol%的As2 O3 與0至0.005mol%的Sb2 O3 。應理解,上述指定的範圍包含該範圍的端點。In some embodiments, the second transparent workpiece sample 204 can comprise a glass substrate that is substantially free of alkali metals, for example, a total concentration of the basic elements Li 2 O, Na 2 O, and K 2 O is less than about 0.1 mol%. Further, the second transparent workpiece sample 204 may comprise, based on the oxide: 63 to 75 mol% of SiO 2 (eg, 70.31 to 72.5 mol%, 64 to 71 mol%, 68.5 to 72 mol%, 63 to 71 mol%, 68 to 70.5 mol) %, 69 to 72.5 mol%, 68 to 72 mol%, 63 to 75 mol%, 63 to 71 mol%, etc.), 11 to 14.5 mol% of Al 2 O 3 (for example, 11 to 13.5 mol%, 11.5 to 13.5 mol%) , 11 to 14 mol%, 13 to 14 mol%, 13 to 14.5 mol%), 0 to 5 mol% of B 2 O 3 (for example, 1 to 5 mol%, 1 to 4.5 mol%, 2 to 4.5 mol%, 0 to 2.5) Mol%, 0 to 3 mol%, 0 to 2.8 mol%, 0 to 2 mol%, etc.), 0.9 to 9 mol% of MgO (1 to 6 mol%, 3 to 5 mol%, 3.5 to 5 mol%), 4 to 11 mol% Ca (for example, 4 to 6.5 mol%, 4 to 8 mol%, 5 to 6.5 mol%, 5.25 to 6.5 mol%, 5.25 to 11 mol%, etc.), 0 to 6.5 mol% of SrO (for example, 0 to 4.5 mol%) , 0 to 2 mol%, 3 to 5 mol%, etc.) and 0 to 9 mol% of BaO (0 to 4.5 mol%, 1 to 9 mol%, 2.5 to 4.5 mol%, 1.5 to 5 mol%, etc.). Further, the second transparent workpiece sample 204 may also contain 0 to 0.1 mol% of Li 2 O, Na 2 O, K 2 O, or a combination of the foregoing. Further, the transparent workpiece may contain 0 to 0.05 mol% of Sb 2 O 3 , 0 to 0.005 mol% of As 2 O 3 and 0 to 0.005 mol% of Sb 2 O 3 . It should be understood that the above-specified range includes the endpoints of the range.

在一些實施例中,第二透明工件樣品204可滿足以下關係:1.05≦([MgO]+[CaO]+[SrO]+[BaO])/[Al2 O3 ]≦1.4,其中0.2≦[MgO]/([MgO]+[CaO]+[SrO]+[BaO])≦0.35,其中0.65≦([CaO]+[SrO]+[BaO])/[Al2 O3 ]≦0.95,且其中[Al2 O3 ]、[MgO]、[CaO]、[SrO]、[BaO]代表個別氧化物成分的莫耳百分比。在一些實施例中,第二透明工件樣品204可滿足以下關係中的一或多者:([MgO]+[CaO]+[SrO]+[BaO])/[Al2 O3 ]≦1.6以及1≦([MgO]+[CaO]+[SrO]+[BaO])/[Al2 O3 ]≦1.6,其中[Al2 O3 ]、[MgO]、[CaO]、[SrO]、[BaO]代表個別氧化物成分的莫耳百分比。第二透明工件樣品204亦可包含總濃度為約0至0.5mol%的一或多個化學澄清劑,例如,Fe2 O3 、CeO2 、MnO2 、SnO2 、As2 O3 、Sb2 O3 、F、Cl與Br。此外,第二透明工件樣品204可包含約0.005至0.2mol%的CeO2 、Fe2 O3 與MnO2 中的任一者或CeO2 、Fe2 O3 與MnO2 的組合,其中可經由CeO2 、Fe2 O3 與MnO2 在第二透明工件樣品204中的最終價態的可見光吸收為第二透明工件樣品204帶來顏色。In some embodiments, the second transparent workpiece sample 204 can satisfy the following relationship: 1.05 ≦ ([MgO] + [CaO] + [SrO] + [BaO]) / [Al 2 O 3 ] ≦ 1.4, where 0.2 ≦ [ MgO]/([MgO]+[CaO]+[SrO]+[BaO])≦0.35, where 0.65≦([CaO]+[SrO]+[BaO])/[Al 2 O 3 ]≦0.95, and Wherein [Al 2 O 3 ], [MgO], [CaO], [SrO], [BaO] represents the molar percentage of the individual oxide components. In some embodiments, the second transparent workpiece sample 204 can satisfy one or more of the following relationships: ([MgO]+[CaO]+[SrO]+[BaO])/[Al 2 O 3 ]≦1.6 and 1≦([MgO]+[CaO]+[SrO]+[BaO])/[Al 2 O 3 ]≦1.6, where [Al 2 O 3 ], [MgO], [CaO], [SrO], [ BaO] represents the percentage of moles of individual oxide components. The second transparent workpiece sample 204 may also comprise one or more chemical fining agents at a total concentration of from about 0 to 0.5 mol%, for example, Fe 2 O 3 , CeO 2 , MnO 2 , SnO 2 , As 2 O 3 , Sb 2 O 3 , F, Cl and Br. Further, the second transparent workpiece sample 204 may comprise from about 0.005 to 0.2 mol% of CeO 2 , any of Fe 2 O 3 and MnO 2 or a combination of CeO 2 , Fe 2 O 3 and MnO 2 , via CeO 2. The visible light absorption of the final valence of Fe 2 O 3 and MnO 2 in the second transparent workpiece sample 204 imparts color to the second transparent workpiece sample 204.

在一些實施例中,第二透明工件樣品204,例如,第二透明工件樣品204可具有高退火點與高楊氏模數,其中高退火點與高楊氏模數會限制或避免第二透明工件樣品204的變形,該變形歸因於在製造第二透明工件樣品204後的熱處理期間(例如,製造TFT期間)的擠壓/收縮。退火點可高於或等於約765℃、775℃、785℃、795℃、800℃等等。在一些實施例中,楊氏模數可為約81GPa至88GPa,例如,約81GPa至85GPa、約82GPa至84.5GPa。此外,楊氏模數可為約81GPa或更高、約81.2GPa或更高、約81.5GPa或更高、約82GPa或更高等等。在一些實施例中,第二透明工件樣品204的密度小於或等於約2.7g/cm3 、2.65 g/cm3 、2.63g/cm3 、2.62g/cm3 、2.61g/cm3 、2.57g/cm3 、2.55g/cm3 等等。在一些實施例中,密度可為約2.57g/cm3 至約2.626g/cm3In some embodiments, the second transparent workpiece sample 204, for example, the second transparent workpiece sample 204, can have a high annealing point and a high Young's modulus, wherein the high annealing point and the high Young's modulus can limit or avoid the second transparency. Deformation of the workpiece sample 204 due to extrusion/contraction during heat treatment (eg, during TFT fabrication) after the second transparent workpiece sample 204 is fabricated. The annealing point can be higher than or equal to about 765 ° C, 775 ° C, 785 ° C, 795 ° C, 800 ° C, and the like. In some embodiments, the Young's modulus can be from about 81 GPa to 88 GPa, for example, from about 81 GPa to 85 GPa, from about 82 GPa to 84.5 GPa. Further, the Young's modulus may be about 81 GPa or higher, about 81.2 GPa or higher, about 81.5 GPa or higher, about 82 GPa or higher, and the like. In some embodiments, the second transparent workpiece sample 204 has a density of less than or equal to about 2.7 g/cm 3 , 2.65 g/cm 3 , 2.63 g/cm 3 , 2.62 g/cm 3 , 2.61 g/cm 3 , 2.57 g. /cm 3 , 2.55g/cm 3 and so on. In some embodiments, the density can range from about 2.57 g/cm 3 to about 2.626 g/cm 3 .

第二透明工件樣品204亦可具有高蝕刻速率,高蝕刻速率為如何快速地由透明工件90移除透明工件90的材料(例如,玻璃材料)的測量值。高蝕刻速率允許透明工件90的經濟性薄化,這對於使用透明工件90作為顯示器玻璃的實施例來說是有用的。此外,透明工件90的蝕刻速率可由蝕刻指數定量,蝕刻指數為在商業相關蝕刻製程(例如,但不限於,在30℃的10%HF/5%HCl的浸泡液中10分鐘)中玻璃組成物的蝕刻速率估計值。蝕刻指數可由以下數學地定義:蝕刻指數=-54.6147+(2.50004[AlO3 ])+(1.3134[B2 O3 ])+(1.84106[MgO])+(3.01223[CaO])+(3.7248[SrO])+(4.13149[BaO]),其中氧化物為mol%。舉例來說,在一些實施例中,蝕刻指數大於或等於約21。在各種實施例中,蝕刻指數大於或等於約21.5、22、22.5、23、23.5、24、24.5、25、25.5、26、26.5、27、27.5、28、28.5、29、29.5、30、30.5或31。The second transparent workpiece sample 204 can also have a high etch rate, which is a measure of how quickly the material (eg, glass material) of the transparent workpiece 90 is removed from the transparent workpiece 90. The high etch rate allows economical thinning of the transparent workpiece 90, which is useful for embodiments that use the transparent workpiece 90 as a display glass. In addition, the etch rate of the transparent workpiece 90 can be quantified by an etch index that is a glass composition in a commercially relevant etch process (eg, but not limited to, 10 minutes in a 10% HF/5% HCl soak solution at 30 ° C). Estimated etch rate. The etch index can be mathematically defined as follows: Etch index = -54.6147 + (2.50004 [AlO 3 ]) + (1.3134 [B 2 O 3 ]) + (1.84106 [MgO]) + (3.01223 [CaO]) + (3.7248 [SrO ]) + (4.13149 [BaO]), wherein the oxide is mol%. For example, in some embodiments, the etch index is greater than or equal to about 21. In various embodiments, the etch index is greater than or equal to about 21.5, 22, 22.5, 23, 23.5, 24, 24.5, 25, 25.5, 26, 26.5, 27, 27.5, 28, 28.5, 29, 29.5, 30, 30.5 or 31.

基於前述說明,應理解具有分離邊緣的分離的透明工件可由以下方式形成:雷射燒蝕透明工件,以形成劃痕線延伸至透明工件的表面中且施加應力至劃痕線,以將透明工件分離為兩個或多個各自具有分離邊緣的分離的透明工件。此外,雷射燒蝕劃痕線至約10μm至約60μm的劃痕深度與後續分離透明工件形成兩個分離的透明工件,各自包含具有最小針排深度與最小邊緣偏差距離的分離邊緣。最小化針排深度與邊緣偏差距離可幫助強化分離邊緣並允許分離邊緣被良好定位於分離的透明工件的最終應用中,例如,當使用分離的透明工件作為電子裝置用之TFT或顯示器玻璃。Based on the foregoing description, it should be understood that a separate transparent workpiece having discrete edges can be formed by laser ablating a transparent workpiece to form a score line extending into the surface of the transparent workpiece and applying stress to the score line to expose the transparent workpiece Separated into two or more separate transparent workpieces each having a separate edge. In addition, the laser ablation scribe line to a scratch depth of from about 10 [mu]m to about 60 [mu]m forms a separate transparent workpiece with the subsequent discrete transparent workpiece, each comprising a separate edge having a minimum stitch depth and a minimum edge offset distance. Minimizing the depth of the needle row and the edge deviation distance can help strengthen the separation edge and allow the separation edge to be well positioned in the final application of the separate transparent workpiece, for example, when using a separate transparent workpiece as a TFT or display glass for an electronic device.

範圍可在此表示為由「約」一個特定數值,及/或至「約」另一個特定數值。當表示這樣的範圍時,另一個實施例包含由一個特定數值及/或至另一個特定數值。類似地,當藉由使用先行詞「約」表示數值為近似時,應理解,特定數值形成另一個實施例。將進一步理解,每一個範圍的端點對於另一個端點都是有意義的,且獨立於另一個端點。Ranges may be expressed herein as "about" a particular value, and/or to "about" another particular value. When such a range is indicated, another embodiment encompasses a particular value and/or to another particular value. Similarly, when values are approximated by the use of the antecedent "about", it is understood that the particular value forms another embodiment. It will be further understood that the endpoints of each range are meaningful to the other endpoint and are independent of the other endpoint.

在此所使用的方向性用語,例如,上、下、右、左、前、後、頂、底,僅作為所繪示的圖式參考且並非意指絕對方向。The directional terms used herein, for example, up, down, right, left, front, back, top, bottom, are merely referenced to the drawings and are not meant to be absolute directions.

除非明確指出,無意將在此所陳述的任何方法解釋為需要以特定順序執行該方法的步驟,更不需要任何設備特定方向。據此,當方法請求項並未實際記載由該方法步驟所遵循的順序、或任何設備請求項並未實際記載個別組件的順序或方向、或在申請專利範圍或說明書中並未特別說明將該些步驟限定為特定順序、或並未描述設備組件的特定順序或方向時,無意在任何方面推論順序或方向。這適用於任何可能的不明確解釋基礎,包含:關於步驟安排的邏輯問題、操作流程、組件順序或組件方向、由文法組織或標點符號所衍生的顯然意義以及在說明書中所描述的實施例數量與種類。Unless expressly stated otherwise, any method set forth herein is not intended to be construed as requiring the steps of the method to be performed in a particular order. Accordingly, the method request item does not actually describe the order followed by the method steps, or any device request item does not actually record the order or orientation of the individual components, or is not specifically stated in the scope of the patent application or the specification. When the steps are limited to a particular order, or a particular order or orientation of the device components is not described, the order or orientation is not intended to be inferred in any respect. This applies to any possible basis for ambiguous interpretation, including: logical questions about the scheduling of steps, operational procedures, component order or component orientation, apparent meaning derived from grammar organization or punctuation, and the number of embodiments described in the specification. With kind.

如在此所使用的,除非上下文另有明確規定,單數形式「一(a)」、「一(an)」與「該(the)」包含複數參考值(referent)。因此,舉例來說,除非上下文另有明確規定,參照「一」組件包含具有兩個或多個此組件的態樣。As used herein, the singular forms "a", "the" and "the" Thus, for example, reference to "a" or "an"

應注意,可在此使用用語「實質」來代表固有的不確定程度,該不確定程度歸因於任何定量比較、數值、測量或其他表徵。在此亦使用此用語來代表定量表徵可由所述參考值變化而不會造成所討論標的的基本函數變化的程度。It should be noted that the term "substantial" may be used herein to mean the inherent degree of uncertainty attributed to any quantitative comparison, numerical, measurement or other characterization. This term is also used herein to mean a quantitative representation of the extent to which the reference value can be varied without causing a change in the basic function of the subject matter in question.

雖然已在此說明並描述特定實施例,但應理解可實施各種其他變化例與改良例,而不會編離所請標的的精神與範疇。再者,雖然已在此描述所請標的的各種態樣,但不需要合併使用此些態樣。因此意圖使後附申請專利範圍涵蓋落入所請標的範疇中的所有此些變化例與改良例。While the specific embodiments have been illustrated and described, it is understood that Furthermore, although various aspects of the claimed subject matter have been described herein, it is not necessary to combine such aspects. Therefore, it is intended that the scope of the appended claims should cover all such variations and modifications as fall within the scope of the claims.

80‧‧‧位移平台80‧‧‧ Displacement platform

82‧‧‧第一方向82‧‧‧First direction

84‧‧‧第二方向84‧‧‧second direction

90‧‧‧透明工件90‧‧‧Transparent workpiece

91‧‧‧厚度91‧‧‧ thickness

92‧‧‧劃痕線92‧‧‧Scratch line

93‧‧‧期望分離路徑93‧‧‧ Expected separation path

94‧‧‧劃痕線底面94‧‧‧Scratch line bottom

95‧‧‧劃痕深度95‧‧‧Scratch depth

96‧‧‧第一表面96‧‧‧ first surface

97‧‧‧撞擊位置97‧‧‧ impact location

98‧‧‧第二表面98‧‧‧ second surface

100‧‧‧雷射100‧‧‧Laser

101‧‧‧聚焦透鏡101‧‧‧focus lens

102‧‧‧脈衝雷射光束102‧‧‧pulse laser beam

104‧‧‧會聚區104‧‧‧Convergence area

160‧‧‧分離邊緣160‧‧‧Separation edge

162‧‧‧邊緣表面162‧‧‧Edge surface

163‧‧‧破裂表面區域163‧‧‧Fracture surface area

164‧‧‧劃痕表面區域164‧‧‧Scratch surface area

165‧‧‧非共平面部分165‧‧‧ non-coplanar parts

166‧‧‧劃痕深度線166‧‧‧Scratch depth line

170‧‧‧針排區域170‧‧・Needle area

172‧‧‧針排特徵172‧‧‧ needle row features

174‧‧‧最大針排深度174‧‧‧Maximum needle depth

180‧‧‧最大針排深度180‧‧‧Maximum needle depth

182‧‧‧第一邊界點182‧‧‧ first boundary point

184‧‧‧第二邊界點184‧‧‧ second boundary point

186‧‧‧第一邊界平面186‧‧‧ first boundary plane

188‧‧‧第二邊界平面188‧‧‧second boundary plane

190‧‧‧分離的透明工件190‧‧‧Separated transparent workpiece

195‧‧‧裂縫傳播平面195‧‧‧ crack propagation plane

196‧‧‧第一表面196‧‧‧ first surface

198‧‧‧第二表面198‧‧‧ second surface

200‧‧‧圖表200‧‧‧ chart

202‧‧‧第一透明工件樣品202‧‧‧First transparent workpiece sample

204‧‧‧第二透明工件樣品204‧‧‧Second transparent workpiece sample

D‧‧‧未聚焦部分直徑D‧‧‧Unfocused part diameter

BW‧‧‧光束腰寬BW‧‧‧ beam waist width

W‧‧‧劃痕線寬度W‧‧‧Scratch line width

C‧‧‧中心C‧‧‧ Center

d‧‧‧光束腰寬直徑D‧‧‧beam waist width

圖式中所說明的實施例本質上為說明性與示例性的,並非意圖限制申請專利範圍所界定的標的。當與後附圖式一起參閱時,可以理解以下說明性實施例的實施方式,其中類似的結構以類似的元件符號指示,且其中:The embodiments illustrated in the drawings are illustrative and exemplary in nature and are not intended to limit the scope of the invention. Embodiments of the following illustrative embodiments may be understood when referring to the following figures, wherein like structures are indicated by like reference numerals, and wherein:

第1A圖根據在此所示與描述的一或多個實施例示意性描述雷射與透明工件的透視圖。FIG. 1A schematically depicts a perspective view of a laser and a transparent workpiece in accordance with one or more embodiments shown and described herein.

第1B圖根據在此所示與描述的一或多個實施例示意性描述雷射光束。FIG. 1B schematically depicts a laser beam in accordance with one or more embodiments shown and described herein.

第2圖根據在此所示與描述的一或多個實施例示意性描述第1A圖的雷射與透明工件的頂視圖。Figure 2 is a top plan view of the laser and transparent workpiece of Figure 1A, schematically depicted in accordance with one or more embodiments shown and described herein.

第3圖根據在此所示與描述的一或多個實施例示意性描述沿著第2圖的A-A線的剖視圖。Figure 3 is a cross-sectional view along line A-A of Figure 2, schematically depicted in accordance with one or more embodiments shown and described herein.

第4圖根據在此所示與描述的一或多個實施例示意性描述沿著第2圖的B-B線的剖視圖。Figure 4 is a cross-sectional view along line B-B of Figure 2, schematically depicted in accordance with one or more embodiments shown and described herein.

第5圖根據在此所示與描述的一或多個實施例示意性描述分離的透明工件的分離邊緣的邊緣表面的部分前視圖。Figure 5 is a partial front elevational view of the edge surface of a separate edge of a transparent workpiece that is schematically depicted in accordance with one or more embodiments described herein.

第6圖根據在此所示與描述的一或多個實施例示意性描述第5圖的分離的透明工件的分離邊緣的邊緣表面的部分側視圖。Figure 6 is a partial side elevational view of the edge surface of the separated edge of the separate transparent workpiece of Figure 5, schematically depicted in accordance with one or more embodiments illustrated herein and illustrated.

第7圖根據在此所示與描述的一或多個實施例示意性描述第5與6圖的分離的透明工件的部分透視圖。Figure 7 is a partial perspective view of a separate transparent workpiece of Figures 5 and 6 in accordance with one or more embodiments shown and described herein.

第8圖根據在此所示與描述的一或多個實施例示意性描述,形成在第一透明工件樣品與第二透明工件樣品中的劃痕劃痕線的劃痕深度以及在分離第一透明工件樣品與第二透明工件樣品後所形成的分離的透明工件的分離邊緣的最大針排深度之間的關係。Figure 8 is a schematic depiction of the scratch depth of the scratch line in the first transparent workpiece sample and the second transparent workpiece sample and in the first separation according to one or more embodiments shown and described herein. The relationship between the maximum needle depth of the separated edge of the separated transparent workpiece formed after the transparent workpiece sample and the second transparent workpiece sample.

國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無Domestic deposit information (please note according to the order of the depository, date, number)

國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無Foreign deposit information (please note in the order of country, organization, date, number)

Claims (20)

一種雷射處理一透明工件的方法,該方法包含:  引導一脈衝雷射光束至該透明工件的一第一表面上的一撞擊位置處的該透明工件中,以使該脈衝雷射光束燒蝕該撞擊位置處的該透明工件的一部分材料,其中該脈衝雷射光束具有約5μJ至約50μJ的一脈衝能量;以及 相對於該透明工件的該第一表面沿著一期望分離路徑移動該脈衝雷射光束,因而燒蝕該透明工件的額外材料,以沿著該期望分離路徑形成一劃痕線,該劃痕線包含約10μm至約60μm的一劃痕深度。A method of laser processing a transparent workpiece, the method comprising: directing a pulsed laser beam into the transparent workpiece at an impact location on a first surface of the transparent workpiece to ablate the pulsed laser beam a portion of the material of the transparent workpiece at the impact location, wherein the pulsed laser beam has a pulse energy of between about 5 μJ and about 50 μJ; and the first surface of the transparent workpiece moves the pulsed Ray along a desired separation path The beam of light, thus ablating additional material of the transparent workpiece, forms a scribe line along the desired separation path, the scribe line comprising a scratch depth of from about 10 [mu]m to about 60 [mu]m. 如請求項1所述之方法,進一步包括:施加應力至該透明工件的該劃痕線以沿著該劃痕線由該透明工件分離至少一個分離的透明工件,其中該至少一個分離的透明工件包含一分離邊緣。The method of claim 1, further comprising: applying a stress to the scribe line of the transparent workpiece to separate at least one separate transparent workpiece from the transparent workpiece along the scribe line, wherein the at least one separate transparent workpiece Contains a separate edge. 如請求項2所述之方法,其中該至少一個分離的透明工件的該分離邊緣延伸於該至少一個分離的透明工件的一第一表面與一第二表面之間,且該分離邊緣進一步包含:   一劃痕表面區域,由該至少一個分離的透明工件的該第一表面延伸至一劃痕深度線;   一破裂表面區域,由該劃痕深度線延伸至該至少一個分離的透明工件的該第二表面;   一或多個針排特徵,沿著該破裂表面區域由該劃痕深度線朝該第二表面延伸,其中該一或多個針排特徵的一最大針排深度為10μm或更小;以及   30μm或更小的一邊緣偏差距離,其中該邊緣偏差距離為該破裂表面區域的一第一界面平面與該破裂表面區域的一第二界面平面之間的一距離。The method of claim 2, wherein the separation edge of the at least one separate transparent workpiece extends between a first surface and a second surface of the at least one separate transparent workpiece, and the separation edge further comprises: a scratched surface region extending from the first surface of the at least one separate transparent workpiece to a scratch depth line; a rupture surface region extending from the scratch depth line to the at least one separate transparent workpiece Two surfaces; one or more needle row features extending along the fracture surface area from the scratch depth line toward the second surface, wherein the one or more needle row features have a maximum needle depth of 10 μm or less And an edge deviation distance of 30 μm or less, wherein the edge deviation distance is a distance between a first interface plane of the fracture surface area and a second interface plane of the fracture surface area. 如請求項2所述之方法,其中施加至該透明工件的該劃痕線的該應力包含:機械應力、熱應力或機械應力與熱應力的一組合。The method of claim 2, wherein the stress applied to the scribe line of the transparent workpiece comprises: mechanical stress, thermal stress, or a combination of mechanical stress and thermal stress. 如請求項1所述之方法,其中該透明工件包含一玻璃基板,該玻璃基板實質不具有鹼金屬且包含,基於氧化物:64.0至71.0mol%的SiO2 、9.0至12.0mol%的Al2 O3 、7.0至12.0mol%的B2 O3 、1.0至3.0mol%的MgO、6.0至11.5mol%的CaO、0至2.3mol% 的 SrO以及0至2.3mol%的BaO。The method of claim 1, wherein the transparent workpiece comprises a glass substrate substantially free of an alkali metal and comprising, based on the oxide: 64.0 to 71.0 mol% of SiO 2 and 9.0 to 12.0 mol% of Al 2 O 3 , 7.0 to 12.0 mol% of B 2 O 3 , 1.0 to 3.0 mol% of MgO, 6.0 to 11.5 mol% of CaO, 0 to 2.3 mol% of SrO, and 0 to 2.3 mol% of BaO. 如請求項5所述之方法,其中該透明工件的該玻璃基板進一步包含,基於氧化物:0至0.05mol%的As2 O3 、0至0.05mol%的Sb2 O3 、0.010至0.033mol%的Fe2 O3 以及0.017至0.112mol%的SnO2The method of claim 5, wherein the glass substrate of the transparent workpiece further comprises, based on the oxide: 0 to 0.05 mol% of As 2 O 3 , 0 to 0.05 mol% of Sb 2 O 3 , 0.010 to 0.033 mol % Fe 2 O 3 and 0.017 to 0.112 mol% of SnO 2 . 如請求項5所述之方法,其中該透明工件的該玻璃基板包含,基於氧化物:1≦Σ[RO]/[Al2 O3 ]≦1.25,其中[Al2 O3 ]為Al2 O3 的mol%,且Σ[RO]為MgO、CaO、SrO與BaO的莫耳百分比總和。The method of claim 5, wherein the glass substrate of the transparent workpiece comprises, based on an oxide: 1 ≦Σ [RO] / [Al 2 O 3 ] ≦ 1.25, wherein [Al 2 O 3 ] is Al 2 O The mol% of 3 , and Σ[RO] is the sum of the molar percentages of MgO, CaO, SrO and BaO. 如請求項1所述之方法,其中該透明工件包含一玻璃基板,該玻璃基板實質不具有鹼金屬且包含,基於氧化物:63.0至71.0mol%的SiO2 、13.0至14.0mol%的Al2 O3 、0至3.0mol%的B2 O3 、0.9至9.0mol%的MgO、5.25至11.0mol%的CaO、0至6.0mol% 的 SrO以及1至9.0mol%的BaO。The method of claim 1, wherein the transparent workpiece comprises a glass substrate substantially free of alkali metal and comprising, based on the oxide: 63.0 to 71.0 mol% of SiO 2 , and 13.0 to 14.0 mol% of Al 2 O 3 , 0 to 3.0 mol% of B 2 O 3 , 0.9 to 9.0 mol% of MgO, 5.25 to 11.0 mol% of CaO, 0 to 6.0 mol% of SrO, and 1 to 9.0 mol% of BaO. 如請求項8所述之方法,其中該透明工件的該玻璃基板包含,基於氧化物:Σ[RO]/[Al2 O3 ]≦1.6,其中[Al2 O3 ]為Al2 O3 的mol%,且Σ[RO]為MgO、CaO、SrO與BaO的莫耳百分比總和。The method of claim 8, wherein the glass substrate of the transparent workpiece comprises, based on an oxide: Σ[RO]/[Al 2 O 3 ]≦1.6, wherein [Al 2 O 3 ] is Al 2 O 3 Mol%, and Σ[RO] is the sum of the molar percentages of MgO, CaO, SrO and BaO. 如請求項8所述之方法,其中該透明工件的該玻璃基板包含大於或等於21的一蝕刻指數、大於或等於765℃的一退火點以及81GPa至88GPa的一楊氏模數。The method of claim 8, wherein the glass substrate of the transparent workpiece comprises an etch index greater than or equal to 21, an annealing point greater than or equal to 765 ° C, and a Young's modulus from 81 GPa to 88 GPa. 如請求項8所述之方法,其中該劃痕線的該劃痕深度為約10μm至約35μm。The method of claim 8, wherein the scratch line has a depth of the scratch of from about 10 μm to about 35 μm. 如請求項1所述之方法,其中該脈衝雷射光束具有約200nm至約600nm的一波長以及1皮秒至約100皮秒的一脈衝持續時間。The method of claim 1, wherein the pulsed laser beam has a wavelength of from about 200 nm to about 600 nm and a pulse duration of from 1 picosecond to about 100 picoseconds. 一種分離的透明工件,包含: 一第一表面,相對於一第二表面;以及 一分離邊緣,延伸於該第一表面與該第二表面之間,其中該分離邊緣包含:   一劃痕表面區域,由該第一表面延伸至一劃痕深度線;   一破裂表面區域,由該劃痕深度線延伸至該第二表面;   一或多個針排特徵,沿著該破裂表面區域由該劃痕深度線朝該第二表面延伸,其中該一或多個針排特徵的一最大針排深度為10μm或更小;以及   30μm或更小的一邊緣偏差距離,其中該邊緣偏差距離為該破裂表面區域的一第一界面平面與該破裂表面區域的一第二界面平面之間的一距離。A separate transparent workpiece comprising: a first surface opposite a second surface; and a separation edge extending between the first surface and the second surface, wherein the separation edge comprises: a scratched surface region Extending from the first surface to a scratch depth line; a fracture surface region extending from the scratch depth line to the second surface; one or more needle row features along which the scratch is caused by the scratch a depth line extending toward the second surface, wherein a maximum needle row depth of the one or more needle row features is 10 μm or less; and an edge deviation distance of 30 μm or less, wherein the edge deviation distance is the fracture surface a distance between a first interface plane of the region and a second interface plane of the rupture surface region. 如請求項13所述之分離的透明工件,進一步包含一厚度,延伸於該第一表面與該第二表面之間,其中該厚度為約300μm至約700μm。The separate transparent workpiece of claim 13 further comprising a thickness extending between the first surface and the second surface, wherein the thickness is from about 300 μm to about 700 μm. 如請求項13所述之分離的透明工件,其中該劃痕深度線距離該第一表面約10μm至約60μm的一距離。The separate transparent workpiece of claim 13, wherein the scratch depth line is a distance of from about 10 [mu]m to about 60 [mu]m from the first surface. 如請求項13所述之分離的透明工件,進一步包含一玻璃基板,該玻璃基板實質不具有鹼金屬且包含,基於氧化物:64.0至71.0mol%的SiO2 、9.0至12.0mol%的Al2 O3 、7.0至12.0mol%的B2 O3 、1.0至3.0mol%的MgO、6.0至11.5mol%的CaO、0至2.3mol% 的 SrO以及0至2.3mol%的BaO。The separate transparent workpiece of claim 13 further comprising a glass substrate substantially free of alkali metal and comprising, based on the oxide: 64.0 to 71.0 mol% of SiO 2 and 9.0 to 12.0 mol% of Al 2 O 3 , 7.0 to 12.0 mol% of B 2 O 3 , 1.0 to 3.0 mol% of MgO, 6.0 to 11.5 mol% of CaO, 0 to 2.3 mol% of SrO, and 0 to 2.3 mol% of BaO. 如請求項13所述之分離的透明工件,進一步包含一玻璃基板,該玻璃基板實質不具有鹼金屬且包含,基於氧化物:63.0至71.0mol%的SiO2 、13.0至14.0mol%的Al2 O3 、0至3.0mol%的B2 O3 、0.9至9.0mol%的MgO、5.25至11.0mol%的CaO、0至6.0mol% 的 SrO以及1至9.0mol%的BaO。The separate transparent workpiece of claim 13, further comprising a glass substrate substantially free of alkali metal and comprising, based on the oxide: 63.0 to 71.0 mol% of SiO 2 , and 13.0 to 14.0 mol% of Al 2 O 3 , 0 to 3.0 mol% of B 2 O 3 , 0.9 to 9.0 mol% of MgO, 5.25 to 11.0 mol% of CaO, 0 to 6.0 mol% of SrO, and 1 to 9.0 mol% of BaO. 一種雷射處理一透明工件的方法,該方法包含:  引導一脈衝雷射光束至該透明工件的一第一表面上的一撞擊位置處的該透明工件中,以使該脈衝雷射光束燒蝕該撞擊位置處的該透明工件的一部分材料,其中該脈衝雷射光束包含約5μJ至約50μJ的一脈衝能量; 相對於該透明工件的該第一表面沿著一期望分離路徑移動該脈衝雷射光束,因而燒蝕該透明工件的額外材料,以沿著該期望分離路徑形成一劃痕線;以及 施加應力至該透明工件的該劃痕線以沿著該劃痕線由該透明工件分離至少一個分離的透明工件,其中該至少一個分離的透明工件包含一未拋光分離邊緣,該未拋光分離邊緣延伸於該至少一個分離的透明工件的一第一表面與一第二表面之間,且進一步包含:     一劃痕表面區域,由該至少一個分離的透明工件的該第一表面延伸至一劃痕深度線;     一破裂表面區域,由該劃痕深度線延伸至該至少一個分離的透明工件的該第二表面;     一或多個針排特徵,沿著該破裂表面區域由該劃痕深度線朝該第二表面延伸,其中該一或多個針排特徵的一最大針排深度為10μm或更小;以及    30μm或更小的一邊緣偏差距離,其中該邊緣偏差距離為該破裂表面區域的一第一界面平面與該破裂表面區域的一第二界面平面之間的一距離。A method of laser processing a transparent workpiece, the method comprising: directing a pulsed laser beam into the transparent workpiece at an impact location on a first surface of the transparent workpiece to ablate the pulsed laser beam a portion of the material of the transparent workpiece at the impact location, wherein the pulsed laser beam comprises a pulse energy of between about 5 [mu]J and about 50 [mu]J; the first surface relative to the transparent workpiece moves the pulsed laser along a desired separation path a beam of light, thereby ablating additional material of the transparent workpiece to form a scribe line along the desired separation path; and applying a stress to the scribe line of the transparent workpiece to be separated from the transparent workpiece along the scribe line at least a separate transparent workpiece, wherein the at least one separate transparent workpiece comprises an unpolished separation edge extending between a first surface and a second surface of the at least one separate transparent workpiece, and further The method includes: a scratched surface region extending from the first surface of the at least one separate transparent workpiece to a scratch depth a rupture surface region extending from the scratch depth line to the second surface of the at least one separate transparent workpiece; one or more needle row features along which the slash depth line faces a second surface extension, wherein a maximum needle row depth of the one or more needle row features is 10 μm or less; and an edge deviation distance of 30 μm or less, wherein the edge deviation distance is a portion of the fracture surface area a distance between an interface plane and a second interface plane of the rupture surface region. 如請求項18所述之方法,其中該劃痕線具有約10μm至約60μm的一劃痕深度。The method of claim 18, wherein the score line has a scratch depth of from about 10 [mu]m to about 60 [mu]m. 如請求項18所述之方法,其中:   該透明工件包含一玻璃基板,該玻璃基板實質不具有鹼金屬且包含,基於氧化物:63.0至71.0mol%的SiO2 、13.0至14.0mol%的Al2 O3 、0至3.0mol%的B2 O3 、0.9至9.0mol%的MgO、5.25至11.0mol%的CaO、0至6.0mol% 的 SrO以及1至9.0mol%的BaO;以及   該劃痕線具有約10μm至約35μm的一劃痕深度。The method of claim 18, wherein: the transparent workpiece comprises a glass substrate substantially free of alkali metal and comprising, based on the oxide: 63.0 to 71.0 mol% of SiO 2 , and 13.0 to 14.0 mol% of Al 2 O 3 , 0 to 3.0 mol% of B 2 O 3 , 0.9 to 9.0 mol% of MgO, 5.25 to 11.0 mol% of CaO, 0 to 6.0 mol% of SrO, and 1 to 9.0 mol% of BaO; The trace has a scratch depth of from about 10 [mu]m to about 35 [mu]m.
TW106142524A 2016-12-13 2017-12-05 Methods for laser processing transparent workpieces by forming score lines TW201831414A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662433337P 2016-12-13 2016-12-13
US62/433,337 2016-12-13

Publications (1)

Publication Number Publication Date
TW201831414A true TW201831414A (en) 2018-09-01

Family

ID=62559596

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106142524A TW201831414A (en) 2016-12-13 2017-12-05 Methods for laser processing transparent workpieces by forming score lines

Country Status (2)

Country Link
TW (1) TW201831414A (en)
WO (1) WO2018111998A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI798401B (en) * 2018-03-29 2023-04-11 美商康寧公司 Method for selective laser processing of transparent workpiece stacks

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7396899B2 (en) * 2017-05-15 2023-12-12 エル・ピー・ケー・エフ・レーザー・アンド・エレクトロニクス・ソシエタス・ヨーロピア Processing of substrates using pulsed laser light, especially methods for separation
US20220057561A1 (en) * 2019-01-09 2022-02-24 Corning Incorporated Apparatus comprising a light guide plate with features and methods for using the same to direct light

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659300B2 (en) * 2000-09-13 2011-03-30 浜松ホトニクス株式会社 Laser processing method and semiconductor chip manufacturing method
DE102006042280A1 (en) * 2005-09-08 2007-06-06 IMRA America, Inc., Ann Arbor Transparent material scribing comprises using single scan of focused beam of ultrashort laser pulses to simultaneously create surface groove in material and modified region(s) within bulk of material
DE102012110971A1 (en) * 2012-11-14 2014-05-15 Schott Ag Separating transparent workpieces
WO2014079478A1 (en) * 2012-11-20 2014-05-30 Light In Light Srl High speed laser processing of transparent materials
US9701563B2 (en) * 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US9850160B2 (en) * 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US20150166393A1 (en) * 2013-12-17 2015-06-18 Corning Incorporated Laser cutting of ion-exchangeable glass substrates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI798401B (en) * 2018-03-29 2023-04-11 美商康寧公司 Method for selective laser processing of transparent workpiece stacks

Also Published As

Publication number Publication date
WO2018111998A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
US20200156986A1 (en) Methods of cutting glass using a laser
JP6703482B2 (en) Laser-cut composite glass article and cutting method
EP2432616B1 (en) Method of separating a thin glass sheet using laser beam
US10597321B2 (en) Edge chamfering methods
US8584490B2 (en) Laser cutting method
CN106132627B (en) For carrying out scribing and the then method and system of progress chemical etching to fragile material
TWI529022B (en) Methods for laser scribing and breaking thin glass
JP2020079196A (en) Laser cutting of glass composition for display
US8943855B2 (en) Methods for laser cutting articles from ion exchanged glass substrates
CN110121396B (en) Method for laser processing a stack of laminated workpieces
CN102356049B (en) Method of separating strengthened glass
JP2017528322A (en) Material processing using non-circular laser beams.
WO2013031778A1 (en) Cutting method for reinforced glass plate and reinforced glass plate cutting device
TW201936309A (en) Separation method for composite material
JP2013203630A (en) Method for cutting tempered glass plate
JP5303238B2 (en) Cleaving method of brittle material substrate
TW201040117A (en) Method of separating strengthened glass
Jia et al. Multi-scan picosecond laser welding of non-optical contact soda lime glass
TW201831414A (en) Methods for laser processing transparent workpieces by forming score lines
JP2009023885A (en) Repairing method of part of surface scar on surface of glass substrate by laser irradiation
JP2022546844A (en) Laser beam machining method for transparent brittle materials and apparatus for performing same
WO2013031771A1 (en) Method for cutting reinforced glass
JP2009221046A (en) Laser-processed object
Seong et al. Comparison of laser glass cutting process using ps and fs lasers
WO2014175145A1 (en) Method for cutting glass plate