TW201830009A - Gas sensor and method of manufacturing the same - Google Patents

Gas sensor and method of manufacturing the same Download PDF

Info

Publication number
TW201830009A
TW201830009A TW106103611A TW106103611A TW201830009A TW 201830009 A TW201830009 A TW 201830009A TW 106103611 A TW106103611 A TW 106103611A TW 106103611 A TW106103611 A TW 106103611A TW 201830009 A TW201830009 A TW 201830009A
Authority
TW
Taiwan
Prior art keywords
gas sensor
nanoporous polymer
polymer film
sensing layer
output layer
Prior art date
Application number
TW106103611A
Other languages
Chinese (zh)
Other versions
TWI644100B (en
Inventor
蔡明志
何羽軒
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW106103611A priority Critical patent/TWI644100B/en
Publication of TW201830009A publication Critical patent/TW201830009A/en
Application granted granted Critical
Publication of TWI644100B publication Critical patent/TWI644100B/en

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

A gas sensor including a substrate, an output layer, a sensing layer and a nanoporous polymer film is provided in the present invention. The output layer is disposed on the substrate. The sensing layer is disposed on the output layer. The nanoporous polymer film is disposed on the sensing layer.

Description

氣體感測器及其製造方法Gas sensor and method of manufacturing same

本發明是有關於一種氣體感測器及其製造方法,且特別是有關於一種具有奈米多孔聚合物膜的氣體感測器及其製造方法。The present invention relates to a gas sensor and a method of manufacturing the same, and more particularly to a gas sensor having a nanoporous polymer film and a method of manufacturing the same.

習知的氣體感測器藉由在感測層上設置具有微孔道的材料,以使尺寸小於微孔道的氣體分子通過微孔道,而與感測層接觸。反之,尺寸大於微孔道的氣體分子則無法通過微孔道,故其無法接觸感測層。Conventional gas sensors are in contact with the sensing layer by providing a material having micropores on the sensing layer such that gas molecules having a size smaller than the microchannels pass through the microchannels. Conversely, gas molecules larger than the micropores cannot pass through the microchannels, so they cannot contact the sensing layer.

然而,習知具有微孔道的材料為陽極氧化鋁。由於陽極氧化鋁為金屬氧化物材料,其與感測層的貼合度不足,因而易造成氣體感測器耐用度不足的問題。However, it is known that the material having micropores is anodized aluminum. Since the anodized aluminum is a metal oxide material, the degree of adhesion to the sensing layer is insufficient, which is liable to cause a problem of insufficient durability of the gas sensor.

本發明提供一種氣體感測器及其製造方法,具有極佳的耐用度與功能表現。The invention provides a gas sensor and a manufacturing method thereof, which have excellent durability and functional performance.

本發明提供一種氣體感測器,包括:基板、輸出層、感測層以及奈米多孔聚合物膜。輸出層配置於基板上。感測層配置於輸出層上。奈米多孔聚合物膜配置於感測層上。The invention provides a gas sensor comprising: a substrate, an output layer, a sensing layer and a nanoporous polymer film. The output layer is disposed on the substrate. The sensing layer is disposed on the output layer. The nanoporous polymer film is disposed on the sensing layer.

在本發明的一實施例中,上述的奈米多孔聚合物膜的孔洞的直徑為0.2奈米至20奈米。In an embodiment of the invention, the pores of the nanoporous polymer membrane have a diameter of from 0.2 nm to 20 nm.

在本發明的一實施例中,上述的奈米多孔聚合物膜的厚度為0.05微米至150微米。In an embodiment of the invention, the nanoporous polymer film has a thickness of from 0.05 micrometers to 150 micrometers.

在本發明的一實施例中,上述的奈米多孔聚合物膜的材料包括全氟磺酸聚合物、奈米纖維素或其組合。In an embodiment of the invention, the material of the nanoporous polymer film comprises a perfluorosulfonic acid polymer, nano cellulose or a combination thereof.

在本發明的一實施例中,上述的奈米多孔聚合物膜包括離子型結構。In an embodiment of the invention, the nanoporous polymer membrane described above comprises an ionic structure.

在本發明的一實施例中,上述的輸出層包括電極。In an embodiment of the invention, the output layer comprises an electrode.

在本發明的一實施例中,上述的基板的表面包括平面、粗糙面、曲面或其組合。In an embodiment of the invention, the surface of the substrate comprises a plane, a rough surface, a curved surface or a combination thereof.

本發明亦提供一種氣體感測器的製造方法,包括:形成輸出層於基板上;形成感測層於所述輸出層上;以及形成奈米多孔聚合物膜於所述感測層上。The present invention also provides a method of fabricating a gas sensor, comprising: forming an output layer on a substrate; forming a sensing layer on the output layer; and forming a nanoporous polymer film on the sensing layer.

在本發明的一實施例中,上述的形成輸出層、形成感測層以及形成奈米多孔聚合物膜的步驟所採用的方法包括三維列印。In an embodiment of the invention, the above-described method of forming the output layer, forming the sensing layer, and forming the nanoporous polymer film comprises three-dimensional printing.

在本發明的一實施例中,上述的形成奈米多孔聚合物膜的步驟的方法包括進行溶液製程。In an embodiment of the invention, the method of forming the nanoporous polymer film described above comprises performing a solution process.

基於上述,本發明的奈米多孔聚合物膜中具有微小的孔洞,選擇性地讓較小的分子通過,並將較大的分子阻擋在外。此外,奈米多孔聚合物膜位於氣體感測器的感測層上,可提供感測層較佳的保護。因此,本發明的氣體感測器具有極佳的耐用度與功能表現。Based on the above, the nanoporous polymer membrane of the present invention has minute pores selectively allowing smaller molecules to pass and blocking larger molecules. In addition, the nanoporous polymer membrane is located on the sensing layer of the gas sensor to provide better protection of the sensing layer. Therefore, the gas sensor of the present invention has excellent durability and functional performance.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

圖1是本發明一實施例的氣體感測器的示意圖。請參照圖1,氣體感測器100包括:基板102以及由下而上設置的輸出層104、感測層106以及奈米多孔聚合物膜(nanoporous polymer film)108。氣體分子通過奈米多孔聚合物膜108之後,與下方的感測層106作用,改變感測層106的電阻。輸出層104接收感測層106的物理特性(例如電阻、電容或阻抗)改變所產生的訊號,再依據所偵測的訊號,可以得知感測層106的電阻變化量,進而得知所偵測得的氣體分子的種類、組成或含量。1 is a schematic view of a gas sensor according to an embodiment of the present invention. Referring to FIG. 1 , the gas sensor 100 includes a substrate 102 and an output layer 104 , a sensing layer 106 , and a nanoporous polymer film 108 disposed from the bottom. After passing through the nanoporous polymer film 108, the gas molecules interact with the underlying sensing layer 106 to change the resistance of the sensing layer 106. The output layer 104 receives the signal generated by the physical characteristics (such as resistance, capacitance or impedance) of the sensing layer 106, and according to the detected signal, the resistance change of the sensing layer 106 can be known, and then the detected signal is detected. The type, composition or content of the measured gas molecules.

基板102的表面可以是平面、非平面或其組合。平面可以是平滑表面或是粗糙面。非平面可以是凸曲面、凹曲面、雙凹曲面或雙凸曲面。在基板102為具有非平面的表面的實施例中,氣體感測器100可被設置在非平面的位置或主體上,因而具有更寬廣的應用範圍。基板102可以是可撓材料或剛性材料。基板102的材料例如是玻璃、聚對苯二甲酸乙二酯(poly(ethylene terephthalate),PET)、聚萘二甲酸乙二醇酯(Polyethylene Naphthalate;PEN)、聚醯亞胺(Polyimide;PI)、聚氯乙烯(PolyVinyl Chloride;PVC)、聚丙烯(Polypropylene;PP)、環狀烯烴聚合物(cycloolefin polymer;COP)、聚乙烯(polyethylene;PE)或其組合。The surface of the substrate 102 can be planar, non-planar, or a combination thereof. The plane can be a smooth surface or a rough surface. Non-planar surfaces can be convex surfaces, concave surfaces, biconcave surfaces, or biconvex surfaces. In embodiments where the substrate 102 is a non-planar surface, the gas sensor 100 can be placed in a non-planar location or body, thus having a broader range of applications. The substrate 102 can be a flexible material or a rigid material. The material of the substrate 102 is, for example, glass, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI). , PolyVinyl Chloride (PVC), Polypropylene (PP), cycloolefin polymer (COP), polyethylene (PE) or a combination thereof.

輸出層104配置於基板102上。輸出層104能對感測層106的物理特性(例如電阻、電容或阻抗)進行量測。在一些實施例中,輸出層104可以是包括電極、開關(例如是薄膜電晶體、雙極性電晶體(BJT)、二極體)或其組合。在輸出層104可以是電極的實施例中,電極可以接收訊號,傳送到偵測裝置。The output layer 104 is disposed on the substrate 102. The output layer 104 can measure the physical characteristics (eg, resistance, capacitance, or impedance) of the sensing layer 106. In some embodiments, the output layer 104 can be an electrode, a switch (eg, a thin film transistor, a bipolar transistor (BJT), a diode), or a combination thereof. In embodiments where the output layer 104 can be an electrode, the electrodes can receive signals for transmission to the detection device.

本發明並不特別限制輸出層104的組成構件與構形,只要輸出層104能對感測層106的物理特性(例如電阻、電容或阻抗)進行量測,便涵蓋於本發明的範疇之中。在一些實施例中,輸出層104具有間隙。圖2是本發明一實施例的氣體感測器的剖面示意圖。請參照圖2,輸出層104具有間隙,可使感測層106被配置於輸出層104的間隙之中。藉由此,輸出層104與感測層106之間可以有更高的接觸面積,使輸出層104與感測層106之間的訊號強度可以被提高,以增加氣體感測器的靈敏度。在本實施例中,輸出層104例如是指叉式電極。在輸出層104為指叉式電極的實施例中,指叉式電極具有主體部以及多個延伸部,其中主體部沿一方向延伸,而延伸部沿另一方向延伸。可在指叉式電極上選擇兩端點,在兩端點之間的距離為已知的情況下,藉由量測指叉式電極的兩端點之間的物理特性(例如電阻、電容或阻抗)變化來得知感測層106的電阻變化量,進而得知待測氣體的種類、組成或含量。在圖2中,感測層106填滿輸出層104的間隙,但本發明不以此為限。在其他實施例中,感測層106亦可以只填入輸出層104的部分間隙中,而未填滿間隙,以降低本發明的氣體感測器的製造過程困難度。輸出層104包括導體材料。導體材料可以是金屬、金屬合金。輸出層104也可以是IV族元素或或其他種類的材料。輸出層104的材料例如是碳粉、碳奈米管、石墨烯、還原態氧化石墨烯、金、鉑、銀、銅或鋁。The present invention does not particularly limit the constituent members and configurations of the output layer 104, as long as the output layer 104 can measure the physical properties (eg, resistance, capacitance, or impedance) of the sensing layer 106, and is encompassed within the scope of the present invention. . In some embodiments, the output layer 104 has a gap. 2 is a schematic cross-sectional view of a gas sensor in accordance with an embodiment of the present invention. Referring to FIG. 2 , the output layer 104 has a gap, so that the sensing layer 106 can be disposed in the gap of the output layer 104 . Thereby, a higher contact area between the output layer 104 and the sensing layer 106 can be achieved, so that the signal intensity between the output layer 104 and the sensing layer 106 can be increased to increase the sensitivity of the gas sensor. In the present embodiment, the output layer 104 is, for example, a fork electrode. In embodiments where the output layer 104 is an interdigitated electrode, the interdigitated electrode has a body portion and a plurality of extensions, wherein the body portion extends in one direction and the extension portion extends in the other direction. The two ends can be selected on the interdigitated electrode, and the physical properties (such as resistance, capacitance, or capacitance between the two ends of the interdigitated electrode are measured by the distance between the two ends. The impedance is changed to know the amount of change in the resistance of the sensing layer 106, and the type, composition or content of the gas to be tested is known. In FIG. 2, the sensing layer 106 fills the gap of the output layer 104, but the invention is not limited thereto. In other embodiments, the sensing layer 106 may also fill only a portion of the gap of the output layer 104 without filling the gap to reduce the manufacturing process difficulty of the gas sensor of the present invention. Output layer 104 includes a conductor material. The conductor material may be a metal or a metal alloy. Output layer 104 can also be a Group IV element or other type of material. The material of the output layer 104 is, for example, carbon powder, carbon nanotubes, graphene, reduced graphene oxide, gold, platinum, silver, copper or aluminum.

感測層106配置於輸出層104上。感測層106可對不同種類的氣體分子進行感測。更具體地說,感測層106可以吸附一種氣體或多種氣體,而使其電阻值改變。換言之,感測層106相當於可變電阻,藉由吸附氣體而改變其電阻。The sensing layer 106 is disposed on the output layer 104. The sensing layer 106 can sense different kinds of gas molecules. More specifically, the sensing layer 106 can adsorb a gas or a plurality of gases while changing its resistance value. In other words, the sensing layer 106 is equivalent to a variable resistor, and its resistance is changed by adsorbing a gas.

在一些實施例中,感測層106可以感測的氣體包括NO2 、NH3 、H2 、CO、H2 O、乙醇、SO2 、CH4 、H2 S、O2 、NO、C2 H2 、苯、O3 、Cl2 、甲醇、丙酮或其組合。In some embodiments, the gas that the sensing layer 106 can sense includes NO 2 , NH 3 , H 2 , CO, H 2 O, ethanol, SO 2 , CH 4 , H 2 S, O 2 , NO, C 2 . H 2 , benzene, O 3 , Cl 2 , methanol, acetone or a combination thereof.

感測層106的感測材料可以是IV族元素或其氧化物,例如是矽或碳。碳可以是奈米碳管或石墨烯。碳的氧化物可以是氧化石墨烯(graphene oxide)。感測層106的感測材料亦可以是金屬氧化物,例如是氧化鋅、二氧化錫、氧化銦、三氧化鎢、氧化鎂、二氧化鈦、三氧化二鐵或其組合。在其他實施例中,感測層106的感測材料亦可以是金屬,例如是金金屬團簇(Au cluster)。如表1所示,依據選擇的感測材料的不同,感測層106可對不同種類的氣體分子進行感測。 表1 The sensing material of the sensing layer 106 can be a Group IV element or an oxide thereof, such as germanium or carbon. The carbon can be a carbon nanotube or graphene. The oxide of carbon may be graphene oxide. The sensing material of the sensing layer 106 can also be a metal oxide such as zinc oxide, tin dioxide, indium oxide, tungsten trioxide, magnesium oxide, titanium dioxide, ferric oxide, or combinations thereof. In other embodiments, the sensing material of the sensing layer 106 may also be a metal, such as an Au cluster. As shown in Table 1, the sensing layer 106 can sense different kinds of gas molecules depending on the selected sensing material. Table 1

奈米多孔聚合物膜108中的孔洞的大小可以依照需要而調整。換言之,奈米多孔聚合物膜108中的孔洞的大小可以決定能夠通過奈米多孔聚合物膜108的待測氣體的種類。在一些實施例中,奈米多孔聚合物膜108中具有微小的孔洞,選擇性的讓較小的分子通過,並將較大的分子阻擋在外。舉例而言,水、甲醇、乙醇等較小的分子可以通過孔洞,而體積較大的干擾物質則被排除在外。藉由調整奈米多孔聚合物膜108中的孔洞的大小,而決定能夠通過奈米多孔聚合物膜108的待測氣體的種類。因此,奈米多孔聚合物膜108可提供感測層106較佳的保護與選擇性,增加氣體感測器100的耐用度與功能表現。奈米多孔聚合物膜108的材料例如是全氟磺酸聚合物(perfluoro sulfonic acid polymer)、奈米纖維素、醋酸纖維素(cellulose acetate)、聚碸(polysulfone)、聚乙烯胺(polyvinylamine)、聚醯胺(polyamide)、聚呋喃(polyfuran)或其組合。The size of the holes in the nanoporous polymer film 108 can be adjusted as needed. In other words, the size of the pores in the nanoporous polymer membrane 108 can determine the type of gas to be tested that can pass through the nanoporous polymer membrane 108. In some embodiments, the nanoporous polymer membrane 108 has minute pores that selectively pass smaller molecules and block larger molecules. For example, smaller molecules such as water, methanol, and ethanol can pass through the pores, while larger interfering substances are excluded. The type of gas to be tested that can pass through the nanoporous polymer film 108 is determined by adjusting the size of the pores in the nanoporous polymer film 108. Therefore, the nanoporous polymer film 108 can provide better protection and selectivity of the sensing layer 106, increasing the durability and functional performance of the gas sensor 100. The material of the nanoporous polymer film 108 is, for example, a perfluoro sulfonic acid polymer, a nano cellulose, a cellulose acetate, a polysulfone, a polyvinylamine, or the like. Polyamide, polyfuran or a combination thereof.

奈米多孔聚合物膜108的孔洞的直徑例如是0.2奈米至20奈米。若奈米多孔聚合物膜108的孔洞直徑過大,則奈米多孔聚合物膜108的選擇性不佳。若奈米多孔聚合物膜108的孔洞直徑過小,則待測氣體分子無法通過奈米多孔聚合物膜108以被偵測。奈米多孔聚合物膜108具有適當大小的孔洞,使氣體感測器100具有較佳的功能表現。The diameter of the pores of the nanoporous polymer film 108 is, for example, 0.2 nm to 20 nm. If the pore diameter of the nanoporous polymer film 108 is too large, the selectivity of the nanoporous polymer film 108 is not good. If the pore diameter of the nanoporous polymer membrane 108 is too small, the gas molecules to be tested cannot pass through the nanoporous polymer membrane 108 to be detected. The nanoporous polymer membrane 108 has pores of appropriate size to provide a better functional performance of the gas sensor 100.

在一些實施例中,奈米多孔聚合物膜108的厚度為0.05微米至150微米。若奈米多孔聚合物膜108的厚度過厚,則待測氣體分子較難穿透奈米多孔聚合物膜108以被偵測。若奈米多孔聚合物膜108的厚度過薄,則奈米多孔聚合物膜108無法提供氣體感測器100足夠的保護與選擇性。奈米多孔聚合物膜108具有適當的厚度,使氣體感測器100具有較佳的功能表現。In some embodiments, the nanoporous polymer film 108 has a thickness of from 0.05 microns to 150 microns. If the thickness of the nanoporous polymer film 108 is too thick, it is difficult for the gas molecules to be tested to penetrate the nanoporous polymer film 108 to be detected. If the thickness of the nanoporous polymer film 108 is too thin, the nanoporous polymer film 108 cannot provide sufficient protection and selectivity for the gas sensor 100. The nanoporous polymer film 108 has a suitable thickness to provide the gas sensor 100 with better functional performance.

在一些實施例中,奈米多孔聚合物膜108包括離子型結構。奈米多孔聚合物膜108上可具有離子型的官能基,使奈米多孔聚合物膜108具有離子型結構。具有離子型結構的奈米多孔聚合物膜108帶有電荷,可產生靜電排斥力,增加奈米多孔聚合物膜108的選擇性。在一些示範實施例中,奈米多孔聚合物膜108上具有的離子型的官能基帶正電,奈米多孔聚合物膜108為具有正電型的離子型結構。具有正電型的離子型結構的奈米多孔聚合物膜108可對帶有正電荷的分子產生排斥力,增加奈米多孔聚合物膜108的選擇性。在另一些示範實施例中,奈米多孔聚合物膜108上具有的離子型的官能基帶負電,奈米多孔聚合物膜108為具有負電型的離子型結構。具有負電型的離子型結構的奈米多孔聚合物膜108可對帶有負電荷的分子產生排斥力,增加奈米多孔聚合物膜108的選擇性。在本實施例中,奈米多孔聚合物膜108的材料例如是全氟磺酸聚合物,全氟磺酸聚合物例如是Nafion®。Nafion®具有疏水型的骨架與正離子型的末端,故Nafion®可形成具有正電型的離子型結構的奈米多孔聚合物膜。但本發明不以此為限,奈米多孔聚合物膜亦可藉由其他適當的材料形成。在一些實施例中,奈米多孔聚合物膜108中的孔洞由離子型結構形成。但本發明不以此為限,奈米多孔聚合物膜中的孔洞亦可藉由其他適當的結構形成。In some embodiments, the nanoporous polymer membrane 108 comprises an ionic structure. The nanoporous polymer film 108 may have an ionic functional group, and the nanoporous polymer film 108 has an ionic structure. The nanoporous polymer film 108 having an ionic structure is charged to generate an electrostatic repulsion force and increase the selectivity of the nanoporous polymer film 108. In some exemplary embodiments, the ionic functional group possessed on the nanoporous polymer membrane 108 is positively charged, and the nanoporous polymer membrane 108 is an ionic structure having a positively charged type. The nanoporous polymer membrane 108 having a positively charged ionic structure can repel the positively charged molecules and increase the selectivity of the nanoporous polymer membrane 108. In other exemplary embodiments, the ionic functional group possessed on the nanoporous polymer membrane 108 is negatively charged, and the nanoporous polymer membrane 108 is an ionic structure having a negatively charged type. The nanoporous polymer membrane 108 having a negatively charged ionic structure can repel the negatively charged molecules and increase the selectivity of the nanoporous polymer membrane 108. In the present embodiment, the material of the nanoporous polymer film 108 is, for example, a perfluorosulfonic acid polymer, and the perfluorosulfonic acid polymer is, for example, Nafion®. Nafion® has a hydrophobic backbone and a positive ion end, so Nafion® forms a nanoporous polymer membrane with a positively charged ionic structure. However, the invention is not limited thereto, and the nanoporous polymer film can also be formed by other suitable materials. In some embodiments, the pores in the nanoporous polymer membrane 108 are formed from an ionic structure. However, the invention is not limited thereto, and the pores in the nanoporous polymer film can also be formed by other suitable structures.

圖3是本發明一實施例的氣體感測器的製造方法的流程圖。請參照圖3與圖1,在步驟S100中,形成輸出層104於基板102上。在步驟S102中,形成感測層106於輸出層104上。在步驟S104中,形成奈米多孔聚合物膜108於感測層106上。3 is a flow chart showing a method of manufacturing a gas sensor according to an embodiment of the present invention. Referring to FIG. 3 and FIG. 1, in step S100, an output layer 104 is formed on the substrate 102. In step S102, the sensing layer 106 is formed on the output layer 104. In step S104, a nanoporous polymer film 108 is formed on the sensing layer 106.

上述的氣體感測器100可以以單一種機台來完成。在一些實施例中,形成輸出層104、形成感測層106、形成奈米多孔聚合物膜108的步驟包括三維列印。詳細來說,形成輸出層104的步驟包括將輸出層104的材料噴塗在基板102上。形成感測層106的步驟包括將感測層106的材料噴塗在輸出層104上。形成奈米多孔聚合物膜108的步驟包括將奈米多孔聚合物膜108的材料噴塗在感測層106上。藉由三維列印的方式形成本發明的氣體感測器,可以直接列印出所需要的圖案,而不需要透過微影與蝕刻等製成,省略習知的半導體製程所需的繁瑣步驟。此外,更可避免在形成上層的結構時,對已形成的下層結構造成的破壞。再者,藉由三維列印的方式形成本發明的氣體感測器100,在形成各構件時,僅需更換形成不同構件所需要的墨水。因此,不會造成不同材料之間交叉汙染的問題。The gas sensor 100 described above can be completed in a single machine. In some embodiments, the step of forming the output layer 104, forming the sensing layer 106, and forming the nanoporous polymer film 108 includes three-dimensional printing. In detail, the step of forming the output layer 104 includes spraying the material of the output layer 104 onto the substrate 102. The step of forming the sensing layer 106 includes spraying the material of the sensing layer 106 onto the output layer 104. The step of forming the nanoporous polymer film 108 includes spraying a material of the nanoporous polymer film 108 onto the sensing layer 106. By forming the gas sensor of the present invention by three-dimensional printing, the desired pattern can be directly printed without being required to be formed by lithography and etching, and the cumbersome steps required for the conventional semiconductor process are omitted. In addition, damage to the formed underlying structure when forming the structure of the upper layer can be avoided. Further, by forming the gas sensor 100 of the present invention by three-dimensional printing, it is only necessary to replace the ink required to form the different members when forming the respective members. Therefore, there is no problem of cross-contamination between different materials.

與傳統的微影製程不同,三維列印對於基板102表面的構形有較高的自由度,可將材料形成於具有各種構形的表面上。因此,本發明的氣體感測器100的基板102可以是具有平面或非平面的表面。平面可以是平滑表面或是粗糙面。非平面可以是凸曲面、凹曲面、雙凹曲面或雙凸曲面。具有非平面的表面的基板102的氣體感測器100可被設置在非平面的位置或主體上,因而具有更寬廣的應用範圍。Unlike conventional lithography processes, three-dimensional printing has a high degree of freedom in the configuration of the surface of the substrate 102, and the material can be formed on surfaces having various configurations. Accordingly, the substrate 102 of the gas sensor 100 of the present invention may be a planar or non-planar surface. The plane can be a smooth surface or a rough surface. Non-planar surfaces can be convex surfaces, concave surfaces, biconcave surfaces, or biconvex surfaces. The gas sensor 100 of the substrate 102 having a non-planar surface can be placed in a non-planar position or body, thus having a wider range of applications.

在一些實施例中,形成奈米多孔聚合物膜的步驟包括三維列印及烘烤。詳細來說,奈米多孔聚合物膜的材料被噴塗在感測層上後,再接著進行烘烤的步驟。烘烤的步驟可使奈米多孔聚合物膜的結構更加穩定,增加氣體感測器的耐用度。在本實施例中,奈米多孔聚合物膜的材料例如是奈米纖維素。但本發明不以此為限,奈米多孔聚合物膜亦可藉由其他適當的材料形成。In some embodiments, the step of forming the nanoporous polymer film comprises three-dimensional printing and baking. In detail, after the material of the nanoporous polymer film is sprayed on the sensing layer, the baking step is followed. The baking step can make the structure of the nanoporous polymer film more stable and increase the durability of the gas sensor. In the present embodiment, the material of the nanoporous polymer film is, for example, nano cellulose. However, the invention is not limited thereto, and the nanoporous polymer film can also be formed by other suitable materials.

在一些實施例中,形成奈米多孔聚合物膜的步驟亦可以包括溶液製程。藉由溶液製程的方式形成使奈米多孔聚合物膜,可使奈米多孔聚合物膜與位於下方的膜層有更佳的貼合度,以提供氣體感測器更佳的保護。在本實施例中,奈米多孔聚合物膜的材料例如是全氟磺酸聚合物(perfluoro sulfonic acid polymer film),全氟磺酸聚合物例如是Nafion®。但本發明不以此為限,奈米多孔聚合物膜亦可藉由其他適當的材料形成。In some embodiments, the step of forming a nanoporous polymer film can also include a solution process. The nanoporous polymer film is formed by a solution process to provide a better fit of the nanoporous polymer film to the underlying film layer to provide better protection of the gas sensor. In the present embodiment, the material of the nanoporous polymer film is, for example, a perfluoro sulfonic acid polymer film, and the perfluorosulfonic acid polymer is, for example, Nafion®. However, the invention is not limited thereto, and the nanoporous polymer film can also be formed by other suitable materials.

在一些實施例中,形成奈米多孔聚合物膜的步驟亦可以包括薄膜製程。在本實施例中,奈米多孔聚合物膜的材料例如是醋酸纖維素(cellulose acetate)、聚碸(polysulfone)、聚乙烯胺(polyvinylamine)、聚醯胺(polyamide)、聚呋喃(polyfuran)或其組合。In some embodiments, the step of forming a nanoporous polymer film can also include a thin film process. In this embodiment, the material of the nanoporous polymer film is, for example, cellulose acetate, polysulfone, polyvinylamine, polyamide, polyfuran or Its combination.

綜上所述,本發明的奈米多孔聚合物膜中具有微小的孔洞,選擇性地讓較小的分子通過,並將較大的分子阻擋在外。此外,奈米多孔聚合物膜位於氣體感測器的感測層上,可提供感測層較佳的保護。因此,本發明的氣體感測器具有極佳的耐用度與功能表現。In summary, the nanoporous polymer membrane of the present invention has minute pores, selectively allowing smaller molecules to pass and blocking larger molecules. In addition, the nanoporous polymer membrane is located on the sensing layer of the gas sensor to provide better protection of the sensing layer. Therefore, the gas sensor of the present invention has excellent durability and functional performance.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100‧‧‧氣體感測器100‧‧‧ gas sensor

102‧‧‧基板102‧‧‧Substrate

104‧‧‧輸出層104‧‧‧Output layer

106‧‧‧感測層106‧‧‧Sensor layer

108‧‧‧奈米多孔聚合物膜108‧‧•Nano porous polymer membrane

S100、S102、S104‧‧‧步驟S100, S102, S104‧‧‧ steps

圖1是本發明一實施例的氣體感測器的示意圖。 圖2是本發明一實施例的氣體感測器的剖面示意圖。 圖3是本發明一實施例的氣體感測器的製造方法的流程圖。1 is a schematic view of a gas sensor according to an embodiment of the present invention. 2 is a schematic cross-sectional view of a gas sensor in accordance with an embodiment of the present invention. 3 is a flow chart showing a method of manufacturing a gas sensor according to an embodiment of the present invention.

Claims (10)

一種氣體感測器,包括: 基板; 輸出層,配置於所述基板上; 感測層,配置於所述輸出層上;以及 奈米多孔聚合物膜,配置於所述感測層上。A gas sensor comprising: a substrate; an output layer disposed on the substrate; a sensing layer disposed on the output layer; and a nanoporous polymer film disposed on the sensing layer. 如申請專利範圍第1項所述的氣體感測器,其中所述奈米多孔聚合物膜的孔洞的直徑為0.2奈米至20奈米。The gas sensor of claim 1, wherein the pores of the nanoporous polymer membrane have a diameter of from 0.2 nm to 20 nm. 如申請專利範圍第1項所述的氣體感測器,其中所述奈米多孔聚合物膜的厚度為0.05微米至150微米。The gas sensor of claim 1, wherein the nanoporous polymer film has a thickness of from 0.05 micrometers to 150 micrometers. 如申請專利範圍第1項所述的氣體感測器,其中所述奈米多孔聚合物膜的材料包括全氟磺酸聚合物、奈米纖維素或其組合。The gas sensor of claim 1, wherein the material of the nanoporous polymer film comprises a perfluorosulfonic acid polymer, nano cellulose, or a combination thereof. 如申請專利範圍第1項所述的氣體感測器,其中所述奈米多孔聚合物膜包括離子型結構。The gas sensor of claim 1, wherein the nanoporous polymer membrane comprises an ionic structure. 如申請專利範圍第1項所述的氣體感測器,其中所述輸出層包括電極。The gas sensor of claim 1, wherein the output layer comprises an electrode. 如申請專利範圍第1項所述的氣體感測器,其中所述基板的表面包括平面、粗糙面、曲面或其組合。The gas sensor of claim 1, wherein the surface of the substrate comprises a plane, a rough surface, a curved surface, or a combination thereof. 一種氣體感測器的製造方法,包括: 形成輸出層於基板上; 形成感測層於所述輸出層上;以及 形成奈米多孔聚合物膜於所述感測層上。A method of fabricating a gas sensor, comprising: forming an output layer on a substrate; forming a sensing layer on the output layer; and forming a nanoporous polymer film on the sensing layer. 如申請專利範圍第8項所述的氣體感測器的製造方法,其中所述形成輸出層、形成感測層以及形成奈米多孔聚合物膜的步驟所採用的方法包括三維列印。The method of manufacturing a gas sensor according to claim 8, wherein the method of forming the output layer, forming the sensing layer, and forming the nanoporous polymer film comprises three-dimensional printing. 如申請專利範圍第8項所述的氣體感測器的製造方法,其中所述形成奈米多孔聚合物膜的步驟的方法包括進行溶液製程。The method of manufacturing a gas sensor according to claim 8, wherein the method of forming the nanoporous polymer film comprises performing a solution process.
TW106103611A 2017-02-03 2017-02-03 Gas sensor and method of manufacturing the same TWI644100B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106103611A TWI644100B (en) 2017-02-03 2017-02-03 Gas sensor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106103611A TWI644100B (en) 2017-02-03 2017-02-03 Gas sensor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TW201830009A true TW201830009A (en) 2018-08-16
TWI644100B TWI644100B (en) 2018-12-11

Family

ID=63960314

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106103611A TWI644100B (en) 2017-02-03 2017-02-03 Gas sensor and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI644100B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI672487B (en) * 2018-08-23 2019-09-21 國立臺灣師範大學 Gas detection wafer and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0423646D0 (en) * 2004-10-25 2004-11-24 Univ Hull Novel nanoporous materials
DE102014212282B4 (en) * 2014-06-26 2023-11-09 Infineon Technologies Ag Graphene gas sensor for measuring the concentration of carbon dioxide in gas environments

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI672487B (en) * 2018-08-23 2019-09-21 國立臺灣師範大學 Gas detection wafer and manufacturing method thereof

Also Published As

Publication number Publication date
TWI644100B (en) 2018-12-11

Similar Documents

Publication Publication Date Title
CN108387617B (en) Gas sensor and method for manufacturing the same
KR101731173B1 (en) Capacitive type pressure sensor with porous dielectric layer
Shim et al. Nanogap-controlled Pd coating for hydrogen sensitive switches and hydrogen sensors
Jung et al. Wearable piezoresistive strain sensor based on graphene-coated three-dimensional micro-porous PDMS sponge
US20170156652A1 (en) Sensors for analyte detection and methods of manufacture thereof
Prajapati et al. ppb level detection of NO 2 using a WO 3 thin film-based sensor: material optimization, device fabrication and packaging
US10473607B2 (en) Gas sensor
KR20140044895A (en) Transparent conductive multilayer electrode and associated manufacturing process
CN101467030A (en) Hydrogen sensor
KR101544386B1 (en) Pressure sensor and manufacturing method thereof
TWI644100B (en) Gas sensor and method of manufacturing the same
KR101818812B1 (en) Highly sensitive pressure sensor and manufacturing method thereof
KR20160098643A (en) Fabrication method for electrode using sensor and the sensor thereby
WO2019044640A1 (en) Hygroscopic sensor
JP2015518168A5 (en)
KR102045220B1 (en) Strain sensing device, sensor array using the same and preparation method thereof
KR101040090B1 (en) Piezoresistive effect microphone using nano wire and method of manufacturing thereof
CN102650616A (en) Gold nano porous sensitive film body type acoustic biosensor
KR102154291B1 (en) Hydrogen gas sensor and method for manufacturing the same
JP6370111B2 (en) Capacitive gas sensor and manufacturing method thereof
TWI602279B (en) Multifunctional sensor
CN110487168A (en) Bend in one direction sensitive sensor and preparation method thereof
KR20140003085A (en) Capacitive humidity sensor and methods of manufacturing the same
KR101809369B1 (en) Conductive Structure, Manufacturing Method thereof, Touch Sensor comprising the Conductive Structure, Manufacturing Method for the Touch sensor and Touch Sensing Method
JP2022174894A (en) Bolometer and method for manufacturing the same