TW201829494A - Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element - Google Patents

Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element Download PDF

Info

Publication number
TW201829494A
TW201829494A TW106135026A TW106135026A TW201829494A TW 201829494 A TW201829494 A TW 201829494A TW 106135026 A TW106135026 A TW 106135026A TW 106135026 A TW106135026 A TW 106135026A TW 201829494 A TW201829494 A TW 201829494A
Authority
TW
Taiwan
Prior art keywords
liquid crystal
group
monomer
substrate
coating film
Prior art date
Application number
TW106135026A
Other languages
Chinese (zh)
Other versions
TWI760375B (en
Inventor
永井健太郎
鈴木加名子
名木達哉
藤枝司
Original Assignee
日商日產化學工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日產化學工業股份有限公司 filed Critical 日商日產化學工業股份有限公司
Publication of TW201829494A publication Critical patent/TW201829494A/en
Application granted granted Critical
Publication of TWI760375B publication Critical patent/TWI760375B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/303Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one or more carboxylic moieties in the chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/302Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and two or more oxygen atoms in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention pertains to a polymer composition containing a copolymer which is obtained from a monomer mixture (A) including a monomer (A-1) and a monomer (A-2), wherein the monomer (A-1) is a monomer having a single cinnamoyl moiety, 2-4 benzene rings which do not constitute the cinnamoyl moiety, and a polymerizable group, and the monomer (A-2) is a monomer having a single cinnamoyl moiety, a benzene ring which does not constitute the cinnamoyl moiety, and a polymerizable group (the cinnamoyl moiety and the benzene ring may have a substituent). The present invention also pertains to a method for producing a substrate having a liquid crystal aligning film, comprising a step for applying the composition to a substrate having an electrically conductive film for horizontal electric field drive to form a coating film, a step for irradiating the obtained coating film with polarized ultraviolet light, and a step for heating the obtained coating film. The liquid crystal aligning agent which employs the polymer composition according to the present invention is highly efficient and is imparted with an alignment control capability, has superior image burn-in characteristics, and can provide a horizontal electric field drive-type liquid crystal display element.

Description

液晶配向劑、液晶配向膜及液晶顯示元件Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

[0001] 本發明為有關一種新穎的聚合物組成物,與使用其之液晶配向膜,及具有該配向膜之基板的製造方法。又,為一種製造具有優良傾斜角特性的液晶顯示元件之新穎的方法。[0001] The present invention relates to a novel polymer composition, a liquid crystal alignment film using the same, and a method of producing a substrate having the alignment film. Further, it is a novel method of manufacturing a liquid crystal display element having excellent tilt angle characteristics.

[0002] 液晶顯示元件,已知為一種輕量、薄型且低消耗電力的顯示裝置,近年來已顯著地被發展於大型電視用途所使用之裝置等。液晶顯示元件,例如,具有由具備電極的一對透明基板挾夾液晶層之構成內容。又,液晶顯示元件中,液晶為於基板間依所期待的配向狀態之方式,使用有機材料所形成的有機膜作為液晶配向膜。   [0003] 即,液晶配向膜,於作為液晶顯示元件之構成內容構件中,為形成於挾夾液晶的基板之液晶為相鄰接之面,並具有於該基板間使液晶向特定方向進行配向之機能。因此,液晶配向膜中,液晶被需求例如,除對基板為平行之方向等,可依一定方向進行配向之機能以外,亦尋求可控制液晶的預傾角之機能。又,該些液晶配向膜中,控制液晶配向之能力(以下,亦稱為配向控制能力),為依對構成液晶配向膜的有機膜進行配向處理之方式進行。   [0004] 可賦予配向控制能力的液晶配向膜之配向處理方法,例如,以往已知的摩擦法。摩擦法係指,對基板上的聚乙烯醇或聚醯胺或聚醯亞胺等的有機膜,使用綿、尼龍、聚酯等的布依一定方向擦拭(摩擦)其表面,使液晶依擦拭方向(摩擦方向)進行配向之方法。該摩擦法因可簡便地實現較安定的液晶之配向狀態,故多被利用於以往液晶顯示元件之製造製程中。因此,液晶配向膜所使用之有機膜,例如,主要為選擇耐熱性等的信賴性或具有優良電氣特性的聚醯亞胺系之有機膜。   [0005] 但是,擦拭聚醯亞胺等所形成的液晶配向膜之表面的摩擦法,會有發生塵埃或靜電之問題。又,伴隨近年來液晶顯示元件的高精細化,或對應的基板上之電極或液晶驅動用的開閉能動元件而產生的凹凸時,布類將無法均勻地擦拭液晶配向膜的表面,而會無法實現均勻的液晶配向。   [0006] 因此,有關不進行摩擦的其他液晶配向膜的配向處理方法,目前已廣泛地開始研究光配向法。   [0007] 光配向法有著各式各樣的方法,一般為使用直線偏光或準直(collimate)之光線,使構成液晶配向膜的有機膜內形成異向性,並依該異向性使液晶產生配向。   [0008] 主要的光配向法,例如,已知為分解型的光配向法。例如,使偏光紫外線照射聚醯亞胺膜,利用分子結構的紫外線吸收之偏光方向的依存性,而產生異向性分解。隨後,經由未分解而殘留的聚醯亞胺,使液晶形成配向(專利文獻1)。   [0009] 又,已知另有光交聯型的光配向法。例如,使用聚乙烯桂皮酸酯,經照射偏光紫外線,使偏光與平行的2個側鏈之雙鍵部份生成二聚化反應(交聯反應)。又,使用偏光紫外線照射於斜向方向而生成預傾角(非專利文獻1)。另外,使用側鏈具有香豆素的側鏈型高分子之情形,為照射偏光紫外線,使與偏光平行的側鏈之香豆素部生成光交聯反應,而於與偏光方向為平行之方向使液晶形成配向(非專利文獻2)。   [0010] 如以上之例示般,使用光配向法的液晶配向膜之配向處理方法,因不需進行摩擦,故不會有產生塵埃或靜電之疑慮。因此,可對表面具有凹凸的液晶顯示元件之基板實施配向處理,而為一適合工業生產製程的液晶配向膜之配向處理之方法。此外,光配向法可經由紫外線控制配向方向,故可於畫素中,形成多數個配向方向相異的區域(配向分割),而可補償視野角度的依存性。   另一方面,液晶配向膜對於液晶而言,為具有賦予某一特定傾斜角(預傾角)的機能,而預傾角之賦予對於液晶配向膜之開發,為一極重要的課題(專利文獻1~4)。   [0011] 又,已知另有由側鏈具有桂皮酸酯結構,與另外2個苯環的單體所得之共聚物具有光配向性(專利文獻5)。但是,該共聚物因溶解性較低,於作為塗料時,必要使用工業上不可使用的氯仿等的溶劑,故極困難被使用作為液晶配向劑。 [先前技術文獻] [專利文獻]   [0012]   [專利文獻1] 日本國專利公開公報、特開平 02-223916號公報   [專利文獻2] 日本國專利公開公報、特開平 04-281427號公報   [專利文獻3] 日本國專利公開公報、特開平 05-043687號公報   [專利文獻4] 日本國專利公開公報、特開平 10-333153號公報   [專利文獻5] 日本國專利公開公報、特開 2000-212310號公報 [非專利文獻]   [0013]   [非專利文獻1] S. Kobayashietal., Journal of Photopolymer Scienceand Technology, Vol.8, No.2, pp25-262(1995).   [非專利文獻2] M.Shadtetal.,Nature.Vol381,212(1996).[0002] A liquid crystal display device is known as a lightweight, thin, and low power consumption display device, and has been remarkably developed in recent years for devices used in large-scale television applications. The liquid crystal display element has, for example, a configuration in which a liquid crystal layer is sandwiched between a pair of transparent substrates having electrodes. Further, in the liquid crystal display device, the liquid crystal is an organic film formed of an organic material as a liquid crystal alignment film so that the substrate is in an intended alignment state. [0003] In other words, in the constituent film member of the liquid crystal display device, the liquid crystal is formed on the surface of the substrate on which the liquid crystal is sandwiched, and the liquid crystal is aligned in a specific direction between the substrates. The function. Therefore, in the liquid crystal alignment film, the liquid crystal is required to perform the function of aligning in a certain direction, for example, in addition to the direction in which the substrates are parallel, and the function of controlling the pretilt angle of the liquid crystal is also sought. Further, in the liquid crystal alignment films, the ability to control the alignment of the liquid crystals (hereinafter also referred to as alignment control ability) is performed in such a manner that the organic film constituting the liquid crystal alignment film is subjected to alignment treatment. [0004] An alignment treatment method of a liquid crystal alignment film which can impart an alignment control ability, for example, a conventionally known rubbing method. The rubbing method refers to rubbing (friction) the surface of the organic film such as polyvinyl alcohol or polyamine or polyimine on the substrate by using a cloth such as cotton, nylon or polyester to make the liquid crystal according to the wiping direction. (Friction direction) A method of aligning. Since this rubbing method can easily realize a relatively stable liquid crystal alignment state, it is often used in the manufacturing process of a conventional liquid crystal display element. Therefore, the organic film used for the liquid crystal alignment film is, for example, mainly selected as a polyimide-based organic film having reliability such as heat resistance or excellent electrical properties. [0005] However, the rubbing method of wiping the surface of the liquid crystal alignment film formed by polyimide or the like may cause dust or static electricity. In addition, with the recent increase in the definition of the liquid crystal display element or the unevenness of the electrode on the substrate or the opening and closing active element for driving the liquid crystal, the cloth cannot uniformly wipe the surface of the liquid crystal alignment film, and it is impossible to uniformly wipe the surface of the liquid crystal alignment film. Achieve uniform liquid crystal alignment. [0006] Therefore, regarding the alignment treatment method of other liquid crystal alignment films which do not perform rubbing, the photoalignment method has been widely studied. [0007] The photo-alignment method has various methods, generally using linearly polarized or collimated light to form an anisotropy in an organic film constituting a liquid crystal alignment film, and liquid crystal is formed according to the anisotropy. Produce alignment. The main photoalignment method is, for example, a photo-alignment method known as a decomposition type. For example, the polarized ultraviolet light is irradiated onto the polyimide film, and the dependence of the polarization direction of the ultraviolet absorption of the molecular structure is utilized to cause anisotropic decomposition. Subsequently, the liquid crystal is aligned by the polyimine remaining without being decomposed (Patent Document 1). Further, a photocrosslinking type photoalignment method is known. For example, polyethylene cinnamate is used, and a polarized ultraviolet ray is irradiated to cause a dimerization reaction (crosslinking reaction) between the polarized light and the double bond portions of the two side chains in parallel. Moreover, the pretilt angle is generated by irradiating the oblique direction with the polarized ultraviolet rays (Non-Patent Document 1). Further, in the case where a side chain type polymer having a coumarin having a side chain is used, a polarized ultraviolet ray is irradiated to cause a photocrosslinking reaction of a coumarin portion of a side chain parallel to the polarized light, and is parallel to a direction of polarization. The liquid crystal is aligned to form (Non-Patent Document 2). [0010] As described above, the alignment treatment method of the liquid crystal alignment film using the photo-alignment method does not require friction, so there is no fear of generating dust or static electricity. Therefore, the substrate of the liquid crystal display element having the unevenness on the surface can be subjected to the alignment treatment, and is a method of alignment treatment of the liquid crystal alignment film suitable for the industrial production process. In addition, since the optical alignment method can control the alignment direction via ultraviolet rays, a plurality of regions (alignment division) in which the alignment directions are different can be formed in the pixels, and the dependence of the viewing angle can be compensated. On the other hand, the liquid crystal alignment film has a function of imparting a certain tilt angle (pretilt angle) to the liquid crystal, and the application of the pretilt angle is an important issue in the development of the liquid crystal alignment film (Patent Document 1 to 4). Further, it is known that a copolymer having a cinnamic acid ester structure in a side chain and a monomer having two other benzene rings has photo-alignment properties (Patent Document 5). However, since this copolymer has a low solubility, it is necessary to use a solvent such as chloroform which is not industrially usable as a coating material, and it is extremely difficult to use it as a liquid crystal alignment agent. [PRIOR ART DOCUMENT] [Patent Document 1] [Patent Document 1] Japanese Patent Laid-Open Publication No. Hei 02-223916 (Patent Document 2) Japanese Patent Laid-Open Publication No. Hei 04-281427 Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. [Non-Patent Document 1] [Non-Patent Document 1] S. Kobayashi et al., Journal of Photopolymer Science and Technology, Vol. 8, No. 2, pp 25-262 (1995). [Non-Patent Document 2] M. Shadtetal., Nature. Vol 381, 212 (1996).

[發明所欲解決之問題]   [0014] 如以上所述,光配向法,與以往工業上被利用作為液晶顯示元件的配向處理方法之摩擦法相比較時,無須具備摩擦步驟,因此為極大之優點。又,與經由摩擦的配向控制能力為幾乎一定的摩擦法相比較時,光配向法可以改變偏光的光線之照射量而控制配向控制能力。但是,光配向法中,欲達到與摩擦法的情形為相同程度的配向控制能力時,必要使用大量偏光的光線照射量,故仍會有無法實現安定的液晶配向之情形。   [0015] 例如,上述專利文獻1記載之分解型的光配向法中,且必要使用輸出500W的高壓水銀燈以紫外光照射聚醯亞胺膜60分鐘等步驟,故為須經由長時間且大量的紫外線照射之方法。又,二聚化型或光異構化型的光配向法之情形中,會有必要照射數J(焦耳)~數十J左右的大量的紫外線之情形。此外,光交聯型或光異構化型的光配向法時,因液晶配向的熱安定性或光安定性低劣,故作為液晶顯示元件時,會有發生配向不良或顯示殘影之問題。   [0016] 因此,光配向法中,則尋求一種可實現高效率的配向處理或安定的液晶配向之方法,且尋求一種可以高效率地進行對液晶配向膜賦予高配向控制能力的液晶配向膜或液晶配向劑。   [0017] 本發明為提供一種具有可高效率地賦予配向控制能力、優良傾斜角特性的液晶顯示元件用液晶配向膜的基板及具有該基板的扭轉向列型液晶顯示元件及OCB型液晶顯示元件為目的。   又,本發明之目的,除上述目的以外,又提供一種具有提升傾斜角特性的扭轉向列型液晶顯示元件及OCB型液晶顯示元件及該元件所使用的液晶配向膜。 [解決問題之方法]   [0018] 本發明者們,為達成上述目的經過深入研究結果,研究出以下的發明。   [0019] <1>一種聚合物組成物,其特徵為,含有由含有(A)下述單體(A-1)及單體(A-2)的單體混合物所得的共聚物;   單體(A-1):具有1個桂皮醯基部位,與2~4個不構成桂皮醯基部位的苯環,與聚合性基之單體。   單體(A-2):具有1個桂皮醯基部位,與1個不構成桂皮醯基部位的苯環,與聚合性基之單體。 (上述桂皮醯基(cinnamoyl)部位與苯環為可具有取代基者)。   [0020] <2>如請求項1記載之聚合物組成物,其中,上述單體(A-1)及單體(A-2)之聚合性基為丙烯酸基或甲基丙烯酸基。   [0021] <3>上述<1>中,(A)成份以由下述式(1)所表示之基及下述式(2)所表示之基所成之群所選出的任一種的基鍵結聚合性基而得之單體為佳。   [0022][0023] 式中,A、B、D各自獨立表示單鍵、-O-、 -CH2 -、-COO-、-OCO-、-CONH-或-NH-CO-;   S為碳數1~12之伸烷基,其所鍵結之氫原子各自獨立且可被鹵素基所取代;   T為單鍵或碳數1~12之伸烷基,該些所鍵結之氫原子可被鹵素基所取代;   T表示單鍵時,B亦表示單鍵;   Y1 為2價之苯環;   P1 、Q1 及Q2 ,各自獨立為由苯環及碳數5~8之脂環式烴環所成之群所選出的基;   R1 為氫原子、-CN、鹵素基、碳數1~5之烷基、(碳數1~5之烷基)羰基、碳數3~7之環烷基或碳數1~5之烷氧基。   Y1 、P1 、Q1 及Q2 中,苯環所鍵結的氫原子各自獨立且可-CN、鹵素基、碳數1~5之烷基、(碳數1~5之烷基)羰基,或碳數1~5之烷氧基所取代;   X1 及X2 ,各自獨立表示單鍵、-O-、-COO-或-OCO-;   n1及n2各自獨立為0、1或2,   X1 之數為2時,X1 相互間可為相同或相異皆可,X2 之數為2時,X2 相互間可為相同或相異皆可;   Q1 之數為2時,Q1 相互間可為相同或相異皆可,Q2 之數為2時,Q2 相互間可為相同或相異皆可;   單體(A-1)中,Y1 以外的苯環之數目之合計為2~4;   單體(A-2)中,Y1 以外的苯環之數目之合計為1;   虛線表示與聚合性基之鍵結鍵。   [0024] <4>一種具有前述液晶配向膜之基板的製造方法,其特徵為,具有:   [I] 將上述<1>~<3>中任一項記載之聚合物組成物,塗佈於具有液晶驅動用之電極的基板上,而形成塗膜之步驟;   [II] 由斜面方向將偏光的紫外線照射[I]所得之塗膜之步驟;及   [III] 對[II]所得之塗膜進行加熱之步驟; 而製得賦予配向控制能力的扭轉向列型液晶顯示元件及OCB型液晶顯示元件用液晶配向膜。   [0025] <5>一種基板,其特徵為,具有由上述<4>記載的製造方法所製得之扭轉向列型液晶顯示元件及/或OCB型液晶顯示元件用液晶配向膜。   <6>一種扭轉向列型液晶顯示元件及OCB型液晶顯示元件,其特徵為,具有上述<5>之基板。   [0026] <7>一種液晶顯示元件的製造方法,其特徵為,具有:   準備上述<5>之基板(第1基板)之步驟;   [I’] 將上述<1>~<4>中任一項記載之聚合物組成物塗佈於第2基板上,形成塗膜之步驟;   [II’] 使用偏光的紫外線照射[I’]所得之塗膜之步驟;及   [III’] 將[II’]所得之塗膜進行加熱之步驟; 而製得具有賦予配向控制能力的液晶配向膜的第2基板之步驟;及   [IV] 介由液晶使第1及第2基板的液晶配向膜成相對狀態,以曝光方向為互相垂直交叉之方式,使第1及第2基板對向配置,而製得液晶顯示元件之步驟; 而製得扭轉向列型液晶顯示元件及OCB型液晶顯示元件。   <8>一種扭轉向列型液晶顯示元件及OCB型液晶顯示元件,其特徵為,由上述<7>所製得者。 [發明之效果]   [0027] 本發明可提供一種具有可高效率地賦予配向控制能力、優良傾斜角特性之液晶配向膜基板及具有該基板的扭轉向列型液晶顯示元件及OCB型液晶顯示元件。   本發明之方法所製得之扭轉向列型液晶顯示元件及OCB型液晶顯示元件,因可賦予高效率的配向控制能力,故即使長時間連續驅動也無損顯示特性。 [實施發明之形態]   [0028] 本發明的製造方法中所使用的液晶配向劑,具有可產生液晶性的感光性之側鏈型高分子(以下,亦僅稱為側鏈型高分子),故使用前述液晶配向劑所得的塗膜,為一具有可產生液晶性的感光性之側鏈型高分子膜。該塗膜無須進行摩擦處理,經由偏光照射即可進行配向處理。因此,於偏光照射後,經由將該側鏈型高分子膜加熱之步驟,而可形成具有配向控制能力的塗膜(以下,亦稱為液晶配向膜)。此時,經由偏光照射所產生的些許異向性將形成驅動力(driving-force),而使液晶性的側鏈型高分子本身經由自我組織化而有效率地進行再配向。其結果,可實現液晶配向膜之高效率的配向處理,而製得賦予高配向控制能力的液晶配向膜。   [0029] 以下,將對本發明之實施形態進行詳細之說明。 <具有液晶配向膜之基板的製造方法>及<液晶顯示元件的製造方法>   [0030] <<(A)側鏈型高分子>>   (A)成份為,由含有下述單體(A-1)及單體(A-2)的單體混合物所得之共聚物(以下,亦稱為側鏈型高分子)。   單體(A-1):具有1個桂皮醯基部位,與2~4個不構成桂皮醯基部位的苯環,與聚合性基之單體。   單體(A-2):具有1個桂皮醯基部位,與1個不構成桂皮醯基部位的苯環,與聚合性基之單體。 (上述桂皮醯基(cinnamoyl)部位與苯環為可具有取代基者)。   [0031] 又,此處所稱之取代基,例如,甲基、甲氧基、叔丁基、乙醯基、氟基及氰基等。   [0032] (A)側鏈型高分子,因主鏈鍵結具有感光性的側鏈,故可感應線而引起交聯反應、異構化反應。具有感光性的側鏈之結構,並未有特別之限定,又以可感應光線引起交聯反應之結構為佳。該情形中,即使曝露於熱等外部壓力時,也可使所實現的配向控制能力,於長期間保持安定化。   [0033] (A)成份的側鏈型高分子之結構的更具體的例示,例如,以具有由烴、(甲基)丙烯酸酯、依康酸酯、富馬酸酯、馬來酸酯、α-伸甲基-γ-丁內酯、苯乙烯、乙烯基、馬來醯亞胺、降莰烯等的自由基聚合性基及矽氧烷所成之群所選出之至少1種所構成的主鏈,與下述式(1)及(2)之至少1種所形成的側鏈之結構為佳。   [0034][0035] 式中,A、B、D各自獨立表示單鍵、-O-、 -CH2 -、-COO-、-OCO-、-CONH-或-NH-CO-;   S為碳數1~12之伸烷基,其所鍵結之氫原子各自獨立且可被鹵素基所取代;   T為單鍵或碳數1~12之伸烷基,該些所鍵結之氫原子可被鹵素基所取代;   T表示單鍵時,B亦表示單鍵;   Y1 為2價之苯環;   P1 、Q1 及Q2 ,各自獨立為由苯環及碳數5~8之脂環式烴環所成之群所選出的基;   R1 為氫原子、-CN、鹵素基、碳數1~5之烷基、(碳數1~5之烷基)羰基、碳數3~7之環烷基或碳數1~5之烷氧基。   Y1 、P1 、Q1 及Q2 中,苯環所鍵結的氫原子各自獨立且可-CN、鹵素基、碳數1~5之烷基、(碳數1~5之烷基)羰基,或碳數1~5之烷氧基所取代;   X1 及X2 ,各自獨立表示單鍵、-O-、-COO-或-OCO-;   n1及n2各自獨立為0、1或2,   X1 之數為2時,X1 相互間可為相同或相異皆可,X2 之數為2時,X2 相互間可為相同或相異皆可;   Q1 之數為2時,Q1 相互間可為相同或相異皆可,Q2 之數為2時,Q2 相互間可為相同或相異皆可;   單體(A-1)中,Y1 以外的苯環之數目之合計為2~4;   單體(A-2)中,Y1 以外的苯環之數目之合計為1;   虛線表示與聚合性基之鍵結鍵。   [0036] 本發明之側鏈型高分子中之由(A-1)所產生的側鏈之含量與由(A-2)所產生的側鏈之含量的合計中,(A-1)所產生的側鏈所佔之含量,就液晶配向性及側鏈型高分子之溶解性等觀點,以10莫耳%~90莫耳%為佳,以20莫耳%~80莫耳%為更佳,以30莫耳%~70莫耳%為更佳。   [0037] 本發明之側鏈型高分子,於無損本發明效果之範圍,可含有上述(A-1)所產生的側鏈及(A-2)所產生的側鏈以外的其他側鏈。其含量為,於上述光反應性側鏈及液晶性側鏈的含量之合計未達100%之情形時,為其剩餘之部份。   [0038] <<感光性側鏈型高分子之製法>>   可產生上述液晶性的感光性之側鏈型高分子,可將至少含有上述單體(A-1)及單體(A-2)的單體混合物進行聚合之方式而製得。   [0039] [單體(A-1)及單體(A-2)]   光反應性側鏈單體,於形成高分子之情形時,可為形成高分子側鏈部位具有感光性側鏈的高分子之單體。   具有側鏈之光反應性基,以下述之結構及其衍生物為佳。   [0040] 單體(A-1)及單體(A-2)之更具體之例示,例如,以具有由烴、(甲基)丙烯酸酯、依康酸酯、富馬酸酯、馬來酸酯、α-伸甲基-γ-丁內酯、苯乙烯、乙烯基、馬來醯亞胺、降莰烯等的自由基聚合性基及三烷氧基矽烷基所成之群所選出之至少1種所構成的聚合性基,與上述式(1)及(2)所表示之結構所選出的感光性側鏈之結構為佳。   [0041] 聚合性基,例如,以由下述式PG1~PG8所表示之基所選出者為佳。其中,又就容易控制聚合反應之觀點與聚合物的安定性之觀點而言,以PG1所表示之丙烯酸基或甲基丙烯酸基為佳。又,式中,虛線表示上述式(1)或(2)所表示之感光性側鏈的鍵結鍵。   [0042][0043] (式PG1中,M1為氫原子或甲基)。   [0044] 單體(A-1),例如,由下述式A1-1~A1-7所選出的單體。   [0045][0046][0047] (式A1-1~A1-7中,PG表示由上述式PG1~PG8所表示之基所選出的聚合性基,s1及s2各自獨立表示伸甲基之數目,為2至9的自然數)。   [0048] 單體(A-2),例如,由下述式A2-1~A2-14所選出的單體等。   [0049][0050][0051][0052] (式A2-1~A2-14中,PG表示由上述式PG1~PG8所表示之基所選出的聚合性基,s1及s2各自獨立表示伸甲基之數目,為2至9之自然數)。   [0053] 上述單體(A-1)及單體(A-2)中,某一部份為市售物品,某一部份為,例如依國際專利出願公開WO2014/074785等記載之方法而製得。   [0054] (A)側鏈型高分子,可經由上述單體(A-1)及單體(A-2)的共聚反應而製得。又,只要無損液晶性產生能力之範圍,亦可與其他之單體進行共聚。   [0055] 單體(A-1)及(A-2)之聚合性基為自由基聚合性基之情形,其他之單體,例如,工業上容易取得之可進行自由基聚合反應之單體等。   其他之單體之具體例,例如,不飽和羧酸、丙烯酸酯化合物、丙烯酸甲酯化合物、馬來醯亞胺化合物、丙烯腈、馬來酸酐、苯乙烯化合物及乙烯基化合物等。   [0056] 不飽和羧酸之具體例,例如,丙烯酸、甲基丙烯酸、依康酸、馬來酸、富馬酸等。   [0057] 丙烯酸酯化合物,例如,丙烯酸甲酯、丙烯酸乙酯、丙烯酸異丙酯、丙烯酸苄酯、丙烯酸萘酯、丙烯酸蒽酯、甲基丙烯酸蒽酯、丙烯酸苯酯、2,2,2-三氟丙烯酸乙酯、tert-丁基丙烯酸酯、丙烯酸月桂酯、丙烯酸棕櫚酯、丙烯酸環己酯、丙烯酸異莰酯、2-甲氧基丙烯酸乙酯、甲氧基丙烯酸三乙二醇酯、2-乙氧基丙烯酸乙酯、丙烯酸四氫糠酯、3-甲氧基丁基丙烯酸酯、2-甲基-2-金剛烷基丙烯酸酯、2-丙基-2-金剛烷基丙烯酸酯、8-甲基-8-三環癸基丙烯酸酯,及8-乙基-8-三環癸基丙烯酸酯等。   [0058] 丙烯酸甲酯化合物,例如,甲基丙烯酸甲酯、乙基丙烯酸甲酯、異丙基丙烯酸甲酯、苄基丙烯酸甲酯、萘基丙烯酸甲酯、蒽基丙烯酸甲酯、蒽基甲基丙烯酸甲酯、苯基丙烯酸甲酯、2,2,2-三氟乙基丙烯酸甲酯、tert-丁基丙烯酸甲酯、月桂基丙烯酸甲酯、棕櫚基丙烯酸甲酯、環己基丙烯酸甲酯、異莰基丙烯酸甲酯、2-甲氧基乙基丙烯酸甲酯、甲氧基三乙二醇丙烯酸甲酯、2-乙氧基乙基丙烯酸甲酯、丙烯酸四氫糠甲酯、3-甲氧基丁基丙烯酸甲酯、2-甲基-2-金剛烷基丙烯酸甲酯、2-丙基-2-金剛烷基丙烯酸甲酯、8-甲基-8-三環癸基丙烯酸甲酯,及8-乙基-8-三環癸基丙烯酸甲酯等。   [0059] 乙烯基化合物,例如,乙烯醚、甲基乙烯醚、苄基乙烯醚、2-羥乙基乙烯醚、苯基乙烯醚,及,丙基乙烯醚等。   [0060] 苯乙烯化合物,例如,苯乙烯、甲基苯乙烯、氯苯乙烯、溴苯乙烯等。   [0061] 馬來醯亞胺化合物,例如,馬來醯亞胺、N-甲基馬來醯亞胺、N-苯基馬來醯亞胺,及N-環己基馬來醯亞胺等。   [0062] 本發明之側鏈型高分子中之(A-1)及(A-2)所表示之光反應性側鏈的含量,就液晶配向性之觀點,以10莫耳%~100莫耳%為佳,以20莫耳%~100莫耳%為較佳,以30莫耳%~100莫耳%為更佳。   [0063] 本實施形態的側鏈型高分子的製造方法,並未有特別限定之內容,其可使用一般工業處理所廣泛使用的方法。具體而言,可使用(A-1)或(A-2)單體的乙烯基經由陽離子聚合或自由基聚合、陰離子聚合之方式製得。該些之中,又就容易進行反應控制之觀點,以自由基聚合為特佳。   [0064] 自由基聚合之聚合起始劑、反應溫度、溶劑等之條件等,可使用國際專利出願公開WO2014/074785等所記載的公知之條件。   [0065] [聚矽氧烷的製造方法]   本發明所使用的(A)成份之聚合物為聚矽氧烷之情形,製造該聚矽氧烷之方法並未有特別之限定。本發明中,可將上述單體(A-1)及單體(A-2),與聚合性基為三烷氧基矽烷基的單體作為必要成份的烷氧基矽烷混合物,於有機溶劑中進行縮合而可製得。通常,聚矽氧烷,為將該些烷氧基矽烷進行聚縮合,使其均勻地溶解於有機溶劑而製得溶液。   [0066] 本發明中,除上述單體(A-1)及單體(A-2)以外,亦可使用下述式(3)所表示之烷氧基矽烷。式(3)所表示之烷氧基矽烷,因可對聚矽氧烷賦予各種特性,故可配合必要之特性,選擇一種或多數種使用。   [0067][0068] (R5 ,為氫原子,或可被雜原子、鹵素原子、胺基、環氧丙氧基、氫硫基、異氰酸酯基或脲基所取代之碳原子數1至6的烴基,R6 為碳原子數1至5,較佳為1至3之烷基,n表示0至3,較佳為0至2之整數)。   [0069] 式(3)所表示之烷氧基矽烷的R5 為氫原子或碳原子數為1至6的有機基(以下,亦稱為第三有機基)。第三有機基之例,例如,脂肪族烴;脂肪族環、芳香族環及雜環等之環結構;不飽和鍵結;及可含有氧原子、氮原子、硫原子等的雜原子等的可具有分支結構之碳原子數為1至6的有機基。此外,該有機基可被鹵素原子、胺基、環氧丙氧基、氫硫基、異氰酸酯基、脲基等所取代。   該些式(3)所表示之烷氧基矽烷之具體例,並不僅限定於上述內容。   式(3)之烷氧基矽烷中,R5 為氫原子時之烷氧基矽烷的具體例,例如,三甲氧基矽烷、三乙氧基矽烷、三丙氧基矽烷、三丁氧基矽烷等。   [0070] 又,式(3)之烷氧基矽烷中,R5 為第三有機基時的烷氧基矽烷之具體例,例如,甲基三甲氧基矽烷、甲基三乙氧基矽烷、乙基三甲氧基矽烷、乙基三乙氧基矽烷、丙基三甲氧基矽烷、丙基三乙氧基矽烷、甲基三丙氧基矽烷、3-胺基丙基三甲氧基矽烷、3-胺基丙基三乙氧基矽烷、N-2(胺基乙基)3-胺基丙基三乙氧基矽烷、N-2(胺基乙基)3-胺基丙基三甲氧基矽烷、3-(2-胺基乙胺基丙基)三甲氧基矽烷、3-(2-胺基乙胺基丙基)三乙氧基矽烷、2-胺基乙胺基甲基三甲氧基矽烷、2-(2-胺基乙基硫乙基)三乙氧基矽烷、3-氫硫基丙基三乙氧基矽烷、氫硫基甲基三甲氧基矽烷、乙烯基三乙氧基矽烷、3-異氰酸酯丙基三乙氧基矽烷、三氟丙基三甲氧基矽烷、氯丙基三乙氧基矽烷、溴丙基三乙氧基矽烷、3-氫硫基丙基三甲氧基矽烷、二甲基二乙氧基矽烷、二甲基二甲氧基矽烷、二乙基二乙氧基矽烷、二乙基二甲氧基矽烷、二苯基二甲氧基矽烷、二苯基二乙氧基矽烷、3-胺基丙基甲基二乙氧基矽烷、3-胺基丙基二甲基乙氧基矽烷、三甲基乙氧基矽烷、三甲基甲氧基矽烷、γ-醯脲(ureide)丙基三乙氧基矽烷、γ-醯脲(ureide)丙基三甲氧基矽烷及γ-醯脲丙基三丙氧基矽烷等。   [0071] 本發明所使用的聚矽氧烷,就改善與基板的密著性、與液晶分子之親和性等目的時,於無損本發明效果之範圍,可使用一種或多數種上述式(3)所表示之烷氧基矽烷。   [0072] 式(3)所表示之烷氧基矽烷中,n為0之烷氧基矽烷,為四烷氧基矽烷。四烷氧基矽烷,因容易與式(1)及式(2)所表示之烷氧基矽烷進行縮合反應而製得本發明之聚矽氧烷,而為較佳。   該些式(3)中,n為0之烷氧基矽烷,例如,以四甲氧基矽烷、四乙氧基矽烷、四丙氧基矽烷或四丁氧基矽烷為較佳,特別是以四甲氧基矽烷或四乙氧基矽烷為佳。   [0073] 將聚矽氧烷聚縮合之方法,可使用國際專利出願公開WO2010/126108等所記載之方法。   [0074] [聚合物之回收]   由上述反應所得的可產生液晶性之感光性側鏈型高分子之反應溶液中,回收所生成的高分子的情形,可將反應溶液投入貧溶劑中,使該些聚合物產生沈澱即可。沈澱所使用之貧溶劑,例如,甲醇、丙酮、己烷、庚烷、丁基溶纖劑、庚烷、甲基乙酮、甲基異丁酮、乙醇、甲苯、苯、二乙醚、甲基乙醚、水等。投入貧溶劑而產生沈澱的聚合物,經過濾回收之後,可於常壓或減壓下,以常溫或加熱狀態進行乾燥處理。又,將沈澱回收之聚合物,重複2次~10次的在溶解於有機溶劑、再沈澱回收之操作時,可降低聚合物中之雜質。此時之貧溶劑,可例如,醇類、酮類、烴等,使用由該些之中所選出的3種類以上的貧溶劑時,以其可再提高純化之效率,而為更佳。   [0075] 本發明之(A)側鏈型高分子的分子量,於考慮所得塗膜之強度、塗膜形成時之作業性,及塗膜均勻性時,該以GPC(Gel Permeation Chromatography)法測定之重量平均分子量為2000~1000000為佳,更佳為5000~100000。   [0076] <有機溶劑>   本發明所使用之聚合物組成物所使用的有機溶劑,只要可溶解樹脂成份之有機溶劑時,並未有特別之限定。其具體例,如以下所列舉之內容。   N,N-二甲基甲醯胺、N,N-二甲基乙醯胺、N-甲基-2-吡咯啶酮、N-甲基己內醯胺、2-吡咯啶酮、N-乙基吡咯啶酮、N-乙烯基吡咯啶酮、二甲基亞碸、四甲基尿素、吡啶、二甲基碸、六甲基亞碸、γ-丁內酯、3-甲氧基-N,N-二甲基丙烷醯胺、3-乙氧基-N,N-二甲基丙烷醯胺、3-丁氧基-N,N-二甲基丙烷醯胺、1,3-二甲基-咪唑啉酮、乙基戊酮、甲基壬酮、甲基乙酮、甲基異戊酮、甲基異丙酮、環己酮、乙烯碳酸酯、丙烯碳酸酯、二乙二醇二醚(glyme)、4-羥基-4-甲基-2-戊酮、丙二醇單乙酸酯、丙二醇單甲醚、丙二醇-tert-丁醚、二丙二醇單甲醚、二乙二醇、二乙二醇單乙酸酯、二乙二醇二甲醚、二丙二醇單乙酸酯單甲醚、二丙二醇單甲醚、二丙二醇單乙醚、二丙二醇單乙酸酯單乙醚、二丙二醇單丙醚、二丙二醇單乙酸酯單丙醚、3-甲基-3-甲氧基丁基乙酸酯、三丙二醇甲醚等。該些可單獨使用亦可、混合使用亦可。   [0077] <液晶配向劑>   液晶配向劑為塗佈於上述基板中,形成電極之側面。   本發明之液晶配向劑,為使用本發明的聚合物組成物者,其為含有由含(A)上述單體(A-1)及單體(A-2)的單體混合物所得的共聚物。   [0078] [液晶配向劑之製造]   本發明所使用之液晶配向劑,以可配合適合形成液晶配向膜之方式形成塗佈液者為佳。即,本發明所使用之液晶配向劑,以將可形成樹脂被膜的樹脂成份溶解於有機溶劑而得之溶液為佳。其中,該樹脂成份為,上述說明的含有(A)成份之側鏈型高分子的樹脂成份。此時,樹脂成份的含量,以1質量%~20質量%為佳,更佳為3質量%~15質量%、特佳為3質量%~10質量%。   [0079] 本發明之液晶配向劑中,前述樹脂成份,可全部為(A)成份的側鏈型高分子亦可,但就無損液晶配向能力之範圍時,可再混合該些以外的其他聚合物。此時,樹脂成份中之其他聚合物的含量,為0.5質量%~80質量%,較佳為1質量%~50質量%。   該些其他聚合物,例如,聚(甲基)丙烯酸酯或聚醯胺酸或聚醯亞胺等所形成之(A)成份的側鏈型高分子以外的聚合物等。   [0080] 本發明所使用之聚合物組成物,可含有上述(A)成份的側鏈型高分子及有機溶劑以外的成份。該些例示,例如,於塗佈液晶配向劑之際,可提高膜厚均勻性或表面平滑性的溶劑或化合物、提高液晶配向膜與基板之密著性的化合物等,但並不僅限定於該些內容。   [0081] 提高膜厚均勻性或表面平滑性的溶劑(貧溶劑)之具體例,例如,以下所列舉之內容。   例如,異丙醇、甲氧基甲基戊醇、甲基溶纖劑(cellosolve)、乙基溶纖劑、丁基溶纖劑、甲基溶纖劑乙酸酯、乙基溶纖劑乙酸酯、丁基卡必醇、乙基卡必醇、乙基卡必醇乙酸酯、乙二醇、乙二醇單乙酸酯、乙二醇單異丙醚、乙二醇單丁醚、丙二醇、丙二醇單乙酸酯、丙二醇單甲醚、丙二醇-tert-丁醚、二丙二醇單甲醚、二乙二醇、二乙二醇單乙酸酯、二乙二醇二甲醚、二丙二醇單乙酸酯單甲醚、二丙二醇單甲醚、二丙二醇單乙醚、二丙二醇單乙酸酯單乙醚、二丙二醇單丙醚、二丙二醇單乙酸酯單丙醚、3-甲基-3-甲氧基丁基乙酸酯、三丙二醇甲醚、3-甲基-3-甲氧基丁醇、二異丙醚、乙基異丁醚、二異丁酯、戊基乙酸酯、丁基丁酸酯、丁醚、二異丁酮、甲基環己烯、丙醚、二己醚、1-己醇、n-己烷、n-戊烷、n-辛烷、二乙醚、乳酸甲酯、乳酸乙酯、乙酸甲酯、乙酸乙酯、乙酸n-丁酯、乙酸丙二醇單乙醚、丙酮酸甲酯、丙酮酸乙酯、3-甲氧基丙酸甲酯、3-乙氧基丙酸甲基乙酯、3-甲氧基丙酸乙酯、3-乙氧基丙酸、3-甲氧基丙酸、3-甲氧基丙酸丙酯、3-甲氧基丙酸丁酯、1-甲氧基-2-丙醇、1-乙氧基-2-丙醇、1-丁氧基-2-丙醇、1-苯氧基-2-丙醇、丙二醇單乙酸酯、丙二醇二乙酸酯、丙二醇-1-單甲醚-2-乙酸酯、丙二醇-1-單乙醚-2-乙酸酯、二丙二醇、2-(2-乙氧基丙氧基)丙醇、乳酸甲酯、乳酸乙酯、乳酸n-丙酯、乳酸n-丁酯、乳酸異戊酯等的具有低表面張力之溶劑等。   [0082] 該些之貧溶劑,可使用1種或將多數種類混合使用。使用上述溶劑時,就不會造成聚合物組成物所含溶劑全體的溶解性顯著降低之觀點,以溶劑全體的5質量%~80質量%為佳,更佳為20質量%~60質量%。   [0083] 可提升膜厚均勻性或表面平滑性之化合物,例如,氟系界面活性劑、聚矽氧系界面活性劑及非離子系界面活性劑等。   更具體而言,例如,F-TOP(登記商標)301、EF303、EF352(陶氏製程公司製)、美格氟(登記商標)F171、F173,R-30(DIC公司製)、Fluorad FC430、FC431(住友3M公司製)、AsahiGuard(登記商標)AG710(旭硝子公司製)、Safreon(登記商標)S-382、SC101、SC102、SC103、SC104、SC105、SC106(AGC精密化學公司製)等。該些界面活性劑之使用比例,相對於聚合物組成物所含有的樹脂成份的100質量份,較佳為0.01質量份~2質量份,更佳為0.01質量份~1質量份。   [0084] 可提升液晶配向膜與基板之密著性的化合物之具體例,例如,以下所示之含官能性矽烷之化合物等。   例如,3-胺基丙基三甲氧基矽烷、3-胺基丙基三乙氧基矽烷、2-胺基丙基三甲氧基矽烷、2-胺基丙基三乙氧基矽烷、N-(2-胺基乙基)-3-胺基丙基三甲氧基矽烷、N-(2-胺基乙基)-3-胺基丙基甲基二甲氧基矽烷、3-醯脲(ureide)丙基三甲氧基矽烷、3-醯脲丙基三乙氧基矽烷、N-乙氧基羰基-3-胺基丙基三甲氧基矽烷、N-乙氧基羰基-3-胺基丙基三乙氧基矽烷、N-三乙氧矽烷基丙基三乙烯基三胺、N-三甲氧矽烷基丙基三乙烯基三胺、10-三甲氧矽烷基-1,4,7-三氮雜癸烷、10-三乙氧矽烷基-1,4,7-三氮雜癸烷、9-三甲氧矽烷基-3,6-二氮雜壬基乙酸酯、9-三乙氧矽烷基-3,6-二氮雜壬基乙酸酯、N-苄基-3-胺基丙基三甲氧基矽烷、N-苄基-3-胺基丙基三乙氧基矽烷、N-苯基-3-胺基丙基三甲氧基矽烷、N-苯基-3-胺基丙基三乙氧基矽烷、N-雙(氧乙烯基)-3-胺基丙基三甲氧基矽烷、N-雙(氧乙烯基)-3-胺基丙基三乙氧基矽烷等。   [0085] 又,除提升基板與液晶配向膜之密著性以外,就防止構成液晶顯示元件時,因背光源所造成之電氣特性降低等之目的,可於液晶配向劑中含有以下酚醛塑料(phenoplast)系或含環氧基之化合物的添加劑。具體而言,酚醛塑料(phenoplast)系添加劑例如以下所示,但並非限定於該結構。   [0086][0087] 具體的含環氧基之化合物,例如,乙二醇二縮水甘油醚、聚乙二醇二縮水甘油醚、丙二醇二縮水甘油醚、三丙二醇二縮水甘油醚、聚丙二醇二縮水甘油醚、新戊基二醇二縮水甘油醚、1,6-己烷二醇二縮水甘油醚、丙三醇二縮水甘油醚、2,2-二溴新戊基二醇二縮水甘油醚、1,3,5,6-四縮水甘油-2,4-己烷二醇、N,N,N’,N’-四縮水甘油-m-二甲苯二胺、1,3-雙(N,N-二縮水甘油胺基甲基)環己烷、N,N,N’,N’-四縮水甘油-4、4’-二胺基二苯基甲烷等例示。   [0088] 使用提升與基板之密著性的化合物時,其使用量,相對於液晶配向劑所含有的樹脂成份100質量份,以0.1質量份~30質量份為佳,更佳為1質量份~20質量份。使用量未達0.1質量份時,將無法期待密著性提升之效果,多於30質量份時,將會有造成液晶配向性惡化之情形。   [0089] 添加劑,可使用光增感劑。又以無色增感劑及三重項增感劑為佳。   光增感劑,例如,芳香族硝基化合物、香豆素(7-二乙胺基-4-甲基香豆素、7-羥基4-甲基香豆素)、酮香豆素、羰基雙香豆素、芳香族2-羥酮,及被胺基取代之芳香族2-羥酮(2-羥基二苯甲酮、單-或二-p-(二甲胺基)-2-羥基二苯甲酮)、苯乙酮、蒽醌、酮、9-氧硫 、苯并蒽酮、噻唑啉(thiazolines)(2-苯甲醯基伸甲基-3-甲基-β-萘噻唑啉、2-(β-萘醯基伸甲基)-3-甲基苯併噻唑啉(thiazolines)、2-(α-萘醯基伸甲基)-3-甲基苯併噻唑啉、2-(4-聯酚基伸甲基)-3-甲基苯併噻唑啉(thiazolines)、2-(β-萘醯基伸甲基)-3-甲基-β-萘噻唑啉、2-(4-聯酚基伸甲基)-3-甲基-β-萘噻唑啉、2-(p-氟苯甲醯基伸甲基)-3-甲基-β-萘噻唑啉)、噁唑啉(2-苯甲醯基伸甲基-3-甲基-β-萘噁唑啉、2-(β-萘醯基伸甲基)-3-甲基苯併噁唑啉、2-(α-萘醯基伸甲基)-3-甲基苯併噁唑啉、2-(4-聯酚基伸甲基)-3-甲基苯併噁唑啉、2-(β-萘醯基伸甲基)-3-甲基-β-萘噁唑啉、2-(4-聯酚基伸甲基)-3-甲基-β-萘噁唑啉、2-(p-氟苯甲醯基伸甲基)-3-甲基-β-萘噁唑啉)、苯併噻唑、硝基苯胺(m-或p-硝基苯胺、2,4,6-三硝基苯胺)或硝基苊萘(acenaphthene)(5-硝基苊萘(acenaphthene))、(2-[(m-羥基-p-甲氧基)苯乙烯基]苯併噻唑、苯醯烷醚、N-烷基化酞酮、苯乙酮縮酮(2,2-二甲氧基苯基乙酮)、萘、蒽(2-萘甲醇、2-萘羧酸、9-蒽甲醇,及9-蒽羧酸)、苯併吡喃、偶氮吲(indolizine)、半香豆素(mero-coumarin)等。   較佳為芳香族2-羥酮(二苯甲酮)、香豆素、酮香豆素、羰基雙香豆素、苯乙酮、蒽醌、酮、9-氧硫 ,及苯乙酮縮酮。   [0090] 具有本發明之液晶配向膜之基板的製造方法,為具有:   [I] 將含有(A)側鏈型高分子,及有機溶劑的液晶配向劑,塗佈於具有透明電極之基板上而形成塗膜之步驟;   [II] 使用偏光之紫外線照射[I]所得之塗膜之步驟;及   [III] 將[II]所得之塗膜進行加熱之步驟。   經由上述步驟,可製得賦予配向控制能力的液晶顯示元件用液晶配向膜,而可製得具有該液晶配向膜之基板。   [0091] 又,除上述所得之基板(第1基板)以外,經準備第2基板結果,即可製得液晶顯示元件。   第2基板為,於具有透明電極之第2基板上,使用上述步驟[I]~[III],即可製得賦予配向控制能力的具有液晶配向膜之第2基板。   [0092] 扭轉向列型液晶顯示元件及OCB型液晶顯示元件的製造方法,為具有:   [IV] 將上述所得之第1及第2基板,介由液晶使第1及第2基板的液晶配向膜成相對狀態,而製得對向配置之液晶顯示元件之步驟。   依此方式,即可製得扭轉向列型液晶顯示元件。   [0093] 以下,將對本發明的製造方法所具有的[I]~[III],及[IV]等各步驟進行說明。 <步驟[I]>   步驟[I]中,為於具有液晶驅動用的電極之基板上,塗佈含有(A)側鏈型高分子,及有機溶劑的液晶配向劑,而形成塗膜。   [0094] <基板>   基板,並未有特別之限定,所製造的液晶顯示元件為穿透型時,以使用高透明性之基板為佳。該情形,並未有特別之限定,而可使用玻璃基板,或丙烯酸基板或聚碳酸酯基板等的塑膠基板等。   進行液晶驅動之電極,以使用ITO(Indium Tin Oxide:氧化銦錫)、IZO(Indium Zinc Oxide:氧化銦鋅)等為佳。又,反射型液晶顯示元件,若僅為單側之基板時,亦可使用矽晶圓等的不透明物質,該情形的電極也可使用鋁等可反射光線之材料。   於基板上形成電極之方法,可使用以往公知之方法。   [0095] 將上述液晶配向劑塗佈於具有液晶驅動用之電極的基板上之方法,並未有特別之限定。   塗佈方法,於工業上而言,一般為使用網版印刷、平版印刷、凸版(Flexo)印刷或噴墨法等之方法。其他的塗佈方法,例如,有浸潤法、輥式塗佈法、縫狀塗佈法、旋轉法(迴轉塗佈法)或噴霧法等,其可配合目的,使用該些方法。   [0096] 將液晶配向劑塗佈於具有液晶驅動用之電極的基板上之後,經由加熱板、熱循環型烘箱或IR(紅外線)型烘箱等之加熱手段,使溶劑於50~230℃,較佳為50~200℃下,進行0.4分鐘~60分鐘,較佳為0.5分鐘~10分鐘之蒸發,而可製得塗膜。此時的乾燥溫度,以較(A)成份的側鏈型高分子的側鏈型高分子可產生液晶性之溫度(以下,亦稱為液晶產生溫度)之溫度範圍內為更低者為佳。   塗膜之厚度,過厚時,就液晶顯示元件的電力消耗之觀點為不利,過薄時,液晶顯示元件會有降低信賴性之情形,故較佳為5nm~300nm,更佳為10nm~150nm。   又,於[I]步驟之後,隨後的[II]步驟之前,可設置將形成塗膜之基板冷卻至室溫為止之步驟。   [0097] <步驟[II]>   步驟[II]為,由斜方向將偏光之紫外線照射於步驟[I]所得之塗膜。將偏光之紫外線照射塗膜之膜面,為將相對基板為特定方向的偏光之紫外線,介由偏光板照射基板之意。所使用之紫外線,例如,可使用波長100nm~400nm範圍之紫外線。較佳為配合所使用塗膜之種類,而藉由過濾器等選擇最佳波長。因此,例如,若欲選擇性地引發光交聯反應時,可選擇使用波長290nm~400nm範圍之紫外線。紫外線,例如,可使用由高壓水銀燈產生輻射之光線。   [0098] 偏光之紫外線的照射量,依所使用的塗膜而有所不同。照射量,以於該塗膜中,可實現與偏光之紫外線的偏光方向平行之方向的紫外線吸光度與垂直方向的紫外線吸光度之差的ΔA之最大值(以下,亦稱為ΔAmax)的偏光紫外線之量的1%~70%之範圍內者為佳,以1%~50%之範圍內者為較佳。   [0099] 偏光之紫外線的照射方向,通常相對於基板為1°至89°,又較佳為10°~80°、特佳為20°~70°。該角度過小時,將會有造成預傾角過小之問題,過大時,則會有預傾角過高之問題。   [0100] 將照射方向調整至上述角度之方法,例如,使基板本身傾斜之方法,與使光源傾斜之方法,但又以使光源本身傾斜時,就產率之觀點為更佳。   [0101] 所得之預傾角,例如,以適合扭轉向列模式之預傾角的1°~20°為佳,以2°~15°為更佳。   [0102] 又,本發明中,亦可經由調整上述步驟[II]之照射量、照射時間或其二者之方式,控制傾斜角。   [0103] <步驟[III]>   步驟[III]為,將經步驟[II]的偏光之紫外線照射後之塗膜進行加熱。經由加熱,可賦予塗膜配向控制能力。   加熱,可使用加熱板、熱循環型烘箱或IR(紅外線)型烘箱等之加熱手段。加熱溫度,可於考量所使用的塗膜產生液晶性之溫度下,進行決定即可。   [0104] 加熱溫度,以可使側鏈型高分子產生液晶性之溫度(以下,亦稱為產生液晶之溫度)的溫度範圍內為佳。如塗膜般的薄膜表面之情形,塗膜表面的產生液晶之溫度,推測應較概觀(A)成份的側鏈型高分子時的產生液晶之溫度為更低。因此,加熱溫度以於塗膜表面的產生液晶之溫度的溫度範圍內為較佳。即,經偏光紫外線照射後的加熱溫度之溫度範圍,以較所使用的側鏈型高分子的產生液晶之溫度之溫度範圍的下限更低10℃之溫度為下限,並以較該液晶溫度範圍的上限低10℃之溫度作為上限的範圍內之溫度為佳。加熱溫度,較上述溫度範圍為低時,於塗膜中因熱所造成的異向性增幅效果會有不充份之傾向,又,加熱溫度過高於上述溫度範圍時,塗膜之狀態會有趨近於等向性的液體狀態(等向相)之傾向,該情形中,會有不易經由自我組織化而向一方向進行再配向之傾向。   [0105] 又,產生液晶之溫度,係指側鏈型高分子或塗膜表面由固體相向液晶相進行相轉移時的玻璃轉移溫度(Tg)以上,且為由液晶相向等向性(isotropic)相(等向相)進行相轉移時的等向性相轉移溫度(Tiso)以下之溫度之意。   [0106] 又,本發明中,可經由調整上述步驟[III]之加熱溫度、加熱時間或其二者之方式,控制傾斜角。   [0107] 加熱後所形成的塗膜之厚度,依與步驟[I]記載為相同之理由,較佳為5nm~300nm,更佳為50nm~150nm。   [0108] 經具有以上步驟結果,本發明的製造方法中,可以高效率地實現向塗膜導入異向性之效果。因此,可以高效率地製造附有液晶配向膜之基板。   [0109] <步驟[IV]>  [IV]步驟為具備:將基板上形成液晶配向膜之側以對向方式配置的2片[III]所得之基板,與設置於基板間之液晶層,與設置於基板與液晶層之間的本發明之液晶配向劑所形成的具有上述液晶配向膜的液晶晶格之液晶顯示元件。該些本發明之液晶顯示元件,例如,扭轉向列型(TN:Twisted Nematic)方式、垂直配向(VA:Vertical Alignment )方式,或水平配向(IPS:In-Plane Switching)方式、OCB配向(OCB:Optically Compensated Bend)等各種方式。   [0110] 列舉製作液晶晶格或液晶顯示元件之一例,例如,準備上述第1及第2基板,將間隔器散佈於單側之基板的液晶配向膜上,並以液晶配向膜面為內側之方式,依與紫外線曝光方向為互相垂直交叉之方式,將另一片基板貼合,在減壓注入液晶,予以密封之方法,或將散佈有間隔器的液晶配向膜面滴入液晶之後,將基板進行貼合、密封之方法等例示。此時該間隔器之直徑,較佳為1μm~30μm,更佳為2μm~10μm。該間隔器直徑,為決定挾夾液晶層的一對基板間之距離,即,可決定液晶層之厚度。   [0111] 所得液晶顯示元件,就配向安定性之觀點,以再進行退火(annealing)處理為佳。加熱溫度為液晶之相轉移溫度,較佳為10~160℃,更佳為50~140℃。   [0112] 本發明之附有塗膜之基板的製造方法,為將液晶配向劑塗佈於基板上形成塗膜之後,照射偏光之紫外線。其次,進行加熱,即可對實現對側鏈型高分子膜導入高效率的異向性,而可製得具有液晶的配向控制能力之附有液晶配向膜之基板。   本發明所使用的塗膜,為利用側鏈的光反應的基於液晶性的自我組織化所引發的分子再配向之原理,而可實現對塗膜導入高效率的異向性。本發明的製造方法中,於側鏈型高分子上具有作為光反應性基的光交聯性基結構之情形,於使用側鏈型高分子塗佈於基板上,形成塗膜之後,照射偏光之紫外線,隨後再進行加熱後,即可製得液晶顯示元件。   [0113] 因此,本發明之方法所使用的塗膜,經由依序對塗膜照射偏光之紫外線與加熱處理結果,即可高效率地導入異向性,而可形成具有優良配向控制能力的液晶配向膜。   [0114] 因此,本發明方法所使用的塗膜,可使照射塗膜的偏光之紫外線的照射量,與加熱處理中之加熱溫度達到最佳化。因此,可以實現高效率地對塗膜導入異向性。   [0115] 本發明所使用之塗膜中,可以高效率地導入異向性的最佳偏光紫外線之照射量,為對應於,可引發該塗膜中之感光性基的光交聯反應或光異構化反應的最佳量的偏光紫外線之照射量。對本發明所使用之塗膜照射偏光之紫外線時,若光交聯反應或光異構化反應的側鏈之感光性基過少時,將未能達成充份的光反應量。該情形中,即使於隨後進行加熱,也無法進行充份的自我組織化。另一方面,本發明所使用之塗膜中,於使用偏光之紫外線照射具有光交聯性基的結構時,若進行交聯反應的側鏈之感光性基過剩時,將會造成側鏈間過度進行交聯反應。該情形中,將使所得的膜形成剛直化,而造成會妨礙隨後加熱的自我組織化之進行。   [0116] 因此,本發明所使用之塗膜中,經由偏光紫外線之照射而可使側鏈的感光性基產生光交聯反應或光異構化反應的最佳量,以達該側鏈型高分子膜所具有的感光性基之0.1莫耳%~60莫耳%者為佳,以達0.1莫耳%~40莫耳%為較佳。進行光反應的側鏈之感光性基的量於該些範圍時,可經由隨後的加熱處理使自我組織化有效率地進行,而可於膜中形成高效率的異向性。   [0117] 本發明之方法所使用的塗膜,經由使偏光之紫外線的照射量最佳化結果,可使側鏈型高分子膜的側鏈中之感光性基的光交聯反應或光異構化反應,或光弗莱斯重排(Friesrearrangement)反應的量達成最佳化。因此,與隨後的加熱處理合併時,即可高效率地實現對本發明所使用之塗膜導入異向性。該情形中,較佳偏光紫外線之量,可依本發明所使用之塗膜的紫外吸收之評估進行調整。   [0118] 即,本發明所使用之塗膜,為分別測定偏光紫外線照射後,與偏光之紫外線的偏光方向為平行之方向的紫外線吸收,與垂直方向的紫外線之吸收。由紫外吸收之測定結果,評估該塗膜中,與偏光之紫外線的偏光方向平行之方向的紫外線吸光度與垂直方向的紫外線吸光度之差(ΔA)。隨後,求取本發明所使用之塗膜中,所實現的ΔA之最大值(ΔAmax)與可實現該最大值的偏光紫外線之照射量。本發明的製造方法中,以可實現該ΔAmax的偏光紫外線照射量為基準,即可決定於液晶配向膜之製造中,所照射的較佳量的偏光之紫外線量。   [0119] 本發明的製造方法中,偏光之紫外線對本發明所使用之塗膜的照射量,以可實現ΔAmax的偏光紫外線之量的1%~70%之範圍內者為佳,以1%~50%之範圍內者為較佳。本發明所使用之塗膜中,可實現ΔAmax的偏光紫外線之量的1%~50%之範圍內的偏光紫外線之照射量,為相當於可使該側鏈型高分子膜所具有的感光性基全體的0.1莫耳%~20莫耳%進行光交聯反應的偏光紫外線之量。   [0120] 如以上所述,本發明的製造方法中,就實現對塗膜導入高效率的異向性之目的,可以該側鏈型高分子之液晶溫度範圍為基準,而依上述方式設定適當的加熱溫度即可。因此,例如,本發明所使用之側鏈型高分子的液晶溫度範圍為100℃~200℃時,偏光紫外線照射後的加熱溫度以90℃~190℃為佳。如此,可對本發明所使用之塗膜中,賦予更大的異向性。   [0121] 如前所述,本發明所提供的液晶顯示元件顯示出對光或熱等的外部壓力具有高度的信賴性。   [0122] 如以上所示,本發明之方法所製得之扭轉向列型液晶顯示元件用基板或具有該基板的液晶顯示元件、OCB型液晶顯示元件用基板或具有該基板的液晶顯示元件,為具有優良信賴性者,而適合使用於大畫面且高精細度的液晶電視等。又,亦是用於液晶天線、調光元件等。   [0123] 以下,將使用實施例說明本發明之內容,但本發明並不受該實施例所限定。[Problems to be Solved by the Invention] As described above, the optical alignment method is superior to the conventional friction method using the alignment treatment method as a liquid crystal display element, and does not require a rubbing step, so that it is extremely advantageous. . Further, when compared with the rubbing method in which the alignment control ability via friction is almost constant, the photo-alignment method can change the irradiation amount of the polarized light to control the alignment control ability. However, in the photo-alignment method, when it is desired to achieve the same alignment control ability as in the case of the rubbing method, it is necessary to use a large amount of polarized light irradiation amount, so that there is still a case where the liquid crystal alignment cannot be stabilized. [0015] For example, in the decomposition type photo-alignment method described in Patent Document 1, it is necessary to use a high-pressure mercury lamp outputting 500 W to irradiate the polyimide film with ultraviolet light for 60 minutes, etc., so that it is necessary to pass a long time and a large amount of The method of ultraviolet irradiation. Further, in the case of the dimerization type or the photoisomerization type photo-alignment method, it is necessary to irradiate a large amount of ultraviolet rays of several J (Joules) to several tens of J. Further, in the photo-crosslinking type or the photo-isomerization type photo-alignment method, since the thermal stability or the light stability of the liquid crystal alignment is inferior, when it is used as a liquid crystal display element, there is a problem that alignment failure or image sticking occurs. [0016] Therefore, in the photo-alignment method, a method for achieving high-efficiency alignment treatment or stable liquid crystal alignment is sought, and a liquid crystal alignment film capable of imparting high alignment control ability to a liquid crystal alignment film or high efficiency is sought. Liquid crystal alignment agent. [0017] The present invention provides a substrate having a liquid crystal alignment film for a liquid crystal display element which can provide an alignment control ability and an excellent tilt angle characteristic, and a twisted nematic liquid crystal display element and an OCB type liquid crystal display element having the substrate for purpose. Further, in addition to the above objects, an object of the present invention is to provide a twisted nematic liquid crystal display element having an improved tilt angle characteristic, an OCB type liquid crystal display element, and a liquid crystal alignment film used for the element. [Means for Solving the Problems] The inventors of the present invention have conducted intensive studies to achieve the above object, and have studied the following inventions. <1> A polymer composition comprising a copolymer obtained from a monomer mixture containing (A) the following monomer (A-1) and monomer (A-2); (A-1): a monomer having one cinnabar base group and two to four benzene rings which do not constitute a cinnabar base group, and a polymerizable group. Monomer (A-2): a monomer having one cassia sulfhydryl moiety and one benzene ring which does not constitute a cinnabar thiol moiety, and a polymerizable group. (The above-mentioned cinnamoyl moiety and the benzene ring may have a substituent). [2] The polymer composition according to claim 1, wherein the polymerizable group of the monomer (A-1) and the monomer (A-2) is an acrylic group or a methacryl group. <3> In the above <1>, the component (A) is a group selected from the group represented by the following formula (1) and the group represented by the following formula (2). A monomer which is bonded to a polymerizable group is preferred. [0022] [0023] wherein A, B, and D each independently represent a single bond, -O-, -CH 2 -, -COO-, -OCO-, -CONH- or -NH-CO-; S is a C1-C12 alkyl group in which the bonded hydrogen atoms are each independently and may be substituted by a halogen group; a single bond or a C1-C12 alkyl group, the bonded hydrogen atom may be substituted by a halogen group; when T represents a single bond, B also represents a single bond; 1 a divalent benzene ring; P 1 , Q 1 And Q 2 Each independently is a group selected from the group consisting of a benzene ring and an alicyclic hydrocarbon ring having 5 to 8 carbon atoms; 1 Is a hydrogen atom, -CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, a (carbonyl group having 1 to 5 carbon atoms) carbonyl group, a cycloalkyl group having 3 to 7 carbon atoms or an alkoxy group having 1 to 5 carbon atoms. . Y 1 , P 1 , Q 1 And Q 2 In the above, the hydrogen atom bonded to the benzene ring is independently and may be -CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, a (carbonyl group having 1 to 5 carbon atoms) carbonyl group, or an alkoxy group having 1 to 5 carbon atoms. Substituted by base; X 1 And X 2 , each independently represents a single bond, -O-, -COO- or -OCO-; n1 and n2 are each independently 0, 1 or 2, X 1 When the number is 2, X 1 Can be the same or different from each other, X 2 When the number is 2, X 2 Can be the same or different from each other; Q 1 When the number is 2, Q 1 Can be the same or different from each other, Q 2 When the number is 2, Q 2 May be the same or different from each other; monomer (A-1), Y 1 The total number of benzene rings other than the number of benzene rings is 2 to 4; in the monomer (A-2), Y 1 The total number of benzene rings other than the one is 1; the broken line indicates the bonding bond with the polymerizable group. [4] A method for producing a substrate having the liquid crystal alignment film, comprising: [I] the polymer composition according to any one of the above <1> to <3>, which is applied to a step of forming a coating film on a substrate having an electrode for driving a liquid crystal; [II] a step of irradiating the polarized ultraviolet light with a coating film obtained by [I] from a slope direction; and [III] a coating film obtained by [II] The step of heating is performed; and a twisted nematic liquid crystal display element and an OCB liquid crystal display element liquid crystal alignment film which impart alignment control ability are obtained. [5] A substrate comprising the twisted nematic liquid crystal display device and/or the liquid crystal alignment film for an OCB liquid crystal display device produced by the production method according to the above <4>. <6> A twisted nematic liquid crystal display device and an OCB liquid crystal display device, comprising the substrate of the above <5>. [7] A method of manufacturing a liquid crystal display device, comprising: a step of preparing the substrate (first substrate) of the above <5>;[I'] using any of the above <1> to <4> a step of applying a polymer composition described on a second substrate to form a coating film; [II'] a step of irradiating the coating film obtained by [I'] with polarized ultraviolet rays; and [III'] a step of heating the obtained coating film; a step of obtaining a second substrate having a liquid crystal alignment film imparting alignment control capability; and [IV] making the liquid crystal alignment films of the first and second substrates relatively opposed by liquid crystal In the state, the first and second substrates are arranged to face each other so that the exposure directions are perpendicular to each other, and the liquid crystal display element is produced. The twisted nematic liquid crystal display element and the OCB type liquid crystal display element are obtained. <8> A twisted nematic liquid crystal display device and an OCB liquid crystal display device, which are produced by the above <7>. [Effects of the Invention] The present invention can provide a liquid crystal alignment film substrate having an excellent alignment angle control capability and excellent tilt angle characteristics, and a twisted nematic liquid crystal display element and an OCB type liquid crystal display element having the substrate. . Since the twisted nematic liquid crystal display element and the OCB type liquid crystal display element obtained by the method of the present invention can impart high-efficiency alignment control ability, the display characteristics are not degraded even if driven continuously for a long period of time. [Form of the invention] The liquid crystal alignment agent used in the production method of the present invention has a photosensitive side chain type polymer (hereinafter, simply referred to as a side chain type polymer) capable of generating liquid crystallinity. Therefore, the coating film obtained by using the liquid crystal alignment agent is a photosensitive side chain type polymer film which can produce liquid crystallinity. The coating film does not need to be subjected to rubbing treatment, and the alignment treatment can be performed by polarized light irradiation. Therefore, after the polarized light irradiation, a coating film having an alignment control ability (hereinafter also referred to as a liquid crystal alignment film) can be formed by the step of heating the side chain type polymer film. At this time, a slight anisotropy generated by the polarized light irradiation forms a driving force, and the liquid crystalline side chain type polymer itself is realigned efficiently by self-organization. As a result, an efficient alignment treatment of the liquid crystal alignment film can be realized, and a liquid crystal alignment film imparting high alignment control ability can be obtained. [0029] Hereinafter, embodiments of the present invention will be described in detail. <Method for Producing Substrate Having Liquid Crystal Alignment Film> and <Method for Producing Liquid Crystal Display Element><<(A) Side Chain Type Polymer>> (A) The composition is composed of the following monomer (A- 1) A copolymer obtained by a monomer mixture of the monomer (A-2) (hereinafter also referred to as a side chain type polymer). Monomer (A-1): a monomer having one cinnabar base group and two to four benzene rings which do not constitute a cinnabar base group, and a polymerizable group. Monomer (A-2): a monomer having one cassia sulfhydryl moiety and one benzene ring which does not constitute a cinnabar thiol moiety, and a polymerizable group. (The above-mentioned cinnamoyl moiety and the benzene ring may have a substituent). Further, the substituent referred to herein is, for example, a methyl group, a methoxy group, a t-butyl group, an ethyl fluorenyl group, a fluoro group, a cyano group or the like. (A) The side chain type polymer has a photosensitive side chain due to a main chain bond, and thus can induce a crosslinking reaction and an isomerization reaction. The structure of the photosensitive side chain is not particularly limited, and it is preferably a structure which can induce a crosslinking reaction by light. In this case, even when exposed to an external pressure such as heat, the achieved alignment control ability can be stabilized for a long period of time. More specific examples of the structure of the side chain type polymer of the component (A), for example, having a hydrocarbon, a (meth) acrylate, an isoconate, a fumarate, a maleate, At least one selected from the group consisting of radically polymerizable groups such as α-methyl-γ-butyrolactone, styrene, vinyl, maleimide, and norbornene The main chain is preferably a structure of a side chain formed by at least one of the following formulas (1) and (2). [0034] Wherein A, B, and D each independently represent a single bond, -O-, -CH 2 -, -COO-, -OCO-, -CONH- or -NH-CO-; S is a C1-C12 alkyl group in which the bonded hydrogen atoms are each independently and may be substituted by a halogen group; a single bond or a C1-C12 alkyl group, the bonded hydrogen atom may be substituted by a halogen group; when T represents a single bond, B also represents a single bond; 1 a divalent benzene ring; P 1 , Q 1 And Q 2 Each independently is a group selected from the group consisting of a benzene ring and an alicyclic hydrocarbon ring having 5 to 8 carbon atoms; 1 Is a hydrogen atom, -CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, a (carbonyl group having 1 to 5 carbon atoms) carbonyl group, a cycloalkyl group having 3 to 7 carbon atoms or an alkoxy group having 1 to 5 carbon atoms. . Y 1 , P 1 , Q 1 And Q 2 In the above, the hydrogen atom bonded to the benzene ring is independently and may be -CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, a (carbonyl group having 1 to 5 carbon atoms) carbonyl group, or an alkoxy group having 1 to 5 carbon atoms. Substituted by base; X 1 And X 2 , each independently represents a single bond, -O-, -COO- or -OCO-; n1 and n2 are each independently 0, 1 or 2, X 1 When the number is 2, X 1 Can be the same or different from each other, X 2 When the number is 2, X 2 Can be the same or different from each other; Q 1 When the number is 2, Q 1 Can be the same or different from each other, Q 2 When the number is 2, Q 2 May be the same or different from each other; monomer (A-1), Y 1 The total number of benzene rings other than the number of benzene rings is 2 to 4; in the monomer (A-2), Y 1 The total number of benzene rings other than the one is 1; the broken line indicates the bonding bond with the polymerizable group. (A-1) In the total of the content of the side chain generated by (A-1) and the content of the side chain produced by (A-2) in the side chain type polymer of the present invention The content of the side chain to be produced is preferably from 10 mol% to 90 mol%, and from 20 mol% to 80 mol%, from the viewpoints of liquid crystal alignment and solubility of the side chain type polymer. Preferably, 30% to 70% by mole is more preferred. The side chain type polymer of the present invention may contain the side chain generated by the above (A-1) and the side chain other than the side chain generated by (A-2), insofar as the effect of the present invention is not impaired. The content is the remainder of the case where the total content of the photoreactive side chain and the liquid crystal side chain is less than 100%. <<Method for Producing Photosensitive Side Chain Type Polymer>> A photosensitive side chain type polymer having the above liquid crystallinity can be produced, and at least the above monomer (A-1) and monomer (A-2) can be contained. The monomer mixture is prepared by polymerization. [Monomer (A-1) and Monomer (A-2)] The photoreactive side chain monomer may have a photosensitive side chain at the side of forming a polymer in the case of forming a polymer. Monomer of polymer. The photoreactive group having a side chain is preferably the following structure and derivatives thereof. More specific examples of the monomer (A-1) and the monomer (A-2), for example, have a hydrocarbon, (meth) acrylate, isoconate, fumarate, Malay Selected from the group consisting of a radical polymerizable group such as an acid ester, α-methyl-γ-butyrolactone, styrene, vinyl, maleimide, norbornene, and a trialkoxyalkyl group It is preferable that the polymerizable group composed of at least one kind of the photosensitive side chain selected from the structures represented by the above formulas (1) and (2) is preferable. The polymerizable group is preferably selected, for example, by a group represented by the following formulas PG1 to PG8. Among them, from the viewpoint of easily controlling the viewpoint of the polymerization reaction and the stability of the polymer, an acrylic group or a methacryl group represented by PG1 is preferred. Further, in the formula, the broken line indicates the bonding bond of the photosensitive side chain represented by the above formula (1) or (2). [0042] (In the formula PG1, M1 is a hydrogen atom or a methyl group). The monomer (A-1), for example, a monomer selected from the following formulas A1-1 to A1-7. [0045] [0046] (In the formulae A1-1 to A1-7, PG represents a polymerizable group selected from the groups represented by the above formulas PG1 to PG8, and s1 and s2 each independently represent the number of methyl groups, and is 2 to 9 Natural number). The monomer (A-2), for example, a monomer selected from the following formulas A2-1 to A2-14, and the like. [0049] [0050] [0051] (In the formulae A2-1 to A2-14, PG represents a polymerizable group selected from the groups represented by the above formulas PG1 to PG8, and s1 and s2 each independently represent the number of methyl groups, and are 2 to 9 Natural number). [0053] A part of the above-mentioned monomer (A-1) and monomer (A-2) is a commercially available article, and a part thereof is, for example, a method described in International Patent Application Publication No. WO2014/074785. be made of. (A) A side chain type polymer can be obtained by a copolymerization reaction of the above monomer (A-1) and monomer (A-2). Further, it is also possible to copolymerize with other monomers as long as the range of liquid crystal generating ability is not impaired. [0055] In the case where the polymerizable group of the monomers (A-1) and (A-2) is a radical polymerizable group, other monomers, for example, monomers which are easily obtained in the industry and which are capable of undergoing radical polymerization reaction Wait. Specific examples of the other monomer include, for example, an unsaturated carboxylic acid, an acrylate compound, a methyl acrylate compound, a maleimide compound, acrylonitrile, maleic anhydride, a styrene compound, and a vinyl compound. Specific examples of the unsaturated carboxylic acid include, for example, acrylic acid, methacrylic acid, isaconic acid, maleic acid, fumaric acid, and the like. Acrylate compound, for example, methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, decyl acrylate, decyl methacrylate, phenyl acrylate, 2, 2, 2- Ethyl trifluoroacrylate, tert-butyl acrylate, lauryl acrylate, palmitic acrylate, cyclohexyl acrylate, isodecyl acrylate, ethyl 2-methoxyacrylate, triethylene glycol methoxyacrylate, Ethyl 2-ethoxyacrylate, tetrahydrofurfuryl acrylate, 3-methoxybutyl acrylate, 2-methyl-2-adamantyl acrylate, 2-propyl-2-adamantyl acrylate , 8-methyl-8-tricyclodecyl acrylate, and 8-ethyl-8-tricyclodecyl acrylate. a methyl acrylate compound, for example, methyl methacrylate, methyl ethacrylate, methyl isopropyl acrylate, methyl benzyl acrylate, methyl naphthyl methacrylate, methyl methacrylate, fluorenyl amide Methyl methacrylate, methyl phenyl acrylate, methyl 2,2,2-trifluoroethyl acrylate, tert-butyl methacrylate, methyl lauryl methacrylate, methyl palm acrylate, methyl cyclohexyl acrylate , isomethyl methacrylate, methyl 2-methoxyethyl acrylate, methyl methoxytriethylene glycol acrylate, methyl 2-ethoxyethyl acrylate, tetrahydrofurfuryl methacrylate, 3- Methyl methoxybutyl methacrylate, methyl 2-methyl-2-adamantyl acrylate, methyl 2-propyl-2-adamantyl acrylate, 8-methyl-8-tricyclodecyl acrylate Ester, and methyl 8-ethyl-8-tricyclodecyl acrylate. a vinyl compound, for example, vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, and propyl vinyl ether, and the like. a styrene compound, for example, styrene, methyl styrene, chlorostyrene, bromostyrene, and the like. A maleimine compound, for example, maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide. The content of the photoreactive side chain represented by (A-1) and (A-2) in the side chain type polymer of the present invention is from 10 mol% to 100 mol from the viewpoint of liquid crystal alignment. The ear% is preferably from 20 mol% to 100 mol%, more preferably from 30 mol% to 100 mol%. The method for producing the side chain type polymer of the present embodiment is not particularly limited, and a method widely used in general industrial processing can be used. Specifically, a vinyl group of the monomer (A-1) or (A-2) can be produced by cationic polymerization, radical polymerization or anionic polymerization. Among these, the viewpoint of reaction control is easy, and radical polymerization is particularly preferable. The conditions of the radical polymerization polymerization initiator, the reaction temperature, the solvent, and the like, and the known conditions described in International Patent Publication No. WO2014/074785, etc., can be used. [Method for Producing Polyoxane] The polymer of the component (A) used in the present invention is a polyoxyalkylene. The method for producing the polyoxyalkylene is not particularly limited. In the present invention, a mixture of the above monomer (A-1) and monomer (A-2) and a monomer having a polymerizable group of a trialkoxyalkyl group as an essential component may be used as an organic solvent. It can be obtained by condensation. Usually, a polyoxyalkylene is obtained by polycondensing the alkoxydecane and uniformly dissolving it in an organic solvent. In the present invention, in addition to the above monomer (A-1) and monomer (A-2), an alkoxydecane represented by the following formula (3) may be used. Since the alkoxydecane represented by the formula (3) imparts various properties to the polyoxyalkylene, one or a plurality of types can be selected in accordance with the necessary characteristics. [0067] (R) 5 a hydrogen atom, or a hydrocarbon group having 1 to 6 carbon atoms which may be substituted by a hetero atom, a halogen atom, an amine group, a glycidoxy group, a thiol group, an isocyanate group or a urea group, R 6 It is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3, and n is 0 to 3, preferably an integer of 0 to 2. R of the alkoxydecane represented by the formula (3) 5 It is a hydrogen atom or an organic group having 1 to 6 carbon atoms (hereinafter, also referred to as a third organic group). Examples of the third organic group include, for example, an aliphatic hydrocarbon; a ring structure of an aliphatic ring, an aromatic ring, and a hetero ring; an unsaturated bond; and a hetero atom which may contain an oxygen atom, a nitrogen atom, a sulfur atom, or the like. An organic group having a branched structure and having 1 to 6 carbon atoms. Further, the organic group may be substituted by a halogen atom, an amine group, a glycidoxy group, a thiol group, an isocyanate group, a urea group or the like. Specific examples of the alkoxydecane represented by the above formula (3) are not limited to the above. In the alkoxy decane of formula (3), R 5 Specific examples of the alkoxydecane which is a hydrogen atom are, for example, trimethoxydecane, triethoxysilane, tripropoxydecane, tributoxydecane, and the like. Further, in the alkoxydecane of the formula (3), R 5 Specific examples of the alkoxydecane in the case of the third organic group include, for example, methyltrimethoxydecane, methyltriethoxydecane, ethyltrimethoxydecane, ethyltriethoxydecane, and propyltrimethyl. Oxydecane, propyltriethoxydecane, methyltripropoxydecane, 3-aminopropyltrimethoxydecane, 3-aminopropyltriethoxydecane, N-2 (amino B 3-aminopropyltriethoxydecane, N-2 (aminoethyl) 3-aminopropyltrimethoxydecane, 3-(2-aminoethylaminopropyl)trimethoxy Decane, 3-(2-aminoethylaminopropyl)triethoxydecane, 2-aminoethylaminomethyltrimethoxydecane, 2-(2-aminoethylthioethyl)triethyl Oxydecane, 3-hydrothiopropyltriethoxydecane, thiomethylmethyltrimethoxydecane, vinyltriethoxydecane, 3-isocyanatepropyltriethoxydecane,trifluoropropyl Trimethoxydecane, chloropropyltriethoxydecane, bromopropyltriethoxydecane, 3-hydrothiopropyltrimethoxydecane, dimethyldiethoxydecane, dimethyldimethoxy Base decane, diethyldiethoxy decane, diethyldimethoxy Decane, diphenyldimethoxydecane, diphenyldiethoxydecane, 3-aminopropylmethyldiethoxydecane, 3-aminopropyldimethylethoxydecane, trimethyl Ethoxy decane, trimethyl methoxy decane, γ-urelide propyl triethoxy decane, γ-urelide propyl trimethoxy decane and γ- guanidinopropyl propyl Propoxydecane, etc. When the polysiloxane of the present invention is used for the purpose of improving adhesion to a substrate and affinity with liquid crystal molecules, one or more of the above formulas (3) may be used without departing from the effects of the present invention. ) alkoxydecane represented by . Among the alkoxydecanes represented by the formula (3), the alkoxydecane in which n is 0 is a tetraalkoxydecane. The tetraalkoxydecane is preferred because it is easily subjected to a condensation reaction with the alkoxydecane represented by the formula (1) and the formula (2) to obtain the polyoxyalkylene of the present invention. In the formula (3), the alkoxy decane wherein n is 0, for example, tetramethoxy decane, tetraethoxy decane, tetrapropoxy decane or tetrabutoxy decane is preferred, especially Tetramethoxydecane or tetraethoxydecane is preferred. The method described in the International Patent Publication No. WO2010/126108 or the like can be used as a method of polycondensing a polydecane. [Recovery of Polymer] In the case where the produced polymer is recovered from the reaction solution of the photosensitive side chain type polymer which can produce liquid crystal obtained by the above reaction, the reaction solution can be introduced into a poor solvent. These polymers can be precipitated. a poor solvent used for precipitation, for example, methanol, acetone, hexane, heptane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ether, Water, etc. The polymer which has been precipitated by the lean solvent is recovered by filtration, and then dried at normal temperature or under reduced pressure under normal pressure or reduced pressure. Further, when the polymer recovered by precipitation is repeatedly used twice or more times in the operation of dissolving in an organic solvent and reprecipitating and recovering, impurities in the polymer can be lowered. In the case of the poor solvent at this time, for example, an alcohol, a ketone, a hydrocarbon or the like can be used, and when three or more kinds of poor solvents selected from the above are used, it is more preferable to further improve the efficiency of purification. The molecular weight of the (A) side chain type polymer of the present invention is determined by a GPC (Gel Permeation Chromatography) method in consideration of the strength of the obtained coating film, the workability at the time of formation of a coating film, and the uniformity of the coating film. The weight average molecular weight is preferably from 2,000 to 1,000,000, more preferably from 5,000 to 100,000. <Organic Solvent> The organic solvent used in the polymer composition used in the present invention is not particularly limited as long as it can dissolve the organic solvent of the resin component. Specific examples thereof are as follows. N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N- Ethyl pyrrolidone, N-vinylpyrrolidone, dimethyl hydrazine, tetramethyl urea, pyridine, dimethyl hydrazine, hexamethylarylene, γ-butyrolactone, 3-methoxy- N,N-dimethylpropane decylamine, 3-ethoxy-N,N-dimethylpropane decylamine, 3-butoxy-N,N-dimethylpropane decylamine, 1,3-two Methyl-imidazolidinone, ethyl pentanone, methyl fluorenone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropanone, cyclohexanone, ethylene carbonate, propylene carbonate, diethylene glycol Glyme, 4-hydroxy-4-methyl-2-pentanone, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethyl Glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether , dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, and the like. These may be used singly or in combination. <Liquid Crystal Aligning Agent> The liquid crystal alignment agent is applied to the above substrate to form a side surface of the electrode. The liquid crystal alignment agent of the present invention is a polymer composition containing the polymer obtained from the monomer mixture containing the above (A) monomer (A-1) and monomer (A-2). . [Production of Liquid Crystal Aligning Agent] The liquid crystal alignment agent used in the present invention is preferably formed by blending a liquid crystal alignment film to form a coating liquid. In other words, the liquid crystal alignment agent used in the present invention is preferably a solution obtained by dissolving a resin component capable of forming a resin film in an organic solvent. Here, the resin component is a resin component of the side chain type polymer containing the component (A) described above. In this case, the content of the resin component is preferably from 1% by mass to 20% by mass, more preferably from 3% by mass to 15% by mass, even more preferably from 3% by mass to 10% by mass. In the liquid crystal alignment agent of the present invention, the resin component may be a side chain type polymer of the component (A). However, when the range of the liquid crystal alignment ability is not impaired, the polymerization other than the above may be further mixed. Things. In this case, the content of the other polymer in the resin component is from 0.5% by mass to 80% by mass, preferably from 1% by mass to 50% by mass. These other polymers are, for example, polymers other than the side chain type polymer of the component (A) formed of poly(meth)acrylate, polylysine or polyimine. The polymer composition used in the present invention may contain a side chain type polymer of the above component (A) and a component other than the organic solvent. For example, when a liquid crystal alignment agent is applied, a solvent or a compound which can improve film thickness uniformity or surface smoothness, a compound which improves the adhesion between the liquid crystal alignment film and the substrate, and the like are not limited thereto. Some content. Specific examples of the solvent (lean solvent) which improves the film thickness uniformity or the surface smoothness are, for example, the contents listed below. For example, isopropanol, methoxymethylpentanol, cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate , butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol , propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol single Acetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3- Methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutyl ester, pentyl acetate, butyl Butyrate, dibutyl ether, diisobutyl ketone, methyl cyclohexene, propyl ether, dihexyl ether, 1-hexanol, n-hexane, n-pentane, n-octane, diethyl ether, lactic acid Methyl ester, ethyl lactate, methyl acetate, B Ethyl ester, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, 3-methoxy Ethyl propyl propionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2- Propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol- 1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2-(2-ethoxypropoxy)propanol, methyl lactate, ethyl lactate A solvent having a low surface tension such as n-propyl lactate, n-butyl lactate or isoamyl lactate. [0082] These poor solvents may be used alone or in combination of a plurality of types. When the solvent is used, the solubility of the entire solvent contained in the polymer composition is not significantly lowered, and it is preferably from 5% by mass to 80% by mass based on the total amount of the solvent, more preferably from 20% by mass to 60% by mass. A compound capable of improving film thickness uniformity or surface smoothness, for example, a fluorine-based surfactant, a polyoxon-based surfactant, a nonionic surfactant, or the like. More specifically, for example, F-TOP (registered trademark) 301, EF303, EF352 (manufactured by Dow Chemical Co., Ltd.), Megève (registered trademark) F171, F173, R-30 (manufactured by DIC Corporation), Fluorad FC430, FC431 (manufactured by Sumitomo 3M Co., Ltd.), AsahiGuard (registered trademark) AG710 (manufactured by Asahi Glass Co., Ltd.), Safreon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Precision Chemical Co., Ltd.). The use ratio of the surfactant is preferably 0.01 parts by mass to 2 parts by mass, more preferably 0.01 parts by mass to 1 part by mass, per 100 parts by mass of the resin component contained in the polymer composition. Specific examples of the compound which can improve the adhesion between the liquid crystal alignment film and the substrate, for example, a compound containing a functional decane shown below. For example, 3-aminopropyltrimethoxydecane, 3-aminopropyltriethoxydecane, 2-aminopropyltrimethoxydecane, 2-aminopropyltriethoxydecane, N- (2-Aminoethyl)-3-aminopropyltrimethoxydecane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxydecane, 3-carbazide ( Ureide) propyltrimethoxydecane, 3-guanidinopropyltriethoxydecane, N-ethoxycarbonyl-3-aminopropyltrimethoxydecane, N-ethoxycarbonyl-3-amine Propyltriethoxydecane, N-triethoxydecylpropyltrivinyltriamine, N-trimethoxydecylpropyltrivinyltriamine, 10-trimethoxydecyl-1,4,7- Triazanonane, 10-triethoxydecyl-1,4,7-triazadecane, 9-trimethoxydecylalkyl-3,6-diazadecyl acetate, 9-triethyl Oxidylalkyl-3,6-diazaindolyl acetate, N-benzyl-3-aminopropyltrimethoxydecane, N-benzyl-3-aminopropyltriethoxydecane, N-phenyl-3-aminopropyltrimethoxydecane, N-phenyl-3-aminopropyltriethoxydecane, N-bis(oxyvinyl)-3-aminopropyltrimethoxy Baseline, N-bis(oxyvinyl)-3-aminopropyl Silane triethoxysilane and the like. Further, in addition to the adhesion between the lift substrate and the liquid crystal alignment film, it is possible to prevent the electrical characteristics of the backlight from being lowered when the liquid crystal display element is formed, and the like, and the following phenolic plastic can be contained in the liquid crystal alignment agent ( Phenoplast) is an additive to an epoxy-containing compound. Specifically, the phenoplast-based additive is, for example, the following, but is not limited to this structure. [0086] Specific epoxy group-containing compounds, for example, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether , neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerol diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1, 3,5,6-tetraglycidyl-2,4-hexanediol, N,N,N',N'-tetraglycidyl-m-xylylenediamine, 1,3-bis(N,N- Diglycidylaminomethyl)cyclohexane, N,N,N',N'-tetraglycidyl-4, 4'-diaminodiphenylmethane, and the like are exemplified. When the compound having the adhesion to the substrate is used, the amount thereof is preferably 0.1 parts by mass to 30 parts by mass, more preferably 1 part by mass, per 100 parts by mass of the resin component contained in the liquid crystal alignment agent. ~ 20 parts by mass. When the amount used is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and when it is more than 30 parts by mass, the alignment of the liquid crystal may be deteriorated. [0089] As the additive, a photosensitizer can be used. Further, a colorless sensitizer and a triple sensitizer are preferred. Photo sensitizer, for example, aromatic nitro compound, coumarin (7-diethylamino-4-methylcoumarin, 7-hydroxy 4-methylcoumarin), ketocoumarin, carbonyl Dicoumarin, aromatic 2-hydroxyketone, and aromatic 2-hydroxyketone substituted by amine group (2-hydroxybenzophenone, mono- or di-p-(dimethylamino)-2-hydroxyl Benzophenone), acetophenone, hydrazine, Ketone, 9-oxosulfur , benzoxanthone, thiazolines (2-benzylidene-methyl-3-methyl-β-naphthylthiazoline, 2-(β-naphthylmethyl)methyl-3-benzoate Thiazolines, 2-(α-naphthylmethyl)-3-methylbenzothiazoline, 2-(4-biphenololmethyl)-3-methylbenzothiazoline (thiazolines) , 2-(β-naphthoquinonemethyl)-3-methyl-β-naphthylthiazoline, 2-(4-biphenolylmethyl)-3-methyl-β-naphthylthiazoline, 2-( p-Fluorobenzoyl hydrazide methyl)-3-methyl-β-naphthyl thiazoline), oxazoline (2-benzylidenemethyl-3-methyl-β-naphthyloxaline, 2- (β-naphthyl fluorenylmethyl)-3-methylbenzoxazoline, 2-(α-naphthylmethylidenemethyl)-3-methylbenzoxazoline, 2-(4-biphenolyl) Methyl)-3-methylbenzoxazoline, 2-(β-naphthylmethylidenemethyl)-3-methyl-β-naphthyloxaline, 2-(4-biphenolylmethyl)- 3-methyl-β-naphthyloxazoline, 2-(p-fluorobenzhydrylmethyl)-3-methyl-β-naphthyloxazoline, benzothiazole, nitroaniline (m- or P-nitroaniline, 2,4,6-trinitroaniline) or nitronaphthene (5-nitroanthracene (acenaphthene), (2-[(m-hydroxy-p-methoxy) Styryl]benzothiophene , benzoxane ether, N-alkylated fluorenone, acetophenone ketal (2,2-dimethoxyphenyl ethyl ketone), naphthalene, anthracene (2-naphthyl methanol, 2-naphthyl carboxylic acid, 9 - 蒽methanol, and 9-fluorene carboxylic acid), benzopyran, azo (indolizine), coumarin (mero-coumarin), etc. Preferred are aromatic 2-hydroxyketone (benzophenone), coumarin, ketocoumarin, carbonyl dicoumarin, acetophenone, anthracene, Ketone, 9-oxosulfur And acetophenone ketal. [0090] A method for producing a substrate having a liquid crystal alignment film of the present invention comprises: [I] applying a liquid crystal alignment agent containing (A) a side chain type polymer and an organic solvent to a substrate having a transparent electrode And a step of forming a coating film; [II] a step of irradiating the coating film obtained by [I] with polarized ultraviolet rays; and [III] a step of heating the coating film obtained in [II]. Through the above steps, a liquid crystal alignment film for a liquid crystal display element which imparts an alignment control ability can be obtained, and a substrate having the liquid crystal alignment film can be obtained. Further, in addition to the substrate (first substrate) obtained above, a liquid crystal display element can be obtained by preparing a second substrate. In the second substrate, the second substrate having the liquid crystal alignment film imparting the alignment control ability can be obtained by using the above steps [I] to [III] on the second substrate having the transparent electrode. [0092] The method for producing a twisted nematic liquid crystal display device and an OCB liquid crystal display device has the following steps: [IV] aligning the liquid crystal alignment of the first and second substrates with the first and second substrates obtained by the liquid crystal The film is in a relative state to produce a step of aligning the liquid crystal display elements. In this way, a twisted nematic liquid crystal display element can be obtained. Hereinafter, each steps of [I] to [III], and [IV] which are included in the production method of the present invention will be described. <Step [I]> In the step [I], a liquid crystal alignment agent containing (A) a side chain type polymer and an organic solvent is applied onto a substrate having an electrode for driving a liquid crystal to form a coating film. <Substrate> The substrate is not particularly limited, and when the liquid crystal display element to be produced is of a penetrating type, it is preferable to use a substrate having high transparency. In this case, there is no particular limitation, and a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used. The electrode for driving the liquid crystal is preferably ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide). Further, when the reflective liquid crystal display element is only a single-sided substrate, an opaque substance such as a germanium wafer may be used. In this case, a material such as aluminum which can reflect light may be used. As a method of forming an electrode on a substrate, a conventionally known method can be used. The method of applying the above liquid crystal alignment agent to a substrate having an electrode for driving a liquid crystal is not particularly limited. The coating method is industrially generally a method using screen printing, lithography, flexo printing, or inkjet method. Other coating methods include, for example, a wetting method, a roll coating method, a slit coating method, a spinning method (spin coating method), a spray method, and the like, and these methods can be used for the purpose. [0096] After applying the liquid crystal alignment agent to the substrate having the electrode for driving the liquid crystal, the solvent is heated at 50 to 230 ° C via a heating means such as a hot plate, a heat cycle type oven, or an IR (infrared) type oven. It is preferably carried out at 50 to 200 ° C for 0.4 minutes to 60 minutes, preferably 0.5 minutes to 10 minutes, to obtain a coating film. The drying temperature at this time is preferably lower in the temperature range in which the liquid crystallinity (hereinafter also referred to as liquid crystal generation temperature) of the side chain type polymer of the side chain type polymer of the component (A) is lower. . When the thickness of the coating film is too thick, the power consumption of the liquid crystal display element is disadvantageous. When the thickness is too thin, the liquid crystal display element may have a low reliability. Therefore, it is preferably 5 nm to 300 nm, more preferably 10 nm to 150 nm. . Further, after the step [I], before the subsequent step [II], a step of cooling the substrate on which the coating film is formed to room temperature may be provided. <Step [II]> The step [II] is that the polarized ultraviolet light is irradiated to the coating film obtained in the step [I] in an oblique direction. The polarized ultraviolet light is irradiated onto the film surface of the coating film, and the polarized light is irradiated to the substrate via the polarizing plate. As the ultraviolet rays to be used, for example, ultraviolet rays having a wavelength in the range of 100 nm to 400 nm can be used. It is preferred to select the optimum wavelength by a filter or the like in accordance with the type of the coating film to be used. Therefore, for example, in order to selectively initiate a photocrosslinking reaction, it is optional to use ultraviolet rays having a wavelength in the range of 290 nm to 400 nm. Ultraviolet rays, for example, can be used to generate radiation from a high pressure mercury lamp. [0098] The amount of ultraviolet light to be polarized varies depending on the coating film to be used. The amount of irradiation is such that the maximum value of ΔA (hereinafter, also referred to as ΔAmax) of the difference between the ultraviolet light absorbance in the direction parallel to the polarization direction of the polarized ultraviolet light and the ultraviolet absorbance in the vertical direction is polarized. The range of 1% to 70% of the amount is preferably in the range of 1% to 50%, preferably in the range of 1% to 50%. The irradiation direction of the polarized ultraviolet light is usually from 1 to 89, more preferably from 10 to 80, particularly preferably from 20 to 70 with respect to the substrate. When the angle is too small, there will be a problem that the pretilt angle is too small, and when it is too large, there is a problem that the pretilt angle is too high. [0100] The method of adjusting the irradiation direction to the above-described angle, for example, the method of tilting the substrate itself, and the method of tilting the light source, but also tilting the light source itself, is more preferable from the viewpoint of productivity. The pretilt angle obtained is preferably, for example, 1° to 20° which is suitable for the pretilt angle of the twisted nematic mode, and more preferably 2° to 15°. Further, in the present invention, the inclination angle may be controlled by adjusting the irradiation amount, the irradiation time, or both of the above step [II]. <Step [III]> In the step [III], the coating film after the polarized ultraviolet irradiation of the step [II] is heated. The coating film alignment control ability can be imparted by heating. For heating, a heating means such as a hot plate, a heat cycle type oven, or an IR (infrared) type oven can be used. The heating temperature can be determined at a temperature at which the liquid crystallinity of the coating film to be used is measured. The heating temperature is preferably in a temperature range in which the liquid crystallinity of the side chain type polymer is generated (hereinafter, also referred to as a temperature at which liquid crystal is generated). In the case of a film-like film surface, the temperature at which the liquid crystal is generated on the surface of the coating film is estimated to be lower than the temperature at which the liquid crystal is generated in the case of the side chain type polymer of the component (A). Therefore, the heating temperature is preferably in the temperature range of the temperature at which the liquid crystal is generated on the surface of the coating film. That is, the temperature range of the heating temperature after the polarized ultraviolet ray irradiation is lower than the lower limit of the temperature range of the temperature of the liquid crystal generated by the side chain type polymer used by 10 ° C, and is lower than the liquid crystal temperature range. The temperature at which the upper limit is lower by 10 ° C is preferably the temperature within the range of the upper limit. When the heating temperature is lower than the above temperature range, the effect of the anisotropic increase due to heat in the coating film may be insufficient, and when the heating temperature is higher than the above temperature range, the state of the coating film may be There is a tendency to approach the isotropic liquid state (isotropic phase), and in this case, there is a tendency that it is difficult to realign in one direction by self-organization. Further, the temperature at which the liquid crystal is generated refers to a glass transition temperature (Tg) or more when the surface of the side chain type polymer or the coating film is phase-transferred from the solid phase to the liquid crystal phase, and isotropic by liquid crystal phase isotropic. The phase (isotropic phase) is intended to mean the temperature below the isotropic phase transition temperature (Tiso). Further, in the present invention, the inclination angle can be controlled by adjusting the heating temperature, the heating time, or both of the above step [III]. The thickness of the coating film formed after heating is preferably from 5 nm to 300 nm, more preferably from 50 nm to 150 nm, for the same reason as described in the step [I]. According to the results of the above steps, in the production method of the present invention, the effect of introducing anisotropy into the coating film can be efficiently achieved. Therefore, the substrate with the liquid crystal alignment film can be efficiently manufactured. [Step [IV]> [IV] The step of providing the substrate obtained by disposing the liquid crystal alignment film on the substrate on the side of the liquid crystal alignment film, and the liquid crystal layer provided between the substrate and the substrate A liquid crystal display element having a liquid crystal lattice of the liquid crystal alignment film formed by the liquid crystal alignment agent of the present invention disposed between a substrate and a liquid crystal layer. The liquid crystal display elements of the present invention are, for example, a twisted nematic (TN: Twisted Nematic) method, a vertical alignment (VA: Vertical Alignment) method, or an IPS (In-Plane Switching) method, and an OCB alignment (OCB alignment). :Optically Compensated Bend) and other ways. [0110] For example, a liquid crystal cell or a liquid crystal display element is produced. For example, the first and second substrates are prepared, and the spacer is spread on the liquid crystal alignment film of the substrate on one side, and the liquid crystal alignment film surface is inside. In a manner, the other substrate is bonded to each other in such a manner that the ultraviolet exposure direction is perpendicular to each other, the liquid crystal is injected under reduced pressure, and the liquid crystal alignment film surface on which the spacer is dispersed is dropped into the liquid crystal. The method of bonding and sealing is exemplified. The diameter of the spacer at this time is preferably from 1 μm to 30 μm, more preferably from 2 μm to 10 μm. The spacer diameter determines the distance between the pair of substrates of the liquid crystal layer, that is, the thickness of the liquid crystal layer. The obtained liquid crystal display element is preferably subjected to an annealing treatment from the viewpoint of alignment stability. The heating temperature is a phase transition temperature of the liquid crystal, preferably 10 to 160 ° C, more preferably 50 to 140 ° C. The method for producing a substrate coated with a coating film according to the present invention is to apply a liquid crystal alignment agent onto a substrate to form a coating film, and then irradiate the polarized ultraviolet rays. Then, by heating, it is possible to introduce a highly efficient anisotropy into the side chain type polymer film, and to obtain a substrate having a liquid crystal alignment film having alignment control ability of liquid crystal. The coating film used in the present invention is a principle of molecular reorientation by liquid crystal self-organization which utilizes light reaction of a side chain, and can introduce high-efficiency anisotropy into a coating film. In the production method of the present invention, when a side chain type polymer has a photocrosslinkable group structure as a photoreactive group, a side chain type polymer is applied onto a substrate to form a coating film, and then the polarized light is irradiated. The ultraviolet ray is then heated to obtain a liquid crystal display element. Therefore, the coating film used in the method of the present invention can directly introduce anisotropic properties by irradiating the coating film with polarized ultraviolet rays and heat treatment results, and can form a liquid crystal having excellent alignment control ability. Orientation film. Therefore, the coating film used in the method of the present invention can optimize the irradiation amount of the polarized ultraviolet rays of the irradiation coating film and the heating temperature in the heat treatment. Therefore, it is possible to achieve anisotropic introduction of the coating film with high efficiency. In the coating film used in the present invention, the irradiation amount of the anisotropic optimal polarized ultraviolet ray can be introduced with high efficiency, and the photocrosslinking reaction or light corresponding to the photosensitive group in the coating film can be induced. The optimum amount of polarized ultraviolet light to be irradiated by the isomerization reaction. When the coating film used in the present invention is irradiated with polarized ultraviolet rays, if the photosensitive group of the side chain of the photocrosslinking reaction or the photoisomerization reaction is too small, a sufficient amount of photoreaction cannot be obtained. In this case, even if heating is subsequently performed, sufficient self-organization cannot be performed. On the other hand, in the coating film used in the present invention, when a structure having a photocrosslinkable group is irradiated with ultraviolet light by polarization, if the photosensitive group of the side chain in which the crosslinking reaction is carried out is excessive, the side chain will be caused. Excessive cross-linking reaction. In this case, the resulting film will be formed into a straightening, which causes self-organization to hinder subsequent heating. Therefore, in the coating film used in the present invention, the photosensitive group of the side chain can be subjected to an optimum amount of photocrosslinking reaction or photoisomerization reaction by irradiation with polarized ultraviolet rays to reach the side chain type. It is preferred that the polymer film has a photosensitive group in an amount of from 0.1 mol% to 60 mol%, preferably from 0.1 mol% to 40 mol%. When the amount of the photosensitive group of the side chain in which the photoreaction is carried out is in the above range, self-organization can be efficiently performed by the subsequent heat treatment, and high-efficiency anisotropy can be formed in the film. The coating film used in the method of the present invention can optimize the photo-crosslinking reaction or the photo-sensitization of the photosensitive group in the side chain of the side chain type polymer film by optimizing the irradiation amount of the polarized ultraviolet light. The amount of the compositional reaction, or the amount of the Friesrearrangement reaction, is optimized. Therefore, when combined with the subsequent heat treatment, the introduction of the anisotropic property to the coating film used in the present invention can be efficiently achieved. In this case, the amount of the polarized ultraviolet light is preferably adjusted in accordance with the evaluation of the ultraviolet absorption of the coating film used in the present invention. That is, the coating film used in the present invention is obtained by measuring ultraviolet absorption in a direction parallel to the polarization direction of the polarized ultraviolet light and absorption of ultraviolet rays in the vertical direction after the polarized ultraviolet light irradiation. From the measurement results of the ultraviolet absorption, the difference (ΔA) between the ultraviolet absorbance in the direction parallel to the polarization direction of the polarized ultraviolet light and the ultraviolet absorbance in the vertical direction was evaluated. Subsequently, the maximum value (ΔAmax) of ΔA achieved in the coating film used in the present invention and the amount of polarized ultraviolet light at which the maximum value can be realized are determined. In the production method of the present invention, the amount of polarized ultraviolet light which is irradiated in a desired amount in the production of the liquid crystal alignment film can be determined based on the amount of polarized ultraviolet light which can achieve the ΔAmax. In the production method of the present invention, the amount of the polarized ultraviolet light to be applied to the coating film used in the present invention is preferably in the range of 1% to 70% of the amount of the polarized ultraviolet ray having a ΔAmax, and is preferably 1% to 1%. Those within the range of 50% are preferred. In the coating film used in the present invention, the amount of polarized ultraviolet light in the range of 1% to 50% of the amount of polarized ultraviolet light of ΔAmax can be achieved, which corresponds to the sensitivity of the side chain type polymer film. The amount of polarized ultraviolet light of the photocrosslinking reaction is 0.1 mol% to 20 mol% of the entire base. As described above, in the production method of the present invention, the purpose of introducing a high-efficiency anisotropy to the coating film can be achieved by setting the liquid crystal temperature range of the side chain type polymer as a reference. The heating temperature can be. Therefore, for example, when the liquid crystal temperature range of the side chain type polymer used in the present invention is from 100 ° C to 200 ° C, the heating temperature after the polarized ultraviolet ray irradiation is preferably from 90 ° C to 190 ° C. Thus, a greater anisotropy can be imparted to the coating film used in the present invention. As described above, the liquid crystal display element provided by the present invention exhibits high reliability against external pressure such as light or heat. [0122] As described above, the substrate for a twisted nematic liquid crystal display device, the liquid crystal display device having the substrate, the substrate for an OCB liquid crystal display device, or the liquid crystal display device having the substrate, which is obtained by the method of the present invention, For those who have excellent reliability, they are suitable for use in large-screen and high-definition LCD TVs. Moreover, it is also used for a liquid crystal antenna, a dimming element, and the like. [0123] Hereinafter, the contents of the present invention will be described using examples, but the present invention is not limited by the examples.

[實施例]   [0124] 實施例所使用的成份之簡稱係如以下所示。 <甲基丙烯酸單體>   [0125][0126] MA-1為依非專利文獻(Macromolecules 2002, 35, 706-713)記載之合成法所合成者。   MA-2為依英國專利GB2306470B記載之合成法所合成者。   MA-3為依非專利文獻(Macromolecules 2007, 40, 6355 -6360)記載之合成法所合成者。   MA-4為依國際專利出願公開WO2014/054785號公報記載之合成法所合成者。   MA-5為依專利文獻(特開平9-118717)記載之合成法所合成者。   MA-6為由東京化成工業股份有限公司購入使用者。   MA-7為由東京化成工業股份有限公司購入使用者。   MA-8為由東京化成工業股份有限公司購入使用者。   MA-9為由西格瑪奧瑞奇公司購入使用者。   [0127] <有機溶劑>   THF:四氫呋喃   NMP:N-甲基-2-吡咯啶酮   BCS:丁基溶纖劑   BCA:丁基溶纖劑乙酸酯   CHN:環己酮   GBL:γ-丁基內酯   PGME:丙二醇單甲醚   PGMEA:丙二醇單甲醚乙酸酯 <聚合起始劑>   AIBN:2,2’-偶氮雙異丁腈   [0128] <合成例1:甲基丙烯酸聚合物>   使MA-1(21g:40mmol)、MA-2(26g:60mmol)溶解於THF(270g)中,使用隔膜(diaphragm)幫浦進行脫氣之後,加入AIBN(0.5g:3mmol)後,進行再脫氣。隨後,於60℃下反應6小時,而製得丙烯酸甲酯之聚合物溶液。將該聚合物溶液滴入甲醇(2000ml)中,將所得沈澱物過濾。該沈澱物經使用甲醇洗淨,進行減壓乾燥後,得丙烯酸甲酯聚合物粉末P1。   [0129] 依表1所示條件,合成例2、3亦使用與合成例1相同之方法,製得丙烯酸甲酯聚合物粉末P2、P3。   [0130] <合成例4:甲基丙烯酸聚合物>   使MA-3(23g:40mmol)、MA-2(26g:60mmol)溶解於THF(282g)中,使用隔膜幫浦進行脫氣後,加入AIBN (0.5g:3mmol)後,進行再脫氣。隨後,於60℃下反應6小時,而製得丙烯酸甲酯之聚合物溶液。將該聚合物溶液滴入甲醇(2000ml)中,將所得沈澱物過濾。該沈澱物經使用甲醇洗淨,進行減壓乾燥後,得丙烯酸甲酯聚合物粉末P4。   [0131] 依表1所示條件,合成例5亦使用與合成例4相同之方法,製得丙烯酸甲酯聚合物粉末P5。   [0132] <合成例6:甲基丙烯酸聚合物>   使MA-3(23g:40mmol)、MA-4(31g:60mmol)溶解於THF(310g)中,使用隔膜幫浦進行脫氣後,加入AIBN (0.5g:3mmol)後,進行再脫氣。隨後,於60℃下反應6小時,而製得丙烯酸甲酯之聚合物溶液。將該聚合物溶液滴入甲醇(2000ml)中,將所得沈澱物過濾。該沈澱物經使用甲醇洗淨,進行減壓乾燥後,得丙烯酸甲酯聚合物粉末P6。   [0133] 依表1所示條件,合成例7亦使用與合成例6相同之方法,製得丙烯酸甲酯聚合物粉末P7。   [0134] <合成例8:甲基丙烯酸聚合物>   使MA-1(21g:40mmol)、MA-2(13g:30mmol)、MA-4(9g:30mmol)溶解於THF(246g)中,使用隔膜幫浦進行脫氣後,加入AIBN(0.5g:3mmol)後,進行再脫氣。隨後,於60℃下反應6小時,而製得丙烯酸甲酯之聚合物溶液。將該聚合物溶液滴入甲醇(2000ml)中,將所得沈澱物過濾。該沈澱物經使用甲醇洗淨,進行減壓乾燥後,得丙烯酸甲酯聚合物粉末P8。   [0135] 依表1所示條件,合成例9亦使用與合成例8相同之方法,製得丙烯酸甲酯聚合物粉末P9。   [0136] <合成例10:甲基丙烯酸聚合物>   使MA-1(21g:40mmol)、MA-2(26g:60mmol)、MA-5(2g:20mmol)溶解於THF(280g)中,使用隔膜幫浦進行脫氣後,加入AIBN(0.5g:3mmol)後,進行再脫氣。隨後,於60℃下反應6小時,而製得丙烯酸甲酯之聚合物溶液。將該聚合物溶液滴入甲醇(2000ml)中,將所得沈澱物過濾。該沈澱物經使用甲醇洗淨,進行減壓乾燥後,得丙烯酸甲酯聚合物粉末P10。   [0137] 依表1所示條件,合成例11亦使用與合成例10相同之方法,製得丙烯酸甲酯聚合物粉末P11。   [0138] <合成例12:甲基丙烯酸聚合物>   使MA-1(21g:40mmol)、MA-2(26g:60mmol)、MA-7(3g:10mmol)溶解於THF(283g)中,使用隔膜幫浦進行脫氣後,加入AIBN(0.5g:3mmol)後,進行再脫氣。隨後,於60℃下反應6小時,而製得丙烯酸甲酯之聚合物溶液。將該聚合物溶液滴入甲醇(2000ml)中,將所得沈澱物過濾。該沈澱物經使用甲醇洗淨,進行減壓乾燥後,得丙烯酸甲酯聚合物粉末P12。   [0139] 依表1所示條件,合成例13、14中,除合成例12之MA-7使用MA-8、MA-9替代以外,其他皆使用相同之方法製得丙烯酸甲酯聚合物粉末P13、14。   [0140] <合成例15:甲基丙烯酸聚合物>   使A-3(34g:60mmol)、MA-2(9g:20mmol)、MA-5(6g:20mmol)溶解於THF(282g)中,使用隔膜幫浦進行脫氣後,加入AIBN(0.5g:3mmol)後,進行再脫氣。隨後,於60℃下反應6小時,而製得丙烯酸甲酯之聚合物溶液。將該聚合物溶液滴入甲醇(2000ml)中,將所得沈澱物過濾。該沈澱物經使用甲醇洗淨,進行減壓乾燥後,得丙烯酸甲酯聚合物粉末P15。   [0141] <合成例16:甲基丙烯酸聚合物>   使MA-1(21g:40mmol)、MA-5(6g:60mmol)溶解於THF(154g)中,使用隔膜幫浦進行脫氣後,加入AIBN (0.5g:3mmol)後,進行再脫氣。隨後,於60℃下反應6小時,而製得丙烯酸甲酯之聚合物溶液。將該聚合物溶液滴入甲醇(2000ml)中,將所得沈澱物過濾。該沈澱物經使用甲醇洗淨,進行減壓乾燥後,得丙烯酸甲酯聚合物粉末P16。   [0142] 依表1所示條件,合成例17亦使用與合成例16相同之方法,製得丙烯酸甲酯聚合物粉末P17。   [0143] <合成例18:甲基丙烯酸聚合物>   使MA-3(46g:80mmol)、MA-5(6g:20mmol)溶解於THF(297g)中,使用隔膜幫浦進行脫氣後,加入AIBN (0.5g:3mmol)後,進行再脫氣。隨後,於60℃下反應6小時,而製得丙烯酸甲酯之聚合物溶液。將該聚合物溶液滴入甲醇(2000ml)中,將所得沈澱物過濾。該沈澱物經使用甲醇洗淨,進行減壓乾燥後,得丙烯酸甲酯聚合物粉末P18。   [0144] <合成例19:甲基丙烯酸聚合物>   使MA-2(44g:100mmol)溶解於THF(251g)中,使用隔膜幫浦進行脫氣後,加入AIBN(0.5g:3mmol)後,進行再脫氣。隨後,於60℃下反應6小時,而製得丙烯酸甲酯之聚合物溶液。將該聚合物溶液滴入甲醇(2000ml)中,將所得沈澱物過濾。該沈澱物經使用甲醇洗淨,進行減壓乾燥後,得丙烯酸甲酯聚合物粉末P19。   [0145] 依表1所示條件,合成例20中,除將合成例19的MA-2使用MA-3替代以外,其他皆依相同之方法製得丙烯酸甲酯聚合物粉末P21。   [0146] <液晶配向劑之製作:A1>   於依上述合成例1所得丙烯酸甲酯聚合物粉末P1(0.6g)中,加入NMP(11.4g),於室溫下攪拌1小時,使其溶解。於該溶液中,加入BCS(3.0g),製得固形成份濃度4.0wt%之聚合物溶液(A1)。該聚合物溶液,可隨即使用作為形成液晶配向膜的液晶配向劑。   [0147] 依表1所示條件,將液晶配向劑A2、A3、A5、A11、A12、A16~A20,及相關內容,皆使用與液晶配向劑A1相同之方法製得液晶配向劑。   [0148] <液晶配向劑之製作:B1>   於依上述合成例1所製得之丙烯酸甲酯聚合物粉末P16(0.6g)中,加入NMP(11.4g),於室溫下攪拌1小時,使其溶解。於該溶液中,加入BCS(3.0g),而製得固形成份濃度為4.0wt%之聚合物溶液(B1)。該聚合物溶液可隨即使用作為形成液晶配向膜的液晶配向劑。   [0149] 依表1所示條件,液晶配向劑B2、B4、B5亦使用與液晶配向劑B1相同之方法,製得液晶配向劑。   [0150] <液晶配向劑之製作:A4>   於依上述合成例1所製得之丙烯酸甲酯聚合物粉末P3(0.6g)中,加入NMP(9.9g),於室溫下攪拌1小時,使其溶解。於該溶液中,加入BCA(4.5g),製得固形成份濃度4.0wt%之聚合物溶液(A4)。該聚合物溶液可隨即使用作為形成液晶配向膜的液晶配向劑。   [0151] 依表1所示條件,液晶配向劑A6、A7、A13亦使用與液晶配向劑A4相同之方法,製得液晶配向劑。   [0152] <液晶配向劑之製作:A8>   於依上述合成例1所製得之丙烯酸甲酯聚合物粉末P5(0.6g)中,加入CHN(11.4g),於溫度50℃之加溫中,攪拌1小時,使其溶解。於該溶液中,加入PGME(3.0g),製得固形成份濃度4.0wt%之聚合物溶液(A8)。該聚合物溶液可隨即使用作為形成液晶配向膜的液晶配向劑。   [0153] 依表1所示條件,液晶配向劑A9,除液晶配向劑A8之PGME使用PGMEA替代以外,其他皆使用相同之方法製得液晶配向劑。   [0154] <液晶配向劑之製作:A10>   於依上述合成例1所製得之丙烯酸甲酯聚合物粉末P5(0.6g)中,加入CHN(15.0g),於溫度50℃之加溫中,攪拌1小時,使其溶解,製得固形成份濃度4.0wt%之聚合物溶液(A10)。該聚合物溶液可隨即使用作為形成液晶配向膜的液晶配向劑。   [0155] 依表1所示條件,液晶配向劑A15、A21亦使用與液晶配向劑A10相同之方法,製得液晶配向劑。   [0156] <液晶配向劑之製作:A14>   於依上述合成例1所製得之丙烯酸甲酯聚合物粉末P9(0.6g)中,加入NMP(5.4g),於室溫下攪拌1小時,使其溶解。於該溶液中,加入GBL(4.5g)、BCA(4.5g),製得固形成份濃度4.0wt%之聚合物溶液(A14)。該聚合物溶液可隨即使用作為形成液晶配向膜的液晶配向劑。   [0157] 依表1所示條件,液晶配向劑B3中,除液晶配向劑A14之BCA使用BCS替代以外,其他皆使用相同之方法製得液晶配向劑。   [0158][0159] <面內配向度(In-planeorderparameter)測定用基板之製作>   使用上述所得之液晶配向劑,依下述所示順序進行光反應率測定用基板之製作。基板為使用大小40mm×40mm、厚度為1.0mm之石英基板。液晶配向劑A1使用過濾器孔徑1.0μm的過濾器過濾後,將其旋轉塗佈於石英基板上,於70℃之加熱板上乾燥90秒鐘之後,形成膜厚100nm的液晶配向膜   [0160] (實施例1)   將313nm的紫外線介由偏光板對塗膜面照射80mJ/cm2 之後,於120℃的加熱板上加熱20分鐘,製得完成光反應的附有液晶配向膜之基板。   [0161] 依表2所示之條件,將實施例2~21及比較例1~5,使用與實施例1相同之方法製得面內配向度測定用基板。   [0162] <面內配向度之測定>   使用依上述內容所製得之附有液晶配向膜之基板,由測定液晶配向膜之光學的異向性時所使用的偏光之吸光度,依下式算出面內配向度(S)。計算值為使用照射量範圍內最高之值。   又,吸光度之測定,為使用島津製作所製之紫外線可視近紅外線分析光度計U-3100PC測定。   [0163][0164] 其中,Apara 表示相對於照射偏光UV之方向為平行方向之吸光度、Aper 表示相對於照射偏光UV之方向為垂直方向之吸光度。Alarge 表示比較平行方向與垂直方向的吸光度時,數值較大者之吸光度、Asmall 表示比較平行方向與垂直方向的吸光度時,數值較小者之吸光度。面內配向度之絕對值,越接近1時,表示可達到相同之配向狀態。   [0165][0166] 如表2所示般,得知使用實施例1~21的液晶配向劑時,相對於任一偏光UV之方向為平行方向的配向度越高。推測應為基於未與比較例1、2形成平行方向之原因,使得感光性基的導入量較低,而相較於二聚化反應,異構化反應產生之配向將更為優位化而得之結果。   [0167] <液晶晶格之製作>   將液晶配向劑(A1)使用0.45μm的過濾器過濾後,將其旋轉塗佈於附有透明電極的玻璃基板上,於70℃的加熱板上乾燥90秒鐘後,形成膜厚100nm之液晶配向膜。   [0168] (實施例15)   將塗膜面傾斜40°,將313nm的紫外線介由偏光板以80mJ/cm2 照射基板之後,於140℃的加熱板上加熱20分鐘,製得附有液晶配向膜之基板。準備2片該些附有液晶配向膜之基板,於一側基板的液晶配向膜面設置4μm的間隔器之後,將2片之基板以摩擦方向為平行之方式組合,殘留液晶注入口後,將周圍密封,製得晶胞間隙(CellGap)為4μm的空晶格。使用減壓注入法將液晶MLC-2003(莫克股份有限公司製)注入該空晶格後,將注入口密封,製得逆平行液晶晶格。   於溫度120℃下加熱30分鐘之後,測定該液晶晶格之預傾角。   [0169] 依表3所示條件,使用實施例16~42及比較例6~10依與實施例1相同之方法,製作液晶晶格,並測定其預傾角。   [0170][0171] 如表3所示,無論使用實施例22~42之任一液晶配向劑時,皆可製得適合扭轉向列型模式的液晶預傾角。比較例6、7未能生成預傾角之要因,推測應為於一軸方向未出現傾斜角所造成者。比較例9中,雖可產生良好傾斜角,但所得液晶配向膜形成白濁狀態。比較例10中,則未發現適合扭轉向列型模式的傾斜角。   [0172] 使用液晶配向劑A10,依表4所記載之條件,使用與實施例1相同之方法,製得面內配向度測定用基板。隨後,依上述實施例為基準,測定配向度及預傾角,結果如表4所示般,確認可依偏光紫外線照射量或本燒結條件,調節預傾角。   [0173][0174] <液晶配向劑之製作:A22>   於上述合成例15所製得之丙烯酸甲酯聚合物粉末P15(0.6g)中,加入NMP(8.4g),於室溫下攪拌1小時,使其溶解。於該溶液中,加入BCS(6.0g),製得固形成份濃度4.0wt%之聚合物溶液(A22)。該聚合物溶液可隨即使用作為形成液晶配向膜的液晶配向劑。   [0175] 使用該配向劑A22,同樣地進行配向度與預傾角之測定。其結果如表5所示般,於OCB模式中顯示出最佳的預傾角9.9°。   [0176] [Examples] The abbreviations of the components used in the examples are as follows. <methacrylic acid monomer> [0125] [0126] MA-1 is a synthetic method described in the non-patent literature (Macromolecules 2002, 35, 706-713). MA-2 is a synthetic method according to the synthesis method described in British Patent GB 2306470B. MA-3 is a synthetic method described in the non-patent literature (Macromolecules 2007, 40, 6355-6360). MA-4 is synthesized by the synthesis method described in International Patent Publication No. WO2014/054785. MA-5 is synthesized by a synthesis method described in the patent document (Japanese Patent Laid-Open No. Hei 9-118717). MA-6 is purchased by Tokyo Chemical Industry Co., Ltd. MA-7 was purchased by Tokyo Chemical Industry Co., Ltd. MA-8 was purchased by Tokyo Chemical Industry Co., Ltd. MA-9 is purchased by Sigma Oric. <Organic solvent> THF: tetrahydrofuran NMP: N-methyl-2-pyrrolidone BCS: butyl cellosolve BCA: butyl cellosolve acetate CHN: cyclohexanone GBL: γ-butyl lactone PGME: Propylene glycol monomethyl ether PGMEA: propylene glycol monomethyl ether acetate <polymerization initiator> AIBN: 2,2'-azobisisobutyronitrile [Synthesis Example 1: methacrylic acid polymer] MA-1 (21 g: 40 mmol) and MA-2 (26 g: 60 mmol) were dissolved in THF (270 g), and degassed using a diaphragm (diaphragm) pump, and then AIBN (0.5 g: 3 mmol) was added, and then degassed. Subsequently, the reaction was carried out at 60 ° C for 6 hours to obtain a polymer solution of methyl acrylate. The polymer solution was added dropwise to methanol (2000 ml), and the resulting precipitate was filtered. This precipitate was washed with methanol and dried under reduced pressure to give a methyl acrylate polymer powder P1. According to the conditions shown in Table 1, in the same manner as in Synthesis Example 1, Synthesis Examples 2 and 3 were used to obtain methyl acrylate polymer powders P2 and P3. <Synthesis Example 4: Methacrylic acid polymer> MA-3 (23 g: 40 mmol) and MA-2 (26 g: 60 mmol) were dissolved in THF (282 g), and degassed using a membrane pump, and then added. After AIBN (0.5 g: 3 mmol), it was degassed again. Subsequently, the reaction was carried out at 60 ° C for 6 hours to obtain a polymer solution of methyl acrylate. The polymer solution was added dropwise to methanol (2000 ml), and the resulting precipitate was filtered. This precipitate was washed with methanol and dried under reduced pressure to give a methyl acrylate polymer powder P4. According to the conditions shown in Table 1, Synthesis Example 5 was also obtained in the same manner as in Synthesis Example 4 to obtain a methyl acrylate polymer powder P5. <Synthesis Example 6: Methacrylic acid polymer> MA-3 (23 g: 40 mmol) and MA-4 (31 g: 60 mmol) were dissolved in THF (310 g), and degassed using a membrane pump, and then added. After AIBN (0.5 g: 3 mmol), it was degassed again. Subsequently, the reaction was carried out at 60 ° C for 6 hours to obtain a polymer solution of methyl acrylate. The polymer solution was added dropwise to methanol (2000 ml), and the resulting precipitate was filtered. This precipitate was washed with methanol and dried under reduced pressure to give a methyl acrylate polymer powder P6. According to the conditions shown in Table 1, Synthesis Example 7 was also obtained in the same manner as in Synthesis Example 6, to obtain a methyl acrylate polymer powder P7. <Synthesis Example 8: Methacrylic acid polymer> MA-1 (21 g: 40 mmol), MA-2 (13 g: 30 mmol), and MA-4 (9 g: 30 mmol) were dissolved in THF (246 g), and used. After degassing the membrane pump, AIBN (0.5 g: 3 mmol) was added and then degassed. Subsequently, the reaction was carried out at 60 ° C for 6 hours to obtain a polymer solution of methyl acrylate. The polymer solution was added dropwise to methanol (2000 ml), and the resulting precipitate was filtered. This precipitate was washed with methanol and dried under reduced pressure to give a methyl acrylate polymer powder P8. According to the conditions shown in Table 1, Synthesis Example 9 was also obtained in the same manner as in Synthesis Example 8 to obtain a methyl acrylate polymer powder P9. <Synthesis Example 10: Methacrylic acid polymer> MA-1 (21 g: 40 mmol), MA-2 (26 g: 60 mmol), and MA-5 (2 g: 20 mmol) were dissolved in THF (280 g), and used. After degassing the membrane pump, AIBN (0.5 g: 3 mmol) was added and then degassed. Subsequently, the reaction was carried out at 60 ° C for 6 hours to obtain a polymer solution of methyl acrylate. The polymer solution was added dropwise to methanol (2000 ml), and the resulting precipitate was filtered. This precipitate was washed with methanol and dried under reduced pressure to give a methyl acrylate polymer powder P10. According to the conditions shown in Table 1, Synthesis Example 11 was also obtained in the same manner as in Synthesis Example 10 to obtain a methyl acrylate polymer powder P11. <Synthesis Example 12: Methacrylic acid polymer> MA-1 (21 g: 40 mmol), MA-2 (26 g: 60 mmol), and MA-7 (3 g: 10 mmol) were dissolved in THF (283 g), and used. After degassing the membrane pump, AIBN (0.5 g: 3 mmol) was added and then degassed. Subsequently, the reaction was carried out at 60 ° C for 6 hours to obtain a polymer solution of methyl acrylate. The polymer solution was added dropwise to methanol (2000 ml), and the resulting precipitate was filtered. This precipitate was washed with methanol and dried under reduced pressure to give a methyl acrylate polymer powder P12. According to the conditions shown in Table 1, in the synthesis examples 13 and 14, except that MA-7 of Synthesis Example 12 was replaced with MA-8 and MA-9, the same method was used to obtain methyl acrylate polymer powder. P13, 14. <Synthesis Example 15: Methacrylic acid polymer> A-3 (34 g: 60 mmol), MA-2 (9 g: 20 mmol), and MA-5 (6 g: 20 mmol) were dissolved in THF (282 g), and used. After degassing the membrane pump, AIBN (0.5 g: 3 mmol) was added and then degassed. Subsequently, the reaction was carried out at 60 ° C for 6 hours to obtain a polymer solution of methyl acrylate. The polymer solution was added dropwise to methanol (2000 ml), and the resulting precipitate was filtered. This precipitate was washed with methanol and dried under reduced pressure to give a methyl acrylate polymer powder P15. <Synthesis Example 16: Methacrylic acid polymer> MA-1 (21 g: 40 mmol) and MA-5 (6 g: 60 mmol) were dissolved in THF (154 g), and degassed using a membrane pump, and then added. After AIBN (0.5 g: 3 mmol), it was degassed again. Subsequently, the reaction was carried out at 60 ° C for 6 hours to obtain a polymer solution of methyl acrylate. The polymer solution was added dropwise to methanol (2000 ml), and the resulting precipitate was filtered. This precipitate was washed with methanol and dried under reduced pressure to give a methyl acrylate polymer powder P16. According to the conditions shown in Table 1, Synthesis Example 17 was also obtained in the same manner as in Synthesis Example 16 to obtain a methyl acrylate polymer powder P17. <Synthesis Example 18: Methacrylic acid polymer> MA-3 (46 g: 80 mmol) and MA-5 (6 g: 20 mmol) were dissolved in THF (297 g), and degassed using a diaphragm pump, and then added. After AIBN (0.5 g: 3 mmol), it was degassed again. Subsequently, the reaction was carried out at 60 ° C for 6 hours to obtain a polymer solution of methyl acrylate. The polymer solution was added dropwise to methanol (2000 ml), and the resulting precipitate was filtered. This precipitate was washed with methanol and dried under reduced pressure to give a methyl acrylate polymer powder P18. <Synthesis Example 19: Methacrylic acid polymer> MA-2 (44 g: 100 mmol) was dissolved in THF (251 g), and degassed using a membrane pump, and then AIBN (0.5 g: 3 mmol) was added thereto. Perform degassing again. Subsequently, the reaction was carried out at 60 ° C for 6 hours to obtain a polymer solution of methyl acrylate. The polymer solution was added dropwise to methanol (2000 ml), and the resulting precipitate was filtered. This precipitate was washed with methanol and dried under reduced pressure to give a methyl acrylate polymer powder P19. According to the conditions shown in Table 1, in the synthesis example 20, methyl acrylate polymer powder P21 was obtained by the same method except that MA-2 of Synthesis Example 19 was replaced with MA-3. <Preparation of liquid crystal alignment agent: A1> In the methyl acrylate polymer powder P1 (0.6 g) obtained in the above Synthesis Example 1, NMP (11.4 g) was added, and the mixture was stirred at room temperature for 1 hour to dissolve it. . To the solution, BCS (3.0 g) was added to obtain a polymer solution (A1) having a solid concentration of 4.0% by weight. The polymer solution can be used as a liquid crystal alignment agent for forming a liquid crystal alignment film. The liquid crystal alignment agents A2, A3, A5, A11, A12, A16 to A20, and related contents were all prepared in the same manner as in the liquid crystal alignment agent A1 according to the conditions shown in Table 1. <Preparation of Liquid Crystal Alignment Agent: B1> To a methyl acrylate polymer powder P16 (0.6 g) obtained in the above Synthesis Example 1, NMP (11.4 g) was added, and the mixture was stirred at room temperature for 1 hour. Let it dissolve. To the solution, BCS (3.0 g) was added to obtain a polymer solution (B1) having a solid concentration of 4.0% by weight. The polymer solution can be used as a liquid crystal alignment agent for forming a liquid crystal alignment film. According to the conditions shown in Table 1, the liquid crystal alignment agents B2, B4, and B5 were also prepared in the same manner as the liquid crystal alignment agent B1 to obtain a liquid crystal alignment agent. <Preparation of Liquid Crystal Alignment Agent: A4> To a methyl acrylate polymer powder P3 (0.6 g) obtained in the above Synthesis Example 1, NMP (9.9 g) was added, and the mixture was stirred at room temperature for 1 hour. Let it dissolve. To the solution, BCA (4.5 g) was added to obtain a polymer solution (A4) having a solid concentration of 4.0% by weight. The polymer solution can be used as a liquid crystal alignment agent for forming a liquid crystal alignment film. According to the conditions shown in Table 1, the liquid crystal alignment agents A6, A7, and A13 were also prepared in the same manner as the liquid crystal alignment agent A4 to obtain a liquid crystal alignment agent. <Preparation of Liquid Crystal Alignment Agent: A8> To the methyl acrylate polymer powder P5 (0.6 g) obtained in the above Synthesis Example 1, CHN (11.4 g) was added thereto, and the temperature was raised at a temperature of 50 ° C. Stir for 1 hour to dissolve. To the solution, PGME (3.0 g) was added to obtain a polymer solution (A8) having a solid concentration of 4.0% by weight. The polymer solution can be used as a liquid crystal alignment agent for forming a liquid crystal alignment film. According to the conditions shown in Table 1, the liquid crystal alignment agent A9 was prepared by the same method except that the PGME of the liquid crystal alignment agent A8 was replaced with PGMEA. <Preparation of Liquid Crystal Alignment Agent: A10> In the methyl acrylate polymer powder P5 (0.6 g) obtained in the above Synthesis Example 1, CHN (15.0 g) was added thereto, and the temperature was raised at a temperature of 50 ° C. After stirring for 1 hour, it was dissolved to obtain a polymer solution (A10) having a solid concentration of 4.0% by weight. The polymer solution can be used as a liquid crystal alignment agent for forming a liquid crystal alignment film. According to the conditions shown in Table 1, the liquid crystal alignment agents A15 and A21 were also prepared in the same manner as the liquid crystal alignment agent A10 to obtain a liquid crystal alignment agent. <Preparation of Liquid Crystal Alignment Agent: A14> To a methyl acrylate polymer powder P9 (0.6 g) obtained in the above Synthesis Example 1, NMP (5.4 g) was added, and the mixture was stirred at room temperature for 1 hour. Let it dissolve. To the solution, GBL (4.5 g) and BCA (4.5 g) were added to prepare a polymer solution (A14) having a solid concentration of 4.0% by weight. The polymer solution can be used as a liquid crystal alignment agent for forming a liquid crystal alignment film. According to the conditions shown in Table 1, in the liquid crystal alignment agent B3, the liquid crystal alignment agent was obtained by the same method except that the BCA of the liquid crystal alignment agent A14 was replaced with BCS. [0158] [Preparation of In-plane Order Parameter Measurement Substrate] Using the liquid crystal alignment agent obtained above, the substrate for photoreaction rate measurement was produced in the following order. The substrate was a quartz substrate having a size of 40 mm × 40 mm and a thickness of 1.0 mm. The liquid crystal alignment agent A1 was filtered using a filter having a filter aperture of 1.0 μm, and then spin-coated on a quartz substrate, and dried on a hot plate at 70 ° C for 90 seconds to form a liquid crystal alignment film having a film thickness of 100 nm. [0160] (Example 1) After 313 nm of ultraviolet light was irradiated to a coating film surface by a polarizing plate to 80 mJ/cm 2 , it was heated on a hot plate at 120 ° C for 20 minutes to obtain a substrate on which a liquid crystal alignment film was completed. According to the conditions shown in Table 2, in Examples 2 to 21 and Comparative Examples 1 to 5, the substrate for in-plane indexing measurement was obtained in the same manner as in Example 1. <Measurement of In-Plane Alignment> Using the substrate with the liquid crystal alignment film prepared as described above, the absorbance of the polarized light used for measuring the optical anisotropy of the liquid crystal alignment film is calculated according to the following formula. In-plane alignment (S). The calculated value is the highest value within the range of exposures used. Further, the measurement of the absorbance was measured using an ultraviolet visible near-infrared ray spectrophotometer U-3100PC manufactured by Shimadzu Corporation. [0163] Wherein A para represents an absorbance in a direction parallel to the direction in which the polarized light UV is irradiated, and A per represents an absorbance in a direction perpendicular to a direction in which the polarized light UV is irradiated. When A large indicates the absorbance in the parallel direction and the vertical direction, the absorbance of the larger value and A small indicate the absorbance of the smaller value when comparing the absorbance in the parallel direction and the vertical direction. The absolute value of the in-plane orientation is closer to 1, indicating that the same alignment state can be achieved. [0165] As shown in Table 2, when the liquid crystal alignment agents of Examples 1 to 21 were used, the alignment degree in the direction parallel to the direction of any of the polarized lights was higher. It is presumed that the amount of the photosensitive group introduced is lower based on the reason that the parallel direction is not formed with the comparative examples 1 and 2, and the alignment resulting from the isomerization reaction is more superior than the dimerization reaction. The result. <Production of Liquid Crystal Lattice> The liquid crystal alignment agent (A1) was filtered through a 0.45 μm filter, and then spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. After a second, a liquid crystal alignment film having a film thickness of 100 nm was formed. (Example 15) The coating film surface was inclined at 40°, the 313 nm ultraviolet light was irradiated to the substrate at 80 mJ/cm 2 through a polarizing plate, and then heated on a hot plate at 140° C. for 20 minutes to obtain a liquid crystal alignment. The substrate of the film. Two sheets of the substrate with the liquid crystal alignment film were prepared, and a spacer of 4 μm was placed on the liquid crystal alignment film surface of the one substrate, and then the two substrates were combined in such a manner that the rubbing directions were parallel, and the liquid crystal injection port was left. Sealed around, a cell lattice with a cell gap (CellGap) of 4 μm was produced. After the liquid crystal MLC-2003 (manufactured by Mok Co., Ltd.) was injected into the empty lattice using a vacuum injection method, the injection port was sealed to obtain an antiparallel liquid crystal lattice. After heating at a temperature of 120 ° C for 30 minutes, the pretilt angle of the liquid crystal lattice was measured. According to the conditions shown in Table 3, the liquid crystal lattices were produced by the same methods as in Example 1 using Examples 16 to 42 and Comparative Examples 6 to 10, and the pretilt angle was measured. [0170] As shown in Table 3, the liquid crystal pretilt angle suitable for the twisted nematic mode can be obtained regardless of the use of any of the liquid crystal alignment agents of Examples 22 to 42. The reason why the pretilt angles were not generated in Comparative Examples 6 and 7 was supposed to be caused by the fact that no inclination angle occurred in one axial direction. In Comparative Example 9, although a good tilt angle was produced, the obtained liquid crystal alignment film was in a white turbid state. In Comparative Example 10, the inclination angle suitable for the twisted nematic mode was not found. Using the liquid crystal alignment agent A10, the substrate for in-plane orientation measurement was obtained in the same manner as in Example 1 under the conditions described in Table 4. Subsequently, the orientation and the pretilt angle were measured based on the above examples. As a result, as shown in Table 4, it was confirmed that the pretilt angle can be adjusted depending on the amount of the polarized ultraviolet rays or the present sintering conditions. [0173] <Preparation of Liquid Crystal Alignment Agent: A22> In the methyl acrylate polymer powder P15 (0.6 g) obtained in the above Synthesis Example 15, NMP (8.4 g) was added, and the mixture was stirred at room temperature for 1 hour. It dissolves. To the solution, BCS (6.0 g) was added to obtain a polymer solution (A22) having a solid concentration of 4.0% by weight. The polymer solution can be used as a liquid crystal alignment agent for forming a liquid crystal alignment film. Using the alignment agent A22, the measurement of the degree of alignment and the pretilt angle was carried out in the same manner. The results are shown in Table 5, showing an optimum pretilt angle of 9.9° in the OCB mode. [0176]

Claims (8)

一種聚合物組成物,其為含有:   由含有(A)下述單體(A-1)及單體(A-2)的單體混合物所得的共聚物;   單體(A-1):具有1個桂皮醯基部位,與2~4個不構成桂皮醯基部位的苯環,與聚合性基之單體;   單體(A-2):具有1個桂皮醯基部位,與1個不構成桂皮醯基部位的苯環,與聚合性基之單體。   (上述桂皮醯基部位與苯環為可具有取代基者)。A polymer composition comprising: a copolymer obtained from a monomer mixture containing (A) the following monomer (A-1) and monomer (A-2); monomer (A-1): having 1 cassia sulphate base, and 2 to 4 benzene rings which do not constitute cinnabar sulfhydryl sites, and monomers which are polymerizable; monomer (A-2): has 1 cassia base, and 1 does not A monomer which forms a benzene ring of a cinnabar base and a polymerizable group. (The above-mentioned gingival base portion and the benzene ring are those which may have a substituent). 如請求項1之聚合物組成物,其中,上述單體(A-1)及單體(A-2)之聚合性基為丙烯酸基或甲基丙烯酸基。The polymer composition of claim 1, wherein the polymerizable group of the above monomer (A-1) and monomer (A-2) is an acrylic group or a methacryl group. 如請求項1之聚合物組成物,其中,上述單體(A-1)及單體(A-2)為,由下述式(1)所表示之基及下述式(2)所表示之基所成之群所選出的任一種的基鍵結聚合性基而得之單體;式中,A、B、D各自獨立表示單鍵、-O-、-CH2 -、 -COO-、-OCO-、-CONH-或-NH-CO-;   S為碳數1~12之伸烷基,其所鍵結之氫原子各自獨立,且可被鹵素基所取代;   T為單鍵或碳數1~12之伸烷基,該些所鍵結之氫原子可被鹵素基所取代;   T表示單鍵時,B亦表示單鍵;   Y1 為2價之苯環;   P1 、Q1 及Q2 ,各自獨立為由苯環及碳數5~8之脂環式烴環所成之群所選出的基;   R1 為氫原子、-CN、鹵素基、碳數1~5之烷基、(碳數1~5之烷基)羰基、碳數3~7之環烷基或碳數1~5之烷氧基;   Y1 、P1 、Q1 及Q2 中,苯環所鍵結的氫原子各自獨立且可-CN、鹵素基、碳數1~5之烷基、(碳數1~5之烷基)羰基,或碳數1~5之烷氧基所取代;   X1 及X2 ,各自獨立表示單鍵、-O-、-COO-或-OCO-;   n1及n2各自獨立為0、1或2,   X1 之數為2時,X1 相互間可為相同或相異皆可,X2 之數為2時,X2 相互間可為相同或相異皆可;   Q1 之數為2時,Q1 相互間可為相同或相異皆可,Q2 之數為2時,Q2 相互間可為相同或相異皆可;   單體(A-1)中,Y1 以外的苯環之數目之合計為2~4;   單體(A-2)中,Y1 以外的苯環之數目之合計為1;   虛線表示與聚合性基之鍵結鍵。The polymer composition of claim 1, wherein the monomer (A-1) and the monomer (A-2) are represented by the group represented by the following formula (1) and represented by the following formula (2) a monomer derived from a group of selected radical groups selected from the group; In the formula, A, B and D each independently represent a single bond, -O-, -CH 2 -, -COO-, -OCO-, -CONH- or -NH-CO-; S is a carbon number of 1 to 12 An alkyl group in which the hydrogen atoms to be bonded are each independently and may be substituted by a halogen group; T is a single bond or a C1-C12 alkyl group, and the bonded hydrogen atoms may be substituted by a halogen group. When T represents a single bond, B also represents a single bond; Y 1 is a divalent benzene ring; P 1 , Q 1 and Q 2 are each independently composed of a benzene ring and an alicyclic hydrocarbon ring having 5 to 8 carbon atoms; a group selected from the group; R 1 is a hydrogen atom, -CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, a (carbonyl group having 1 to 5 carbon atoms) carbonyl group, a cycloalkyl group having 3 to 7 carbon atoms Or an alkoxy group having 1 to 5 carbon atoms; in Y 1 , P 1 , Q 1 and Q 2 , the hydrogen atoms bonded to the benzene ring are each independently and may be -CN, a halogen group or an alkyl group having 1 to 5 carbon atoms. , (C1-C5 alkyl) carbonyl, or a C 1 to 5 alkoxy group; X 1 and X 2 each independently represent a single bond, -O-, -COO- or -OCO-; n1 and n2 are each independently 0, 1 or 2, X 1 is the number 2, X 1 may be the same as each other or different Jieke, X 2 is the number 2, X 2 mutually Jieke may be the same or different; Q 1 is the number 2, Q 1 may be mutually the same or different Jieke, Q 2 is the number 2, Q 2 can serve as each other may be the same or different In the monomer (A-1), the total number of benzene rings other than Y 1 is 2 to 4; in the monomer (A-2), the total number of benzene rings other than Y 1 is 1; The bonding bond of the polymerizable group. 一種具有賦予配向控制能力的液晶配向膜之基板的製造方法,其特徵為具有:   [I] 將請求項1~3中任一項之聚合物組成物塗佈於具有液晶驅動用之電極的基板上,而形成塗膜之步驟;   [II] 由斜面方向將偏光的紫外線照射[I]所得之塗膜之步驟;及   [III] 對[II]所得之塗膜進行加熱之步驟; 而製得者。A method for producing a substrate having a liquid crystal alignment film that imparts an alignment control function, comprising: [I] applying the polymer composition according to any one of claims 1 to 3 to a substrate having an electrode for driving a liquid crystal a step of forming a coating film; [II] a step of irradiating the polarized ultraviolet light to the coating film obtained by the inclined surface [I]; and [III] a step of heating the coating film obtained in [II]; By. 一種基板,其特徵為,具有依請求項4之方法所製得之液晶配向膜。A substrate characterized by having a liquid crystal alignment film produced by the method of claim 4. 一種扭轉向列型液晶顯示元件,其特徵為,具有請求項5之基板。A twisted nematic liquid crystal display device characterized by having the substrate of claim 5. 一種具有扭轉向列型液晶顯示元件之液晶顯示元件的製造方法,其特徵為具有:   準備請求項5之基板(第1基板)的步驟;   [I’]將請求項1~4之任一項之聚合物組成物塗佈於第2基板上,而形成塗膜之步驟;   [II’]使用偏光之紫外線照射[I’]所得之塗膜的步驟;及   [III’]對[II’]所得之塗膜進行加熱之步驟; 而製得具有賦予配向控制能力的液晶配向膜的第2基板之步驟;及   [IV]介由液晶前述第1及第2基板的液晶配向膜成相對狀態,以紫外線曝光方向為互相垂直交叉之方式,使前述第1及第2基板對向配置,而製得液晶顯示元件之步驟; 而製得者。A method of manufacturing a liquid crystal display device having a twisted nematic liquid crystal display device, comprising: a step of preparing a substrate (first substrate) of the request item 5; [I'] any one of claims 1 to 4 a step of coating the polymer composition on the second substrate to form a coating film; [II'] a step of irradiating the coating film obtained by [I'] with polarized ultraviolet rays; and [III'] pair [II'] a step of heating the obtained coating film; a step of obtaining a second substrate having a liquid crystal alignment film imparting alignment control capability; and [IV] a liquid crystal alignment film of the first and second substrates via the liquid crystal in a relative state, The step of preparing the liquid crystal display element by arranging the first and second substrates in a direction in which the ultraviolet light exposure directions are perpendicular to each other, and producing the liquid crystal display element. 一種扭轉向列型液晶顯示元件,其特徵為,依請求項7之方法所製得者。A twisted nematic liquid crystal display element characterized by the method of claim 7.
TW106135026A 2016-10-14 2017-10-13 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element TWI760375B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-202992 2016-10-14
JP2016202992 2016-10-14

Publications (2)

Publication Number Publication Date
TW201829494A true TW201829494A (en) 2018-08-16
TWI760375B TWI760375B (en) 2022-04-11

Family

ID=61905649

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106135026A TWI760375B (en) 2016-10-14 2017-10-13 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP6956948B2 (en)
KR (1) KR102466047B1 (en)
CN (1) CN110072946B (en)
TW (1) TWI760375B (en)
WO (1) WO2018070507A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7517328B2 (en) 2019-03-29 2024-07-17 日産化学株式会社 Polymer composition and single-layer retardation material
CN114746804A (en) * 2019-11-26 2022-07-12 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2780183B2 (en) 1989-02-27 1998-07-30 セイコーエプソン株式会社 Alignment film and liquid crystal device
JP2893671B2 (en) 1991-03-11 1999-05-24 ジェイエスアール株式会社 Liquid crystal alignment agent
JP3097702B2 (en) 1991-08-13 2000-10-10 日産化学工業株式会社 New liquid crystal alignment agent
DE4232394A1 (en) * 1992-09-26 1994-03-31 Basf Ag Copolymers with non-linear optical properties and their use
CA2255935C (en) * 1996-05-22 2004-04-20 Bayer Aktiengesellschaft Photo-addressable substrates and photo-addressable side-group polymers with highly inducible double refraction
JP3840743B2 (en) 1997-06-03 2006-11-01 Jsr株式会社 Liquid crystal alignment agent
JP2000212310A (en) 1999-01-19 2000-08-02 Hayashi Telempu Co Ltd Oriented film, its production and liquid crystal display device
JP4900632B2 (en) * 2000-08-30 2012-03-21 Dic株式会社 Photo-alignment film material, photo-alignment film and method for producing the same
KR100720454B1 (en) * 2005-06-14 2007-05-22 엘지.필립스 엘시디 주식회사 Liquid Crystal Display Device, and method of fabricating the same
JP2014034631A (en) * 2012-08-08 2014-02-24 Jnc Corp Photo-aligning retardation agent, and retardation film, optical film and display element obtained from the same
JP5930237B2 (en) * 2012-10-18 2016-06-08 日産化学工業株式会社 Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP5978938B2 (en) * 2012-11-13 2016-08-24 Jnc株式会社 Polymerizable compound, polymerizable composition, and liquid crystal display device
JP2014206715A (en) * 2013-03-19 2014-10-30 日産化学工業株式会社 Method for manufacturing substrate having liquid crystal aligning film for in-plane switching liquid crystal display element
KR102254609B1 (en) * 2013-05-13 2021-05-20 닛산 가가쿠 가부시키가이샤 Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
KR102244413B1 (en) * 2013-06-05 2021-04-23 닛산 가가쿠 가부시키가이샤 Method for producing substrate having liquid crystal alignment film for in-plane switching liquid crystal display elements
JP2015129210A (en) * 2014-01-06 2015-07-16 大阪有機化学工業株式会社 Block carboxylic acid type photoalignment material
JP6358400B2 (en) * 2015-10-16 2018-07-18 Dic株式会社 Polymer for photo-alignment film, polymer solution, photo-alignment film, optical anisotropic body, and liquid crystal display element

Also Published As

Publication number Publication date
TWI760375B (en) 2022-04-11
CN110072946A (en) 2019-07-30
JP6956948B2 (en) 2021-11-02
CN110072946B (en) 2021-10-15
KR20190070331A (en) 2019-06-20
KR102466047B1 (en) 2022-11-10
JPWO2018070507A1 (en) 2019-08-08
WO2018070507A1 (en) 2018-04-19

Similar Documents

Publication Publication Date Title
TWI725981B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
TWI620757B (en) Manufacturing method of transverse electric field driving type liquid crystal display element
TWI678391B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
CN105378033B (en) Method for manufacturing substrate having liquid crystal alignment film for in-plane switching liquid crystal display element
TW201809878A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
TWI619994B (en) Manufacturing method of substrate with liquid crystal alignment film for lateral electric field driving type liquid crystal display element
WO2016113931A1 (en) Liquid crystal alignment agent using non-photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
TWI689543B (en) Liquid crystal alignment agent and liquid crystal alignment film using photoreactive hydrogen-bonding polymer liquid crystal
TW201741398A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TWI644931B (en) Manufacturing method of substrate with liquid crystal alignment film for lateral electric field driving type liquid crystal display element
TWI707024B (en) Polymer composition and liquid crystal alignment film for lateral electric field driven liquid crystal display element
TW201829494A (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
TWI695847B (en) Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display element
TWI808141B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
CN105431770B (en) Method for manufacturing substrate having liquid crystal alignment film for in-plane switching liquid crystal display element
WO2014185413A1 (en) Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element