TW201827328A - Micromechanical component and production method for a micromechanical component - Google Patents

Micromechanical component and production method for a micromechanical component Download PDF

Info

Publication number
TW201827328A
TW201827328A TW106137378A TW106137378A TW201827328A TW 201827328 A TW201827328 A TW 201827328A TW 106137378 A TW106137378 A TW 106137378A TW 106137378 A TW106137378 A TW 106137378A TW 201827328 A TW201827328 A TW 201827328A
Authority
TW
Taiwan
Prior art keywords
actuator
spring
carrier
piezoelectric
repositionable
Prior art date
Application number
TW106137378A
Other languages
Chinese (zh)
Inventor
丹尼爾 邁爾
約克 慕裘
米爾科 哈塔斯
菲利浦 擴普曼
史堤方 馬克
托斯頓 巴斯林克
漢爾姆 葛魯札克
Original Assignee
德商羅伯特博斯奇股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商羅伯特博斯奇股份有限公司 filed Critical 德商羅伯特博斯奇股份有限公司
Publication of TW201827328A publication Critical patent/TW201827328A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0858Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by piezoelectric means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end
    • H10N30/2044Cantilevers, i.e. having one fixed end having multiple segments mechanically connected in series, e.g. zig-zag type

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Micromachines (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

The invention relates to a micromechanical component having a repositionable part (12) which is held to be repositionable about at least one axis of rotation (18) on a holder (10) between the first spring (16a) and a second spring (16b), at least one first piezoelectric actuator (14a) which is formed on at least one first actuator carrier (20a) that is directly or indirectly bound on the first spring (16a); and at least one second piezoelectric actuator (14b) which is formed on at least one second actuator carrier (20b) that is directly or indirectly bound on the second spring (16b), wherein the repositionable part (12) is at least partly structured out of a substrate, and at least the first spring (16a), the at least one first actuator carrier (20a), the second spring (16b) and the at least one second actuator carrier (20b) are structured out of the functional layer. Likewise, the invention relates to a production method for a micromechanical component.

Description

微機械組件及微機械組件之製造方法  Micromechanical component and manufacturing method of micromechanical component  

本發明係關於微機械組件。同樣,本發明係關於微機械組件之製造方法。 This invention relates to micromechanical components. Also, the present invention relates to a method of manufacturing a micromechanical component.

US 8 508 826 B2已描述微鏡裝置,其使用壓電致動器以用於圍繞至少一個旋轉軸重定位可重定位鏡面板。在一個具體實例中,可重定位鏡面板固持於固持器上於第一彈簧與第二彈簧之間,其中該具體實例另外具有結合至第一彈簧的兩個致動器載體及結合至第二彈簧的兩個另外的致動器載體。形成於四個致動器載體上之壓電致動器應能夠使可重定位鏡面板圍繞旋轉軸進行重定位運動。由單一半導體層結構化可重定位鏡面板、第一彈簧、第二彈簧及總共四個致動器載體。 No. 8 508 826 B2 has described a micromirror device using a piezoelectric actuator for repositioning a repositionable mirror panel around at least one axis of rotation. In one embodiment, the repositionable mirror panel is retained on the holder between the first spring and the second spring, wherein the specific example additionally has two actuator carriers coupled to the first spring and coupled to the second Two additional actuator carriers of the spring. Piezoelectric actuators formed on four actuator carriers should be capable of repositioning the repositionable mirror panel about the axis of rotation. The repositionable mirror panel, the first spring, the second spring, and a total of four actuator carriers are structured from a single semiconductor layer.

本發明發展具有如申請專利範圍第1項之特徵的微機械組件及具有如申請專利範圍第8項之特徵的微機械組件之製造方法。 The present invention develops a micromechanical component having the features of claim 1 and a method of manufacturing a micromechanical component having the features of claim 8 of the patent application.

本發明的優勢 Advantages of the invention

本發明創建的微機械組件可以相對簡單的方式製造但具有可重定位零件的第一層厚度及第一彈簧、至少一個第一致動器載體、第二彈簧及至少一個第二致動器載體的第二層厚度,該第二層厚度顯著小於該第一層厚度。可重定位零件因此具有相對厚的具體實例使得在其圍繞旋轉軸的重定位移動期 間不必/幾乎不必擔心可重定位零件的(動態)變形。相比之下,第一彈簧、至少一個第一致動器載體、第二彈簧及至少一個第二致動器載體具有相對薄的具體實例使得其具有低剛性(或高可撓性/可變形性)。此外,可有利地使用雙金屬效應,其由至少一個第一致動器載體及至少一個第二致動器載體的相對薄的具體實例放大。 The micromechanical assembly created by the present invention can be fabricated in a relatively simple manner but having a first layer thickness of the repositionable part and a first spring, at least one first actuator carrier, a second spring, and at least one second actuator carrier The thickness of the second layer, the thickness of the second layer is significantly less than the thickness of the first layer. The repositionable part thus has a relatively thick concrete example such that it is not necessary/almost unnecessary to worry about (dynamic) deformation of the relocatable part during its repositioning movement around the axis of rotation. In contrast, the first spring, the at least one first actuator carrier, the second spring, and the at least one second actuator carrier have relatively thin specific examples such that they have low rigidity (or high flexibility/deformability) Sex). Furthermore, a bimetallic effect can be advantageously used which is amplified by a relatively thin specific example of at least one first actuator carrier and at least one second actuator carrier.

本發明亦改良作為微機械組件之驅動器的壓電致動器的可用性。壓電致動器的突出特徵為同時以高致動器力進行相對短的行進。因此,每一週期可傳送大量能量(儘管路徑短)。此外,壓電致動器需要相對小的功率,且因此可容易地確保配備有該等壓電致動器的微機械組件的電源供應。因此,本發明有助於改良壓電致動器的使用,該等壓電致動器作為用於使可重定位零件進行所要之重定位運動的理想的驅動器,詳言之使該可重定位零件圍繞旋轉軸進行高頻共振重定位運動。 The invention also improves the usability of piezoelectric actuators as drivers for micromechanical components. A prominent feature of piezoelectric actuators is the relatively short travel with high actuator force at the same time. Therefore, a large amount of energy can be transmitted per cycle (although the path is short). Furthermore, piezoelectric actuators require relatively little power, and thus power supply of micromechanical components equipped with such piezoelectric actuators can be easily ensured. Accordingly, the present invention contributes to an improved use of piezoelectric actuators as an ideal driver for the desired repositioning motion of a repositionable component, in particular for relocatable The part performs a high frequency resonance repositioning motion around the axis of rotation.

在微機械組件的有利具體實例中,至少一個第一額外塊狀物結合於至少一個第一致動器載體上且/或至少一個第二額外塊狀物結合於至少一個第二致動器載體上。藉由將至少一個第一額外塊狀物結合於至少一個第一致動器載體上且/或將至少一個第二額外塊狀物結合於至少一個第二致動器載體上,可增加用於觸發可重定位零件圍繞旋轉軸的所要之重定位移動的傳送至可重定位零件上的脈衝傳送。詳言之,可由基板結構化至少一個第一額外塊狀物及/或至少一個第二額外塊狀物。因而可易於製造且可有利地使用此處描述之微機械組件之具體實例。 In an advantageous embodiment of the micromechanical component, at least one first additional mass is bonded to the at least one first actuator carrier and/or the at least one second additional mass is coupled to the at least one second actuator carrier on. By incorporating at least one first additional mass onto at least one first actuator carrier and/or bonding at least one second additional mass to at least one second actuator carrier, Triggering of the transfer of the repositionable part around the desired repositioning movement of the rotating shaft to the repositionable part. In particular, at least one first additional mass and/or at least one second additional mass may be structured from the substrate. Thus, it is easy to manufacture and the specific examples of the micromechanical components described herein can be advantageously used.

在微機械組件之另一有利具體實例中,藉助於至少一個致動器耦接彈簧將至少一個第一致動器載體連接至至少一個第二致動器載體。藉由添加至少一個致動器耦接彈簧,可更可靠地維持彼此連接之致動器載體的同相振動及反相振動。較佳地,由功能層結構化至少一個致動器耦接彈簧。因此可易於 製造至少一個可有利地使用的致動器耦接彈簧。 In another advantageous embodiment of the micromechanical assembly, the at least one first actuator carrier is coupled to the at least one second actuator carrier by means of at least one actuator coupling spring. In-phase vibration and anti-phase vibration of the actuator carriers connected to each other can be more reliably maintained by adding at least one actuator coupling spring. Preferably, at least one actuator is coupled to the spring by a functional layer. It is thus easy to manufacture at least one actuator coupling spring that can be advantageously used.

藉助於實例,至少一個致動器耦接彈簧可為U形的、O形的、曲折形的及/或腹板形的(web-shaped)。因此,可容易地由其結構化的彈簧類型可用於至少一個致動器耦接彈簧。 By way of example, the at least one actuator coupling spring can be U-shaped, O-shaped, meander-shaped and/or web-shaped. Thus, a spring type that can be easily structured by it can be used for at least one actuator coupling spring.

作為在微機械組件上形成至少一個致動器耦接彈簧的替代例或作為其補充,亦可藉助於至少一個固持器耦接彈簧將至少一個第一致動器載體及/或至少一個第二致動器載體連接至固持器。藉助於至少一個固持器耦接彈簧,有可能限制至少一個第一致動器載體及/或至少一個第二致動器載體的偏轉,使得摩擦力(其必須被克服以用於至少一個第一致動器載體及/或至少一個第二致動器載體之偏轉)損失的能量較少。可由功能層結構化至少一個固持器耦接彈簧。因此,亦可利用相對少的工作支出形成至少一個固持器耦接彈簧。 As an alternative or in addition to forming at least one actuator coupling spring on the micromechanical assembly, at least one first actuator carrier and/or at least one second may also be coupled by means of at least one holder coupling spring The actuator carrier is coupled to the holder. By means of the at least one holder coupling the spring, it is possible to limit the deflection of the at least one first actuator carrier and/or the at least one second actuator carrier such that the friction force (which must be overcome for at least one first The energy lost by the actuator carrier and/or the deflection of the at least one second actuator carrier is less. The at least one retainer can be coupled to the spring by a functional layer. Therefore, at least one holder coupling spring can also be formed with relatively little work expenditure.

同樣,可藉助於至少一個耦接彈簧將第一彈簧及/或第二彈簧連接至固持器。藉由形成至少一個耦接彈簧(代替至少一個致動器耦接彈簧及/或至少一個固持器耦接彈簧或作為其補充),亦有可能確保使用脈衝傳送以用於可重定位零件圍繞旋轉軸之所要重定位運動的目標激勵,該脈衝傳送由至少部分變形的第一壓電致動器及/或至少部分變形的第二壓電致動器觸發。可由功能層結構化至少一個耦接彈簧。因此,亦可以簡單的方式使至少一個耦接彈簧具有高可撓性。 Likewise, the first spring and/or the second spring can be coupled to the holder by means of at least one coupling spring. By forming at least one coupling spring (instead of or in addition to at least one actuator coupling spring and/or at least one holder coupling spring), it is also possible to ensure the use of pulse transmission for revolving parts around rotation The target excitation of the axis is to reposition the motion, the pulse transmission being triggered by the at least partially deformed first piezoelectric actuator and/or the at least partially deformed second piezoelectric actuator. At least one coupling spring can be structured by the functional layer. Therefore, the at least one coupling spring can also be made highly flexible in a simple manner.

較佳地,微機械組件為具有可重定位鏡面板作為可重定位零件的微鏡。然而,參考此事實:本發明的使用可能性不限於微鏡。 Preferably, the micromechanical component is a micromirror having a repositionable mirror panel as a repositionable part. However, reference is made to the fact that the use possibilities of the present invention are not limited to micromirrors.

亦藉由進行微機械組件的相對應的製造方法而實現上文中所描述的優勢。明確地參考此事實:可根據上文中所描述的微機械組件之具體實例而發展製造方法。 The advantages described above are also achieved by performing corresponding manufacturing methods for the micromechanical components. With explicit reference to this fact: The manufacturing method can be developed in accordance with the specific examples of the micromechanical components described above.

10‧‧‧固持器 10‧‧‧Retainer

12‧‧‧可重定位零件 12‧‧‧Relocatable parts

12a‧‧‧反射表面 12a‧‧‧Reflective surface

14a‧‧‧第一壓電致動器 14a‧‧‧First Piezoelectric Actuator

14b‧‧‧第二壓電致動器 14b‧‧‧Second Piezoelectric Actuator

16a‧‧‧第一彈簧 16a‧‧‧First spring

16b‧‧‧第二彈簧 16b‧‧‧Second spring

18‧‧‧旋轉軸 18‧‧‧Rotary axis

20a‧‧‧第一致動器載體 20a‧‧‧First actuator carrier

20b‧‧‧第二致動器載體 20b‧‧‧Second actuator carrier

22‧‧‧基板/載體層 22‧‧‧Substrate/carrier layer

24‧‧‧功能層 24‧‧‧ functional layer

26a‧‧‧第一額外塊狀物 26a‧‧‧First extra block

26b‧‧‧第二額外塊狀物 26b‧‧‧second extra block

28‧‧‧致動器耦接彈簧 28‧‧‧Actuator coupling spring

30a‧‧‧第一腹板元件 30a‧‧‧First web components

30b‧‧‧第二腹板元件 30b‧‧‧second web components

32‧‧‧內框架 32‧‧‧Internal framework

34a‧‧‧第一額外塊狀物 34a‧‧‧First extra block

34b‧‧‧第二額外塊狀物 34b‧‧‧second extra mass

36a‧‧‧第一塊狀物載體 36a‧‧‧first mass carrier

36b‧‧‧第二塊狀物載體 36b‧‧‧Second mass carrier

38‧‧‧固持器耦接彈簧 38‧‧‧Retainer coupling spring

40‧‧‧耦接彈簧 40‧‧‧coupled spring

42‧‧‧外框架或中間框架 42‧‧‧External or intermediate frame

下文中基於圖式解釋本發明之其他特徵及優勢。在圖式中:圖1a至圖1c展示微機械組件之第一具體實例的示意性說明;圖2a至圖2c展示微機械組件之第二具體實例的示意性說明;圖3a至圖3c展示微機械組件之第三具體實例的示意性說明;圖4a至圖4c展示微機械組件之第四具體實例的示意性說明;圖5a至圖5c展示微機械組件之第五具體實例的示意性說明;圖6a至圖6c展示微機械組件之第六具體實例的示意性說明;圖7a及圖7b展示微機械組件之第七具體實例的示意性說明;圖8a及圖8b展示微機械組件之第八具體實例的示意性說明;圖9a及圖9b展示微機械組件之第九具體實例的示意性說明;圖10a及圖10b展示微機械組件之第十具體實例的示意性說明;及圖11展示用於解釋微機械組件之製造方法的具體實例的流程圖。 Further features and advantages of the present invention are explained below based on the drawings. In the drawings: Figures 1a to 1c show schematic illustrations of a first specific example of a micromechanical component; Figures 2a to 2c show schematic illustrations of a second specific example of a micromechanical component; Figures 3a to 3c show micro Schematic illustration of a third specific example of a mechanical assembly; Figures 4a to 4c show schematic illustrations of a fourth specific example of a micromechanical assembly; Figures 5a to 5c show schematic illustrations of a fifth specific example of a micromechanical assembly; Figures 6a to 6c show schematic illustrations of a sixth embodiment of a micromechanical assembly; Figures 7a and 7b show schematic illustrations of a seventh embodiment of a micromechanical assembly; Figures 8a and 8b show an eighth embodiment of a micromechanical assembly Schematic illustration of a specific example; Figures 9a and 9b show schematic illustrations of a ninth embodiment of a micromechanical assembly; Figures 10a and 10b show a schematic illustration of a tenth embodiment of a micromechanical assembly; and Figure 11 shows A flow chart explaining a specific example of a manufacturing method of a micromechanical component.

圖1a至圖1c展示微機械組件之第一具體實例的示意性說明,其中圖1a展示平面圖,圖1b展示沿圖1a中之線A-A'的橫截面,且圖1c展示沿圖1a中之線B-B'的橫截面。 Figures 1a to 1c show schematic illustrations of a first specific example of a micromechanical assembly, wherein Figure 1a shows a plan view, Figure 1b shows a cross section along line AA' in Figure 1a, and Figure 1c shows along Figure 1a The cross section of the line B-B'.

藉助於圖1a至圖1c示意性再現之微機械組件包含固持器10、可重定位零件12、至少一個第一壓電致動器14a及至少一個第二壓電致動器14b。 The micromechanical assembly schematically reproduced by means of Figures 1a to 1c comprises a holder 10, a repositionable part 12, at least one first piezoelectric actuator 14a and at least one second piezoelectric actuator 14b.

可重定位零件12固持於固持器10上於第一彈簧16a與第二彈簧16b之間使得可相對於固持器10圍繞至少一個旋轉軸18重定位可重定位零件12。在此處所描述的具體實例中,以例示性的方式將微機械組件實施為具有可重定位鏡面板12(詳言之具有形成於可重定位零件12上之反射表面12a)作為可重定位零件12之微鏡。然而,參考此事實:替代可重定位鏡面板12,微機械組件亦可具有以不同方式實施的可重定位零件12。 The repositionable part 12 is retained on the holder 10 between the first spring 16a and the second spring 16b such that the repositionable part 12 can be repositioned relative to the holder 10 about the at least one axis of rotation 18. In the specific example described herein, the micromechanical assembly is implemented in an illustrative manner with a repositionable mirror panel 12 (specifically having a reflective surface 12a formed on the repositionable part 12) as a relocatable part 12 micromirrors. However, reference is made to the fact that instead of the repositionable mirror panel 12, the micromechanical assembly can also have repositionable parts 12 that are implemented in different ways.

至少一個第一壓電致動器14a形成於直接地或間接地結合於第一彈簧16a上之至少一個第一致動器載體20a上或形成於該第一致動器載體20a處(參見圖1c)。相應地,至少一個第二壓電致動器14b形成於直接地或間接地結合於第二彈簧16b上之至少一個第二致動器載體20b上或形成於該第二致動器載體20b處。至少一個第一壓電致動器14a及至少一個第二壓電致動器14b各自包含至少一個壓電層。較佳地,藉由至少一個壓電層至少部分(詳言之完全)覆蓋致動器載體20a及20b的經導向為遠離反射表面12a的一側。藉助於實例,至少一個壓電層可包含鋯鈦酸鉛及/或雙金屬層構造。然而,替代鋯鈦酸鉛及/或雙金屬層構造或作為其補充,至少一種其他壓電材料可存在於至少一個壓電層中,可藉助於電場修改該至少一種其他壓電材料之形式。此外,至少一個第一壓電致動器14a及至少一個第二壓電致動器14b各自經實施使得可將至少一個電壓施加至至少一個第一壓電致動器14a及至少一個第二壓電致動器14b之至少一個壓電層。然而,出於經改良之清晰性的原因,在圖1a至圖1c中已省去至少一個第一壓電致動器14a及至少一個第二壓電致動器14b的標繪電極(例如由鉑製成)。藉由將至少一個電壓施加至至少一個第一壓電致動器14a及/或至少一個第二壓電致動器14b之至少一個壓電層,至少一個第一壓電致動器14a及/或至少一個第二壓電致動器14b為至少部分可變形的,因此可藉由/藉由由至少部分變形之第一壓電致動器14a及/或至少部分變形之第二壓電致動器14b觸發的脈衝傳送使可重定位零件12圍繞旋轉軸18進行重定位運動。 At least one first piezoelectric actuator 14a is formed on or formed at least on the first actuator carrier 20a directly or indirectly on the first spring 16a (see figure) 1c). Correspondingly, at least one second piezoelectric actuator 14b is formed on or formed at least on the second actuator carrier 20b directly or indirectly on the second spring 16b. . The at least one first piezoelectric actuator 14a and the at least one second piezoelectric actuator 14b each comprise at least one piezoelectric layer. Preferably, the at least one piezoelectric layer is at least partially (in detail) completely covered by the sides of the actuator carriers 20a and 20b that are directed away from the reflective surface 12a. By way of example, the at least one piezoelectric layer may comprise a lead zirconate titanate and/or a bimetallic layer construction. However, instead of or in addition to the lead zirconate titanate and/or bimetallic layer, at least one other piezoelectric material may be present in at least one of the piezoelectric layers, the form of which may be modified by means of an electric field. Furthermore, the at least one first piezoelectric actuator 14a and the at least one second piezoelectric actuator 14b are each implemented such that at least one voltage can be applied to the at least one first piezoelectric actuator 14a and the at least one second pressure At least one piezoelectric layer of the electric actuator 14b. However, for reasons of improved clarity, the plotted electrodes of at least one first piezoelectric actuator 14a and at least one second piezoelectric actuator 14b have been omitted in FIGS. 1a to 1c (eg by Made of platinum). At least one first piezoelectric actuator 14a and / is applied by applying at least one voltage to at least one piezoelectric layer of at least one first piezoelectric actuator 14a and/or at least one second piezoelectric actuator 14b Or at least one second piezoelectric actuator 14b is at least partially deformable, and thus can be caused by/by at least partially deforming the first piezoelectric actuator 14a and/or at least partially deforming the second piezoelectric The pulsed transmission triggered by the actuator 14b causes the repositionable part 12 to reposition the motion about the axis of rotation 18.

因此,可藉由壓電致動器14a及14b之同相彎曲移動或反相彎曲移動使可重定位零件12圍繞旋轉軸18進行所要的重定位運動。詳言之,可藉助於使至少一個所施加電壓隨可重定位零件12相對於固持器10之重定位運動的固有頻率變化而使可重定位零件12圍繞旋轉軸18進行共振振動運動(作為重定位運動)。以此方式,有可能導致顯著大於壓電致動器14a及14b之彎曲移動的可重定 位零件12之偏轉。因此,藉由摩擦損失的功率相對少,當進行壓電致動器14a及14b的彎曲移動時克服該摩擦。 Therefore, the repositionable part 12 can be subjected to a desired repositioning motion about the rotating shaft 18 by the in-phase bending movement or the reverse bending movement of the piezoelectric actuators 14a and 14b. In particular, the repositionable part 12 can be resonantly vibrated about the axis of rotation 18 by virtue of a change in the natural frequency of the at least one applied voltage with respect to the repositioning motion of the repositionable part 12 relative to the holder 10. Positioning movement). In this way, it is possible to cause deflection of the repositionable part 12 which is significantly larger than the bending movement of the piezoelectric actuators 14a and 14b. Therefore, the power lost by the friction is relatively small, and the friction is overcome when the bending movement of the piezoelectric actuators 14a and 14b is performed.

此外,由圖1之微機械組件中的基板/載體層22至少部分地結構化可重定位零件12,而由功能層24結構化至少第一彈簧16a、至少一個第一致動器載體20a、第二彈簧16b及至少一個第二致動器載體20b。由基板22結構化可重定位零件12有利於可重定位零件12的具體實例,該具體實例具有第一層厚度d1(垂直於旋轉軸18而對準,有可能垂直於反射表面12a而對準),其顯著大於第一彈簧16a、第二彈簧16b、至少一個第一致動器載體20a及至少一個第二致動器載體20b之第二層厚度d2(垂直於旋轉軸18而對準,有可能垂直於反射表面12a而對準)。因此,在可重定位零件12圍繞旋轉軸18的重定位運動期間不必/幾乎不必擔心可重定位零件12、詳言之可能實施於可重定位零件12上之反射表面的彎曲/拱起。相比之下,至少一個第一壓電載體20a及至少一個第二壓電載體20b具有相對高的可撓性(或低剛性)且因此確保形成於其上或形成於其處之各別壓電致動器14a或14b的良好可變形性。第一彈簧16a及第二彈簧16b亦具有高可撓性(或低剛性)且因此可靠地滿足其彈簧功能。 Furthermore, the relocatable part 12 is at least partially structured by the substrate/carrier layer 22 in the micromechanical assembly of Figure 1, while the at least first spring 16a, at least one first actuator carrier 20a, is structured by the functional layer 24. The second spring 16b and the at least one second actuator carrier 20b. The structuring of the repositionable part 12 by the substrate 22 facilitates a specific example of the repositionable part 12 having a first layer thickness d1 (aligned perpendicular to the axis of rotation 18, possibly aligned perpendicular to the reflective surface 12a) ) which is significantly larger than the second layer thickness d2 of the first spring 16a, the second spring 16b, the at least one first actuator carrier 20a and the at least one second actuator carrier 20b (aligned perpendicular to the axis of rotation 18, It is possible to align perpendicular to the reflective surface 12a). Thus, during the repositioning motion of the repositionable part 12 about the axis of rotation 18, it is not necessary/almost unnecessary to worry about the bending/arching of the repositionable part 12, in particular the reflective surface that may be implemented on the repositionable part 12. In contrast, the at least one first piezoelectric carrier 20a and the at least one second piezoelectric carrier 20b have a relatively high flexibility (or low rigidity) and thus ensure respective pressures formed thereon or formed therein Good deformability of the electric actuator 14a or 14b. The first spring 16a and the second spring 16b also have high flexibility (or low rigidity) and thus reliably satisfy their spring function.

作為有利發展,在圖1a至圖1c之微機械組件中至少一個第一額外塊狀物26a結合於至少一個第一致動器載體20a上且至少一個第二額外塊狀物26b結合於至少一個第二致動器載體20b上。額外塊狀物26a及26b可引起分別經指派之致動器載體20a或20b的局部硬挺及/或(作為平衡)(僅)可重定位零件12圍繞旋轉軸18之重定位移動的目標激勵。額外塊狀物26a及26b有利地亦可影響致動器載體20a及20b的振幅,且因此最佳化輸入耦接力與可重定位零件12(圍繞旋轉軸18)之偏轉的比率。另外,額外塊狀物26a及26b對模式頻譜具有積極影響,即詳言之有利於模式頻譜的最佳化。此外,額外塊狀物26a及26b適用作對接結構。較佳地,同樣由基板22結構化額外塊狀物26a及26b。因此可藉助於相對少 的工作支出實現此處所描述之微機械組件的發展。 As an advantageous development, at least one first additional mass 26a in the micromechanical assembly of Figures 1a to 1c is bonded to at least one first actuator carrier 20a and at least one second additional mass 26b is bonded to at least one On the second actuator carrier 20b. The additional masses 26a and 26b may cause local stiffening of the assigned actuator carrier 20a or 20b, respectively, and/or (as a balance) (only) target excitation of the repositionable part 12 about the repositioning of the rotating shaft 18. The additional masses 26a and 26b can also advantageously affect the amplitude of the actuator carriers 20a and 20b, and thus optimize the ratio of the input coupling force to the deflection of the repositionable part 12 (around the axis of rotation 18). In addition, the extra blocks 26a and 26b have a positive impact on the mode spectrum, that is to say in detail to facilitate the optimization of the mode spectrum. In addition, the additional blocks 26a and 26b are suitable for use as a docking structure. Preferably, the additional blocks 26a and 26b are also structured from the substrate 22. The development of the micromechanical components described herein can thus be achieved with relatively little effort.

在圖1a至圖1c的具體實例中,第一彈簧16a及第二彈簧16b具有腹板形/桿形的具體實例且沿旋轉軸18延伸。因此,第一彈簧16a及第二彈簧16b可各別地被稱作扭轉彈簧。第一彈簧16a及第二彈簧16b在可重定位零件12上的錨定區域處於旋轉軸18上。 In the specific example of FIGS. 1a to 1c, the first spring 16a and the second spring 16b have a specific example of a web shape/rod shape and extend along the rotation shaft 18. Therefore, the first spring 16a and the second spring 16b may each be referred to as a torsion spring. The anchoring regions of the first spring 16a and the second spring 16b on the repositionable part 12 are on the rotating shaft 18.

彈簧16a及16b中之每一者具有一體式具體實例,其具有兩個所指派的第一致動器載體20a或第二致動器載體20b(其具有關於旋轉軸18的鏡面對稱具體實例)。致動器載體20a及20b具有扭接/成角的形式使得在致動器載體20a及20b中之每一者中,將分別沿第一縱向軸延伸的第一腹板形/桿形部分經由中間區段連接至分別沿垂直於第一縱向軸而對準之第二縱向軸延伸的第二腹板形/桿形部分。第一腹板形/桿形部分的第一縱向方向可平行於旋轉軸18而對準,而第二腹板形/桿形部分的第二縱向方向垂直於旋轉軸18而對準。在每一情況下,第一額外塊狀物26a或第二額外塊狀物26b結合於各別第一致動器載體20a或第二致動器載體20b之第一腹板形/桿形部分的第一末端(經導向為遠離中間區段)上,而相同的第一致動器載體20a或第二致動器載體20b之第二腹板形/桿形部分的第二末端(經導向為遠離中間區段)結合於相關聯的第一彈簧16a或第二彈簧16b上。 Each of the springs 16a and 16b has an integral specific example having two assigned first actuator carriers 20a or second actuator carriers 20b (having a mirror-symmetric specific example with respect to the axis of rotation 18) . The actuator carriers 20a and 20b have a twisted/angular form such that in each of the actuator carriers 20a and 20b, a first web/rod portion extending along the first longitudinal axis, respectively, The intermediate section is coupled to a second web/rod portion that extends along a second longitudinal axis that is aligned perpendicular to the first longitudinal axis, respectively. The first longitudinal direction of the first web/rod portion may be aligned parallel to the axis of rotation 18, while the second longitudinal direction of the second web/rod portion is aligned perpendicular to the axis of rotation 18. In each case, the first additional block 26a or the second additional block 26b is bonded to the first web/rod portion of the respective first actuator carrier 20a or second actuator carrier 20b. The first end (guided away from the intermediate section) and the second end of the second web/rod portion of the same first actuator carrier 20a or second actuator carrier 20b To be away from the intermediate section) is coupled to the associated first spring 16a or second spring 16b.

此外,在圖1a至圖1c之具體實例中,配置於旋轉軸18之同一側上的第一致動器載體20a及第二致動器載體20b分別經由一個致動器耦接彈簧28彼此連接。以例示性的方式,各別致動器耦接彈簧28錨定至致動器載體20a及20b之第一末端使得致動器載體20a及20b及兩個致動器耦接彈簧28形成包圍可重定位零件12的框架。各別致動器耦接彈簧28以例示性的方式為U形的。同樣可由功能層24結構化至少一個致動器耦接彈簧28。至少一個致動器耦接彈簧28較佳地具有小於致動器載體20a及20b之寬度(在影像平面中)的一半的寬度(在影像 平面中)。 Furthermore, in the embodiment of FIGS. 1a to 1c, the first actuator carrier 20a and the second actuator carrier 20b disposed on the same side of the rotating shaft 18 are connected to each other via an actuator coupling spring 28, respectively. . In an exemplary manner, the respective actuator coupling springs 28 are anchored to the first ends of the actuator carriers 20a and 20b such that the actuator carriers 20a and 20b and the two actuator coupling springs 28 form a surrounding weight Position the frame of the part 12. The respective actuator coupling springs 28 are U-shaped in an exemplary manner. The at least one actuator coupling spring 28 can likewise be structured by the functional layer 24. The at least one actuator coupling spring 28 preferably has a width (in the image plane) that is less than half the width (in the image plane) of the actuator carriers 20a and 20b.

圖2a至圖2c展示微機械組件之第二具體實例的示意性說明,其中圖2a展示平面圖,圖2b展示沿圖2a中之線A-A'的橫截面,且圖2c展示沿圖2a中之線B-B'的橫截面。 Figures 2a to 2c show schematic illustrations of a second specific example of a micromechanical assembly, wherein Figure 2a shows a plan view, Figure 2b shows a cross section along line AA' in Figure 2a, and Figure 2c shows along Figure 2a The cross section of the line B-B'.

藉助於圖2a至圖2c示意性再現的微機械組件與前述具體實例的不同之處僅在於可重定位零件12插入於內框架32中的第一腹板元件30a與第二腹板元件30b之間,該內框架32連接至固持器10於第一彈簧16a與第二彈簧16b之間。較佳地,腹板元件30a及30b垂直於旋轉軸18而延伸。因此,腹板元件30a及30b的錨定區域(及間接地彈簧16a及16b的錨定區域)在最大偏轉情況下或正交於旋轉軸18而處於可重定位零件12的區域上。 The micromechanical assembly schematically reproduced by means of Figures 2a to 2c differs from the previous specific example only in that the repositionable part 12 is inserted into the first web element 30a and the second web element 30b of the inner frame 32. The inner frame 32 is coupled to the holder 10 between the first spring 16a and the second spring 16b. Preferably, the web members 30a and 30b extend perpendicular to the axis of rotation 18. Thus, the anchoring regions of the web members 30a and 30b (and the anchoring regions of the indirect springs 16a and 16b) are in the region of maximum retractable or orthogonal to the axis of rotation 18 on the region of the repositionable part 12.

圖3a至圖3c展示微機械組件之第三具體實例的示意性說明,其中圖3a展示平面圖,圖3b展示沿圖3a中之線A-A'的橫截面,且圖3c展示沿圖3a中之線B-B'的橫截面。 Figures 3a to 3c show schematic illustrations of a third embodiment of a micromechanical assembly, wherein Figure 3a shows a plan view, Figure 3b shows a cross section along line AA' in Figure 3a, and Figure 3c shows along Figure 3a The cross section of the line B-B'.

在圖3a至圖3c的具體實例中,致動器耦接彈簧28錨定於所指派之致動器載體20a及20b之第一腹板形/桿形部分的經導向為遠離旋轉軸18的側表面上,其中致動器耦接彈簧28的錨定區域較佳地處於鄰近額外塊狀物26a或26b之經導向為遠離第一末端的側面上。關於圖3a至圖3c中之具體實例的其他性質,參考對前述具體實例的描述。 In the particular example of FIGS. 3a-3c, the actuator coupling spring 28 is anchored to the first web/rod portion of the assigned actuator carrier 20a and 20b that is oriented away from the axis of rotation 18. On the side surface, wherein the anchoring region of the actuator coupling spring 28 is preferably adjacent the side of the additional mass 26a or 26b that is directed away from the first end. With regard to other properties of the specific examples in Figures 3a to 3c, reference is made to the description of the foregoing specific examples.

圖4a至圖4c展示微機械組件之第四具體實例的示意性說明,其中圖4a展示平面圖,圖4b展示沿圖4a中之線A-A'的橫截面,且圖4c展示沿圖4a中之線B-B'的橫截面。 Figures 4a to 4c show schematic illustrations of a fourth specific example of a micromechanical assembly, wherein Figure 4a shows a plan view, Figure 4b shows a cross section along line AA' in Figure 4a, and Figure 4c shows along Figure 4a The cross section of the line B-B'.

藉助於圖4a至圖4c示意性再現的微機械組件與圖1a至圖1c中之具體實例的不同之處僅在於致動器耦接彈簧28具有O形的具體實例。此可被理解為意謂致動器耦接彈簧28中之每一者具有處於兩個腹板形末端區段之間的O形 中間區段。 The micromechanical assembly schematically reproduced by means of Figures 4a to 4c differs from the embodiment of Figures 1a to 1c only in the specific example in which the actuator coupling spring 28 has an O-shape. This can be understood to mean that each of the actuator coupling springs 28 has an O-shaped intermediate section between the two web-shaped end sections.

作為致動器耦接彈簧28之O形具體實例的替代例,此等致動器耦接彈簧28亦可具有曲折形及/或腹板形的具體實例。 As an alternative to the O-shaped embodiment of the actuator coupling spring 28, such actuator coupling springs 28 may also have specific examples of meandering and/or web shapes.

圖5a至圖5c展示微機械組件之第五具體實例的示意性說明,其中圖5a展示平面圖,圖5b展示沿圖5a中之線A-A'的橫截面,且圖5c展示沿圖5a中之線B-B'的橫截面。 Figures 5a to 5c show schematic illustrations of a fifth specific example of a micromechanical assembly, wherein Figure 5a shows a plan view, Figure 5b shows a cross section along line AA' in Figure 5a, and Figure 5c shows along Figure 5a The cross section of the line B-B'.

作為對圖1中之具體實例的補充,藉助於圖5a至圖5c示意性再現的微機械組件仍具有另外的第一額外塊狀物34a及第二額外塊狀物34b,其在每一情況下結合至扭接/成角致動器載體20a及20b的中間區段。亦可由基板22結構化另外的第一額外塊狀物34a及第二額外塊狀物34b。 In addition to the specific example in Fig. 1, the micromechanical assembly schematically reproduced by means of Figs. 5a to 5c still has an additional first extra mass 34a and a second additional mass 34b, in each case The lower portion is coupled to the intermediate section of the twisted/angled actuator carriers 20a and 20b. Additional first additional chunks 34a and second additional chunks 34b may also be structured from substrate 22.

圖6a至圖6c展示微機械組件之第六具體實例的示意性說明,其中圖6a展示平面圖,圖6b展示沿圖6a中之線A-A'的橫截面,且圖6c展示沿圖6a中之線B-B'的橫截面。 Figures 6a to 6c show schematic illustrations of a sixth embodiment of a micromechanical assembly, wherein Figure 6a shows a plan view, Figure 6b shows a cross section along line AA' in Figure 6a, and Figure 6c shows along Figure 6a The cross section of the line B-B'.

作為對圖1中之微機械組件的補充,圖6a至圖6c中的具體實例同樣具有另外的第一額外塊狀物34a及第二額外塊狀物34b。然而,出於結合各別第一額外塊狀物34a或第二額外塊狀物34b的目的,第一塊狀物載體36a或第二塊狀物載體36b在每一情況下結合於所指派之第一致動器載體20a或第二致動器載體20b之各別中間區段的經導向為遠離第一末端的側面上。 In addition to the micromechanical assembly of Figure 1, the specific examples of Figures 6a through 6c also have additional first additional mass 34a and second additional mass 34b. However, for the purpose of combining the respective first additional mass 34a or second additional mass 34b, the first bulk carrier 36a or the second mass carrier 36b is combined in each case with the assigned one. The respective intermediate sections of the first actuator carrier 20a or the second actuator carrier 20b are guided on a side remote from the first end.

圖7a及圖7b展示微機械組件之第七具體實例的示意性說明,其中圖7a展示平面圖且圖7b展示沿圖7a中之線A-A'的橫截面。 Figures 7a and 7b show schematic illustrations of a seventh embodiment of a micromechanical assembly, wherein Figure 7a shows a plan view and Figure 7b shows a cross section along line AA' in Figure 7a.

藉助於圖7a及圖7b示意性再現的微機械組件與上文所描述之具體實例的不同之處在於致動器載體20a及20b具有桿形且以垂直於旋轉軸18的方式遠離所指派的第一彈簧16a或第二彈簧16b而延伸。額外塊狀物26a及26b繼續結合於所指派之第一致動器載體20a或第二致動器載體20b的第一末端上(經導向 為遠離所指派的第一彈簧16a或第二彈簧16b)。因此,額外塊狀物26a及26b經置放為更接近於彈簧16a及16b。因此,額外塊狀物26a及26b接合於可重定位零件12上更接近於彈簧16a及16b之錨定區域。致動器耦接彈簧28錨定於致動器載體20a及20b的側表面上,該等側表面自第一末端延伸至第二末端,其中每一致動器耦接彈簧28錨定於與其連接之致動器載體20a及20b之彼此對準的側表面上。 The micromechanical assembly schematically reproduced by means of Figures 7a and 7b differs from the specific examples described above in that the actuator carriers 20a and 20b have a rod shape and are remote from the assigned one in a manner perpendicular to the axis of rotation 18. The first spring 16a or the second spring 16b extends. The additional masses 26a and 26b continue to be bonded to the first end of the assigned first actuator carrier 20a or second actuator carrier 20b (guided away from the assigned first spring 16a or second spring 16b) ). Therefore, the extra blocks 26a and 26b are placed closer to the springs 16a and 16b. Thus, the additional blocks 26a and 26b are joined to the anchoring region of the repositionable part 12 that is closer to the springs 16a and 16b. An actuator coupling spring 28 is anchored to the side surfaces of the actuator carriers 20a and 20b that extend from the first end to the second end, wherein each actuator coupling spring 28 is anchored thereto The actuator carriers 20a and 20b are on the side surfaces aligned with each other.

圖8a及圖8b展示微機械組件之第八具體實例的示意性說明,其中圖8a展示平面圖且圖8b展示沿圖8a中之線A-A'的橫截面。 Figures 8a and 8b show schematic illustrations of an eighth embodiment of a micromechanical assembly, wherein Figure 8a shows a plan view and Figure 8b shows a cross section along line AA' in Figure 8a.

作為對上文所描述之具體實例的補充(且替代致動器耦接彈簧28),圖8a及圖8b中所示意性再現的微機械組件具有固持器耦接彈簧38,其中一個固持器耦接彈簧38分別將所指派之第一致動器載體20a或第二致動器載體20b連接至固持器10。較佳地,固持器耦接彈簧38結合於相對於固持器10而對準之所指派之第一致動器載體20a或第二致動器載體20b的自第一末端延伸至第二末端的側表面上。 In addition to the specific example described above (and in lieu of the actuator coupling spring 28), the micromechanical assembly illustrated in Figures 8a and 8b has a holder coupling spring 38, one of which is coupled The springs 38 respectively connect the assigned first actuator carrier 20a or second actuator carrier 20b to the holder 10. Preferably, the holder coupling spring 38 is coupled to the assigned first actuator carrier 20a or second actuator carrier 20b aligned with respect to the holder 10 from the first end to the second end. On the side surface.

圖9a及圖9b展示微機械組件之第九具體實例的示意性說明,其中圖9a展示平面圖且圖9b展示沿圖9a中之線A-A'的橫截面。 Figures 9a and 9b show schematic illustrations of a ninth embodiment of a micromechanical assembly, wherein Figure 9a shows a plan view and Figure 9b shows a cross section along line AA' in Figure 9a.

圖9a及圖9b中的具體實例與圖7a及圖7b之微機械組件的不同之處為錨定於致動器載體20a及20b之第一末端的固持器10上,該等第一末端經導向(遠離所指派的第一彈簧16a或第二彈簧16b)。此外,一個第一額外塊狀物26a或第二額外塊狀物26b分別結合於第一致動器載體20a或第二致動器載體20b的兩個第二末端上,該等第二末端錨定於所指派的第一彈簧16a或第二彈簧16b上。 The specific embodiment of Figures 9a and 9b differs from the micromechanical assembly of Figures 7a and 7b in that it is anchored to the holder 10 at the first end of the actuator carriers 20a and 20b. Guided (away from the assigned first spring 16a or second spring 16b). Furthermore, a first additional block 26a or a second additional block 26b is respectively bonded to the two second ends of the first actuator carrier 20a or the second actuator carrier 20b, the second end anchors It is assigned to the assigned first spring 16a or second spring 16b.

圖10a及圖10b展示微機械組件之第十具體實例的示意性說明,其中圖10a展示平面圖且圖10b展示沿圖10a中之線A-A'的橫截面。 Figures 10a and 10b show schematic illustrations of a tenth embodiment of a micromechanical assembly, wherein Figure 10a shows a plan view and Figure 10b shows a cross section along line AA' in Figure 10a.

藉助於圖10a及圖10b示意性再現的微機械組件藉助於其具有耦接彈簧40(替代致動器耦接彈簧28)的具體實例而不同於上文所描述的具體實 例。此處,第一彈簧16a及第二彈簧16b藉助於至少一個耦接彈簧40連接至固持器10。較佳地,兩個耦接彈簧40錨定至每一第一彈簧16a或第二彈簧16b,該等耦接彈簧自所指派之第一彈簧16a或第二彈簧16b的背向彼此的側面延伸至固持器10。詳言之,耦接彈簧40可具有關於旋轉軸18的鏡面對稱具體實例。 The micromechanical assembly schematically reproduced by means of Figures 10a and 10b differs from the specific examples described above by virtue of its specific example of coupling spring 40 (instead of actuator coupling spring 28). Here, the first spring 16a and the second spring 16b are connected to the holder 10 by means of at least one coupling spring 40. Preferably, two coupling springs 40 are anchored to each of the first springs 16a or the second springs 16b that extend from the side of the assigned first spring 16a or second spring 16b that faces away from each other. To the holder 10. In detail, the coupling spring 40 may have a mirror-symmetric specific example with respect to the rotating shaft 18.

在上文所描述的具體實例中,基板/載體層22(或由其結構化的至少一個組件)可具有(例如)介於50pm與500pm(微米)之間的第一層厚度d1。功能層24(或由其結構化的至少一個組件)可具有(例如)介於5pm與50pm(微米)之間的第二層厚度d2。然而,此處所提及的數值應僅被解釋為例示性的。 In the specific examples described above, the substrate/carrier layer 22 (or at least one component structured therefrom) can have a first layer thickness d1 of, for example, between 50 pm and 500 pm (micrometers). Functional layer 24 (or at least one component structured therefrom) can have a second layer thickness d2 of, for example, between 5 pm and 50 pm (micrometers). However, the numerical values mentioned herein should be construed as merely illustrative.

在上文所描述的具體實例中,第一彈簧16a及第二彈簧16b以例示性的方式錨定至外框架或中間框架42。外框架或中間框架42較佳地包含已由基板22結構化的第一部分框架及已由功能層24結構化的第二部分框架。詳言之,外框架或中間框架42可為固持器10之一部分或固持器10以作為外框架42。然而,亦參考此事實:外框架或中間框架42可相對於固持器10經重定位為中間框架42。藉助於實例,中間框架42可相對於固持器10圍繞另一旋轉軸重定位,該另一旋轉軸在相對於旋轉軸18之一斜度下對準,詳言之垂直於旋轉軸18。 In the particular example described above, the first spring 16a and the second spring 16b are anchored to the outer frame or intermediate frame 42 in an illustrative manner. The outer frame or intermediate frame 42 preferably includes a first partial frame that has been structured by the substrate 22 and a second partial frame that has been structured by the functional layer 24. In particular, the outer frame or intermediate frame 42 can be a portion of the holder 10 or the holder 10 as the outer frame 42. However, reference is also made to the fact that the outer frame or intermediate frame 42 can be repositioned relative to the holder 10 as the intermediate frame 42. By way of example, the intermediate frame 42 can be repositioned relative to the holder 10 about another axis of rotation that is aligned with respect to one of the axes of rotation 18, in particular perpendicular to the axis of rotation 18.

明確地參考此事實:基板22(或載體層)及功能層24在上述所有具體實例中為兩個不同的層22及24。因此,基板/載體層22或基板/載體層22之一部分均不應被理解為功能層24。較佳地,經結構化之基板/經結構化之載體層22的至少剩餘物具有第一層厚度d1,其(顯著)大於功能層24之至少剩餘物的第二層厚度d2。基板/載體層22及/或功能層24較佳地由至少一種半導體材料(諸如矽)製成。然而,參考此事實:基板/載體層22及功能層24不限於特定的材料/半導體材料。此外,基板22(或載體層)及功能層24亦可由不同材料構成。 This fact is explicitly referred to: the substrate 22 (or carrier layer) and the functional layer 24 are two different layers 22 and 24 in all of the above specific examples. Thus, neither the substrate/carrier layer 22 nor the substrate/carrier layer 22 should be understood as the functional layer 24. Preferably, at least the remainder of the structured substrate/structured carrier layer 22 has a first layer thickness d1 that is (significantly) greater than a second layer thickness d2 of at least the remainder of the functional layer 24. Substrate/carrier layer 22 and/or functional layer 24 are preferably made of at least one semiconductor material such as germanium. However, reference is made to the fact that the substrate/carrier layer 22 and the functional layer 24 are not limited to a particular material/semiconductor material. Further, the substrate 22 (or carrier layer) and the functional layer 24 may also be composed of different materials.

基板22(或載體層)及功能層24可為SOI晶圓(絕緣體上矽晶 圓)的組件。局部地,可藉由氧化物(此處未圖示)使經結構化之基板/結構化載體層22的至少一個剩餘物及功能層24的至少一個剩餘物繼續彼此連接。 Substrate 22 (or carrier layer) and functional layer 24 can be an assembly of SOI wafers (twisted on insulator). Locally, at least one residue of the structured substrate/structured carrier layer 22 and at least one residue of the functional layer 24 may continue to be connected to each other by an oxide (not shown here).

所有上述微機械組件實施為「三層系統」,其中由基板22(或載體層)結構化第一層且由功能層24結構化第二層。藉由形成壓電致動器14a及14b,例如藉由沈積電極及至少一個壓電層的材料而實現第三層。 All of the above micromechanical components are implemented as a "three layer system" in which a first layer is structured from a substrate 22 (or carrier layer) and a second layer is structured by a functional layer 24. The third layer is realized by forming the piezoelectric actuators 14a and 14b, for example, by depositing the material of the electrode and the at least one piezoelectric layer.

詳言之,上述微機械組件可有利地用於投影或LIDAR系統中。 In particular, the micromechanical assembly described above can be advantageously used in projection or LIDAR systems.

圖11展示用於解釋微機械組件之製造方法的具體實例的流程圖。 Figure 11 shows a flow chart for explaining a specific example of a method of manufacturing a micromechanical component.

下文描述的製造方法可用於(詳言之)製造上文所解釋的微機械組件之具體實例中之一者。然而,參考此事實:下文所描述之製造方法的可實施性不限於特定類型之微機械組件的製造。 The manufacturing methods described below can be used (in detail) to make one of the specific examples of the micromechanical components explained above. However, reference is made to the fact that the achievability of the manufacturing method described below is not limited to the manufacture of a specific type of micromechanical component.

製造方法包含方法步驟S1及S2,藉助於該等方法步驟將可重定位零件懸置於固持器上於第一彈簧與第二彈簧之間使得可重定位零件可相對於固持器圍繞至少一個旋轉軸重定位。作為方法步驟S1,至少部分地由基板(或載體層)結構化可重定位零件。在方法步驟S2中,由功能層結構化至少第一彈簧、第二彈簧、直接地或間接地結合於第一彈簧上的至少一個第一致動器載體及直接地或間接地結合於第二彈簧上的至少一個第二致動器載體。明確地參考此事實:基板(或載體層)及功能層應被理解為意謂不同材料。 The manufacturing method comprises method steps S1 and S2 by means of which the relocatable part is suspended on the holder between the first spring and the second spring such that the repositionable part can rotate around at least one of the holder Axis repositioning. As method step S1, the relocatable part is structured, at least in part, from a substrate (or carrier layer). In method step S2, at least a first spring, a second spring, at least one first actuator carrier that is directly or indirectly coupled to the first spring, and directly or indirectly coupled to the second At least one second actuator carrier on the spring. This fact is explicitly referred to: the substrate (or carrier layer) and the functional layer should be understood to mean different materials.

此外,製造方法具有方法步驟S3,其中至少一個第一壓電致動器形成於至少一個第一致動器載體上且至少一個第二壓電致動器形成於至少一個第二致動器載體上,每一壓電致動器具有至少一個壓電層。至少一個第一壓電致動器及至少一個第二壓電致動器各自經實施為在每一情況下將至少一個電壓施加至至少一個第一壓電致動器及至少一個第二壓電致動器之至少一個壓電層。進行此操作使得確保倘若在微機械組件之操作期間將至少一個電壓施加至至少一個第一壓電致動器及/或至少一個第二壓電致動器的至少一個壓電層,至 少一個第一壓電致動器及/或至少一個第二壓電致動器至少部分變形,且藉助於由至少部分變形之至少一個第一壓電致動器及/或至少部分變形之至少一個第二壓電致動器觸發的脈衝傳送而使可重定位零件圍繞旋轉軸進行重定位運動。 Furthermore, the manufacturing method has a method step S3, wherein at least one first piezoelectric actuator is formed on at least one first actuator carrier and at least one second piezoelectric actuator is formed on at least one second actuator carrier Above, each piezoelectric actuator has at least one piezoelectric layer. The at least one first piezoelectric actuator and the at least one second piezoelectric actuator are each implemented to apply at least one voltage to the at least one first piezoelectric actuator and the at least one second piezoelectric in each case At least one piezoelectric layer of the actuator. Performing this operation ensures that at least one voltage is applied to at least one piezoelectric layer of at least one first piezoelectric actuator and/or at least one second piezoelectric actuator during operation of the micromechanical component, at least one A piezoelectric actuator and/or at least one second piezoelectric actuator is at least partially deformed by means of at least one first piezoelectric actuator that is at least partially deformed and/or at least partially deformed by at least one second Piezoelectric actuator-triggered pulse transmission causes the repositionable part to reposition motion about the axis of rotation.

進行此處所描述之製造方法亦提供上文已解釋的優勢。 Performing the manufacturing methods described herein also provides the advantages explained above.

可以任何時間序列進行方法步驟S1至S3。方法步驟S1至S3中之至少兩者亦可同時進行或在時間上重疊。 Method steps S1 to S3 can be performed in any time series. At least two of the method steps S1 to S3 may also be performed simultaneously or overlap in time.

上文已所描述之材料可用於方法步驟S1至S3。 The materials already described above can be used in method steps S1 to S3.

詳言之,對於方法步驟S1及S2,可使用具有至少一個絕緣層(其至少部分地覆蓋基板的基板表面)及功能層(其至少部分形成於經導向為遠離基板之至少一個絕緣層的側面上)的基板以作為初始材料。 In particular, for method steps S1 and S2, a side having at least one insulating layer that at least partially covers the substrate and a functional layer that is at least partially formed on the side that is oriented away from the at least one insulating layer of the substrate can be used. The upper substrate is used as a starting material.

作為方法步驟S1的發展,仍可(另外)由基板結構化結合於(隨後)至少一個第一致動器載體上的至少一個第一額外塊狀物及/或結合於(隨後)至少一個第二致動器載體上的至少一個第二額外塊狀物。 As a development of method step S1, it is still possible (in addition) to be structurally bonded by the substrate to (subsequently) at least one first additional mass on the at least one first actuator carrier and/or to (subsequently) at least one At least one second additional mass on the second actuator carrier.

亦可擴展方法步驟S2:藉助於實例,仍可由功能層結構化將至少一個第一致動器載體連接至至少一個第二致動器載體的至少一個致動器耦接彈簧。作為替代例或除其之外,亦有可能由功能層結構化將至少一個第一致動器載體及/或至少一個第二致動器載體連接至固持器的至少一個固持器耦接彈簧。同樣,仍亦有可能在方法步驟S2中由功能層結構化將第一彈簧及/或第二彈簧連接至固持器的至少一個耦接彈簧。 The method step S2 can also be expanded: by means of the example, at least one actuator coupling can be coupled to the at least one actuator carrier of the at least one second actuator carrier by the functional layer. As an alternative or in addition thereto, it is also possible for the functional layer to structure the at least one first actuator carrier and/or the at least one second actuator carrier to the at least one holder coupling spring of the holder. Likewise, it is also possible for the functional layer to be structured in the method step S2 to connect the first spring and/or the second spring to the at least one coupling spring of the holder.

Claims (13)

一種微機械組件,其具有:一固持器(10);一可重定位零件(12),其固持於該固持器(10)處於一第一彈簧(16a)與一第二彈簧(16b)之間使得可相對於該固持器(10)圍繞至少一個旋轉軸(18)重定位該可重定位零件(12);至少一個第一壓電致動器(14a),其形成於直接地或間接地結合於該第一彈簧(16a)上的至少一個第一致動器載體(20a)上;及至少一個第二壓電致動器(14b),其形成於直接地或間接地結合於該第二彈簧(16b)上的至少一個第二致動器載體(20b)上;其中該至少一個第一壓電致動器(14a)及該至少一個第二壓電致動器(14b)各自包含至少一個壓電層且各自經實施使得可將至少一個電壓分別施加至該至少一個第一壓電致動器(14a)及該至少一個第二壓電致動器(14b)之該至少一個壓電層,因此該至少一個第一壓電致動器(14a)及/或該至少一個第二壓電致動器(14b)為至少部分可變形的,且可藉助於由至少部分變形之該至少一個第一壓電致動器(14a)及/或至少部分變形之該至少一個第二壓電致動器(14b)觸發的一脈衝傳送使該可重定位零件(12)圍繞該旋轉軸(18)進行重定位運動,其中由一基板(22)至少部分地結構化該可重定位零件(12);且由一功能層(24)結構化至少該第一彈簧(16a)、該至少一個第一致動器載體(20a)、該第二彈簧(16b)及該至少一個第二致動器載體(20b)。  A micromechanical assembly having: a holder (10); a repositionable component (12) held by the holder (10) in a first spring (16a) and a second spring (16b) The repositionable part (12) is repositionable relative to the holder (10) about at least one axis of rotation (18); at least one first piezoelectric actuator (14a) formed directly or indirectly Bonded to at least one first actuator carrier (20a) on the first spring (16a); and at least one second piezoelectric actuator (14b) formed to be directly or indirectly bonded thereto At least one second actuator carrier (20b) on the second spring (16b); wherein the at least one first piezoelectric actuator (14a) and the at least one second piezoelectric actuator (14b) are each Including at least one piezoelectric layer and each being implemented such that at least one voltage can be applied to the at least one of the at least one first piezoelectric actuator (14a) and the at least one second piezoelectric actuator (14b) a piezoelectric layer, such that the at least one first piezoelectric actuator (14a) and/or the at least one second piezoelectric actuator (14b) is at least partially deformable And can be triggered by a pulse transmission triggered by the at least one first piezoelectric actuator (14a) and/or the at least one second piezoelectric actuator (14b) that is at least partially deformed Repositionable part (12) is repositioned about the axis of rotation (18), wherein the repositionable part (12) is at least partially structured by a substrate (22); and structured by a functional layer (24) At least the first spring (16a), the at least one first actuator carrier (20a), the second spring (16b), and the at least one second actuator carrier (20b).   如申請專利範圍第1項之微機械組件,其中至少一個第一額外塊狀物(26a、34a)結合於該至少一個第一致動器載體(20a)上且/或至少一個第 二額外塊狀物(26b、34b)結合於該至少一個第二致動器載體(20b)上。  A micromechanical assembly according to claim 1, wherein at least one first additional mass (26a, 34a) is bonded to the at least one first actuator carrier (20a) and/or at least one second additional block The objects (26b, 34b) are bonded to the at least one second actuator carrier (20b).   如申請專利範圍第1或2項之微機械組件,其中藉助於至少一個致動器耦接彈簧(28)將該至少一個第一致動器載體(20a)連接至該至少一個第二致動器載體(20b)。  The micromechanical assembly of claim 1 or 2, wherein the at least one first actuator carrier (20a) is coupled to the at least one second actuation by means of at least one actuator coupling spring (28) Carrier (20b).   如申請專利範圍第3項之微機械組件,其中該至少一個致動器耦接彈簧(28)為U形的、O形的、曲折形的及/或腹板形的(web-shaped)。  The micromechanical assembly of claim 3, wherein the at least one actuator coupling spring (28) is U-shaped, O-shaped, meander-shaped, and/or web-shaped.   如申請專利範圍第1至4項任一項之微機械組件,其中藉助於至少一個固持器耦接彈簧(38)將該至少一個第一致動器載體(20a)及/或該至少一個第二致動器載體(20b)連接至該固持器(10)。  The micromechanical assembly of any one of claims 1 to 4, wherein the at least one first actuator carrier (20a) and/or the at least one portion is coupled by means of at least one holder coupling spring (38) A second actuator carrier (20b) is coupled to the holder (10).   如申請專利範圍第1至5項任一項之微機械組件,其中藉助於至少一個耦接彈簧(40)將該第一彈簧(16a)及/或該第二彈簧(16b)連接至該固持器(10)。  The micromechanical assembly of any one of claims 1 to 5, wherein the first spring (16a) and/or the second spring (16b) are connected to the holding by means of at least one coupling spring (40) (10).   如申請專利範圍第1至6項任一項之微機械組件,其中該微機械組件為具有一可重定位鏡面板(12)作為該可重定位零件(12)的一微鏡。  The micromechanical assembly of any one of claims 1 to 6, wherein the micromechanical assembly is a micromirror having a repositionable mirror panel (12) as the repositionable part (12).   一種一微機械組件之製造方法,其具有以下步驟:將一可重定位零件(12)懸置於一固持器(10)上於一第一彈簧(16a)與一第二彈簧(16b)之間使得該可重定位零件(12)可相對於該固持器(10)圍繞至少一個旋轉軸(18)重定位;及在直接地或間接地結合於該第一彈簧(16a)上的至少一個第一致動器載體(20a)上形成至少一個第一壓電致動器(14a)且在直接地或間接地結合於該第二彈簧(16b)上的至少一個第二致動器載體(20b)上形成至少一個第二壓電致動器(14b),該等致動器在每一情況下具有至少一個壓電層(S3),其中該至少一個第一壓電致動器(14a)及該至少一個第二壓電致動器(14b)各自經實施以在每一情況下將至少一個電壓施加至該至少一個第一壓電致動器(14a)及 該至少一個第二壓電致動器(14b)的該至少一個壓電層,且其中倘若在該微機械組件的一操作期間將該至少一個電壓施加至該至少一個第一壓電致動器(14a)及/或該至少一個第二壓電致動器(14b)的該至少一個壓電層,該至少一個第一壓電致動器(14a)及/或該至少一個第二壓電致動器(14b)至少部分變形,且藉助於由該至少部分變形之至少一個第一壓電致動器(14a)及/或該至少部分變形之至少一個第二壓電致動器(14b)觸發的一脈衝傳送使該可重定位零件(12)圍繞該旋轉軸(18)進行重定位運動,其中由一基板(22)至少部分地結構化該可重定位零件(12)(S1);及由一功能層(24)結構化至少該第一彈簧(16a)、該至少一個第一致動器載體(20a)、該第二彈簧(16b)及該至少一個第二致動器載體(20b)(S2)。  A method of manufacturing a micromechanical component having the steps of suspending a repositionable component (12) on a holder (10) on a first spring (16a) and a second spring (16b) Between the repositionable parts (12) being repositionable relative to the holder (10) about at least one axis of rotation (18); and at least one directly or indirectly coupled to the first spring (16a) Forming at least one first piezoelectric actuator (14a) on the first actuator carrier (20a) and bonding at least one second actuator carrier directly or indirectly to the second spring (16b) At least one second piezoelectric actuator (14b) is formed on 20b), the actuators in each case having at least one piezoelectric layer (S3), wherein the at least one first piezoelectric actuator (14a) And the at least one second piezoelectric actuator (14b) are each implemented to apply at least one voltage to the at least one first piezoelectric actuator (14a) and the at least one second pressure in each case The at least one piezoelectric layer of the electric actuator (14b), and wherein the at least one voltage is applied to an operation of the micromechanical component to The at least one piezoelectric layer of the at least one first piezoelectric actuator (14a) and/or the at least one second piezoelectric actuator (14b), the at least one first piezoelectric actuator (14a) And/or the at least one second piezoelectric actuator (14b) is at least partially deformed and at least modified by at least one of the first piezoelectric actuators (14a) and/or at least partially deformed by the at least partial deformation A pulsed transmission triggered by a second piezoelectric actuator (14b) causes the repositionable part (12) to reposition motion about the axis of rotation (18), wherein the substrate is at least partially structured by the substrate (22) Repositionable part (12) (S1); and structured by at least one functional layer (24) at least the first spring (16a), the at least one first actuator carrier (20a), the second spring (16b) And the at least one second actuator carrier (20b) (S2).   如申請專利範圍第8項之製造方法,其中作為一初始材料,使用該基板(22),該基板至少具有至少部分覆蓋該基板(22)之一基板表面的至少一個絕緣層及至少部分形成於經導向為遠離該基板(22)之該至少一個絕緣層的一側上的該功能層(24)。  The manufacturing method of claim 8, wherein the substrate (22) is used as a starting material, the substrate having at least one insulating layer at least partially covering a surface of the substrate of the substrate (22) and at least partially formed The functional layer (24) on one side of the at least one insulating layer that is directed away from the substrate (22).   如申請專利範圍第8或9項之製造方法,其中由該基板(22)結構化結合於該至少一個第一致動器載體(20a)上的至少一個第一額外塊狀物(26a、34a)及/或結合於該至少一個第二致動器載體(20b)上的至少一個第二額外塊狀物(26b、34b)。  The manufacturing method of claim 8 or 9, wherein at least one first additional mass (26a, 34a) structured by the substrate (22) to be bonded to the at least one first actuator carrier (20a) And/or at least one second additional mass (26b, 34b) bonded to the at least one second actuator carrier (20b).   如申請專利範圍第8至10項中任一項之製造方法,其中由該功能層(24)結構化將該至少一個第一致動器載體(20a)連接至該至少一個第二致動器載體(20b)的至少一個致動器耦接彈簧(28)。  The manufacturing method of any one of claims 8 to 10, wherein the at least one first actuator carrier (20a) is coupled to the at least one second actuator by the functional layer (24) At least one actuator of the carrier (20b) is coupled to the spring (28).   如申請專利範圍第8至11項中任一項之製造方法,其中由該功能層(24)結構化將該至少一個第一致動器載體(20a)及/或該至少一個第二致動 器載體(20b)連接至該固持器(10)的至少一個固持器耦接彈簧(38)。  The manufacturing method of any one of clauses 8 to 11, wherein the at least one first actuator carrier (20a) and/or the at least one second actuation is structured by the functional layer (24) The carrier carrier (20b) is coupled to at least one holder coupling spring (38) of the holder (10).   如申請專利範圍第8至12項中任一項之製造方法,其中由該功能層(24)結構化將該第一彈簧(16a)及/或該第二彈簧(16b)連接至該固持器(10)的至少一個耦接彈簧(40)。  The manufacturing method of any one of claims 8 to 12, wherein the first spring (16a) and/or the second spring (16b) are structured by the functional layer (24) to the holder At least one coupling spring (40) of (10).  
TW106137378A 2016-10-31 2017-10-30 Micromechanical component and production method for a micromechanical component TW201827328A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??102016221400.4 2016-10-31
DE102016221400.4A DE102016221400A1 (en) 2016-10-31 2016-10-31 Micromechanical component and production method for a micromechanical component

Publications (1)

Publication Number Publication Date
TW201827328A true TW201827328A (en) 2018-08-01

Family

ID=60153306

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106137378A TW201827328A (en) 2016-10-31 2017-10-30 Micromechanical component and production method for a micromechanical component

Country Status (3)

Country Link
DE (1) DE102016221400A1 (en)
TW (1) TW201827328A (en)
WO (1) WO2018077751A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111232912A (en) * 2018-11-28 2020-06-05 罗伯特·博世有限公司 Actuator for a micromechanical component, micromechanical component and method for producing a micromechanical component
CN113135548A (en) * 2021-04-20 2021-07-20 广州蜂鸟传感科技有限公司 Piezoelectric micro-mechanical actuator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112825321B (en) * 2019-11-21 2022-03-22 中芯集成电路(宁波)有限公司 Manufacturing method of imaging module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7605966B2 (en) * 2008-01-21 2009-10-20 Stanley Electric Co., Ltd. Optical deflector
JP5446122B2 (en) 2008-04-25 2014-03-19 パナソニック株式会社 Meander type vibrator and optical reflection element using the same
JP5775340B2 (en) * 2011-03-25 2015-09-09 スタンレー電気株式会社 Optical deflector
DE102013217111A1 (en) * 2013-08-28 2015-03-19 Robert Bosch Gmbh Micromechanical component and method for producing a micromechanical component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111232912A (en) * 2018-11-28 2020-06-05 罗伯特·博世有限公司 Actuator for a micromechanical component, micromechanical component and method for producing a micromechanical component
CN113135548A (en) * 2021-04-20 2021-07-20 广州蜂鸟传感科技有限公司 Piezoelectric micro-mechanical actuator

Also Published As

Publication number Publication date
WO2018077751A1 (en) 2018-05-03
DE102016221400A1 (en) 2018-05-03

Similar Documents

Publication Publication Date Title
KR102033228B1 (en) Mems having micromechanical piezoelectric actuators for realizing high forces and deflections
JP6289067B2 (en) Micromechanical resonance device
CN107783280B (en) Scanning microelectromechanical reflector system
TW201827328A (en) Micromechanical component and production method for a micromechanical component
JP6205587B2 (en) Optical reflection element
JP4285568B2 (en) Actuator, optical scanner and image forming apparatus
TW200933194A (en) MEMS scanning micromirror
Michael et al. Piezoelectric micro-lens actuator
TWI605013B (en) Micro-optical electromechanical scanning device and method for manufacturing it
US9778549B2 (en) Optical element
JP5853933B2 (en) Optical scanning apparatus and manufacturing method
CN101279712B (en) Method for generating a micromechanical structure
JP4765840B2 (en) Tilt mirror element
JP4983648B2 (en) Optical scanning device
JPWO2020032274A1 (en) Actuator device and manufacturing method of actuator device
US10658950B2 (en) Piezoelectric actuator, piezoelectric motor, robot, and electronic component conveyance apparatus
US10871646B2 (en) Micromirror device and method for operating a micromirror device
WO2019216424A1 (en) Optical device
Gu-Stoppel et al. High Frequency 1D piezoelectric resonant microscanners with large displacements
KR101352941B1 (en) Micro structure, micro actuator, method of fabricating micro structure and micro actuator
WO2021200417A1 (en) Actuator and optical reflective element
JP6890856B1 (en) Omnidirectional scanning mirror
JP6591135B1 (en) Optical device
Zhang et al. A 6-Degree-of-Freedom Piezoelectric Vibration Microstage with Reduced Cross-Axis Coupling
KR20100096665A (en) Resonant frequency tuning apparatus of the micro resonator by mechanical restriction using mems actuator, the micro resonator having the same, manufacturing method and tuning method thereof