TW201824858A - Aerial display system and floating pixel unit thereof - Google Patents
Aerial display system and floating pixel unit thereof Download PDFInfo
- Publication number
- TW201824858A TW201824858A TW105143761A TW105143761A TW201824858A TW 201824858 A TW201824858 A TW 201824858A TW 105143761 A TW105143761 A TW 105143761A TW 105143761 A TW105143761 A TW 105143761A TW 201824858 A TW201824858 A TW 201824858A
- Authority
- TW
- Taiwan
- Prior art keywords
- driving
- pixel unit
- superconductor
- pixel
- imaging system
- Prior art date
Links
Landscapes
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
Abstract
Description
本發明是有關於一種成像系統及其像素單元,且特別是有關於一種空中成像系統及漂浮像素單元。 The present invention relates to an imaging system and its pixel unit, and more particularly to an aerial imaging system and a floating pixel unit.
人們可利用多種感知方式來觀察這個世界,而眼睛承載著人類90%以上的資訊獲取能力,借助視覺能獲得的信息量遠遠超過了聽覺、觸覺、嗅覺及味覺等其他方式所能獲得的信息量。現實中的物體都是立體的、三維的,人眼的視覺系統能夠很好的適應現實中的三維世界,準確的把圖像資訊傳遞給人們。但是由於技術的原因,目前的絕大多數顯示裝置只能顯示二維的圖像,雖然也能給人們展示大千世界的多彩多姿,但遠不能提供與真實世界相比的視覺資訊。隨著科學技術的發展和人們生活水準的提高,人們對於顯示裝置的要求已經不僅僅侷限於簡單的傳遞二維平面資訊,而是希望它可以提供更加真實、富有立體感,更接近人眼實際感受的三維立體圖像資訊,由此三維立體顯示技術應運 而生。 People can use a variety of perceptions to observe the world, and the eye carries more than 90% of human information acquisition capabilities. The amount of information that can be obtained by visual means far exceeds the information available in other ways such as hearing, touch, smell and taste. the amount. The objects in reality are three-dimensional and three-dimensional. The visual system of the human eye can adapt well to the three-dimensional world in reality and accurately transmit image information to people. However, due to technical reasons, most of the current display devices can only display two-dimensional images, although they can also show people the multicolored world, but far from providing visual information compared with the real world. With the development of science and technology and the improvement of people's living standards, people's requirements for display devices are not limited to simply transmitting two-dimensional plane information, but hope that it can provide a more realistic, three-dimensional sense, closer to the actual human eye. The three-dimensional stereoscopic image information is felt, and the three-dimensional stereoscopic display technology emerges as the times require.
在現有的三維立體顯示技術中,主要是以視差式立體顯示技術為主。所謂的視差式立體顯示技術是透過時間多工或空間多工的方式讓觀賞者的左右眼分別看到不同的影像,而觀賞者兩隻眼睛所看到的影像會在大腦中融合,進而令觀賞者感知出一個具有層次景深的影像。然而,現有的立體顯示技術會受限於應體與觀賞者觀看的角度,無法同時提供裸眼觀看、周視和圖像懸浮可觸摸的特點。 In the existing three-dimensional display technology, mainly based on parallax stereoscopic display technology. The so-called parallax stereoscopic display technology allows the viewer's left and right eyes to see different images through time multiplexing or spatial multiplexing, and the images seen by the viewer's two eyes are merged in the brain. The viewer perceives an image with a hierarchical depth of field. However, the existing stereoscopic display technology is limited by the angle that the viewer and the viewer can view, and cannot provide the features of naked-eye viewing, peripheral viewing, and image suspension touchability at the same time.
本發明提供一種空中成像系統及漂浮像素單元,其可帶來不同於傳統成像系統的畫面觀賞體驗。 The present invention provides an aerial imaging system and a floating pixel unit that can provide a viewing experience different from conventional imaging systems.
本發明的空中成像系統包括多個像素單元。所述像素單元預設以陣列排列配置於平面上,其中各像素單元包括成像部與驅動部,成像部與驅動部沿第一方向相互耦接,第一方向與該平面的法線方向相互平行,並且驅動部位於朝向平面的一側。各像素單元的驅動部依據對應的像素資料產生驅動力,藉以推動對應的成像部沿第一方向移動,進而在空中建立影像。 The aerial imaging system of the present invention includes a plurality of pixel units. The pixel units are arranged in an array on the plane, wherein each of the pixel units includes an imaging portion and a driving portion, and the imaging portion and the driving portion are coupled to each other in a first direction, and the first direction and the normal direction of the plane are parallel to each other And the drive portion is located on the side facing the plane. The driving unit of each pixel unit generates a driving force according to the corresponding pixel data, thereby pushing the corresponding imaging portion to move in the first direction, thereby establishing an image in the air.
本發明的漂浮像素單元,適於反應於磁場能量而沿正交於地面的第一方向漂浮在空中。所述漂浮像素單元包括發光元件、發光控制電路、電源轉換電路以及超導體元件。發光控制電路耦接發光元件,用以依據工作電源提供發光控制信號給發光元 件,使發光元件反應於接收到的發光控制信號而發光。電源轉換電路耦接發光控制電路,產生供給發光控制電路使用的工作電源。超導體元件配置於接近地面的一側,用以反應於磁場能量而在第一方向上形成磁抗力,進而使像素單元漂浮於空中並且沿第一方向移動。 The floating pixel unit of the present invention is adapted to float in the air in a first direction orthogonal to the ground in response to magnetic field energy. The floating pixel unit includes a light emitting element, a light emission control circuit, a power conversion circuit, and a superconductor element. The illuminating control circuit is coupled to the illuminating component for providing an illuminating control signal to the illuminating component according to the operating power source, so that the illuminating component emits light in response to the received illuminating control signal. The power conversion circuit is coupled to the illumination control circuit to generate a working power supply for use in the illumination control circuit. The superconductor element is disposed on a side close to the ground for reacting with the magnetic field energy to form a magnetic resistance force in the first direction, thereby causing the pixel unit to float in the air and move in the first direction.
基於上述,本發明實施例提出一種空中成像系統及漂浮像素單元,其藉由設置可在平面法線方向上建立驅動力的像素單元,進而在空中顯示出具有實體的立體影像。不同於一般投影式或視差式等非實體的立體顯示方法,本實施例的漂浮像素單元所建立出的立體影像是具有實體的,可供使用者從空間中的不同角度觀看,並且從不同角度看會有不同視覺呈現,進而提高觀賞者的觀賞體驗。 Based on the above, an embodiment of the present invention provides an aerial imaging system and a floating pixel unit, which are configured to display a stereoscopic image having a solid in the air by providing a pixel unit that can establish a driving force in a plane normal direction. Different from the non-physical stereoscopic display method such as the general projection type or the parallax type, the stereoscopic image created by the floating pixel unit of the embodiment is solid and can be viewed by the user from different angles in the space, and from different angles. Seeing different visual presentations will enhance the viewer's viewing experience.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.
100‧‧‧空中成像系統 100‧‧‧ aerial imaging system
110、110_1~110_9、210、210_1、210_2、310、410‧‧‧像素單元 110, 110_1~110_9, 210, 210_1, 210_2, 310, 410‧‧‧ pixel units
112、212、312、412‧‧‧成像部 112, 212, 312, 412‧‧‧ imaging department
114、214、314、414‧‧‧驅動部 114, 214, 314, 414‧‧‧ drive department
220、220_1、220_2‧‧‧電磁單元 220, 220_1, 220_2‧‧‧ Electromagnetic unit
230‧‧‧時序驅動電路 230‧‧‧Timed drive circuit
240‧‧‧資料轉換電路 240‧‧‧Data Conversion Circuit
D1‧‧‧第一方向 D1‧‧‧ first direction
DTA‧‧‧像素資料 DTA‧‧‧ pixel data
d1、d2、d3‧‧‧間隔高度 D1, d2, d3‧‧‧ interval height
E_DTA‧‧‧驅動電壓 E_DTA‧‧‧ drive voltage
GS‧‧‧平面 GS‧‧ plane
NL‧‧‧法線方向 NL‧‧‧ normal direction
RP‧‧‧區域 RP‧‧‧ area
EU‧‧‧發光元件 EU‧‧‧Lighting elements
ED‧‧‧發光控制電路 ED‧‧‧Lighting control circuit
F1、F2‧‧‧驅動力 F1, F2‧‧‧ driving force
FD‧‧‧懸浮驅動電路 FD‧‧‧suspension drive circuit
MFU‧‧‧機械飛行元件 MFU‧‧‧Mechanical flight components
PCM‧‧‧動力構件 PCM‧‧‧ power components
PCV‧‧‧電源轉換電路 PCV‧‧‧Power Conversion Circuit
PT‧‧‧承載平台 PT‧‧‧bearing platform
PU‧‧‧電源電路 PU‧‧‧Power Circuit
SDM‧‧‧聲波驅動模組 SDM‧‧‧Sonic Drive Module
SPC‧‧‧超導體元件 SPC‧‧‧ superconductor components
SW1、SW2‧‧‧駐波信號 SW1, SW2‧‧‧ standing wave signal
SWG1、SWG2‧‧‧聲波產生元件 SWG1, SWG2‧‧‧Sonic generating components
WC‧‧‧旋翼構件 WC‧‧‧Rotor components
WCM‧‧‧無線充電模組 WCM‧‧‧Wireless Charging Module
圖1A為本發明一實施例的空中成像系統的系統架構示意圖。 FIG. 1A is a schematic diagram of a system architecture of an aerial imaging system according to an embodiment of the invention.
圖1B為本發明一實施例的空中成像系統的俯視圖。 1B is a top plan view of an aerial imaging system in accordance with an embodiment of the present invention.
圖1C為本發明一實施例的空中成像系統的側視圖。 1C is a side elevational view of an aerial imaging system in accordance with an embodiment of the present invention.
圖2A為本發明第一實施例的像素單元的架構示意圖。 2A is a schematic structural diagram of a pixel unit according to a first embodiment of the present invention.
圖2B為本發明第一實施例的像素單元的實體結構配置示意 圖。 Fig. 2B is a schematic view showing the configuration of a physical structure of a pixel unit according to the first embodiment of the present invention.
圖2C為應用本發明第一實施例的像素單元的空中成像系統的系統架構示意圖。 2C is a schematic diagram of a system architecture of an aerial imaging system to which a pixel unit of a first embodiment of the present invention is applied.
圖3A為本發明第二實施例的像素單元的架構示意圖。 FIG. 3A is a schematic structural diagram of a pixel unit according to a second embodiment of the present invention.
圖3B為本發明第二實施例的像素單元的實體結構配置示意圖。 FIG. 3B is a schematic diagram showing the physical structure configuration of a pixel unit according to a second embodiment of the present invention.
圖4A為本發明第三實施例的像素單元的架構示意圖。 4A is a schematic structural diagram of a pixel unit according to a third embodiment of the present invention.
圖4B為本發明第三實施例的像素單元的實體結構配置示意圖。 FIG. 4B is a schematic diagram showing the physical structure configuration of a pixel unit according to a third embodiment of the present invention.
為了使本揭露之內容可以被更容易明瞭,以下特舉實施例做為本揭露確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。 In order to make the disclosure of the present disclosure easier to understand, the following specific embodiments are examples of the disclosure that can be implemented. In addition, wherever possible, the same elements, components, and steps in the drawings and embodiments are used to represent the same or similar components.
圖1A為本發明一實施例的空中成像系統的系統架構示意圖。圖1B為本發明一實施例的空中成像系統的俯視圖。請同時參照圖1A與圖1B,空中成像系統100包括多個像素單元110(如像素單元110_1~110_9)。所述像素單元110預設以陣列排列配置於平面GS上(例如地面或桌面等)。各像素單元110包括成像部112以及驅動部114。成像部112與驅動部114沿第一方向D1相互耦接,其中第一方向D1會與平面GS的法線方向NL相互平行, 並且驅動部114會位於朝向平面GS的一側。於此,若所述平面GS為地面,則所述第一方向D1即可例如為空間中的z軸方向(以空間中的X-Y平面為地面),但本發明不以此為限。 FIG. 1A is a schematic diagram of a system architecture of an aerial imaging system according to an embodiment of the invention. 1B is a top plan view of an aerial imaging system in accordance with an embodiment of the present invention. Referring to FIG. 1A and FIG. 1B simultaneously, the aerial imaging system 100 includes a plurality of pixel units 110 (eg, pixel units 110_1 110 110_9). The pixel units 110 are preset to be arranged in an array on the plane GS (for example, ground or desktop, etc.). Each of the pixel units 110 includes an imaging portion 112 and a driving portion 114. The imaging portion 112 and the driving portion 114 are coupled to each other in the first direction D1, wherein the first direction D1 is parallel to the normal direction NL of the plane GS, and the driving portion 114 is located on a side facing the plane GS. Here, if the plane GS is the ground, the first direction D1 may be, for example, the z-axis direction in the space (the X-Y plane in the space is the ground), but the invention is not limited thereto.
在本實施例中,各像素單元110的驅動部114會依據接收到的像素資料產生驅動力,藉以推動對應的成像部112沿第一方向D1移動,進而在空中建立影像。更具體地說,在各像素單元110中,至少成像部112會漂浮/懸浮在平面GS上,亦即成像部112與平面GS之間至少有一個間隔高度,並且不受到實體物件支撐。所述間隔高度即是根據驅動部114所產生的驅動力來決定,驅動力越強,即會使像素單元110與平面GS之間的間隔高度越高,即距離平面GS越遠;反之,若驅動力越弱,即會使像素單元110與平面GS之間的間隔高度越小,即距離平面GS越近。 In this embodiment, the driving unit 114 of each pixel unit 110 generates a driving force according to the received pixel data, thereby pushing the corresponding imaging unit 112 to move along the first direction D1, thereby establishing an image in the air. More specifically, in each of the pixel units 110, at least the image forming portion 112 floats/suspends on the plane GS, that is, at least one interval height between the image forming portion 112 and the plane GS, and is not supported by the physical object. The spacing height is determined according to the driving force generated by the driving portion 114. The stronger the driving force, the higher the height between the pixel unit 110 and the plane GS, that is, the farther from the plane GS; The weaker the driving force, the smaller the height between the pixel unit 110 and the plane GS, that is, the closer to the plane GS.
在所述漂浮控制像素單元110的應用下,透過給予適合的像素資料即可令各像素單元110反應於像素資料而漂浮於不同的高度上,而使像素單元110整體可以組成一個實體的立體影像。在此所述的實體的立體影像是相對於一般投影式或視差式立體影像而言,本實施例的漂浮像素單元110所建立出的立體影像是具有實體的,可供使用者從空間中的不同角度觀看(從不同角度看會有不同視覺呈現),並且可被實際觸摸到;而一般投影式或視差式等非實體的立體影像則是僅能從特定角度觀看,並且是由光線所構成,無法被實際觸摸到。 In the application of the floating control pixel unit 110, each pixel unit 110 can be made to float on different heights in response to the pixel data by giving appropriate pixel data, so that the pixel unit 110 can form a solid stereo image as a whole. . The stereoscopic image of the entity described herein is a stereoscopic image created by the floating pixel unit 110 of the present embodiment, which is solid and available to the user from the space. Viewing from different angles (different visual presentation from different angles), and can be touched by actual; while non-physical stereoscopic images such as projection or parallax are only visible from a specific angle and are composed of light Can't be actually touched.
於此應注意的是,本實施例的驅動部114與成像部112 的實體結構根據其所應用的驅動方式,而可能會設置在一起或分離設置。換言之,本發明並不限定驅動部114會隨著成像部112在第一方向D1上漂浮。驅動部114可以是固定在平面GS上的實體構件,或是隨著成像部112沿第一方向D1漂浮/懸浮的實體構件,本發明不以此為限。 It should be noted here that the physical structure of the driving portion 114 and the imaging portion 112 of the present embodiment may be set together or separately depending on the driving manner to which it is applied. In other words, the present invention does not limit the driving portion 114 to float in the first direction D1 with the imaging portion 112. The driving portion 114 may be a solid member fixed on the plane GS or a solid member floating/suspending in the first direction D1 along the imaging portion 112, and the invention is not limited thereto.
更具體地說,以圖1A所示的像素單元110_1與110_2為例來說明,在本實施例中,當像素單元110_1與110_2尚未被驅動時,兩者都會被擺放在平面GS上,意即像素單元110_1與110_2此時與平面GS的間隔高度為0。當像素單元110_1與110_2的驅動部接收到像素資料時,像素單元110_1反應於接收到的像素資料產生了驅動力F1,並且像素單元110_2反應於接收到的像素資料產生了驅動力F2。其中,驅動力F1與F2為超距力/非接觸力,並且施加在平面GS上,進而使像素單元110_1反應於作用在平面GS上的驅動力F1而產生間隔高度d1,並且像素單元110_2反應於作用在平面GS上的驅動力F2而產生間隔高度d2。藉所述驅動方式,各像素單元110可以根據 More specifically, taking the pixel units 110_1 and 110_2 shown in FIG. 1A as an example, in the embodiment, when the pixel units 110_1 and 110_2 have not been driven, both will be placed on the plane GS, That is, the pixel units 110_1 and 110_2 are at a height of 0 from the plane GS at this time. When the driving units of the pixel units 110_1 and 110_2 receive the pixel data, the pixel unit 110_1 generates the driving force F1 in response to the received pixel data, and the pixel unit 110_2 generates the driving force F2 in response to the received pixel data. Wherein, the driving forces F1 and F2 are super-distance/non-contact forces, and are applied to the plane GS, thereby causing the pixel unit 110_1 to react with the driving force F1 acting on the plane GS to generate the spacing height d1, and the pixel unit 110_2 reacts. The spacing height d2 is generated by the driving force F2 acting on the plane GS. By the driving manner, each pixel unit 110 can be
在本實施例中,所述成像部112可以是由一發光體(例如發光二極體)或是一非發光體所構成,本發明不以此為限。若成像部112為發光體所構成,則像素單元110除了可呈現出懸浮高度梯度變化之外,還可以搭配發光體的亮度變化來進一步呈現立體的顯示影像。 In this embodiment, the imaging unit 112 may be formed by an illuminant (for example, a light-emitting diode) or a non-illuminator. The invention is not limited thereto. If the imaging unit 112 is configured as an illuminant, the pixel unit 110 can display a stereoscopic display image in addition to the change in the gradation height of the illuminator.
為了更進一步說明本發明實施例的空中顯示系統100的 成像方式,底下以圖1B所示的區域RP內的3x3像素單元110_1~110_9作為範例,進一步說明像素單元110_1~110_9作為一個整體時的畫面顯示流程,如圖1C所示。其中,圖1C為本發明一實施例的空中成像系統的側視圖。 In order to further illustrate the imaging mode of the aerial display system 100 according to the embodiment of the present invention, the 3x3 pixel units 110_1 110 110_9 in the region RP shown in FIG. 1B are taken as an example to further illustrate the screen when the pixel units 110_1 110 110_9 are integrated. The flow is shown as shown in Figure 1C. 1C is a side view of an aerial imaging system in accordance with an embodiment of the present invention.
請參照圖1C,在本實施例中,像素單元110_1~110_9所接收到的像素資料例如會對應到數字“4”。此時,像素單元110_1與110_3會接收到同樣的像素資料,並且產生相同或近似的驅動力而懸浮於距平面GS間隔高度d1的位置。像素單元110_4~110_6會接收到同樣的像素資料,並且產生相同或近似的驅動力而懸浮於距平面GS間隔高度d2的位置,其中間隔高度d2小於間隔高度d1。像素單元110_9會根據接收到的像素資料產生一驅動力,並且據以懸浮於距平面GS間隔高度d3的位置,其中間隔高度d3小於間隔高度d2。另外,像素單元110_2、110_5、110_7未被驅動而仍位於平面GS上(即,間隔高度為0)。基此,像素單元110_1、110_3~110_6及110_9即會組成一個懸浮於空中的數字“4”。 Referring to FIG. 1C , in the embodiment, the pixel data received by the pixel units 110_1 110 110_9 may correspond to the number “4”, for example. At this time, the pixel units 110_1 and 110_3 receive the same pixel data and generate the same or similar driving force to float at a position spaced apart from the plane GS by a height d1. The pixel units 110_4~110_6 receive the same pixel data and generate the same or similar driving force to suspend the position at a height d2 from the plane GS, wherein the interval height d2 is smaller than the interval height d1. The pixel unit 110_9 generates a driving force according to the received pixel data, and is suspended at a position spaced apart from the plane GS by a height d3, wherein the spacing height d3 is smaller than the spacing height d2. In addition, the pixel units 110_2, 110_5, 110_7 are not driven but are still on the plane GS (ie, the interval height is 0). Accordingly, the pixel units 110_1, 110_3~110_6, and 110_9 form a number "4" suspended in the air.
在本實施例中,所述驅動力可以例如磁浮力、空氣浮力及聲波浮力等可利用電路或機械元件產生並實施量化控制的超距力。底下以圖2至圖4來舉例說明在不同實施例的驅動力的形成方式及對應的驅動部114配置。 In the present embodiment, the driving force may be generated by a circuit or a mechanical component such as a magnetic buoyancy, an air buoyancy, and an acoustic buoyancy, and a quantitative control of the over-range force may be performed. The formation of the driving force in the different embodiments and the arrangement of the corresponding driving portion 114 will be exemplified below with reference to FIGS. 2 to 4 .
圖2A為本發明第一實施例的像素單元的架構示意圖。圖2B為本發明第一實施例的像素單元的實體結構配置示意圖。請先參照圖2A,在本實施例中,像素單元210包括成像部212與驅動 部214,其中成像部212包括發光元件EU以及發光控制電路ED,並且驅動部214包括電源轉換電路PCV以及超導體元件SPC。 2A is a schematic structural diagram of a pixel unit according to a first embodiment of the present invention. FIG. 2B is a schematic diagram showing the physical structure configuration of a pixel unit according to the first embodiment of the present invention. Referring first to FIG. 2A, in the present embodiment, the pixel unit 210 includes an imaging portion 212 and a driving portion 214, wherein the imaging portion 212 includes a light emitting element EU and a light emission control circuit ED, and the driving portion 214 includes a power conversion circuit PCV and a superconductor element. SPC.
在成像部212中,發光元件EU可例如為發光二極體(LED)。發光控制電路ED耦接發光元件EU,用以提供發光控制信號給發光元件EU,使發光元件EU可反應於接收到的發光控制信號而發光。於此,所述發光控制電路ED可例如是PWM控制電路等可控亮度的發光控制手段。 In the imaging portion 212, the light emitting element EU may be, for example, a light emitting diode (LED). The illumination control circuit ED is coupled to the illumination element EU for providing an illumination control signal to the illumination element EU such that the illumination element EU can emit light in response to the received illumination control signal. Here, the illumination control circuit ED may be, for example, a controllable brightness illumination control means such as a PWM control circuit.
在驅動部214中,電源轉換電路PCV耦接發光控制電路ED,用以產生供給發光控制電路ED使用的工作電源,其中電源轉換電路PCV可以例如為降壓轉換器(bulk converter)、升壓轉換器(boost converter)或降-升壓轉換器(bulk-boost converter),本發明不對此加以限制。其中,平面GS上會設置產生磁場的構件,而所述磁場的磁場能量會與像素資料有對應關係(此部分後續實施例會進一步詳述),因此超導體元件SPC可反應於關聯於像素資料的磁場能量而在平面GS的法線方向上形成磁抗力,進而使像素單元210漂浮於空中並且沿平面GS的法線方向移動。 In the driving part 214, the power conversion circuit PCV is coupled to the light emission control circuit ED for generating an operating power supply for supplying the light emission control circuit ED, wherein the power conversion circuit PCV can be, for example, a buck converter, a boost converter. A boost converter or a bulk-boost converter is not limited in the present invention. Wherein, a member that generates a magnetic field is disposed on the plane GS, and the magnetic field energy of the magnetic field has a corresponding relationship with the pixel data (this part will be further described in detail in subsequent embodiments), so the superconductor element SPC can react to the magnetic field associated with the pixel data. The energy forms a magnetic resistance force in the normal direction of the plane GS, thereby causing the pixel unit 210 to float in the air and move in the normal direction of the plane GS.
請同時參照圖2A與圖2B,在結構配置上,超導體元件SPC、電源轉換電路PCV、發光控制電路ED以及發光元件EU可以依序沿著遠離平面GS的方向堆疊配置。換言之,超導體元件SPC會被配置於朝向平面GS的一側。 Referring to FIG. 2A and FIG. 2B simultaneously, in the structural configuration, the superconductor element SPC, the power conversion circuit PCV, the illumination control circuit ED, and the light-emitting element EU may be stacked in a direction away from the plane GS. In other words, the superconductor element SPC will be disposed on the side facing the plane GS.
在一範例實施例中,電源轉換電路PCV的輸入電源可由配置在超導體元件上的電池(未繪示)提供。在另一範例實施例 中,像素單元210可更包括一個無線充電模組WCM。所述無線充電模組WCM可例如為配置於超導體元件SPC上的線圈,其可在像素單元210沿第一方向D1移動時,反應於磁場變化產生電能。在此應用下,電源轉換電路PCV則是根據無線充電模組WCM所產生的電能進行電源轉換,藉以產生供給發光控制電路ED使用的工作電源。 In an exemplary embodiment, the input power to the power conversion circuit PCV may be provided by a battery (not shown) disposed on the superconductor component. In another exemplary embodiment, the pixel unit 210 may further include a wireless charging module WCM. The wireless charging module WCM can be, for example, a coil disposed on the superconductor element SPC, which can generate electrical energy in response to a change in the magnetic field when the pixel unit 210 moves in the first direction D1. In this application, the power conversion circuit PCV performs power conversion according to the electric energy generated by the wireless charging module WCM, thereby generating an operating power supply for supplying the illumination control circuit ED.
詳細而言,超導體元件SPC可例如為化學材料超導體(例如鉛和水銀)、合金材料超導體(例如鈮鈦合金和鈮鍺合金)、氧化物超導體(例如釔鋇銅氧化物)以及有機超導體(例如富勒烯和碳納米管)其中之一。其中,超導體元件SPC在超導態時會排斥所有的磁通量,使磁力線無法穿透超導體元件SPC,從而令超導體元件SPC產生抵抗磁場的磁抗力(即麥斯納效應)。 In detail, the superconductor element SPC may be, for example, a chemical material superconductor (such as lead and mercury), an alloy material superconductor (such as niobium titanium alloy and niobium alloy), an oxide superconductor (such as beryllium copper oxide), and an organic superconductor (for example) One of fullerene and carbon nanotubes). Among them, the superconductor element SPC repels all the magnetic flux in the superconducting state, so that the magnetic flux cannot penetrate the superconductor element SPC, so that the superconductor element SPC generates a magnetic resistance against the magnetic field (ie, the Meissner effect).
進一步搭配圖2C來說明應用像素單元210的空中成像系統的具體運作。其中,圖2C為應用本發明第一實施例的像素單元的空中成像系統的系統架構示意圖。 The specific operation of the aerial imaging system to which the pixel unit 210 is applied will be further described in conjunction with FIG. 2C. 2C is a schematic diagram of a system architecture of an aerial imaging system to which the pixel unit of the first embodiment of the present invention is applied.
請參照圖2A至圖2C,本實施例的三維成像系統可更包括懸浮驅動電路FD,其係對應像素單元210配置於平面GS上,並且可用以將影像資料DTA轉換為電磁能量。具體而言,懸浮驅動電路FD包括多個電磁單元220、時序驅動電路230以及資料轉換電路240。電磁單元220以陣列排列並且與像素單元210對應配置於像素單元210與平面GS之間。舉例來說,電磁單元220_1與像素單元210_1相對應配置,並且電磁單元220_2與像素單元 210_2相對應配置。亦即,在像素單元210_1與210_2未被驅動的狀態下,會分別位於電磁單元220_1與220_2上,其他像素單元210與電磁單元220的配置可以此類推。其中,電磁單元220可例如為可根據電信號產生對應磁場的電磁鐵,但本發明不以此為限。 Referring to FIG. 2A to FIG. 2C , the three-dimensional imaging system of the present embodiment may further include a floating driving circuit FD disposed on the plane GS corresponding to the pixel unit 210 and configured to convert the image data DTA into electromagnetic energy. Specifically, the floating drive circuit FD includes a plurality of electromagnetic units 220, a timing drive circuit 230, and a data conversion circuit 240. The electromagnetic units 220 are arranged in an array and are disposed between the pixel unit 210 and the plane GS corresponding to the pixel unit 210. For example, the electromagnetic unit 220_1 is configured corresponding to the pixel unit 210_1, and the electromagnetic unit 220_2 is configured corresponding to the pixel unit 210_2. That is, in a state where the pixel units 210_1 and 210_2 are not driven, they are respectively located on the electromagnetic units 220_1 and 220_2, and the configurations of the other pixel units 210 and the electromagnetic unit 220 can be deduced. The electromagnetic unit 220 can be, for example, an electromagnet that can generate a corresponding magnetic field according to an electrical signal, but the invention is not limited thereto.
時序驅動電路230耦接電磁單元220,並且用以序列地致能電磁單元220。資料轉換電路240耦接電磁單元220。資料轉換電路240用以將像素資料DTA轉換為多個驅動電壓E_DTA,並且協同於電磁單元220的致能時序將驅動電壓E_DTA依序提供給對應的電磁單元220。其中,電磁單元220會反應於接收到的驅動電壓E_DTA而產生對應的電磁能量。 The timing driving circuit 230 is coupled to the electromagnetic unit 220 and is used to sequentially enable the electromagnetic unit 220. The data conversion circuit 240 is coupled to the electromagnetic unit 220. The data conversion circuit 240 is configured to convert the pixel data DTA into a plurality of driving voltages E_DTA, and sequentially supply the driving voltage E_DTA to the corresponding electromagnetic unit 220 in cooperation with the enabling timing of the electromagnetic unit 220. The electromagnetic unit 220 generates corresponding electromagnetic energy in response to the received driving voltage E_DTA.
詳細而言,以圖2C來看,時序驅動電路230可依序致能第一列至第四列的電磁單元220,在第四列電磁單元220致能後再重新回到致能第一列電磁單元220,並且如此往復循環。當電磁單元220被致能時,其可反應於接收到的驅動電壓E_DTA而產生對應的磁場能量,進而令對應的像素單元210產生對應的磁抗力。相反地,未被致能的電磁單元220即便接收到驅動電壓E_DTA也不會因此建立磁場。藉由所述序列致能電磁單元220的方式,即可令像素單元210可以逐列地產生對應的磁抗力,進而建立起空中影像。 In detail, as shown in FIG. 2C, the timing driving circuit 230 can sequentially enable the electromagnetic units 220 of the first to fourth columns, and then return to the first column after the fourth column of the electromagnetic units 220 is enabled. The electromagnetic unit 220, and thus reciprocates. When the electromagnetic unit 220 is enabled, it can generate a corresponding magnetic field energy in response to the received driving voltage E_DTA, thereby causing the corresponding pixel unit 210 to generate a corresponding magnetic resistance. Conversely, the unpowered electromagnetic unit 220 does not establish a magnetic field even if the drive voltage E_DTA is received. By means of the sequence enabling electromagnetic unit 220, the pixel unit 210 can generate a corresponding magnetic resistance force column by column, thereby establishing an aerial image.
圖3A為本發明第二實施例的像素單元的架構示意圖。請參照圖3A,像素單元310包括成像部312與驅動部314,其中成像部312包括發光元件EU以及發光控制電路ED,並且驅動部314 包括電源電路PU以及機械飛行元件MFU。 FIG. 3A is a schematic structural diagram of a pixel unit according to a second embodiment of the present invention. Referring to FIG. 3A, the pixel unit 310 includes an imaging portion 312 and a driving portion 314, wherein the imaging portion 312 includes a light emitting element EU and a light emission control circuit ED, and the driving portion 314 includes a power supply circuit PU and a mechanical flying element MFU.
關於發光元件EU與發光控制電路ED的部分與前述實施例相同,於此不再重複贅述。在本實施例中,驅動部314的電源電路PU是用來供電給發光控制電路ED與機械飛行元件MFU使用,其可例如為電池。機械飛行元件MFU用以藉旋轉、振翅或噴射機構產生空氣動力而使所屬的像素單元310沿平面的法線方向移動。所述旋轉、振翅或PCM噴射機構可例如為螺旋槳、機械鳥翼或噴射推進裝置等,本發明不以此為限。另外,所述機械飛行元件MFU可例如為無人機(UAV)。 The portions of the light-emitting element EU and the light-emission control circuit ED are the same as those of the foregoing embodiment, and the detailed description thereof will not be repeated here. In the present embodiment, the power supply circuit PU of the driving portion 314 is used to supply power to the lighting control circuit ED and the mechanical flying element MFU, which may be, for example, a battery. The mechanical flight element MFU is used to generate aerodynamic force by a rotating, flapping or jetting mechanism to move the associated pixel unit 310 in the normal direction of the plane. The rotating, flapping or PCM injection mechanism can be, for example, a propeller, a mechanical bird wing or a jet propulsion device, etc., and the invention is not limited thereto. Additionally, the mechanical flight element MFU can be, for example, a drone (UAV).
圖3B為本發明第二實施例的像素單元的實體結構配置示意圖。請同時參照圖3A與圖3B,本實施例的機械飛行元件MFU包括承載平台PT、旋翼構件WC以及動力構件PCM。承載平台PT是用以承載成像部312,在具體應用中,發光元件EU可例如貼附於承載平台PT上。動力構件PCM可例如為馬達,其可用以驅動旋翼構件WC,使旋翼構件WC旋轉而沿第一方向D1產生氣流,藉以產生空氣浮力以令旋翼構件WC連攜帶動承載平台PT浮置於空中。其中,透過程式化動力構件PCM的驅動能力(例如調整馬達轉速),即可令承載平台PT帶動成像部312漂浮於平面GS上的預設位置,進而實現空中成像。 FIG. 3B is a schematic diagram showing the physical structure configuration of a pixel unit according to a second embodiment of the present invention. Referring to FIG. 3A and FIG. 3B simultaneously, the mechanical flying element MFU of the present embodiment includes a bearing platform PT, a rotor member WC, and a power member PCM. The carrying platform PT is used to carry the imaging portion 312. In a specific application, the light emitting element EU can be attached to the carrying platform PT, for example. The power member PCM may be, for example, a motor that can be used to drive the rotor member WC to rotate the rotor member WC to generate an air flow in the first direction D1, thereby generating air buoyancy to cause the rotor member WC to float in the air with the carrier platform PT. Through the driving ability of the stylized power component PCM (for example, adjusting the motor rotation speed), the bearing platform PT can drive the imaging portion 312 to float at a preset position on the plane GS, thereby realizing aerial imaging.
圖4A為本發明第三實施例的像素單元的架構示意圖。請參照圖4A,像素單元410包括成像部412與驅動部414,其中成像部412包括發光元件EU以及發光控制電路ED,並且驅動部414 包括電源電路PU以及聲波驅動模組SDM。 4A is a schematic structural diagram of a pixel unit according to a third embodiment of the present invention. Referring to FIG. 4A, the pixel unit 410 includes an imaging portion 412 and a driving portion 414. The imaging portion 412 includes a light emitting element EU and a light emission control circuit ED, and the driving portion 414 includes a power supply circuit PU and an acoustic wave driving module SDM.
關於發光元件EU、發光控制電路ED及電源電路PU的部分與前述實施例相同,於此不再重複贅述。聲波驅動模組SDM用以在第一方向D1上建立一聲波場。其中,由於聲波場中的駐波點沒有淨能量轉移,使發光元件EU重力的影響會受到從聲波的壓力而抵銷掉,因此聲波驅動模組SDM可透過調整所述聲波場的駐波點進而使所屬的像素單元410在第一方向D1上移動。 The portions of the light-emitting element EU, the light-emission control circuit ED, and the power supply circuit PU are the same as those of the foregoing embodiment, and the detailed description thereof will not be repeated here. The acoustic wave drive module SDM is used to establish an acoustic wave field in the first direction D1. Wherein, since there is no net energy transfer in the standing wave point in the acoustic wave field, the influence of the gravity of the light-emitting element EU is offset by the pressure of the sound wave, so the sound wave driving module SDM can adjust the standing wave point of the sound wave field. Further, the associated pixel unit 410 is moved in the first direction D1.
圖4B為本發明第三實施例的像素單元的實體結構配置示意圖。請同時參照圖4A與圖4B,本實施例的聲波驅動模組SDM包括兩聲波產生元件SWG1與SWG2。所述兩聲波產生元件SWG1與SWG2係沿第一方向D1對稱設置在對應的像素單元410的成像部412的兩側。其中,聲波產生元件SWG1與SWG2會分別產生具有相同頻率的駐波信號SW1與SW2,進而在聲波產生元件SWG1與SWG2之間的特定節點上形成駐波點。基此,藉由調整聲波產生元件SWG1與SWG2的輸出波長即可調整成像部412的懸浮位置。 FIG. 4B is a schematic diagram showing the physical structure configuration of a pixel unit according to a third embodiment of the present invention. Referring to FIG. 4A and FIG. 4B simultaneously, the acoustic wave driving module SDM of the present embodiment includes two acoustic wave generating elements SWG1 and SWG2. The two acoustic wave generating elements SWG1 and SWG2 are symmetrically disposed on both sides of the imaging portion 412 of the corresponding pixel unit 410 in the first direction D1. Among them, the acoustic wave generating elements SWG1 and SWG2 respectively generate standing wave signals SW1 and SW2 having the same frequency, and further form standing wave points on specific nodes between the sound wave generating elements SWG1 and SWG2. Accordingly, the floating position of the image forming portion 412 can be adjusted by adjusting the output wavelengths of the acoustic wave generating elements SWG1 and SWG2.
綜上所述,本發明實施例提出一種空中成像系統及漂浮像素單元,其藉由設置可在平面法線方向上建立驅動力的像素單元,進而在空中顯示出具有實體的立體影像。不同於一般投影式或視差式等非實體的立體顯示方法,本實施例的漂浮像素單元所建立出的立體影像是具有實體的,可供使用者從空間中的不同角度觀看,並且從不同角度看會有不同視覺呈現,進而提高觀賞者 的觀賞體驗。 In summary, the embodiments of the present invention provide an aerial imaging system and a floating pixel unit, which are configured to display a stereoscopic image having a solid in the air by providing a pixel unit that can establish a driving force in a plane normal direction. Different from the non-physical stereoscopic display method such as the general projection type or the parallax type, the stereoscopic image created by the floating pixel unit of the embodiment is solid and can be viewed by the user from different angles in the space, and from different angles. Seeing different visual presentations will enhance the viewer's viewing experience.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105143761A TWI715701B (en) | 2016-12-29 | 2016-12-29 | Aerial display system and floating pixel unit thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105143761A TWI715701B (en) | 2016-12-29 | 2016-12-29 | Aerial display system and floating pixel unit thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201824858A true TW201824858A (en) | 2018-07-01 |
TWI715701B TWI715701B (en) | 2021-01-11 |
Family
ID=63640166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105143761A TWI715701B (en) | 2016-12-29 | 2016-12-29 | Aerial display system and floating pixel unit thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI715701B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11448897B2 (en) | 2019-07-02 | 2022-09-20 | Industrial Technology Research Institute | Three-dimensional imaging system and method |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5036944A (en) * | 1986-03-24 | 1991-08-06 | Intersonics Incorporated | Method and apparatus for acoustic levitation |
CN2045525U (en) * | 1989-04-27 | 1989-10-04 | 中国科学技术大学研究生院 | Demonstrator for superconductor magnetic suspension |
CN2749004Y (en) * | 2004-12-06 | 2005-12-28 | 西南交通大学 | Superconductive magnetic suspension tellurion |
KR20080092377A (en) * | 2006-01-10 | 2008-10-15 | 카멜 아라비 | Unmanned aircraft for telecommunications or other scientific purposes |
CN101612994B (en) * | 2009-07-24 | 2013-03-27 | 北京工业大学 | Magnetic suspension rotary wing type flying disk |
US8487836B1 (en) * | 2009-09-11 | 2013-07-16 | Thomas A. Bodine | Multi-dimensional image rendering device |
US8774982B2 (en) * | 2010-08-26 | 2014-07-08 | Leptron Industrial Robotic Helicopters, Inc. | Helicopter with multi-rotors and wireless capability |
TWM526786U (en) * | 2016-05-13 | 2016-08-01 | 野獸國股份有限公司 | Magnetic levitation device with wireless power transmission |
-
2016
- 2016-12-29 TW TW105143761A patent/TWI715701B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11448897B2 (en) | 2019-07-02 | 2022-09-20 | Industrial Technology Research Institute | Three-dimensional imaging system and method |
Also Published As
Publication number | Publication date |
---|---|
TWI715701B (en) | 2021-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9779550B2 (en) | Augmented reality system | |
Yamada et al. | iSphere: self-luminous spherical drone display | |
US10109224B1 (en) | Methods and devices for using aerial vehicles to create graphic displays and reconfigurable 3D structures | |
JP4057344B2 (en) | Information presentation device and information presentation system | |
Yamada et al. | Zerone: Safety drone with blade-free propulsion | |
TW201250288A (en) | Electroactive polymer actuator lenticular system | |
CN105474273A (en) | Late stage reprojection | |
US20170214909A1 (en) | Method and Apparatus for Displaying a Still or Moving Scene in Three Dimensions | |
CN107632403B (en) | Three-dimensional imaging display instrument | |
KR20130077881A (en) | Suspended input system | |
CN116626899A (en) | Thermal management system for wearable components | |
US11164383B2 (en) | AR device and method for controlling the same | |
US11448897B2 (en) | Three-dimensional imaging system and method | |
JP2017054108A (en) | Portable display apparatuses | |
US10171735B2 (en) | Panoramic vision system | |
TW201824858A (en) | Aerial display system and floating pixel unit thereof | |
CN108702495A (en) | More stripe lasers for the projector display based on laser | |
JP6603563B2 (en) | Video display device | |
JP6603564B2 (en) | Video display device | |
WO2016143255A1 (en) | Flying body and aerial video display system | |
EP3432299B1 (en) | Display apparatus and method for rendering a 3d image | |
CN101441448A (en) | Interactive signal generating apparatus and method of moveable object | |
Al-Natsheh et al. | Design and implementation of a cylindrical persistence of vision display | |
Su et al. | A penetrable interactive 3D display based on motion recognition | |
JP2018069745A (en) | Unmanned flying body |