TW201824644A - Active array antenna system with hierarchical modularized mechanism comprising an array antenna and a simplified backbone beamforming circuit - Google Patents

Active array antenna system with hierarchical modularized mechanism comprising an array antenna and a simplified backbone beamforming circuit Download PDF

Info

Publication number
TW201824644A
TW201824644A TW105142211A TW105142211A TW201824644A TW 201824644 A TW201824644 A TW 201824644A TW 105142211 A TW105142211 A TW 105142211A TW 105142211 A TW105142211 A TW 105142211A TW 201824644 A TW201824644 A TW 201824644A
Authority
TW
Taiwan
Prior art keywords
phase
array antenna
hierarchical
rotational speed
circuit
Prior art date
Application number
TW105142211A
Other languages
Chinese (zh)
Other versions
TWI637560B (en
Inventor
周錫增
黃晧儒
余建德
Original Assignee
國家中山科學研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國家中山科學研究院 filed Critical 國家中山科學研究院
Priority to TW105142211A priority Critical patent/TWI637560B/en
Publication of TW201824644A publication Critical patent/TW201824644A/en
Application granted granted Critical
Publication of TWI637560B publication Critical patent/TWI637560B/en

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

The present invention provides an active array antenna system with hierarchical modularized mechanism, comprising: an array antenna and a beam forming circuit. The array antenna includes a plurality of antenna units that are arranged in an array manner and have the number N. The beam forming circuit receives a plurality of input signals and a plurality of phase control signals, and the beam forming circuit includes a hierarchical circuit structure based on phase shifters, wherein the hierarchical circuit structure outputs a plurality of signals based on the phase control signals, the corresponding plurality of phase values and superposition of the phase values, and the output signals are respectively coupled to the antenna units to produce a radiation pattern.

Description

階層式模組化主動式陣列天線系統    Hierarchical modular active array antenna system   

本發明係關於一種陣列天線系統,更特別的是關於一種階層式模組化主動式週期陣列天線系統。 The invention relates to an array antenna system, and more particularly to a hierarchical modular active periodic array antenna system.

在訊號處理系統的結構中,每一個天線的後端均會連接一組發射/接收模組及相移器,其中發射/接收模組包含低雜訊放大器(LNA,low noise amplifier)、功率放大器(PA,power amplifier)及功率衰減器等射頻元件。發射/接收模組的作用係為提供功率,而陣列天線與相移器的作用在於形成波束,其中降低發射/接收模組、相移器等的元件數量在系統成本中是很重要的因素;傳統的設計架構是將每個天線連結一發射/接收模組,然而此架構並不符合經濟效益,原因如下:射頻元件係均以數位化的方式控制,傳統週期陣列天線系統中的每一元件均須對應至一組控制線,若該元件係由N個天線單元組成,則該天線結構則需要N組控制線與N個控制單元;若各該天線連接至M個射頻元件,則該天線結構總共會需要N×M組控制線與N×M組控制器。如此龐大數目的控制線與控制模組不只會耗費製造成本,也會因此增加基板空間,另外過 多的控制線與射頻元件也可能對訊號間產生相互干擾,造成能量損耗及增加製程縮小化之困難度。 In the structure of the signal processing system, a set of transmitting / receiving modules and phase shifters are connected to the rear end of each antenna. The transmitting / receiving module includes a low noise amplifier (LNA) and a power amplifier. (PA, power amplifier) and RF attenuators such as power attenuators. The function of the transmitting / receiving module is to provide power, and the role of the array antenna and phase shifter is to form a beam, in which reducing the number of components of the transmitting / receiving module, phase shifter, etc. is a very important factor in the system cost; The traditional design architecture is to connect each antenna with a transmitting / receiving module. However, this architecture is not economical. The reasons are as follows: RF components are controlled in a digital manner. Each component in a traditional periodic array antenna system All must correspond to a set of control lines. If the element is composed of N antenna units, the antenna structure requires N groups of control lines and N control units; if each antenna is connected to M radio frequency components, the antenna The structure will require a total of N × M control lines and N × M group controllers. Such a large number of control lines and control modules will not only consume manufacturing costs, but also increase substrate space. In addition, excessive control lines and RF components may also cause mutual interference between signals, causing energy loss and increasing difficulties in reducing process size. degree.

另外,若一陣列天線之週期過大,經常會產生旁瓣波(grating lobes),而該旁瓣波會耗損主波束的能量,使該陣列天線的效能變差,這也是在設計陣列天線時最常遇到的困難。 In addition, if the period of an array antenna is too long, sidelobe waves will often be generated, and the sidelobe wave will consume the energy of the main beam, making the performance of the array antenna worse. This is also the most important factor when designing an array antenna. Common difficulties encountered.

鑒於上述習知技術之缺點,本發明主要之目的在於提供一種陣列天線系統,其架構能使後端電路模組之控制線路得以簡化。 In view of the disadvantages of the above-mentioned conventional technologies, the main object of the present invention is to provide an array antenna system whose architecture can simplify the control circuit of the back-end circuit module.

為達上述目的,本發明係提供一種階層式模組化主動式陣列天線系統,其包含:陣列天線及波束成形電路。該陣列天線,包括複數個天線單元,係以陣列方式排列且數量為N。該波束成形電路,其接收複數個輸入訊號、複數個相位控制訊號,該波束成形電路包括:基於相移器之階層式電路結構,該階層式電路結構依據該等相位控制訊號所對應的複數個相位值及該等相位值之疊加而基於該等輸入訊號來輸出複數個輸出訊號,該等輸出訊號係分別耦接於該等天線單元以產生一輻射場型,其中該等相位控制訊號的數量為T,T<N,其中,M-PTM,Ni(i=1至P)、M、P皆為正整數,P3,Ni2。 To achieve the above object, the present invention provides a hierarchical modular active array antenna system, which includes: an array antenna and a beamforming circuit. The array antenna includes a plurality of antenna elements, which are arranged in an array and the number is N. The beamforming circuit receives a plurality of input signals and a plurality of phase control signals. The beamforming circuit includes a hierarchical circuit structure based on a phase shifter, and the hierarchical circuit structure is based on a plurality of corresponding phase control signals. The phase value and the superposition of the phase values are used to output a plurality of output signals based on the input signals. The output signals are respectively coupled to the antenna units to generate a radiation field pattern. The number of the phase control signals is T, T <N, where , , MP T M, Ni (i = 1 to P), M, P are positive integers, P 3, Ni 2.

在本發明之一實施例中,該層階式電路結構包 括:相移器階層電路,用以接收該等輸入訊號以輸出該等輸出訊號,且包括以階層方式耦接為P個階層之複數個相移器,該P個階層之相移器分別接收該等相位控制訊號所分之P組相位控制訊號,其中該等相移器中第k階層之相移器分別接收該等相位控制訊號中第k組之最多Nk個相位控制訊號,其中1kP。 In an embodiment of the present invention, the hierarchical circuit structure includes: a phase shifter hierarchical circuit for receiving the input signals to output the output signals, and including a plurality of layers coupled in a hierarchical manner to P layers. Phase shifters, the P-level phase shifters receive the P group of phase control signals divided by the phase control signals, and the k-th phase shifters of the phase shifters receive the phase control signals respectively Nk phase control signals in the k-th group, of which 1 k P.

在本發明之一實施例中,該層階式電路結構包括:加法器階層電路及複數個相移器。加法器階層電路,用以依據該等相位控制訊號所對應的複數個相位值及該等相位值之疊加而產生複數個輸出相位控制訊號,該加法器階層電路包括以階層方式耦接為P-1個階層之複數個加法器。複數個相移器,耦接於該加法器階層電路,用以依據該等輸入訊號及該等輸出相位控制訊號以輸出該等輸出訊號。 In an embodiment of the present invention, the hierarchical circuit structure includes an adder hierarchical circuit and a plurality of phase shifters. An adder hierarchical circuit is used to generate a plurality of output phase control signals according to a plurality of phase values corresponding to the phase control signals and a superposition of the phase values. The adder hierarchical circuit includes a hierarchical coupling as P- Multiple adders for 1 level. A plurality of phase shifters are coupled to the adder hierarchical circuit and are used to output the output signals according to the input signals and the output phase control signals.

10、20、20A、30、30A‧‧‧陣列天線系統 10, 20, 20A, 30, 30A‧‧‧ array antenna system

110、110A、210‧‧‧陣列天線 110, 110A, 210‧‧‧ array antenna

120、220、220A‧‧‧波束成形電路 120, 220, 220A‧‧‧ Beamforming circuit

320、220A‧‧‧波束成形電路 320, 220A‧‧‧Beamforming circuit

CS1~CST‧‧‧相位控制訊號 CS1 ~ CST‧‧‧phase control signal

SI‧‧‧輸入訊號 SI‧‧‧ input signal

AS1~ASN‧‧‧輸出訊號 AS1 ~ ASN‧‧‧Output signal

G1、G2、G3‧‧‧子陣列 G1, G2, G3 ‧‧‧ sub arrays

41,42,51,52,61,62‧‧‧曲線 41,42,51,52,61,62‧‧‧ curves

第1圖係為習知轉速量測系統示意圖。 Figure 1 is a schematic diagram of a conventional rotational speed measurement system.

第2圖係為習知轉速校正系統示意圖。 Figure 2 is a schematic diagram of a conventional speed correction system.

第3圖係為本發明轉速量測裝置校正系統示意圖。 FIG. 3 is a schematic diagram of a calibration system of a rotational speed measuring device according to the present invention.

第4圖係為本發明轉速量測裝置校正方法步驟示意圖。 FIG. 4 is a schematic diagram of the steps of a calibration method of a rotational speed measuring device according to the present invention.

以下係藉由特定的具體實例說明本發明之實施方式,熟悉此技藝之人士可由本說明書所揭示之內容瞭解本發明之其他優點與功效。 The following is a description of specific embodiments of the present invention. Those skilled in the art can understand other advantages and effects of the present invention from the content disclosed in this specification.

請參閱第1圖,係為本發明之一實施例之階層式模組化主動式週期陣列天線系統(以下簡稱陣列天線系統)的架構示意圖。如圖1所示,陣列天線系統10包括:陣列天線110及波束成形電路120。陣列天線110包括複數個天線單元,該等天線單元係以陣列方式排列且數量為N。波束成形電路120係接收或耦接複數個輸入訊號SI、複數個相位控制訊號CS1~CST號,其中各個相位控制訊號可以為數位串列訊號或數位並聯訊號。該波束成形電路120包括:基於相移器之階層式電路結構,該階層式電路結構依據該等相位控制訊號所對應的複數個相位值及該等相位值之疊加而基於該等輸入訊號來輸出複數個輸出訊號AS1~ASN,該等輸出訊號AS1~ASN係分別耦接於該等天線單元以產生一輻射場型。該等相位控制訊號CS1~CST的數量為T,T係小於N,T、N皆為正整數。 Please refer to FIG. 1, which is a schematic structural diagram of a hierarchical modular active periodic array antenna system (hereinafter referred to as an array antenna system) according to an embodiment of the present invention. As shown in FIG. 1, the array antenna system 10 includes an array antenna 110 and a beam forming circuit 120. The array antenna 110 includes a plurality of antenna elements. The antenna elements are arranged in an array and the number is N. The beam forming circuit 120 receives or couples a plurality of input signals SI and a plurality of phase control signals CS1 to CST signals, wherein each phase control signal can be a digital serial signal or a digital parallel signal. The beamforming circuit 120 includes a hierarchical circuit structure based on a phase shifter. The hierarchical circuit structure outputs a plurality of phase values corresponding to the phase control signals and a superposition of the phase values based on the input signals. A plurality of output signals AS1 ~ ASN are respectively coupled to the antenna units to generate a radiation field pattern. The number of these phase control signals CS1 ~ CST is T, where T is less than N, and T and N are positive integers.

在本實施例中,為了使陣列天線系統10中控制訊號所對應的控制線得以簡化,該波束成形電路120之階層式電路結構所接收的相位控制訊號的數目係小於天線單元的數目。該階層式電路結構係依據「階層式模組化」之概念並基於該陣列天線110中天線單元的數量及排列方式而實現的。關 於該階層式電路結構之實現,將舉實施例說明於後。 In this embodiment, in order to simplify the control lines corresponding to the control signals in the array antenna system 10, the number of phase control signals received by the hierarchical circuit structure of the beam forming circuit 120 is smaller than the number of antenna units. The hierarchical circuit structure is implemented based on the concept of “hierarchical modularization” and based on the number and arrangement of antenna elements in the array antenna 110. The implementation of the hierarchical circuit structure will be described in the following embodiments.

以下首先說明「階層式模組化」之概念應於陣列天線的波束形成的意義。請參考圖2A所示意,對於一維之陣列天線110A而言,階層式模組化是指以如下方式進行分組:以N1(如N1=2)個天線單元為一組將陣列天線110A之天線單元分成複數個子陣列G1,並稱之為階層1或第1階層之天線單元。接著,對於階層1之子陣列G1,以N2(如N2=2)個子陣列G1為一組而分成複數個子陣列G2,並稱之為階層2或第2階層之天線單元。如此類推,直至最後之階層P,對於階層P-1之子陣列GP-1,以NP(如NP=3)個子陣列GP-1為一組而分成子陣列GP,並稱之為階層P或第P階層之天線單元;其中P為大於或等於3的整數。 The following first explains the meaning of the concept of "hierarchical modularization" in the beam forming of an array antenna. Please refer to FIG. 2A. For a one-dimensional array antenna 110A, hierarchical modularization refers to grouping in the following manner: N1 (such as N1 = 2) antenna units are used as a group of antennas of the array antenna 110A. The unit is divided into a plurality of sub-arrays G1, and is referred to as a level 1 or a level 1 antenna unit. Next, for the sub-array G1 of the layer 1, the N2 (for example, N2 = 2) sub-arrays G1 as a group is divided into a plurality of sub-arrays G2, and it is called an antenna unit of the layer 2 or the second layer. By analogy, until the last level P, the sub-array GP-1 of level P-1 is divided into sub-arrays GP with NP (such as NP = 3) sub-arrays GP-1 as a group, and is called the level P or the first level. P-level antenna elements; where P is an integer greater than or equal to three.

請注意,上述「階層式模組化」後產生的階層,是邏輯上的分類而陣列天線110A在物理上並沒有改變。此外,在實現後端電路如該波束成形電路120時,設計者係可依據上述階層的觀念,使同一層階的子陣列共用一組控制訊號來加以控制相對應的後端電路元件(如相移器、或加法器、或衰減器等),進而應用後端電路元件之階層結構所產生的疊合作用,以產生出陣列天線110A之各天線單元所需的訊號,藉此達成波束成形。舉例而言,如第2A圖所示,可以將波束成形電路120實現為:利用N1(如N1=2)個相位控制訊號來分別控制饋入階層1之子陣列G1之傳輸訊號的相位值;利用N2(如 N2=2)個相位控制訊號來分別控制饋入階層2之子陣列G2之傳輸訊號的相位值;以及,利用N3(如N3=3)個相位控制訊號來分別控制饋入階層3之子陣列G3之傳輸訊號的相位值。如此,基於圖2A所示的的階層,在實現後端電路如該波束成形電路120時,可以利用T=N1+N2+N3=7個相位控制訊號來控制12個天線單元所需的12個傳輸訊號的12個相位值。相較於習知的陣列天線之波束成形電路係以12個相位控制訊號來達成相同目的,依據本發明之實施例將可以減少使用5個相位控制訊號;若使用解析度為5位元的數位相移器的話,上述習知方式需要使用60條訊號線來連接相位器與控制單元,依據本發明之實施例將可減少為35條訊號線。 Please note that the hierarchy generated after the above-mentioned "hierarchical modularization" is a logical classification and the array antenna 110A has not been physically changed. In addition, when implementing a back-end circuit such as the beamforming circuit 120, the designer can use the same level of sub-arrays to share a set of control signals to control the corresponding back-end circuit components (such as Shifter, or adder, or attenuator, etc.), and then the superposition generated by the hierarchical structure of the back-end circuit elements is used to generate the signals required by each antenna unit of the array antenna 110A, thereby achieving beamforming. For example, as shown in FIG. 2A, the beamforming circuit 120 may be implemented as follows: using N1 (such as N1 = 2) phase control signals to control the phase values of the transmission signals fed to the sub-array G1 of the layer 1 respectively; N2 (such as N2 = 2) phase control signals to control the phase values of the transmission signals fed to the sub-array G2 of level 2; and N3 (such as N3 = 3) phase control signals to control the sub-feeds of level 3 children Phase value of the transmission signal of the array G3. In this way, based on the hierarchy shown in FIG. 2A, when implementing a back-end circuit such as the beamforming circuit 120, T = N1 + N2 + N3 = 7 phase control signals can be used to control the 12 antenna elements required by the 12 antenna units. 12 phase values of the transmitted signal. Compared with the conventional beamforming circuit of an array antenna, which uses 12 phase control signals to achieve the same purpose, the embodiment of the present invention can reduce the use of 5 phase control signals; if a digital with a resolution of 5 bits is used In the case of a phase shifter, the above-mentioned conventional method requires 60 signal lines to connect the phaser and the control unit. According to the embodiment of the present invention, it can be reduced to 35 signal lines.

此外,上述「階層式模組化」觀念更可推廣至3個階層或以上,例如陣列天線110之天線單元數量N可表示成N=N1×N2×N3...×Np(即),而該等相位控制訊號的數量T可表示為T=M=N1+N2+N3...+Np(即),其中Ni(i=1~P,Ni2的自然數)的大小係可以依據陣列天線系統10設計時所設定之階層數P來決定。由於N>M,換句話說,在龐大的天線單元數量N之情況下,可以選擇設定為更多的階層數,則陣列天線系統10中需要的後端電路的控制訊號及其訊號線數量得以減少。此外,本發明的實現並不限於上述例子,控制訊號及其訊號線數量更可進一步簡化,使相位控制訊號T小於M,關於此等簡化事項,將舉實施例說明於後。 In addition, the above-mentioned "hierarchical modularization" concept can be extended to three levels or more. For example, the number of antenna elements N of the array antenna 110 can be expressed as N = N1 × N2 × N3 ... × Np (that is, ), And the number T of these phase control signals can be expressed as T = M = N1 + N2 + N3 ... + Np (ie ), Where Ni (i = 1 ~ P, Ni The size of 2) can be determined according to the number of levels P set in the design of the array antenna system 10. Since N> M, in other words, in the case of a large number of antenna units N, the number of levels can be selected to be set, and the control signals and the number of signal lines of the back-end circuits required in the array antenna system 10 can cut back. In addition, the implementation of the present invention is not limited to the above examples, and the number of control signals and their signal lines can be further simplified so that the phase control signal T is less than M. For these simplified matters, embodiments will be described later.

再者,在應用「階層式模組化」來設計陣列天線系統10時,當可針對不同的階層分法進而於產生不同的波束成形電路。譬如,相較於第2A圖,如第2B圖所示,針對同一陣列天線110A,同樣分為3個階層,第2B圖的階層1、階層2、階層3分別具有:4個子陣列G1、2個子陣列G2、和子陣列G3,並相對應地需要利用3、2、2個相位控制訊號來分別控制饋入階層1、階層2、階層3之子陣列之傳輸訊號的相位值。由此可見,基於Ni(i=1~P,Ni2的自然數)之任何排列或組合,皆可據以實現波束成形電路120,此等具體實現皆被視為本發明之實施例。 Furthermore, when the "array modularization" is used to design the array antenna system 10, different beam division circuits can be generated for different layers. For example, compared to FIG. 2A, as shown in FIG. 2B, the same array antenna 110A is also divided into 3 levels. Level 1, Level 2, and Level 3 in FIG. 2B have: 4 sub-arrays G1, 2 Each of the sub-arrays G2 and G3 needs to use 3, 2, and 2 phase control signals to control the phase values of the transmission signals fed to the sub-arrays of the layer 1, layer 2, and layer 3, respectively. It can be seen that based on Ni (i = 1 ~ P, Ni Any natural number 2) can be used to implement the beamforming circuit 120, and these specific implementations are considered as embodiments of the present invention.

以下舉實施例說明,前述第1圖的波束成形電路120之各種實現方式。該波束成形電路包括:基於相移器之階層式電路結構,該階層式電路結構用以依據該等相位控制訊號所對應的複數個相位值及該等相位值之疊加而基於該等輸入訊號來輸出複數個輸出訊號,該等輸出訊號係分別耦接於該等天線單元以產生一輻射場型。舉例而言,該階層式電路結構可以利用:相移器階層電路、或加法器階層電路來實現。 The following embodiments illustrate various implementation manners of the beamforming circuit 120 in the foregoing FIG. 1. The beamforming circuit includes a hierarchical circuit structure based on a phase shifter, and the hierarchical circuit structure is used to calculate the phase signals based on the plurality of phase values corresponding to the phase control signals and the superposition of the phase values based on the input signals. A plurality of output signals are output, and the output signals are respectively coupled to the antenna units to generate a radiation field pattern. For example, the hierarchical circuit structure can be implemented using a phase shifter hierarchical circuit or an adder hierarchical circuit.

首先說明使用相移器階層電路之波束成形電路的實現方式。在一些實施例中,該層階式電路結構包括:相移器階層電路,該相移器階層電路用以接收複數個輸入訊號以輸出複數個輸出訊號,且包括以階層方式耦接為P個階層之複數個相移器,其中P3。該P個階層分別接收該等相位控制 訊號所分之P組相位控制訊號,其中該等相移器中第k階層之相移器分別接收該等相位控制訊號中第k組之最多Nk個相位控制訊號,其中1kP。 First, the implementation of a beamforming circuit using a phase shifter hierarchy circuit will be described. In some embodiments, the hierarchical circuit structure includes: a phase shifter hierarchy circuit, the phase shifter hierarchy circuit is used to receive a plurality of input signals to output a plurality of output signals, and includes P coupled in a hierarchical manner. A plurality of phase shifters, where P 3. The P layers respectively receive the P group of phase control signals divided by the phase control signals, and the phase shifter of the kth layer in the phase shifters respectively receives a maximum of Nk phases of the kth group in the phase control signals Control signal, of which 1 k P.

請參閱第3圖,係為本發明階層式模組化陣列天線系統之一實施例的方塊圖。如圖所示,陣列天線系統20係基於圖1之架構,故包括陣列天線210及波束成形電路220,其中該波束成形電路220包括:基於相移器之階層式電路結構,該階層式電路結構包含相移器階層電路。在本實施例中,該陣列天線210包含12個天線單元,該波束成形電路120中之相移器階層電路係依據上述圖2A的階層式模組化的觀念而實現,使同一層階之天線單元之子陣列共用一組控制訊號來加以控制相對應的相移器,進而應用相移器之階層結構所產生的疊合作用,以產生出陣列天線210之各天線單元所需的訊號,藉此達成波束成形。 Please refer to FIG. 3, which is a block diagram of an embodiment of a hierarchical modular array antenna system according to the present invention. As shown in the figure, the array antenna system 20 is based on the architecture of FIG. 1 and therefore includes an array antenna 210 and a beamforming circuit 220. The beamforming circuit 220 includes a hierarchical circuit structure based on a phase shifter and the hierarchical circuit structure. Contains phase shifter hierarchy circuits. In this embodiment, the array antenna 210 includes 12 antenna units, and the phase shifter hierarchy circuit in the beamforming circuit 120 is implemented according to the above-mentioned hierarchical modular concept of FIG. 2A, so that antennas of the same hierarchy The sub-arrays of the units share a set of control signals to control the corresponding phase shifters, and then the superposition effect generated by the hierarchical structure of the phase shifters is used to generate the signals required by each antenna unit of the array antenna 210, thereby Achieve beamforming.

在第3圖中,該相移器階層電路用以接收3個輸入訊號以輸出12個輸出訊號,且包括以階層方式耦接為3(P=3)個階層之複數個相移器(221、222、223)。該3個階層之相移器分別接收該等相位控制訊號所分之3組相位控制訊號CS1~CS2、CS3~CS4、CS5~CS7。詳細而言,第1階層之相移器221分別接收第1組之2個相位控制訊號CS1~CS2。第2階層之相移器222分別接收第2組之2個相位控制訊號CS3~CS4。第3階層之相移器223分別接收第3組之3個相位控制訊號CS5~CS7。 In FIG. 3, the phase shifter hierarchy circuit is used to receive 3 input signals to output 12 output signals, and includes a plurality of phase shifters (221 that are hierarchically coupled into 3 (P = 3) levels) , 222, 223). The three-level phase shifters respectively receive three sets of phase control signals CS1 ~ CS2, CS3 ~ CS4, CS5 ~ CS7 divided by the phase control signals. In detail, the phase shifter 221 of the first stage receives the two phase control signals CS1 to CS2 of the first group, respectively. The phase shifter 222 of the second stage receives the two phase control signals CS3 to CS4 of the second group, respectively. The phase shifter 223 of the third layer receives three phase control signals CS5 to CS7 of the third group, respectively.

此外,如第3圖所示,在該相移器階層電路中,該等輸入訊號SI之一者(如第3圖中最上方所示之輸入訊號)係耦接於該相移器階層電路之一相移器分路,該相移器分路包含:第3階層至第1階層中各階層之一相移器(如圖3中最上方所示之相移器223、222、221),其係以串聯方式而與該等天線單元之一者(如第3圖中最上方所示之天線單元)耦接。此外,在該相移器階層電路中,輸入訊號SI亦可透過不同的相移器分路而與不同天線單元耦接。藉此,該相移器階層電路應用了訊號之相位的疊合作用,以產生出陣列天線210之各天線單元所需的訊號,藉此達成波束成形。 In addition, as shown in FIG. 3, in the phase shifter hierarchy circuit, one of the input signals SI (such as the input signal shown at the top in FIG. 3) is coupled to the phase shifter hierarchy circuit. One of the phase shifter branches, which includes: a phase shifter of each of the layers from the third layer to the first layer (such as the phase shifters 223, 222, and 221 shown at the top in FIG. 3) It is coupled in series with one of these antenna elements (such as the antenna element shown at the top in FIG. 3). In addition, in the phase shifter hierarchical circuit, the input signal SI can also be coupled to different antenna units through different phase shifter branches. As a result, the phase shifter hierarchy circuit uses a superposition of the phases of the signals to generate the signals required by each antenna unit of the array antenna 210, thereby achieving beamforming.

此外,為了訊號的分配,在依據圖3的本實施例實現時,該層階式電路結構更可以包括:複數個功率分配器250,該等個階層之間係以該等功率分配器來耦接。然而,本發明的實現方式並不受此例限制;在實現時,當可使用功率分配器或其他電路元件於系統中以產生天線所需要的訊號。 In addition, for signal distribution, when implemented according to the embodiment of FIG. 3, the hierarchical circuit structure may further include a plurality of power distributors 250, and the power distributors are coupled between the layers. Pick up. However, the implementation of the present invention is not limited by this example; in implementation, when a power divider or other circuit elements can be used in the system to generate the signals required by the antenna.

第4圖係為第3圖中波束成形電路對相位控制訊號所對應的相位值進行疊加之一實施例的示意圖。如圖4所示之表格中,行401之各欄位係表示第3圖中第1階層之相移器221分別接收第1組2個相位控制訊號CS1~CS2所對應產生的相位值。行402之各欄位係表示第3圖中第2階層之相移器222分別接收第2組之2個相位控制訊號CS3~CS4所對應產生的相位值。行403之各欄位係表示第3圖中第3階層之相移器223分別接收第3 組之3個相位控制訊號CS5~CS7所對應產生的相位值。經過相移器的相互疊合作用,最後可得出如列400所示的12個相位值;故此,該相移器階層電路最後產生出陣列天線210之12個天線單元所需的訊號,藉此達成波束成形。 FIG. 4 is a schematic diagram of an embodiment in which the beam forming circuit in FIG. 3 superimposes a phase value corresponding to a phase control signal. As shown in the table shown in FIG. 4, each field in row 401 indicates that the phase shifter 221 in the first layer in FIG. 3 receives the phase values corresponding to the first two phase control signals CS1 to CS2, respectively. Each field in row 402 indicates that the phase shifter 222 at the second level in FIG. 3 receives the phase values corresponding to the two phase control signals CS3 to CS4 in the second group, respectively. Each field in row 403 indicates that the phase shifter 223 at the third level in FIG. 3 receives the phase values corresponding to the three phase control signals CS5 to CS7 of the third group, respectively. After the phase shifters overlap with each other, 12 phase values can be obtained as shown in column 400; therefore, the phase shifter hierarchy circuit finally generates the signals required by the 12 antenna elements of the array antenna 210. This achieves beamforming.

請再觀察第3圖及第4圖,在陣列天線裡由於波束掃描所需要的是天線單元之間的相位差,也就是說相位是相對的;故此,可以將第3圖的陣列天線210的第一個天線單元的相位視為基準,所以第一個移相器提供的相位可以為0度。相似地,針對其他天線單元的階層,亦可依序定義出相位的基準,並提供該階層而言之相對的相位差。故此,如第4圖所示之實施例,有部分的相移器所對應要產生的相位值為0。 Please look at Figures 3 and 4 again. In an array antenna, because the beam scanning requires the phase difference between the antenna elements, that is, the phases are relative; therefore, the array antenna 210 of Figure 3 can be The phase of the first antenna element is considered as the reference, so the phase provided by the first phase shifter can be 0 degrees. Similarly, for the hierarchy of other antenna units, the phase reference can also be defined in order, and the relative phase difference for this hierarchy is provided. Therefore, as in the embodiment shown in FIG. 4, some phase shifters corresponding to the phase value to be generated are zero.

承上,關於相位基準之觀念可以進一步應用於本發明之上述實施例中,以達到進一步之電路元件及控制訊號的簡化。如對於上述第3圖之實施例中,將陣列天線210中各階層中做為相位基準的天線單元所對應的階層中的相移器省略,以達到減少所需之相移器及控制訊號的數目。舉例而言,請再參考第3圖、第4圖和第5圖,在第3圖中三個階層所對應之相移器共有21個,每個階層的天線單元之子陣列裡都有一個相位基準,也就是第4圖中表示所需提供相位為0度的欄位,故可以選擇性地省略該欄位位置所對應之相移器以達到簡化的效果。如第5圖所示,在陣列天線系統20A之波束成形電路220A中,相移器階層電路係依據第3圖及第4圖,將上述 相位基準為0度的相移器省略以後所得到之一實施例。 In conclusion, the concept of phase reference can be further applied to the above embodiments of the present invention to achieve further simplification of circuit components and control signals. For example, in the embodiment shown in FIG. 3, the phase shifter in the hierarchy corresponding to the antenna unit in each layer of the array antenna 210 as the phase reference is omitted to reduce the required phase shifter and control signal. number. For example, please refer to Figures 3, 4, and 5 again. In Figure 3, there are 21 phase shifters corresponding to the three levels, and there is a phase in the sub-array of the antenna unit of each level. The reference, that is, the fourth figure indicates that the field with a phase of 0 degrees is required to be provided, so the phase shifter corresponding to the position of the field can be selectively omitted to achieve a simplified effect. As shown in FIG. 5, in the beam forming circuit 220A of the array antenna system 20A, the phase shifter hierarchy circuit is obtained by omitting the phase shifter whose phase reference is 0 degrees according to FIGS. 3 and 4. An embodiment.

表1係示意第5圖之實施例中波束成形電路相較於習知陣列天線之相移器電路的電路簡化結果。由表1可見,相較於習知電路所使用的眾多相位控制訊號及相位控制訊號線,依據此實施例中所需之相位控制訊號(或相位控制訊號線)的數目為習知電路中所需者的1/3而已,如此將大大有助於整體系統之電路簡化,此外後端控制電路如控制單元230之實現亦可進一步的得以簡化。 Table 1 shows the simplified results of the beamforming circuit in the embodiment of FIG. 5 compared with the phase shifter circuit of the conventional array antenna. As can be seen from Table 1, compared to the many phase control signals and phase control signal lines used in the conventional circuit, the number of phase control signals (or phase control signal lines) required in this embodiment is the number used in the conventional circuit. It is only 1/3 of the demand. This will greatly facilitate the circuit simplification of the overall system. In addition, the implementation of back-end control circuits such as the control unit 230 can be further simplified.

如第5圖所示,因經過簡化,原第3圖中各組之相位控制訊號亦得以省略,第5圖中省略了第3圖中的相位控制訊號CS1、CS3、CS5。故此於第5圖中該等相移器中所需的該等相位控制訊號的數目為T=M-P=7-3=4。 As shown in FIG. 5, the phase control signals of each group in the original FIG. 3 are also omitted due to simplification, and the phase control signals CS1, CS3, and CS5 in FIG. 3 are omitted in FIG. 5. Therefore, the number of the phase control signals required in the phase shifters in FIG. 5 is T = M-P = 7-3 = 4.

此外,因經過簡化,在如第5圖所示之相移器階層電路中,存在該等輸入訊號之一者(如第5圖中最上方之輸入 訊號SI)係耦接於該相移器階層電路之一相移器分路,該相移器分路係與該等天線單元之一者(如第5圖中最上方之天線單元)耦接。再者,在該相移器階層電路中,該等輸入訊號之一者(如第5圖中最上方之輸入訊號SI以外者)係耦接於該相移器階層電路之一相移器分路,該相移器分路包含:第P(如P=3)階層至第1階層中之q個相移器,該q個相移器係以串聯方式而與該等天線單元之一者耦接(如第5圖中最上方之天線單元以外者),其中1qP。 In addition, due to the simplification, in the phase shifter hierarchy circuit shown in FIG. 5, one of the input signals (such as the uppermost input signal SI in FIG. 5) is coupled to the phase shifter. A phase shifter branch of one of the hierarchical circuits is coupled to one of the antenna units (such as the uppermost antenna unit in FIG. 5). Furthermore, in the phase shifter hierarchy circuit, one of the input signals (such as the uppermost input signal SI in FIG. 5) is coupled to a phase shifter branch of the phase shifter hierarchy circuit. The phase shifter branch includes: q phase shifters from the P (eg, P = 3) level to the first level, the q phase shifters are connected in series with one of the antenna units Coupling (other than the top antenna unit in Figure 5), where 1 q P.

誠然,本發明之實現方式並不受第5圖之例子限制;如作為基準的天線單元可以為其他任一天線單元,或可定義基準之相位為0或不同數值,或進行簡化後仍然保留其中部分相移器等等,上述任何可能變化皆視為本發明之實施例。 It is true that the implementation of the present invention is not limited to the example in FIG. 5; for example, the antenna unit used as the reference may be any other antenna unit, or the phase of the reference may be defined as 0 or a different value, or retained after simplification. For some phase shifters, etc., any possible changes mentioned above are considered as embodiments of the present invention.

第6圖係為第3圖及第5圖之階層式模組化陣列天線系統依據第4圖中的相位值所得之輻射場型圖,其中陣列天線210產生出偏移角度為10度之波束成形效果。 FIG. 6 is a radiation field pattern obtained by the hierarchical modular array antenna system of FIGS. 3 and 5 according to the phase values in FIG. 4, and the array antenna 210 generates a beam with an offset angle of 10 degrees. Forming effect.

以下說明使用加法器階層電路之波束成形電路的實現方式:在一些實施例中,該層階式電路結構包括:加法器階層電路及複數個相移器。該加法器階層電路,用以依據該等相位控制訊號所對應的複數個相位值及該等相位值之疊加而產生複數個輸出相位控制訊號,該加法器階層電路包括以階層方式耦接為P-1個階層之複數個加法器。該等相移器,係耦接於該加法器階層電路,用以依據該等輸入訊號及 該等輸出相位控制訊號以輸出該等輸出訊號,其中P3。 The following describes the implementation of a beamforming circuit using an adder hierarchical circuit. In some embodiments, the hierarchical circuit structure includes: an adder hierarchical circuit and a plurality of phase shifters. The adder hierarchical circuit is configured to generate a plurality of output phase control signals according to a plurality of phase values corresponding to the phase control signals and a superposition of the phase values. The adder hierarchical circuit includes a hierarchical coupling to P Multiple adders for -1 levels. The phase shifters are coupled to the adder-level circuit to output the output signals according to the input signals and the output phase control signals, where P 3.

請參考第7圖,係為本發明階層式模組化陣列天線系統之另一實施例的方塊圖。如第7圖所示,陣列天線系統30係基於第1圖之架構,包括陣列天線210及波束成形電路320。該波束成形電路320之基於相移器之階層式電路結構,包括:加法器階層電路及複數個相移器321,該加法器階層電路包括以階層方式耦接為P-1(P=3)個階層之複數個加法器331、332。在本實施例中,該波束成形電路320亦係依據上述第2A圖的階層式模組化的觀念而實現,並使同一層階之天線單元之子陣列共用一組控制訊號來加以控制相對應的加法器,進而應用加法器之階層結構所產生的疊合作用,以控制相移器,進而產生出陣列天線210之各天線單元所需的訊號,藉此達成波束成形。 Please refer to FIG. 7, which is a block diagram of another embodiment of the hierarchical modular array antenna system of the present invention. As shown in FIG. 7, the array antenna system 30 is based on the architecture of FIG. 1 and includes an array antenna 210 and a beam forming circuit 320. The phase-shifter-based hierarchical circuit structure of the beamforming circuit 320 includes: an adder-level circuit and a plurality of phase-shifters 321. The adder-level circuit includes a hierarchical coupling to P-1 (P = 3) A plurality of adders 331, 332 of each hierarchy. In this embodiment, the beam forming circuit 320 is also implemented according to the hierarchical modular concept of the above FIG. 2A, and the sub-arrays of antenna units of the same level share a set of control signals to control the corresponding ones. The adder, and then the superposition effect generated by the hierarchical structure of the adder, is used to control the phase shifter, thereby generating the signals required by each antenna unit of the array antenna 210, thereby achieving beamforming.

在第7圖中,該P-1(如P=3)個階層分別接收該P組相位控制訊號中第1組至第P-1組相位控制訊號,其中該等加法器中第k階層之加法器(如第1階層之加法器331)分別接收該等相位控制訊號中第k組之最多Nk個相位控制訊號(如第1組之相位控制訊號CS1~CS2),其中1kP-1。此外,如第7圖所示,該第P-1階層之加法器(如第2階層之加法器332)更分別接收該等相位控制訊號中第P組之最多NP個相位控制訊號(如第3組之相位控制訊號CS5~CS7)。 In FIG. 7, the P-1 (eg, P = 3) levels respectively receive the phase control signals from the first group to the P-1 group of the phase control signals of the P group, where the k-th layer of the adders The adder (such as the adder 331 of the first layer) respectively receives a maximum of Nk phase control signals of the kth group of the phase control signals (such as the phase control signals CS1 ~ CS2 of the first group), of which 1 k P-1. In addition, as shown in FIG. 7, the adder of the P-1 level (such as the adder 332 of the second level) receives the maximum NP phase control signals of the P group in the phase control signals (such as the 3 sets of phase control signals CS5 ~ CS7).

此外,在第7圖中,在該加法器階層電路中,該 等相位控制訊號中第P組之一相位控制訊號(如第3組中之CS5)係耦接於該加法器階層電路之一加法器分路,該加法器分路包含:第P-1階層至第1階層中各階層之一加法器(如第第2階層至第1階層中各階層之加法器332和331),其係以串聯方式而耦接於該等相移器之一者(如第7圖中最上方的相移器321)。 In addition, in FIG. 7, in the adder hierarchical circuit, one of the phase control signals of the P group (such as CS5 in the third group) is coupled to one of the adder hierarchical circuits. Adder branch, the adder branch includes: one of the adders from the P-1 level to the first level (such as the adders 332 and 331 of each level from the second level to the first level), which It is coupled in series to one of the phase shifters (such as the uppermost phase shifter 321 in FIG. 7).

關於相位基準之觀念可以進一步應用於本發明之上述依據第7圖及其代表之實施例中,以達到進一步之電路元件及控制訊號的簡化。第8圖係為第7圖的階層式模組化陣列天線系統經簡化後之一實施例的方塊圖。第7圖由於亦係基於相位的疊加作用,故亦可採用如第4圖之實施例來加以控制,故此,可依據與前述第5圖之實施例中所討論的方式對第7圖加以簡化,省略第7圖中的加法器,故達成如圖8所示的電路結構。 The concept of the phase reference can be further applied to the above-mentioned embodiment of the present invention based on FIG. 7 and its representative to achieve further simplification of circuit components and control signals. FIG. 8 is a block diagram of a simplified embodiment of the hierarchical modular array antenna system of FIG. 7. Figure 7 is also based on the superposition of the phase, so it can also be controlled by the embodiment shown in Figure 4. Therefore, Figure 7 can be simplified according to the method discussed in the previous embodiment of Figure 5. Since the adder in FIG. 7 is omitted, the circuit structure shown in FIG. 8 is achieved.

舉例而言,在第8圖之陣列天線系統中30A中,波束成形電路320A之加法器階層電路中,該等相位控制訊號中第P組之一相位控制訊號(如第8圖中CS6)係耦接於該加法器階層電路之一加法器分路,該另一加法器分路係耦接於該等相移器之一者(如第8圖中第4個相移器)。 For example, in the array antenna system 30A in FIG. 8 and the adder layer circuit of the beam forming circuit 320A, one of the phase control signals of the P group (such as CS6 in FIG. 8) is the phase control signal. One of the adder hierarchical circuits is coupled to an adder branch, and the other adder branch is coupled to one of the phase shifters (such as the fourth phase shifter in FIG. 8).

又例如,在第8圖之陣列天線系統中30A中,在該加法器階層電路中,該等相位控制訊號中第P組之一相位控制訊號(如第8圖中CS6)亦可以耦接於該加法器階層電路之一加法器分路,該加法器分路包含:第P-1階層至第1階層中之q個 加法器,該q個加法器係以串聯方式而耦接於該等相移器之一第二者,其中1q<P-1。 For another example, in the array antenna system 30A in FIG. 8, in the adder hierarchical circuit, one of the phase control signals in the P group (such as CS6 in FIG. 8) may be coupled to An adder branch of one of the adder hierarchical circuits, the adder branch includes: q adders from the P-1 level to the first level, the q adders are coupled in series to these One of the phase shifters second, where 1 q <P-1.

相較於傳統之一後端電路模組對一天線單元的架構,依據本發明之實施例之陣列天線系統能達到簡化後端電路模組數量的效果。又該等電路模組不應被侷限於相移器,而是在本發明所屬技術領域中具有相同知識者之理解範圍內,所能置換之射頻元件均應包含在本發明內,諸如低雜訊放大器、功率放大器及功率衰減器等射頻元件、或是該等射頻元件中之各種組合,皆可同樣利用數量較少於天線單元數目的控制訊號來加以控制,從而簡化整體電路。此外,依據前述的以P=3為例的實施例,更可推廣至P>3以上的情況,如N=60時,因N=5*3*2*2,故亦可利用實現4個階層之天線單元所對應的波束成形電路,如以相移器階層電路或加法器階層電路來實現。如N=72時,因N=3*3*2*2*2,故亦可利用實現5個階層之天線單元所對應的波束成形電路。 Compared with a conventional back-end circuit module to an antenna unit, the array antenna system according to the embodiment of the present invention can achieve the effect of simplifying the number of back-end circuit modules. Such circuit modules should not be limited to phase shifters, but should be understood by those with the same knowledge in the technical field to which the present invention pertains. All radio frequency components that can be replaced should be included in the present invention, such as low noise. Radio frequency components such as signal amplifiers, power amplifiers and power attenuators, or various combinations of these radio frequency components, can also be controlled using control signals that are smaller than the number of antenna units, thereby simplifying the overall circuit. In addition, according to the foregoing embodiment using P = 3 as an example, it can be extended to the case where P> 3 or more. For example, when N = 60, because N = 5 * 3 * 2 * 2, 4 can also be used to achieve The beam forming circuit corresponding to the hierarchical antenna unit is implemented by a phase shifter hierarchical circuit or an adder hierarchical circuit. For example, when N = 72, since N = 3 * 3 * 2 * 2 * 2, it is also possible to use a beamforming circuit corresponding to an antenna unit of 5 levels.

此外,在一些實施例中,階層式模組化主動式週期陣列天線系統更包含處理單元230,前述之波束成形電路係由該處理單元以數位化的方式來控制。。該控制單元230可利用如處理器、數位訊號處理器,或是以可程式化的積體電路如微控制器、元件可程式邏輯閘陣列(FPGA,Field Programmable Gate Array)或特殊應用積體電路(application specific integrated circuit,ASIC)之類的電路來實現,亦可使用 專屬的電路或模組來實現。 In addition, in some embodiments, the hierarchical modular active periodic array antenna system further includes a processing unit 230, and the aforementioned beamforming circuit is controlled digitally by the processing unit. . The control unit 230 may use, for example, a processor, a digital signal processor, or a programmable integrated circuit such as a microcontroller, a Field Programmable Gate Array (FPGA), or a special application integrated circuit. (application specific integrated circuit, ASIC), or a dedicated circuit or module.

在實作時,可以利用任一種波束成形之演算法,依據前述階層式模組化觀念來建構出欲得之輻射場型,並可選擇性地配合最佳化的演算法,諸如粒子群演算法、差分演算法、動態差異演算法、類電磁演算法、或基因演算法中任一種,演算出最佳的陣列天線中天線單元的相位及/或振幅等參數,並預先以表格方式儲存於或從外部下載於控制單元230或控制單元230之記憶單元中。藉此,依據本發明之陣列天線系統運作時,可藉由控制單元230依據以查表方式取得控制各天線單元的相位及/或振幅等參數,以便產生相對應的控制訊號如前述之相位控制訊號,以形成所需要的波束。然而,本發明之實現方式並不受此例子限制。例如,在另一實施例中,控制單元230亦可以透過運算的方式,依據前述階層式模組化觀念來建構出欲得之輻射場型,並據以產生各天線單元的相位及/或振幅等參數,以便產生相對應的控制訊號如前述之相位控制訊號,以形成所需要的波束。例如,利用基因演算法作優化運算,但其他能達到相同目的之運算法。該基因演算法作優化運算時會將參數轉換成以位元表示的染色體,並且建立表格來做對照,故此方式剛好與數位式的元件做對應,所以可直接帶入基因演算法,計算出最符合期望之波束場型所需要的參數,藉以據以控制該陣列天線系統中用於波束形成的衰減器與相移器。 In practice, any beamforming algorithm can be used to construct the desired radiation field pattern according to the aforementioned hierarchical modular concept, and can optionally cooperate with the optimized algorithm, such as particle swarm algorithm. Either method, differential algorithm, dynamic difference algorithm, electromagnetic-like algorithm, or genetic algorithm to calculate the parameters such as the phase and / or amplitude of the antenna elements in the optimal array antenna and store them in a table in advance. Or downloaded from the outside into the control unit 230 or the memory unit of the control unit 230. Therefore, when the array antenna system according to the present invention operates, the control unit 230 can obtain parameters such as phase and / or amplitude to control each antenna unit in a table lookup manner, so as to generate corresponding control signals such as the aforementioned phase control. Signal to form the required beam. However, the implementation of the present invention is not limited by this example. For example, in another embodiment, the control unit 230 may also calculate the desired radiation field type according to the foregoing hierarchical modular concept through calculation, and generate the phase and / or amplitude of each antenna unit accordingly. And other parameters in order to generate corresponding control signals such as the aforementioned phase control signals to form the required beam. For example, genetic algorithms are used for optimization, but other algorithms can achieve the same purpose. When the genetic algorithm is optimized, the parameters are converted into chromosomes expressed in bits, and a table is created for comparison. Therefore, this method just corresponds to digital elements, so it can be directly brought into the genetic algorithm to calculate the most The parameters needed to meet the desired beam field pattern are used to control the attenuator and phase shifter for beamforming in the array antenna system.

以下舉例說明陣列天線單元之階層式模組化的理論推廣至二維陣列天線系統之應用:若以二維平面陣列天線為例,天線單元數目為N=Nx×Ny,可分為三階層,譬如如圖9所示之二維陣列天線,N=64=8×8,Nx=8,Ny=8,可分為3個階層,如第1階層之子陣列G1,第2階層之子陣列G2,第3階層之子陣列G3,但本發明並不受此限制。該等陣列天線單元形成之天線模組總和可表示為: 其中表示為各天線單元之輻射,分別代表nmth 的激發振幅與相位,“0”表示第0th層,該陣列天線單元在未分組前可表示為: 若以表示為陣列單元在座標原點之天線輻射,則公式(1)可表示為: 其中為陣列因子(AF,array factor),θ與 “在可見空間”之方位。 The following example illustrates the application of the hierarchical modularization theory of the array antenna unit to the two-dimensional array antenna system. If a two-dimensional planar array antenna is taken as an example, the number of antenna units is N = Nx × Ny, which can be divided into three levels. For example, the two-dimensional array antenna shown in Figure 9, N = 64 = 8 × 8, Nx = 8, Ny = 8, can be divided into three levels, such as the sub-array G1 of the first level and the sub-array G2 of the second level, The third-level sub-array G3, but the present invention is not limited thereto. The sum of the antenna modules formed by the array antenna units can be expressed as: among them Expressed as the radiation of each antenna unit, versus Representing the excitation amplitude and phase of nm th respectively, “0” represents the 0 th layer, and the array antenna element can be expressed as: If Expressed as the antenna radiation of the array unit at the origin of the coordinates, then formula (1) can be expressed as: among them Is the array factor (AF, array factor), θ and Orientation "in visible space".

第一階層內天線模組可表示為: 第二階層內之天線模組可表示為: 以公式(4)~(5)可推得所需要之相位為: The antenna module in the first layer can be expressed as: The antenna module in the second layer can be expressed as: Using formulas (4) to (5), the required phase can be derived as:

故此,依據上述公式(6),便可得出二維陣列天線系統中波束形成所需要的相位;據此,可以利用處理單元來控制後端電路的相移器或加法器,依據前述之各實施例,於不同層階中依據公式(6)來驅動陣列天線。 Therefore, according to the above formula (6), the phase required for beamforming in a two-dimensional array antenna system can be obtained; accordingly, a processing unit can be used to control the phase shifter or adder of the back-end circuit. In the embodiment, the array antenna is driven according to formula (6) in different levels.

舉例來說,一陣列天線係使用5位元的數位式步階衰減器與相移器做為後端電路,則該數位式步階衰減器在本實施例中可調整該陣列天線之輸入能量比例的方式控制,其中5位元即表示有25=32種變化,故功率可以分為0~-32dB;而相移器在本實施例中可調整該陣列天線之輸入相位的方式控制,其中5位元即表示有25=32種變化。故此,對於上述階層式模組化主動式週期陣列天線系統之任一實施例,皆可利用處理單元,以數位化方式控制後端電路模組,從而達成各種波束形成的運作。然而,本發明之實現方式並不受相移器等元件之限制。譬如,亦可採用串列式控制的數位相移器於 本發明之實施例中。 For example, if an array antenna uses a 5-bit digital step attenuator and phase shifter as the back-end circuit, the digital step attenuator can adjust the input energy of the array antenna in this embodiment. Proportional mode control, in which 5 bits means 25 = 32 variations, so the power can be divided into 0 ~ -32dB; and the phase shifter in this embodiment can adjust the input phase control of the array antenna, where 5 bits means 25 = 32 variations. Therefore, for any embodiment of the above-mentioned hierarchical modular active periodic array antenna system, the processing unit can be used to digitally control the back-end circuit module to achieve various beamforming operations. However, the implementation of the present invention is not limited by components such as a phase shifter. For example, a serially controlled digital phase shifter can also be used in the embodiment of the present invention.

請參閱第10圖,係為本發明之第二實施例之階層式模組化陣列天線的第一結果比較圖,其中曲線41係使用本發明上述陣列天線系統的實施例(天線單元數目N=36)並以基因演算做為波束形成之陣列因子,曲線42則為傳統使用36個衰減器形成Tschebyscheff Taper的陣列因子。其中圖10係藉由調整天線單元的輸入能量比重,不只將後端相位器之控制訊號線從傳統架構的36組減少至10組(T=M=10)或6組(T=M-P=4;P=4),更達到較佳之陣列天線旁波束的抑制效果。 Please refer to FIG. 10, which is a first result comparison diagram of a hierarchical modular array antenna according to the second embodiment of the present invention, where curve 41 is an embodiment using the above-mentioned array antenna system of the present invention (the number of antenna elements N = 36) The gene calculation is used as the array factor for beamforming, and curve 42 is the array factor for the traditional Tschebyscheff Taper formed by 36 attenuators. Among them, Figure 10 is not only reducing the control signal line of the back-end phaser from 36 sets of traditional architecture to 10 sets (T = M = 10) or 6 sets (T = MP = 4) by adjusting the input energy proportion of the antenna unit. ; P = 4), to achieve better suppression of beams beside array antennas.

請參閱第11圖,係為本發明之第二實施例之階層式模組化陣列天線的第二結果比較圖,其中曲線51係使用本發明上述陣列天線系統的實施例(天線單元數目N=36)並以基因演算做為波束形成之陣列因子,曲線52則為傳統使用36個相位器並使用共軛相位(conjugation phase),使天線主波束掃描到θ(theta)為20度的條件下的陣列因子。其中圖5係藉由相移器調整天線的輸入相位來使輻射主波束掃描,不只將後端相位器之控制訊號線從傳統架構的36組減少至10組(T=M=10)或6組(T=M-P=4;P=4),並且達到波束掃描的效果,亦將良好的抑制旁波束。 Please refer to FIG. 11, which is a comparison diagram of the second result of the hierarchical modular array antenna according to the second embodiment of the present invention, where curve 51 is an embodiment using the above-mentioned array antenna system of the present invention (the number of antenna elements N = 36) Gene calculation is used as the array factor for beamforming. Curve 52 is the traditional use of 36 phasers and the conjugation phase, so that the main beam of the antenna is scanned to θ (theta) at 20 degrees. The array factor. Among them, Figure 5 is to adjust the input phase of the antenna by a phase shifter to scan the main beam of radiation, not only reducing the control signal line of the back-end phaser from 36 groups of traditional architecture to 10 groups (T = M = 10) or 6 Group (T = MP = 4; P = 4), and achieve the effect of beam scanning, will also well suppress the side beam.

請參閱第12圖,係為本發明之第二實施例之階層式模組化陣列天線的第三結果比較圖,其中曲線61係使用本發明上述陣列天線系統的實施例(天線單元數目N=36)並以基 因演算做為波束形成之陣列因子,曲線62則為傳統使用36個相位器並使用36個衰減器形成切比雪夫(Tschebyscheff)Taper及使用共軛相位(conjugation phase),使天線主波束掃描到θ(theta)為20度的條件下的陣列因子。其中圖12係同時使用衰減器與相移器達到波束掃描與旁波束的抑制,此結構不只大幅減少後端元件的數量,而且更精確地指向期望之波束方向,並得到較佳之旁波束。 Please refer to FIG. 12, which is a comparison diagram of the third result of the hierarchical modular array antenna according to the second embodiment of the present invention, where curve 61 is an embodiment using the above-mentioned array antenna system of the present invention (the number of antenna elements N = 36) The genetic algorithm is used as the beamforming array factor, and curve 62 is the traditional use of 36 phasers and 36 attenuators to form a Tschebyscheff Taper and a conjugation phase to make the antenna The main beam scans to an array factor with θ (theta) of 20 degrees. Among them, Fig. 12 uses both an attenuator and a phase shifter to achieve beam scanning and side beam suppression. This structure not only greatly reduces the number of back-end components, but also points more precisely to the desired beam direction and obtains better side beams.

上述之實施例僅為例示性說明本發明之特點及其功效,而非用於限制本發明之實質技術內容的範圍。任何熟習此技藝之人士均可在不違背本發明之精神及範疇下,對上述實施例進行修飾與變化。因此,本發明之權利保護範圍,應如後述之申請專利範圍所列。 The above-mentioned embodiments are merely illustrative for describing the features and effects of the present invention, and are not intended to limit the scope of the essential technical content of the present invention. Anyone skilled in the art can modify and change the above embodiments without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the rights of the present invention should be listed in the scope of patent application described later.

Claims (10)

一種階層式模組化主動式陣列天線系統,該系統係包含:一陣列天線,包括複數個天線單元,係以陣列方式排列且數量為N;以及一波束成形電路,其接收複數個輸入訊號、複數個相位控制訊號,該波束成形電路包括:基於相移器之階層式電路結構,該階層式電路結構依據該等相位控制訊號所對應的複數個相位值及該等相位值之疊加而基於該等輸入訊號來輸出複數個輸出訊號,該等輸出訊號係分別耦接於該等天線單元以產生一輻射場型,其中該等相位控制訊號的數量 為T,T<N,其中 , ,M-P T M,Ni(i=1 至P)、M、P皆為正整數,P 3,Ni 2。 A hierarchical modular active array antenna system includes: an array antenna including a plurality of antenna units, which are arranged in an array and the number of which is N; and a beamforming circuit that receives a plurality of input signals, A plurality of phase control signals, the beamforming circuit includes: a hierarchical circuit structure based on a phase shifter, the hierarchical circuit structure is based on a plurality of phase values corresponding to the phase control signals and a superposition of the phase values based on the The input signals are output to output a plurality of output signals. The output signals are respectively coupled to the antenna units to generate a radiation field pattern. The number of the phase control signals is T, T <N, where , , MP T M, Ni (i = 1 to P), M, P are positive integers, P 3, Ni 2. 如申請專利範圍第1項所述之轉速量測裝置校正系統,其中,該訊號產生單元係用以產生一特定頻率之電訊號。     The calibration system of the rotational speed measuring device according to item 1 of the scope of patent application, wherein the signal generating unit is used to generate a specific frequency electrical signal.     如申請專利範圍第1項所述之轉速量測裝置校正系統,其中,該特定頻率係由訊號產生器電性連接一原子鐘,透過該原子鐘得到原級標準頻率。     The calibration system of the rotational speed measuring device according to item 1 of the scope of patent application, wherein the specific frequency is electrically connected to an atomic clock by a signal generator, and the original standard frequency is obtained through the atomic clock.     如申請專利範圍第1項所述之轉速量測裝置校正系統,其中,該發光單元係為一LED或雷射。     According to the calibration system of the rotational speed measuring device according to item 1 of the patent application scope, wherein the light emitting unit is an LED or a laser.     如申請專利範圍第1項所述之轉速量測裝置校正系統,其中,該特定頻率係用以模擬不同轉速度值。     The correction system of the rotational speed measuring device according to item 1 of the scope of the patent application, wherein the specific frequency is used to simulate different rotational speed values.     一種轉速量測裝置校正方法,係利用比對方式進行轉速裝 置之校正系統,該方法步驟係包括:提供一特定頻率之電訊號;接收該電訊號產生特定頻率之光訊號;接收該光訊號,產生一轉速器示值,其中,該電訊號透過運算得到一轉速標準值,藉由比對該轉速標準值及該器示值之差異達到校正該轉速裝置之目的。     A method for calibrating a rotational speed measuring device is a calibration system for a rotational speed device by using a comparison method. The method steps include: providing a specific frequency electrical signal; receiving the electrical signal to generate a specific frequency optical signal; receiving the optical signal, A tachometer indication value is generated, wherein the electric signal obtains a standard value of the tachometer through calculation, and the purpose of calibrating the tachometer device is achieved by comparing the difference between the standard value of the tachometer value and the tachometer value.     如申請專利範圍第6項所述之轉速量測裝置校正方法,其中,該特定頻率之電訊號係透過訊號產生單元產生。     The method for calibrating the rotational speed measuring device according to item 6 of the scope of patent application, wherein the electrical signal of the specific frequency is generated by a signal generating unit.     如申請專利範圍第6項所述之轉速量測裝置校正方法,其中,該特定頻率係由訊號產生器電性連接一原子鐘,透過該原子鐘得到原級標準頻率。     The calibration method of the rotational speed measuring device according to item 6 of the scope of the patent application, wherein the specific frequency is electrically connected to an atomic clock by a signal generator, and the original standard frequency is obtained through the atomic clock.     如申請專利範圍第6項所述之轉速量測裝置校正方法,其中,該光訊號係利用一LED或雷射產生。     The method for calibrating the rotational speed measuring device according to item 6 of the scope of patent application, wherein the optical signal is generated by using an LED or a laser.     如申請專利範圍第6項所述之轉速量測裝置校正方法,其中,該特定頻率係用以模擬不同轉速度值。     The method for calibrating the rotational speed measuring device according to item 6 of the scope of patent application, wherein the specific frequency is used to simulate different rotational speed values.    
TW105142211A 2016-12-20 2016-12-20 Active antenna system with hierarchical modularized mechanism TWI637560B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105142211A TWI637560B (en) 2016-12-20 2016-12-20 Active antenna system with hierarchical modularized mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105142211A TWI637560B (en) 2016-12-20 2016-12-20 Active antenna system with hierarchical modularized mechanism

Publications (2)

Publication Number Publication Date
TW201824644A true TW201824644A (en) 2018-07-01
TWI637560B TWI637560B (en) 2018-10-01

Family

ID=63640155

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105142211A TWI637560B (en) 2016-12-20 2016-12-20 Active antenna system with hierarchical modularized mechanism

Country Status (1)

Country Link
TW (1) TWI637560B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI698052B (en) * 2018-11-23 2020-07-01 耀登科技股份有限公司 High-frequency antenna device and antenna array thereof
TWI739181B (en) * 2019-10-24 2021-09-11 國立臺灣大學 A calibration method for a phased array antenna

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI257735B (en) * 2003-12-03 2006-07-01 Chung Shan Inst Of Science Hierarchical beam-forming architecture using linear antenna arrays
CN101185200B (en) * 2005-11-14 2011-07-20 桥扬科技有限公司 Multiple-antenna system for cellular communication and broadcasting
US8289203B2 (en) * 2009-06-26 2012-10-16 Src, Inc. Radar architecture
US20120309331A1 (en) * 2011-06-06 2012-12-06 Wilocity, Ltd. Modular millimeter-wave radio frequency system
US9124361B2 (en) * 2011-10-06 2015-09-01 Raytheon Company Scalable, analog monopulse network
US9516563B2 (en) * 2013-01-21 2016-12-06 Intel Corporation Apparatus, system and method of handover of a beamformed link
US20140210666A1 (en) * 2013-01-25 2014-07-31 Alexander Maltsev Apparatus, system and method of wireless communication via an antenna array

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI698052B (en) * 2018-11-23 2020-07-01 耀登科技股份有限公司 High-frequency antenna device and antenna array thereof
TWI739181B (en) * 2019-10-24 2021-09-11 國立臺灣大學 A calibration method for a phased array antenna

Also Published As

Publication number Publication date
TWI637560B (en) 2018-10-01

Similar Documents

Publication Publication Date Title
JP5226675B2 (en) Two-dimensional scanning phased array antenna system
TWI472150B (en) Variable phase shifter-attenuator
JP6694967B2 (en) Antenna device for radar sensor, method of manufacturing antenna device for radar sensor, and use of antenna device in radar sensor
Rocca Large array thinning by means of deterministic binary sequences
CN109952710A (en) Use the calibration for the active electronic control antenna that on piece programs
US10090605B2 (en) Active phased array antenna system with hierarchical modularized architecture
TW201824644A (en) Active array antenna system with hierarchical modularized mechanism comprising an array antenna and a simplified backbone beamforming circuit
EP0108670B1 (en) Feeding device for a scanning array antenna
Luther et al. A Low-Cost 2$\times $2 Planar Array of Three-Element Microstrip Electrically Steerable Parasitic Array Radiator (ESPAR) Subcells
JP6817740B2 (en) Analog beamforming systems and methods for direct radiation phased array antennas
ZU et al. Independent null steering by decoupling complex weights
JP5353709B2 (en) Systolic array and calculation method
Zhang et al. An antenna array initial condition calibration method for integrated optical phased array
Zhang et al. Integer linear programming roundoff method for arbitrary planar phased-array scanning
CN108761954A (en) A kind of two-dimension optical phased array disappears graing lobe and phase modulating method
JP5304802B2 (en) Array antenna and method of manufacturing array antenna
CN113361069B (en) Array antenna pattern synthesis method, system, antenna design and measurement method
US10741917B2 (en) Power division in antenna systems for millimeter wave applications
KR101007213B1 (en) Antenna combiner of radar system where many radiation patterns can be synthesized
GB2557963A (en) Active phased array antenna system with hierarchical modularized architecture
Ziolkowski et al. Metamaterial-based dispersion engineering to achieve high fidelity output pulses from a log-periodic dipole array
JP4787980B2 (en) Electron beam scanning antenna control circuit and electron beam scanning antenna apparatus provided with the control circuit
CN114035180B (en) Large-scale frequency control array nonlinear frequency offset generation circuit
Das et al. Thinning of elliptical antenna arrays using genetic algorithm
Haupt Calibration of cylindrical reflector antennas with linear phased array feeds