TW201822425A - Lithium battery control circuit and lithium battery charger - Google Patents

Lithium battery control circuit and lithium battery charger Download PDF

Info

Publication number
TW201822425A
TW201822425A TW105139628A TW105139628A TW201822425A TW 201822425 A TW201822425 A TW 201822425A TW 105139628 A TW105139628 A TW 105139628A TW 105139628 A TW105139628 A TW 105139628A TW 201822425 A TW201822425 A TW 201822425A
Authority
TW
Taiwan
Prior art keywords
current
signal
pmos transistor
coupled
voltage
Prior art date
Application number
TW105139628A
Other languages
Chinese (zh)
Other versions
TWI607618B (en
Inventor
洪崇智
江俊彥
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW105139628A priority Critical patent/TWI607618B/en
Application granted granted Critical
Publication of TWI607618B publication Critical patent/TWI607618B/en
Publication of TW201822425A publication Critical patent/TW201822425A/en

Links

Abstract

A lithium battery control circuit and a lithium battery charger are provided. The lithium battery charger includes the lithium battery control circuit. The lithium battery control circuit includes a smooth transition circuit and an off-time control circuit. The smooth transition circuit generates a first voltage according to a sense current signal and a feedback signal, and a second voltage according to a mode signal. The smooth transition circuit compares the first voltages with the second voltages to generate a reset signal. The off-time control circuit converts the feedback signal to generate a first current by a voltage to current mechanism, and generates a set signal by using the first current and a duty ratio signal. The present invention can prevent a surge current and an oscillation phenomenon by the smooth transition circuit. A switching frequency and a ripple size of an output current are controlled by the off-time control circuit.

Description

鋰電池控制電路以及鋰電池充電器Lithium battery control circuit and lithium battery charger

本發明是有關於一種鋰電池的充電技術,且特別是有關於一種可提升整體充電器的效率的鋰電池控制電路以及鋰電池充電器。The present invention relates to a charging technology for a lithium battery, and more particularly to a lithium battery control circuit and a lithium battery charger that can improve the efficiency of the overall charger.

圖1A是習知的鋰電池充電的等效電路圖。對於實際的鋰電池100而言,其內電阻Rbir並不是常數而是一個變動值。原因是內電阻Rbir受到相依的溫度、充電電流Ich、使用次數等的影響而變化。FIG. 1A is an equivalent circuit diagram of a conventional lithium battery charging. For the actual lithium battery 100, the internal resistance Rbir is not a constant but a variable value. The reason is that the internal resistance Rbir is changed by the influence of the dependent temperature, the charging current Ich, the number of times of use, and the like.

圖1B為鋰電池的內電阻與電流之間的相關示意圖。無論在充電情況或是放電情況下,對於較大的充電電流或是放電電流而言,鋰電池的內電阻Rbir將會有較大的電阻值。FIG. 1B is a schematic diagram showing the correlation between internal resistance and current of a lithium battery. Whether in the case of charging or discharging, the internal resistance Rbir of the lithium battery will have a large resistance value for a large charging current or discharging current.

圖1C為鋰電池的內電阻與電池容量之間的相關示意圖。無論在充電情況或是放電情況下,且當鋰電池在較低百分比的容量或較高百分比的容量時,鋰電池的內電阻Rbir也將會有較大的電阻值。1C is a schematic diagram showing the correlation between the internal resistance of a lithium battery and the battery capacity. Whether in the case of charging or discharging, and when the lithium battery is at a lower percentage capacity or a higher percentage capacity, the internal resistance Rbir of the lithium battery will also have a larger resistance value.

一般而言,對於鋰電池的進行充電時,可能會經歷多種類型的充電模式。舉例而言,小電流(trickle current,TC)模式、定電流(constant current,CC)模式、以及定電壓(constant voltage,CV)模式。圖2A為小電流模式至定電流模式的充電過程示意圖。圖2B為定電流模式至定電壓模式的充電過程示意圖。當由某一類型的充電模式轉換(或進入)另一類型的充電模式時,會在電路上產生突波電流而發生振盪,如圖2A的虛線圓圈210或圖2B的虛線圓圈220所示。In general, when charging a lithium battery, various types of charging modes may be experienced. For example, a trickle current (TC) mode, a constant current (CC) mode, and a constant voltage (CV) mode. 2A is a schematic diagram of a charging process from a small current mode to a constant current mode. 2B is a schematic diagram of a charging process from a constant current mode to a constant voltage mode. When another type of charging mode is switched (or entered) by a certain type of charging mode, a surge current is generated on the circuit to oscillate, as indicated by the dashed circle 210 of FIG. 2A or the dashed circle 220 of FIG. 2B.

在充電過程中,發生突波電流的原因可能如下之分析。在圖1A中,當充電器120偵測到電池電壓VB已經足夠高且在由定電流模式進入定電壓模式前,鋰電池100對應到較大的充電電流及較高的電池容量,分別如圖1B與圖1C所示。在此情況下的內電阻Rbir相對於在較小的充電電流及較低電池容量的情況將為大。基於大電流以及大電阻值,將在內電阻Rbir兩端有明顯的電壓降。當充電器120進入定電壓模式時,充電電流Ich變小,鋰電池100的內電阻Rbir也相對減少,將使得所述電壓降瞬間變小,並且使充電器120誤判為電池電壓VB不足,於是將定電壓模式轉換為定電流模式來操作。然而,所述電壓降將再度上升,充電器120再次進入定電壓模式,直到鋰電池100的電壓達到預設值,才停止振盪。During the charging process, the cause of the surge current may be analyzed as follows. In FIG. 1A, when the charger 120 detects that the battery voltage VB is sufficiently high and before entering the constant voltage mode from the constant current mode, the lithium battery 100 corresponds to a larger charging current and a higher battery capacity, respectively. 1B is shown in Figure 1C. The internal resistance Rbir in this case will be large relative to the case of a smaller charging current and a lower battery capacity. Based on the large current and large resistance values, there will be a significant voltage drop across the internal resistor Rbir. When the charger 120 enters the constant voltage mode, the charging current Ich becomes small, and the internal resistance Rbir of the lithium battery 100 also decreases relatively, which causes the voltage drop to become instantaneously small, and causes the charger 120 to misjudge that the battery voltage VB is insufficient, so The constant voltage mode is switched to the constant current mode to operate. However, the voltage drop will rise again, and the charger 120 enters the constant voltage mode again until the voltage of the lithium battery 100 reaches a preset value, and the oscillation is stopped.

以一般的鋰電池降壓充電器而言,當充電操作在後半階段(例如定電壓模式)時,電路架構中的降壓轉換器呈現為一個電壓模式降壓轉換器,故在降壓充電器的輸出端會呈現兩個重疊的極點。習知技術為了防止系統的振盪,採取設計較複雜的補償電路來解決穩定度問題,也因此增加了研發時間及成本。In the case of a general lithium battery buck charger, when the charging operation is in the second half (such as constant voltage mode), the buck converter in the circuit architecture appears as a voltage mode buck converter, so the buck charger The output will present two overlapping poles. In order to prevent the oscillation of the system, the conventional technology adopts a complicated design compensation circuit to solve the stability problem, thereby increasing the development time and cost.

由於用於充電器的補償電路相當複雜,且補償電路會佔據相當多的電路面積。基於考量充電器的整體電路及電池的安全性,還應該具有防止產生突波電流的電路或機制。Since the compensation circuit for the charger is quite complicated, the compensation circuit takes up a considerable amount of circuit area. Based on the overall circuit of the charger and the safety of the battery, it should also have a circuit or mechanism to prevent the generation of surge current.

-本發明提出一種鋰電池控制電路以及鋰電池充電器,藉以解決先前技術所述及的問題。- The present invention proposes a lithium battery control circuit and a lithium battery charger to solve the problems described in the prior art.

本發明提供一種鋰電池控制電路。鋰電池控制電路包括平滑轉換電路以及關閉時間控制電路。平滑轉換電路根據感測電流信號與回授信號來產生第一電壓,且根據模式信號來產生第二電壓,且比較第一電壓與第二電壓來產生重設信號。感測電流信號與輸出電流有關。回授信號與輸出電壓有關。模式信號用以指示是否在第一充電模式,且在第一充電模式中的第二電壓小於在非第一充電模式中的第二電壓。關閉時間控制電路藉由電壓轉換電流的機制對回授信號進行轉換來產生第一電流,且使用第一電流與工作比信號來產生設定信號。The invention provides a lithium battery control circuit. The lithium battery control circuit includes a smoothing conversion circuit and a shutdown time control circuit. The smoothing conversion circuit generates a first voltage according to the sensing current signal and the feedback signal, and generates a second voltage according to the mode signal, and compares the first voltage with the second voltage to generate a reset signal. The sense current signal is related to the output current. The feedback signal is related to the output voltage. The mode signal is used to indicate whether it is in the first charging mode, and the second voltage in the first charging mode is less than the second voltage in the non-first charging mode. The off time control circuit converts the feedback signal by a voltage conversion current mechanism to generate a first current, and uses the first current and the duty ratio signal to generate a set signal.

本發明提供一種鋰電池充電器。鋰電池充電器包括鋰電池控制電路、電流感測電路、以及回授電路。鋰電池控制電路,包括:平滑轉換電路,根據感測電流信號與回授信號來產生第一電壓,根據模式信號來產生第二電壓,且比較第一電壓與第二電壓來產生重設信號,其中回授信號與輸出電壓有關,模式信號用以指示是否在第一充電模式,且在第一充電模式中的第二電壓小於在非所述第一充電模式中的第二電壓;以及關閉時間控制電路,藉由電壓轉換電流的機制對回授信號進行轉換來產生第一電流,且使用第一電流與工作比信號來產生設定信號;電流感測電路,用以根據輸出電流來產生感測電流信號;以及回授電路,用以根據輸出電壓來產生回授信號。The invention provides a lithium battery charger. The lithium battery charger includes a lithium battery control circuit, a current sensing circuit, and a feedback circuit. The lithium battery control circuit includes: a smooth conversion circuit, generating a first voltage according to the sensing current signal and the feedback signal, generating a second voltage according to the mode signal, and comparing the first voltage with the second voltage to generate a reset signal, Wherein the feedback signal is related to the output voltage, the mode signal is used to indicate whether it is in the first charging mode, and the second voltage in the first charging mode is less than the second voltage in the non-first charging mode; and the closing time The control circuit converts the feedback signal by a voltage conversion current mechanism to generate a first current, and uses the first current and the duty ratio signal to generate a setting signal; and the current sensing circuit generates the sensing according to the output current a current signal; and a feedback circuit for generating a feedback signal based on the output voltage.

基於上述,本發明的鋰電池控制電路以及鋰電池充電器採用了平滑轉換電路結合關閉時間控制電路。在各個充電模式轉換時藉由平滑轉換電路來防止突波電流及振盪現象,且可藉由關閉時間控制電路來控制輸出電流的切換頻率及漣波大小,進而提升整體充電器的效率。本發明的鋰電池控制電路以及鋰電池充電器無需在回授電路的路徑配置複雜的補償電路,構造簡單。另一方面,相對於習知的充電器,本發明可降低充電器的複雜度亦可降低製造成本,並且符合現今資通消費性電子產品的發展趨勢。Based on the above, the lithium battery control circuit and the lithium battery charger of the present invention employ a smooth conversion circuit in combination with a shutdown time control circuit. The surge current and the oscillation phenomenon are prevented by the smooth conversion circuit during the conversion of each charging mode, and the switching frequency and the chopping size of the output current can be controlled by turning off the time control circuit, thereby improving the efficiency of the overall charger. The lithium battery control circuit and the lithium battery charger of the present invention do not need to configure a complicated compensation circuit in the path of the feedback circuit, and the structure is simple. On the other hand, the present invention can reduce the complexity of the charger and reduce the manufacturing cost as compared with the conventional charger, and is in line with the development trend of the current consumer electronic products.

在下述諸實施例中,當元件被指為「連接」或「耦接」至另一元件時,其可為直接連接或耦接至另一元件,或可能存在介於其間的元件。術語「電路」可表示為至少一元件或多個元件,或者主動地且/或被動地而耦接在一起的元件以提供合適功能。應理解,貫穿本說明書以及圖式所指的信號,其物理特性可以為電壓或是電流。In the embodiments described below, when an element is referred to as "connected" or "coupled" to another element, it can be directly connected or coupled to the other element, or there may be intervening elements. The term "circuitry" can be used to mean at least one element or elements, or elements that are actively and/or passively coupled together to provide suitable functionality. It should be understood that the physical characteristics of the signals referred to in this specification and the drawings may be voltage or current.

請參閱圖3。鋰電池充電器300可用來對鋰電池390充電。鋰電池充電器300可包括鋰電池控制電路310、電流感測電路350、回授電路360、驅動電路370、以及輸出級380。在下文中,將以「充電系統」或「系統」來指代鋰電池充電器300與鋰電池390所組成的整體電路。Please refer to Figure 3. The lithium battery charger 300 can be used to charge the lithium battery 390. The lithium battery charger 300 can include a lithium battery control circuit 310, a current sensing circuit 350, a feedback circuit 360, a drive circuit 370, and an output stage 380. Hereinafter, the overall circuit composed of the lithium battery charger 300 and the lithium battery 390 will be referred to by "charging system" or "system".

鋰電池控制電路310可包括平滑轉換電路320、關閉時間控制電路330、以及邏輯控制電路340。電流感測電路350可包括電感器L、電阻器Rsen及比較器A1。電流感測電路350可感測流經電感器L上的輸出電流IL ,且根據輸出電流IL 產生感測電流信號Isen。只要是電流感測電路350可以根據輸出電流IL 來產生感測電流信號Isen即可。回授電路360可包括電阻器Rf1與電阻器Rf2,或是可包括電阻網路或是電阻電容網路。只要是回授電路360可以根據輸出電壓Vout來產生回授信號FB的方式即可。The lithium battery control circuit 310 may include a smoothing conversion circuit 320, an off time control circuit 330, and a logic control circuit 340. The current sensing circuit 350 can include an inductor L, a resistor Rsen, and a comparator A1. The current sensing circuit 350 can sense the output current I L flowing through the inductor L and generate a sensing current signal Isen according to the output current I L . As long as the current sensing circuit 350 can generate the sensing current signal Isen according to the output current I L . The feedback circuit 360 can include a resistor Rf1 and a resistor Rf2, or can include a resistor network or a resistor-capacitor network. As long as the feedback circuit 360 can generate the feedback signal FB according to the output voltage Vout.

下文將介紹藉由平滑轉換電路320來防止突波電流及振盪現象,以及藉由關閉時間控制電路330來控制輸出電流IL 的切換頻率及漣波大小。The following will describe the prevention of the surge current and the oscillation phenomenon by the smoothing conversion circuit 320, and the switching frequency and the chopping size of the output current I L by turning off the time control circuit 330.

請參閱圖3和圖4。平滑轉換電路320可包括電流源410、P型金氧半導體(PMOS)電晶體412、PMOS電晶體414、PMOS電晶體416、比較器418、以及電阻器420。Please refer to Figure 3 and Figure 4. The smoothing conversion circuit 320 may include a current source 410, a P-type metal oxide semiconductor (PMOS) transistor 412, a PMOS transistor 414, a PMOS transistor 416, a comparator 418, and a resistor 420.

詳細的元件耦接關係如下。電流源410是與感測電流信號Isen有關,兩者呈現線性比例關係。PMOS電晶體412的第一端(例如,源極)耦接電流源410的第一端,PMOS電晶體412的第二端(例如,汲極)與控制端(例如,閘極)耦接電流源410的第二端。PMOS電晶體414的第一端耦接電流源410的第一端與PMOS電晶體412的第一端,PMOS電晶體414的控制端耦接PMOS電晶體412的控制端。比較器418的第一輸入端(例如,正輸入端)接收參考電壓Vrefv,比較器418的第二輸入端(例如,負輸入端)接收回授信號FB。The detailed component coupling relationship is as follows. The current source 410 is related to the sensed current signal Isen, which exhibits a linear proportional relationship. A first end (eg, a source) of the PMOS transistor 412 is coupled to the first end of the current source 410, and a second end (eg, a drain) of the PMOS transistor 412 is coupled to the control terminal (eg, the gate) The second end of source 410. The first end of the PMOS transistor 414 is coupled to the first end of the current source 410 and the first end of the PMOS transistor 412. The control end of the PMOS transistor 414 is coupled to the control end of the PMOS transistor 412. A first input (eg, a positive input) of comparator 418 receives a reference voltage Vrefv, and a second input (eg, a negative input) of comparator 418 receives a feedback signal FB.

PMOS電晶體416的第一端耦接PMOS電晶體414的第一端,PMOS電晶體416的第二端耦接PMOS電晶體414的第二端,PMOS電晶體416的控制端耦接比較器418的輸出端。電阻器420的第一端耦接PMOS電晶體414的第二端與PMOS電晶體416的第二端,電阻器420的第二端耦接接地端GND。在電阻器420的第一端處產生第一電壓Vmix。The first end of the PMOS transistor 416 is coupled to the first end of the PMOS transistor 414, the second end of the PMOS transistor 416 is coupled to the second end of the PMOS transistor 414, and the control end of the PMOS transistor 416 is coupled to the comparator 418. The output. The first end of the resistor 420 is coupled to the second end of the PMOS transistor 414 and the second end of the PMOS transistor 416, and the second end of the resistor 420 is coupled to the ground GND. A first voltage Vmix is generated at a first end of the resistor 420.

平滑轉換電路320還可包括PMOS電晶體422、電阻器424、PMOS電晶體426、電流源428、開關430、以及電阻器432。The smoothing conversion circuit 320 may further include a PMOS transistor 422, a resistor 424, a PMOS transistor 426, a current source 428, a switch 430, and a resistor 432.

詳細的元件耦接關係如下。電阻器424的第一端耦接PMOS電晶體422的第二端,電阻器424的第二端耦接接地端GND。PMOS電晶體426的第一端耦接PMOS電晶體422的第一端,PMOS電晶體426的控制端耦接PMOS電晶體422的控制端。電流源428的第一端耦接PMOS電晶體426的第二端,電流源428的第二端耦接接地端GND。開關430的控制端接收模式信號CCF,開關430的第一端耦接電阻器424的第一端。電阻器432的第一端耦接開關430的第二端,電阻器432的第二端耦接接地端GND。在電阻器424的第一端處產生第二電壓Vrefi。The detailed component coupling relationship is as follows. The first end of the resistor 424 is coupled to the second end of the PMOS transistor 422, and the second end of the resistor 424 is coupled to the ground GND. The first end of the PMOS transistor 426 is coupled to the first end of the PMOS transistor 422, and the control end of the PMOS transistor 426 is coupled to the control terminal of the PMOS transistor 422. The first end of the current source 428 is coupled to the second end of the PMOS transistor 426, and the second end of the current source 428 is coupled to the ground GND. The control terminal of the switch 430 receives the mode signal CCF, and the first end of the switch 430 is coupled to the first end of the resistor 424. The first end of the resistor 432 is coupled to the second end of the switch 430, and the second end of the resistor 432 is coupled to the ground GND. A second voltage Vrefi is generated at the first end of the resistor 424.

如圖3所示,模式選擇電路400可以根據輸出電壓Vout來產生模式信號CCF。舉例而言,當模式選擇電路400判斷輸出電壓Vout小於預定電壓時,則模式信號CCF指示為第一充電模式。As shown in FIG. 3, the mode selection circuit 400 can generate the mode signal CCF according to the output voltage Vout. For example, when the mode selection circuit 400 determines that the output voltage Vout is less than the predetermined voltage, the mode signal CCF is indicated as the first charging mode.

於本實施例中,平滑轉換電路320可根據感測電流信號Isen與回授信號FB來產生第一電壓Vmix,且可根據模式信號CCF來產生第二電壓Vrefi,且藉由比較器434來比較第一電壓Vmix與第二電壓Vrefi來產生重設信號Sres。In the embodiment, the smoothing conversion circuit 320 can generate the first voltage Vmix according to the sensing current signal Isen and the feedback signal FB, and can generate the second voltage Vrefi according to the mode signal CCF, and compare by the comparator 434. The first voltage Vmix and the second voltage Vrefi generate a reset signal Sres.

電流源428是用以使PMOS電晶體422產生電流Irefi。當模式信號CCF指示為第一充電模式(例如,輸出電壓Vout小於2.65V,但不以此為限)時,開關430使電阻器424與電阻器432並聯,等效電阻值將比電阻器424或電阻器432的電阻值還要小些,因此可使用此等效電阻值與電流Irefi來產生第二電壓Vrefi,據以控制重設信號Sres、且達到小電流之目的。Current source 428 is used to cause PMOS transistor 422 to generate current Irefi. When the mode signal CCF indicates the first charging mode (eg, the output voltage Vout is less than 2.65V, but not limited thereto), the switch 430 causes the resistor 424 to be connected in parallel with the resistor 432, and the equivalent resistance value will be compared to the resistor 424. Or the resistance value of the resistor 432 is smaller, so the equivalent resistance value and the current Irefi can be used to generate the second voltage Vrefi, thereby controlling the reset signal Sres and achieving a small current.

此外,對於鋰電池的充電操作,可以採用多種類型的充電模式。。In addition, for the charging operation of the lithium battery, various types of charging modes can be employed. .

當模式信號CCF指示為非第一充電模式時,則開關430使電阻器432不導通,使得等效電阻值將等於電阻器424。如此一來,等效電阻值與電流Irefi將產生相較於並聯方式為高的第二電壓Vrefi,同時地充電模式也會有較大的充電電流。更具體地說,第一充電模式可以為小電流模式,且所述非第一充電模式可以為定電流模式或定電壓模式。When the mode signal CCF indicates a non-first charging mode, then the switch 430 causes the resistor 432 to be non-conducting such that the equivalent resistance value will be equal to the resistor 424. In this way, the equivalent resistance value and the current Irefi will produce a second voltage Vrefi which is higher than the parallel mode, and the charging mode will also have a larger charging current. More specifically, the first charging mode may be a low current mode, and the non-first charging mode may be a constant current mode or a constant voltage mode.

在最後的充電過程(亦即在充電操作的後半階段)中,將由定電流模式進入定電壓模式。請圖3至圖5一起參閱。在定電流模式中,由於輸出電壓Vout未達到預設值(例如,預設值可以為4.2V,但不以此為限),回授信號FB將為較小的電壓值,且電壓迴路增益將不夠大。在第一電壓Vmix處流出的電流信號Ivmix只具有來自於感測電流信號Isen的資訊。當輸出電壓Vout趨近於預設值時,經由回授電路360的電壓迴路增益將足夠大,且回授信號FB使得電壓信號Vsignal緩緩地灌入至第一電壓Vmix處而與電流信號Ivmix混合,進而虛線圓圈510所顯示的混合信號將可用來控制輸出電流IL 的變化。此外,虛線矩形520所顯示的效果是平滑的輸出電流IL 。故,平滑轉換電路320可用來達到定電壓充電之目的、以及達到混合電壓及電流兩者信號之目的。In the final charging process (ie, in the second half of the charging operation), the constant voltage mode will be entered into the constant voltage mode. Please refer to Figure 3 to Figure 5 together. In the constant current mode, since the output voltage Vout does not reach the preset value (for example, the preset value can be 4.2V, but not limited to this), the feedback signal FB will be a smaller voltage value, and the voltage loop gain It will not be big enough. The current signal Ivmix flowing out at the first voltage Vmix has only information from the sense current signal Isen. When the output voltage Vout approaches a preset value, the voltage loop gain via the feedback circuit 360 will be sufficiently large, and the feedback signal FB causes the voltage signal Vsignal to be slowly injected into the first voltage Vmix and the current signal Ivmix The mixing, and thus the mixed signal shown by dashed circle 510, can be used to control the change in output current I L . In addition, the effect shown by the dashed rectangle 520 is a smoothed output current I L . Therefore, the smoothing conversion circuit 320 can be used for the purpose of constant voltage charging and for achieving the purpose of mixing both voltage and current signals.

請參閱圖3、圖4與圖6。在圖6中,當充電操作在定電流模式時,由於來自輸出端的輸出電壓Vout不夠大,迴路增益不足而導致電壓信號Vsignal為零,且對於充電系統的控制並沒有影響。鋰電池充電器300只針對來自於電流感測電路350的感測電流信號Isen進行電流的鎖定,且在第一電壓Vmix處流出的電流信號Ivmix只具有來自於感測電流信號Isen的資訊。比較器434比較電流信號Ivmix與第二電壓Vrefi來進行峰值電流控制(peak current control)的鎖定,據以達到目的而將輸出端鎖定為定電流。Please refer to Figure 3, Figure 4 and Figure 6. In FIG. 6, when the charging operation is in the constant current mode, since the output voltage Vout from the output terminal is not large enough, the loop gain is insufficient to cause the voltage signal Vsignal to be zero, and there is no influence on the control of the charging system. The lithium battery charger 300 only locks the current for the sensing current signal Isen from the current sensing circuit 350, and the current signal Ivmix flowing out at the first voltage Vmix has only information from the sensing current signal Isen. The comparator 434 compares the current signal Ivmix with the second voltage Vrefi for peak current control locking, thereby locking the output to a constant current for the purpose.

此外,當輸出電壓Vout趨近於額定值時,則電壓信號Vsignal將開始加入系統中,在信號分析的等效上為將感測電流信號Isen抬升以合成出電流信號Ivmix。藉由電流信號Ivmix與第二電壓Vrefi兩者可進行峰值電流控制,據以鎖定輸出端的電壓。如此一來,鋰電池控制電路310具有防止發生突波大電流的優點。In addition, when the output voltage Vout approaches the nominal value, the voltage signal Vsignal will begin to be added to the system, and the equivalent of the signal analysis is to raise the sense current signal Isen to synthesize the current signal Ivmix. The peak current control can be performed by both the current signal Ivmix and the second voltage Vrefi, thereby locking the voltage at the output. As such, the lithium battery control circuit 310 has the advantage of preventing a surge current from occurring.

此外,虛線圓圈610所顯示的效果是平滑的。此鋰電池控制電路310的控制同時地使用了電壓及電流兩者的信號,故系統操作上形同電流模式降壓轉換器。整體系統在穩定度的分析上能夠被簡化成單一極點的系統,從而具有簡化充電器的補償電路的效果。In addition, the effect shown by the dashed circle 610 is smooth. The control of the lithium battery control circuit 310 simultaneously uses signals of both voltage and current, so the system operates like a current mode buck converter. The overall system can be simplified to a single pole system in terms of stability analysis, thus having the effect of simplifying the compensation circuit of the charger.

此外,平滑轉換電路320可以與下文介紹的關閉時間控制電路330協同操作,在系統的配置上同樣可具有簡化充電器的補償電路的效果。Further, the smoothing conversion circuit 320 can operate in conjunction with the off-time control circuit 330 described below, and can also have the effect of simplifying the compensation circuit of the charger in the configuration of the system.

請合併參閱圖3和圖7。關閉時間控制電路330可以包括PMOS電晶體710、PMOS電晶體712、N型金氧半導體(NMOS)電晶體714、電阻器716、比較器718、電容器720、NMOS電晶體722、以及比較器724。Please refer to Figure 3 and Figure 7. The off time control circuit 330 can include a PMOS transistor 710, a PMOS transistor 712, an N-type metal oxide semiconductor (NMOS) transistor 714, a resistor 716, a comparator 718, a capacitor 720, an NMOS transistor 722, and a comparator 724.

詳細的元件耦接關係如下。PMOS電晶體712的第一端耦接PMOS電晶體710的第一端,PMOS電晶體712的控制端耦接PMOS電晶體710的第二端與控制端。NMOS電晶體714的第一端(例如,汲極)耦接PMOS電晶體710的第二端與控制端。電阻器716的第一端耦接NMOS電晶體714的第二端(例如,源極),電阻器716的第二端耦接接地端GND。比較器718的第一輸入端(例如,正輸入端)接收回授信號FB,比較器718的第二輸入端(例如,負輸入端)耦接電阻器716的第一端與NMOS電晶體714的第二端,比較器718的輸出端耦接NMOS電晶體714的控制端(例如,閘極)。The detailed component coupling relationship is as follows. The first end of the PMOS transistor 712 is coupled to the first end of the PMOS transistor 710, and the control end of the PMOS transistor 712 is coupled to the second end of the PMOS transistor 710 and the control terminal. The first end (eg, the drain) of the NMOS transistor 714 is coupled to the second end of the PMOS transistor 710 and the control terminal. The first end of the resistor 716 is coupled to the second end (eg, the source) of the NMOS transistor 714, and the second end of the resistor 716 is coupled to the ground GND. The first input (eg, the positive input) of the comparator 718 receives the feedback signal FB, and the second input (eg, the negative input) of the comparator 718 is coupled to the first end of the resistor 716 and the NMOS transistor 714. The second end of the comparator 718 is coupled to the control terminal (eg, the gate) of the NMOS transistor 714.

電容器720的第一端耦接PMOS電晶體712的第二端,電容器720的第二端耦接接地端GND。NMOS電晶體722的第一端耦接電容器720的第一端,NMOS電晶體722的第二端耦接接地端GND,NMOS電晶體722的控制端接收工作比信號Sduty。比較器724的第一輸入端(例如,正輸入端)耦接PMOS電晶體712的第二端與電容器720的第一端,比較器724的第二輸入端(例如,負輸入端)接收參考電壓REF,比較器724的輸出端輸出設定信號Sset。The first end of the capacitor 720 is coupled to the second end of the PMOS transistor 712, and the second end of the capacitor 720 is coupled to the ground GND. The first end of the NMOS transistor 722 is coupled to the first end of the capacitor 720, the second end of the NMOS transistor 722 is coupled to the ground GND, and the control end of the NMOS transistor 722 receives the duty ratio signal Sduty. A first input (eg, a positive input) of the comparator 724 is coupled to a second end of the PMOS transistor 712 and a first end of the capacitor 720, and a second input (eg, a negative input) of the comparator 724 receives the reference The voltage REF, the output of the comparator 724 outputs a set signal Sset.

請注意,通過PMOS電晶體710與PMOS電晶體712的電流比例為N:1,其中將通過PMOS電晶體712的電流定義為第一電流726,且N為正數。Note that the current ratio through PMOS transistor 710 to PMOS transistor 712 is N:1, where the current through PMOS transistor 712 is defined as first current 726, and N is a positive number.

此外,可以將比較器718、PMOS電晶體710、PMOS電晶體712、以及NMOS電晶體714的配置作為電壓轉換電流的機制。關閉時間控制電路330藉由所述電壓轉換電流的機制對回授信號FB進行轉換來產生第一電流726。關閉時間控制電路330可以進一步使用第一電流726與工作比信號Sduty來產生設定信號Sset。Further, the configuration of the comparator 718, the PMOS transistor 710, the PMOS transistor 712, and the NMOS transistor 714 can be used as a mechanism for voltage conversion current. The off time control circuit 330 converts the feedback signal FB by the mechanism of the voltage conversion current to generate a first current 726. The off time control circuit 330 can further generate the set signal Sset using the first current 726 and the duty ratio signal Sduty.

此外,在圖3中的邏輯控制電路340可以是SR正反器,但本發明並非僅限於此。舉例而言,邏輯控制電路340的S端耦接關閉時間控制電路330的輸出端,邏輯控制電路340的R端耦接平滑轉換電路320的輸出端。邏輯控制電路340的Q端可以根據所接收的重設信號Sres與設定信號Sset來產生用於脈波頻率調變的工作比信號Sduty,且將工作比信號Sduty輸出至驅動電路370。驅動電路370可以根據工作比信號Sduty而使輸出級380進行運作。此鋰電池充電器300藉由使用工作比信號Sduty來完成變頻操作,因此可使系統避免發生次諧波振盪。Further, the logic control circuit 340 in FIG. 3 may be an SR flip-flop, but the present invention is not limited thereto. For example, the S terminal of the logic control circuit 340 is coupled to the output of the shutdown time control circuit 330, and the R terminal of the logic control circuit 340 is coupled to the output of the smoothing conversion circuit 320. The Q terminal of the logic control circuit 340 can generate a duty ratio signal Sduty for pulse frequency modulation according to the received reset signal Sres and the set signal Sset, and output the duty ratio signal Sduty to the drive circuit 370. The drive circuit 370 can operate the output stage 380 in accordance with the duty ratio signal Sduty. The lithium battery charger 300 can perform the frequency conversion operation by using the duty ratio signal Sduty, thereby enabling the system to avoid subharmonic oscillations.

進一步而言,關閉時間控制電路330為整個充電器的核心。關閉時間控制電路330負責調節關閉時間(off-time)的長度以及抑制輸出漣波變大。關閉時間控制電路330使用與輸出電壓Vout有關的回授信號FB來控制關閉時間的長度。如此一來,鋰電池控制電路310便可以控制輸出電流IL 的切換頻率以及漣波大小。Further, the off time control circuit 330 is the core of the entire charger. The off time control circuit 330 is responsible for adjusting the length of the off-time and suppressing the output chopping from becoming large. The off time control circuit 330 controls the length of the off time using the feedback signal FB related to the output voltage Vout. In this way, the lithium battery control circuit 310 can control the switching frequency of the output current I L and the chop size.

此外,關閉時間控制電路330可使用「關閉時間控制(off-time control)」的單一周期性來消除電流模式降壓器中的電流的次諧波振盪效應。In addition, the shutdown time control circuit 330 can use a single periodicity of "off-time control" to eliminate subharmonic oscillation effects of current in the current mode buck.

另一方面,由於在充電過程中,充電器的輸出電壓Vout將不斷地上升,如果採用習知技術中的固定關閉時間的機制,則必定會產生輸出電流漣波不斷地變大的問題。舉例而言,圖8所顯示的波形810與輸出電流IL 有關,且波形810中的每一個弦波呈現固定關閉時間。在降壓轉換器的架構特性中,「關閉時間(off-time)」的放電斜率是正比於輸出電壓,請參看如下的式1所示。On the other hand, since the output voltage Vout of the charger will continuously rise during the charging process, if the mechanism of the fixed off time in the prior art is employed, the problem that the output current chopping constantly becomes large will surely occur. For example, waveform 810 shown in FIG. 8 is related to output current I L , and each of the waveforms 810 exhibits a fixed off time. In the architectural characteristics of the buck converter, the "off-time" discharge slope is proportional to the output voltage, as shown in Equation 1 below.

關閉時間斜率= -Vout/L,其中Vout表示輸出電壓值、L表示電感值 (式1)。The off time slope = -Vout/L, where Vout represents the output voltage value and L represents the inductance value (Equation 1).

若關閉時間為一個固定常數、且基於降壓轉換器的架構特性時,當輸出電壓越高則相對的斜率就越大,並且將導致輸出電流漣波越來越大。故需如本發明藉由回授信號來線性控制並調節關閉時間的長度,並且抑制輸出電流,以使系統的充電效率能夠更佳。If the turn-off time is a fixed constant and is based on the architectural characteristics of the buck converter, the higher the output voltage, the greater the relative slope and will cause the output current to ripple more and more. Therefore, it is necessary to linearly control and adjust the length of the off time by the feedback signal as in the present invention, and suppress the output current to make the charging efficiency of the system better.

如圖7所示,於本實施例使用回授信號FB以及一個電壓(V)轉電流(I)的電路,來產生一個與電壓相關的電流。將與電壓相關的電流以適當的線性比例(例如,N:1)縮放後的電流726去對電容器720充電,並將此充電時間的長度定義為關閉時間。As shown in Fig. 7, in the present embodiment, a feedback signal FB and a voltage (V) to current (I) circuit are used to generate a voltage-dependent current. The current associated with the voltage-dependent current is scaled at a suitable linear ratio (eg, N: 1) to charge capacitor 720, and the length of this charging time is defined as the off time.

關閉時間控制電路330可以與前文描述的平滑轉換電路320協同運作。於本實施例中,NMOS電晶體722使用工作比信號Sduty來控制路徑進行放電。比較器724使用參考電壓REF作為充電電壓上界。本發明藉由電容器720的充電與放電,便可定義出關閉時間的大小,進而控制系統的切換頻率。The off time control circuit 330 can operate in conjunction with the smoothing conversion circuit 320 described above. In the present embodiment, the NMOS transistor 722 uses the duty ratio signal Sduty to control the path for discharging. The comparator 724 uses the reference voltage REF as the upper limit of the charging voltage. The invention can define the closing time by charging and discharging of the capacitor 720, thereby controlling the switching frequency of the system.

由於電壓轉換電流的方式是一種線性的轉換/縮放。當使用電容電流的特性時,可以得到一個與輸出電壓線性相關的關閉時間,如下的式2與式3所示。The way the voltage is converted to current is a linear conversion/scaling. When the characteristics of the capacitor current are used, a turn-off time linearly related to the output voltage can be obtained, as shown in Equations 2 and 3 below.

,其中C表示電容器720的電容值,Ic表示流經電容器720上的電流值,Vc表示電容器720兩端的跨電壓值,FB表示回授信號的值,以及Rf表示電阻器716的電阻值 (式2)。 And Where C represents the capacitance value of capacitor 720, Ic represents the current value flowing through capacitor 720, Vc represents the voltage value across capacitor 720, FB represents the value of the feedback signal, and Rf represents the resistance value of resistor 716. 2).

關閉時間(式3)。Closing time (Formula 3).

關閉時間斜率= 且 漣波= ,其中Vout表示輸出電壓的值,以及L表示電感值 (式4)。Closing time slope = And chopping = Where Vout represents the value of the output voltage and L represents the inductance value (Equation 4).

若FB=且 Vc=REF,其中k為係數或常數參數,以及REF表示參考電壓的值 (式5)。If FB= And Vc=REF, where k is a coefficient or constant parameter, and REF represents a value of the reference voltage (Equation 5).

關閉時間(式6)。Closing time (Formula 6).

漣波= (式7)。涟波= (Formula 7).

漣波= ,其中為係數或常數參數 (式8)。涟波= ,among them , Is the coefficient or constant parameter (Equation 8).

回授信號FB與輸出電壓Vout的大小有關。當輸出電壓Vout越高時,則經適當比例縮放後的電流726也隨之越大,相對地充電時間會縮短,等同於縮短了電路的關閉時間。The feedback signal FB is related to the magnitude of the output voltage Vout. When the output voltage Vout is higher, the appropriately scaled current 726 is also increased, and the relative charging time is shortened, which is equivalent to shortening the circuit closing time.

經由式4至式8的推導可知,藉由引入的與輸出電壓有關的回授信號FB,可以抵銷輸出漣波公式中正比於輸出電壓Vout的參數值。故,當式子中只有常數參數而沒有輸出電壓的函數時,則輸出電流漣波就不會隨著輸出電壓的上升而變大,進而可以改善或降低輸出電流漣波。From the derivation of Equations 4 to 8, it can be seen that the parameter value proportional to the output voltage Vout in the output chopping equation can be offset by the introduced feedback signal FB related to the output voltage. Therefore, when there is only a constant parameter in the equation and there is no function of the output voltage, the output current chopping will not become larger as the output voltage rises, and the output current ripple can be improved or reduced.

在考量系統效能的情況,本發明可應用在晶片上,以電流感測方式與峰值電流控制的方式來取代一般的感測電阻與平均電流的方式,因此可以改善習知技術在效率上的缺點,更可以提升整體充電器的效率。In consideration of system performance, the present invention can be applied to a wafer, and the method of current sensing and peak current control is used to replace the general sensing resistance and the average current, thereby improving the disadvantages of the prior art in efficiency. It can also improve the efficiency of the overall charger.

此外,峰值電流控制的方式可以運用在切換式充電電路上所遭遇到的漣波問題,也可用於漣波控制的關閉時間控制電路中,藉以解決漣波問題。In addition, the peak current control method can be applied to the chopping problem encountered in the switched charging circuit, and can also be used in the chopping control off time control circuit to solve the chopping problem.

在考量系統穩定性及安全性的情況,使用平滑轉換電路結合平滑轉換及峰值電流控制的方式可以成功地防止充電模式在轉換期間的振盪以及充電器操作上的非理想突波電流。本發明的充電器的充電操作亦包含了電流模式,且可簡化一般切換式充電器的繁雜補償電路。Considering the stability and safety of the system, the smooth conversion circuit combined with the smooth conversion and peak current control can successfully prevent the oscillation of the charging mode during the conversion and the non-ideal surge current on the charger operation. The charging operation of the charger of the present invention also includes a current mode and simplifies the complicated compensation circuit of a general switched charger.

基於上述實施例所揭示的內容,本發明的鋰電池充電器在電流模式中具有平滑轉換的電路架構。本發明對於鋰電池充電器的設計方向是針對高效能、高穩定性、低成本、及低複雜度而進行改善,並使用峰值電流控制、以及使用關閉時間控制與電流模式兩者來一起操作。Based on the disclosure of the above embodiments, the lithium battery charger of the present invention has a smooth transition circuit architecture in current mode. The design of the lithium battery charger of the present invention is improved for high performance, high stability, low cost, and low complexity, and uses peak current control, and uses both off-time control and current mode to operate together.

本發明除了解決發生漣波與突波電流的問題,還可以有效地保護電池、以及延長電池壽命。The present invention not only solves the problem of chopping and surge currents, but also effectively protects the battery and extends battery life.

本發明的系統整合了簡化補償、保護電路及系統架構的三種特性於平滑轉換電路中。本發明間接地降低了切換式充電器的複雜度、亦降低了製造成本,且符合現今資通消費性電子(3C)產品的發展趨勢。The system of the present invention integrates three characteristics of simplified compensation, protection circuitry, and system architecture in a smooth conversion circuit. The invention indirectly reduces the complexity of the switching charger, reduces the manufacturing cost, and conforms to the development trend of the current consumer electronics (3C) products.

綜上所述,本發明的鋰電池控制電路以及鋰電池充電器可藉由平滑轉換電路來防止突波電流及振盪現象。且本發明的鋰電池控制電路以及鋰電池充電器可藉由關閉時間控制電路來控制輸出電流的切換頻率及漣波大小。In summary, the lithium battery control circuit and the lithium battery charger of the present invention can prevent the surge current and the oscillation phenomenon by the smooth conversion circuit. Moreover, the lithium battery control circuit and the lithium battery charger of the present invention can control the switching frequency and the chopping size of the output current by turning off the time control circuit.

100‧‧‧鋰電池100‧‧‧Lithium battery

120‧‧‧充電器120‧‧‧Charger

210‧‧‧虛線圓圈210‧‧‧dotted circle

220‧‧‧虛線圓圈220‧‧‧dotted circle

300‧‧‧鋰電池充電器300‧‧‧Lithium battery charger

310‧‧‧鋰電池控制電路310‧‧‧Lithium battery control circuit

320‧‧‧平滑轉換電路320‧‧‧Smooth conversion circuit

330‧‧‧關閉時間控制電路330‧‧‧Close time control circuit

340‧‧‧邏輯控制電路340‧‧‧Logic Control Circuit

350‧‧‧電流感測電路350‧‧‧ Current sensing circuit

360‧‧‧回授電路360‧‧‧Return circuit

370‧‧‧驅動電路370‧‧‧ drive circuit

380‧‧‧輸出級380‧‧‧Output

390‧‧‧鋰電池390‧‧‧Lithium battery

400‧‧‧模式選擇電路400‧‧‧ mode selection circuit

410‧‧‧電流源410‧‧‧current source

412‧‧‧PMOS電晶體412‧‧‧ PMOS transistor

414‧‧‧PMOS電晶體414‧‧‧ PMOS transistor

416‧‧‧PMOS電晶體416‧‧‧ PMOS transistor

418‧‧‧比較器418‧‧‧ comparator

420‧‧‧電阻器420‧‧‧Resistors

422‧‧‧PMOS電晶體422‧‧‧ PMOS transistor

424‧‧‧電阻器424‧‧‧Resistors

426‧‧‧PMOS電晶體426‧‧‧ PMOS transistor

428‧‧‧電流源428‧‧‧current source

430‧‧‧開關430‧‧‧ switch

432‧‧‧電阻器432‧‧‧Resistors

434‧‧‧比較器434‧‧‧ comparator

510‧‧‧虛線圓圈510‧‧‧dotted circle

520‧‧‧虛線矩形520‧‧‧dotted rectangle

610‧‧‧虛線圓圈610‧‧‧dotted circle

710‧‧‧PMOS電晶體710‧‧‧ PMOS transistor

712‧‧‧PMOS電晶體712‧‧‧ PMOS transistor

714‧‧‧NMOS電晶體714‧‧‧NMOS transistor

716‧‧‧電阻器716‧‧‧Resistors

718‧‧‧比較器718‧‧‧ comparator

720‧‧‧電容器720‧‧‧ capacitor

722‧‧‧NMOS電晶體722‧‧‧NMOS transistor

724‧‧‧比較器724‧‧‧ Comparator

810‧‧‧波形810‧‧‧ waveform

A1‧‧‧比較器A1‧‧‧ comparator

CCF‧‧‧模式信號CCF‧‧‧ mode signal

FB‧‧‧回授信號FB‧‧‧ feedback signal

GND‧‧‧接地端GND‧‧‧ ground terminal

Ich‧‧‧充電電流Ich‧‧‧Charging current

IL‧‧‧輸出電流I L ‧‧‧Output current

Irefi‧‧‧電流Irefi‧‧‧ Current

Isen‧‧‧感測電流信號Isen‧‧‧ sense current signal

Ivmix‧‧‧電流信號Ivmix‧‧‧ current signal

L‧‧‧電感器L‧‧‧Inductors

Rbir‧‧‧內電阻Rbir‧‧‧ internal resistance

REF‧‧‧參考電壓REF‧‧‧reference voltage

Rf1‧‧‧電阻器Rf1‧‧‧Resistors

Rf2‧‧‧電阻器Rf2‧‧‧Resistors

Rsen‧‧‧電阻器Rsen‧‧‧Resistors

Sres‧‧‧重設信號Sres‧‧‧Reset signal

Sset‧‧‧設定信號Sset‧‧‧ setting signal

Sduty‧‧‧工作比信號Sduty‧‧‧ work ratio signal

VB‧‧‧電池電壓VB‧‧‧ battery voltage

Vmix‧‧‧第一電壓Vmix‧‧‧ first voltage

Vout‧‧‧輸出電壓Vout‧‧‧ output voltage

Vrefv‧‧‧參考電壓Vrefv‧‧‧reference voltage

Vrefi‧‧‧第二電壓Vrefi‧‧‧second voltage

Vsignal‧‧‧電壓信號Vsignal‧‧‧ voltage signal

圖1A是習知的鋰電池充電的等效電路圖。 圖1B為鋰電池的內電阻與電流之間的相關示意圖。 圖1C為鋰電池的內電阻與電池容量之間的相關示意圖。 圖2A為小電流模式至定電流模式的充電過程示意圖。 圖2B為定電流模式至定電壓模式的充電過程示意圖。 圖3是依照本發明一實施例的鋰電池充電器的示意圖。 圖4是依照本發明一實施例的平滑轉換電路的電路圖。 圖5是依照本發明一實施例的定電流模式至定電壓模式的波形圖。 圖6是依照本發明一實施例的定電流模式至定電壓模式的另一波形圖。 圖7是依照本發明一實施例的關閉時間控制電路的電路圖。 圖8是習知的固定關閉時間的波形圖。FIG. 1A is an equivalent circuit diagram of a conventional lithium battery charging. FIG. 1B is a schematic diagram showing the correlation between internal resistance and current of a lithium battery. 1C is a schematic diagram showing the correlation between the internal resistance of a lithium battery and the battery capacity. 2A is a schematic diagram of a charging process from a small current mode to a constant current mode. 2B is a schematic diagram of a charging process from a constant current mode to a constant voltage mode. 3 is a schematic diagram of a lithium battery charger in accordance with an embodiment of the present invention. 4 is a circuit diagram of a smoothing conversion circuit in accordance with an embodiment of the present invention. 5 is a waveform diagram of a constant current mode to a constant voltage mode in accordance with an embodiment of the present invention. 6 is another waveform diagram of a constant current mode to a constant voltage mode in accordance with an embodiment of the present invention. 7 is a circuit diagram of a shutdown time control circuit in accordance with an embodiment of the present invention. Figure 8 is a waveform diagram of a conventional fixed off time.

Claims (12)

一種鋰電池控制電路,適用於鋰電池充電器中的控制,接收來自一電流感測電路的一感測電流信號、來自一回授電路的一回授信號及來自一邏輯控制電路的工作比信號,包括: 一平滑轉換電路,根據該感測電流信號與該回授信號來產生一第一電壓,且根據一模式信號來產生一第二電壓,且比較該第一電壓與該第二電壓來產生一重設信號,其中該感測電流信號與一輸出電流有關,該回授信號與一輸出電壓有關,該模式信號用以指示是否在一第一充電模式,且在該第一充電模式中的該第二電壓小於在非該第一充電模式中的該第二電壓;以及 一關閉時間控制電路,以一電壓轉換電流的機制對該回授信號進行轉換來產生一第一電流,且使用該第一電流與該工作比信號來產生一設定信號。A lithium battery control circuit is suitable for control in a lithium battery charger, receiving a sensing current signal from a current sensing circuit, a feedback signal from a feedback circuit, and a duty ratio signal from a logic control circuit The method includes: a smoothing conversion circuit, generating a first voltage according to the sensing current signal and the feedback signal, and generating a second voltage according to a mode signal, and comparing the first voltage with the second voltage Generating a reset signal, wherein the sense current signal is related to an output current, the feedback signal is related to an output voltage, the mode signal is used to indicate whether it is in a first charging mode, and in the first charging mode The second voltage is less than the second voltage in the non-first charging mode; and a shutdown time control circuit converts the feedback signal by a voltage conversion current mechanism to generate a first current, and uses the The first current and the duty ratio signal generate a set signal. 如申請專利範圍第1項所述的鋰電池控制電路,其中該平滑轉換電路包括: 一第一電流源,其與該感測電流信號有關; 一第一PMOS電晶體,該第一PMOS電晶體的一第一端耦接該第一電流源的一第一端,該第一PMOS電晶體的一第二端與一控制端耦接該第一電流源的一第二端; 一第二PMOS電晶體,該第二PMOS電晶體的一第一端耦接該第一電流源的該第一端與該第一PMOS電晶體的一第一端,該第二PMOS電晶體的一控制端耦接該第一PMOS電晶體的該控制端; 一第一比較器,該第一比較器的一第一輸入端接收一第一參考電壓,該第一比較器的一第二輸入端接收該回授信號; 一第三PMOS電晶體,該第三PMOS電晶體的一第一端耦接該第二PMOS電晶體的該第一端,該第三PMOS電晶體的一第二端耦接該第二PMOS電晶體的一第二端,該第三PMOS電晶體的一控制端耦接該第一比較器的一輸出端;以及 一第一電阻器,該第一電阻器的一第一端耦接該第二PMOS電晶體的該第二端與該第三PMOS電晶體的該第二端,該第一電阻器的一第二端耦接一接地端,其中在該第一電阻器的該第一端處產生該第一電壓。The lithium battery control circuit of claim 1, wherein the smoothing conversion circuit comprises: a first current source associated with the sensing current signal; a first PMOS transistor, the first PMOS transistor A first end of the first current source is coupled to a first end of the first current source, and a second end of the first PMOS transistor is coupled to a second end of the first current source; a second PMOS a first end of the second PMOS transistor is coupled to the first end of the first current source and a first end of the first PMOS transistor, and a control terminal of the second PMOS transistor is coupled The first comparator receives a first reference voltage, and a second input of the first comparator receives the back a third PMOS transistor, a first end of the third PMOS transistor is coupled to the first end of the second PMOS transistor, and a second end of the third PMOS transistor is coupled to the first a second end of the second PMOS transistor, a control end of the third PMOS transistor coupled to the input of the first comparator And a first resistor, a first end of the first resistor is coupled to the second end of the second PMOS transistor and the second end of the third PMOS transistor, the first resistor A second end is coupled to a ground, wherein the first voltage is generated at the first end of the first resistor. 如申請專利範圍第1項所述的鋰電池控制電路,其中該平滑轉換電路包括: 一第四PMOS電晶體; 一第二電阻器,該第二電阻器的一第一端耦接該第四PMOS電晶體的一第二端,該第二電阻器的一第二端耦接一接地端; 一第五PMOS電晶體,該第五PMOS電晶體的一第一端耦接該第四PMOS電晶體的一第一端,該第五PMOS電晶體的一控制端耦接該第四PMOS電晶體的一控制端; 一第二電流源,該第二電流源的一第一端耦接該第五PMOS電晶體的一第二端,該第二電流源的一第二端耦接該接地端; 一開關,該開關的一控制端接收該模式信號,該開關的一第一端耦接該第二電阻器的該第一端;以及 一第三電阻器,該第三電阻器的一第一端耦接該開關的一第二端,該第三電阻器的一第二端耦接該接地端; 其中在該第二電阻器的該第一端處產生該第二電壓。The lithium battery control circuit of claim 1, wherein the smoothing conversion circuit comprises: a fourth PMOS transistor; a second resistor, a first end of the second resistor coupled to the fourth a second end of the PMOS transistor, a second end of the second resistor is coupled to a ground; a fifth PMOS transistor, a first end of the fifth PMOS transistor is coupled to the fourth PMOS a first end of the crystal, a control end of the fifth PMOS transistor is coupled to a control end of the fourth PMOS transistor; a second current source, a first end of the second current source is coupled to the first end a second end of the fifth PMOS transistor, a second end of the second current source is coupled to the ground end; a switch, a control end of the switch receives the mode signal, a first end of the switch is coupled to the a first end of the second resistor; and a third resistor, a first end of the third resistor is coupled to a second end of the switch, and a second end of the third resistor is coupled to the second end a ground terminal; wherein the second voltage is generated at the first end of the second resistor. 如申請專利範圍第3項所述的鋰電池控制電路,其中當該模式信號指示為該第一充電模式時,該開關使該第二電阻器與該第三電阻器並聯,當該模式信號指示為非該第一充電模式時,該開關使該第三電阻器不導通。The lithium battery control circuit of claim 3, wherein when the mode signal indicates the first charging mode, the switch causes the second resistor to be in parallel with the third resistor when the mode signal indicates In the non-first charging mode, the switch disables the third resistor. 如申請專利範圍第1項所述的鋰電池控制電路,其中該平滑轉換電路包括: 一第二比較器,該第二比較器的一第一輸入端接收該第一電壓,該第二比較器的一第二輸入端接收該第二電壓,該第二比較器的一輸出端輸出該重設信號。The lithium battery control circuit of claim 1, wherein the smoothing conversion circuit comprises: a second comparator, a first input of the second comparator receives the first voltage, and the second comparator A second input receives the second voltage, and an output of the second comparator outputs the reset signal. 如申請專利範圍第1項所述的鋰電池充電控制電路,其中該關閉時間控制電路包括: 一第六PMOS電晶體; 一第七PMOS電晶體,該第七PMOS電晶體的一第一端耦接該第六PMOS電晶體的一第一端,該第七PMOS電晶體的一控制端耦接該第六PMOS電晶體的一第二端與一控制端; 一第一NMOS電晶體,該第一NMOS電晶體的一第一端耦接該第六PMOS電晶體的該第二端與該控制端; 一第四電阻器,該第四電阻器的一第一端耦接該第一NMOS電晶體的一第二端,該第四電阻器的一第二端耦接一接地端; 一第三比較器,該第三比較器的一第一輸入端接收該回授信號,該第三比較器的一第二輸入端耦接該第四電阻器的該第一端與該第一NMOS電晶體的該第二端,該第三比較器的一輸出端耦接該第一NMOS電晶體的一控制端; 一第一電容器,該第一電容器的一第一端耦接該第七PMOS電晶體的一第二端,該第一電容器的一第二端耦接該接地端; 一第二NMOS電晶體,該第二NMOS電晶體的一第一端耦接該第一電容器的該第一端,該第二NMOS電晶體的一第二端耦接該接地端,該第二NMOS電晶體的一控制端接收該工作比信號;以及 一第四比較器,該第四比較器的一第一輸入端耦接該第七PMOS電晶體的該第二端與該第一電容器的該第一端,該第四比較器的一第二輸入端接收一第二參考電壓,該第四比較器的一輸出端輸出該設定信號。The lithium battery charging control circuit of claim 1, wherein the off time control circuit comprises: a sixth PMOS transistor; a seventh PMOS transistor, a first end coupling of the seventh PMOS transistor Connected to a first end of the sixth PMOS transistor, a control terminal of the seventh PMOS transistor is coupled to a second end of the sixth PMOS transistor and a control terminal; a first NMOS transistor, the first a first end of the NMOS transistor is coupled to the second end of the sixth PMOS transistor and the control end; a fourth resistor, a first end of the fourth resistor is coupled to the first NMOS a second end of the crystal, a second end of the fourth resistor is coupled to a ground; a third comparator, a first input of the third comparator receives the feedback signal, the third comparison a second input end of the fourth resistor is coupled to the first end of the fourth resistor and the second end of the first NMOS transistor, and an output end of the third comparator is coupled to the first NMOS transistor a first capacitor, a first end of the first capacitor coupled to a first portion of the seventh PMOS transistor a second end of the first capacitor is coupled to the ground; a second NMOS transistor, a first end of the second NMOS transistor is coupled to the first end of the first capacitor, the second a second end of the NMOS transistor is coupled to the ground, a control end of the second NMOS transistor receives the duty ratio signal; and a fourth comparator, a first input of the fourth comparator is coupled The second end of the seventh PMOS transistor and the first end of the first capacitor, a second input of the fourth comparator receives a second reference voltage, and an output of the fourth comparator outputs This setting signal. 如申請專利範圍第6項所述的鋰電池控制電路,其中通過該第六PMOS電晶體與該第七PMOS電晶體的電流比例為N:1,其中將通過該第七PMOS電晶體的電流定義為該第一電流,且N為正數。The lithium battery control circuit of claim 6, wherein a current ratio of the sixth PMOS transistor and the seventh PMOS transistor is N:1, wherein a current through the seventh PMOS transistor is defined It is the first current, and N is a positive number. 如申請專利範圍第7項所述的鋰電池控制電路,其中該關閉時間控制電路根據該工作比信號而使用該第一電流對該第一電容器充電,以獲得與該輸出電壓線性相關的一關閉時間。The lithium battery control circuit of claim 7, wherein the shutdown time control circuit charges the first capacitor using the first current according to the duty ratio signal to obtain a shutdown linearly related to the output voltage. time. 如申請專利範圍第1項所述的鋰電池控制電路,更包括: 一邏輯控制電路,耦接該平滑轉換電路與該關閉時間控制電路,且根據該重設信號與該設定信號來產生用於脈波頻率調變的該工作比信號。The lithium battery control circuit of claim 1, further comprising: a logic control circuit coupled to the smoothing conversion circuit and the off time control circuit, and generated according to the reset signal and the setting signal The pulse frequency is modulated by the duty ratio signal. 如申請專利範圍第1項所述的鋰電池控制電路,其中該第一充電模式為小電流模式。The lithium battery control circuit of claim 1, wherein the first charging mode is a low current mode. 一種鋰電池充電器,包括: 一鋰電池控制電路,包括:   一平滑轉換電路,根據一感測電流信號與一回授信號來產生一第一電壓,根據一模式信號來產生一第二電壓,且比較該第一電壓與該第二電壓來產生一重設信號,其中該回授信號與一輸出電壓有關,該模式信號用以指示是否在一第一充電模式,且在該第一充電模式中的該第二電壓小於在非該第一充電模式中的該第二電壓;以及   一關閉時間控制電路,以一電壓轉換電流的機制對該回授信號進行轉換來產生一第一電流,且使用該第一電流與一工作比信號來產生一設定信號; 一電流感測電路,用以根據一輸出電流來產生該感測電流信號;以及 一回授電路,用以根據一輸出電壓來產生該回授信號。A lithium battery charger includes: a lithium battery control circuit, comprising: a smoothing conversion circuit, generating a first voltage according to a sensing current signal and a feedback signal, and generating a second voltage according to a mode signal, And comparing the first voltage with the second voltage to generate a reset signal, wherein the feedback signal is related to an output voltage, the mode signal is used to indicate whether it is in a first charging mode, and in the first charging mode The second voltage is less than the second voltage in the non-first charging mode; and a shutdown time control circuit converts the feedback signal by a voltage conversion current mechanism to generate a first current and uses The first current and a duty ratio signal are used to generate a set signal; a current sensing circuit for generating the sensing current signal according to an output current; and a feedback circuit for generating the output voltage according to an output voltage Feedback signal. 如申請專利範圍第11項所述的鋰電池充電器,更包括驅動電路,其中該鋰電池控制電路更包括一邏輯控制電路,該邏輯控制電路根據該重設信號與該設定信號產生該工作比信號給該驅動電路以及回饋給該關閉時間控制電路。The lithium battery charger of claim 11, further comprising a driving circuit, wherein the lithium battery control circuit further comprises a logic control circuit, the logic control circuit generating the working ratio according to the reset signal and the setting signal A signal is applied to the drive circuit and fed back to the off-time control circuit.
TW105139628A 2016-12-01 2016-12-01 Lithium battery control circuit and lithium battery charger TWI607618B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105139628A TWI607618B (en) 2016-12-01 2016-12-01 Lithium battery control circuit and lithium battery charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105139628A TWI607618B (en) 2016-12-01 2016-12-01 Lithium battery control circuit and lithium battery charger

Publications (2)

Publication Number Publication Date
TWI607618B TWI607618B (en) 2017-12-01
TW201822425A true TW201822425A (en) 2018-06-16

Family

ID=61230741

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105139628A TWI607618B (en) 2016-12-01 2016-12-01 Lithium battery control circuit and lithium battery charger

Country Status (1)

Country Link
TW (1) TWI607618B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI812040B (en) * 2022-03-04 2023-08-11 茂達電子股份有限公司 Switching charger capable of accurately sensing small current

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6949912B2 (en) * 2002-06-20 2005-09-27 02Micro International Limited Enabling circuit for avoiding negative voltage transients
TWI434488B (en) * 2011-06-08 2014-04-11 Richtek Technology Corp Multi-purpose power management apparatus, power path control circuit and control method therefor
TW201351861A (en) * 2012-06-08 2013-12-16 Novatek Microelectronics Corp Method of controlling a power converting device and related circuit
TWI500232B (en) * 2013-03-19 2015-09-11 Richtek Technology Corp Multi-purpose power management chip, and power path control circuit
TWI491141B (en) * 2013-03-27 2015-07-01 Ncku Res & Dev Foundation System and method for charging battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI812040B (en) * 2022-03-04 2023-08-11 茂達電子股份有限公司 Switching charger capable of accurately sensing small current

Also Published As

Publication number Publication date
TWI607618B (en) 2017-12-01

Similar Documents

Publication Publication Date Title
US11522457B2 (en) Buck-boost converter and control method
US8339814B2 (en) Method and system for efficient power control with multiple modes
US8143845B2 (en) Cable voltage drop compensation for battery chargers
US8611106B2 (en) Systems and methods for adjusting current consumption of control chips to reduce standby power consumption of power converters
JP5424442B2 (en) Device for adjusting diode conduction duty cycle
TWI385494B (en) Soft star circuit, power supply controller and method therefor
US7068022B2 (en) Method and apparatus for a switch mode power supply that generates a high pulse width modulation gain while maintaining low noise sensitivity
CN111327201B (en) Power converter with limiting control means to control the rate of change of switching period or switching frequency
US20050242792A1 (en) High efficiency linear regulator
US20080197821A1 (en) Dc-dc conversion circuit, dc-dc conversion control circuit, and dc-dc conversion control method
JP2009189170A (en) Energy converter and semiconductor device and switch control method for the energy converter
US8089791B2 (en) Compensation circuit and compensation method for current mode power converters
US10693376B2 (en) Electronic converter and method of operating an electronic converter
US7800927B2 (en) Method and circuit for providing compensations of current mode power converters
US11705811B2 (en) Buck-boost converter and hybrid control method
TWI607618B (en) Lithium battery control circuit and lithium battery charger
US10122200B2 (en) Lithium battery control circuit and lithium battery charger with surge current protection
CN108306348B (en) Lithium battery control circuit and lithium battery charger
TW201316653A (en) Battery charge modulator with boost capability
CN117955339A (en) Voltage converter and power supply including the same
JP2012023827A (en) Switching power supply device