TW201815107A - Data packet transmitting method and wireless station - Google Patents

Data packet transmitting method and wireless station Download PDF

Info

Publication number
TW201815107A
TW201815107A TW106133101A TW106133101A TW201815107A TW 201815107 A TW201815107 A TW 201815107A TW 106133101 A TW106133101 A TW 106133101A TW 106133101 A TW106133101 A TW 106133101A TW 201815107 A TW201815107 A TW 201815107A
Authority
TW
Taiwan
Prior art keywords
subcarrier
modulation
resource unit
data
patent application
Prior art date
Application number
TW106133101A
Other languages
Chinese (zh)
Other versions
TWI643474B (en
Inventor
劉劍函
昇泉 胡
天宇 伍
湯姆士艾德華 皮爾二世
Original Assignee
聯發科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/290,135 external-priority patent/US10211948B2/en
Application filed by 聯發科技股份有限公司 filed Critical 聯發科技股份有限公司
Publication of TW201815107A publication Critical patent/TW201815107A/en
Application granted granted Critical
Publication of TWI643474B publication Critical patent/TWI643474B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0008Wavelet-division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling

Abstract

A data packet transmitting method and wireless station are described. The method comprises: encoding a data packet to be transmitted from a source station to a destination station; modulating encoded bits to a first set of modulated symbols using a first modulation scheme at a first data subcarrier of a resource unit, and modulating the same encoded bits to a second set of modulated symbols using a second modulation scheme at a second data subcarrier of a resource unit if dual carrier modulation (DCM) is applied; remapping the first set of modulated symbols onto a first half of data frequency subcarriers of the RU of a wireless local area network by a tone mapper, and mapping the second set of modulated symbols onto a second half of data frequency subcarriers of the RU by the same tone mapper; and transmitting the mapped information of the tone mapper to the destination station.

Description

發送資料分組的方法及無線站Method for transmitting data packet and wireless station

本發明係有關於無線通訊技術領域,且特別有關於發送資料分組的方法及無線站。The present invention relates to the field of wireless communication technology, and in particular, to a method and a wireless station for transmitting data packets.

IEEE 802.11是用於實現Wi-Fi(2.4 GHz,3.6 GHz,5 GHz和60GHz)頻段中的無線局域網(Wireless Local Area Network,WLAN)通信的一組媒體接入控制(Media Access Control,MAC)和實體層(Physical Layer,PHY)規範。 802.11系列由一系列使用相同基本協議的半雙工空中調製技術組成。標準和修訂為使用Wi-Fi頻段的無線網路產品提供了基礎。例如,IEEE 802.11ac是IEEE 802.11系列中的無線網路標準,用於在5 GHz頻段提供高輸送量WLAN。在IEEE 802.11ac標準中提出了更廣泛的通道頻寬(20MHz,40MHz,80MHz和160MHz)。高效(High Efficiency,HE)WLAN研究組(HEW SG)是IEEE 802.11工作組中的一個研究小組,其考慮提高頻譜效率,以提高無線設備高密度情景下的系統輸送量。由於HEW SG,TGax(一個IEEE任務組)成立並被任命為研究IEEE 802.11ax標準(將成為IEEE 802.11ac的繼任者)。最近,WLAN在許多行業的組織中呈指數級增長。IEEE 802.11 is a set of Media Access Control (MAC) and Wireless Access Area (WLAN) communications used in the Wi-Fi (2.4 GHz, 3.6 GHz, 5 GHz, and 60 GHz) frequency bands. Physical layer (PHY) specifications. The 802.11 series consists of a series of half-duplex aerial modulation technologies using the same basic protocol. Standards and amendments provide the basis for wireless networking products using the Wi-Fi band. For example, IEEE 802.11ac is a wireless network standard in the IEEE 802.11 family that is used to provide high-throughput WLANs in the 5 GHz band. A wider channel bandwidth (20MHz, 40MHz, 80MHz, and 160MHz) is proposed in the IEEE 802.11ac standard. The High Efficiency (HE) WLAN Study Group (HEW SG) is a research group in the IEEE 802.11 working group. It considers improving the spectral efficiency to increase the system throughput in high-density scenarios of wireless devices. Thanks to HEW SG, TGax (an IEEE task force) was formed and appointed to study the IEEE 802.11ax standard (which will be the successor to IEEE 802.11ac). Recently, WLANs have grown exponentially in organizations in many industries.

在HE WLAN中引入了允許多個用戶同時進行資料傳輸的正交頻分多址(Orthogonal Frequency Division Multiple Access,OFDMA),以通過向不同的用戶分配子載波子集來增強用戶體驗。 在OFDMA中,向每個使用者分配稱為資源單元(Resource Unit,RU)的一組子載波(該組子載波包括導頻子載波和資料子載波)。 在HE WLAN中,無線站(Wireless Station, STA)可以在上行鏈路和下行鏈路OFDMA中發送一個最小尺寸的RU(約2MHz頻寬)。 與其20MHz前導碼相比,STA資料部分的功率密度比其前導碼高9dB。由於空閒通道評估(Clear Channel Assessment,CCA)在大於或等於20MHz的頻寬上運行,所以窄帶上行鏈路OFDMA信號難以被CCA檢測到。 因此,一個STA在特定窄帶中的子載波干擾比其他子載波高9dB。可以看出,窄帶干擾在HE WLAN中是固有的。 需要一種處理這種窄帶干擾的方案。Orthogonal Frequency Division Multiple Access (OFDMA) is introduced in HE WLAN to allow multiple users to transmit data at the same time to enhance user experience by allocating a subset of subcarriers to different users. In OFDMA, each user is assigned a set of subcarriers called a Resource Unit (RU) (the set of subcarriers includes a pilot subcarrier and a data subcarrier). In HE WLAN, a wireless station (Wireless Station, STA) can send a minimum size RU (about 2MHz bandwidth) in uplink and downlink OFDMA. Compared with its 20MHz preamble, the power density of the STA data part is 9dB higher than its preamble. As the Clear Channel Assessment (CCA) operates on a bandwidth of 20 MHz or more, narrow-band uplink OFDMA signals are difficult to detect by CCA. Therefore, the subcarrier interference of a STA in a specific narrowband is 9dB higher than that of other subcarriers. It can be seen that narrowband interference is inherent in HE WLAN. What is needed is a solution to deal with such narrow-band interference.

在多用戶(Multi-User, MU)傳輸中,使用1x OFDM符號持續時間(也即,3.2微秒+迴圈首碼時間)對HE-SIGB的性能進行編碼。最終,當使用相同的調製和編碼方案(Modulation And Coding Scheme, MCS)時,其性能比具有4x OFDM符號持續時間(也即,3.2×4微秒+迴圈首碼時間)的資料符號差。HE-SIGB需要更強大的調製方案。另外,為了擴大戶外情況的範圍,也希望有一種新的能夠以比MCS0(MCS0所需的信噪比在目前所有MCS調製方案中最低)更低的信噪比(Signal Noise Ratio,SNR)工作的新的調製方式。In Multi-User (MU) transmission, the performance of HE-SIGB is encoded using 1x OFDM symbol duration (ie, 3.2 microseconds + loop first code time). Finally, when using the same Modulation And Coding Scheme (MCS), its performance is worse than data symbols with a 4x OFDM symbol duration (ie, 3.2 × 4 microseconds + loop first code time). HE-SIGB requires a more powerful modulation scheme. In addition, in order to expand the range of outdoor conditions, a new signal noise ratio (SNR) that is lower than MCS0 (MCS0 requires the lowest signal-to-noise ratio among all current MCS modulation schemes) is also hoped. New modulation method.

雙子載波調製(Dual Sub-Carrier Modulation,DCM)在一對子載波上調製相同的資訊。DCM可以通過在頻率上分離的兩個子載波上發送相同的資訊來將頻率分集(frequency diversity)引入OFDM系統中。DCM可以實現低複雜度,並提供比在WLAN中使用的現有調製方案更好的性能。DCM增強了可靠性傳輸,特別是在窄帶干擾下。在資訊理論中,低密度同位(Low-Density Parity-Check,LDPC)碼是一種線性改錯碼,一種通過雜訊傳輸通道進行傳輸的方法。LDPC碼通常用於WLAN和OFDM系統。在HE WLAN中,當頻寬大於20MHz時,LDPC成為強制性的錯誤控制編碼方案。Dual Sub-Carrier Modulation (DCM) modulates the same information on a pair of sub-carriers. DCM can introduce frequency diversity into OFDM systems by sending the same information on two subcarriers that are separated in frequency. DCM can achieve low complexity and provide better performance than existing modulation schemes used in WLAN. DCM enhances reliable transmission, especially under narrow-band interference. In information theory, a Low-Density Parity-Check (LDPC) code is a linear error-correcting code, a method of transmitting through a noise transmission channel. LDPC codes are commonly used in WLAN and OFDM systems. In HE WLAN, when the bandwidth is greater than 20MHz, LDPC becomes a mandatory error control coding scheme.

在基於即將到來的IEEE 802.11ax標準的下一代WLAN系統中,每個STA可以使用一個或多個RU發送信號。當將DCM應用於給定的RU時,期望具有新的LDPC子載波映射方案(tone mapping scheme)的傳輸過程以便於在DCM下實現增強的傳輸可靠性。In a next-generation WLAN system based on the upcoming IEEE 802.11ax standard, each STA can use one or more RUs to send signals. When the DCM is applied to a given RU, a transmission process with a new LDPC subcarrier mapping scheme (tone mapping scheme) is expected to facilitate enhanced transmission reliability under the DCM.

本發明提供發送資料分組的方法及無線站,可增強基於DCM機制的傳輸可靠性。The invention provides a method and a wireless station for transmitting data packets, which can enhance the transmission reliability based on the DCM mechanism.

本發明的一些實施例涉及一種發送資料分組的方法。其可包括:編碼要從源站發送到目的站的資料分組; 如果應用雙子載波調製,在所述資源單元的第一資料子載波上使用第一調製方案將編碼後的比特調製到第一組調製符號,並在所述資源單元的第二資料子載波上使用第二調製方案將所述編碼後的比特調製到第二組調製符號; 通過子載波映射器將所述第一組調製符號重新映射到所述資源單元的第一半頻資料子載波上,並通過相同的子載波映射器將所述第二組調製符號重新映射到所述資源單元的第二半頻資料子載波上; 和將所述子載波映射器映射後的所述資源單元發送到所述目的站。Some embodiments of the present invention relate to a method of transmitting a data packet. It may include: encoding a data packet to be sent from a source station to a destination station; if dual subcarrier modulation is applied, using a first modulation scheme on a first data subcarrier of the resource unit to modulate the encoded bits to a first Group of modulation symbols, and using a second modulation scheme on the second data subcarrier of the resource unit to modulate the encoded bits to a second group of modulation symbols; the first group of modulation symbols by a subcarrier mapper Remap to the first half-frequency data subcarrier of the resource unit, and remap the second set of modulation symbols to the second half-frequency data subcarrier of the resource unit through the same subcarrier mapper; And sending the resource unit mapped by the subcarrier mapper to the destination station.

本發明的一些實施例涉及一種無線站,其可包括:編碼器,用於編碼要從源站發送到目的站的資料分組; 調製器,如果應用雙子載波調製,在所述資源單元的第一資料子載波上使用第一調製方案將編碼後的比特調製到第一組調製符號,並在所述資源單元的第二資料子載波上使用第二調製方案將所述編碼後的比特調製到第二組調製符號; 子載波映射器,用於將所述第一組調製符號重新映射到所述資源單元的第一半頻資料子載波上,以及將所述第二組調製符號重新映射到所述資源單元的第二半頻資料子載波上; 和發射機,用於將所述子載波映射器映射後的所述資源單元發送到目的站。Some embodiments of the present invention relate to a wireless station, which may include: an encoder for encoding a data packet to be sent from a source station to a destination station; a modulator, if dual subcarrier modulation is applied, A data subcarrier uses a first modulation scheme to modulate the encoded bits to a first set of modulation symbols, and a second data subcarrier on the resource unit uses a second modulation scheme to modulate the encoded bits to A second group of modulation symbols; a subcarrier mapper for remapping the first group of modulation symbols to a first half-frequency data subcarrier of the resource unit, and remapping the second group of modulation symbols to A second half-frequency data subcarrier of the resource unit; and a transmitter for sending the resource unit mapped by the subcarrier mapper to a destination station.

由上述列舉的方案可知,本發明實施例在應用DCM調製技術時,通過子載波映射器將所述第一組調製符號映射到無線局域網中的一個資源單元的第一半頻資料子載波上,並通過相同的子載波映射器將所述第二組調製符號映射到所述資源單元的第二半頻資料子載波上,由此可增強基於DCM機制的傳輸可靠性。It can be known from the above-listed solutions that when the DCM modulation technology is applied in the embodiment of the present invention, the first group of modulation symbols is mapped onto the first half-frequency data subcarrier of a resource unit in a wireless local area network through a subcarrier mapper. The second group of modulation symbols is mapped onto the second half-frequency data subcarrier of the resource unit through the same subcarrier mapper, thereby enhancing transmission reliability based on the DCM mechanism.

在說明書及後續的申請專利範圍當中使用了某些術語來指稱特定的元件。所屬技術領域技術人員應可理解,硬體製造商可能會用不同的名稱來稱呼同一個元件。本檔並不以名稱的差異來作為區分元件的方式,而是以元件在功能上的差異來作為區分的準則。在接下來的說明書及申請專利範圍中,術語“包含”及“包括”為一開放式的用語,故應解釋成“包含但不限制於”。此外,“耦接”一詞在此包含直接及間接的電性連接手段。因此,如果一個裝置耦接於另一個裝置,則代表該一個裝置可直接電性連接於該另一個裝置,或通過其它裝置或連接手段間接地電性連接至該另一個裝置。Certain terms are used in the description and the scope of subsequent patent applications to refer to specific elements. Those skilled in the art should understand that hardware manufacturers may use different names to refer to the same component. This document does not use the differences in names as a way to distinguish components, but rather uses the functional differences of components as a criterion for distinguishing components. In the following description and the scope of the patent application, the terms "including" and "including" are open-ended terms and should be interpreted as "including but not limited to". In addition, the term "coupled" includes both direct and indirect electrical connections. Therefore, if one device is coupled to another device, it means that the one device can be directly electrically connected to the other device, or indirectly electrically connected to the other device through other devices or connection means.

第1圖根據一個新穎方面示出了支援具有低密度同位(LDPC)的雙子載波調製(DCM)的無線通訊系統100和高效率HE PPDU幀結構。無線通訊系統100包括無線接入點101和無線站102。在無線通訊系統中,無線設備通過各種明確定義的幀結構彼此通信。幀包括實體層會聚過程(Physical Layer Convergence Procedure,PLCP)協定資源單元(Protocol Data Unit,PDU)(簡稱為:PPDU),幀頭部和有效載荷。幀又分為非常具體和標準化的部分。在第1圖中,高效率(HE)PPDU幀110從無線接入點101發送到無線站102。HE PPDU 110包括傳統短訓練欄位(圖中表示為:L-STF)111,傳統長訓練欄位(圖中表示為:L-LTF)112,傳統信號欄位(圖中表示為:L-SIG)113,重複傳統信號欄位(圖中表示為:RL-SIG)114,高效率信號A欄位(圖中表示為:HE-SIGA)115,高效率信號B欄位(圖中表示為:HE-SIGB)116,高效率短訓練欄位(圖中表示為:HE-STF)117,用於資料的多個高效率長訓練欄位(圖中表示為:HE-LTF)118,高效率資料有效載荷119和分組擴展(圖中表示為:PE)120。FIG. 1 illustrates a wireless communication system 100 and a high-efficiency HE PPDU frame structure supporting dual subcarrier modulation (DCM) with low density parity (LDPC) according to a novel aspect. The wireless communication system 100 includes a wireless access point 101 and a wireless station 102. In wireless communication systems, wireless devices communicate with each other through various well-defined frame structures. The frame includes a Physical Layer Convergence Procedure (PLCP) protocol resource unit (Protocol Data Unit, PDU) (abbreviated as: PPDU), a frame header, and a payload. Frames are divided into very specific and standardized parts. In FIG. 1, a high efficiency (HE) PPDU frame 110 is transmitted from a wireless access point 101 to a wireless station 102. HE PPDU 110 includes traditional short training field (shown as: L-STF) 111, traditional long training field (shown as: L-LTF) 112, and traditional signal field (shown as: L- SIG) 113, repeating the traditional signal field (shown as: RL-SIG) 114, high efficiency signal A field (shown as: HE-SIGA) 115, high efficiency signal B field (shown as: : HE-SIGB) 116, high-efficiency short training field (shown as: HE-STF) 117, multiple high-efficiency long training fields for data (shown as: HE-LTF) 118, high Efficiency data payload 119 and packet extension (represented in the figure: PE) 120.

在HE WLAN中引入了允許多個用戶同時進行資料傳輸的正交頻分多址(OFDMA),以通過向不同的用戶分配子載波的子集來增強用戶體驗。在OFDMA中,向每個使用者分配稱為資源單元(RU)的一組子載波。在HE WLAN中,STA可以在上行鏈路OFDMA中發送一個最小尺寸的RU(約2MHz頻寬)。與STA的20MHz前導碼相比,STA的資料部分的功率密度比其前導碼高9dB。該窄帶上行OFDMA信號難以被CCA檢測到。因此,一個STA在特定窄帶中的子載波干擾比其他子載波高9dB。可以看出,窄帶干擾在HE WLAN中是固有的。因此,需要處理窄帶干擾的方案。此外,在密集部署下,具有窄帶干擾的魯棒性對於HW WLAN是重要的。增強HE資料部分的誤包率(Packet Error Rate,PER)性能可以擴展戶外場景的範圍。需要一種可在比MCS0低的SNR下操作的新的HE資料調製方案。Orthogonal Frequency Division Multiple Access (OFDMA) is introduced in HE WLAN to allow multiple users to transmit data simultaneously to enhance the user experience by allocating a subset of subcarriers to different users. In OFDMA, each user is assigned a set of subcarriers called a resource unit (RU). In HE WLAN, the STA can send a minimum size RU (about 2MHz bandwidth) in the uplink OFDMA. Compared with the 20MHz preamble of the STA, the power density of the data portion of the STA is 9dB higher than its preamble. The narrow-band uplink OFDMA signal is difficult to detect by CCA. Therefore, the subcarrier interference of a STA in a specific narrowband is 9dB higher than that of other subcarriers. It can be seen that narrowband interference is inherent in HE WLAN. Therefore, a solution to deal with narrow-band interference is needed. In addition, in dense deployments, robustness with narrowband interference is important for HW WLAN. Enhancing the Packet Error Rate (PER) performance of the HE data section can extend the range of outdoor scenes. There is a need for a new HE data modulation scheme that can operate at a lower SNR than MCS0.

HE-SIGB主要用於預期用戶。在多用戶(MU)傳輸中,使用1x OFDM符號持續時間對HE-SIGB的性能進行編碼。最終,當使用相同的調製和編碼方案(MCS)時,其性能比具有4x OFDM符號持續時間的資料符號差。這表明,將迴圈首碼(Cyclic Prefix,CP)從0.8us(微秒)擴展到1.6us甚至3.2us並不能有效地確保SIGB相對於資料是可靠的。因此,HE-SIGB需要更健壯的調製方案。HE-SIGB可以包含用於OFDMA / MU-MIMO傳輸的許多比特。假設HE-SIGB包含主要針對預期使用者的資訊,並不是所有其他STA都接收到HE-SIGB。MCS越高,效率越高。因此,HE-SIGB應允許使用變數MCS來提高效率。HE-SIGB is mainly used for prospective users. In multi-user (MU) transmission, the performance of HE-SIGB is encoded using 1x OFDM symbol duration. Finally, when using the same modulation and coding scheme (MCS), its performance is worse than data symbols with 4x OFDM symbol duration. This shows that extending the Cyclic Prefix (CP) from 0.8us (microseconds) to 1.6us or even 3.2us does not effectively ensure that the SIGB is reliable with respect to the data. Therefore, HE-SIGB needs a more robust modulation scheme. HE-SIGB can contain many bits for OFDMA / MU-MIMO transmission. Assume that the HE-SIGB contains information mainly intended for the intended user, and not all other STAs receive the HE-SIGB. The higher the MCS, the higher the efficiency. Therefore, HE-SIGB should allow the use of variable MCS to improve efficiency.

因此,在HE WLAN中引入了雙子載波調製(DCM)。DCM是處理窄帶干擾的完美解決方案。DCM可以通過在頻率上分離的兩個子載波上發送相同的資訊來將頻率分集引入OFDM系統。對於單用戶傳輸,DCM方案在一對資料子載波n和m上調製相同的資訊,即0 <n <NSD / 2和m = NSD / 2 + n,其中NSD是一個資源單元中的資料子載波的總數。對於OFDMA傳輸,給定使用者分配一個頻率資源塊。一個頻率塊的DCM方案與單使用者的OFDM情況相同。Therefore, dual subcarrier modulation (DCM) is introduced in HE WLAN. DCM is the perfect solution for narrow-band interference. DCM can introduce frequency diversity into OFDM systems by sending the same information on two subcarriers that are separated in frequency. For single-user transmission, the DCM scheme modulates the same information on a pair of data subcarriers n and m, that is, 0 <n <NSD / 2 and m = NSD / 2 + n, where NSD is a data subcarrier in a resource unit. total. For OFDMA transmission, a given user is allocated a frequency resource block. The DCM scheme for one frequency block is the same as the single-user OFDM case.

可以使用DCM指示方案,使得DCM的編碼和解碼非常簡單。如第1圖所示,HE-SIGA 115或HE-SIGB 116包括MCS子欄位和DCM比特,其中,所述MCS欄位用於指示MCS,所述DCM比特用於指示是否將DCM應用於該用戶隨後的HE-SIGB 116或後續資料有效載荷119。如果DCM被應用和指示,則發射機使用不同的映射方案在兩個分離的子載波上調製相同的編碼比特。此外,當給定的RU應用DCM時,可以使用新的低密度同位(LDPC)子載波映射器。對於使用DCM的HE PPDU 110傳輸,LDPC編碼位元流首先由DCM星座映射器調製。頻段下半部分的調製符號被重複、共軛並映射到頻段的上半部分。使用DCM LDPC子載波映射器將頻段的下半部分的調製符號映射到資料子載波的下半部分。使用相同的DCM LDPC子載波映射器將頻段的上半部分的調製符號映射到資料子載波的上半部分。The DCM indication scheme can be used, making the encoding and decoding of the DCM very simple. As shown in Figure 1, HE-SIGA 115 or HE-SIGB 116 includes an MCS subfield and a DCM bit, where the MCS field is used to indicate MCS and the DCM bit is used to indicate whether to apply DCM to the The user's subsequent HE-SIGB 116 or subsequent data payload 119. If DCM is applied and indicated, the transmitter uses different mapping schemes to modulate the same coded bits on two separate subcarriers. In addition, when a RU is applied to a given RU, a new low density co-located (LDPC) subcarrier mapper can be used. For HE PPDU 110 transmission using DCM, the LDPC coded bit stream is first modulated by the DCM constellation mapper. The modulation symbols in the lower half of the band are repeated, conjugated and mapped to the upper half of the band. The DCM LDPC subcarrier mapper is used to map the modulation symbols in the lower half of the frequency band to the lower half of the data subcarrier. Use the same DCM LDPC subcarrier mapper to map the modulation symbols in the upper half of the band to the upper half of the data subcarrier.

第2圖是根據一個新穎方面的無線設備201和211的簡化框圖(位於無線通訊系統200中)。對於無線設備201(例如,發送設備),天線207和208發射和接收無線電信號。與天線耦合的RF收發器模組206從天線接收RF信號,將它們轉換成基帶信號並將它們發送到處理器203。RF收發器206還轉換來自處理器的基帶信號,將它們轉換成RF信號,併發送給天線207和208。處理器203處理接收到的基帶信號並且調用不同的功能模組和電路來執行無線設備201中的功能。記憶體202存儲程式指令和資料210以控制設備201的操作。FIG. 2 is a simplified block diagram of a wireless device 201 and 211 (located in a wireless communication system 200) according to a novel aspect. For the wireless device 201 (for example, a transmitting device), the antennas 207 and 208 transmit and receive radio signals. The antenna-coupled RF transceiver module 206 receives RF signals from the antenna, converts them into baseband signals, and sends them to the processor 203. The RF transceiver 206 also converts the baseband signals from the processor, converts them into RF signals, and sends them to the antennas 207 and 208. The processor 203 processes the received baseband signals and calls different function modules and circuits to perform functions in the wireless device 201. The memory 202 stores program instructions and data 210 to control the operation of the device 201.

類似地,對於無線設備211(例如,接收設備),天線217和218發射和接收RF信號。與天線耦合的RF收發器模組216從天線接收RF信號,將它們轉換為基帶信號後發送到處理器213。RF收發器216還轉換來自處理器的基帶信號,將其轉換為RF信號,併發送給天線217和218。處理器213處理接收到的基帶信號並且調用不同的功能模組和電路來執行無線設備211中的功能。記憶體212存儲程式指令和資料220以控制無線設備211的操作。Similarly, for a wireless device 211 (eg, a receiving device), antennas 217 and 218 transmit and receive RF signals. The RF transceiver module 216 coupled to the antenna receives RF signals from the antenna, converts them to baseband signals, and sends them to the processor 213. The RF transceiver 216 also converts the baseband signal from the processor, converts it to an RF signal, and sends it to the antennas 217 and 218. The processor 213 processes the received baseband signals and calls different function modules and circuits to perform functions in the wireless device 211. The memory 212 stores program instructions and data 220 to control the operation of the wireless device 211.

無線設備201和211還包括若干功能模組和電路,可被實施和配置為執行本發明的實施例。在第2圖的示例中,無線設備201是包括編碼器205,符號映射器/調製器204和OFDMA模組209的發送設備。無線設備211是接收設備,其包括解碼器215,解映射/解調器214和OFDMA模組219。請注意,一個無線設備既可以是發送設備也可以是接收設備。不同的功能模組和電路可以通過軟體,固件,硬體及其任何組合來實現和配置。功能模組和電路在由處理器203和213(例如通過執行程式碼210和220)執行時,允許發送設備201和接收設備211執行本發明的實施例。The wireless devices 201 and 211 also include several functional modules and circuits that can be implemented and configured to perform embodiments of the invention. In the example of FIG. 2, the wireless device 201 is a transmitting device including an encoder 205, a symbol mapper / modulator 204, and an OFDMA module 209. The wireless device 211 is a receiving device and includes a decoder 215, a demapper / demodulator 214, and an OFDMA module 219. Please note that a wireless device can be either a sending device or a receiving device. Different functional modules and circuits can be implemented and configured by software, firmware, hardware and any combination thereof. When the functional modules and circuits are executed by the processors 203 and 213 (for example, by executing the program codes 210 and 220), the transmitting device 201 and the receiving device 211 are allowed to execute the embodiments of the present invention.

在一個示例中,在發射機側,設備201生成HE PPDU幀,並將MCS和DCM指示位同時插入HE PPDU幀的信號欄位。然後,設備201應用相應的MCS和DCM和LDPC子載波映射,並將HE PPDU發送到接收機。在接收機側,設備211接收HE PPDU,並解碼MCS和DCM指示位。如果DCM指示位為0,則接收機基於指示的MCS計算每個子載波的接收比特的對數似然比(Logarithm Likelihood Ratio,LLR)。另一方面,如果DCM指示位等於1,則接收器通過執行資源單元的上子載波和下子載波的LLR組合來計算LLR。接下來,將結合附圖,對發送裝置和接收裝置的各種實施方式進行說明。In one example, on the transmitter side, the device 201 generates a HE PPDU frame and inserts the MCS and DCM indicator bits into the signal field of the HE PPDU frame at the same time. Then, the device 201 applies the corresponding MCS and DCM and LDPC subcarrier mapping, and sends the HE PPDU to the receiver. On the receiver side, the device 211 receives the HE PPDU and decodes the MCS and DCM indicator bits. If the DCM indication bit is 0, the receiver calculates a Logarithm Likelihood Ratio (LLR) of the received bits of each subcarrier based on the indicated MCS. On the other hand, if the DCM indicator bit is equal to 1, the receiver calculates the LLR by performing the LLR combination of the upper and lower subcarriers of the resource unit. Next, various embodiments of the transmitting device and the receiving device will be described with reference to the drawings.

第3圖是應用具有LDPC子載波映射的DCM調製的發送設備300的簡化圖。編碼器301對欲發送給接收設備的資料分組進行編碼,編碼器301輸出的編碼比特被饋送(可以通過未示出的BCC的比特交織器)到DCM +LDPC映射器302中。編碼器301可以是LDPC編碼器,因此,編碼器301輸出的編碼比特可為LDPC編碼比特。 DCM +LDPC映射器 302首先通過DCM映射器用不同的映射方案在兩個單獨的資料子載波上調製相同的編碼比特。例如,如第3圖所示,資料子載波n和資料子載波m攜帶相同的比特資訊,其中,資料子載波n是較低的子載波,並應用映射方案#1(例如,後續提到的BPSK),資料子載波m是較高的子載波,並應用映射方案#2(例如,後續提到的SBPSK)。DCM +LDPC映射器 302然後使用LDPC映射器將所述兩個單獨的子載波上形成的調製符號重新映射到資源單元的其他資料子載波上重新映射後的資源單元被饋送到IFFT 303並被發送。FIG. 3 is a simplified diagram of a transmission device 300 to which DCM modulation with LDPC subcarrier mapping is applied. The encoder 301 encodes a data packet to be sent to a receiving device, and the encoded bits output by the encoder 301 are fed (can pass a bit interleaver of a BCC not shown) to the DCM + LDPC mapper 302. The encoder 301 may be an LDPC encoder, and therefore, the encoded bits output by the encoder 301 may be LDPC encoded bits. The DCM + LDPC mapper 302 first uses the DCM mapper to modulate the same coded bits on two separate data subcarriers with different mapping schemes. For example, as shown in FIG. 3, the data subcarrier n and the data subcarrier m carry the same bit information, where the data subcarrier n is a lower subcarrier and a mapping scheme # 1 is applied (for example, the following mentioned BPSK), the data subcarrier m is the higher subcarrier, and mapping scheme # 2 is applied (for example, SBPSK mentioned later). The DCM + LDPC mapper 302 then uses the LDPC mapper to remap the modulation symbols formed on the two separate subcarriers to the other data subcarriers of the resource unit. The remapped resource units are fed to the IFFT 303 and sent. .

假設用於資料子載波n和資料子載波m的調製符號分別表示為。對於二進位相移鍵控(Binary Phase Shift Keying,BPSK) DCM,可以通過在兩個相同或不同的BPSK星座(例如,BPSK和SBPSK (Shaped Binary Phase Shift Keying,交錯的二進位相移鍵控))上映射1比特編碼比特來獲得。例如,一種BPSK DCM映射方案可以是: Assume that the modulation symbols for data subcarrier n and data subcarrier m are expressed as with . For Binary Phase Shift Keying (BPSK) DCM, with It can be obtained by mapping 1-bit coded bits on two identical or different BPSK constellations (for example, BPSK and SBPSK (Shaped Binary Phase Shift Keying)). For example, a BPSK DCM mapping scheme can be:

對於QPSK(Quadrature Phase Shift Keying,正交相移鍵控) DCM,可以通過在兩個相同或不同的QPSK星座上映射2位元編碼流 來獲得。例如,可以使用QPSK進行映射,可以使用SQPSK(Shaped Quadrature Phase Shift Keying,交錯的正交相移鍵控)或其他旋轉的QPSK方案進行映射。For QPSK (Quadrature Phase Shift Keying) DCM, with It is possible to map a 2-bit encoded stream on two identical or different QPSK constellations Come to get. E.g, Can use QPSK for mapping, Mapping can be performed using SQPSK (Shaped Quadrature Phase Shift Keying) or other rotated QPSK schemes.

第4圖示出了用於16QAM DCM的調製映射方案的一個示例。對於16QAM DCM,通過在兩個不同的16QAM星座上分別映射4位元流來獲得。如第4圖所示,使用4(a)所示的星座圖來調製,並使用4(b)所示的星座圖來調製 Figure 4 shows an example of a modulation mapping scheme for 16QAM DCM. For 16QAM DCM, by mapping 4-bit streams on two different 16QAM constellations, respectively To get with . As shown in Figure 4, modulation is performed using the constellation shown in Figure 4 (a). And use the constellation diagram shown in 4 (b) to modulate :

其中: among them:

對於諸如64QAM和256QAM等更高的調製方案,也可以對相同編碼位元流上的使用兩種不同的映射方案來應用DCM。對於DCM,不推薦使用高於16QAM的調製。這是因為為了獲得更高的性能,DCM可能會降低更高的調製的資料速率。For higher modulation schemes such as 64QAM and 256QAM, the with DCM is applied using two different mapping schemes. For DCM, modulations higher than 16QAM are not recommended. This is because in order to obtain higher performance, DCM may reduce the data rate of higher modulation.

第5圖示出了使用LDPC和LDPC子載波映射器的DCM傳輸過程。無線設備的發射機包括LDPC編碼器501,流解析器502,選擇器511/531,DCM星座映射器512/532,DCM LDPC子載波映射器513/533,非DCM星座映射器522/542,LDPC子載波映射器523/543,每個流的迴圈移位元延遲電路534,空間映射器514和離散傅裡葉逆變換電路515/535。LDPC編碼器501將資料分組編碼成長位元流,其由流解析器502解析成多個位元流。如果應用了DCM,則由DCM星座映射器512調製每個位元流(...),並由DCM LDPC子載波映射器513進行映射,513映射後的流由空間映射器514進一步映射,並最終傳遞給離散傅裡葉逆變換電路515以被發送出去。另一方面,如果不應用DCM,則每個位元流(...)被非DCM星座映射器522調製,並由LDPC子載波映射器523進行映射,該映射結果被空間映射器514進一步映射,並傳遞到離散傅裡葉逆變換電路IDFT 515以被傳出。Figure 5 shows the DCM transmission process using LDPC and LDPC subcarrier mappers. The transmitter of the wireless device includes LDPC encoder 501, stream parser 502, selector 511/531, DCM constellation mapper 512/532, DCM LDPC subcarrier mapper 513/533, non-DCM constellation mapper 522/542, LDPC A subcarrier mapper 523/543, a loop shift element delay circuit 534, a spatial mapper 514, and an inverse discrete Fourier transform circuit 515/535 for each stream. The LDPC encoder 501 encodes a data packet into a long bit stream, which is parsed by the stream parser 502 into a plurality of bit streams. If DCM is applied, each bit stream is modulated by the DCM constellation mapper 512 ( ...), and is mapped by the DCM LDPC subcarrier mapper 513. The mapped stream of 513 is further mapped by the spatial mapper 514, and finally passed to the inverse discrete Fourier transform circuit 515 to be transmitted. On the other hand, if DCM is not applied, each bit stream ( ...) modulated by the non-DCM constellation mapper 522 and mapped by the LDPC subcarrier mapper 523, and the mapping result is further mapped by the spatial mapper 514 and passed to the inverse discrete Fourier transform circuit IDFT 515 to be transmitted Out.

第6圖示出了當為給定資源單元(RU)應用DCM時的LDPC子載波映射器的一個示例。在第6圖的示例中,LDPC編碼位元流...由DCM星座映射器611映射,然後分別由兩個相同的DCM LDPC子載波映射器621和622映射。NSD是一個資源單元(RU)中資料子載波的數量。對於LDPC編碼位元流,...,當使用DCM調製時,則應用DCM星座映射器611和DCM LDPC子載波映射器621和622。例如,對於QPSK DCM調製,編碼/交織的比特...被調製為QPSK調製符號:[d1, d2, …],該調製符號被映射到資源單元的下半頻段的資料子載波上 ;下半頻段的調製符號被重複並共軛[,, …] = conj([d1, d2, …]),然後映射到資源單元的上半頻段的資料子載波上。然後使用DCM LDPC子載波映射器621將[d1, d2, …]重新映射到資料子載波[1,2,... NSD / 2],並且使用相同的DCM LDPC子載波映射器622將[,, …]重新映射到資料子載波[NSD/2+1, NSD/2+2, … NSD]。DCM LDPC子載波映射器621和622是相同的。Figure 6 shows an example of an LDPC subcarrier mapper when DCM is applied for a given resource unit (RU). In the example in Figure 6, the LDPC coded bit stream ... mapped by the DCM constellation mapper 611, and then by two identical DCM LDPC subcarrier mappers 621 and 622, respectively. NSD is the number of data subcarriers in a resource unit (RU). For LDPC coded bit streams, ..., when DCM modulation is used, the DCM constellation mapper 611 and the DCM LDPC subcarrier mapper 621 and 622 are applied. For example, for QPSK DCM modulation, coded / interleaved bits ... is modulated into QPSK modulation symbols: [d1, d2,… ], The modulation symbol is mapped to the data subcarrier in the lower half of the resource unit; the modulation symbol in the lower half is repeated and conjugated [ , ,… ] = conj ([d1, d2,… ]), And then mapped to the data subcarrier in the upper half of the resource unit. Then use DCM LDPC subcarrier mapper 621 to convert [d1, d2,… ] Remap to the data subcarriers [1,2, ... NSD / 2] and use the same DCM LDPC subcarrier mapper 622 to [ , ,… ] Remapping to the data subcarriers [NSD / 2 + 1, NSD / 2 + 2,… NSD]. The DCM LDPC subcarrier mappers 621 and 622 are the same.

在基於即將到來的IEEE 801.11ax標準的下一代WLAN系統中,每個站(STA)可以使用一個或多個資源單元(RU)發射信號。RU尺寸可以是26,52,106,242,484或996個子載波(包括導頻子載波和資料子載波),子載波間隔約為78.1kHz。相應地,每個RU的資料子載波NSD的數量分別為24,48,102,234,468和980。當對於給定的RU應用DCM時,使用給定流的DCM生成的調製符號的數量是RU的資料子載波子載波數量的一半,即NSD / 2。例如,如果RU的資料子載波的尺寸為102,則使用DCM生成的調製符號的數目為NSD / 2 = 51。所生成的調製符號將被映射到RU的第一半頻段和第二半頻段的數據子載波上(例如在第6圖中,對於QPSK DCM調製,編碼/交織的比特...被調製為QPSK調製符號:[d1, d2, …],該調製符號被映射到資源單元的下半頻段的資料子載波上;下半頻段的調製符號被重複並共軛[,, …] = conj([d1, d2, …]),然後映射到資源單元的上半頻段的資料子載波上。然後使用DCM LDPC子載波映射器621將[d1, d2, …]重新映射到資料子載波[1,2,... NSD / 2],並且使用相同的DCM LDPC子載波映射器622將[,, …]重新映射到資料子載波[NSD/2+1, NSD/2+2, … NSD])。RU的第一半頻段包含子載波1到NSD / 2,並且RU的第二半頻段包含子載波NSD / 2到子載波NSD,其中NSD是RU的資料在載波的尺寸。In a next-generation WLAN system based on the upcoming IEEE 801.11ax standard, each station (STA) can use one or more resource units (RU) to transmit signals. The RU size can be 26, 52, 106, 242, 484 or 996 subcarriers (including pilot subcarriers and data subcarriers), and the subcarrier spacing is approximately 78.1kHz. Correspondingly, the number of data subcarrier NSDs of each RU is 24, 48, 102, 234, 468, and 980, respectively. When a DCM is applied to a given RU, the number of modulation symbols generated by the DCM using a given stream is half the number of data subcarriers and subcarriers of the RU, that is, NSD / 2. For example, if the size of the data subcarrier of the RU is 102, the number of modulation symbols generated using the DCM is NSD / 2 = 51. The generated modulation symbols will be mapped onto the data subcarriers of the first and second half bands of the RU (for example, in Figure 6, for QPSK DCM modulation, the coded / interleaved bits ... is modulated into QPSK modulation symbols: [d1, d2,… ], The modulation symbol is mapped to the data subcarrier in the lower half of the resource unit; the modulation symbol in the lower half is repeated and conjugated [ , ,… ] = conj ([d1, d2,… ]), And then mapped to the data subcarrier in the upper half of the resource unit. Then use DCM LDPC subcarrier mapper 621 to convert [d1, d2,… ] Remap to the data subcarriers [1,2, ... NSD / 2] and use the same DCM LDPC subcarrier mapper 622 to [ , ,… ] Re-mapped to the data subcarriers [NSD / 2 + 1, NSD / 2 + 2,… NSD]). The first half of the RU contains subcarriers 1 to NSD / 2, and the second half of the RU contains subcarriers NSD / 2 to subcarrier NSD, where NSD is the size of the RU's data on the carrier.

第7圖示出了用於DCM的LDPC子載波映射器的一個實施例。對於沒有DCM的HE PPDU傳輸,對應於第r個RU中的使用者u的LDPC編碼流的LDPC子載波映射通過將由星座映射器生成的調製符號按如下方式置換來完成,其中NSD是第r個RU中的資料子載波的總數量。 Figure 7 shows one embodiment of an LDPC subcarrier mapper for DCM. For HE PPDU transmission without DCM, the LDPC subcarrier mapping corresponding to the LDPC coded stream of user u in the r-th RU is accomplished by replacing the modulation symbols generated by the constellation mapper as follows, where NSD is the r-th The total number of data subcarriers in the RU.

如下所述,LDPC子載波映射器將由星座映射器生成的第k個調製符號映射到第t(k)個子載波,其中DTM是第r個RU的LDPC子載波映射距離。 As described below, the LDPC subcarrier mapper maps the kth modulation symbol generated by the constellation mapper to the t (k) th subcarrier, where DTM is the LDPC subcarrier mapping distance of the rth RU.

對於具有DCM的HE PPDU傳輸,與第r個RU中的用戶u相對應的LDPC編碼的流的LDPC子載波映射是通過將由星座映射器生成的調製符號流按如下方式進行置換來完成的,其中NSD 是第r個RU中的資料子載波的總數。 For HE PPDU transmission with DCM, the LDPC subcarrier mapping of the LDPC-encoded stream corresponding to user u in the rth RU is accomplished by replacing the modulation symbol stream generated by the constellation mapper as follows, NSD is the total number of data subcarriers in the r-th RU.

如下所述(參見第6圖), DCM LDPC子載波映射器將由星座映射器生成的第k個調製符號映射到第t(k)個子載波,其中DTM-DCM是應用DCM時的第r個RU的LDPC子載波映射距離。 As described below (see Figure 6), the DCM LDPC subcarrier mapper maps the kth modulation symbol generated by the constellation mapper to the t (k) th subcarrier, where DTM-DCM is the rth RU when DCM is applied LDPC subcarrier mapping distance.

在表700的示例中,將如上所述,對映射到RU中的所有LDPC編碼流執行DCM LDPC子載波映射。當將DCM應用於LDPC編碼流時,應將DTM-DCM應用於RU中的下半部分資料子載波和RU的上半部分資料子載波。對於每個RU尺寸,LDPC子載波映射距離參數DTM和DTM-DCM是不變的,並且在表700中給出了不同RU尺寸的DTM和DTM-DCM的值。LDPC子載波映射器保證每兩個連續生成的調製符號將在兩個至少被其他資料子載波(例如,DTM-DCM-1)分開的子載波上傳輸。每個DTM-DCM對應於不同的LDPC子載波映射器(等同於塊交織器)。In the example of table 700, DCM LDPC subcarrier mapping will be performed on all LDPC encoded streams mapped into the RU as described above. When DCM is applied to the LDPC coded stream, DTM-DCM should be applied to the lower half of the data subcarriers in the RU and the upper half of the data subcarriers in the RU. For each RU size, the LDPC subcarrier mapping distance parameters DTM and DTM-DCM are constant, and the values of DTM and DTM-DCM for different RU sizes are given in Table 700. The LDPC subcarrier mapper guarantees that every two consecutively generated modulation symbols will be transmitted on two subcarriers separated by at least other data subcarriers (for example, DTM-DCM-1). Each DTM-DCM corresponds to a different LDPC subcarrier mapper (equivalent to a block interleaver).

用於DCM的兩個頻率子載波可以被預先確定。例如,對於單使用者傳輸,DCM調製可以應用於子載波k和k + N / 2,其中N是一個OFDM符號或一個RU中的子載波的總數。對於OFDMA傳輸,DCM調製可以應用於分配給給定用戶的兩個等頻資源塊。即使使用一個頻帶或頻率資源塊中的干擾,也可以實現使用DCM的傳輸方法。例如,對於非WiFi信號或交疊的基本業務集(Overlap Basic Service Set,OBSS)信號,可以對兩個頻帶應用不同的空閒通道評估(CCA)閾值。The two frequency subcarriers for the DCM can be predetermined. For single-user transmission, for example, DCM modulation can be applied to subcarriers k and k + N / 2, where N is the total number of subcarriers in one OFDM symbol or one RU. For OFDMA transmission, DCM modulation can be applied to two equal-frequency resource blocks allocated to a given user. Even if interference in one frequency band or frequency resource block is used, a transmission method using DCM can be realized. For example, for non-WiFi signals or overlapping Basic Service Set (OBSS) signals, different clear channel assessment (CCA) thresholds can be applied to the two frequency bands.

第8圖是使用具有LDPC去映射的DCM去調製的接收設備800的簡化圖。在接收機處,通過快速傅立葉轉換模組801的接收信號可以寫為:FIG. 8 is a simplified diagram of a receiving device 800 using DCM with LDPC demapping. At the receiver, the received signal through the fast Fourier transform module 801 can be written as:

---上子載波 --- Upper subcarrier

---下子載波 --- Sub-carrier

其中:among them:

是子載波n和m的通道回應矩陣; with Is the channel response matrix of subcarriers n and m;

被建模為加性高斯白色雜訊(AWGN)雜訊。 with It is modeled as additive Gaussian white noise (AWGN) noise.

當認為上子載波和下子載波的SNR為“好”時,接收機的解映射/解調器802可以通過組合來自上子載波和下子載波的接收信號來計算接收的比特的對數似然比(LLR)。作為選擇,當認為上子載波和下子載波的SNR為“差”時,接收機可以選擇計算僅來自上子載波的接收比特的LLR或者選擇計算僅來自下子載波的接收比特的LLR。然後將解調的信號饋送到解碼器803,以輸出解碼的信號。When the SNRs of the upper and lower subcarriers are considered to be "good", the receiver's demapper / demodulator 802 can calculate the log-likelihood ratio of the received bits by combining the received signals from the upper and lower subcarriers ( LLR). Alternatively, when the SNRs of the upper and lower subcarriers are considered to be "bad", the receiver may choose to calculate the LLR of only the received bits from the upper subcarrier or select the LLR of only the received bits from the lower subcarrier. The demodulated signal is then fed to a decoder 803 to output a decoded signal.

使用DCM有許多優點。在一個OFDM符號內沒有添加用於調製的延遲。在調製器和解調器上不會引入額外的複雜性。對於調製,沒有額外的複雜性,只需以相似的方式調製上頻段子載波和下頻段子載波。對於解調,LLR計算非常簡單。對於QPSK,只需添加兩個LLR。對於16QAM,只需要幾個簡單的附加減法。模擬結果表明,對於MCS0和MCS2,PER性能在4x符號中至少提高2dB增益。這樣的性能增益是顯著的。對於更寬的頻寬(> 20MHz),基於較大的頻率分集增益,可以期望獲得更大的性能增益。對於戶外通道,錯誤平層也減少了。總體而言,DCM方案導致對窄帶干擾的更強魯棒性,並提供了非常好的資料速率與QPSK½率碼與16QAM½碼率之間的平衡折衷。There are many advantages to using DCM. No delay for modulation is added within one OFDM symbol. No additional complexity is introduced on the modulator and demodulator. For modulation, there is no additional complexity, just the upper band subcarriers and the lower band subcarriers need to be modulated in a similar manner. For demodulation, the LLR calculation is very simple. For QPSK, just add two LLRs. For 16QAM, only a few simple additional subtractions are required. Simulation results show that for MCS0 and MCS2, PER performance improves at least 2dB gain in 4x symbols. This performance gain is significant. For wider bandwidths (> 20MHz), greater performance gains can be expected based on larger frequency diversity gains. For outdoor access, false leveling is also reduced. Overall, the DCM scheme results in stronger robustness to narrowband interference and provides a very good compromise between data rate and QPSK½ rate code and 16QAM½ rate.

第9圖是根據一個新穎方面的使用具有LDPC子載波映射的DCM發送和編碼HE PPDU幀的方法的流程圖。在步驟901中,源站對要發送到目的站的資料分組進行編碼。在步驟902中,在應用雙子載波調製(DCM)的情形下,源站使用不同的調製方案在資源單元的兩個分離的子載波上對編碼後的信息進行調製,生成第一組調製符號和第二組調製符號,作為舉例,所述兩個分離的子載波分別位於所述資源單元的第一半頻資料子載波範圍和第二半頻資料子載波範圍內;在步驟903中,源站通過子載波映射器將所述第一組調製符號重新映射到所述資源單元的第一半頻資料子載波上,並通過相同的子載波映射器將所述第二組調製符號重新映射到所述資源單元的第二半頻資料子載波上;具體實現中,所述重新映射可保證每兩個連續生成的調製符號將在兩個至少被其他資料子載波分開的子載波上傳輸。在步驟904中,源站將子載波映射器映射後的資源單元發送到目的站。在一個示例中,子載波映射器是專為雙子載波調製設計的低密度同位(LDPC)子載波映射器。FIG. 9 is a flowchart of a method of transmitting and encoding a HE PPDU frame using a DCM with LDPC subcarrier mapping according to a novel aspect. In step 901, the source station encodes a data packet to be sent to the destination station. In step 902, when dual subcarrier modulation (DCM) is applied, the source station uses different modulation schemes to modulate the encoded information on two separate subcarriers of the resource unit to generate a first set of modulation symbols. And the second set of modulation symbols, for example, the two separated subcarriers are respectively located in the first half-frequency data subcarrier range and the second half-frequency data subcarrier range of the resource unit; in step 903, the source The station remaps the first group of modulation symbols to the first half-frequency data subcarrier of the resource unit through a subcarrier mapper, and remaps the second group of modulation symbols to On the second half-frequency data subcarrier of the resource unit; in specific implementation, the remapping can ensure that every two consecutively generated modulation symbols will be transmitted on two subcarriers separated by at least other data subcarriers. In step 904, the source station sends the resource units mapped by the subcarrier mapper to the destination station. In one example, the subcarrier mapper is a low density parity (LDPC) subcarrier mapper designed for dual subcarrier modulation.

申請專利範圍中用以修飾元件的“第一”、“第二”等序數詞的使用本身未暗示任何優先權、優先次序、各元件之間的先後次序、或所執行方法的時間次序,而僅用作標識來區分具有相同名稱(具有不同序數詞)的不同元件。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The use of ordinal numbers such as "first" and "second" in the scope of the patent application does not imply any priority, order of priority, order between elements, or chronological order of executed methods, and Used only as an identifier to distinguish between different components with the same name (with different ordinal numbers). The above description is only a preferred embodiment of the present invention, and all equivalent changes and modifications made in accordance with the scope of patent application of the present invention shall fall within the scope of the present invention.

100,200‧‧‧無線通訊系統100, 200‧‧‧ wireless communication system

101‧‧‧無線接入點101‧‧‧Wireless access point

110‧‧‧高效率(HE)PPDU幀110‧‧‧High Efficiency (HE) PPDU Frame

102‧‧‧無線站102‧‧‧Wireless Station

111‧‧‧傳統短訓練欄位111‧‧‧ traditional short training field

112‧‧‧傳統長訓練欄位112‧‧‧Traditional Long Training Field

113‧‧‧傳統信號欄位113‧‧‧ Traditional Signal Field

114‧‧‧重複傳統信號欄位114‧‧‧ Repeat traditional signal field

115‧‧‧高效率信號A欄位115‧‧‧High Efficiency Signal A

116‧‧‧高效率信號B欄位116‧‧‧High efficiency signal B field

117‧‧‧高效率短訓練欄位117‧‧‧High efficiency short training field

118‧‧‧用於資料的高效率長訓練欄位118‧‧‧ Efficient long training field for data

119‧‧‧高效率資料有效載荷119‧‧‧High Efficiency Data Payload

120‧‧‧分組擴展120‧‧‧Group expansion

201,211‧‧‧無線設備201, 211‧‧‧ wireless equipment

203,213‧‧‧處理器203, 213‧‧‧ processors

202,212‧‧‧記憶體202, 212‧‧‧Memory

210,220‧‧‧程式指令和資料210, 220‧‧‧ program instructions and information

206,216‧‧‧RF收發器206,216‧‧‧RF transceiver

205,301‧‧‧編碼器205, 301‧‧‧ encoder

204‧‧‧符號映射器/調製器204‧‧‧Symbol Mapper / Modulator

209,219‧‧‧OFDMA模組209,219‧‧‧OFDMA module

207,208,217,218‧‧‧天線207,208,217,218‧‧‧antenna

215,803‧‧‧解碼器215,803‧‧‧ decoder

214,802‧‧‧解映射/解調器214,802‧‧‧‧Demap / Demodulator

300‧‧‧發送設備300‧‧‧ sending equipment

302‧‧‧DCM/LDPC塊302‧‧‧DCM / LDPC block

303‧‧‧IFFT303‧‧‧IFFT

501‧‧‧LDPC編碼器501‧‧‧LDPC encoder

502‧‧‧流解析器502‧‧‧stream parser

511,531‧‧‧選擇器511,531‧‧‧ selector

512,532,611‧‧‧DCM星座映射器512, 532, 611‧‧‧DCM Constellation Mapper

522,542‧‧‧非DCM星座映射器522, 542‧‧‧ non-DCM constellation mapper

513,533,621,622‧‧‧DCM LDPC子載波映射器513,533,621,622‧‧‧‧DCM LDPC subcarrier mapper

523,543‧‧‧LDPC子載波映射器523,543‧‧‧LDPC Subcarrier Mapper

534‧‧‧每個流的迴圈移位元延遲電路534‧‧‧Circular shift element delay circuit for each stream

514‧‧‧空間映射器514‧‧‧Space Mapper

515,535‧‧‧離散傅裡葉逆變換電路515,535‧‧‧‧Inverse discrete Fourier transform circuit

700‧‧‧表700‧‧‧ watch

800‧‧‧接收設備800‧‧‧ receiving equipment

801‧‧‧快速傅立葉轉換模組801‧‧‧Fast Fourier Conversion Module

901,902,903,904‧‧‧步驟901, 902, 903, 904 ‧‧‧ steps

第1圖根據一個新穎方面示出了支援具有低密度同位(LDPC)的雙子載波調製(DCM)的無線通訊系統100和高效率HE PPDU幀結構; 第2圖是根據一個新穎方面的無線設備201和211的簡化框圖; 第3圖是應用具有LDPC子載波映射的DCM調製的發送設備300的簡化圖; 第4圖示出了用於16QAM DCM的調製映射方案的一個示例; 第5圖示出了使用LDPC和LDPC子載波映射器的DCM傳輸過程; 第6圖示出了當為給定資源單元(RU)應用DCM時的LDPC子載波映射器的一個示例; 第7圖示出了用於DCM的LDPC子載波映射器的一個實施例; 第8圖是使用具有LDPC去映射的DCM去調製的接收設備800的簡化圖; 第9圖是根據一個新穎方面的使用具有LDPC子載波映射的DCM發送和編碼HE PPDU幀的方法的流程圖。FIG. 1 illustrates a wireless communication system 100 and a high-efficiency HE PPDU frame structure supporting dual subcarrier modulation (DCM) with low density parity (LDPC) according to a novel aspect; FIG. 2 illustrates a wireless device according to a novel aspect Simplified block diagrams of 201 and 211; Figure 3 is a simplified diagram of a transmitting device 300 applying DCM modulation with LDPC subcarrier mapping; Figure 4 shows an example of a modulation mapping scheme for 16QAM DCM; Figure 5 DCM transmission process using LDPC and LDPC subcarrier mapper is shown; FIG. 6 shows an example of LDPC subcarrier mapper when DCM is applied for a given resource unit (RU); FIG. 7 shows One embodiment of an LDPC subcarrier mapper for DCM; FIG. 8 is a simplified diagram of a receiving device 800 using DCM with LDPC de-modulation; FIG. 9 is a diagram using LDPC subcarrier mapping according to a novel aspect Flow chart of a method for DCM to send and encode HE PPDU frames.

Claims (19)

一種通過無線局域網中的資源單元發送資料分組的方法,包括: 編碼要從源站發送到目的站的資料分組; 如果應用雙子載波調製,在所述資源單元的第一資料子載波上使用第一調製方案將編碼後的比特調製到第一組調製符號,並在所述資源單元的第二資料子載波上使用第二調製方案將所述編碼後的比特調製到第二組調製符號; 通過子載波映射器將所述第一組調製符號重新映射到所述資源單元的第一半頻資料子載波上,並通過相同的子載波映射器將所述第二組調製符號重新映射到所述資源單元的第二半頻資料子載波上; 和 將所述子載波映射器映射後的所述資源單元發送到所述目的站。A method for transmitting a data packet through a resource unit in a wireless local area network, comprising: encoding a data packet to be sent from a source station to a destination station; and if dual subcarrier modulation is applied, using the first data subcarrier on the resource unit A modulation scheme that modulates the encoded bits to a first group of modulation symbols, and uses a second modulation scheme to modulate the encoded bits to a second group of modulation symbols on a second data subcarrier of the resource unit; A subcarrier mapper remaps the first group of modulation symbols to a first half-frequency data subcarrier of the resource unit, and remaps the second group of modulation symbols to the resource unit through the same subcarrier mapper A second half-frequency data subcarrier of the resource unit; and sending the resource unit mapped by the subcarrier mapper to the destination station. 根據申請專利範圍第1項所述的方法,所述第一調製方案和所述第二調製方案基於相同的調製階數。According to the method described in item 1 of the patent application scope, the first modulation scheme and the second modulation scheme are based on the same modulation order. 根據申請專利範圍第1項所述的方法,所述第一資料子載波位於所述資源單元的第一半頻資源子載波範圍內,所述第二資料子載波位於所述資源單元的第二半頻資源子載波範圍內。According to the method according to item 1 of the scope of patent application, the first data subcarrier is located in a first half-frequency resource subcarrier range of the resource unit, and the second data subcarrier is located in a second half of the resource unit. Within half-frequency resource subcarrier range. 根據申請專利範圍第1項所述的方法,由所述第一和第二調製方案產生的調製符號的的數目是所述資源單元中包含的資料子載波總數的一半。According to the method described in item 1 of the patent application scope, the number of modulation symbols generated by the first and second modulation schemes is half of the total number of data subcarriers contained in the resource unit. 根據申請專利範圍第1項所述的方法,所述子載波映射器用於低密度同位通道控制編碼。According to the method described in item 1 of the patent application scope, the subcarrier mapper is used for low-density co-channel control coding. 根據申請專利範圍第5項所述的方法,所述低密度同位通道子載波映射器將由所述第一調製方案生成的每個調製符號映射到屬於所述資源單元的所述第一半頻資料子載波上。According to the method described in claim 5 of the patent application scope, the low-density co-channel subcarrier mapper maps each modulation symbol generated by the first modulation scheme to the first half-frequency data belonging to the resource unit. Subcarrier. 根據申請專利範圍第5項所述的方法,所述低密度同位通道子載波映射器將由所述第二調製方案生成的每個調製符號映射到屬於所述資源單元的所述第二半頻資料子載波上。According to the method described in claim 5 of the patent application scope, the low-density co-channel subcarrier mapper maps each modulation symbol generated by the second modulation scheme to the second half-frequency data belonging to the resource unit Subcarrier. 根據申請專利範圍第5項所述的方法,所述低密度同位通道子載波映射器是對於每個資源單元尺寸具有恒定距離的塊交織器。According to the method described in item 5 of the patent application scope, the low-density co-channel subcarrier mapper is a block interleaver with a constant distance for each resource unit size. 根據申請專利範圍第5項所述的方法,應用雙子載波調製時的低密度同位通道子載波映射距離與不應用雙子載波調製時的低密度同位通道子載波映射距離不同。According to the method described in item 5 of the scope of the patent application, the low-density co-channel subcarrier mapping distance when dual subcarrier modulation is applied is different from the low-density co-channel subcarrier mapping distance when dual subcarrier modulation is not applied. 根據申請專利範圍第1項所述的方法,還包括: 確定是否將雙子載波調製應用於所述編碼後的比特; 和 如果雙子載波調製未應用於所述編碼後的比特,則執行非雙子載波調製調製和子載波映射。The method according to item 1 of the scope of patent application, further comprising: determining whether to apply dual subcarrier modulation to the encoded bits; and performing non-modulation if dual subcarrier modulation is not applied to the encoded bits. Dual subcarrier modulation and subcarrier mapping. 一種無線站,通過無線局域網中的資源單元發送資料分組,包括: 編碼器,用於編碼要從源站發送到目的站的資料分組; 調製器,如果應用雙子載波調製,在所述資源單元的第一資料子載波上使用第一調製方案將編碼後的比特調製到第一組調製符號,並在所述資源單元的第二資料子載波上使用第二調製方案將所述編碼後的比特調製到第二組調製符號; 子載波映射器,用於將所述第一組調製符號重新映射到所述資源單元的第一半頻資料子載波上,以及將所述第二組調製符號重新映射到所述資源單元的第二半頻資料子載波上; 和 發射機,用於將所述子載波映射器映射後的所述資源單元發送到目的站。A wireless station that sends a data packet through a resource unit in a wireless local area network includes: an encoder for encoding a data packet to be sent from a source station to a destination station; a modulator, if dual subcarrier modulation is applied, at the resource unit Using the first modulation scheme on the first data subcarrier to modulate the encoded bits to a first set of modulation symbols, and using the second modulation scheme on the second data subcarrier of the resource unit to encode the bits Modulation to a second group of modulation symbols; a subcarrier mapper for remapping the first group of modulation symbols to a first half-frequency data subcarrier of the resource unit, and re-modulating the second group of modulation symbols Mapped to the second half-frequency data subcarrier of the resource unit; and a transmitter for sending the resource unit mapped by the subcarrier mapper to a destination station. 根據申請專利範圍第11項所述的無線站,所述第一調製方案和所述第二調製方案基於相同的調製階數。According to the wireless station according to item 11 of the scope of patent application, the first modulation scheme and the second modulation scheme are based on the same modulation order. 根據申請專利範圍第11項所述的無線站,所述第一資料子載波位於所述資源單元的第一半頻資源子載波範圍內,所述第二資料子載波位於所述資源單元的第二半頻資源子載波範圍內。According to the wireless station according to item 11 of the scope of patent application, the first data subcarrier is located within a first half-frequency resource subcarrier of the resource unit, and the second data subcarrier is located within a first half of the resource unit. Within the second half-frequency resource subcarrier range. 根據申請專利範圍第11項所述的無線站,由所述第一和第二調製方案生成的調製符號的數目是所述資源單元中包含的資料子載波總數的一半。According to the wireless station according to item 11 of the scope of patent application, the number of modulation symbols generated by the first and second modulation schemes is half of the total number of data subcarriers contained in the resource unit. 根據申請專利範圍第11項所述的無線站,所述子載波映射器用於低密度同位通道控制編碼。According to the wireless station according to item 11 of the scope of patent application, the subcarrier mapper is used for low-density co-channel control coding. 根據申請專利範圍第15項所述的無線站,所述低密度同位通道子載波映射器將由所述第一調製方案生成的每個調製符號映射到屬於所述資源單元的所述第一半頻資料子載波上。According to the wireless station according to item 15 of the scope of patent application, the low-density co-channel subcarrier mapper maps each modulation symbol generated by the first modulation scheme to the first half-frequency belonging to the resource unit Data subcarriers. 根據申請專利範圍第15項所述的無線站,所述低密度同位通道子載波映射器將由所述第二調製方案生成的每個調製符號映射到屬於所述資源單元的所述第二半頻資料子載波上。According to the wireless station of claim 15 in the patent application scope, the low-density co-channel subcarrier mapper maps each modulation symbol generated by the second modulation scheme to the second half-frequency belonging to the resource unit Data subcarriers. 根據申請專利範圍第15項所述的無線站,所述低密度同位通道子載波映射器是對於每個資源單元尺寸具有恒定距離的塊交織器。According to the wireless station according to item 15 of the scope of the patent application, the low-density co-channel subcarrier mapper is a block interleaver having a constant distance for each resource unit size. 根據申請專利範圍第15項所述的無線站,應用雙子載波調製時的低密度同位通道子載波映射距離與不應用雙子載波調製時的低密度同位通道子載波映射距離不同。According to the wireless station described in item 15 of the scope of the patent application, the low-density co-channel sub-carrier mapping distance when dual sub-carrier modulation is applied is different from the low-density co-channel sub-carrier mapping distance when dual sub-carrier modulation is not applied.
TW106133101A 2016-10-11 2017-09-27 Data packet transmitting method and wireless station TWI643474B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/290,135 US10211948B2 (en) 2015-10-12 2016-10-11 LDPC tone mapping schemes for dual-sub-carrier modulation in WLAN
US15/290,135 2016-10-11

Publications (2)

Publication Number Publication Date
TW201815107A true TW201815107A (en) 2018-04-16
TWI643474B TWI643474B (en) 2018-12-01

Family

ID=61898797

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106133101A TWI643474B (en) 2016-10-11 2017-09-27 Data packet transmitting method and wireless station

Country Status (2)

Country Link
CN (1) CN107919945B (en)
TW (1) TWI643474B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11601219B2 (en) 2019-12-20 2023-03-07 Mediatek Singapore Pte. Ltd. Interleaving of combinations of multiple resource units in WLAN
US11115149B2 (en) * 2020-01-10 2021-09-07 Huawei Technologies Co., Ltd. Modulation and coding for multiple resource units in wireless network
US20210288752A1 (en) * 2020-03-13 2021-09-16 Jung Hoon SUH Modulation and binary convolutional coding for multiple resource units in wireless network

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101375538A (en) * 2005-07-21 2009-02-25 伟俄内克斯研究公司 Reduced complexity soft output demapping
JP2007074618A (en) * 2005-09-09 2007-03-22 Sony Corp Wireless communication apparatus and wireless communication method, and computer program
US20150023449A1 (en) * 2013-01-11 2015-01-22 Broadcom Corporation Distributed signal fields (SIGs) for use in wireless communications
KR101942026B1 (en) * 2011-10-06 2019-01-25 삼성전자 주식회사 Method for demodulating mdcm signals by hard decision and method for demodulating mdcm signals by soft decision
US9780926B2 (en) * 2014-07-08 2017-10-03 Mediatek Inc. Burst OFDMA supporting MU-MIMO
US10218555B2 (en) * 2015-03-06 2019-02-26 Intel IP Corporation Usage of early bits in wireless communications

Also Published As

Publication number Publication date
TWI643474B (en) 2018-12-01
CN107919945A (en) 2018-04-17
CN107919945B (en) 2020-11-06

Similar Documents

Publication Publication Date Title
CN112910602B (en) Data coding and interleaving method and wireless station
US10211948B2 (en) LDPC tone mapping schemes for dual-sub-carrier modulation in WLAN
US10225122B2 (en) Low PAPR dual sub-carrier modulation scheme for BPSK in WLAN
US10616017B2 (en) Reliable dual sub-carrier modulation schemes in high efficiency WLAN
US9497764B2 (en) Systems and methods for a data scrambling procedure
US11595099B2 (en) Apparatus and method for diversity transmission in a wireless communications system
TWI653862B (en) Dual subcarrier modulation method and wireless station
TWI643474B (en) Data packet transmitting method and wireless station
US20240007223A1 (en) Preamble with detectable wlan version identification
US11984960B2 (en) Apparatus and method for diversity transmission in a wireless communications system