TW201813434A - Methods and apparatus for data transmission - Google Patents

Methods and apparatus for data transmission Download PDF

Info

Publication number
TW201813434A
TW201813434A TW106130379A TW106130379A TW201813434A TW 201813434 A TW201813434 A TW 201813434A TW 106130379 A TW106130379 A TW 106130379A TW 106130379 A TW106130379 A TW 106130379A TW 201813434 A TW201813434 A TW 201813434A
Authority
TW
Taiwan
Prior art keywords
channel
iot device
data
data transmission
uplink
Prior art date
Application number
TW106130379A
Other languages
Chinese (zh)
Inventor
陳柏穎
蔣名駿
蔡政儀
黃合淇
孫偉男
曲文澤
Original Assignee
聯發科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯發科技股份有限公司 filed Critical 聯發科技股份有限公司
Publication of TW201813434A publication Critical patent/TW201813434A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods and apparatuses for data transmission are provided. The method for data transmission is used in a Narrow Band-Internet of Things (NB-IoT) apparatus and comprising: transmitting uplink data to a network apparatus via an uplink channel; monitoring whether an acknowledgement (ACK) indicator is received from the network apparatus during a transmission gap of the uplink channel, and terminating uplink data transmission if the ACK indicator is received.

Description

資料傳輸方法與裝置Data transmission method and device

本發明是有關於無線通信,更具體地,是有關於窄帶物聯網(Narrow Band-Internet of Things, NB-IoTs)上行鏈路(Uplink, UL)功耗降低的方案。The present invention relates to wireless communications, and more particularly to a Narrow Band-Internet of Things (NB-IoTs) uplink (UL) power consumption reduction scheme.

電信領域存在開發完備且定義完善的多種蜂窩(Cellular)通信技術,以實現使用行動終端(Mobile Terminal, MT)或用戶設備(User Equipment, UE)的無線通信。舉例而言,全球行動通信系統(GSM)是一種定義完善且通用的通信系統,使用了分時多重存取(TDMA)技術。TDMA技術是一種數位無線電的多重存取(multiplex access)機制,用於行動電話與小區月臺之間的語音、視頻、資料及信令(signalling)資訊(例如撥出的電話號碼)的發送。CDMA 2000是一種混合的行動通信2.5G/3G技術標準,使用了分碼多重存取(CDMA)技術。通用行動電信系統(UMTS)是一種3G通信系統,提供了在GSM系統上的增強範圍的多媒體服務。長期演進(LTE)及其衍生,如進階LTE(LTE-A)與專業進階LTE(LTE-A Pro),是用於行動電話與資料終端的高速無線通信標準。在這些通信技術中, UE由人類使用者操作,並可以被頻繁充電。In the field of telecommunications, there are well-developed and well-defined Cellular communication technologies for wireless communication using Mobile Terminal (MT) or User Equipment (UE). For example, the Global System for Mobile Communications (GSM) is a well-defined and versatile communication system that uses Time Division Multiple Access (TDMA) technology. TDMA technology is a digital radio multiplex access mechanism for the transmission of voice, video, data and signalling information (such as dialed telephone numbers) between a mobile phone and a cell site. CDMA 2000 is a hybrid mobile communications 2.5G/3G technology standard that uses code division multiple access (CDMA) technology. The Universal Mobile Telecommunications System (UMTS) is a 3G communication system that provides enhanced range of multimedia services over the GSM system. Long Term Evolution (LTE) and its derivatives, such as Advanced LTE (LTE-A) and Professional Advanced LTE (LTE-A Pro), are high-speed wireless communication standards for mobile phones and data terminals. In these communication technologies, the UE is operated by a human user and can be frequently charged.

在接下來的下一代通信技術中,如5G、物聯網(IoT)或NB-IoT,越來越多的設備將被配置(deployed)為機器類型設備(machine type apparatus),如非行動性或固定設備、家庭設備(home apparatus)、基礎設施(infrastructure apparatus)或監控設備(monitoring apparatus)等。這些NB-IoT設備可能需要在沒有大容量電池或者無法頻繁充電的情況下長時間運行。當NB-IoT設備配置為週期性報告資料時,將造成大量功耗。若NB-IoT設備在沒有省電機制的情況下持續報告資料,則將在短時間內耗盡電量。In the next generation of communication technologies, such as 5G, Internet of Things (IoT) or NB-IoT, more and more devices will be deployed as machine type apparatus, such as inactive or A fixed device, a home apparatus, an infrastructure apparatus, or a monitoring apparatus. These NB-IoT devices may need to be operated for a long time without a large capacity battery or when they cannot be recharged frequently. When the NB-IoT device is configured to periodically report data, it will cause a lot of power consumption. If the NB-IoT device continues to report data without a power saving mechanism, it will run out of power in a short time.

相應地,當NB-IoT設備配置為週期性發送上行鏈路資料時,功耗將成為NB-IoT設備的重要問題。因此,需要提供一種用於NB-IoT設備的省電機制,以降低上行鏈路功耗。Accordingly, when the NB-IoT device is configured to periodically transmit uplink data, power consumption becomes an important issue for NB-IoT devices. Therefore, there is a need to provide a power saving mechanism for NB-IoT devices to reduce uplink power consumption.

有鑑於此,本發明提供多種資料傳輸方法與裝置。In view of this, the present invention provides various data transmission methods and devices.

根據本發明一實施例的資料傳輸方法,適用於窄帶物聯網設備,該資料傳輸方法包括:透過上行鏈路通道向網路裝置發送上行鏈路資料;檢測在該上行鏈路通道的傳輸間隙內是否接收到來自該網路裝置的確認指示;以及若接收到該確認指示,則終止該上行鏈路資料的傳輸。A data transmission method according to an embodiment of the present invention is applicable to a narrowband Internet of Things device, the data transmission method comprising: transmitting uplink data to a network device through an uplink channel; detecting a transmission gap in the uplink channel Whether an acknowledgment indication from the network device is received; and if the acknowledgment indication is received, the transmission of the uplink data is terminated.

根據本發明一實施例的資料傳輸方法,適用於網路裝置,該資料傳輸方法包括:透過上行鏈路通道接收來自窄帶物聯網設備的上行鏈路資料;對該上行鏈路資料進行解碼;以及若該上行鏈路資料解碼成功,則向該窄帶物聯網設備發送確認指示;其中,該確認指示是在接收到全部該上行鏈路資料之前發送的。A data transmission method according to an embodiment of the present invention is applicable to a network device, the data transmission method comprising: receiving uplink data from a narrowband IoT device through an uplink channel; and decoding the uplink data; And if the uplink data is successfully decoded, sending an acknowledgement indication to the narrowband IoT device; wherein the acknowledgement indication is sent before all of the uplink data is received.

根據本發明一實施例的資料傳輸方法,適用於窄帶物聯網設備,該資料傳輸方法包括:透過上行鏈路通道執行上行鏈路資料傳輸;估計該上行鏈路通道的通道品質;以及根據該通道品質,調整該上行鏈路資料的傳輸長度。A data transmission method according to an embodiment of the present invention is applicable to a narrowband Internet of Things device, the data transmission method comprising: performing uplink data transmission through an uplink channel; estimating channel quality of the uplink channel; and according to the channel Quality, adjust the transmission length of the uplink data.

根據本發明一實施例的資料傳輸方法,適用於窄帶物聯網設備,該資料傳輸方法包括:透過上行鏈路通道執行上行鏈路資料傳輸;估計該上行鏈路通道的通道品質;以及根據該通道品質,調整傳輸功率級別。A data transmission method according to an embodiment of the present invention is applicable to a narrowband Internet of Things device, the data transmission method comprising: performing uplink data transmission through an uplink channel; estimating channel quality of the uplink channel; and according to the channel Quality, adjust the transmission power level.

根據本發明一實施例的資料傳輸裝置,適用於窄帶物聯網設備,該資料傳輸裝置包括:收發器,用於執行透過上行鏈路通道向網路設備發送的上行鏈路資料傳輸;以及處理器,耦接於該收發器,該處理器用於檢測在該上行鏈路通道的傳輸間隙內是否接收到來自該網路裝置的確認指示,以及若接收到該確認指示,則終止該上行鏈路資料的傳輸。根據本發明一實施例,若未接收到該確認指示,則在該傳輸間隙之後,該處理器控制該收發器繼續執行該上行鏈路資料的傳輸。根據本發明一實施例,該上行鏈路通道為窄帶實體隨機存取通道或窄帶實體上行鏈路共用通道。根據本發明一實施例,該確認指示是透過窄帶實體下行鏈路控制通道進行接收的。A data transmission apparatus according to an embodiment of the present invention is applicable to a narrowband Internet of Things device, the data transmission apparatus comprising: a transceiver for performing uplink data transmission transmitted to a network device through an uplink channel; and a processor And being coupled to the transceiver, the processor is configured to detect whether an acknowledgment indication from the network device is received in a transmission gap of the uplink channel, and terminate the uplink data if the acknowledgment indication is received Transmission. According to an embodiment of the invention, if the acknowledgment indication is not received, after the transmission gap, the processor controls the transceiver to continue performing transmission of the uplink data. According to an embodiment of the invention, the uplink channel is a narrowband physical random access channel or a narrowband physical uplink shared channel. According to an embodiment of the invention, the acknowledgment indication is received via a narrowband entity downlink control channel.

根據本發明一實施例的資料傳輸裝置,適用於網路裝置,該資料傳輸裝置包括:收發器,用於透過上行鏈路通道接收來自窄帶物聯網設備的上行鏈路資料傳輸;以及處理器,耦接於該收發器,該處理器用於對接收到的該上行鏈路資料進行解碼,以及若接收到的該上行鏈路資料解碼成功,則向該窄帶物聯網設備發送確認指示;其中,該確認指示是在接收到全部該上行鏈路資料之前發送的。根據本發明一實施例,該上行鏈路通道為指代實體隨機存取通道或窄帶實體上行鏈路共用通道。根據本發明一實施例,該確認指示是透過窄帶實體下行鏈路控制通道在該上行鏈路通道的傳輸間隙內進行發送的。A data transmission apparatus according to an embodiment of the present invention is applicable to a network device, the data transmission apparatus comprising: a transceiver for receiving uplink data transmission from a narrowband IoT device through an uplink channel; and a processor, And coupled to the transceiver, the processor is configured to decode the received uplink data, and if the received uplink data is successfully decoded, send an acknowledgement indication to the narrowband IoT device; wherein The acknowledgment indication is sent before all of the uplink data is received. According to an embodiment of the invention, the uplink channel refers to an entity random access channel or a narrowband entity uplink shared channel. According to an embodiment of the invention, the acknowledgment indication is transmitted within a transmission gap of the uplink channel through a narrowband entity downlink control channel.

根據本發明一實施例的資料傳輸裝置,適用於窄帶物聯網設備,該資料傳輸裝置包括:收發器,用於執行透過上行鏈路通道向網路設備發送的上行鏈路資料傳輸;以及處理器,耦接於該收發器,該處理器用於估計該上行鏈路通道的通道品質,以及根據該通道品質,調整該上行鏈路資料的傳輸長度。根據本發明一實施例,該處理器根據該通道品質調整該上行鏈路資料的該傳輸長度的步驟進一步包含:若該通道品質優於預定條件,則該處理器減少該上行鏈路資料的該傳輸長度。根據本發明一實施例,該處理器減少該上行鏈路資料的該傳輸長度的步驟進一步包含:當該上行鏈路資料的預定部分發送完畢後,該處理器關閉該窄帶物聯網設備的射頻電路。根據本發明一實施例,該處理器減少該上行鏈路資料的該傳輸長度的步驟進一步包含:對於該上行鏈路資料的該傳輸長度的至少一部分,該處理器關閉該窄帶物聯網設備的射頻電路。根據本發明一實施例,該處理器減少該上行鏈路資料的該傳輸長度的步驟進一步包含:對於下行鏈路通道中的多個參考信號,該處理器開啟該窄帶物聯網設備的射頻電路。根據本發明一實施例,該處理器進一步確定該上行鏈路資料的該傳輸長度是否小於門檻值;以及若該上行鏈路資料的該傳輸長度小於該門檻值時,根據該通道品質,該處理器調整傳輸功率級別。根據本發明一實施例,該處理器估計該上行鏈路通道的該通道品質的步驟進一步包括:該處理器確定是否接收到多個連續確認指示,或者該處理器確定該上行鏈路通道的路徑損失是否小於門檻值;或者該處理器確定在預定時段內是否接收到預定百分比的該確認指示。A data transmission apparatus according to an embodiment of the present invention is applicable to a narrowband Internet of Things device, the data transmission apparatus comprising: a transceiver for performing uplink data transmission transmitted to a network device through an uplink channel; and a processor And coupled to the transceiver, the processor is configured to estimate channel quality of the uplink channel, and adjust a transmission length of the uplink data according to the quality of the channel. According to an embodiment of the invention, the step of the processor adjusting the transmission length of the uplink data according to the channel quality further comprises: if the channel quality is better than a predetermined condition, the processor reduces the uplink data. Transmission length. According to an embodiment of the invention, the step of reducing the transmission length of the uplink data by the processor further comprises: after the predetermined portion of the uplink data is transmitted, the processor turns off the radio frequency circuit of the narrowband IoT device . According to an embodiment of the invention, the step of reducing the transmission length of the uplink data by the processor further comprises: for at least a portion of the transmission length of the uplink data, the processor turns off the radio frequency of the narrowband IoT device Circuit. According to an embodiment of the invention, the step of reducing the transmission length of the uplink data by the processor further comprises: for a plurality of reference signals in the downlink channel, the processor turns on the radio frequency circuit of the narrowband IoT device. According to an embodiment of the present invention, the processor further determines whether the transmission length of the uplink data is less than a threshold; and if the transmission length of the uplink data is less than the threshold, the processing is performed according to the quality of the channel. Adjust the transmission power level. According to an embodiment of the invention, the step of the processor estimating the quality of the channel of the uplink channel further comprises: the processor determining whether a plurality of consecutive acknowledgment indications are received, or the processor determining the path of the uplink channel Whether the loss is less than a threshold value; or the processor determines whether a predetermined percentage of the confirmation indication is received within a predetermined time period.

根據本發明一實施例的窄帶物聯網設備,該資料傳輸裝置包括:收發器,用於執行透過上行鏈路通道向網路設備發送的上行鏈路資料傳輸;以及處理器,耦接於該收發器,該處理器用於估計該上行鏈路通道的通道品質,以及根據該通道品質,調整傳輸功率級別。根據本發明一實施例,該處理器根據該通道品質調整該傳輸功率級別的步驟進一步包括:若該通道品質優於預定條件,則該處理器減少該傳輸功率級別。根據本發明一實施例,該處理器減少該傳輸功率級別的步驟進一步包括:對於全部上行鏈路資料的該傳輸長度,該處理器減少至預定傳輸功率級別。根據本發明一實施例,該處理器減少該傳輸功率級別的步驟進一步包括:在該上行鏈路資料的該傳輸長度期間,該處理器逐漸減少該傳輸功率級別。根據本發明一實施例,該處理器進一步確定該傳輸功率級別是否小於門檻值;以及若該傳輸功率級別小於該門檻值,則根據該通道品質,該處理器調整該上行鏈路資料的該傳輸長度。根據本發明一實施例,該處理器估計該上行鏈路通道的該通道品質的步驟進一步包括:該處理器確定接收到多個連續確認指示;或者該處理器確定該上行鏈路通道的路徑損失是否小於門檻值;或者該處理器確定在預定時段內是否接收到預定百分比的該確認指示。According to an embodiment of the present invention, a data transmission apparatus includes: a transceiver for performing uplink data transmission transmitted to a network device through an uplink channel; and a processor coupled to the transceiver The processor is configured to estimate the channel quality of the uplink channel and adjust the transmission power level according to the quality of the channel. According to an embodiment of the invention, the step of the processor adjusting the transmission power level according to the channel quality further comprises: if the channel quality is better than a predetermined condition, the processor reduces the transmission power level. According to an embodiment of the invention, the step of reducing the transmission power level by the processor further comprises reducing the processor to a predetermined transmission power level for the transmission length of all uplink data. According to an embodiment of the invention, the step of reducing the transmission power level by the processor further comprises the processor gradually reducing the transmission power level during the transmission length of the uplink data. According to an embodiment of the invention, the processor further determines whether the transmission power level is less than a threshold value; and if the transmission power level is less than the threshold value, the processor adjusts the transmission of the uplink data according to the channel quality length. According to an embodiment of the invention, the step of the processor estimating the quality of the channel of the uplink channel further comprises: the processor determining to receive the plurality of consecutive acknowledgment indications; or the processor determining the path loss of the uplink channel Whether it is less than a threshold value; or the processor determines whether a predetermined percentage of the confirmation indication is received within a predetermined time period.

本發明所提供的多種資料傳輸方法與裝置,其優點之一在於能夠降低上行鏈路資料傳輸的功耗。One of the advantages of the various data transmission methods and apparatus provided by the present invention is that the power consumption of uplink data transmission can be reduced.

在說明書及申請專利範圍當中使用了某些詞彙來指稱特定之元件。所屬領域具有通常知識者應可理解,硬體製造商可能會用不同名詞來稱呼同一個元件。本說明書及申請專利範圍並不以名稱之差異來作為區分元件之方式,而是以元件在功能上之差異來作為區分之準則。在通篇說明書及申請專利範圍當中所提及之「包含」及「包括」為一開放式之用語,故應解釋成「包含但不限定於」。「大致」是指在可接受之誤差範圍內,所屬領域具有通常知識者能夠在一定誤差範圍內解決所述技術問題,基本達到所述技術效果。此外,「耦接」一詞在此包含任何直接及間接之電性連接手段。因此,若文中描述一第一裝置耦接於一第二裝置,則代表該第一裝置可直接電性連接於該第二裝置,或透過其它裝置或連接手段間接地電性連接至該第二裝置。「連接」一詞在此包含任何直接及間接、有線及無線之連接手段。以下所述為實施本發明之較佳方式,目的在於說明本發明之精神而非用以限定本發明之保護範圍,本發明之保護範圍當視後附之申請專利範圍所界定者為准。Certain terms are used throughout the description and claims to refer to particular elements. Those of ordinary skill in the art should understand that hardware manufacturers may refer to the same component by different nouns. This specification and the scope of the patent application do not use the difference of the names as the means for distinguishing the elements, but the difference in function of the elements as the criterion for distinguishing. The words "including" and "including" as used throughout the specification and the scope of the patent application are an open term and should be interpreted as "including but not limited to". "About" means that within the acceptable error range, those skilled in the art can solve the technical problem within a certain error range, and basically achieve the technical effect. In addition, the term "coupled" is used herein to include any direct and indirect electrical connection. Therefore, if a first device is coupled to a second device, the first device can be directly electrically connected to the second device, or can be electrically connected to the second device through other devices or connection means. Device. The term "connected" is used herein to include any direct and indirect, wired and wireless means of connection. The following is a description of the preferred embodiments of the present invention, and is intended to illustrate the scope of the invention, and the scope of the present invention is defined by the scope of the appended claims.

概述Overview

根據本發明的多個實施方式是有關於與無線通信中的用戶設備有關的UL功耗降低有關的多種技術、方法、機制及/或方案。根據本發明,多種可能的方案可以分別單獨實施或者聯合實施。也就是說,儘管這些可能的方案有可能在下文進行分別單獨的說明,這些可能的方案中的兩個或更多個有可能在一個組合或其它組合中實施。Various embodiments in accordance with the present invention are related to various techniques, methods, mechanisms, and/or aspects related to UL power consumption reduction associated with user equipment in wireless communication. According to the invention, various possible solutions can be implemented separately or in combination. That is, although it is possible that these possible solutions are separately described below, it is possible that two or more of these possible solutions may be implemented in one combination or other combinations.

第1圖為根據本發明多個實施方式的在多個機制下的示例場景100的示意圖。場景100包括NB-IoT設備與網路設備(network apparatus),這裡的網路設備可以是無線網路(例如,LTE網路、LTE-A網路、LTE-A Pro網路、5G網路或IoT網路)中的一部分。NB-IoT設備能夠透過UL通道向網路設備發送UL資料,其中,UL通道可以例如但不僅限於窄帶實體隨機存取信號(Narrowband Physical Random Access Channel, NPRACH)或窄帶實體上行鏈路共用通道(Narrowband Physical Uplink Shared Channel, NPUSCH)。網路設備能夠透過下行鏈路通道向NB-IoT設備發送下行鏈路(Downlink, DL)資料,例如但不僅限於,窄帶實體下行鏈路控制通道(Narrowband Physical Downlink Control Channel, NPDCCH)。FIG. 1 is a schematic diagram of an example scenario 100 under multiple mechanisms in accordance with various embodiments of the present invention. The scenario 100 includes an NB-IoT device and a network device, where the network device can be a wireless network (eg, an LTE network, an LTE-A network, an LTE-A Pro network, a 5G network, or Part of the IoT network). The NB-IoT device can transmit UL data to the network device through the UL channel, where the UL channel can be, for example but not limited to, a Narrowband Physical Random Access Channel (NPRACH) or a narrowband physical uplink shared channel (Narrowband). Physical Uplink Shared Channel, NPUSCH). The network device can send downlink (DL) data to the NB-IoT device through the downlink channel, such as, but not limited to, a Narrowband Physical Downlink Control Channel (NPDCCH).

根據本發明的多個實施方式,網路設備可以為NB-IoT設備配置上行鏈路資料傳輸長度(Uplink Data Transmission Length),以便NB-IoT設備透過NPUSCH來執行UL資料傳輸。NB-IoT設備需要在UL資料傳輸長度期間執行UL資料傳輸。網路設備可以進一步在UL資料傳輸長度內配置多個UL傳輸間隔(gaps),以便NB-IoT設備用以執行時序(timing)或頻率(frequency)的重新獲取(reacquisition)。如第1圖所示,上行鏈路資料傳輸長度配置為從t0到t5。NPUSCH的多個傳輸間隔(GAP)配置為從t1到t2及從t3到t4(舉例說明)。NB-IoT設備配置為在UL資料傳輸長度內發送UL資料110、120、130和140。UL資料110、120、130和140可能有重複的資料,來增加信號分集 (diversity)與魯棒性(robustness)。當網路設備接收到UL資料110或120時,網路設備可以在接收到全部UL資料110、120、130與140之前啟動對UL資料的解碼。若網路設備成功解碼UL資料,則網路設備配置為在UL傳輸間隙內(例如,t3與t4之間)向NB-IoT設備發送確認(Acknowledgemet, ACK)指示150。According to various embodiments of the present invention, the network device may configure an uplink data transmission length (Uplink Data Transmission Length) for the NB-IoT device, so that the NB-IoT device performs UL data transmission through the NPUSCH. The NB-IoT device needs to perform UL data transmission during the UL data transmission length. The network device can further configure a plurality of UL transmission intervals (gaps) within the length of the UL data transmission so that the NB-IoT device can perform timing or frequency reacquisition. As shown in Figure 1, the uplink data transmission length is configured from t0 to t5. The multiple transmission intervals (GAPs) of the NPUSCH are configured from t1 to t2 and from t3 to t4 (exemplary). The NB-IoT device is configured to transmit UL data 110, 120, 130, and 140 within the length of the UL data transmission. UL data 110, 120, 130, and 140 may have duplicated data to increase signal diversity and robustness. When the network device receives the UL data 110 or 120, the network device can initiate decoding of the UL data before receiving all of the UL data 110, 120, 130, and 140. If the network device successfully decodes the UL profile, the network device is configured to send an Acknowledgemet (ACK) indication 150 to the NB-IoT device within the UL transmission gap (eg, between t3 and t4).

NB-IoT設備配置為在多個UL傳輸間隙內檢測NPDCCH。若接收到ACK指示150,意味著網路設備已將UL資料接收並成功解碼,NB-IoT設備配置為在接收ACK指示150之後終止UL資料傳輸。由於UL資料被網路設備成功解碼,因此,NB-IoT設備能夠停止UL資料傳輸,並不再發送剩餘的UL資料130與140。因此,UL資料傳輸可以提前終止,從而降低UL傳輸的功耗。The NB-IoT device is configured to detect the NPDCCH within a plurality of UL transmission gaps. If the ACK indication 150 is received, meaning that the network device has received and successfully decoded the UL data, the NB-IoT device is configured to terminate the UL data transmission after receiving the ACK indication 150. Since the UL data is successfully decoded by the network device, the NB-IoT device can stop the UL data transmission and no longer send the remaining UL data 130 and 140. Therefore, the UL data transmission can be terminated early, thereby reducing the power consumption of the UL transmission.

第2圖為根據本發明一實施方式的提前終止的示例操作200的示意圖。操作200可以實施於包括NB-IoT設備與無線網路的任意網路,以實現根據本發明的概念與機制所提出的多種特徵及/或方面。更具體地, 操作200可以是有關於UL資料傳輸的提前終止。操作200可以包括區塊210、220、230、240、250、260、270和280中的一個或多個所代表的一個或多個操作、步驟或功能。儘管顯示為分離的多個區塊,操作200的多個區塊也可以根據設計需求劃分出額外的區塊、組合為更少的區塊、或者省略部分區塊。操作200可以部分或全部地由上述NB-IoT設備與網路設備中的每個來實施,或者也可以由以下所述的NB-IoT設備1010與網路設備1020中的每個來實施。出於說明目的而非限制本發明的範圍,操作200的說明可以NB-IoT設備與網路設備為背景(context)提供如下。操作200可以從步驟210開始。2 is a schematic diagram of an example operation 200 of early termination in accordance with an embodiment of the present invention. Operation 200 can be implemented in any network including NB-IoT devices and wireless networks to implement various features and/or aspects set forth in accordance with the concepts and mechanisms of the present invention. More specifically, operation 200 may be an early termination of the UL data transmission. Operation 200 may include one or more operations, steps or functions represented by one or more of blocks 210, 220, 230, 240, 250, 260, 270, and 280. Although shown as separate blocks, the plurality of blocks of operation 200 may also divide additional blocks, combine into fewer blocks, or omit portions of the blocks according to design requirements. Operation 200 may be implemented in part or in whole by each of the NB-IoT devices and network devices described above, or may also be implemented by each of NB-IoT device 1010 and network device 1020 described below. For purposes of illustration and not limitation of the scope of the invention, the description of operation 200 may be provided as follows for the context of the NB-IoT device and the network device. Operation 200 can begin at step 210.

在步驟210中,NB-IoT設備可以透過UL通道(例如,NPUSCH或NPRACH)向網路設備發送UL資料。操作200可以從步驟210前進至步驟220。In step 210, the NB-IoT device can transmit UL data to the network device through the UL channel (eg, NPUSCH or NPRACH). Operation 200 may proceed from step 210 to step 220.

在步驟220中,網路設備可以確定UL資料是否能夠解碼成功。若是,則操作200可以從步驟220前進至步驟230。若否,則操作200可以從步驟220前進至步驟240。In step 220, the network device can determine if the UL data can be decoded successfully. If so, operation 200 can proceed from step 220 to step 230. If no, operation 200 can proceed from step 220 to step 240.

在步驟230中,網路設備可以在UL傳輸間隙內向NB-IoT設備發送ACK指示。操作200可以從步驟230前進至步驟250。In step 230, the network device can send an ACK indication to the NB-IoT device within the UL transmission gap. Operation 200 may proceed from step 230 to step 250.

在步驟240中,網路設備可以在UL傳輸間隙內不向NB-IoT設備發送ACK指示。可替代地,網路設備可以在UL傳輸間隙內向NB-IoT發送否認(NACK)指示。操作200可以從步驟240前進至步驟250。In step 240, the network device may not send an ACK indication to the NB-IoT device within the UL transmission gap. Alternatively, the network device may send a negative (NACK) indication to the NB-IoT within the UL transmission gap. Operation 200 may proceed from step 240 to step 250.

在步驟250中,NB-IoT設備可以在多個UL傳輸間隙內監測DL通道(例如,NPDCCH)。操作200可以從步驟250前進至步驟260。In step 250, the NB-IoT device can monitor the DL channel (eg, NPDCCH) within multiple UL transmission slots. Operation 200 may proceed from step 250 to step 260.

在步驟260中,NB-IoT設備可以確定是否接收到ACK指示。若是,則操作200可以從步驟260前進至步驟270。若否,則操作200可以從步驟260前進至步驟270。In step 260, the NB-IoT device may determine whether an ACK indication is received. If so, operation 200 can proceed from step 260 to step 270. If no, operation 200 may proceed from step 260 to step 270.

在步驟270中,NB-IoT設備可以終止該上行鏈路資料傳輸。In step 270, the NB-IoT device can terminate the uplink data transmission.

在步驟280中,NB-IoT設備可以繼續發送該上行鏈路資料。In step 280, the NB-IoT device can continue to transmit the uplink data.

在一些實施方式中,ACK指示可以是混合自動重傳請求(Hybrid Automatic Repeat Request, HARQ)ACK、或者代表該上行鏈路資料是否被接收或解碼成功的一新的指示或任意類型的指示。舉例而言,該ACK指示可以是具有一個資料位(bit)形式的新的資料指示。若該新的資料指示指示新的資料,則意味著接收到UL資料封包(data packet),並應發送新的資料封包。若該新的資料指示指示舊的資料,則意味著未接收到UL資料封包,並應發送舊的資料封包。因此,該新的資料指示可以用於表示ACK指示或NACK指示。在NB-IoT中,ACK/NACK指示也可以在其它通道或新的通道中承載。In some embodiments, the ACK indication may be a Hybrid Automatic Repeat Request (HARQ) ACK, or a new indication or any type of indication indicating whether the uplink material was received or decoded successfully. For example, the ACK indication can be a new data indication in the form of a data bit. If the new data indicates a new data, it means that a UL data packet is received and a new data packet should be sent. If the new data indicates that the old data is indicated, it means that the UL data packet has not been received and the old data packet should be sent. Therefore, the new data indication can be used to indicate an ACK indication or a NACK indication. In NB-IoT, the ACK/NACK indication can also be carried in other channels or in new channels.

第3圖和第4圖分別為根據本發明多個實施方式的在多種機制下的示例場景300和400的示意圖。場景300和400包括NB-IoT設備與網路設備,這些設備可以是無線網路的一部分(例如,LTE網路、LTE-A網路、LTE-A Pro網路、5G網路或IoT網路)。NB-IoT設備能夠透過UL通道向網路設備發送UL資料,其中UL通道例如但不僅限於NPRACH或NPUSCH。網路設備能夠透過DL通道向NB-IoT設備發送DL資料,其中DL通道例如但不僅限於NPDCCH。3 and 4 are schematic diagrams of example scenes 300 and 400, respectively, under various mechanisms in accordance with various embodiments of the present invention. Scenarios 300 and 400 include NB-IoT devices and network devices, which may be part of a wireless network (eg, LTE network, LTE-A network, LTE-A Pro network, 5G network, or IoT network) ). The NB-IoT device can transmit UL data to the network device through the UL channel, where the UL channel is, for example but not limited to, NPRACH or NPUSCH. The network device can transmit DL data to the NB-IoT device through the DL channel, where the DL channel is, for example but not limited to, the NPDCCH.

根據本發明的多個實施方式,NB-IoT設備可以從網路設備接收網路配置的UL資料傳輸長度Nmax,以透過NPUSCH執行UL資料傳輸。首先,NB-IoT設備可以配置UL資料傳輸長度為,並使用NTX執行UL資料傳輸。然後,NB-IoT設備可以估計NPUSCH的通道品質。NB-IoT設備可以根據通道品質進一步調整UL資料傳輸長度NTX。更具體地,NB-IoT設備可以確定通道品質是否優於預定條件。根據通道品質,NB-IoT設備可以使用比例因子(scaling factor) α (例如,)來調整UL資料傳輸長度。根據通道品質,該比例因子可以使用ACK偏移值(offset value)或NACK偏移值來調整。當通道品質優於預定條件時,NB-IoT設備可以使用by(例如, 0.9 = 1 – 0.1)來調整比例因子。當通道品質不優於預定條件時,NB-IoT設備可以使用(例如,0.6 = 0.5 + 0.1)來調整比例因子。ACK偏移值與NACK偏移值也可以根據通道品質進行調整。舉例而言,若通道品質較好,則ACK偏移值可以從0.1增加至0.2。若通道品質較差,則NACK偏移值可以從0.1增加至0.2。According to various embodiments of the present invention, the NB-IoT device may receive the UL profile transmission length Nmax of the network configuration from the network device to perform UL data transmission through the NPUSCH. First, the NB-IoT device can be configured with a UL data transmission length of And use NTX to perform UL data transfer. The NB-IoT device can then estimate the channel quality of the NPUSCH. The NB-IoT device can further adjust the UL data transmission length NTX according to the channel quality. More specifically, the NB-IoT device can determine if the channel quality is better than a predetermined condition. Depending on channel quality, NB-IoT devices can use a scaling factor α (for example, ) to adjust the length of the UL data transmission. According to the channel quality, the scale factor can use the ACK offset value (offset value) Or NACK offset value To adjust. When the channel quality is better than the predetermined condition, the NB-IoT device can use by (for example, 0.9 = 1 – 0.1) to adjust the scale factor. When the channel quality is not better than the predetermined condition, the NB-IoT device can be used. (for example, 0.6 = 0.5 + 0.1) to adjust the scale factor. ACK offset value Offset value with NACK It can also be adjusted according to the channel quality. For example, if the channel quality is good, the ACK offset value It can be increased from 0.1 to 0.2. If the channel quality is poor, the NACK offset value It can be increased from 0.1 to 0.2.

相應地,若通道品質優於預定條件,則NB-IoT設備可以縮短UL資料傳輸長度以降低UL功耗。如第3圖所示,UL資料傳輸長度縮短為。在已發送UL資料的預定部分(例如,)後,NB-IoT設備可以直接終止UL資料傳輸。NB-IoT設備僅在開啟期間(on duration)啟動傳輸(Tx)並發送UL資料,並在關閉期間(off duration)關閉傳輸。在一些實施方式中,NB-IoT設備可以在關閉期間關閉射頻(Radio Frequency, RF)電路或部分前端(Front End, FE)電路,以降低功耗。Accordingly, if the channel quality is better than the predetermined condition, the NB-IoT device can shorten the UL data transmission length to reduce the UL power consumption. As shown in Figure 3, the UL data transmission length is shortened to . In the predetermined portion of the UL material that has been sent (for example, After that, the NB-IoT device can directly terminate the UL data transmission. The NB-IoT device initiates transmission (Tx) and transmits UL data only during the on duration and turns off the transmission during off duration. In some embodiments, the NB-IoT device can turn off a radio frequency (RF) circuit or a partial front end (Front End, FE) circuit during shutdown to reduce power consumption.

可替代地,NB-IoT設備可以使用預定的開啟/關閉模式(on/off pattern)來調整UL資料傳輸長度。具體地,NB-IoT設備可以確定在短時間內的啟動/關閉期間的比率β,並對整個UL資料傳輸長度重複應用該開啟期間/關閉期間的比率β。根據通道品質,開啟期間/關閉期間的比率β可以使用ACK偏移值或NACK偏移值來調整。當通道品質優於預定條件時,NB-IoT設備可以使用(例如,0.9 = 1 – 0.1)來調整啟動/關閉期間的比率β。當通道品質不優於預定條件時,NB-IoT設備可以使用(例如,1.1 = 1 + 0.1)來調整啟動/關閉期間的比率β。ACK偏移值與NACK偏移值也可以根據通道品質進行調整。舉例而言,若通道品質較好,ACK偏移值可以從0.1增加至0.2。若通道品質不好,則NACK偏移值可以從0.1增加至0.2。Alternatively, the NB-IoT device can adjust the UL data transmission length using a predetermined on/off pattern. Specifically, the NB-IoT device can determine the ratio β during the startup/shutdown period in a short time and transmit the length of the entire UL data. The ratio β during the on/off period is repeatedly applied. Depending on the channel quality, the ratio β during the on/off period can use the ACK offset value. Or NACK offset value To adjust. When the channel quality is better than the predetermined condition, the NB-IoT device can be used. (For example, 0.9 = 1 – 0.1) to adjust the ratio β during start/stop. When the channel quality is not better than the predetermined condition, the NB-IoT device can be used. (For example, 1.1 = 1 + 0.1) to adjust the ratio β during start/stop. The ACK offset value and the NACK offset value can also be adjusted according to the channel quality. For example, if the channel quality is good, the ACK offset value It can be increased from 0.1 to 0.2. If the channel quality is not good, the NACK offset value It can be increased from 0.1 to 0.2.

如第4圖所示,經由部分關閉UL資料傳輸來縮短UL資料傳輸長度。NB-IoT設備僅在開啟期間啟動傳輸(Tx)並發送UL資料,並在關閉期間關閉傳輸。在一些實施方式中,NB-IoT可以在關閉期間關閉射頻電路或部分前端電路,以降低功耗。As shown in Figure 4, the UL data transmission length is shortened by partially turning off UL data transmission. The NB-IoT device initiates transmission (Tx) and sends UL data only during the on period and turns off the transmission during the off period. In some embodiments, the NB-IoT can turn off the RF circuitry or part of the front end circuitry during shutdown to reduce power consumption.

在一些實施方式中,網路設備可以在DL通道中排程(schedule)多個參考信號,如解調參考信號(Demodulation Reference Signal, DMRS)。NB-IoT設備可能需要接收多個參考信號以用於通道估計(channel estimation)。相應地,若在第3圖或第4圖中排程多個參考信號,則NB-IoT設備可能需要開啟NB-IoT設備的射頻電路,以接收DL通道中的多個參考信號。In some embodiments, the network device can schedule multiple reference signals, such as a Demodulation Reference Signal (DMRS), in the DL channel. The NB-IoT device may need to receive multiple reference signals for channel estimation. Accordingly, if multiple reference signals are scheduled in FIG. 3 or FIG. 4, the NB-IoT device may need to turn on the radio frequency circuit of the NB-IoT device to receive multiple reference signals in the DL channel.

在一些實施方式中,NB-IoT設備如何確定通道品質是否優於預定條件可以實施為多種方式。舉例而言,NB-IoT設備可以經由確定是否接收到多個連續ACK指示來估計通道品質。若NB-IoT設備接收到N個連續ACK指示,則意味著UL資料全部發送成功且通道品質較好。N的值可以根據實際應用進行調整。可替代地,NB-IoT設備可以經由確定UL通道的路徑損失(path loss)或區塊出錯率(Block Error Rate, BLER)是否小於門檻值來估計通道品質。若UL通道的路徑損失或BLER較低,則意味著通道品質較好。可替代地,NB-IoT設備可以經由確定在預定時段T內是否接收到預定百分比(percentage)(例如,90%)的ACK指示來估計通道品質。若NB-IoT設備在預定時段T內接收到預定百分比(例如,90%)的ACK指示,則意味著大多數UL資料已發送成功,且通道品質較好。預定百分比可以根據實際應用來進行調整。預定時段T也可以根據UL通道的通道品質進行調整。若通道品質較好,則預定時間T可以縮短。若通道品質不好,則預定時段T可以增加。若NB-IoT設備重新選擇至新的網路設備,則預定時段T可以重置(reset)為初始值(initial value)。In some embodiments, how the NB-IoT device determines if the channel quality is better than the predetermined condition can be implemented in a variety of ways. For example, the NB-IoT device can estimate channel quality by determining whether multiple consecutive ACK indications are received. If the NB-IoT device receives N consecutive ACK indications, it means that all UL data is successfully transmitted and the channel quality is good. The value of N can be adjusted according to the actual application. Alternatively, the NB-IoT device can estimate the channel quality by determining whether the path loss of the UL channel or the Block Error Rate (BLER) is less than a threshold value. If the path loss or BLER of the UL channel is low, it means that the channel quality is good. Alternatively, the NB-IoT device may estimate channel quality by determining whether a predetermined percentage (eg, 90%) of ACK indications are received within a predetermined time period T. If the NB-IoT device receives a predetermined percentage (eg, 90%) of the ACK indication within the predetermined time period T, it means that most of the UL data has been successfully transmitted and the channel quality is good. The predetermined percentage can be adjusted according to the actual application. The predetermined time period T can also be adjusted according to the channel quality of the UL channel. If the channel quality is good, the predetermined time T can be shortened. If the channel quality is not good, the predetermined time period T can be increased. If the NB-IoT device reselects to the new network device, the predetermined time period T can be reset to an initial value.

第5圖為根據本發明一實施方式的縮短UL資料傳輸長度的示例操作500的示意圖。操作500可以實施於包含NB-IoT設備與無線網路的任意網路,以實現根據本發明的概念與機制所提出的多種特徵及/或方面。更具體地,操作500可以是有關於UL功耗的降低。操作500可以包括區塊510、520、530、540和550中的一個或多個所代表的一個或多個操作、步驟或功能。儘管顯示為分離的多個區塊,然而根據實施需求,操作500的多個區塊可以劃分出額外的區塊、組合為更少的區塊、或省略部分區塊。操作500可以全部或部分地由上述的NB-IoT設備以及以下所說明的NB-IoT設備1010來實施。出於說明目的而非限制本發明的範圍,操作500的說明可以NB-IoT設備與網路設備為背景提供如下。操作500可以從步驟510開始。FIG. 5 is a schematic diagram of an example operation 500 of shortening a UL data transmission length in accordance with an embodiment of the present invention. Operation 500 can be implemented on any network including NB-IoT devices and wireless networks to implement various features and/or aspects set forth in accordance with the concepts and mechanisms of the present invention. More specifically, operation 500 may be related to a reduction in UL power consumption. Operation 500 can include one or more operations, steps, or functions represented by one or more of blocks 510, 520, 530, 540, and 550. Although shown as separate blocks, depending on implementation requirements, multiple blocks of operation 500 may divide additional blocks, combine into fewer blocks, or omit partial blocks. Operation 500 may be implemented in whole or in part by the NB-IoT device described above and the NB-IoT device 1010 described below. The description of operation 500 may be provided as follows in the context of NB-IoT devices and network devices for illustrative purposes and not to limit the scope of the present invention. Operation 500 can begin at step 510.

在步驟510中,根據接收自網路設備的網路資訊,NB-IoT設備可以配置UL資料傳輸長度為,並將比例因子α配置為初始值。舉例而言,比例因子可以配置為。可替代地,NB-IoT設備可以將開啟期間/關閉期間的比率β配置為初始值。UL資料傳輸長度Nmax由網路設備來配置。操作500可以從步驟510前進至步驟520。In step 510, the NB-IoT device can configure the UL data transmission length according to the network information received from the network device. And configure the scale factor α as the initial value. For example, the scale factor can be configured to . Alternatively, the NB-IoT device may configure the ratio β during the on/off period to an initial value. The UL data transmission length Nmax is configured by the network device. Operation 500 can proceed from step 510 to step 520.

在步驟520中,NB-IoT設備可以透過UL通道執行UL資料傳輸,使用UL資料傳輸長度為。操作500可以從步驟520前進至步驟530。In step 520, the NB-IoT device can perform UL data transmission through the UL channel, and the length of the UL data transmission is . Operation 500 can proceed from step 520 to step 530.

在步驟530中,NB-IoT設備可以確定通道品質是否優於預定條件。若是,則操作500可以從步驟530前進至步驟540。若否,則操作500可以從步驟530前進至步驟550。In step 530, the NB-IoT device can determine if the channel quality is better than a predetermined condition. If so, operation 500 can proceed from step 530 to step 540. If no, operation 500 can proceed from step 530 to step 550.

在步驟540中,NB-IoT設備可以使用來縮短UL資料傳輸長度。可替代地,NB-IoT設備可以使用來減小開啟期間/關閉期間的比率β。操作500可以進一步從步驟540前進至步驟520。In step 540, the NB-IoT device can be used. with To shorten the length of UL data transmission. Alternatively, NB-IoT devices can be used To reduce the ratio β during the on/off period. Operation 500 can proceed further from step 540 to step 520.

在步驟550中,NB-IoT設備可以使用來增加UL資料傳輸長度,或者保持UL資料傳輸長度。可替代地,NB-IoT設備可以使用來增加開啟期間/關閉期間的比率β,或保持開啟期間/關閉期間的比率β。操作500可以進一步從步驟550前進至步驟520。In step 550, the NB-IoT device can be used. with To increase the length of UL data transmission, or to maintain the length of UL data transmission. Alternatively, NB-IoT devices can be used To increase the ratio β during the on/off period, or to maintain the ratio β during the on/off period. Operation 500 may proceed further from step 550 to step 520.

第6圖為根據本發明多個實施方式的在多種機制下的示例場景600的示意圖。場景600包括NB-IoT設備與網路設備,這些設備可以是無線網路(例如,LTE網路、LTE-A網路、LTE-A Pro網路、5G網路或IoT網路)的一部分。NB-IoT設備能夠透過UL通道向網路設備發送UL資料,UL通道可以例如但不僅限於NPRACH或NPUSCH。網路設備能夠透過DL通道向NB-IoT設備發送DL資料,DL通道可以例如但不僅限於NPDCCH。FIG. 6 is a schematic diagram of an example scenario 600 under various mechanisms in accordance with various embodiments of the present invention. Scenario 600 includes NB-IoT devices and network devices, which may be part of a wireless network (eg, an LTE network, an LTE-A network, an LTE-A Pro network, a 5G network, or an IoT network). The NB-IoT device can transmit UL data to the network device through the UL channel, and the UL channel can be, for example but not limited to, NPRACH or NPUSCH. The network device can send DL data to the NB-IoT device through the DL channel, and the DL channel can be, for example but not limited to, the NPDCCH.

根據本發明的多個實施方式,NB-IoT設備可以接收來自網路設備的網路配置的傳輸功率級別,以透過NPUSCH執行UL資料傳輸。首先,NB-IoT設備可以配置傳輸功率級別為,並使用Pmax執行UL資料傳輸。然後,NB-IoT設備可以估計NPUSCH的通道品質。根據通道品質,NB-IoT設備可以進一步調整傳輸功率級別PTX。更具體地,NB-IoT設備可以確定通道品質是否優於預定條件。根據通道品質,NB-IoT設備可以使用ACK功率偏移值或NACK功率偏移值來調整傳輸功率級別。當通道品質優於預定條件時,NB-IoT設備可以經由來調整傳輸功率級別。當通道品質不優於預定條件時,NB-IoT設備可以使用來調整傳輸功率級別。ACK功率偏移值與NACK功率偏移值也可以根據通道品質進行調整。舉例而言,若通道品質較好,則ACK功率偏移值可以從3dB增加至6dB。若通道品質不好,則NACK功率偏移值可以從3dB增加至6dB。According to various embodiments of the present invention, the NB-IoT device can receive the transmission power level of the network configuration from the network device. To perform UL data transmission through the NPUSCH. First, the NB-IoT device can be configured with a transmission power level of And use Pmax to perform UL data transmission. The NB-IoT device can then estimate the channel quality of the NPUSCH. Depending on the channel quality, the NB-IoT device can further adjust the transmission power level PTX. More specifically, the NB-IoT device can determine if the channel quality is better than a predetermined condition. NB-IoT devices can use ACK power offset values depending on channel quality Or NACK power offset value To adjust the transmission power level. When the channel quality is better than the predetermined condition, the NB-IoT device can be To adjust the transmission power level. When the channel quality is not better than the predetermined condition, the NB-IoT device can be used. To adjust the transmission power level. ACK power offset value And NACK power offset value It can also be adjusted according to the channel quality. For example, if the channel quality is good, the ACK power offset value It can be increased from 3dB to 6dB. If the channel quality is not good, the NACK power offset value It can be increased from 3dB to 6dB.

相應地,若通道品質優於預定條件,則NB-IoT設備可以降低傳輸功率級別以降低UL功耗。如第6圖所示,網路設備配置一初始(initial)傳輸功率模式(transmission power pattern)610。在傳輸功率模式610中,對於UL資料傳輸長度Tmax,NB-IoT設備使用網路配置的傳輸功率級別Pmax來發送UL資料。若通道品質優於預定條件,則NB-IoT設備可以將傳輸功率變為傳輸功率模式620。更具體地,在整個UL資料傳輸長度Tmax期間,NB-IoT設備可以直接將傳輸功率級別降低為。在一些實施方式中,若通道品質足夠好,則整個UL資料傳輸長度Tmax期間,NB-IoT設備可以直接將傳輸功率級別降低為Accordingly, if the channel quality is better than the predetermined condition, the NB-IoT device can lower the transmission power level to reduce the UL power consumption. As shown in FIG. 6, the network device configures an initial transmission power pattern 610. In the transmission power mode 610, for the UL data transmission length Tmax, the NB-IoT device transmits the UL data using the transmission power level Pmax of the network configuration. If the channel quality is better than the predetermined condition, the NB-IoT device can change the transmission power to the transmission power mode 620. More specifically, during the entire UL data transmission length Tmax, the NB-IoT device can directly reduce the transmission power level to . In some embodiments, if the channel quality is good enough, the NB-IoT device can directly reduce the transmission power level to the entire UL data transmission length Tmax. or .

可替代地,若通道品質優於預定條件,則NB-IoT設備可以將傳輸功率變為傳輸功率模式630。更具體地,首先,NB-IoT設備可以配置傳輸功率級別為,並使用Pmax執行UL資料傳輸。然後,NB-IoT設備可以估計NPUSCH的通道品質。NB-IoT設備可以進一步根據通道品質調整傳輸功率級別PTX。如第6圖所示,NB-IoT設備僅在X1時段配置傳輸功率級別為。在X1時段後,NB-IoT設備可以將傳輸功率級別降低Y1,並在X2時段配置傳輸功率級別為。在時段X2之後,NB-IoT設備可以進一步將傳輸功率級別降低Y2,並在X3時段配置傳輸功率級別為。在X3時段後,NB-IoT設備可以進一步將傳輸功率級別降低Y3,並在X4時段配置傳輸功率級別為。相應地,若通道品質優於預定條件,則NB-IoT設備可以逐漸降低傳輸功率級別以降低UL功耗。Alternatively, if the channel quality is better than the predetermined condition, the NB-IoT device can change the transmission power to the transmission power mode 630. More specifically, first, the NB-IoT device can configure the transmission power level to And use Pmax to perform UL data transmission. The NB-IoT device can then estimate the channel quality of the NPUSCH. The NB-IoT device can further adjust the transmission power level PTX according to the channel quality. As shown in Figure 6, the NB-IoT device only configures the transmission power level for the X1 period. . After the X1 period, the NB-IoT device can reduce the transmission power level by Y1 and configure the transmission power level to be in the X2 period. . After the period X2, the NB-IoT device can further reduce the transmission power level by Y2 and configure the transmission power level to be in the X3 period. . After the X3 period, the NB-IoT device can further reduce the transmission power level by Y3 and configure the transmission power level to be during the X4 period. . Accordingly, if the channel quality is better than the predetermined condition, the NB-IoT device can gradually reduce the transmission power level to reduce the UL power consumption.

在一些實施方式中,NB-IoT設備如何確定通道品質是否優於預定條件可以實施為多種方式。舉例而言,NB-IoT設備可以經由確定是否接收到多個連續ACK指示來估計通道品質。若NB-IoT設備接收到N個連續ACK指示,則意味著UL資料全部發送成功且通道品質較好。N的值可以根據實際應用進行調整。可替代地,NB-IoT設備可以經由確定UL通道的路徑損失或BLER是否小於門檻值來估計通道品質。若UL通道的路徑損失或BLER較低,則意味著通道品質較好。可替代地,NB-IoT設備可以經由確定在預定時段T內是否接收到預定百分比的ACK指示來估計通道品質。若NB-IoT設備在預定時段T內接收到預定百分比(例如,90%)的ACK指示,則意味著大多數UL資料已發送成功,且通道品質較好。預定百分比可以根據實際應用來進行調整。預定時段T也可以根據UL通道的通道品質進行調整。若通道品質較好,則預定時間T可以縮短。若通道品質不好,則預定時段T可以增加。若NB-IoT設備重新選擇至新的網路設備,則預定時段T可以重置為初始值。In some embodiments, how the NB-IoT device determines if the channel quality is better than the predetermined condition can be implemented in a variety of ways. For example, the NB-IoT device can estimate channel quality by determining whether multiple consecutive ACK indications are received. If the NB-IoT device receives N consecutive ACK indications, it means that all UL data is successfully transmitted and the channel quality is good. The value of N can be adjusted according to the actual application. Alternatively, the NB-IoT device can estimate the channel quality by determining the path loss of the UL channel or whether the BLER is less than a threshold value. If the path loss or BLER of the UL channel is low, it means that the channel quality is good. Alternatively, the NB-IoT device may estimate channel quality by determining whether a predetermined percentage of ACK indications were received within a predetermined time period T. If the NB-IoT device receives a predetermined percentage (eg, 90%) of the ACK indication within the predetermined time period T, it means that most of the UL data has been successfully transmitted and the channel quality is good. The predetermined percentage can be adjusted according to the actual application. The predetermined time period T can also be adjusted according to the channel quality of the UL channel. If the channel quality is good, the predetermined time T can be shortened. If the channel quality is not good, the predetermined time period T can be increased. If the NB-IoT device reselects to the new network device, the predetermined time period T can be reset to the initial value.

第7圖為根據本發明一實施方式的降低傳輸功率級別的示例操作700的示意圖。操作700可以實施於包括NB-IoT設備與無線網路的任意網路,以實現根據本發明的概念與機制所提出的多種特徵及/或方面。更具體地, 操作700可以是有關於UL功耗的降低。操作700可以包括由一個或多個區塊710、720、730、740和750所代表的一個或多個操作、步驟或功能。儘管顯示為分離的多個區塊,操作700的多個區塊也可以根據設計需求劃分出額外的區塊、組合為更少的區塊、或者省略部分區塊。操作700可以部分或全部地由上述NB-IoT設備或以下所述的NB-IoT設備1010來實施。出於說明目的而非限制本發明的範圍,操作700的說明可以NB-IoT設備與網路設備為背景提供如下。操作700可以從步驟710開始。FIG. 7 is a schematic diagram of an example operation 700 of reducing transmission power levels in accordance with an embodiment of the present invention. Operation 700 can be implemented in any network including NB-IoT devices and wireless networks to implement various features and/or aspects set forth in accordance with the concepts and mechanisms of the present invention. More specifically, operation 700 may be related to a reduction in UL power consumption. Operation 700 can include one or more operations, steps or functions represented by one or more of blocks 710, 720, 730, 740, and 750. Although shown as separate blocks, the plurality of blocks of operation 700 may also divide additional blocks, combine into fewer blocks, or omit portions of the blocks according to design requirements. Operation 700 may be implemented in part or in whole by the NB-IoT device described above or the NB-IoT device 1010 described below. The description of operation 700 may be provided as follows in the context of NB-IoT devices and network devices for illustrative purposes and not to limit the scope of the present invention. Operation 700 can begin at step 710.

在步驟710中,根據接收自網路設備的網路資訊,NB-IoT設備可以配置傳輸功率級別為。傳輸功率級別 Pmax由網路設備所配置。操作700可以從步驟710前進至步驟720。In step 710, the NB-IoT device can configure the transmission power level according to the network information received from the network device. . The transmission power level Pmax is configured by the network device. Operation 700 can proceed from step 710 to step 720.

在步驟720中,NB-IoT設備可以透過UL通道執行UL資料傳輸,使用傳輸功率級別為。操作700可以從步驟720前進至步驟730。In step 720, the NB-IoT device can perform UL data transmission through the UL channel, using a transmission power level of . Operation 700 can proceed from step 720 to step 730.

在步驟730中,NB-IoT設備可以確定通道品質是否優於預定條件。若是,則操作700可以從步驟730前進至步驟740。若否,則操作從步驟730前進至步驟750。In step 730, the NB-IoT device can determine if the channel quality is better than a predetermined condition. If so, operation 700 can proceed from step 730 to step 740. If no, then operation proceeds from step 730 to step 750.

在步驟740中,NB-IoT設備可以使用來降低傳輸功率級別。操作700可以進一步從步驟740前進至步驟720。In step 740, the NB-IoT device can be used. To reduce the transmission power level. Operation 700 may proceed further from step 740 to step 720.

在步驟750中,NB-IoT設備可以使用來提高傳輸功率級別,或者保持傳輸功率級別。操作700可以進一步從步驟750前進至步驟720。In step 750, the NB-IoT device can be used. To increase the transmission power level, or to maintain the transmission power level. Operation 700 can proceed further from step 750 to step 720.

第8圖為根據本發明一實施方式的降低UL資料傳輸長度與傳輸功率級別的示例操作800的示意圖。操作800可以實施於包括NB-IoT設備與無線網路的任意網路,以實現根據本發明的概念與機制所提出的多種特徵及/或方面。更具體地, 操作800可以是有關於UL功耗的降低。操作800可以包括由一個或多個區塊810、820、830、840和850所代表的一個或多個操作、步驟或功能。儘管顯示為分離的多個區塊,操作800的多個區塊也可以根據設計需求劃分出額外的區塊、組合為更少的區塊、或者省略部分區塊。操作800可以部分或全部地由上述NB-IoT設備或以下所述的NB-IoT設備1010來實施。出於說明目的而非限制本發明的範圍,操作800的說明可以NB-IoT設備與網路設備為背景提供如下。操作800可以從步驟810開始。FIG. 8 is a diagram of an example operation 800 of reducing UL data transmission length and transmission power level, in accordance with an embodiment of the present invention. Operation 800 can be implemented in any network including NB-IoT devices and wireless networks to implement various features and/or aspects set forth in accordance with the concepts and mechanisms of the present invention. More specifically, operation 800 may be related to a reduction in UL power consumption. Operation 800 can include one or more operations, steps or functions represented by one or more of blocks 810, 820, 830, 840, and 850. Although shown as separate blocks, the plurality of blocks of operation 800 may also divide additional blocks, combine into fewer blocks, or omit portions of the blocks according to design requirements. Operation 800 may be implemented in part or in whole by the NB-IoT device described above or the NB-IoT device 1010 described below. The description of operation 800 may be provided as follows in the context of an NB-IoT device and a network device for illustrative purposes and not to limit the scope of the present invention. Operation 800 can begin at step 810.

在步驟810中,根據接收自網路設備的網路資訊,NB-IoT設備可以配置UL資料傳輸長度為,以及配置傳輸功率級別為。UL資料傳輸長度Nmax與傳輸功率級別Pmax由網路設備所配置。操作800可以從步驟810前進至步驟820。In step 810, the NB-IoT device can configure the UL data transmission length according to the network information received from the network device. And configure the transmit power level to . The UL data transmission length Nmax and the transmission power level Pmax are configured by the network device. Operation 800 may proceed from step 810 to step 820.

在步驟820中,NB-IoT設備可以根據UL通道的通道品質來縮短UL資料傳輸長度。操作800可以從步驟820前進至步驟830。In step 820, the NB-IoT device can shorten the UL data transmission length according to the channel quality of the UL channel. Operation 800 can proceed from step 820 to step 830.

在步驟830中,NB-IoT設備可以確定UL資料傳輸長度是否小於門檻值。若是,則操作800可以從步驟830前進至步驟840。若否,操作800可以從步驟830前進至步驟850。In step 830, the NB-IoT device can determine if the UL data transmission length is less than a threshold. If so, operation 800 can proceed from step 830 to step 840. If no, operation 800 can proceed from step 830 to step 850.

在步驟840中,NB-IoT可以根據UL通道的通道品質降低傳輸功率級別。In step 840, the NB-IoT can reduce the transmission power level according to the channel quality of the UL channel.

在步驟850中,NB-IoT設備可以保持傳輸功率級別。在一些實施方式中,操作800可以進一步從步驟850前進至步驟820。In step 850, the NB-IoT device can maintain the transmission power level. In some implementations, operation 800 can proceed further from step 850 to step 820.

第9圖為根據本發明一實施方式的縮短UL資料傳輸長度並降低傳輸功率級別的示例操作900的示意圖。操作900可以實施於包括NB-IoT設備與無線網路的任意網路,以實現根據本發明的概念與機制所提出的多種特徵及/或方面。更具體地, 操作900可以是有關於UL功耗的降低。操作900可以包括由一個或多個區塊910、920、930、940和950所代表的一個或多個操作、步驟或功能。儘管顯示為分離的多個區塊,操作900的多個區塊也可以根據設計需求劃分出額外的區塊、組合為更少的區塊、或者省略部分區塊。操作900可以部分或全部地由上述NB-IoT設備或以下所述的NB-IoT設備1010來實施。出於說明目的而非限制本發明的範圍,操作900的說明可以NB-IoT設備與網路設備為背景提供如下。操作900可以從步驟910開始。9 is a schematic diagram of an example operation 900 of shortening a UL data transmission length and reducing a transmission power level, in accordance with an embodiment of the present invention. Operation 900 can be implemented in any network including NB-IoT devices and wireless networks to implement various features and/or aspects set forth in accordance with the concepts and mechanisms of the present invention. More specifically, operation 900 may be related to a reduction in UL power consumption. Operation 900 can include one or more operations, steps or functions represented by one or more of blocks 910, 920, 930, 940, and 950. Although shown as separate blocks, the plurality of blocks of operation 900 may also divide additional blocks, combine into fewer blocks, or omit portions of the blocks according to design requirements. Operation 900 may be implemented in part or in whole by the NB-IoT device described above or the NB-IoT device 1010 described below. The description of operation 900 may be provided as follows in the context of an NB-IoT device and a network device for illustrative purposes and not to limit the scope of the present invention. Operation 900 can begin at step 910.

在步驟910中,根據接收自網路設備的網路資訊,NB-IoT設備可以配置UL資料傳輸長度為,以及配置傳輸功率級別為。UL資料傳輸長度Nmax與傳輸功率級別Pmax由網路設備所配置。操作900可以從步驟910前進至步驟920。In step 910, the NB-IoT device can configure the UL data transmission length according to the network information received from the network device. And configure the transmit power level to . The UL data transmission length Nmax and the transmission power level Pmax are configured by the network device. Operation 900 can proceed from step 910 to step 920.

在步驟920中,NB-IoT設備可以根據UL通道的通道品質來降低傳輸功率級別。操作900可以從步驟920前進至步驟930。In step 920, the NB-IoT device can reduce the transmission power level according to the channel quality of the UL channel. Operation 900 may proceed from step 920 to step 930.

在步驟930中,NB-IoT設備可以確定傳輸功率級別是否小於門檻值。若是,則操作900可以從步驟930前進至步驟940。若否,則操作900可以從步驟930前進至步驟950。In step 930, the NB-IoT device can determine if the transmission power level is less than a threshold. If so, operation 900 can proceed from step 930 to step 940. If no, operation 900 can proceed from step 930 to step 950.

在步驟940中,NB-IoT設備可以根據UL通道的通道品質來縮短UL資料傳輸長度。In step 940, the NB-IoT device can shorten the UL data transmission length according to the channel quality of the UL channel.

在步驟950中,NB-IoT設備可以保持UL資料傳輸長度。在一些實施方式中,操作900可以進一步從步驟950前進至步驟920。In step 950, the NB-IoT device can maintain the UL data transmission length. In some implementations, operation 900 can proceed further from step 950 to step 920.

示例實施方式Example embodiment

第10圖為根據本發明一實施方式的示例NB-IoT設備1010與示例網路設備1020的示意圖。NB-IoT設備1010與網路設備1020中的每個可以執行多種功能以實施此處所述與無線通信中的UE有關的UL功耗降低的多種機制、技術、操作及方法,包括上述場景100、300、400與600,以及上述操作200、500、700、800和900與以下所述操作1100-1300。FIG. 10 is a schematic diagram of an example NB-IoT device 1010 and an example network device 1020, in accordance with an embodiment of the present invention. Each of NB-IoT device 1010 and network device 1020 can perform a variety of functions to implement the various mechanisms, techniques, operations, and methods described herein with respect to UE power consumption reduction in wireless communication, including scenario 100 above. , 300, 400, and 600, and the above operations 200, 500, 700, 800, and 900 operate as described below with 1100-1300.

NB-IoT設備1010可以是電子設備的一部分,電子設備可以是諸如可擕式或行動設備、可穿戴式設備、無線通信設備或電腦設備等的UE。例如,NB-IoT設備1010可以實施于智慧型電話、智慧手錶、個人數位助理、數位相機或例如平板電腦、膝上型電腦或筆記型電腦等的電腦設備中。NB-IoT設備1010頁可以是機器類型設備的一部分,機器類型設備可以是例如固定的(immobile/stationary)設備、家庭設備、有線通信設備或電腦設備等的IoT設備。例如,NB-IoT設備1010可以實施于智慧溫度調節器(thermostat)、智慧冰箱、智慧門鎖、無線揚聲器或家庭控制中心中。可替代地,NB-IoT設備1010可以實施為一個或多個積體電路(Integrated-Circuit, IC)晶片的形式,例如但不僅限於,一個或多個單核處理器、一個或多個多核處理器、或一個或多個複雜指令集計算(Complex-Instruction-Set-Computing, CISC)處理器。NB-IoT設備1010可以包括第10圖所示的這些元件中的至少一部分,例如處理器1012。NB-IoT設備1010可以進一步包括與本發明所提供的機制無關的一個或多個其他元件(例如,內部電源、顯示裝置及/或使用者介面裝置),以及,因此,出於簡潔,NB-IoT設備1010的這些元件並未顯示於第10圖,也沒有在下文進行說明。The NB-IoT device 1010 may be part of an electronic device, which may be a UE such as a portable or mobile device, a wearable device, a wireless communication device, or a computer device. For example, the NB-IoT device 1010 can be implemented in a smart phone, a smart watch, a personal digital assistant, a digital camera, or a computer device such as a tablet, laptop, or laptop. The NB-IoT device 1010 page may be part of a machine type device, which may be an IoT device such as an immobile/stationary device, a home device, a wired communication device, or a computer device. For example, the NB-IoT device 1010 can be implemented in a thermostat, smart refrigerator, smart door lock, wireless speaker, or home control center. Alternatively, NB-IoT device 1010 may be implemented in the form of one or more Integrated-Circuit (IC) chips such as, but not limited to, one or more single core processors, one or more multi-core processing , or one or more Complex-Instruction-Set-Computing (CISC) processors. The NB-IoT device 1010 can include at least a portion of these elements shown in FIG. 10, such as the processor 1012. The NB-IoT device 1010 may further include one or more other components (eg, internal power supplies, display devices, and/or user interface devices) that are independent of the mechanisms provided by the present invention, and, therefore, for simplicity, NB- These elements of the IoT device 1010 are not shown in Figure 10 and are not described below.

網路設備1020可以是電子設備的一部分,該電子設備可以是諸如基地台(Base Station, BS) 、小區(cell)、路由器(router)或閘道(gateway, GW)的網路節點。例如,網路設備1020可以實施於LTE、LTE-A或LTE-A Pro網路中的eNodeB中,或實施於5G、NR或IoT網路中的gNB中。可替代地,網路設備1020可以實施為一個或多個IC晶片的形式,例如但不僅限於,一個或多個單核處理器、一個或多個多核處理器或一個或多個CISC處理器。網路設備1020可以包括第10圖所示多個元件的至少一部分,例如,處理器1022。網路設備1020可以進一步包括與本發明所提供的機制無關的一個或多個其他元件(例如,內部電源、顯示裝置及/或使用者介面裝置),以及,出於簡潔,網路設備1020的這些元件並未顯示於第10圖中,也沒有在下文進行說明。Network device 1020 may be part of an electronic device, which may be a network node such as a Base Station (BS), a cell, a router, or a gateway (GW). For example, network device 1020 can be implemented in an eNodeB in an LTE, LTE-A, or LTE-A Pro network, or in a gNB in a 5G, NR, or IoT network. Alternatively, network device 1020 can be implemented in the form of one or more IC chips, such as but not limited to, one or more single core processors, one or more multi-core processors, or one or more CISC processors. Network device 1020 can include at least a portion of the plurality of elements shown in FIG. 10, such as processor 1022. Network device 1020 may further include one or more other components (eg, internal power supplies, display devices, and/or user interface devices) that are independent of the mechanisms provided by the present invention, and, for brevity, network device 1020 These elements are not shown in Figure 10 and are not described below.

在一方面,處理器1012與處理器1022中的每個可以實施為一個或多個單核處理器、一個或多個多核處理器、或一個或多個CISC處理器的形式。換言之,即便此處使用單數形式的「一處理器」來指代處理器1012與處理器1022,處理器1012與處理器1022中的每個可以在根據本發明的一些實施方式中包括多個處理器,以及在根據本發明的一些其他實施方式中包括單個處理器。在另一方面,處理器1012與處理器1022中的每個可以實施為使用多個電子元件的硬體形式(以及,可選擇的,固件形式),這些電子元件包括,例如但不僅限於,一個或多個電晶體、一個或多個二極體、一個或多個電容、一個或多個電阻、一個或多個電感、一個或多個憶阻器及/或一個或多個變容器,這些電子元件配置並安排用於實現根據本發明的多個特定功能。也就是說,在至少一些實施方式中,處理器1012與處理器1022中的每個為特殊用途機器專用(special-purpose machine specifically designed)的、並被安排及配置用於執行包括根據本發明多個實施方式的裝置(例如,NB-IoT設備1010所代表的)與網路(例如,網路設備1020所代表的)中降低UL功耗在內的特定任務。In an aspect, each of processor 1012 and processor 1022 can be implemented in the form of one or more single core processors, one or more multi-core processors, or one or more CISC processors. In other words, even though the singular "one processor" is used herein to refer to processor 1012 and processor 1022, each of processor 1012 and processor 1022 may include multiple processes in some embodiments in accordance with the present invention. And, in some other embodiments in accordance with the invention, a single processor is included. In another aspect, each of processor 1012 and processor 1022 can be implemented in a hardware form (and, optionally, in firmware form) using a plurality of electronic components including, for example, but not limited to, one Or a plurality of transistors, one or more diodes, one or more capacitors, one or more resistors, one or more inductors, one or more memristors, and/or one or more varactors, The electronic components are configured and arranged to implement a plurality of specific functions in accordance with the present invention. That is, in at least some embodiments, each of processor 1012 and processor 1022 is special-purpose machine specifically designed and arranged for execution including performing in accordance with the present invention. The specific implementation of the device (e.g., as represented by NB-IoT device 1010) and the network (e.g., represented by network device 1020) reduces the UL power consumption.

在一些實施方式中,NB-IoT設備1010也可以包括耦接於處理器1012並能夠無線收發資料的收發器1016。在一些實施方式中,NB-IoT設備1010可以進一步包括耦接於處理器1012並能夠被處理器1012所存取及儲存資料的記憶體1014。在一些實施方式中,網路設備1020也可以包括耦接於處理器1022並能夠無線收發資料的的收發器1026。在一些實施方式中,網路設備1020可以進一步包括耦接於處理器1022並能夠被處理器1022所存取及儲存資料的記憶體1024。相應地,NB-IoT設備1010與網路設備1020可以分別透過收發器1016與收發器1026彼此進行無線通信。為有助於理解,以下有關NB-IoT設備1010與網路設備1020中每個的多個操作、功能與能力的說明將以一NB-IoT環境的背景提供,在該NB-IoT環境中,NB-IoT設備1010實施於或實施為NB-IoT設備或UE,以及網路設備1020實施於或實施為NB-IoT網路的網路節點。In some embodiments, the NB-IoT device 1010 can also include a transceiver 1016 coupled to the processor 1012 and capable of wirelessly transceiving data. In some embodiments, the NB-IoT device 1010 can further include a memory 1014 coupled to the processor 1012 and capable of being accessed and stored by the processor 1012. In some embodiments, the network device 1020 can also include a transceiver 1026 coupled to the processor 1022 and capable of wirelessly transceiving data. In some embodiments, the network device 1020 can further include a memory 1024 coupled to the processor 1022 and capable of being accessed and stored by the processor 1022. Accordingly, the NB-IoT device 1010 and the network device 1020 can wirelessly communicate with each other through the transceiver 1016 and the transceiver 1026, respectively. To facilitate understanding, the following description of the multiple operations, functions, and capabilities of each of NB-IoT device 1010 and network device 1020 will be provided in the context of an NB-IoT environment in which the NB-IoT environment is provided. The NB-IoT device 1010 is implemented or implemented as an NB-IoT device or UE, and the network device 1020 is implemented or implemented as a network node of the NB-IoT network.

以下說明是有關於NB-IoT設備1010的多個操作、功能及能力。The following description is related to the various operations, functions, and capabilities of the NB-IoT device 1010.

在一些實施方式中,處理器1012可以配置為估計UL通道(例如,NPDCCH或PRACH)的通道品質。處理器1012可以進一步配置為根據通道品質調整UL資料傳輸長度。更具體地,處理器1012可以配置為確定通道品質是否優於預定條件。根據通道品質,處理器1012可以使用比例因子α調整UL資料傳輸長度。當通道品質優於預定條件時,處理器1012可以使用來調整比例因子。當通道品質不優於預定條件時,處理器1012可以使用來調整比例因子。根據通道品質,處理器1012頁可以使用ACK偏移值或NACK偏移值來調整比例因子。舉例而言,若通道品質較好,則處理器1012可以將ACK偏移值從0.1增加至0.2。若通道品質不好,處理器1012可以將NACK偏移值從0.1增加至0.2。相應地,若通道品質優於預定條件,則處理器1012可以配置為縮短UL資料傳輸長度以降低UL功耗。In some implementations, the processor 1012 can be configured to estimate channel quality of a UL channel (eg, NPDCCH or PRACH). Processor 1012 can be further configured to adjust the UL data transmission length based on channel quality. More specifically, the processor 1012 can be configured to determine if the channel quality is better than a predetermined condition. Depending on the channel quality, the processor 1012 can adjust the UL data transmission length using a scaling factor a. When the channel quality is better than the predetermined condition, the processor 1012 can use To adjust the scale factor. When the channel quality is not better than the predetermined condition, the processor 1012 can use To adjust the scale factor. Depending on the channel quality, the processor 1012 page can use the ACK offset value. Or NACK offset value To adjust the scale factor. For example, if the channel quality is better, the processor 1012 can set the ACK offset value. Increased from 0.1 to 0.2. If the channel quality is not good, the processor 1012 can set the NACK offset value. Increased from 0.1 to 0.2. Accordingly, if the channel quality is better than the predetermined condition, the processor 1012 can be configured to shorten the UL data transmission length to reduce the UL power consumption.

在一些實施方式中,在已發送UL資料的預定部分後,處理器1012可以配置為直接終止(terminate)UL資料傳輸。處理器1012可以配置為僅在開啟期間啟動傳輸(TX)並發送UL資料,以及在關閉期間關閉傳輸。在一些實施方式中,處理器1012可以配置為在關閉期間關閉收發器1016或部分前端電路以降低功耗。In some embodiments, after a predetermined portion of the UL material has been transmitted, the processor 1012 can be configured to directly terminate the UL data transmission. The processor 1012 can be configured to initiate transmission (TX) and transmit UL data only during turn-on, and turn off the transmission during shutdown. In some embodiments, the processor 1012 can be configured to turn off the transceiver 1016 or a portion of the front end circuitry to reduce power consumption during shutdown.

在一些實施方式中,處理器1012可以配置為使用預定的開啟/關閉模式來調整UL資料傳輸長度。具體地,處理器1012可以配置為確定在短時間內的開啟期間/關閉期間的比率β ,並對整個UL資料傳輸長度重複應用該開啟期間/關閉期間的比率β 。當通道品質優於預定條件時,處理器1012可以使用來調整開啟期間/關閉期間的比率β 。當通道品質不優於預定條件時,處理器1012可以使用來調整開啟期間/關閉期間的比率β 。處理器1012也可以根據通道品質來調整ACK偏移值與NACK偏移值。舉例而言,若通道品質較好,則處理器1012可以將ACK偏移值從0.1調整至0.2。若通道品質不好,則處理器1012可以將NACK偏移值從0.1調整至0.2。In some implementations, the processor 1012 can be configured to adjust the UL data transmission length using a predetermined on/off mode. Specifically, the processor 1012 may be configured to determine the ratio β during the on/off period in a short time and repeatedly apply the ratio β of the on period/off period to the entire UL data transmission length. When the channel quality is better than the predetermined condition, the processor 1012 can use To adjust the ratio β during the on/off period. When the channel quality is not better than the predetermined condition, the processor 1012 can use To adjust the ratio β during the on/off period. The processor 1012 can also adjust the ACK offset value according to the channel quality. Offset value with NACK . For example, if the channel quality is better, the processor 1012 can set the ACK offset value. Adjust from 0.1 to 0.2. If the channel quality is not good, the processor 1012 can offset the NACK value. Adjust from 0.1 to 0.2.

在一些實施方式中,網路設備可以在DL通道中排程多個參考信號,如DMRS。NB-IoT設備可能需要接收多個參考信號以用於通道估計。相應地,若在多個關閉期間(off durations)排程多個參考信號,則處理器1012可以配置為開啟收發器1016以接收DL通道中的多個參考信號。In some embodiments, the network device can schedule multiple reference signals, such as DMRS, in the DL channel. The NB-IoT device may need to receive multiple reference signals for channel estimation. Accordingly, if a plurality of reference signals are scheduled during a plurality of off durations, the processor 1012 can be configured to turn on the transceiver 1016 to receive a plurality of reference signals in the DL channel.

在一些實施方式中,處理器1012可以配置為確定通道品質是否優於預定條件。舉例而言,處理器1012可以配置為經由確定是否接收到多個連續ACK指示來估計通道品質。若處理器1012接收到N個連續ACK指示,則意味著UL資料全部發送成功且通道品質較好。N的值可以根據實際應用進行調整。可替代地,處理器1012可以配置為經由確定UL通道的路徑損失或BLER是否小於門檻值來估計通道品質。若UL通道的路徑損失或BLER較低,則意味著通道品質較好。可替代地,處理器1012可以配置為經由確定在預定時段T內是否接收到預定百分比的ACK指示來估計通道品質。若處理器1012在預定時段T內接收到預定百分比(例如,90%)的ACK指示,則意味著大多數UL資料已發送成功,且通道品質較好。預定百分比可以根據實際應用來進行調整。處理器1012也可以根據UL通道的通道品質來調整預定時段T。若通道品質較好,則處理器1012可以縮短預定時間T。若通道品質不好,則處理器1012可以增加預定時段T。若NB-IoT設備重新選擇至新的網路設備,則處理器1012可以將預定時段T重置為初始值。In some implementations, the processor 1012 can be configured to determine if the channel quality is better than a predetermined condition. For example, processor 1012 can be configured to estimate channel quality via determining whether multiple consecutive ACK indications are received. If the processor 1012 receives N consecutive ACK indications, it means that the UL data is all successfully transmitted and the channel quality is good. The value of N can be adjusted according to the actual application. Alternatively, the processor 1012 can be configured to estimate channel quality by determining whether the path loss of the UL channel or the BLER is less than a threshold value. If the path loss or BLER of the UL channel is low, it means that the channel quality is good. Alternatively, the processor 1012 may be configured to estimate channel quality by determining whether a predetermined percentage of ACK indications were received within a predetermined time period T. If the processor 1012 receives a predetermined percentage (eg, 90%) of the ACK indication within the predetermined time period T, it means that most of the UL data has been successfully transmitted and the channel quality is good. The predetermined percentage can be adjusted according to the actual application. The processor 1012 can also adjust the predetermined time period T according to the channel quality of the UL channel. If the channel quality is good, the processor 1012 can shorten the predetermined time T. If the channel quality is not good, the processor 1012 can increase the predetermined time period T. If the NB-IoT device reselects to the new network device, the processor 1012 can reset the predetermined time period T to the initial value.

在一些實施方式中,處理器1012可以配置為透過收發器1016接收來自網路設備的傳輸功率級別Pmax。傳輸功率級別Pmax由網路設備所配置,以用於NB-IoT設備1010透過NPUSCH執行UL資料傳輸。處理器1012可以進一步配置為估計NPUSCH的通道品質,並根據通道品質調整傳輸功率級別。更具體地,處理器1012可以配置為確定通道品質是否優於預定條件,並根據信號品質使用ACK功率偏移值或NACK功率偏移值來調整傳輸功率級別。當通道品質優於預定條件時,處理器1012可以使用來調整傳輸功率級別。當通道品質不優於預定條件時,處理器1012可以使用來調整傳輸功率級別。根據通道品質,處理器1012也可以調整ACK功率偏移值與NACK功率偏移值。舉例而言,若通道品質較好,則處理器1012可以將ACK功率偏移值從3dB調整至6dB。若通道品質不好,則處理器1012可以將NACK功率偏移值從3dB調整至6dB。相應地,若通道品質優於預定條件,則處理器1012可以配置為降低傳輸功率級別以降低UL功耗。In some implementations, the processor 1012 can be configured to receive a transmission power level Pmax from the network device through the transceiver 1016. The transmission power level Pmax is configured by the network device for the NB-IoT device 1010 to perform UL data transmission through the NPUSCH. The processor 1012 can be further configured to estimate the channel quality of the NPUSCH and adjust the transmission power level according to the channel quality. More specifically, the processor 1012 can be configured to determine whether the channel quality is better than a predetermined condition and use the ACK power offset value according to the signal quality. Or NACK power offset value To adjust the transmission power level. When the channel quality is better than the predetermined condition, the processor 1012 can use To adjust the transmission power level. When the channel quality is not better than the predetermined condition, the processor 1012 can use To adjust the transmission power level. The processor 1012 can also adjust the ACK power offset value depending on the channel quality. And NACK power offset value . For example, if the channel quality is better, the processor 1012 can offset the ACK power. Adjust from 3dB to 6dB. If the channel quality is not good, the processor 1012 can set the NACK power offset value. Adjust from 3dB to 6dB. Accordingly, if the channel quality is better than the predetermined condition, the processor 1012 can be configured to reduce the transmission power level to reduce UL power consumption.

在一些實施方式中,若通道品質優於預定條件,則處理器1012可以配置為在整個UL資料傳輸長度期間直接將傳輸功率級別降低3dB。若通道品質足夠好,NB-IoT設備可以在整個UL資料傳輸期間將傳輸功率級別降低6dB或9dB。In some embodiments, if the channel quality is better than the predetermined condition, the processor 1012 can be configured to directly reduce the transmission power level by 3 dB during the entire UL data transmission length. If the channel quality is good enough, the NB-IoT device can reduce the transmission power level by 6dB or 9dB during the entire UL data transmission.

在一些實施方式中,若通道品質優於預定條件,則處理器1012可以配置為逐漸降低傳輸功率級別以降低UL功耗。舉例而言,處理器1012可以將配置為在第一時段內將傳輸功率級別降低3dB,在第二時段內將傳輸功率級別降低6dB,以及在第三時段內將傳輸功率級別降低9dB。In some embodiments, if the channel quality is better than a predetermined condition, the processor 1012 can be configured to gradually reduce the transmission power level to reduce UL power consumption. For example, processor 1012 can be configured to reduce the transmission power level by 3 dB for the first time period, reduce the transmission power level by 6 dB for the second time period, and reduce the transmission power level by 9 dB for the third time period.

在一些實施方式中,處理器1012可以配置為降低UL資料傳輸長度並降低傳輸功率級別以降低功耗。具體地,處理器1012可以配置為先根據UL通道的通道品質來縮短UL資料傳輸長度。處理器1012可以進一步配置為確定UL資料傳輸長度是否小於門檻值。若是,則處理器1012可以配置為進一步根據UL通道的通道品質來降低傳輸功率級別。若否,則處理器1012可以配置為保持傳輸功率級別。In some implementations, the processor 1012 can be configured to reduce the UL data transmission length and reduce the transmission power level to reduce power consumption. Specifically, the processor 1012 may be configured to first shorten the UL data transmission length according to the channel quality of the UL channel. The processor 1012 can be further configured to determine if the UL data transmission length is less than a threshold value. If so, the processor 1012 can be configured to further reduce the transmission power level based on the channel quality of the UL channel. If not, the processor 1012 can be configured to maintain a transmission power level.

在一些實施方式中,處理器1012可以配置為縮短UL資料傳輸長度並降低傳輸功率級別以降低功耗。具體地,處理器1012可以配置為根據UL通道的通道品質來降低傳輸功率級別。處理器1012可以進一步配置為確定傳輸功率級別是否小於門檻值。若是,則處理器1012可以配置為進一步根據UL通道的通道品質來縮短UL資料傳輸長度。若否,則處理器1012可以配置為保持UL資料傳輸長度。In some implementations, the processor 1012 can be configured to reduce the UL data transmission length and reduce the transmission power level to reduce power consumption. In particular, the processor 1012 can be configured to reduce the transmission power level based on the channel quality of the UL channel. The processor 1012 can be further configured to determine if the transmission power level is less than a threshold value. If so, the processor 1012 can be configured to further shorten the UL data transmission length based on the channel quality of the UL channel. If not, the processor 1012 can be configured to maintain the UL data transmission length.

以下說明是有關於網路設備1020的多個操作、功能及能力。The following description is directed to various operations, functions, and capabilities of network device 1020.

在一些實施方式中,處理器1022可以配置為透過DL通道向NB-IoT設備1010發送DL資料,DL通道例如但不僅限於NPDCCH。處理器1022可以配置為透過收發器1026向NB-IoT設備發送UL資料傳輸長度或傳輸功率級別,以用於NB-IoT設備透過UL通道執行UL資料傳輸。處理器1022可以進一步配置為在NB-IoT設備的UL資料傳輸長度內配置多個UL傳輸間隙,以用於執行時序或頻率的重新獲取。In some embodiments, the processor 1022 can be configured to transmit DL data to the NB-IoT device 1010 over a DL channel, such as but not limited to NPDCCH. The processor 1022 can be configured to transmit a UL data transmission length or a transmission power level to the NB-IoT device through the transceiver 1026 for the NB-IoT device to perform UL data transmission through the UL channel. The processor 1022 can be further configured to configure a plurality of UL transmission gaps within the UL data transmission length of the NB-IoT device for performing timing or frequency reacquisition.

在一些實施方式中,當處理器1022透過收發器1026接收到部分UL資料時,處理器1022可以配置為在接收到全部UL資料之前對接收到的UL資料進行解碼。處理器1022可以進一步配置為確定接收到的UL資料是否可以被成功解碼。若是,則處理器1022可以配置為在UL傳輸間隙內向NB-IoT設備1010發送一ACK指示。若否,則處理器1022可以配置為不向NB-IoT設備1010發送ACK指示,或者向NB-IoT設備發送NACK指示。In some embodiments, when the processor 1022 receives a portion of the UL data through the transceiver 1026, the processor 1022 can be configured to decode the received UL data prior to receiving all of the UL data. The processor 1022 can be further configured to determine whether the received UL data can be successfully decoded. If so, the processor 1022 can be configured to send an ACK indication to the NB-IoT device 1010 within the UL transmission gap. If not, the processor 1022 can be configured not to send an ACK indication to the NB-IoT device 1010 or to send a NACK indication to the NB-IoT device.

示例操作Sample action

第11圖為根據本發明一實施方式的示例操作1100的示意圖。操作1100可以是場景100的一種示例實施方式,該示例實施方式部分或全部是有關於根據本發明的UL功耗降低。操作1100可以代表NB-IoT設備1010的多個特徵的實施方式的一方面。操作1100可以包括區塊1110、1120、1130和1140中的一個或多個所代表的一個或多個操作、步驟或功能。儘管顯示為分離的多個區塊,操作1100的多個區塊也可以根據設計需求劃分出額外的區塊、組合為更少的區塊、或者省略部分區塊。此外,操作1100可以依照第11圖所示的順序或其他可替代的不同順序來執行。操作1100可以由NB-IoT設備1010或任意適合的UE或機器類型裝置來實施。出於說明目的而非限制本發明的範圍,操作1100在下文中以NB-IoT設備1010為背景進行說明。操作1100可以從步驟1110開始。11 is a schematic diagram of an example operation 1100 in accordance with an embodiment of the present invention. Operation 1100 may be an example implementation of scenario 100 that is partially or fully related to UL power consumption reduction in accordance with the present invention. Operation 1100 can represent an aspect of an embodiment of a plurality of features of NB-IoT device 1010. Operation 1100 can include one or more operations, steps, or functions represented by one or more of blocks 1110, 1120, 1130, and 1140. Although shown as separate blocks, the plurality of blocks of operation 1100 may also divide additional blocks, combine into fewer blocks, or omit portions of the blocks according to design requirements. Moreover, operation 1100 can be performed in the order shown in FIG. 11 or in other alternative different sequences. Operation 1100 can be implemented by NB-IoT device 1010 or any suitable UE or machine type device. For purposes of illustration and not limitation of the scope of the invention, operation 1100 is hereinafter described with the NB-IoT device 1010 as a background. Operation 1100 can begin at step 1110.

在步驟1110中,操作1100可以包括:NB-IoT設備1010透過UL通道向網路設備發送UL資料。UL通道可以是,例如但不僅限於,NPRACH或NPUSCH。擦偶偶1100可以從步驟1110前進至步驟1120。In step 1110, operation 1100 can include the NB-IoT device 1010 transmitting UL data to the network device through the UL channel. The UL channel may be, for example but not limited to, NPRACH or NPUSCH. The wiper even 1100 can proceed from step 1110 to step 1120.

在步驟1120中,操作1100可以包括:NB-IoT設備1010監測在UL通道的傳輸間隙期間是否接收到來自網路設備的ACK指示。若是,則操作1100可以從步驟1120前進至步驟1130。若否,則操作1100可以從步驟1120前進至步驟1140。In step 1120, operation 1100 can include the NB-IoT device 1010 monitoring whether an ACK indication from the network device was received during a transmission gap of the UL channel. If so, operation 1100 can proceed from step 1120 to step 1130. If no, operation 1100 can proceed from step 1120 to step 1140.

在步驟1130中,操作1100可以包括:若接收到ACK指示,則NB-IoT設備1010終止UL資料傳輸。In step 1130, operation 1100 can include, upon receiving an ACK indication, the NB-IoT device 1010 terminates the UL data transmission.

在步驟1140中,操作1100可以包括:若未接收到ACK指示,則NB-IoT設備1010在傳輸間隔之後繼續發送UL資料。In step 1140, operation 1100 can include, if an ACK indication is not received, the NB-IoT device 1010 continues to transmit the UL material after the transmission interval.

第12圖為根據本發明一實施方式的示例操作1200的示意圖。操作1200可以為場景100的一示例實施方式,該示例實施方式部分或全部是有關於根據本發明的UL功耗降低。操作1200可以代表網路設備1020的多個特徵的實施方式的一方面。操作1200可以包括區塊1210、1220、1230和1240中的一個或多個所代表的一個或多個操作、步驟或功能。儘管顯示為分離的多個區塊,操作1200的多個區塊也可以根據設計需求劃分出額外的區塊、組合為更少的區塊、或者省略部分區塊。此外,操作1200可以依照第12圖所示的順序或其他可替代的不同順序來執行。操作1200可以由網路設備1020或任意適合的網路節點來實施。出於說明目的而非限制本發明的範圍,操作1200在下文中以網路設備1020為背景進行說明。操作1200可以從步驟1210開始。Figure 12 is a schematic illustration of an example operation 1200 in accordance with an embodiment of the present invention. Operation 1200 may be an example implementation of scenario 100, which is partially or fully related to UL power consumption reduction in accordance with the present invention. Operation 1200 can represent an aspect of an embodiment of a plurality of features of network device 1020. Operation 1200 can include one or more operations, steps, or functions represented by one or more of blocks 1210, 1220, 1230, and 1240. Although shown as separate blocks, the plurality of blocks of operation 1200 may also divide additional blocks, combine into fewer blocks, or omit portions of the blocks according to design requirements. Moreover, operations 1200 can be performed in the order shown in FIG. 12 or in other alternative different sequences. Operation 1200 can be implemented by network device 1020 or any suitable network node. For purposes of illustration and not limitation of the scope of the invention, operation 1200 is described below in the context of network device 1020. Operation 1200 can begin at step 1210.

在步驟1210中,操作1200可以包括:網路設備1020透過UL通道接收來自NB-IoT設備的UL資料。操作1200可以從步驟1210前進至步驟1220。In step 1210, operation 1200 can include the network device 1020 receiving UL data from the NB-IoT device over the UL channel. Operation 1200 can proceed from step 1210 to step 1220.

在步驟1220中,操作1200可以包括:網路設備1020確定UL資料是否能夠被成功解碼。若是,則操作1200可以從步驟1220前進至步驟1230。若否,則操作1200可以從步驟1220前進至步驟1240。In step 1220, operation 1200 can include the network device 1020 determining if the UL material can be successfully decoded. If so, operation 1200 can proceed from step 1220 to step 1230. If no, operation 1200 can proceed from step 1220 to step 1240.

在步驟1230中,操作1200可以包括:在接收到全部UL資料之前,網路設備1020向NB-IoT設備發送ACK指示。In step 1230, operation 1200 can include, prior to receiving all UL data, network device 1020 sends an ACK indication to the NB-IoT device.

在步驟1240中,操作1200可以包括:網路設備1020向NB-IoT設備發送NACK指示或不向NB-IoT設備發送ACK指示。In step 1240, operation 1200 can include the network device 1020 transmitting a NACK indication to the NB-IoT device or not transmitting an ACK indication to the NB-IoT device.

第13圖為根據本發明一實施方式的示例操作1300的示意圖。操作1300可以是場景300、400和600中的一個、一些或全部的示例實施方式,該示例實施方式部分或全部是有關於根據本發明的UL功耗降低。操作1300可以代表NB-IoT設備1010的多個特徵的實施方式的一方面。操作1300可以包括區塊1310、1320和1330中的一個或多個所代表的一個或多個操作、步驟或功能。儘管顯示為分離的多個區塊,操作1300的多個區塊也可以根據設計需求劃分出額外的區塊、組合為更少的區塊、或者省略部分區塊。此外,操作1300可以依照第13圖所示的順序或其他可替代的不同順序來執行。操作1300可以由NB-IoT設備1010或任意適合的UE或機器類型裝置來實施。出於說明目的而非限制本發明的範圍,操作1300在下文中以NB-IoT設備1010為背景進行說明。操作1300可以從步驟1310開始。Figure 13 is a schematic illustration of an example operation 1300 in accordance with an embodiment of the present invention. Operation 1300 may be an example implementation of one, some, or all of scenes 300, 400, and 600, which is partially or fully related to UL power reduction in accordance with the present invention. Operation 1300 can represent an aspect of an embodiment of a plurality of features of NB-IoT device 1010. Operation 1300 can include one or more operations, steps, or functions represented by one or more of blocks 1310, 1320, and 1330. Although shown as separate blocks, the plurality of blocks of operation 1300 may also divide additional blocks, combine into fewer blocks, or omit portions of the blocks according to design requirements. Moreover, operations 1300 can be performed in the order shown in FIG. 13 or in other alternative different sequences. Operation 1300 can be implemented by NB-IoT device 1010 or any suitable UE or machine type device. For purposes of illustration and not limitation of the scope of the invention, operation 1300 is described below in the context of NB-IoT device 1010. Operation 1300 can begin at step 1310.

在步驟1310中,操作1300可以包括:NB-IoT設備1010透過UL通道執行UL資料傳輸。操作1300可以從步驟1310前進至步驟1320。In step 1310, operation 1300 can include the NB-IoT device 1010 performing UL data transmission through the UL channel. Operation 1300 can proceed from step 1310 to step 1320.

在步驟1320中,操作1300可以包括:NB-IoT設備1010估計UL通道的通道品質。操作1300可以從步驟1320前進至步驟1330。In step 1320, operation 1300 can include the NB-IoT device 1010 estimating channel quality of the UL channel. Operation 1300 can proceed from step 1320 to step 1330.

在步驟1330中,操作1300可以包括:NB-IoT設備1010根據通道品質調整UL資料傳輸長度,或根據通道品質調整傳輸功率級別。In step 1330, operation 1300 can include the NB-IoT device 1010 adjusting the UL data transmission length according to the channel quality, or adjusting the transmission power level according to the channel quality.

在一些實施方式中,在根據通道品質調整UL資料傳輸長度時,操作1300可以包括:若通道品質優於預定條件,則NB-IoT設備1010縮短UL資料傳輸長度。In some embodiments, when the UL data transmission length is adjusted according to channel quality, operation 1300 can include the NB-IoT device 1010 shortening the UL data transmission length if the channel quality is better than the predetermined condition.

在一些實施方式中,在縮短UL資料傳輸長度時,操作1300可以包括:在已發送UL資料的預定部分後,NB-IoT設備1010關閉NB-IoT設備的射頻電路或部分前端電路;或者對於UL資料傳輸長度的多個部分,關閉NB-IoT設備的射頻電路或部分前端電路。In some embodiments, when the UL data transmission length is shortened, operation 1300 can include: after the predetermined portion of the UL material has been transmitted, the NB-IoT device 1010 turns off the radio frequency circuit or part of the front end circuit of the NB-IoT device; or for UL The RF transmission circuit or part of the front-end circuit of the NB-IoT device is turned off in multiple parts of the data transmission length.

在一些實施方式中,在縮短UL資料傳輸長度時,操作1300可以包括:NB-IoT設備1010開啟NB-IoT設備的射頻電路,以用於接收DL通道中的多個參考信號。In some embodiments, when the UL data transmission length is shortened, operation 1300 can include the NB-IoT device 1010 turning on the radio frequency circuit of the NB-IoT device for receiving a plurality of reference signals in the DL channel.

在一些實施方式中,操作1300可以進一步包括:NB-IoT設備1010確定UL資料傳輸長度是否小於門檻值,以及若UL資料傳輸長度小於門檻值,則根據通道品質調整傳輸功率級別。In some embodiments, operation 1300 can further include: NB-IoT device 1010 determining whether the UL data transmission length is less than a threshold, and if the UL data transmission length is less than a threshold, adjusting the transmission power level according to channel quality.

在一些實施方式中,在根據通道品質調整傳輸功率級別時,操作1300可以包括:若通道品質優於預定條件,則NB-IoT設備1010降低傳輸功率級別。In some embodiments, when the transmission power level is adjusted according to channel quality, operation 1300 can include the NB-IoT device 1010 lowering the transmission power level if the channel quality is better than the predetermined condition.

在一些實施方式中,在降低傳輸功率級別時,操作1300可以包括:NB-IoT設備1010對於整個UL資料傳輸長度降低至預定傳輸功率級別,或者在UL資料傳輸長度期間逐漸降低傳輸功率級別。In some embodiments, when the transmission power level is lowered, operation 1300 can include the NB-IoT device 1010 reducing the overall UL data transmission length to a predetermined transmission power level, or gradually decreasing the transmission power level during the UL data transmission length.

在一些實施方式中,操作1300可以進一步包括:NB-IoT設備1010確定傳輸功率級別是否低於門檻值,若傳輸功率級別低於門檻值,則根據通道品質調整UL資料傳輸長度。In some embodiments, operation 1300 can further include: NB-IoT device 1010 determining if the transmission power level is below a threshold, and if the transmission power level is below a threshold, adjusting the UL data transmission length according to channel quality.

在一些實施方式中,在估計UL通道的通道品質時,操作1300可以包括:NB-IoT設備1010確定是否接收到多個連續ACK指示,確定UL通道的路徑損失是否低於門檻值,或確定在預定時段內是否接收到預定百分比的ACK指示。In some embodiments, when estimating the channel quality of the UL channel, operation 1300 can include the NB-IoT device 1010 determining whether to receive a plurality of consecutive ACK indications, determining whether the path loss of the UL channel is below a threshold, or determining Whether a predetermined percentage of ACK indications are received within a predetermined time period.

補充說明Supplementary explanation

本發明上述實施例可實施為硬體、軟體代碼或其組合。根據本發明一實施例,上述方法及操作所述一個或多個步驟可以是經由處理器執行對應的程式碼來實現。上述處理器可以是用於執行程式碼以實現上述方法或操作所包含的一個或多個步驟所對應的功能的處理單元、數位元信號處理器(Digital Signal Process, DSP)、微處理器、場效可程式設計閘陣列(Field Programmable Gate Array, FPGA)或任意可實現上述功能的專用電路。這些處理器可根據本發明配置為經由執行定義了本發明所體現的特定方法的機器可讀軟體代碼或固件代碼來執行特定任務。軟體代碼或固件代碼可使用不同的程式設計語言及不同的格式或類型來開發。軟體代碼也可符合不同的目標平臺。然而,軟體代碼的不同的代碼格式、類型及語言及配置代碼以根據本發明執行任務的其他方式,均不脫離本發明的精神及範圍。The above embodiments of the present invention may be implemented as a hardware, a software code, or a combination thereof. According to an embodiment of the invention, the one or more steps of the above method and operation may be implemented by executing a corresponding code via a processor. The processor may be a processing unit, a digital signal processor (DSP), a microprocessor, a field for executing a code to implement a function corresponding to one or more steps included in the above method or operation. A Field Programmable Gate Array (FPGA) or any dedicated circuit that implements the above functions. These processors may be configured in accordance with the present invention to perform particular tasks via executing machine readable software code or firmware code that defines a particular method embodied by the present invention. Software code or firmware code can be developed using different programming languages and different formats or types. The software code can also be adapted to different target platforms. However, the different code formats, types, and language of the software code, and the configuration code, in other ways to perform the tasks in accordance with the present invention, do not depart from the spirit and scope of the present invention.

根據本發明多個實施例,也可提供一種電腦可讀存儲介質,用於儲存至少一程式指令或者程式碼。當該至少一程式指令或程式碼被載入至本發明上述多個實施例所述的設備或裝置(如UE、BS、NB-IoT設備、機器類型設備等)後,所述設備或裝置的處理器執行該至少一程式指令或程式碼以實現上述各個實施例中所提供的方法中的一個或多個步驟或功能。根據本發明一些實施例,該電腦可讀記錄介質可以實施為該設備或裝置的該處理器可存取的記憶體。根據實際設計需求,該記憶體可以包含於該通信裝置的內部或者位於該設備或裝置的外部,本發明並不以此為限。根據本發明另一些實施例,該電腦可讀記錄介質可以是唯讀記憶體(Read-Only Memory, ROM),隨機記憶體(Random-Access Memory, RAM),唯讀光碟記憶體(CD-ROM),磁帶,軟碟或者光學資料存儲裝置等,本發明並不以此為限。According to various embodiments of the present invention, a computer readable storage medium for storing at least one program instruction or program code may also be provided. When the at least one program instruction or code is loaded into the device or device (such as UE, BS, NB-IoT device, machine type device, etc.) described in the above embodiments of the present invention, the device or device The processor executes the at least one program instruction or code to implement one or more of the steps or functions of the methods provided in the various embodiments described above. According to some embodiments of the invention, the computer readable recording medium may be implemented as a memory accessible by the processor of the device or device. The memory may be included in the interior of the communication device or external to the device or device according to actual design requirements, and the invention is not limited thereto. According to still another embodiment of the present invention, the computer readable recording medium may be a read-only memory (ROM), a random-access memory (RAM), and a read-only optical disk (CD-ROM). ), magnetic tape, floppy disk or optical data storage device, etc., the invention is not limited thereto.

上述描述能夠使所屬領域具有通常知識者以上文所提供的特定應用及要求來實施本發明。所屬領域具有通常知識者可明瞭上述實施例的多種變形,且此處所定義的基本原則可應用於其他實施例。因此,本發明並不僅限於上述所示及所述的特定實施例,而是記載了符合與此處所揭露的原則及顯著特徵相一致的最廣的範圍。在上述詳細描述中,各種具體細節可提供對本發明的全面理解。然而,所屬領域具有通常知識者當可理解本發明如何實施。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above description is presented to enable a person of ordinary skill in the art to practice the invention. Many variations of the above-described embodiments will be apparent to those skilled in the art, and the basic principles defined herein may be applied to other embodiments. Therefore, the present invention is not limited to the specific embodiments shown and described, but the invention is in the scope of the invention. In the above Detailed Description, various specific details are provided to provide a comprehensive understanding of the invention. However, those of ordinary skill in the art will understand how the invention can be implemented. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

100、300、400、600‧‧‧場景
110~140‧‧‧UL資料
150‧‧‧ACK指示
200、500、700、800、900、1100、1200、1300‧‧‧操作
210~280、510~550、710~750、810~850、910~950、1210~1240、1310~1330‧‧‧步驟
1010‧‧‧NB-IoT設備
1012、1022‧‧‧處理器
1014、1024‧‧‧記憶體
1016、1026‧‧‧收發器
1020‧‧‧網路設備
GAP‧‧‧傳輸間隔
Pmax‧‧‧傳輸功率級別
T0~T5‧‧‧時間
Tmax‧‧‧UL資料傳輸長度
100, 300, 400, 600‧‧‧ scenes
110~140‧‧‧UL information
150‧‧‧ACK instructions
200, 500, 700, 800, 900, 1100, 1200, 1300‧‧‧ operations
210~280, 510~550, 710~750, 810~850, 910~950, 1210~1240, 1310~1330‧‧
1010‧‧‧NB-IoT equipment
1012, 1022‧‧‧ processor
1014, 1024‧‧‧ memory
1016, 1026‧‧‧ transceiver
1020‧‧‧Network equipment
GAP‧‧‧ transmission interval
P max ‧‧‧Transmission power level
T0~T5‧‧‧Time
T max ‧‧‧UL data transmission length

第1圖為根據本發明多個實施方式的在多個機制下的示例場景100的示意圖。 第2圖為根據本發明一實施方式的提前終止的示例操作200的示意圖。 第3圖為根據本發明多個實施方式的在多種機制下的示例場景300的示意圖。 第4圖為根據本發明多個實施方式的在多種機制下的示例場景400的示意圖。 第5圖為根據本發明一實施方式的縮短UL資料傳輸長度的示例操作500的示意圖。 第6圖為根據本發明多個實施方式的在多種機制下的示例場景600的示意圖。 第7圖為根據本發明一實施方式的降低傳輸功率級別的示例操作700的示意圖。 第8圖為根據本發明一實施方式的降低UL資料傳輸長度與傳輸功率級別的示例操作800的示意圖。 第9圖為根據本發明一實施方式的縮短UL資料傳輸長度並降低傳輸功率級別的示例操作900的示意圖。 第10圖為根據本發明一實施方式的示例NB-IoT設備1010與示例網路設備1020的示意圖。 第11圖為根據本發明一實施方式的示例操作1100的示意圖。 第12圖為根據本發明一實施方式的示例操作1200的示意圖。 第13圖為根據本發明一實施方式的示例操作1300的示意圖。FIG. 1 is a schematic diagram of an example scenario 100 under multiple mechanisms in accordance with various embodiments of the present invention. 2 is a schematic diagram of an example operation 200 of early termination in accordance with an embodiment of the present invention. FIG. 3 is a schematic diagram of an example scenario 300 under various mechanisms in accordance with various embodiments of the present invention. FIG. 4 is a schematic diagram of an example scenario 400 under various mechanisms in accordance with various embodiments of the present invention. FIG. 5 is a schematic diagram of an example operation 500 of shortening a UL data transmission length in accordance with an embodiment of the present invention. FIG. 6 is a schematic diagram of an example scenario 600 under various mechanisms in accordance with various embodiments of the present invention. FIG. 7 is a schematic diagram of an example operation 700 of reducing transmission power levels in accordance with an embodiment of the present invention. FIG. 8 is a diagram of an example operation 800 of reducing UL data transmission length and transmission power level, in accordance with an embodiment of the present invention. 9 is a schematic diagram of an example operation 900 of shortening a UL data transmission length and reducing a transmission power level, in accordance with an embodiment of the present invention. FIG. 10 is a schematic diagram of an example NB-IoT device 1010 and an example network device 1020, in accordance with an embodiment of the present invention. 11 is a schematic diagram of an example operation 1100 in accordance with an embodiment of the present invention. Figure 12 is a schematic illustration of an example operation 1200 in accordance with an embodiment of the present invention. Figure 13 is a schematic illustration of an example operation 1300 in accordance with an embodiment of the present invention.

Claims (10)

一種資料傳輸方法,適用於窄帶物聯網設備,該資料傳輸方法包括: 透過上行鏈路通道執行上行鏈路資料傳輸; 估計該上行鏈路通道的通道品質;以及 根據該通道品質,調整該上行鏈路資料的傳輸長度。A data transmission method for a narrowband IoT device, the data transmission method comprising: performing uplink data transmission through an uplink channel; estimating channel quality of the uplink channel; and adjusting the uplink according to the quality of the channel The transmission length of the road data. 如申請專利範圍第1項之資料傳輸方法,其中,根據該通道品質調整該上行鏈路資料的該傳輸長度的步驟進一步包含: 若該通道品質優於預定條件,則減少該上行鏈路資料的該傳輸長度。The data transmission method of claim 1, wherein the step of adjusting the transmission length of the uplink data according to the quality of the channel further comprises: if the channel quality is better than a predetermined condition, reducing the uplink data The length of the transmission. 如申請專利範圍第2項之資料傳輸方法,其中,減少該上行鏈路資料的該傳輸長度的步驟進一步包含: 當該上行鏈路資料的預定部分發送完畢後,關閉該窄帶物聯網設備的射頻電路。The data transmission method of claim 2, wherein the step of reducing the transmission length of the uplink data further comprises: turning off the radio frequency of the narrowband Internet of Things device after the predetermined portion of the uplink data is transmitted Circuit. 如申請專利範圍第2項之資料傳輸方法,其中,減少該上行鏈路資料的該傳輸長度的步驟進一步包含: 對於該上行鏈路資料的該傳輸長度的至少一部分,關閉該窄帶物聯網設備的射頻電路。The data transmission method of claim 2, wherein the step of reducing the transmission length of the uplink data further comprises: turning off the narrowband IoT device for at least a portion of the transmission length of the uplink material RF circuit. 如申請專利範圍第2項之資料傳輸方法,其中,減少該上行鏈路資料的該傳輸長度的步驟進一步包含: 對於下行鏈路通道中的多個參考信號,開啟該窄帶物聯網設備的射頻電路。The data transmission method of claim 2, wherein the step of reducing the transmission length of the uplink data further comprises: turning on a radio frequency circuit of the narrowband IoT device for a plurality of reference signals in the downlink channel . 如申請專利範圍第1項之資料傳輸方法,其中,估計該上行鏈路通道的該通道品質的步驟進一步包括: 確定是否接收到多個連續確認指示;或者 確定該上行鏈路通道的路徑損失是否小於門檻值;或者 確定在預定時段內是否接收到預定百分比的該確認指示。The data transmission method of claim 1, wherein the step of estimating the quality of the channel of the uplink channel further comprises: determining whether a plurality of consecutive acknowledgment indications are received; or determining whether a path loss of the uplink channel is Less than the threshold value; or determining whether a predetermined percentage of the confirmation indication is received within a predetermined time period. 一種資料傳輸方法,適用於窄帶物聯網設備,該資料傳輸方法包括: 透過上行鏈路通道執行上行鏈路資料傳輸; 估計該上行鏈路通道的通道品質;以及 根據該通道品質,調整傳輸功率級別。A data transmission method suitable for a narrowband IoT device, the data transmission method comprising: performing uplink data transmission through an uplink channel; estimating channel quality of the uplink channel; and adjusting a transmission power level according to the quality of the channel . 如申請專利範圍第7項之資料傳輸方法,其中,根據該通道品質調整該傳輸功率級別的步驟進一步包括: 若該通道品質優於預定條件,則減少該傳輸功率級別。The data transmission method of claim 7, wherein the step of adjusting the transmission power level according to the channel quality further comprises: if the channel quality is better than a predetermined condition, reducing the transmission power level. 如申請專利範圍第8項之資料傳輸方法,其中,減少該傳輸功率級別的步驟進一步包括: 對於全部上行鏈路資料的該傳輸長度,減少至預定傳輸功率級別。The data transmission method of claim 8, wherein the step of reducing the transmission power level further comprises: reducing the transmission length to a predetermined transmission power level for all uplink data. 如申請專利範圍第8項之資料傳輸方法,其中,減少該傳輸功率級別的步驟進一步包括: 在該上行鏈路資料的該傳輸長度期間,逐漸減少該傳輸功率級別。The data transmission method of claim 8, wherein the step of reducing the transmission power level further comprises: gradually reducing the transmission power level during the transmission length of the uplink data.
TW106130379A 2016-09-06 2017-09-06 Methods and apparatus for data transmission TW201813434A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662383688P 2016-09-06 2016-09-06
US62/383,688 2016-09-06
??201710720245.5 2017-08-21
CN201710720245.5A CN107801236B (en) 2016-09-06 2017-08-21 Data transmission method and device

Publications (1)

Publication Number Publication Date
TW201813434A true TW201813434A (en) 2018-04-01

Family

ID=61531620

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106130379A TW201813434A (en) 2016-09-06 2017-09-06 Methods and apparatus for data transmission

Country Status (2)

Country Link
CN (1) CN107801236B (en)
TW (1) TW201813434A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110708750B (en) * 2018-07-09 2021-06-22 华为技术有限公司 Power adjustment method, terminal and storage medium
CN111565469B (en) * 2020-04-28 2021-03-16 广州技象科技有限公司 Uplink real-time data transmission method and device of narrow-band Internet of things

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414893B (en) * 2007-10-16 2011-05-04 大唐移动通信设备有限公司 Method and system for correcting channel quality indication
US8295307B2 (en) * 2009-05-07 2012-10-23 Qualcomm Incorporated System and method for adapting transmit data block size and rate based on quality of communication link
US9686046B2 (en) * 2011-09-13 2017-06-20 Qualcomm Incorporated Systems, methods and apparatus for wireless condition based multiple radio access bearer communications
EP2833692A4 (en) * 2012-04-23 2015-09-30 Huawei Tech Co Ltd Method, base station, and system for data transmission
CN103701572A (en) * 2012-09-27 2014-04-02 普天信息技术研究院有限公司 Method and device for indicating quality of channel
CN104518842B (en) * 2013-09-27 2018-06-22 普天信息技术研究院有限公司 A kind of method of adaptive adjustment modulation coding scheme
US9712310B2 (en) * 2013-10-23 2017-07-18 Futurewei Technologies, Inc. System and method for channel quality indicator and acknowledgement joint detection

Also Published As

Publication number Publication date
CN107801236A (en) 2018-03-13
CN107801236B (en) 2022-02-08

Similar Documents

Publication Publication Date Title
TWI360354B (en) Compressed mode operation and power control with d
EP3412086B1 (en) Methods of reliable paging transmission under ue edrx
KR101734634B1 (en) User equipment assistance information signaling in a wireless network
US10645658B2 (en) Method and apparatus for uplink power consumption reduction in NB-IoT
JP2019527979A (en) Select coverage extension level based on power class
US20220225258A1 (en) Enhancing timing advance validity in preconfigured uplink resource for wireless networks
WO2018028340A1 (en) Processing method and apparatus for tracking ue in low power consumption mode
EP3387769B1 (en) A radio network node and a wireless device, and methods therein
WO2019127138A1 (en) Timer management method and terminal device
US20150049690A1 (en) Method and system for early termination of transmissions in response to ack of early decoding
US10455506B2 (en) Method and apparatus for discontinuous reception
WO2014101895A1 (en) Power control method and base station
CN107801236B (en) Data transmission method and device
US10687308B2 (en) Core network node and methods for determining reachability of wireless devices in extended discontinuous receive (eDRX) operation
JP2022508021A (en) Method and terminal
WO2022067576A1 (en) Indication of data transmission configuration
US11432244B2 (en) Method and device for determining power control configuration
EP3120603B1 (en) Compressed mode for umts enhanced dedicated channel for circuit switched voice services
EP4290949A1 (en) Paging in extended drx mode (edrx)
WO2024031299A1 (en) Mobility with pre-configuration of handover preparation information at dus
WO2024031298A1 (en) Mobility with pre-configuration of candidate cells at ue
KR20170030498A (en) Discontinuous reception techniques
WO2021028886A1 (en) Methods for validating measurements for reliable pur transmissions
WO2014107862A1 (en) E-hich information transmitting method, base station and user equipment
TW202410708A (en) Methods for enhancements on sidelink over unlicensed spectrum communication