TW201812558A - Force sensing architectures - Google Patents
Force sensing architectures Download PDFInfo
- Publication number
- TW201812558A TW201812558A TW106129681A TW106129681A TW201812558A TW 201812558 A TW201812558 A TW 201812558A TW 106129681 A TW106129681 A TW 106129681A TW 106129681 A TW106129681 A TW 106129681A TW 201812558 A TW201812558 A TW 201812558A
- Authority
- TW
- Taiwan
- Prior art keywords
- sensing
- force
- layer
- sensor
- sensing element
- Prior art date
Links
Landscapes
- Position Input By Displaying (AREA)
Abstract
Description
本揭露大致上係關於感測對一表面施加之一力,且更具體而言,係關於透過電容性變化來感測一力。The present disclosure generally relates to sensing one force applied to a surface and, more specifically, sensing a force with respect to a capacitive change.
觸控裝置通常提供對使用者觸碰裝置所在之位置的識別,包括移動、手勢及類似者。舉實例而言,觸控裝置可提供關於使用者與一圖形使用者介面(GUI)互動的資訊至一運算系統,諸如指向元件、重新定向或重新定位彼等元件、編輯或鍵打,及其他GUI特徵。舉另一實例而言,觸控裝置可提供合適供一使用者與一應用程式互動的資訊至一運算系統,諸如關於動畫、照片、圖片、投影片簡報、聲音、文字、其他視聽元件、及其他之輸入或操縱。Touch devices typically provide an identification of where the user is touching the device, including movements, gestures, and the like. By way of example, a touch device can provide information to a computing system that interacts with a graphical user interface (GUI), such as pointing components, reorienting or repositioning their components, editing or keystrokes, and others. GUI features. In another example, the touch device can provide information suitable for a user to interact with an application to an computing system, such as animations, photos, pictures, slide presentations, sounds, text, other audiovisual components, and Other inputs or manipulations.
然而,一般而言,觸控輸入視為二進位輸入。一觸控存在且被感測,或觸控不存在。一觸控輸入之一力可提供另一輸入資訊來源至一裝置。舉例而言,一裝置對用一低施加力之一觸控的回應可不同於對用一高施加力之一觸控的回應。力感測裝置可基於經受該力的一組件之一變形量來判定一所施加力之一量或值。However, in general, touch input is considered a binary input. A touch exists and is sensed, or the touch does not exist. One of the touch inputs provides another source of input information to a device. For example, a device's response to touch with one of the low applied forces may be different than for a touch with one of the high applied forces. The force sensing device can determine an amount or value of an applied force based on a deformation amount of a component that is subjected to the force.
在其中力輸入施加至一觸控螢幕(諸如一多點觸摸式觸控螢幕,使用者觸碰該觸控螢幕以選擇顯示在顯示器上之一物件或應用程式或與物件或應用程式互動)的裝置中,由該顯示器所產生之雜訊會干擾該觸控螢幕之操作。在一些情況中,該顯示器雜訊可電耦合至該觸控螢幕且干擾該觸控螢幕之操作。此類顯示器雜訊亦可電耦合至一力感測裝置。該顯示器雜訊之量值會比力信號之量值更大,使得難以辨別該等力信號與該顯示器雜訊。Where the force input is applied to a touch screen (such as a multi-touch touch screen, the user touches the touch screen to select an object or application displayed on the display or interacts with the object or application) In the device, the noise generated by the display interferes with the operation of the touch screen. In some cases, the display noise can be electrically coupled to the touch screen and interfere with the operation of the touch screen. Such display noise can also be electrically coupled to a force sensing device. The amount of noise of the display will be greater than the magnitude of the force signal, making it difficult to distinguish the force signals from the display noise.
一種電子裝置包括:一使用者輸入表面,其界定該電子裝置之一外表面;一第一電容性感測器,其包含一第一對感測元件,該第一對感測元件之間具有一氣隙,且該第一電容性感測器經組態以判定導致該氣隙之一塌陷的在該使用者輸入表面上之一第一所施加力量;及一第二電容性感測器,其在該第一電容性感測器下方,該第二電容性感測器包含一第二對感測元件,該第二對感測元件之間具有一可變形元件,該第二電容性感測器經組態以判定在導致該可變形元件之一變形的該使用者輸入表面上之一第二所施加力量。An electronic device includes: a user input surface defining an outer surface of the electronic device; a first capacitive sensor comprising a first pair of sensing elements, the first pair of sensing elements having a gas a gap, and the first capacitive sensor is configured to determine a first applied force on the user input surface that causes one of the air gaps to collapse; and a second capacitive sensor, Below the first capacitive sensor, the second capacitive sensor includes a second pair of sensing elements, the second pair of sensing elements having a deformable element therebetween, the second capacitive sensor configured A second applied force on the user input surface that causes deformation of one of the deformable elements is determined.
該第一對感測元件包含一共用感測元件及一第一驅動元件,該第一驅動元件與該共用感測元件相隔開且電容耦合至該共用感測元件。該第二對感測元件包含該共用感測元件及一第二驅動元件,該第二驅動元件與該共用感測元件相隔開且電容耦合至該共用感測元件。該共用感測元件可設置於該第一驅動元件與該第二驅動元件之間。該共用感測元件可包括一感測區域陣列。The first pair of sensing elements includes a common sensing element and a first driving element, the first driving element being spaced apart from the common sensing element and capacitively coupled to the common sensing element. The second pair of sensing elements includes the common sensing element and a second driving element, the second driving element being spaced apart from the common sensing element and capacitively coupled to the common sensing element. The common sensing element can be disposed between the first driving element and the second driving element. The shared sensing element can include an array of sensing regions.
該電子裝置可進一步包括一顯示器元件,該顯示器元件耦合至該第一驅動元件。該電子裝置可進一步包括一基底結構,其中該顯示器元件經組態以相對於該基底結構撓曲,該可變形元件耦合至該基底結構,且該氣隙定位於該可變形元件與該顯示器元件之間。該共用感測元件可耦合至該可變形元件。The electronic device can further include a display element coupled to the first drive element. The electronic device can further include a base structure, wherein the display element is configured to flex relative to the base structure, the deformable element is coupled to the base structure, and the air gap is positioned between the deformable element and the display element between. The common sensing element can be coupled to the deformable element.
該電子裝置可進一步包括一顯示器層,該顯示器層包含:一顯示器元件,其定位在該使用者輸入表面下方;及一後偏光器,其定位在該顯示器元件下方。該電子裝置亦可包括:一傳導材料片材,其形成在該後偏光器之一後表面上方以在該後偏光器之該後表面上產生一導電表面;及一傳導邊框,其沿該傳導材料片材之至少一邊緣而形成。該傳導邊框可定位在該顯示器層之一使用者可觀看區域之外部。該傳導材料片材可包含銀奈米線。The electronic device can further include a display layer including: a display element positioned below the user input surface; and a rear polarizer positioned below the display element. The electronic device may further include: a conductive material sheet formed on a rear surface of one of the rear polarizers to generate a conductive surface on the rear surface of the rear polarizer; and a conductive frame along the conductive Formed by at least one edge of the sheet of material. The conductive bezel can be positioned outside of a user viewable area of the display layer. The sheet of conductive material may comprise a silver nanowire.
一種用於一電子裝置之電容性力感測器包括:一第一驅動層;一第二驅動層,其相對於該第一驅動層而定位;一共用感測層,其在該第一驅動層與該第二驅動層之間;一第一間隔層,其在該第一驅動層與該共用感測層之間;及一第二間隔層,其在該共用感測層與該第二驅動層之間。A capacitive force sensor for an electronic device includes: a first driving layer; a second driving layer positioned relative to the first driving layer; and a common sensing layer at the first driving Between the layer and the second driving layer; a first spacer layer between the first driving layer and the common sensing layer; and a second spacer layer in the common sensing layer and the second Between the drive layers.
該第一間隔層可包含一氣隙。該電容性力感測器可進一步包含:一對相對表面,其等界定該氣隙;及一抗黏附層,其經組態以防止該等相對表面之間之黏附。該氣隙可具有約1.0 mm或以下之一厚度。該第二間隔層可包含一可變形材料。該第二間隔層可包含自一基底層延伸之一可變形突起部陣列。The first spacer layer can include an air gap. The capacitive force sensor can further include: a pair of opposing surfaces that define the air gap; and an anti-adhesion layer configured to prevent adhesion between the opposing surfaces. The air gap can have a thickness of about 1.0 mm or less. The second spacer layer can comprise a deformable material. The second spacer layer can comprise an array of deformable protrusions extending from a substrate layer.
該電容性力感測器可進一步包括感測電路系統,該感測電路系統操作上耦合至該第一驅動層、該第二驅動層、及該共用感測層,且經組態以判定導致該第一間隔層之一厚度變化的一第一所施加力量及導致該第二間隔層之一厚度變化的一第二所施加力量。The capacitive force sensor can further include a sensing circuitry operatively coupled to the first driver layer, the second driver layer, and the common sensing layer, and configured to determine A first applied force of a thickness of one of the first spacer layers and a second applied force that causes a thickness variation of one of the second spacer layers.
該第一驅動層可包括:一絕緣基材;一傳導材料片材,其形成在該絕緣基材之一後表面上方以在該絕緣基材之該後表面上產生一導電表面;及一傳導邊框,其沿該傳導材料片材之至少一邊緣而形成。該傳導邊框可包括沿該傳導材料片材之該等邊緣延伸的一連續傳導邊框。該傳導邊框可包括沿該傳導材料片材之一各別邊緣而形成的一或多個傳導條The first driving layer may include: an insulating substrate; a conductive material sheet formed on a rear surface of one of the insulating substrates to generate a conductive surface on the rear surface of the insulating substrate; and a conductive a bezel formed along at least one edge of the sheet of conductive material. The conductive bezel can include a continuous conductive bezel extending along the edges of the sheet of conductive material. The conductive bezel may include one or more conductive strips formed along respective edges of one of the sheets of conductive material
一種電子裝置可包括:一蓋件,其界定該電子裝置之一使用者輸入表面;一第一感測元件,其在該電子裝置之一內部體積內耦合至該蓋件;一框架構件,其耦合至該蓋件且延伸至該電子裝置之該內部體積中;一第二感測元件,其耦合至該框架構件;及一第三感測元件,其耦合至一基底結構且與該感測層相隔開。An electronic device can include: a cover member defining a user input surface of the electronic device; a first sensing element coupled to the cover member within an interior volume of the electronic device; a frame member Coupled to the cover member and extending into the interior volume of the electronic device; a second sensing element coupled to the frame member; and a third sensing element coupled to a base structure and coupled to the sensing The layers are separated.
該框架構件可界定一開口,及該第三感測元件可透過該開口而與該第二感測元件電容耦合。The frame member can define an opening through which the third sensing element can be capacitively coupled to the second sensing element.
該第一感測元件可包含實質上覆蓋一基材之一整個表面的一連續透明傳導材料層。該第二感測元件可包含複數個感測區域,且該連續透明傳導材料層可與該複數個感測區域之多個感測區域重疊。The first sensing element can comprise a layer of continuous transparent conductive material that substantially covers the entire surface of one of the substrates. The second sensing element can include a plurality of sensing regions, and the continuous transparent conductive material layer can overlap with the plurality of sensing regions of the plurality of sensing regions.
該第三感測元件可包含複數個驅動區域,且各驅動區域可與該複數個感測區域之多個感測區域重疊。該第一感測元件可進一步包含電耦合至該連續透明傳導材料層的一連接元件,及該電子裝置可進一步包含經組態以提供一電信號至該第一感測元件的感測電路系統及電耦合該感測電路系統至該連接元件的一連接器分段。The third sensing element can include a plurality of driving regions, and each driving region can overlap with the plurality of sensing regions of the plurality of sensing regions. The first sensing element can further include a connection element electrically coupled to the layer of continuous transparent conductive material, and the electronic device can further include sensing circuitry configured to provide an electrical signal to the first sensing element And electrically coupling the sensing circuit system to a connector segment of the connecting component.
一種電子裝置可包括:一絕緣基材,其定位在一蓋層下方;一傳導材料片材,其形成在該絕緣基材之一後表面上方以在該絕緣基材之該後表面上產生一導電表面;一傳導邊框,其沿該傳導材料片材之至少一邊緣而形成;及一電極層,其定位在該絕緣基材下方,其中該傳導材料片材及該電極層一起形成一力敏結構,該力敏結構經組態以偵測在該蓋層上之一力輸入。An electronic device can include: an insulating substrate positioned under a cap layer; a sheet of conductive material formed over a rear surface of the insulating substrate to create a rear surface of the insulating substrate a conductive surface; a conductive frame formed along at least one edge of the conductive material sheet; and an electrode layer positioned under the insulating substrate, wherein the conductive material sheet and the electrode layer together form a force sensitive The structure is configured to detect a force input on the cover layer.
該電子裝置可進一步包括:驅動電路系統,其耦合至該傳導材料片材;及感測電路系統,其耦合至該電極層。該電極層可包含一電極陣列。該傳導邊框可包含沿該傳導材料片材之該等邊緣延伸的一連續傳導邊框。該傳導邊框可包含沿該傳導材料片材之一各別邊緣而形成的一或多個傳導條。The electronic device can further include: a drive circuitry coupled to the sheet of conductive material; and a sensing circuitry coupled to the electrode layer. The electrode layer can comprise an array of electrodes. The conductive bezel can include a continuous conductive bezel extending along the edges of the sheet of conductive material. The conductive bezel can include one or more conductive strips formed along respective edges of one of the sheets of conductive material.
一種電子裝置包括:一顯示器層,其包含一顯示器元件及一後偏光器,該顯示器元件定位在一蓋層下方,該後偏光器定位在該顯示器元件下方;一傳導材料片材,其形成在該後偏光器之一後表面上方以在該後偏光器之該後表面上產生一導電表面;一傳導邊框,其沿該傳導材料片材之至少一邊緣而形成;及一第一電極層,其定位在該顯示器層下方。該傳導材料片材及該第一電極層可一起形成一力敏結構,該力敏結構經組態以偵測在該蓋層上之一力輸入。An electronic device comprising: a display layer comprising a display element and a rear polarizer, the display element being positioned below a cover layer, the rear polarizer being positioned below the display element; a sheet of conductive material formed in a rear surface of one of the rear polarizers for producing a conductive surface on the rear surface of the rear polarizer; a conductive frame formed along at least one edge of the conductive material sheet; and a first electrode layer, It is positioned below the display layer. The sheet of conductive material and the first electrode layer can together form a force sensitive structure configured to detect a force input on the cover layer.
該電子裝置可進一步包含定位於該蓋層與該前偏光器之間之一觸敏層。該電子裝置可進一步包含定位於該觸敏層與該前偏光器之間之一傳導層。該傳導邊框可包含沿該傳導材料片材之該等邊緣延伸的一連續傳導邊框。該傳導邊框可包含沿該傳導材料片材之一各別邊緣而形成的一或多個傳導條。The electronic device can further include a touch sensitive layer positioned between the cap layer and the front polarizer. The electronic device can further include a conductive layer positioned between the touch sensitive layer and the front polarizer. The conductive bezel can include a continuous conductive bezel extending along the edges of the sheet of conductive material. The conductive bezel can include one or more conductive strips formed along respective edges of one of the sheets of conductive material.
該力敏結構可包含一第一力敏結構,該力輸入可包含一第一力量,及該電子裝置可進一步包含一第二力敏結構,該第二力敏結構包含一第二電極層,該第二電極層定位在該第一電極層下方且與該第一電極層相隔開。該第二力敏結構可經組態以偵測在該蓋層上之一第二力量,其中該第二力量大於該第一力量。該傳導邊框可定位在該顯示器層之一使用者可觀看區域之外部。The force sensitive structure may include a first force sensitive structure, the force input may include a first force, and the electronic device may further include a second force sensitive structure, the second force sensitive structure comprising a second electrode layer, The second electrode layer is positioned below the first electrode layer and spaced apart from the first electrode layer. The second force sensitive structure can be configured to detect a second force on the cover layer, wherein the second force is greater than the first force. The conductive bezel can be positioned outside of a user viewable area of the display layer.
該電子裝置可進一步包含:驅動電路系統,其耦合至該傳導材料片材;及感測電路系統,其耦合至該第一電極層。該第一電極層可包含一電極陣列。該傳導材料片材可包含銀奈米線。The electronic device can further include: a drive circuitry coupled to the sheet of conductive material; and a sensing circuitry coupled to the first electrode layer. The first electrode layer can include an array of electrodes. The sheet of conductive material may comprise a silver nanowire.
一種在一膜基材之一表面上形成傳導邊框之方法可包括:施加複數個遮罩至該膜基材之該表面上,各遮罩界定該膜基材之該表面上之一區,該區將由一各別傳導邊框所環繞;形成一傳導材料於該膜基材之該表面及該等遮罩上方;自該膜基材之該表面移除各遮罩以產生該等傳導邊框;及單切該等傳導邊框以產生該膜基材之個別區段,各區段包括一各別傳導邊框。該方法可進一步包括在單切該等傳導邊框之前形成一保護性層於該膜之該表面上方。A method of forming a conductive bezel on a surface of a film substrate can include applying a plurality of masks to the surface of the film substrate, each mask defining a region on the surface of the film substrate, The region will be surrounded by a respective conductive bezel; a conductive material is formed on the surface of the film substrate and the mask; the mask is removed from the surface of the film substrate to produce the conductive bezel; The conductive bezels are individually cut to create individual segments of the film substrate, each segment including a respective conductive bezel. The method can further include forming a protective layer over the surface of the film prior to singulating the conductive bezels.
形成該傳導材料於該膜基材之該表面及該等遮罩上方可包含毯覆沉積該傳導材料於該膜基材之該表面及該等遮罩上方。該膜基材可包含一偏光器膜,該偏光器膜含有形成在該偏光器膜之該表面上的一傳導材料片材。該偏光器膜可附接至在一電子裝置中之一顯示器元件。Forming the conductive material on the surface of the film substrate and over the masks may include blanket depositing the conductive material on the surface of the film substrate and the masks. The film substrate can comprise a polarizer film comprising a sheet of conductive material formed on the surface of the polarizer film. The polarizer film can be attached to one of the display elements in an electronic device.
一種電子裝置可包含:一使用者輸入表面,其界定該電子裝置之一外表面;一第一電容性感測元件;一第二電容性感測元件,其電容耦合至該第一電容性感測元件;一第一間隔層,其在該第一電容性感測元件與該第二電容性感測元件之間;一第二間隔層,其在該第一電容性感測元件與該第二電容性感測元件之間且具有與該第一間隔層不同之一組成物;及感測電路系統,其耦合至該第一電容性感測元件及該第二電容性感測元件,該感測電路系統經組態以判定在該使用者輸入表面上之一所施加力量。該第一間隔層可經組態以在該所施加力低於一力臨限值的情況下塌陷,及該第二間隔層可經組態以在該所施加力高於該力臨限值的情況下塌陷。An electronic device can include: a user input surface defining an outer surface of the electronic device; a first capacitive sensing component; and a second capacitive sensing component capacitively coupled to the first capacitive sensing component; a first spacer layer between the first capacitive sensing element and the second capacitive sensing element; a second spacer layer between the first capacitive sensing element and the second capacitive sensing element And having a composition different from the first spacer layer; and sensing circuitry coupled to the first capacitive sensing component and the second capacitive sensing component, the sensing circuitry configured to determine The force exerted on one of the user input surfaces. The first spacer layer can be configured to collapse if the applied force is below a force threshold, and the second spacer layer can be configured to apply a force above the force threshold In the case of collapse.
當該所施加力低於該力臨限值時,該外表面可相對於力實質上線性偏轉,及當該所施加力高於該力臨限值時,該外表面可相對於力實質上非線性偏轉。該感測電路系統可基於是否該第一間隔層完全塌陷而使用不同力偏轉相關性來判定該所施加力量。The outer surface is substantially linearly deflectable relative to the force when the applied force is below the force threshold, and the outer surface is substantially relative to the force when the applied force is above the force threshold Nonlinear deflection. The sensing circuitry can determine the applied force using different force deflection correlations based on whether the first spacer layer is completely collapsed.
該第一間隔層可係一氣隙,及該第二間隔層可包含一可變形元件。該可變形元件可包含自一基底層延伸之一可變形突起部陣列。該電子裝置可進一步包括經組態以偵測是否該第一間隔層完全塌陷之一感測器。The first spacer layer can be an air gap, and the second spacer layer can comprise a deformable element. The deformable element can comprise an array of deformable protrusions extending from a substrate layer. The electronic device can further include a sensor configured to detect whether the first spacer layer is completely collapsed.
一種用於一電子裝置之力感測裝置包括:一堆疊,其包含一第一電容性感測元件;一結構,其在該堆疊下方且包含電容耦合至該第一電容性感測元件之一第二電容性感測元件;一氣隙,其在該堆疊與該結構之間;及一接觸式感測器。該堆疊可經組態以回應於施加至該電子裝置之一使用者輸入表面的一力而相對於該結構移動,藉此引起該氣隙之一厚度變化,該第一電容性感測元件及該第二電容性感測元件可經組態以提供相對應於該氣隙之該厚度變化的一電容測量,及該接觸式感測器可經組態以偵測由該氣隙完全塌陷所引起的介於該堆疊與該結構之間之接觸。該力感測裝置可進一步包括在該第一電容性感測元件與該第二電容性感測元件之間之一可變形元件。A force sensing device for an electronic device includes: a stack including a first capacitive sensing element; a structure under the stack and including a capacitive coupling to one of the first capacitive sensing elements a capacitive sensing element; an air gap between the stack and the structure; and a contact sensor. The stack can be configured to move relative to the structure in response to a force applied to a user input surface of the electronic device, thereby causing a thickness variation of the air gap, the first capacitive sensing element and the The second capacitive sensing element can be configured to provide a capacitance measurement corresponding to the thickness variation of the air gap, and the contact sensor can be configured to detect a complete collapse caused by the air gap Between the stack and the structure. The force sensing device can further include a deformable element between the first capacitive sensing element and the second capacitive sensing element.
該接觸式感測器可包含感測區域及傳導元件,該等傳導元件經組態以當該堆疊透過該氣隙而接觸該結構時接觸該等感測區域。該力感測裝置可進一步包含在該氣隙之一第一側上的一可變形元件,其中該等傳導元件設置在該可變形元件上,及該等感測區域設置在該氣隙之一第二側上,該第二側與該第一側相對。該可變形元件可包含自一基底層延伸之突起部,及該等傳導元件可耦合至該等突起部。The touch sensor can include a sensing region and a conductive element configured to contact the sensing regions as the stack contacts the structure through the air gap. The force sensing device can further include a deformable element on a first side of the air gap, wherein the conductive elements are disposed on the deformable element, and the sensing regions are disposed in one of the air gaps On the second side, the second side is opposite the first side. The deformable member can include a protrusion extending from a base layer, and the conductive elements can be coupled to the protrusions.
該接觸式感測器可包含在該氣隙之一第一側上的電容性感測區域及在該氣隙之一第二側上的介電元件,該第二側與該第一側相對,且該等介電元件與該等電容性感測區域電容耦合。該等電容性感測區域可與該第一電容性感測元件整合,及該等介電元件耦合至該可變形元件。The contact sensor can include a capacitive sensing region on a first side of the air gap and a dielectric member on a second side of the air gap, the second side being opposite the first side, And the dielectric elements are capacitively coupled to the capacitive sensing regions. The capacitive sensing regions can be integrated with the first capacitive sensing component and the dielectric components are coupled to the deformable component.
一種用於一電子裝置之感測器組件可包括:一基底;複數個突起部,其等包含自該基底延伸之可變形材料;及複數個感測元件,其等設置在該等突起部之自由端部處。該等感測元件可至少部分內嵌在該等突起部中。該等感測元件可塗佈在該等突起部上。該等感測元件可包含一傳導材料。該等感測元件可包含一介電材料。該基底及該複數個突起部可係一體式組件。該感測器組件可進一步包含至少不包括任何感測元件的一額外突起部。A sensor assembly for an electronic device can include: a substrate; a plurality of protrusions including a deformable material extending from the substrate; and a plurality of sensing elements disposed on the protrusions Free end. The sensing elements can be at least partially embedded in the protrusions. The sensing elements can be coated on the protrusions. The sensing elements can comprise a conductive material. The sensing elements can comprise a dielectric material. The substrate and the plurality of protrusions can be a one-piece assembly. The sensor assembly can further include an additional protrusion that does not include at least any of the sensing elements.
現在將詳細參考附圖中繪示之代表性實施例。應理解,下文描述非意圖使實施例限於一較佳實施例。相反地,意圖涵蓋可包括在如隨附申請專利範圍所定義之所描述之實施例之精神及範疇內的各種替代例、修改例及同等例。Reference will now be made in detail to the exemplary embodiments embodiments It should be understood that the following description is not intended to limit the embodiments to a preferred embodiment. On the contrary, the invention is intended to cover various alternatives, modifications, and equivalents of the embodiments of the invention as described in the appended claims.
本揭露係關於可併入至各式各樣電子或運算裝置(諸如但不限於電腦、智慧型手機、平板電腦、軌跡板、穿戴式裝置、小外觀尸寸裝置等等)中之力感測裝置。可使用力感測裝置以偵測在一輸入表面上之一或多個使用者力輸入,及接著,一處理器(或處理單元)可使所感測之輸入與一力測量互相關及提供彼等輸入至該運算裝置。在一些實施例中,可使用力感測裝置以判定至一軌跡板、一觸控螢幕顯示器、或另一輸入表面的力輸入。The present disclosure relates to force sensing that can be incorporated into a wide variety of electronic or computing devices such as, but not limited to, computers, smart phones, tablets, trackpads, wearable devices, small-sized devices, and the like. Device. A force sensing device can be used to detect one or more user force inputs on an input surface, and then a processor (or processing unit) can correlate the sensed inputs with a force measurement and provide a And so on to the arithmetic device. In some embodiments, a force sensing device can be used to determine the force input to a trackpad, a touchscreen display, or another input surface.
裝置可經組態以依各種方式回應於力輸入或使用力輸入。舉例而言,一裝置可經組態以顯示可視線索(affordance),一使用者可藉由觸碰一觸控螢幕之表面來與可視線索互動。可視線索可包括應用程式圖示、虛擬按鈕、可選擇之區域、文字輸入區域、虛擬按鍵、或類似者。該觸控螢幕可能夠偵測一觸碰事件之發生及位置。藉由併入力感測器(諸如本文所揭示者),裝置可不僅能夠偵測一觸碰之發生及位置,而且亦能夠偵測輸入所施加之一力量。接著,裝置可基於所施加力量而採取不同動作。舉例而言,如果一使用者用低於一臨限值之一力輸入來觸碰一應用程式圖示,則該裝置可開啟該應用程式。如果使用者用高於該臨限值之一力觸碰該應用程式圖示,則該裝置可開啟含有與該應用程式相關之額外可視線索之一快顯功能表。舉另一實例而言,可使用力感測器以判定與一所施加力相關聯之一重量,使得一裝置可用作為一秤。亦設想用於力輸入之其他應用。The device can be configured to respond to force input or force input in a variety of ways. For example, a device can be configured to display a visual aid, and a user can interact with a visual cue by touching the surface of a touch screen. Visual cues can include application icons, virtual buttons, selectable areas, text entry areas, virtual buttons, or the like. The touch screen can detect the occurrence and location of a touch event. By incorporating a force sensor (such as disclosed herein), the device can detect not only the occurrence and location of a touch, but also the ability to detect one of the forces applied by the input. The device can then take different actions based on the applied force. For example, if a user touches an application icon with a force input below one of the thresholds, the device can open the application. If the user touches the application icon above one of the thresholds, the device can open a shortcut menu containing one of the additional visual cues associated with the application. As another example, a force sensor can be used to determine a weight associated with an applied force such that a device can be used as a scale. Other applications for force input are also envisaged.
力感測裝置可包括一輸入表面、一或多個感測層(諸如電容性感測元件、驅動層、感測層、及類似者)、一或多個間隔層(例如,氣隙、可變形元件)、及一基材或支撐層。該輸入表面為一使用者提供一接合表面,諸如一軌跡板之外部表面或一顯示器之蓋玻璃。該力感測裝置可與一電子裝置之其他組件(諸如一觸控螢幕、一顯示器、或類似者)合併。在此類情況中,力感測裝置之組件(諸如一或多個感測層)可穿插有其他層,諸如一蓋玻璃、濾光器、觸碰感測層、背光組件、一顯示器元件(例如,一液晶顯示器總成)、或類似者。The force sensing device can include an input surface, one or more sensing layers (such as capacitive sensing elements, drive layers, sensing layers, and the like), one or more spacer layers (eg, air gaps, deformable) Element), and a substrate or support layer. The input surface provides a user with an engagement surface, such as an exterior surface of a trackpad or a cover glass of a display. The force sensing device can be combined with other components of an electronic device, such as a touch screen, a display, or the like. In such cases, components of the force sensing device, such as one or more sensing layers, may be interspersed with other layers, such as a cover glass, a filter, a touch sensing layer, a backlight assembly, a display element ( For example, a liquid crystal display assembly), or the like.
施加至力感測裝置之一輸入表面的一使用者輸入會引起力感測裝置之一或多個層依所施加力之一方向偏轉,使得一間隔層(例如,一氣隙)塌陷。此偏轉改變力感測裝置之組件之間之距離(諸如兩個互補感測層之間之距離),其可由力感測裝置予以偵測且與一特定所施加力互相關。當間隔層已完全塌陷(例如,界定間隙之相對側的組件已彼此接觸)時,施加至輸入表面的額外力將不會導致力感測裝置之層之間之距離的一顯著額外變化。即,力感測裝置已到達其可偵測的力之最大值。A user input applied to one of the input surfaces of the force sensing device causes one or more layers of the force sensing device to deflect in one of the applied forces such that a spacer layer (eg, an air gap) collapses. This deflection changes the distance between the components of the force sensing device (such as the distance between two complementary sensing layers), which can be detected by the force sensing device and correlated with a particular applied force. When the spacer layer has completely collapsed (eg, the components defining the opposite sides of the gap have been in contact with each other), the additional force applied to the input surface will not result in a significant additional change in the distance between the layers of the force sensing device. That is, the force sensing device has reached its maximum detectable force.
本文所描述之力感測裝置包括:一第一間隔層,諸如一氣隙;及一第二間隔層,諸如一可變形元件,其回應於一所施加力而產生一漸進式變形。舉例而言,一氣隙及一可變形元件可設置於第一感測層與第二感測層之間,使得一所施加力首先引起氣隙塌陷,且一旦氣隙已完全塌陷,旋即引起可變形元件壓縮或以其他方式變形。隨著所施加力增加及可變形元件變成更壓縮,可變形元件賦予對該所施加力的一愈來愈高反應力。因此,與在不含有可變形元件之一相似力感測裝置中感測的力相比,含有一可變形元件及一氣隙的一力感測裝置可能夠感測針對一給定偏轉的較大力。The force sensing device described herein includes a first spacer layer, such as an air gap, and a second spacer layer, such as a deformable member, that produces a progressive deformation in response to an applied force. For example, an air gap and a deformable element may be disposed between the first sensing layer and the second sensing layer such that an applied force first causes the air gap to collapse, and once the air gap has completely collapsed, it may immediately cause The deforming element is compressed or otherwise deformed. As the applied force increases and the deformable element becomes more compressed, the deformable element imparts an increasingly higher reactivity to the applied force. Thus, a force sensing device comprising a deformable element and an air gap can sense a greater force for a given deflection than a force sensed in a force sensing device that does not contain one of the deformable elements. .
本文所描述之力感測裝置亦可包括接觸式感測器,該等接觸式感測器指示何時一氣隙之相鄰層彼此接觸(例如,當該氣隙已完全塌陷時)。可使用此類接觸式感測器來向一處理器或感測電路系統指示是否該力感測裝置操作於一氣隙力型態或一可變形元件力型態,其可改良力感測裝置之品質及/或精確度。The force sensing devices described herein can also include contact sensors that indicate when adjacent layers of an air gap are in contact with each other (eg, when the air gap has completely collapsed). Such a touch sensor can be used to indicate to a processor or sensing circuitry whether the force sensing device is operating in an air gap force pattern or a deformable element force pattern, which can improve the quality of the force sensing device And / or accuracy.
氣隙、可變形元件、及接觸式感測器可用在具有各種數目及配置的間隔層、感測層、接觸式感測器、及類似者的各種不同力感測架構中。本文所描述此類架構之實例。Air gaps, deformable elements, and contact sensors can be used in a variety of different force sensing architectures having various numbers and configurations of spacer layers, sensing layers, contact sensors, and the like. Examples of such architectures are described herein.
圖1至圖2展示可併入本文所描述之力感測裝置的實例電子裝置。舉例而言,圖1展示可併入本文所描述之力感測裝置的一電子裝置100(例如,一行動運算裝置)。電子裝置100可包括一殼體104及一顯示器102。顯示器102可提供一視覺輸出至在使用者可觀看區域108中之一使用者。可運用任何合適技術實施顯示器102,包括(但不限於)使用液晶顯示器(LCD)元件、發光二極體(LED)元件、有機發光顯示器(OLED)元件、有機電致發光(OEL)元件、及類似者的多觸碰感測觸控螢幕。在一些實施例中,顯示器102可用作為一輸入裝置,其允許使用者與行動運算裝置100互動。舉例而言,該顯示器可係一多點觸摸式觸控螢幕LED顯示器。1 through 2 show example electronic devices that can incorporate the force sensing devices described herein. For example, Figure 1 shows an electronic device 100 (e.g., a mobile computing device) that can incorporate the force sensing devices described herein. The electronic device 100 can include a housing 104 and a display 102. Display 102 can provide a visual output to one of the users in viewable area 108 of the user. The display 102 can be implemented using any suitable technique, including but not limited to the use of liquid crystal display (LCD) components, light emitting diode (LED) components, organic light emitting display (OLED) components, organic electroluminescent (OEL) components, and A multi-touch sensing touch screen like this. In some embodiments, display 102 can be used as an input device that allows a user to interact with mobile computing device 100. For example, the display can be a multi-touch touch screen LED display.
裝置100亦可包括一I/O裝置106。I/O裝置106可呈一首頁按鈕(home button)之形式,其可係一機械按鈕、一螢幕按鈕(soft button)(例如,實體上不移動但是仍接受輸入的一按鈕)、在一顯示器上之一圖示或影像等等。進一步,在一些實施例中,I/O裝置106可經整合作為該電子裝置之一蓋件110及/或殼體104之部件。裝置100亦可包括其他類型I/O裝置,諸如一麥克風、一揚聲器、一相機、一生物識別感測器、及一或多個埠,諸如一網路通訊埠及/或一電源線埠。Device 100 can also include an I/O device 106. The I/O device 106 can be in the form of a home button that can be a mechanical button, a soft button (eg, a button that does not physically move but still accepts input), on a display One of the above illustrations or images and so on. Further, in some embodiments, I/O device 106 can be integrated as a component of cover member 110 and/or housing 104 of the electronic device. The device 100 can also include other types of I/O devices, such as a microphone, a speaker, a camera, a biometric sensor, and one or more ports, such as a network communication port and/or a power line port.
蓋件110可定位在裝置100之前表面(或該前表面之一部分)上方。蓋件110之至少一部分可用作為接收觸控及/或力輸入的一輸入表面。蓋件110可用任何合適材料予以形成,諸如玻璃、塑膠、藍寶石、或其組合。在一實施例中,蓋件110覆蓋顯示器102及I/O裝置106。可藉由覆蓋顯示器102的蓋件110之部分及藉由覆蓋I/O裝置106的蓋件110之部分接收觸控輸入及力輸入。The cover member 110 can be positioned over the front surface of the device 100 (or a portion of the front surface). At least a portion of the cover member 110 can be used as an input surface for receiving touch and/or force input. Cover member 110 can be formed from any suitable material, such as glass, plastic, sapphire, or combinations thereof. In an embodiment, the cover member 110 covers the display 102 and the I/O device 106. The touch input and the force input can be received by covering a portion of the cover member 110 of the display 102 and by covering a portion of the cover member 110 of the I/O device 106.
在另一實施例中,蓋件110覆蓋顯示器102,但不覆蓋I/O裝置106。可藉由覆蓋顯示器102的蓋件110之部分接收觸控輸入及力輸入。在一些實施例中,I/O裝置106可設置在經形成在蓋件110中之一開口或孔隙中。該孔隙可延伸穿過殼體104,且I/O裝置106之一或多個組件可定位在殼體104中。In another embodiment, the cover member 110 covers the display 102 but does not cover the I/O device 106. The touch input and the force input can be received by covering a portion of the cover 110 of the display 102. In some embodiments, the I/O device 106 can be disposed in one of the openings or apertures formed in the cover member 110. The aperture can extend through the housing 104 and one or more components of the I/O device 106 can be positioned in the housing 104.
一力感測裝置可經組態以偵測在顯示器102上之力輸入。一力感測裝置亦可經組態以偵測在殼體104之一部分上之力輸入,諸如殼體104之一後部或側,或環繞顯示器102之一邊框部分。除該力感測裝置外,顯示器102亦可包括一或多個觸碰感測器,諸如一多點觸控電容性網格、或類似者。在這些實施例中,顯示器102可偵測力輸入以及位置或觸控輸入兩者。在圖1中之裝置100體現為一平板電腦(例如,一行動運算裝置),但此僅僅係可包括本文所描述之力感測裝置的一實例裝置。可包括本文所描述之力感測裝置的其他裝置之實例包括其他行動運算裝置、穿戴式電子裝置(例如,錶)、行動手機、膝上型電腦或桌上型電腦、電腦周邊裝置(例如,提供輸入至電腦的軌跡板)、或類似者。A force sensing device can be configured to detect force input on display 102. A force sensing device can also be configured to detect a force input on a portion of the housing 104, such as a rear or side of the housing 104, or around a frame portion of the display 102. In addition to the force sensing device, display 102 can also include one or more touch sensors, such as a multi-touch capacitive grid, or the like. In these embodiments, display 102 can detect both force input and position or touch input. The device 100 in FIG. 1 is embodied as a tablet (eg, a mobile computing device), but this is merely one example device that can include the force sensing device described herein. Examples of other devices that may include the force sensing devices described herein include other mobile computing devices, wearable electronic devices (eg, watches), mobile handsets, laptops or desktops, computer peripherals (eg, Provide a trackpad input to the computer), or the like.
圖2展示一膝上型電腦200,其包括一軌跡板206(或其他輸入表面)、一顯示器202、及一外殼204。外殼204可繞軌跡板206及/或顯示器202之一部分延伸。力感測裝置可經組態以偵測在軌跡板206、顯示器202或兩者上之力輸入。2 shows a laptop 200 that includes a trackpad 206 (or other input surface), a display 202, and a housing 204. The outer casing 204 can extend partially around the track pad 206 and/or display 202. The force sensing device can be configured to detect force inputs on the trackpad 206, display 202, or both.
在另一實例中(圖中未展示),一力感測裝置可併入至一軌跡板中,該軌跡板可連接至一電腦,但容置在一分開之外殼或殼體中。舉例而言,包括一力感測裝置之一獨立軌跡板可經組態以連接至一電腦而作為一周邊輸入裝置,相似於一滑鼠或軌跡球。In another example (not shown), a force sensing device can be incorporated into a trackpad that can be coupled to a computer but housed in a separate housing or housing. For example, a separate trackpad including a force sensing device can be configured to connect to a computer as a peripheral input device, similar to a mouse or trackball.
圖3A係沿圖1之線A-A檢視的圖1之裝置100的剖面圖,圖中展示一總成300,該總成可提供顯示、觸碰感測、及力感測功能性至裝置100,或可與其他組件整合以提供此類功能性。舉例而言,圖5、圖12、圖14、圖16、圖23A,及圖26繪示可與總成300或相似於總成300之一總成整合的力感測結構及/或裝置之實例。3A is a cross-sectional view of the device 100 of FIG. 1 taken along line AA of FIG. 1, showing an assembly 300 that provides display, touch sensing, and force sensing functionality to the device 100. Or can be integrated with other components to provide such functionality. For example, FIG. 5, FIG. 12, FIG. 14, FIG. 16, FIG. 23A, and FIG. 26 illustrate a force sensing structure and/or device that can be integrated with the assembly 300 or an assembly similar to the assembly 300. Example.
裝置100包括一蓋件303,該蓋件耦合至殼體104且界定裝置100之一外部表面。蓋件303可係一單一層或可包括多個層,且可由(多種)任何適合的材料所形成或包括(多種)任何適合的材料,諸如玻璃、經處理玻璃、塑膠、鑽石、藍寶石、陶瓷、抗油性塗層、疏水性塗層、或類似者。裝置100亦可包括其他內部組件,其包括電路板、相機、感測器、天線、處理器、觸覺元件、揚聲器、或類似者,為了清楚,自圖3A省略該等組件。Device 100 includes a cover 303 that is coupled to housing 104 and defines an exterior surface of device 100. The cover member 303 can be a single layer or can comprise multiple layers and can be formed from or comprise any suitable material(s), such as glass, treated glass, plastic, diamond, sapphire, ceramic. , oil resistant coatings, hydrophobic coatings, or the like. Device 100 may also include other internal components including circuit boards, cameras, sensors, antennas, processors, tactile elements, speakers, or the like, which are omitted from Figure 3A for clarity.
蓋件303可經由一介接構件305耦合至殼體104。圖3B係在圖3A中所展示之區317的展開圖,圖中詳細展示介於蓋件303與殼體104之間之接點。Cover 303 can be coupled to housing 104 via an interface member 305. Figure 3B is an expanded view of the zone 317 shown in Figure 3A, showing in detail the joint between the cover member 303 and the housing 104.
介接構件305可係或可包括一黏著劑,該黏著劑固定蓋件303至殼體104之一凸耳307或其他特徵。舉例而言,介接構件305可係一壓敏黏著劑(PSA)、熱敏黏著劑(HSA)、環氧樹脂、或其他接合劑。介接構件305可係柔性或剛性。在介接構件305係柔性的情況中,可有助於保護蓋件303(蓋件可包括玻璃或其他易碎材料)免於因震動及衝擊而損壞。另外,如本文參照圖23A至圖25所論述,介接構件305可包括感測元件或與感測元件協作,感測元件連同適合的處理電路系統可偵測介接構件305之一變形程度。接著,可使用介接構件305之所偵測變形程度以判定諸如施加至蓋件303之一力量等資訊。The interface member 305 can be or can include an adhesive that secures the cover member 303 to one of the lugs 307 or other features of the housing 104. For example, the interface member 305 can be a pressure sensitive adhesive (PSA), a heat sensitive adhesive (HSA), an epoxy, or other bonding agent. The interface member 305 can be flexible or rigid. Where the interface member 305 is flexible, it may be helpful to protect the cover member 303 (the cover member may include glass or other frangible material) from damage due to shock and impact. Additionally, as discussed herein with respect to Figures 23A-25, the interface member 305 can include or cooperate with a sensing element that can detect the degree of deformation of one of the interface members 305, along with suitable processing circuitry. Next, the degree of deformation detected by the interface member 305 can be used to determine information such as the force applied to one of the covers 303.
參照圖3A,總成300包括一上部堆疊304,該上部堆疊可包括一顯示器之一或多個層或組件,包括一液晶矩陣、發光二極體(LED)、光導、濾光器、(例如,偏光濾光器)、漫射器、電極、屏蔽層(例如,氧化銦錫層)、或類似者。上部堆疊304可諸如用PSA,HSA、或類似者而耦合至蓋件303。上部堆疊304亦可包括用於偵測在蓋件303上之一觸控輸入之存在及/或位置的感測元件,其包括舉例而言電容性感測元件、電阻性感測元件、及類似者。Referring to FIG. 3A, assembly 300 includes an upper stack 304, which may include one or more layers or components of a display, including a liquid crystal matrix, light emitting diodes (LEDs), light guides, filters, (eg, , polarizing filter), diffuser, electrode, shielding layer (eg, indium tin oxide layer), or the like. The upper stack 304 can be coupled to the cover 303, such as with a PSA, HSA, or the like. The upper stack 304 can also include sensing elements for detecting the presence and/or location of a touch input on the cover member 303, including, for example, capacitive sensing elements, resistive sensing elements, and the like.
總成300亦包括一下部堆疊308,可藉由一氣隙306使下部堆疊308與在下部堆疊308之至少一部分上方的上部堆疊304分開。使上部堆疊304與下部堆疊308分開的氣隙306可係約25微米至約100微米厚,然而其他尺寸係亦可行。氣隙306可有助於防止回應於在蓋件303上之一所施加力而使在下部堆疊308中之組件變形,其會引起在顯示器102上之非所欲的光學假影。舉例而言,下部堆疊308可包括光源、光導、漫射器、或其他光學組件,如果剛性耦合至上部堆疊304,則當時一力施加至蓋件303時,該等組件會偏轉。藉由以氣隙306使這些元件與上部堆疊304分開,可降低非所欲變形。The assembly 300 also includes a lower stack 308 that can be separated from the upper stack 304 above at least a portion of the lower stack 308 by an air gap 306. The air gap 306 separating the upper stack 304 from the lower stack 308 can be from about 25 microns to about 100 microns thick, although other sizes are possible. The air gap 306 can help prevent deformation of the assembly in the lower stack 308 in response to a force applied by one of the covers 303, which can cause undesirable optical artifacts on the display 102. For example, the lower stack 308 can include a light source, a light guide, a diffuser, or other optical component that, if rigidly coupled to the upper stack 304, can be deflected when a force is applied to the cover 303 at that time. By separating these elements from the upper stack 304 with an air gap 306, undesired deformation can be reduced.
下部堆疊308可包括一框架構件309,該框架構件支撐下部堆疊308之其他組件且耦合下部堆疊308至上部堆疊304。舉例而言,框架構件309可依相對於上部堆疊304及/或蓋件303的一相隔開組態來支撐下部堆疊308之組件(包括光源、光導、漫射器、感測元件、或類似者)。The lower stack 308 can include a frame member 309 that supports other components of the lower stack 308 and couples the lower stack 308 to the upper stack 304. For example, the frame member 309 can support components of the lower stack 308 (including light sources, light guides, diffusers, sensing elements, or the like) in a spaced configuration relative to the upper stack 304 and/or the cover 303. ).
框架構件309可耦合至上部堆疊304及/或蓋件303且可延伸至一電子裝置之一內部體積中。可藉由一結合構件311(其可係或包括一黏著劑或其他接合劑)將框架構件309耦合至上部堆疊304及/或蓋件303。框架構件309可由任何適合的材料所形成或包括任何適合的材料,諸如金屬、塑膠、或類似者。如本文所描述,總成300可包括用於感測在蓋件303上之一所施加力的感測元件。此類感測元件可依賴於與其他感測元件電磁性互動以判定該所施加力的能力。舉例而言,一電容性感測層可需要電容耦合至一電容性驅動層以偵測介於該感測層與該驅動層之間之一距離變化。據此,框架構件309可在框架構件309之一中心部分中界定一開口。該開口可降低或排除感測元件之間之一固體層的干擾、屏蔽、或其他負作用。如所展示,由介電材料(或不屏蔽或以其他方式干擾該感測層及該驅動層的任何其他材料)所形成的一加勁構件312設置在該開口中。在一些實施例中,可自框架構件309省略加勁構件312,且該開口可保持未被填充。Frame member 309 can be coupled to upper stack 304 and/or cover member 303 and can extend into an interior volume of an electronic device. The frame member 309 can be coupled to the upper stack 304 and/or the cover member 303 by a bonding member 311 (which can be or include an adhesive or other bonding agent). Frame member 309 can be formed from any suitable material or include any suitable material such as metal, plastic, or the like. As described herein, the assembly 300 can include sensing elements for sensing a force applied to one of the covers 303. Such sensing elements may rely on the ability to electromagnetically interact with other sensing elements to determine the applied force. For example, a capacitive sensing layer may need to be capacitively coupled to a capacitive driving layer to detect a change in distance between the sensing layer and the driving layer. Accordingly, the frame member 309 can define an opening in a central portion of the frame member 309. The opening may reduce or eliminate interference, shielding, or other negative effects of one of the solid layers between the sensing elements. As shown, a stiffening member 312 formed of a dielectric material (or any other material that does not shield or otherwise interfere with the sensing layer and the drive layer) is disposed in the opening. In some embodiments, the stiffening member 312 can be omitted from the frame member 309 and the opening can remain unfilled.
在其中框架構件309界定一開口以促進或改良感測元件之間之電氣、電容及/或電磁互動的情況中,該開口可實質上與一顯示器及/或顯示器102之觸敏區域重合。據此,感測元件可能夠提供力(或其他)感測功能性給實質上整個顯示器及/或顯示器102之觸敏區域。Where the frame member 309 defines an opening to facilitate or improve electrical, capacitive, and/or electromagnetic interaction between the sensing elements, the opening may substantially coincide with a touch sensitive area of a display and/or display 102. Accordingly, the sensing element can be capable of providing force (or other) sensing functionality to substantially the touch sensitive area of the entire display and/or display 102.
下部堆疊308可包括一顯示器之一或多個層或組件。舉例而言,下部堆疊308可包括一光源313包含一或多個LED、螢光燈(fluorescent light)、或類似者。光源313可發射光至一光學堆疊315中,該光學堆疊包括一或多個光學組件,包括(但不限於)反射器、漫射器、偏光器、光導(例如,光導膜),及透鏡(例如,菲涅耳透鏡)。在圖3A至圖3B中所展示之照明組態僅僅係例示性,及下部堆疊308可包括除圖3A至圖3B中所展示者外的照明組態。The lower stack 308 can include one or more layers or components of a display. For example, the lower stack 308 can include a light source 313 that includes one or more LEDs, fluorescent light, or the like. Light source 313 can emit light into an optical stack 315 that includes one or more optical components including, but not limited to, reflectors, diffusers, polarizers, light guides (eg, lightguide films), and lenses ( For example, Fresnel lens). The lighting configurations shown in Figures 3A-3B are merely exemplary, and the lower stack 308 may include lighting configurations other than those shown in Figures 3A-3B.
上部堆疊304及下部堆疊308在上文描述為包括顯示器元件。在其中總成300不提供顯示器功能性的應用中,諸如其中總成300係軌跡板206之部件或耦合至軌跡板206,上部堆疊304及下部堆疊308可包括不同於上文所描述者的組件及/或層,或可被省略或用其他組件取代。Upper stack 304 and lower stack 308 are described above as including display elements. In applications where the assembly 300 does not provide display functionality, such as components in which the assembly 300 is a trackpad 206 or coupled to the trackpad 206, the upper stack 304 and the lower stack 308 may include components other than those described above. And/or layers, or may be omitted or replaced with other components.
一第一間隔層(諸如一氣隙310)及一第二間隔層(諸如一可變形元件314)在下部堆疊308下方。氣隙310可係約0.5 mm至約1.0 mm厚,然而其他尺寸係亦可行。A first spacer layer (such as an air gap 310) and a second spacer layer (such as a deformable element 314) are below the lower stack 308. The air gap 310 can be from about 0.5 mm to about 1.0 mm thick, although other sizes are possible.
該第一間隔層及該第二間隔層經組態以回應於一所施加力而變化厚度。舉例而言,氣隙310之一厚度(例如,界定該氣隙的相對表面之間之距離)可隨著一力施加至蓋件303而縮減。相似地,可變形元件314之一厚度可隨著一力施加至蓋件303而縮減。The first spacer layer and the second spacer layer are configured to vary in thickness in response to an applied force. For example, one of the thicknesses of the air gap 310 (eg, the distance between opposing surfaces defining the air gap) may be reduced as a force is applied to the cover member 303. Similarly, the thickness of one of the deformable elements 314 can be reduced as a force is applied to the cover member 303.
可變形元件314可包括任何適合的材料,諸如聚矽氧、聚胺甲酸酯發泡體,橡膠、凝膠體、或類似者。另外,可變形元件314可具有任何適合的結構,諸如多個柔性或可變形突起部(如所展示),其可形成為柱體、樑、角錐體、含側壁之通道、圓錐體、波狀突起部、凸塊、或類似者。可變形元件314亦可或替代地包含開穴或閉穴,諸如一海綿或一發泡體。可變形元件314亦可具有一實質上均質、無孔組成物。舉又另一實例,可變形元件314可包括多個可變形材料離散片件,諸如點、墊、或類似者。The deformable element 314 can comprise any suitable material, such as polyfluorene oxide, polyurethane foam, rubber, gel, or the like. Additionally, the deformable element 314 can have any suitable structure, such as a plurality of flexible or deformable protrusions (as shown) that can be formed as cylinders, beams, pyramids, channels containing sidewalls, cones, undulations Projections, bumps, or the like. The deformable element 314 can also or alternatively comprise an open or closed cavity, such as a sponge or a foam. The deformable element 314 can also have a substantially homogeneous, non-porous composition. As yet another example, the deformable element 314 can comprise a plurality of discrete pieces of deformable material, such as dots, pads, or the like.
針對該第一間隔層及該第二間隔層之前述材料及組態僅僅係實例,然而,且該第一間隔層及該第二間隔層可由任何適合的材料或其組合所形成。舉例而言,可用一第一發泡體材料取代氣隙310,及可變形元件314可包括一第二發泡體材料,該第二發泡體材料具有之一密度、厚度、組成物、或彈簧係數不同於該第一發泡體材料。舉另一實例而言,該第一間隔層及該第二間隔層可實質上相同,且可包括相同材料或由相同材料所形成。The foregoing materials and configurations for the first spacer layer and the second spacer layer are merely examples, however, and the first spacer layer and the second spacer layer may be formed of any suitable material or a combination thereof. For example, a first foam material may be substituted for the air gap 310, and the deformable element 314 may include a second foam material having a density, a thickness, a composition, or The spring coefficient is different from the first foam material. In another example, the first spacer layer and the second spacer layer can be substantially identical and can comprise the same material or be formed from the same material.
可變形元件314可耦合至或相鄰於一基底結構或層316。基底結構316可係總成300專用的一基材或支撐層,或可係一電子裝置之另一組件,諸如一電池組、一殼體或外殼之一部分、一電路板、或任何其他組件。The deformable element 314 can be coupled to or adjacent to a base structure or layer 316. The base structure 316 can be a substrate or support layer dedicated to the assembly 300, or can be another component of an electronic device, such as a battery pack, a housing or a portion of a housing, a circuit board, or any other component.
圖3C至圖3E繪示總成300對在上部堆疊304上之一輸入力302的物理回應進展。如上文所提及,輸入力302可對應於一使用者用一手指、手寫筆、或其他物件接觸一電子裝置之一使用者輸入表面,諸如蓋件303。輸入力302可透過蓋件303而傳送至上部堆疊304之表面。3C-3E illustrate the physical response progress of the assembly 300 to one of the input forces 302 on the upper stack 304. As mentioned above, the input force 302 can correspond to a user touching a user input surface of an electronic device, such as a cover 303, with a finger, stylus, or other item. The input force 302 can be transmitted to the surface of the upper stack 304 through the cover member 303.
圖3C繪示在輸入力302施加至上部堆疊304之前總成300之部分(由在圖3A中之區301所表示)。圖3D繪示該力輸入已引起上部堆疊304偏轉或撓曲而足以使氣隙306完全塌陷後的總成300。具體而言,上部堆疊304已撓曲朝向下部堆疊308,使得在至少一位置中上部堆疊304與下部堆疊308接觸。上部堆疊304之勁度及氣隙306之大小可判定引起上部堆疊304與下部堆疊308接觸的該力量。在一些情況中,甚至來自使用者的一稍微觸控將係充足的(例如,使用者不視為係「按壓」在蓋件上的觸碰)。FIG. 3C illustrates a portion of assembly 300 (represented by region 301 in FIG. 3A) before input force 302 is applied to upper stack 304. FIG. 3D illustrates the assembly 300 after the force input has caused the upper stack 304 to deflect or flex enough to completely collapse the air gap 306. In particular, the upper stack 304 has been deflected toward the lower stack 308 such that the upper stack 304 is in contact with the lower stack 308 in at least one location. The stiffness of the upper stack 304 and the size of the air gap 306 can determine the force that causes the upper stack 304 to contact the lower stack 308. In some cases, even a slight touch from the user will be sufficient (eg, the user is not considered to be "pressing" the touch on the cover).
圖3E繪示該力輸入已引起下部堆疊308偏轉而足以使氣隙310完全塌陷、因此使下部堆疊308與可變形元件314接觸且使可變形元件314至少部分變形之後的總成300。3E illustrates the assembly 300 after the force input has caused the lower stack 308 to deflect enough to completely collapse the air gap 310, thus contacting the lower stack 308 with the deformable element 314 and at least partially deforming the deformable element 314.
如本文中所使用,用語「塌陷」可係指一層之一部分塌陷(例如,相對應於在任何位置處一材料或一氣隙之任何厚度減小)、或一層之一全塌陷(例如,相對應於在任何位點處界定一氣隙的相對表面彼此接觸,或到達一可變形材料之一最大變形)。As used herein, the term "collapse" may mean that one of the layers is partially collapsed (eg, corresponding to any thickness of a material or an air gap at any location), or one of the layers is fully collapsed (eg, corresponding) The opposing surfaces defining an air gap at any location contact each other or reach a maximum deformation of one of the deformable materials.
圖4係一實例力相對於偏轉曲線,其繪示在圖3C至圖3E中之總成300之一使用者輸入表面(例如,蓋件303)如何回應於該力輸入而偏轉。具體而言,隨著該力自零增加至一力臨限值(例如,相對應於點402),該偏轉沿一第一量變曲線406增加。在一些情況中,第一量變曲線406對應於總成300之偏轉直到總成300中之所有氣隙(例如,氣隙306及氣隙310)已完全塌陷。隨著該力增加超過力臨限值(例如,點402)且可變形元件314壓縮,該偏轉沿自點402延伸至點404之一第二量變曲線408增加。據此,該力臨限值對應於自僅該等氣隙塌陷轉變至該可變形元件變形的該力量。4 is an example force versus deflection curve showing how a user input surface (eg, cover member 303) of one of the assemblies 300 of FIGS. 3C-3E is deflected in response to the force input. In particular, as the force increases from zero to a force threshold (eg, corresponding to point 402), the deflection increases along a first amount curve 406. In some cases, the first amount of variation curve 406 corresponds to the deflection of the assembly 300 until all of the air gaps in the assembly 300 (eg, the air gap 306 and the air gap 310) have completely collapsed. As the force increases beyond the force threshold (eg, point 402) and the deformable element 314 compresses, the deflection increases along a second amount curve 408 that extends from point 402 to point 404. Accordingly, the force threshold corresponds to the force that has changed from the collapse of only the air gap to the deformation of the deformable element.
第一量變曲線406可係實質上線性,使得在第一量變曲線406中之任何點,力之一增量式增加產生蓋件303之變形的實質上相同增量式增加。相比而言,第二量變曲線408可係非線性,且可隨著該力增加而為平線(plateau)。舉例而言,與在第二量變曲線408結束處的力之相同增量式增加相比,在第二量變曲線408開始處的力之一增量式增加可導致蓋件303之較大變形量。然而,這些量變曲線僅僅係例示性,且本文所描述之力感測裝置可展現任何其他力相對於偏轉曲線或量變曲線。The first amount of variation curve 406 can be substantially linear such that at any point in the first amount of variation curve 406, an incremental increase in force produces a substantially identical incremental increase in deformation of the cover member 303. In contrast, the second amount of variation curve 408 can be non-linear and can be plateau as the force increases. For example, an incremental increase in one of the forces at the beginning of the second amount of variation curve 408 may result in a greater amount of deformation of the cover member 303 than the same incremental increase in force at the end of the second amount of variation curve 408. . However, these quantitative curves are merely illustrative, and the force sensing devices described herein can exhibit any other force versus deflection or quantitative curve.
本文所描述之系統及方法(包括下文所描述之力感測裝置500,700,900、及1100)促進偵測是否一力感測裝置根據第一量變曲線406操作,使得僅氣隙塌陷,或根據第二量變曲線408操作,使得一可變形元件變形。藉由偵測不同量變曲線,可提供準確力測量。The systems and methods described herein, including the force sensing devices 500, 700, 900, and 1100 described below, facilitate detecting whether a force sensing device operates according to a first amount of variation curve 406 such that only the air gap collapses, or Operating according to the second amount varying curve 408 causes a deformable element to deform. Accurate force measurements can be provided by detecting different volume curves.
雖然圖3A至圖4係關於裝置100之總成300,但是總成300之組件、結構、及操作原理亦可應用於其他裝置,諸如裝置200(或任何其他適合的裝置)之顯示器202或軌跡板206。在其中一顯示器不存在的情況中,可省略、取代、或重新配置總成300之一些組件,諸如軌跡板206。舉例而言,上部堆疊304及下部堆疊308可包括除顯示器元件外之組件,或被可省略或用間隔物或其他組件予以取代。Although FIGS. 3A through 4 relate to the assembly 300 of the device 100, the components, structures, and operating principles of the assembly 300 can also be applied to other devices, such as the display 202 or track of the device 200 (or any other suitable device). Board 206. In the event that one of the displays is not present, some components of the assembly 300, such as the trackpad 206, may be omitted, replaced, or reconfigured. For example, upper stack 304 and lower stack 308 may include components other than display elements, or may be omitted or replaced with spacers or other components.
圖5係可併入在一電子裝置(例如,裝置100、200)中的一實例力感測裝置500的部分剖面圖,描繪相似於在圖3A中之區301的一區。為了清楚,省略蓋件303及殼體104。5 is a partial cross-sectional view of an example force sensing device 500 that can be incorporated into an electronic device (eg, device 100, 200) depicting a region similar to region 301 in FIG. 3A. The cover member 303 and the housing 104 are omitted for clarity.
力感測裝置500包括一上部堆疊504,相似於上部堆疊304,上部堆疊504可包括一顯示器之一或多個層或組件,其包括一液晶矩陣,發光二極體(LED),光導、濾光器、(例如,偏光濾光器)、漫射器、電極、或類似者。上部堆疊504可經組態以回應於在力感測裝置500上之一所施加力而撓曲或能夠撓曲。The force sensing device 500 includes an upper stack 504, similar to the upper stack 304, which may include one or more layers or components of a display including a liquid crystal matrix, light emitting diodes (LEDs), light guides, filters An optical device, (eg, a polarizing filter), a diffuser, an electrode, or the like. The upper stack 504 can be configured to flex or flex in response to a force applied by one of the force sensing devices 500.
一第一感測元件505耦合至上部堆疊504(舉例而言,耦合至一蓋件303或耦合至經耦合至蓋件303的一組件,諸如一濾光器)且係在一電子裝置之一內部體積內。第一感測元件505可係一電容性感測元件,其經組態以與另一電容性感測元件電容耦合。舉例而言,第一感測元件505可係電容耦合至一感測層(例如,第二感測元件512,下文)的一驅動層,其促進使用互電容來偵測介於該感測層與該驅動層之間之一距離。舉另一實例而言,第一感測元件505可係一感測層,而非一驅動層。舉又另一實例而言,第一感測元件505可經組態以電容耦合至一接地層以促進使用自電容來偵測介於本身與該接地層之間之一距離。舉又另一實例而言,第一感測元件505可係電容耦合至一分開之感測層的一接地層。A first sensing element 505 is coupled to the upper stack 504 (for example, coupled to a cover 303 or to a component coupled to the cover 303, such as a filter) and is attached to one of the electronic devices Within the internal volume. The first sensing component 505 can be a capacitive sensing component that is configured to capacitively couple with another capacitive sensing component. For example, the first sensing component 505 can be capacitively coupled to a driving layer of a sensing layer (eg, the second sensing component 512, hereinafter) that facilitates the use of mutual capacitance to detect the sensing layer One distance from the drive layer. As another example, the first sensing element 505 can be a sensing layer rather than a driving layer. In yet another example, the first sensing element 505 can be configured to capacitively couple to a ground plane to facilitate the use of self-capacitance to detect a distance between itself and the ground plane. In yet another example, the first sensing element 505 can be capacitively coupled to a ground plane of a separate sensing layer.
在本描述之實例中,該等感測元件描述為用於電容性感測之元件。然而,替代電容性感測器或除電容性感測器外,可使用其他類型感測器(及感測器組件)。事實上,可使用可偵測組件之間之距離變化或絕對距離、或以其他方式偵測力的其他類型感測器或感測技術。舉例而言,可使用電感式感測器、光學感測器、音波或超音波感測器、或磁性感測器。另外,感測器之組件可整合在如本文所展示之力感測器中(例如,其中感測元件藉由一或多個層而彼此相隔開,包括氣隙、可變形層、其他組件、或類似者),或可依合適用於該類型感測器的任何其他方式來整合感測器之組件(例如,一光學感測器可包括一或多個光發射器,而取代一感測層)。In the examples of the description, the sensing elements are described as elements for capacitive sensing. However, other types of sensors (and sensor assemblies) can be used in place of or in addition to capacitive sensors. In fact, other types of sensors or sensing techniques can be used that can detect distance changes or absolute distances between components, or otherwise detect forces. For example, an inductive sensor, an optical sensor, a sonic or ultrasonic sensor, or a magnetic sensor can be used. Additionally, components of the sensor can be integrated into a force sensor as shown herein (eg, wherein the sensing elements are separated from one another by one or more layers, including air gaps, deformable layers, other components, Or similar, or the components of the sensor may be integrated in any other manner suitable for use with this type of sensor (eg, an optical sensor may include one or more light emitters instead of one sensing) Floor).
可用任何適合方式耦合第一感測元件505至上部堆疊504,諸如用一壓敏黏著劑(PSA)、熱敏黏著劑(HSA)、或類似者。第一感測元件505亦可經圖案化在上部堆疊504上,諸如用物理氣相沉積、電子束蒸鍍、濺鍍沉積、或任何其他適合的技術。第一感測元件505可由設置在一基材上的任何適合材料所形成或包括設置在一基材上的任何適合材料,諸如氧化銦錫(ITO)。The first sensing element 505 can be coupled to the upper stack 504 in any suitable manner, such as with a pressure sensitive adhesive (PSA), a thermal adhesive (HSA), or the like. The first sensing element 505 can also be patterned on the upper stack 504, such as by physical vapor deposition, electron beam evaporation, sputter deposition, or any other suitable technique. The first sensing element 505 can be formed of any suitable material disposed on a substrate or include any suitable material disposed on a substrate, such as indium tin oxide (ITO).
一下部堆疊508可設置在第一感測元件505下方且藉由一氣隙506而與第一感測元件505分開。如同氣隙306,氣隙506可係任何適合的厚度,諸如自約25微米至約100微米。A lower stack 508 can be disposed under the first sensing element 505 and separated from the first sensing element 505 by an air gap 506. Like air gap 306, air gap 506 can be any suitable thickness, such as from about 25 microns to about 100 microns.
下部堆疊508可包括任何適合的組件或層,諸如上文關於下部堆疊308所描述者(例如,LED、一光學堆疊、背光、反射器、或光導),且可耦合至上部堆疊504及/或殼體104,如關於圖3A之下部堆疊308所描述(例如,經由框架構件309)。在其中力感測裝置500不包括一顯示器或不提供顯示器功能性的實施例中,下部堆疊508(以及上部堆疊504)可包括不同組件或被省略。The lower stack 508 can include any suitable components or layers, such as those described above with respect to the lower stack 308 (eg, LEDs, an optical stack, backlight, reflector, or light guide), and can be coupled to the upper stack 504 and/or The housing 104 is as described with respect to the lower stack 308 of Figure 3A (e.g., via the frame member 309). In embodiments where the force sensing device 500 does not include a display or does not provide display functionality, the lower stack 508 (and the upper stack 504) may include different components or be omitted.
下部堆疊508可耦合至一框架構件及/或由一框架構件予以支撐,其可相似於在圖3A中之框架構件309。該框架構件可包括一加勁構件509,相似於在圖3A中之加勁構件312。加勁構件509可由一介電材料所形成或包括一介電材料以促進或改良感測元件之間之電氣、電容及/或電磁互動(例如,介於第一感測元件505與第二感測元件512之間之電氣、電容及/或電磁互動)。The lower stack 508 can be coupled to and/or supported by a frame member, which can be similar to the frame member 309 in Figure 3A. The frame member can include a stiffening member 509 similar to the stiffening member 312 in Figure 3A. The stiffening member 509 can be formed from a dielectric material or include a dielectric material to facilitate or improve electrical, capacitive, and/or electromagnetic interaction between the sensing elements (eg, between the first sensing element 505 and the second sensing) Electrical, capacitive, and/or electromagnetic interaction between elements 512).
該框架構件且具體而言加勁構件509可依相對於該電子裝置之該上部堆疊、一基底結構516、一可變形元件514、或其他組件之一相隔開組態來支撐下部堆疊508。圖5展示耦合至一可變形元件514之第二感測元件512。然而,在一些情況中,第二感測元件512可耦合至下部堆疊508。在此類情況中,第二感測元件512可耦合至該框架構件,諸如耦合至加勁構件509或下部堆疊508之一組件。The frame member, and in particular the stiffening member 509, can support the lower stack 508 in a spaced configuration relative to the upper stack of the electronic device, a base structure 516, a deformable element 514, or one of the other components. FIG. 5 shows a second sensing element 512 coupled to a deformable element 514. However, in some cases, the second sensing element 512 can be coupled to the lower stack 508. In such cases, the second sensing element 512 can be coupled to the frame member, such as to one of the stiffening member 509 or the lower stack 508.
一氣隙510使下部堆疊508與一第二感測元件512分開。氣隙510可係任何適合的厚度,諸如自約0.5 mm至1.0 mm。An air gap 510 separates the lower stack 508 from a second sensing element 512. Air gap 510 can be any suitable thickness, such as from about 0.5 mm to 1.0 mm.
第二感測元件512可係用於一電容性感測器之一感測層,且可電容耦合至第一感測元件505。第二感測元件512可包括一離散電容性感測區域陣列,其促進偵測在上部堆疊504上之一力輸入之一位置(及/或一量值)。第二感測元件512可由任何適合材料所形成或包括任何適合材料,諸如設置在一基材上的ITO跡線。第二感測元件512可耦合至可變形元件514、加勁構件509(或該框架構件之其他組件或下部堆疊508)、或在該電子裝置之內部體積中的任何其他組件或結構,使得第二感測元件512係在第一感測元件505與一第三感測元件515之間(下文所論述)。The second sensing component 512 can be used in one of the sensing layers of a capacitive sensor and can be capacitively coupled to the first sensing component 505. The second sensing component 512 can include an array of discrete capacitive sensing regions that facilitate detecting a location (and/or a magnitude) of one of the force inputs on the upper stack 504. The second sensing element 512 can be formed of any suitable material or include any suitable material, such as ITO traces disposed on a substrate. The second sensing element 512 can be coupled to the deformable element 514, the stiffening member 509 (or other component or lower stack 508 of the frame member), or any other component or structure in the internal volume of the electronic device such that the second Sensing element 512 is between first sensing element 505 and a third sensing element 515 (discussed below).
一選用之抗黏附層511可設置在界定氣隙510之一側的一表面上以防止該氣隙之相對側彼此接觸時暫時或永久黏一起。因此,當自一使用者輸入表面移除一所施加力時,力感測裝置500之組件可返回至或接近其原始定向。抗黏附層511可由任何適合材料所形成或包括任何適合材料,且可具有任何適合的形狀或結構。舉例而言,抗黏附層511可包含柱體、突起部、通道、或准許氣流通過其的其他結構,以降低或防止當氣隙510完全塌陷時於氣隙510之表面之間形成經密封區。在無抗黏附層511的情況中,此類經密封區可導致作用可相似於「吸杯」的負壓力區,其防止氣隙510之側分離。抗黏附層511亦可防止由其他機制或力(諸如凡得瓦(van der Waals)力、靜電力、或類似者)引起黏附。An optional anti-adhesion layer 511 can be disposed on a surface defining one side of the air gap 510 to prevent temporary or permanent adhesion of the opposite sides of the air gap when they are in contact with each other. Thus, when an applied force is removed from a user input surface, the components of force sensing device 500 can be returned to or near their original orientation. The anti-adhesion layer 511 can be formed of any suitable material or include any suitable material, and can have any suitable shape or structure. For example, the anti-adhesion layer 511 can include pillars, protrusions, channels, or other structures that permit airflow therethrough to reduce or prevent the formation of a sealed region between the surfaces of the air gap 510 when the air gap 510 is completely collapsed. . In the absence of the anti-adhesion layer 511, such a sealed region may result in a negative pressure zone that acts similarly to the "suction cup", which prevents side separation of the air gap 510. The anti-adhesion layer 511 also prevents adhesion by other mechanisms or forces such as van der Waals forces, electrostatic forces, or the like.
力感測裝置500包括介於第二感測元件512與一第三感測元件515之間之一可變形元件514。相似於可變形元件314,可變形元件514可包括任何適合的材料(諸如聚矽氧、聚胺甲酸酯發泡體,橡膠、凝膠體、或類似者)且可具有任何合適的結構,諸如多個柔性柱體(如所展示)、樑、角錐體、圓錐體、波狀突起部、開穴或閉穴、或類似者。可變形元件514可相對於一所施加力而偏轉非線性,如上文所描述。The force sensing device 500 includes a deformable element 514 between the second sensing element 512 and a third sensing element 515. Similar to the deformable element 314, the deformable element 514 can comprise any suitable material (such as polyfluorene oxide, polyurethane foam, rubber, gel, or the like) and can have any suitable structure, Such as a plurality of flexible cylinders (as shown), beams, pyramids, cones, undulations, open or closed pockets, or the like. The deformable element 514 can deflect non-linearly with respect to an applied force, as described above.
在圖5中展示可變形元件514在氣隙510下方且在第二感測元件512與第三感測元件515之間。然而,可調換氣隙510及可變形元件514之相對位置。舉例而言,可變形元件514可耦合至下部堆疊508。The deformable element 514 is shown in FIG. 5 below the air gap 510 and between the second sensing element 512 and the third sensing element 515. However, the relative position of the air gap 510 and the deformable element 514 can be adjusted. For example, the deformable element 514 can be coupled to the lower stack 508.
設置於可變形元件514與一基底結構516之間之第三感測元件515可係用於一電容性感測器之一驅動層,且可電容耦合至第二感測元件512。舉例而言,第二感測元件512可係一感測層,及第三感測元件515可係一驅動層,因此形成跨越可變形元件514之一電容性感測器。The third sensing element 515 disposed between the deformable element 514 and a base structure 516 can be used for one of the capacitive sensing layers and can be capacitively coupled to the second sensing element 512. For example, the second sensing element 512 can be a sensing layer, and the third sensing element 515 can be a driving layer, thus forming a capacitive sensor across the deformable element 514.
基底結構516可係力感測裝置之一框架、托架、或支撐結構。在一些情況中,基底結構516係一電子裝置之在一使用者輸入表面下方之一組件,諸如一電路板、一電池組、一殼體或外殼之一內壁、或類似者。與在基底結構516上方的組件相比,基底結構516可係堅硬的或以其他方式更抗回應於一所施加力的偏轉。因此,一旦氣隙510已完全塌陷,額外力可主要使可變形元件514變形,而非使基底結構516偏轉。The base structure 516 can be a frame, bracket, or support structure of one of the force sensing devices. In some cases, the base structure 516 is an assembly of an electronic device below a user input surface, such as a circuit board, a battery pack, a housing or an inner wall of the housing, or the like. The base structure 516 can be stiff or otherwise more resistant to deflection in response to an applied force than components above the base structure 516. Thus, once the air gap 510 has completely collapsed, the additional force can primarily deform the deformable element 514 rather than deflecting the base structure 516.
第一感測元件505、第二感測元件512、及第三感測元件515可形成兩個電容性感測器。舉例而言,如上文所描述,第一感測元件505及第三感測元件515可各用作為一相異驅動層,及第二感測元件512可係電容耦合至第一感測元件505及第三感測元件515兩者的一感測層(且感測至第一感測元件505及第三感測元件515兩者的距離變化)。The first sensing element 505, the second sensing element 512, and the third sensing element 515 can form two capacitive sensors. For example, as described above, the first sensing element 505 and the third sensing element 515 can each function as a distinct driving layer, and the second sensing element 512 can be capacitively coupled to the first sensing element 505 And a sensing layer of both the third sensing element 515 (and sensing a change in distance to both the first sensing element 505 and the third sensing element 515).
其中第二感測元件512係一共用感測層,其可包括用於偵測至第一感測元件505之距離的一第一組感測器及用於偵測至第三感測元件515之距離的一第二組感測器。第二感測元件512亦可或替代地使用相同感測器以偵測至第一感測元件505及第三感測元件515兩者之距離。在後者情況中,可用不同電信號驅動第一感測元件505及第三感測元件515,因此允許第二感測元件512(及/或耦合至第二感測元件512之感測電路系統)區別由氣隙510之一大小之變化所引起的電容變化及由可變形元件514之一大小之變化所引起的電容變化。在另一實施例(圖中未展示)中,可用兩個離散感測元件來取代第二感測元件512,各感測元件用作為用於第一感測元件505及第三感測元件515之一不同者的一感測層。The second sensing component 512 is a shared sensing layer, which may include a first group of sensors for detecting the distance to the first sensing component 505 and for detecting to the third sensing component 515. A second set of sensors at a distance. The second sensing element 512 can also or alternatively use the same sensor to detect the distance to both the first sensing element 505 and the third sensing element 515. In the latter case, the first sensing element 505 and the third sensing element 515 can be driven with different electrical signals, thus allowing the second sensing element 512 (and/or the sensing circuitry coupled to the second sensing element 512) The change in capacitance caused by the change in the size of one of the air gaps 510 and the change in capacitance caused by the change in the size of one of the deformable elements 514 are distinguished. In another embodiment (not shown), the second sensing element 512 can be replaced with two discrete sensing elements, each sensing element being used as the first sensing element 505 and the third sensing element 515. A sensing layer of one of the different ones.
圖6係一實例力相對於偏轉曲線,其繪示在圖5中之力感測裝置500如何回應於(直接或間接)施加至上部堆疊504之一力輸入而偏轉。該力回應相似於在圖4中所展示者,其中一第一量變曲線係自點401至點402(相對應於氣隙506及510之塌陷)及一第二量變曲線係自點402至點404(相對應於可變形元件514之變形)。6 is an example force versus deflection curve showing how the force sensing device 500 of FIG. 5 is deflected in response to (directly or indirectly) applying a force input to the upper stack 504. The force response is similar to that shown in Figure 4, wherein a first quantity curve is from point 401 to point 402 (corresponding to the collapse of air gaps 506 and 510) and a second quantity curve is from point 402 to point. 404 (corresponding to the deformation of the deformable element 514).
如上文所提及,力感測裝置500具有兩個電容性感測器:一第一電容性感測器518,其由第一感測元件505及第二感測元件512所形成;及一第二電容性感測器519,其由第二感測元件512及第三感測元件515所形成。第一電容性感測器518跨越氣隙506及510,及第二電容性感測器519跨越可變形元件514。因此,第一電容性感測器518定位在力感測裝置500內以偵測沿在圖6中之線602的上部堆疊504之變形,及第二電容性感測器519定位在力感測裝置500內以偵測沿在圖6中之線604的上部堆疊504之變形。藉由用一個感測器偵測該等氣隙之變形及用一不同感測器該可變形元件之變形,感測電路系統可根據不同力偏轉相關性來處理信號。舉例而言,可根據介於點401與點402之間之實質上線性量變曲線使來自第一電容性感測器518之偏轉與一所施加力量互相關,及可根據介於點402與點404之間之非線性量變曲線使來自第二電容性感測器519之偏轉與一所施加力量互相關。當然,在圖6中所展示之線性量變曲線及非線性量變曲線僅僅係實例,及一力感測裝置之變形可沿循或展現不同量變曲線。As mentioned above, the force sensing device 500 has two capacitive sensors: a first capacitive sensor 518 formed by the first sensing element 505 and the second sensing element 512; and a second A capacitive sensor 519 is formed by the second sensing element 512 and the third sensing element 515. The first capacitive sensor 518 spans the air gaps 506 and 510, and the second capacitive sensor 519 spans the deformable element 514. Accordingly, the first capacitive sensor 518 is positioned within the force sensing device 500 to detect deformation of the upper stack 504 along the line 602 in FIG. 6, and the second capacitive sensor 519 is positioned at the force sensing device 500. Internally, the deformation of the upper stack 504 along line 604 in FIG. 6 is detected. By detecting the deformation of the air gaps with a sensor and deforming the deformable elements with a different sensor, the sensing circuitry can process the signals according to different force deflection correlations. For example, the deflection from the first capacitive sensor 518 can be cross-correlated with an applied force based on a substantially linear magnitude curve between point 401 and point 402, and can be based on point 402 and point 404. The non-linear magnitude curve between the two causes the deflection from the second capacitive sensor 519 to be cross-correlated with an applied force. Of course, the linear quantity change curve and the non-linear quantity change curve shown in FIG. 6 are merely examples, and the deformation of a force sensing device may follow or exhibit different quantitative curves.
感測電路系統可用任何適合方式應用力偏轉相關性。舉例而言,可依數學函數實施力偏轉相關性,其輸出針對一特定判定偏轉量的一特定力值(其可繼而已基於一所測量或所偵測電容值、或任何其他電氣測量或值所判定)。舉另一實例而言,可使用查詢表實施力偏轉相關性,其中使特定偏轉值與特定力值互相關。其他技術亦可行,且這些實例不限制可用以自所測量或所偵測電性質(例如,電容、電阻、電流、信號等)產生力值的數學或程式設計技術。The sensing circuitry can apply the force deflection correlation in any suitable manner. For example, the force deflection correlation can be implemented in accordance with a mathematical function that outputs a particular force value for a particular determined deflection amount (which can then be based on a measured or detected capacitance value, or any other electrical measurement or value). Determined). As another example, a force deflection correlation can be implemented using a lookup table in which a particular deflection value is correlated with a particular force value. Other techniques are also possible, and these examples do not limit the mathematical or programming techniques that can be used to generate force values from measured or detected electrical properties (eg, capacitance, resistance, current, signal, etc.).
圖7係圖5之力感測裝置500之感測元件505、512、及515的展開圖,圖中繪示在力感測裝置500之一實施方案中的感測元件之實例組態,其使用電容性感測以偵測感測元件之間之距離變化。圖7省略力感測裝置500及於其中組態力感測裝置之電子裝置的組件。舉例而言,圖7省略展示在第二感測元件512與第三感測元件515之間之可變形元件514。另外,為了清楚,圖7省略感測元件505、512、515之一些細節,諸如用以耦合感測元件(或其部分)至其他電氣電路系統的傳導跡線或引線。7 is a developed view of sensing elements 505, 512, and 515 of force sensing device 500 of FIG. 5, showing an example configuration of sensing elements in one embodiment of force sensing device 500, Capacitive sensing is used to detect changes in the distance between the sensing elements. FIG. 7 omits the components of the force sensing device 500 and the electronic device in which the force sensing device is configured. For example, FIG. 7 omits the deformable element 514 shown between the second sensing element 512 and the third sensing element 515. Additionally, for clarity, Figure 7 omits some details of the sensing elements 505, 512, 515, such as conductive traces or leads to couple the sensing elements (or portions thereof) to other electrical circuitry.
如上文所提及,在力感測裝置500中,第一感測元件505及第三感測元件515可係用於一電容性感測方案之驅動層,及第二感測元件512可係一感測層。在操作中,可用一電信號(諸如一實質上正弦信號、一方形或邊緣信號(例如,一實質上瞬間自一第一電壓轉變至一第二電壓)、或任何其他適合的信號)激發第一感測元件505及第三感測元件515(亦稱為驅動層505、515)。信號之性質(諸如頻率、電壓,或振幅),可經選擇以避免或最小化干擾一裝置之其他電子電路,諸如顯示器電路、處理器、天線、及類似者。因為第二感測元件512(亦稱為一感測層)電容耦合至一驅動層,所以可在該感測層中誘發(或以其他方式由該感測層偵測)一對應之電信號。對於一給定電信號施加至該驅動層,在該感測層中之該誘發電信號可取決於介於該驅動層與該感測層之間之距離而不同。因此,力感測裝置500(或相關聯之感測電路系統)可藉由分析在該感測層中所誘發之信號來判定介於該驅動層與該感測層之間之距離。As mentioned above, in the force sensing device 500, the first sensing element 505 and the third sensing element 515 can be used in a driving layer of a capacitive sensing solution, and the second sensing element 512 can be connected to the first sensing element 512. Sensing layer. In operation, an electrical signal (such as a substantially sinusoidal signal, a square or edge signal (eg, a substantially instantaneous transition from a first voltage to a second voltage), or any other suitable signal) may be used to excite the first A sensing element 505 and a third sensing element 515 (also referred to as driving layers 505, 515). The nature of the signal, such as frequency, voltage, or amplitude, can be selected to avoid or minimize other electronic circuitry that interferes with a device, such as display circuitry, processors, antennas, and the like. Because the second sensing component 512 (also referred to as a sensing layer) is capacitively coupled to a driving layer, a corresponding electrical signal can be induced (or otherwise detected by the sensing layer) in the sensing layer. . For a given electrical signal to be applied to the drive layer, the induced electrical signal in the sense layer may differ depending on the distance between the drive layer and the sense layer. Thus, force sensing device 500 (or associated sensing circuitry) can determine the distance between the drive layer and the sensing layer by analyzing the signals induced in the sensing layer.
第一驅動層505可包括耦合或以其他方式施加至一基材之一傳導材料。舉例而言,第一驅動層505可包括一層ITO、奈米線(例如,金屬奈米線,其包括銀或金奈米線)、或任何其他適合的材料。如圖5中所展示,驅動層505設置在顯示器102之光路徑中(例如,該驅動層505在下部堆疊508上方,下部堆疊508產生用以照明顯示器102之光)。因此,傳導材料可實質上透明。甚至當使用一實質上透明材料時,如果該材料依一規則圖案(諸如依一網格或依行)予以配置,則該材料在顯示器102上可見。據此,第一驅動層505之傳導材料可實質上均勻分佈(例如,作為一層、片材、塗層、或其他連續元件)在第一驅動層505上,而非依一規則圖案予以配置。在一些情況中,該傳導材料可係一連續層,其覆蓋或延伸偏及第一驅動層505之一基材之一整個表面(或實質上一整個表面,諸如該基材之表面面積之約80%或更多)。該傳導材料層可經組態使得該層之邊框或邊緣皆未定位在力感測裝置500併入於其中的一顯示器之邊界內。The first drive layer 505 can include a conductive material that is coupled or otherwise applied to one of the substrates. For example, the first drive layer 505 can include a layer of ITO, nanowires (eg, a metal nanowire that includes silver or gold nanowires), or any other suitable material. As shown in FIG. 5, the drive layer 505 is disposed in the light path of the display 102 (eg, the drive layer 505 is above the lower stack 508 and the lower stack 508 is generated to illuminate the display 102). Thus, the conductive material can be substantially transparent. Even when a substantially transparent material is used, the material is visible on display 102 if it is configured in a regular pattern, such as by a grid or row. Accordingly, the conductive material of the first drive layer 505 can be substantially evenly distributed (eg, as a layer, sheet, coating, or other continuous element) on the first drive layer 505 rather than in a regular pattern. In some cases, the conductive material can be a continuous layer that covers or extends over the entire surface of one of the substrates of the first drive layer 505 (or substantially an entire surface, such as the surface area of the substrate) 80% or more). The layer of conductive material can be configured such that the border or edge of the layer is not positioned within the boundaries of a display into which the force sensing device 500 is incorporated.
第一驅動層505亦可包括一連接元件706,該連接元件電耦合至該傳導材料且促進該傳導材料至其他電子組件或電路系統之耦合。連接元件706可由任何材料所形成或包括任何材料,諸如銀、銅、鎳釩、或任何其他適合的材料。連接元件706可沿第一驅動層505之一外部分形成一連續框架(如所展示),或連接元件706可由不連續或相異分段所形成。在一些情況中,連接元件706不形成一框架,而是替代地可係舉例而言沿第一驅動層505之一側的一條狀物。其他組態係亦可行。本文關於圖26至圖29及圖32至圖40論述連接元件706,諸如形成在一驅動層505之一邊緣上之傳導條(或任何其他傳導基材、層、塗層等)。The first drive layer 505 can also include a connection element 706 that is electrically coupled to the conductive material and that facilitates coupling of the conductive material to other electronic components or circuitry. Connecting element 706 can be formed of any material or include any material such as silver, copper, nickel vanadium, or any other suitable material. The connecting element 706 can form a continuous frame (as shown) along an outer portion of the first drive layer 505, or the connecting element 706 can be formed by discrete or distinct segments. In some cases, the connecting element 706 does not form a frame, but instead may be, for example, a strip along one side of the first drive layer 505. Other configuration systems are also available. Connecting elements 706 are discussed herein with respect to Figures 26-29 and 32-40, such as conductive strips (or any other conductive substrate, layer, coating, etc.) formed on one edge of a drive layer 505.
感測層512可包括由一傳導材料所形成(或包括一傳導材料)的感測區域702且依一規則圖案(諸如一網格)予以配置。感測區域702可由任何適合材料所形成或包括任何適合材料,諸如ITO、金屬奈米線、或類似者。The sensing layer 512 can include a sensing region 702 formed of a conductive material (or including a conductive material) and configured in a regular pattern, such as a grid. Sensing region 702 can be formed from any suitable material or include any suitable material, such as ITO, metal nanowires, or the like.
感測區域702之各者可用作為一離散區或似像素區域,其可用以判定介於第一驅動層505與該特定感測區域之間之一距離。藉由分析所有感測區域702,力感測裝置500可偵測在蓋件303上之一所施加力之一量。另外,與如果使用一單一、均勻感測層相比,如所展示使感測層512像素化可允許力感測裝置500更精確偵測力。舉例而言,如果使用一單一感測層,可能難以或無法告知介於在一邊緣蓋件303附近所施加之一大力與在一中心蓋件303附近所施加之一小力之間之差異。藉由使用一像素化感測層512,力感測裝置500可考量蓋件303之不同區域的勁度差異。使用一像素化感測層512亦可允許力感測裝置500判定一所施加力之位置、偵測多點觸摸式輸入(例如,相對應於施加至蓋件303之多個手指或手寫筆)、或類似者。Each of the sensing regions 702 can be used as a discrete region or pixel-like region that can be used to determine a distance between the first driving layer 505 and the particular sensing region. By analyzing all of the sensing regions 702, the force sensing device 500 can detect an amount of force applied to one of the covers 303. Additionally, pixelation of the sensing layer 512 as shown may allow the force sensing device 500 to more accurately detect force than if a single, uniform sensing layer were used. For example, if a single sensing layer is used, it may be difficult or impossible to tell the difference between one of the forces exerted near an edge cover 303 and a small force applied near a center cover 303. By using a pixelated sensing layer 512, the force sensing device 500 can account for differences in stiffness of different regions of the cover member 303. The use of a pixelated sensing layer 512 may also allow the force sensing device 500 to determine the position of an applied force, detecting a multi-touch input (eg, corresponding to multiple fingers or stylus applied to the cover 303) Or similar.
第二驅動層515可包括複數個驅動區域704。如同第一驅動層505及感測層512之感測區域702,驅動區域704可由任何適合的傳導材料所形成或包括任何適合的傳導材料,諸如ITO、金屬奈米線、或類似者。The second drive layer 515 can include a plurality of drive regions 704. Like the first drive layer 505 and the sense region 702 of the sense layer 512, the drive region 704 can be formed of any suitable conductive material or include any suitable conductive material, such as ITO, metal nanowires, or the like.
驅動區域704可依任何適合圖案或定向予以配置,且可具有任何適合的大小。舉例而言,驅動區域704可係傳導材料之複數個實質上矩形區,且可實質上對齊在感測層512中之一行感測區域702,如關於圖8所展示及所描述。因此,驅動區域704可各自與感測層512之感測區域702之多者重疊。Drive region 704 can be configured in any suitable pattern or orientation and can have any suitable size. For example, the drive region 704 can be a plurality of substantially rectangular regions of conductive material and can be substantially aligned with one of the sense regions 702 in the sense layer 512, as shown and described with respect to FIG. Accordingly, the drive regions 704 can each overlap with the sensing region 702 of the sensing layer 512.
如同第一驅動層505,可用一電信號(例如,一實質上正弦或邊緣信號)激發驅動區域704,其在感測層512之感測區域702中誘發一對應之信號(或可以其他方式由感測層512偵測)。因為使用一單一感測層512以偵測介於感測層512與兩個不同驅動層505、515之間之距離,所以力感測裝置500必須區別來自第一驅動層505與第二驅動層515之信號。據此,來自第一驅動層505與第二驅動層515之信號可具有不同頻率、振幅、相位、或其他性質,使得在感測層512中可彼此區別地誘發該等信號。更具體而言,施加至第一驅動層505之信號可具有一第一頻率、及施加至第二驅動層515之信號可具有一第二頻率,該第二頻率不同於該第一頻率。替代地或此外,可在不同時間(例如,用一邊緣信號)激發第一驅動層505與第二驅動層515,使得在感測層512中誘發之信號可歸結於一驅動層或其他驅動層。舉例而言,感測電路系統可交替激發第一驅動層505與第二驅動層515。可使用這些(或其他)技術,使得可獨立偵測介於第一驅動層505與感測層512之間之距離及介於第二驅動層515與感測層512之間之距離。As with the first drive layer 505, the drive region 704 can be excited by an electrical signal (eg, a substantially sinusoidal or edge signal) that induces a corresponding signal in the sense region 702 of the sense layer 512 (or can otherwise be The sensing layer 512 detects). Because a single sensing layer 512 is used to detect the distance between the sensing layer 512 and the two different driving layers 505, 515, the force sensing device 500 must distinguish between the first driving layer 505 and the second driving layer. Signal of 515. Accordingly, the signals from the first drive layer 505 and the second drive layer 515 can have different frequencies, amplitudes, phases, or other properties such that the signals can be induced differently from one another in the sense layer 512. More specifically, the signal applied to the first drive layer 505 can have a first frequency, and the signal applied to the second drive layer 515 can have a second frequency that is different from the first frequency. Alternatively or in addition, the first drive layer 505 and the second drive layer 515 can be excited at different times (eg, with an edge signal) such that signals induced in the sense layer 512 can be attributed to a drive layer or other drive layer . For example, the sensing circuitry can alternately excite the first drive layer 505 and the second drive layer 515. These (or other) techniques can be used such that the distance between the first drive layer 505 and the sense layer 512 and the distance between the second drive layer 515 and the sense layer 512 can be independently detected.
驅動區域704可彼此電隔離,或可彼此電耦合。在其中驅動區域704彼此電耦合的實施例中,可藉由一單一信號同時激發所有驅動區域704。Drive regions 704 can be electrically isolated from one another or can be electrically coupled to each other. In embodiments in which the drive regions 704 are electrically coupled to one another, all of the drive regions 704 can be simultaneously activated by a single signal.
替代地,在驅動區域704被電隔離的情況中,可彼此獨立地驅動或激發該等驅動區域。此可實用於當非一次分析所有感測區域702時。更具體而言,與力感測裝置500相關聯之電路系統可循環地輪詢感測區域702之子組。因此,驅動區域704可對應於感測區域702之輪詢群組,且當正在輪詢感測區域702之對應群組時,可提供一信號至驅動區域704。當使用一循環輪詢技術時,此可有助於降低力感測裝置500的功率消耗,此係因為當不輪詢對應之感測區域702時,不會供能量給所有驅動區域704。Alternatively, where the drive regions 704 are electrically isolated, the drive regions can be driven or fired independently of each other. This can be used when not all of the sensing regions 702 are analyzed at one time. More specifically, the circuitry associated with force sensing device 500 can cyclically poll a subset of sensing regions 702. Accordingly, drive region 704 can correspond to a polling group of sensing regions 702, and a signal can be provided to driving region 704 when a corresponding group of sensing regions 702 is being polled. This may help reduce the power consumption of the force sensing device 500 when a cyclic polling technique is used, since no energy is supplied to all of the driving regions 704 when the corresponding sensing region 702 is not polled.
驅動層505、515及感測層512可係相異層或組件,如圖7中所展示,或其等可併入至其他層或組件中。舉例而言,第一驅動層505可塗佈在一偏光濾光器上、施加至一偏光濾光器、或以其他方式與一偏光濾光器合併的一傳導材料,該偏光濾光器係堆疊304(圖3A)之部件。事實上,感測層及驅動層之任何者之傳導材料可併入在感測層及驅動層併入於其中之電子裝置之另一組件或層上。替代地,可分開形成感測層及驅動層,諸如藉由施加一傳導材料於基材上,諸如一可撓曲電路材料(例如,聚醯亞胺、聚苯二甲酸乙二酯(polyethylene terephthalate)、聚醚醚酮、或透明傳導聚酯),及接著,併入該基材至電子裝置中。The drive layers 505, 515 and the sense layer 512 can be separate layers or components, as shown in Figure 7, or the like can be incorporated into other layers or components. For example, the first driving layer 505 can be coated on a polarizing filter, applied to a polarizing filter, or otherwise combined with a polarizing filter. The polarizing filter is The components of stack 304 (Fig. 3A). In fact, the conductive material of any of the sensing layer and the driving layer can be incorporated on another component or layer of the electronic device in which the sensing layer and the driving layer are incorporated. Alternatively, the sensing layer and the driving layer may be formed separately, such as by applying a conductive material to the substrate, such as a flexible circuit material (eg, polyethylenimine, polyethylene terephthalate) ), polyetheretherketone, or transparent conductive polyester), and then, incorporating the substrate into an electronic device.
圖8係沿圖7中之線C-C檢視的第一驅動層505與第二驅動層515及感測層512的部分剖面圖,圖中繪示力感測裝置500之感測區域702及驅動區域704之相對大小及位置。第一驅動層505包括一基材802、一傳導層804、及連接元件706。基材802可係任何適合的材料或組件,諸如一可撓曲電路材料、一偏光濾光器、或一電子裝置或顯示器堆疊之任何其他材料或組件。傳導層804可係ITO、一層金屬或傳導奈米線、或任何其他適合的材料,如上文所描述。傳導層804可係與多個感測區域702重疊的一連續片材(例如,具有一單一片傳導材料,而非一分段或像素化組態)。連接元件706可係一傳導材料諸如銅、銀、鎳釩、或類似者。8 is a partial cross-sectional view of the first driving layer 505 and the second driving layer 515 and the sensing layer 512 taken along line CC of FIG. 7, illustrating the sensing region 702 and the driving region of the force sensing device 500. The relative size and location of 704. The first driving layer 505 includes a substrate 802, a conductive layer 804, and a connecting member 706. Substrate 802 can be any suitable material or component, such as a flexible circuit material, a polarizing filter, or any other material or component of an electronic device or display stack. Conductive layer 804 can be ITO, a layer of metal or conductive nanowire, or any other suitable material, as described above. Conductive layer 804 can be a continuous sheet of overlap with multiple sensing regions 702 (eg, having a single piece of conductive material rather than a segmented or pixelated configuration). Connection element 706 can be a conductive material such as copper, silver, nickel vanadium, or the like.
感測層512可包括一基材806(其可係任何適合的材料或組件,諸如可撓曲電路材料)及感測區域702。如上文所描述,感測區域702可由任何適合材料所形成或包括任何適合材料,包括ITO、傳導奈米線、或類似者。Sensing layer 512 can include a substrate 806 (which can be any suitable material or component, such as a flexible circuit material) and a sensing region 702. As described above, the sensing region 702 can be formed from any suitable material or include any suitable material, including ITO, conductive nanowires, or the like.
第二驅動層515可包括一基材808(其可係任何適合的材料或組件,諸如可撓曲電路材料),及驅動區域704。感測層512之驅動區域704及感測區域702可經定大小及相對於彼此定位,使得感測區域702屏蔽驅動區域704而免於干擾源,諸如第一驅動層505。舉例而言,驅動區域704之寬度可實質上相同於或窄於感測區域702,且可垂直地對齊感測區域702(其中位置用詞係相對於在圖8中之層之定向)。依此方式,感測區域702之傳導材料可實質上屏蔽驅動區域704而免於在感測層512上方之第一驅動層505或其他潛在干擾源。驅動區域704之一些部分可未被一感測區域702直接覆蓋。然而,如果第二驅動層515係一單一連續傳導材料片材,則實質上矩形驅動區域704之未屏蔽區顯著小於諸如在第一驅動層505上將存在者。The second drive layer 515 can include a substrate 808 (which can be any suitable material or component, such as a flexible circuit material), and a drive region 704. The drive region 704 and the sense region 702 of the sense layer 512 can be sized and positioned relative to each other such that the sense region 702 shields the drive region 704 from interference sources, such as the first drive layer 505. For example, the width of the drive region 704 can be substantially the same or narrower than the sensing region 702, and the sensing region 702 can be vertically aligned (where the position is worded relative to the orientation of the layer in FIG. 8). In this manner, the conductive material of the sensing region 702 can substantially shield the drive region 704 from the first drive layer 505 or other potential sources of interference above the sensing layer 512. Portions of the drive region 704 may not be directly covered by a sense region 702. However, if the second drive layer 515 is a single continuous sheet of conductive material, the unshielded regions of the substantially rectangular drive region 704 are significantly smaller than, for example, would be present on the first drive layer 505.
圖8展示感測區域702及驅動區域704延伸偏及其各別基材之表面。然而,此僅僅係一實例組態。事實上,感測區域702及驅動區域704可實質上與其各別基材齊平或凹陷於其各別基材中。Figure 8 shows the sensing region 702 and the driving region 704 extending away from the surface of their respective substrates. However, this is only an example configuration. In fact, the sensing region 702 and the driving region 704 can be substantially flush with or recessed in their respective substrates.
圖9展示含有感測區域702之一實例分佈之感測層512。圖9亦展示可電耦合感測區域702至其他電子組件或電路的傳導路徑902。傳導路徑902可係任何適合的材料且可用任何適合方式予以形成。舉例而言,該等傳導路徑可由使用一微影技術所施加之ITO所形成。亦設想其他材料及技術。在其中獨立輪詢感測區域702以提供一特定顯示器位置的獨特力值(如圖9中所展示)的實施例中,各感測區域702可連接至一獨特傳導路徑902。在其中輪詢或作為一單一單元監測多個感測區域702的實施例中,彼等感測區域702可共用或連接至一共同傳導路徑902(圖中未展示)。在圖9中所展示之感測區域702及傳導路徑902之圖案僅僅係一合適組態之一實例,且亦設想其他組態,其包括感測區域702及傳導路徑902之數目及配置。FIG. 9 shows a sensing layer 512 containing an example distribution of one of the sensing regions 702. FIG. 9 also shows a conductive path 902 that can electrically couple the sensing region 702 to other electronic components or circuits. Conductive path 902 can be any suitable material and can be formed in any suitable manner. For example, the conductive paths can be formed by ITO applied using a lithography technique. Other materials and technologies are also envisaged. In embodiments in which the sensing region 702 is independently polled to provide a unique force value for a particular display location (as shown in FIG. 9), each sensing region 702 can be coupled to a unique conductive path 902. In embodiments in which multiple sensing regions 702 are polled or monitored as a single unit, their sensing regions 702 can be shared or connected to a common conductive path 902 (not shown). The pattern of sensing regions 702 and conductive paths 902 shown in FIG. 9 is merely one example of a suitable configuration, and other configurations are contemplated, including the number and configuration of sensing regions 702 and conductive paths 902.
圖10A展示第一驅動層505,圖中繪示經由連接元件706(例如,繞第一驅動層505之一傳導條或邊框)至第一驅動層505之傳導層804之一電連接之一實例組態。具體而言,圖10A繪示經定位接近連接元件706的一對連接器分段1002。各連接器分段1002可由一電導體所形成或包括一電導體,該電導體電連接至一信號產生器或其他電子電路系統。舉例而言,連接器分段1002可由含有設置於其上之金屬或傳導材料(例如,銅、金、ITO)的一可撓曲電路材料所形成。在一些情況中,連接器分段1002可實質上完全由傳導材料所形成,諸如當連接器分段1002係一條銅、銀、或任何其他金屬或傳導材料時。10A shows a first drive layer 505 showing an example of an electrical connection to one of the conductive layers 804 of the first drive layer 505 via a connection element 706 (eg, a strip or bezel around one of the first drive layers 505). configuration. In particular, FIG. 10A illustrates a pair of connector segments 1002 positioned proximate to the connecting element 706. Each connector segment 1002 can be formed from an electrical conductor or include an electrical conductor that is electrically coupled to a signal generator or other electronic circuitry. For example, connector segment 1002 can be formed from a flexible circuit material that contains a metal or conductive material (eg, copper, gold, ITO) disposed thereon. In some cases, connector segment 1002 can be formed substantially entirely of conductive material, such as when connector segment 1002 is a piece of copper, silver, or any other metal or conductive material.
一傳導結合材料1004可沉積於連接器分段1002及連接元件706之一部分上方,使得一電連接形成於連接器分段1002與連接元件706之間。該傳導材料可係任何適合的材料,諸如銀、金、銅、傳導黏著劑、或類似者。A conductive bonding material 1004 can be deposited over the connector segment 1002 and a portion of the connecting component 706 such that an electrical connection is formed between the connector segment 1002 and the connecting component 706. The conductive material can be any suitable material such as silver, gold, copper, conductive adhesive, or the like.
如上文所提及,連接元件706電連接至傳導層804。據此,可自連接器分段1002施加驅動信號至傳導層804。在一些情況中,可使用更多或更少連接器分段1002以電耦合電路系統至傳導層804,或連接器分段1002可定位在繞驅動層505之不同位置處,諸如沿驅動層505之相對邊緣。As mentioned above, the connection element 706 is electrically connected to the conductive layer 804. Accordingly, a drive signal can be applied from the connector segment 1002 to the conductive layer 804. In some cases, more or fewer connector segments 1002 can be used to electrically couple the circuitry to the conductive layer 804, or the connector segments 1002 can be positioned at different locations around the drive layer 505, such as along the drive layer 505. The opposite edge.
圖10B展示第一驅動層505,圖中繪示至第一驅動層505之傳導層804之一電連接之另一實例組態。如所展示,第一驅動層505不包括連接元件706。在此實例中,連接器分段1006經由一傳導黏著劑1008而連接至傳導層804,而非經由連接元件706而連接至傳導層804(如圖10A中所展示)。如同連接器分段1002(圖10A),連接器分段1006可由一電導體所形成或包括一電導體,該電導體電連接至一信號產生器或其他電子電路系統。連接器分段1006可經由傳導黏著劑1008而電且實體上耦合至傳導層804,傳導黏著劑1008可設置於連接器分段1006與傳導層804之重疊部分之間。圖10B繪示其中兩個連接器分段1006耦合至第一驅動層505之相對側的一實例實施例。亦設想其他組態,其包括連接器分段1006之不同數目、大小、形狀、及耦合位置。舉例而言,在一些情況中,使用僅一個連接器分段1006。在其他情況中,四個連接器分段1006經配置成繞第一驅動層505(例如,其中一個連接器分段1006在第一驅動層505之各側上)。FIG. 10B shows a first driving layer 505 showing another example configuration of electrical connection to one of the conductive layers 804 of the first driving layer 505. As shown, the first drive layer 505 does not include the connection element 706. In this example, connector segment 1006 is coupled to conductive layer 804 via a conductive adhesive 1008 rather than to conductive layer 804 via connection element 706 (as shown in FIG. 10A). As with connector segment 1002 (Fig. 10A), connector segment 1006 can be formed from an electrical conductor or include an electrical conductor that is electrically coupled to a signal generator or other electronic circuitry. Connector segment 1006 can be electrically and physically coupled to conductive layer 804 via conductive adhesive 1008, and conductive adhesive 1008 can be disposed between the overlapping portions of connector segment 1006 and conductive layer 804. FIG. 10B illustrates an example embodiment in which two connector segments 1006 are coupled to opposite sides of the first drive layer 505. Other configurations are also contemplated that include different numbers, sizes, shapes, and coupling locations of connector segments 1006. For example, in some cases, only one connector segment 1006 is used. In other cases, the four connector segments 1006 are configured to wrap around the first drive layer 505 (eg, one of the connector segments 1006 is on each side of the first drive layer 505).
圖11展示含有驅動區域704之一實例分佈之第二驅動層515。圖11亦展示可電耦合驅動區域704至其他電子組件或電路的傳導路徑1102。傳導路徑1102可係任何適合的材料且可用任何適合方式予以形成。舉例而言,該等傳導路徑可由使用一微影技術所施加之ITO所形成。亦設想其他材料及技術。在其中獨立驅動或激發驅動區域704的實施例中,如上文關於圖8所論述,各驅動區域704可連接至一獨特傳導路徑1102。在其中一起驅動或激發多個驅動區域704的實施例中(例如,一信號同時施加至多個驅動區域704),彼等驅動區域704可共用或連接至一共同傳導路徑(圖中未展示)。在圖11中所展示之驅動區域704及傳導路徑1102之圖案僅僅係一合適組態之一實例,且亦設想其他組態,其包括驅動區域704及傳導路徑1102之數目及配置。FIG. 11 shows a second drive layer 515 containing an example distribution of one of the drive regions 704. Figure 11 also shows a conductive path 1102 that can electrically couple the drive region 704 to other electronic components or circuits. Conductive path 1102 can be any suitable material and can be formed in any suitable manner. For example, the conductive paths can be formed by ITO applied using a lithography technique. Other materials and technologies are also envisaged. In embodiments in which the drive region 704 is independently driven or fired, as discussed above with respect to FIG. 8, each drive region 704 can be coupled to a unique conductive path 1102. In embodiments in which multiple drive regions 704 are driven or excited together (eg, a signal is simultaneously applied to multiple drive regions 704), their drive regions 704 may share or be connected to a common conductive path (not shown). The pattern of drive region 704 and conductive path 1102 shown in FIG. 11 is merely one example of a suitable configuration, and other configurations are contemplated, including the number and configuration of drive region 704 and conductive path 1102.
圖12係可併入在一電子裝置(例如,裝置100、200)中的一實例力感測裝置1200的部分剖面圖,描繪相似於在圖3A中之區301的一區。為了清楚,省略蓋件303及殼體104。雖然力感測裝置1200相似於力感測裝置500,但是力感測裝置1200具有在電子裝置內之不同數目及配置之感測元件,如本文所描述。12 is a partial cross-sectional view of an example force sensing device 1200 that can be incorporated into an electronic device (eg, device 100, 200) depicting a region similar to region 301 in FIG. 3A. The cover member 303 and the housing 104 are omitted for clarity. While the force sensing device 1200 is similar to the force sensing device 500, the force sensing device 1200 has different numbers and configurations of sensing elements within the electronic device, as described herein.
力感測裝置1200包括一上部堆疊1204,相似於上部堆疊304,上部堆疊1204可包括一顯示器之一或多個層或組件,其包括一液晶矩陣,發光二極體(LED),光導、濾光器、(例如,偏光濾光器)、漫射器、電極、或類似者。上部堆疊1204可經組態以回應於在力感測裝置1200上之一所施加力而撓曲或能夠撓曲。The force sensing device 1200 includes an upper stack 1204, similar to the upper stack 304. The upper stack 1204 can include one or more layers or components of a display including a liquid crystal matrix, light emitting diodes (LEDs), light guides, filters An optical device, (eg, a polarizing filter), a diffuser, an electrode, or the like. The upper stack 1204 can be configured to flex or flex in response to a force applied by one of the force sensing devices 1200.
一下部堆疊1208可設置在上部堆疊1204下方且藉由一氣隙1206而與上部堆疊1204分開。下部堆疊1208可包括一框架構件1207(相似於框架構件309)、一光學堆疊1213(相似於上文所描述之光學堆疊315)、及任何其他適合的組件,諸如一光源。如關於總成300所描述,氣隙1206可係任何適合的厚度,諸如25微米至100微米。在其中力感測裝置1200不包括一顯示器或不提供顯示器功能性的實施例中,下部堆疊1208(以及上部堆疊1204)可包括不同組件或被省略。A lower stack 1208 can be disposed below the upper stack 1204 and separated from the upper stack 1204 by an air gap 1206. The lower stack 1208 can include a frame member 1207 (similar to the frame member 309), an optical stack 1213 (similar to the optical stack 315 described above), and any other suitable components, such as a light source. As described with respect to assembly 300, air gap 1206 can be any suitable thickness, such as from 25 microns to 100 microns. In embodiments where the force sensing device 1200 does not include a display or does not provide display functionality, the lower stack 1208 (and the upper stack 1204) may include different components or be omitted.
一第一感測元件1209耦合至下部堆疊1208。第一感測元件1209可係一電容性感測元件,其經組態以與另一電容性感測元件電容耦合。舉例而言,第一感測元件1209可係電容耦合至一感測層(例如,第二感測元件1215,下文描述)的一驅動層,其促進使用互電容來偵測介於該感測層與該驅動層之間之一距離。舉另一實例而言,第一感測元件1209可係一感測層,而非一驅動層。舉又另一實例,第一感測元件1209可經組態以電容耦合至一接地層且促進偵測使用自電容來偵測介於本身與該接地層之間之一距離。舉又另一實例,第一感測元件1209可係電容耦合至一感測層的一接地層。A first sensing element 1209 is coupled to the lower stack 1208. The first sensing element 1209 can be a capacitive sensing element that is configured to capacitively couple with another capacitive sensing element. For example, the first sensing element 1209 can be capacitively coupled to a driving layer of a sensing layer (eg, the second sensing element 1215, described below) that facilitates the use of mutual capacitance to detect the sensing One distance between the layer and the drive layer. As another example, the first sensing element 1209 can be a sensing layer rather than a driving layer. As yet another example, the first sensing element 1209 can be configured to capacitively couple to a ground plane and facilitate detection using a self-capacitance to detect a distance between itself and the ground plane. In yet another example, the first sensing element 1209 can be capacitively coupled to a ground plane of a sensing layer.
第一感測元件1209可由任何適合材料所形成或包括任何適合材料(諸如設置在一可撓曲基材上的ITO跡線),且可用任何適合方式(諸如用一PSA或HSA)耦合至下部堆疊1208,或直接圖案化至下部堆疊1208上。因為第一感測元件1209係在下部堆疊1208下方,所以下部堆疊1208之框架構件1207可由一傳導材料(諸如一金屬)所形成。更具體而言,因為框架構件1207不係在第一感測元件1209與一第二感測元件1215之間(下文所論述),所以框架構件1207可不屏蔽或以其他方式負面干擾介於第一感測元件1209與第二感測元件1215之間之電容性耦合。據此,更多材料可合適使用在框架構件1207中,且框架構件1207可界定一連續層或面板,而非具有在其中之一開口以避免非所欲的屏蔽或干擾。The first sensing element 1209 can be formed of any suitable material or include any suitable material, such as ITO traces disposed on a flexible substrate, and can be coupled to the lower portion in any suitable manner, such as with a PSA or HSA. Stack 1208, or directly patterned onto lower stack 1208. Because the first sensing element 1209 is below the lower stack 1208, the frame member 1207 of the lower stack 1208 can be formed from a conductive material, such as a metal. More specifically, because the frame member 1207 is not tied between the first sensing element 1209 and a second sensing element 1215 (discussed below), the frame member 1207 may be unshielded or otherwise negatively interfered with the first Capacitive coupling between sensing element 1209 and second sensing element 1215. Accordingly, more material can be suitably used in the frame member 1207, and the frame member 1207 can define a continuous layer or panel instead of having one of the openings to avoid undesired shielding or interference.
一氣隙1210及一可變形元件1214可設置於第一感測元件1209與一第二感測元件1215之間。氣隙1210及可變形元件1214對應於氣隙510及可變形元件514,且可具有相似組成物、結構、尺寸、及功能。An air gap 1210 and a deformable element 1214 can be disposed between the first sensing element 1209 and a second sensing element 1215. Air gap 1210 and deformable element 1214 correspond to air gap 510 and deformable element 514 and may have similar compositions, structures, dimensions, and functions.
第二感測元件1215可電容耦合至第一感測元件1209,且這些組件一起可形成跨越氣隙1210及可變形元件1214的一電容性感測器1218,以偵測這些層之變形。取決於電容性感測器1218之操作原理及/或第一感測元件1209之組態,第二感測元件1215可係一感測層、一驅動層、或一接地層。The second sensing component 1215 can be capacitively coupled to the first sensing component 1209, and the components together can form a capacitive sensor 1218 across the air gap 1210 and the deformable component 1214 to detect distortion of the layers. Depending on the operating principle of the capacitive sensor 1218 and/or the configuration of the first sensing element 1209, the second sensing element 1215 can be a sensing layer, a driving layer, or a ground plane.
第二感測元件1215可耦合至一基底結構1216,該基底結構可係一框架、一托架、一電路板、一電池組、一殼體或外殼之一內壁、或類似者,如上文關於圖5之基底結構516所描述。The second sensing element 1215 can be coupled to a base structure 1216 that can be a frame, a bracket, a circuit board, a battery pack, an inner wall of a housing or housing, or the like, as above This is described with respect to the base structure 516 of FIG.
圖13係一實例力相對於偏轉曲線,其繪示在圖12中之力感測裝置1200如何回應於(直接或間接)施加至上部堆疊1204之一力輸入而偏轉。該力回應相似於在圖4中所展示者,其中一第一量變曲線自點401延伸至點402(相對應於氣隙1206及1210之塌陷)及一第二量變曲線自點402延伸至點404(相對應於可變形元件1214之變形)。13 is an example force versus deflection curve illustrating how the force sensing device 1200 of FIG. 12 is deflected in response to (directly or indirectly) applying a force input to the upper stack 1204. The force response is similar to that shown in Figure 4, wherein a first quantity curve extends from point 401 to point 402 (corresponding to the collapse of air gaps 1206 and 1210) and a second quantity curve extends from point 402 to point 404 (corresponding to the deformation of the deformable element 1214).
如上文所提及,力感測裝置1200具有所由第一感測元件1209及第二感測元件1215形成之一個電容性感測器1218。第一感測元件1209及第二感測元件1215跨越氣隙1210及可變形元件1214,但是不跨越氣隙1206。因此,電容性感測器1218不偵測引起氣隙1206塌陷的上部堆疊1204之偏轉(相對應於在圖13中之線1302),但是偵測引起氣隙1210塌陷及可變形元件1214變形的偏轉(相對應於在圖13中之線1304)。據此,氣隙1206之塌陷與氣隙1210之塌陷解耦,及使用力感測裝置1200之電容性感測器1218所偵測之一力對應於使氣隙1210塌陷所需之力。As mentioned above, the force sensing device 1200 has a capacitive sensor 1218 formed by a first sensing element 1209 and a second sensing element 1215. The first sensing element 1209 and the second sensing element 1215 span the air gap 1210 and the deformable element 1214, but do not span the air gap 1206. Therefore, the capacitive sensor 1218 does not detect the deflection of the upper stack 1204 that causes the air gap 1206 to collapse (corresponding to line 1302 in FIG. 13), but detects the deflection that causes the air gap 1210 to collapse and the deformable element 1214 to deform. (corresponding to line 1304 in Figure 13). Accordingly, the collapse of the air gap 1206 is decoupled from the collapse of the air gap 1210, and one of the forces detected by the capacitive sensor 1218 using the force sensing device 1200 corresponds to the force required to collapse the air gap 1210.
因為電容性感測器1218跨越兩者氣隙1210及可變形元件1214,所以耦合至第一感測元件1209及第二感測元件1215的感測電路系統可經組態以依演算法形式判定何時氣隙1210已完全塌陷。舉例而言,該感測電路系統可監測當施加一力時的變形之一變化率(例如,力相對於偏轉曲線的之一斜度)。如果該斜度滿足一第一條件(例如,該斜度恆定或係低於一臨限值之值),則該感測電路系統可判定僅氣隙1210正在塌陷或已塌陷,且可應用一第一力偏轉相關性。如果該斜度滿足一第二條件(例如,該斜度增加或高於該臨限值),則該感測電路系統可判定氣隙1210已完全塌陷且可變形元件1214將要變形或已至少部分變形。在後者情況中,該感測電路系統可應用一第二力偏轉相關性以判定所施加力之一值。Because the capacitive sensor 1218 spans the air gap 1210 and the deformable element 1214, the sensing circuitry coupled to the first sensing element 1209 and the second sensing element 1215 can be configured to determine when to algorithmize The air gap 1210 has completely collapsed. For example, the sensing circuitry can monitor a rate of change of deformation (eg, a slope of the force relative to the deflection curve) when a force is applied. If the slope satisfies a first condition (eg, the slope is constant or is below a threshold value), the sensing circuitry can determine that only the air gap 1210 is collapsing or collapsed, and one can be applied The first force deflection correlation. If the slope satisfies a second condition (eg, the slope increases or is above the threshold), the sensing circuitry can determine that the air gap 1210 has collapsed completely and the deformable element 1214 is about to deform or has been at least partially Deformation. In the latter case, the sensing circuitry can apply a second force deflection correlation to determine a value of the applied force.
圖14係可併入在一電子裝置(例如,裝置100、200)中的一實例力感測裝置1400的部分剖面圖,描繪相似於在圖3A中之區301的一區。在此實例中,力感測裝置1400相同於力感測裝置1200,惟第一感測元件1209耦合至上部堆疊1204使得由第一感測元件1209及第二感測元件1215所形成之電容性感測器1402跨越氣隙1206及氣隙1210兩者除外。據此,如在圖15中之力相對於偏轉曲線中所繪示,電容性感測器1402偵測上部堆疊1204自點401至點404(相對應於線1502)之偏轉。另外,如本文所描述,感測電路系統可經組態以依演算法形式判定何時氣隙1210及選用地氣隙1206已完全塌陷以應用一適合的力偏轉相關性。14 is a partial cross-sectional view of an example force sensing device 1400 that can be incorporated into an electronic device (eg, device 100, 200) depicting a region similar to region 301 in FIG. 3A. In this example, the force sensing device 1400 is the same as the force sensing device 1200, but the first sensing element 1209 is coupled to the upper stack 1204 such that the capacitance formed by the first sensing element 1209 and the second sensing element 1215 is sexy. The detector 1402 is excluded from both the air gap 1206 and the air gap 1210. Accordingly, capacitive force detector 1402 detects deflection of upper stack 1204 from point 401 to point 404 (corresponding to line 1502) as depicted in FIG. 15 relative to the deflection curve. Additionally, as described herein, the sensing circuitry can be configured to determine, in the form of an algorithm, when the air gap 1210 and optionally the air gap 1206 have completely collapsed to apply a suitable force deflection correlation.
在圖12中,雖然框架構件1207非在第一感測元件1209與第二感測元件1215之間,但是在圖14中之框架構件1207係在第一感測元件1209與第二感測元件1215之間。據此,框架構件1207可由一介電材料所形成或可具有一介電材料定位於其中之一開口,使得框架構件1207不屏蔽或以其他方式干擾感測元件1209、1215。In FIG. 12, although the frame member 1207 is not between the first sensing element 1209 and the second sensing element 1215, the frame member 1207 in FIG. 14 is attached to the first sensing element 1209 and the second sensing element. Between 1215. Accordingly, the frame member 1207 can be formed from a dielectric material or can have a dielectric material positioned in one of the openings such that the frame member 1207 does not shield or otherwise interfere with the sensing elements 1209, 1215.
圖16係可併入在一電子裝置(例如,裝置100、200)中的一實例力感測裝置1600的部分剖面圖,描繪相似於在圖3A中之區301的一區。在此實例中,力感測裝置1600包括一上部堆疊1604(相對應於上部堆疊1204)、一第一感測元件1605(相對應於第一感測元件1209)、一氣隙1606(相對應於氣隙1206)、一下部堆疊1608(相對應於下部堆疊1208)、一可變形元件1610、一氣隙1615、一第二感測元件1614、及一基底結構1620(相對應於基底結構1216)。下部堆疊1608可包括一光學堆疊1617及一框架構件1607,框架構件1607支撐光學堆疊1617且耦合下部堆疊1608至上部堆疊1604。因為框架構件1607係在第一感測元件1605與第二感測元件1614之間(相似於在力感測裝置500中之組態,圖5),所以框架構件1607可由一介電材料所形成或包括一介電材料,諸如設置在框架構件1607中之一開口中之一介電材料。16 is a partial cross-sectional view of an example force sensing device 1600 that can be incorporated into an electronic device (eg, device 100, 200) depicting a region similar to region 301 in FIG. 3A. In this example, the force sensing device 1600 includes an upper stack 1604 (corresponding to the upper stack 1204), a first sensing element 1605 (corresponding to the first sensing element 1209), and an air gap 1606 (corresponding to Air gap 1206), lower stack 1608 (corresponding to lower stack 1208), a deformable element 1610, an air gap 1615, a second sensing element 1614, and a base structure 1620 (corresponding to base structure 1216). The lower stack 1608 can include an optical stack 1617 and a frame member 1607 that supports the optical stack 1617 and couples the lower stack 1608 to the upper stack 1604. Because the frame member 1607 is between the first sensing element 1605 and the second sensing element 1614 (similar to the configuration in the force sensing device 500, Figure 5), the frame member 1607 can be formed from a dielectric material. Or a dielectric material, such as one of the dielectric members disposed in one of the openings in the frame member 1607.
第一感測元件1605及第二感測元件1614形成跨越氣隙1606及氣隙1615兩者的一電容性感測器1619。因此,如同在力感測裝置1400中,電容性感測器1619偵測對應於氣隙1606、1615兩者之塌陷以及可變形元件1610的變形。據此,如在圖17中之力相對於偏轉曲線中所繪示,電容性感測器1619偵測上部堆疊1604自點401至點404(相對應於線1702)之偏轉。The first sensing element 1605 and the second sensing element 1614 form a capacitive sensor 1619 that spans both the air gap 1606 and the air gap 1615. Thus, as in force sensing device 1400, capacitive sensor 1619 detects collapse corresponding to both air gaps 1606, 1615 and deformation of deformable element 1610. Accordingly, capacitive force detector 1619 detects the deflection of upper stack 1604 from point 401 to point 404 (corresponding to line 1702) as illustrated in force in FIG. 17 relative to the deflection curve.
力感測裝置1600亦包括經組態以偵測介於該上部堆疊與該下部堆疊之間之接觸的一接觸式感測器。如圖16中所展示,該接觸式感測器與可變形元件1610及第二感測元件1614整合。舉例而言,可變形元件1610可包括自可變形元件1610之一基底部分延伸的突起部1611。突起部1611可包括一感測元件1612,其經組態以由一接觸式感測區域(例如,一接觸式感測區域1616,本文所論述)感測或以其他方式偵測何時氣隙1615已完全塌陷且可變形元件1610接觸第二感測元件1614。如圖16中所展示,感測元件1612設置在突起部1611之自由端部處。The force sensing device 1600 also includes a touch sensor configured to detect contact between the upper stack and the lower stack. As shown in FIG. 16, the touch sensor is integrated with the deformable element 1610 and the second sensing element 1614. For example, the deformable element 1610 can include a protrusion 1611 that extends from a base portion of the deformable element 1610. The protrusion 1611 can include a sensing element 1612 that is configured to sense or otherwise detect when the air gap 1615 is detected by a contact sensing area (eg, a contact sensing area 1616, discussed herein). The fully deformed component and the deformable element 1610 contact the second sensing element 1614. As shown in FIG. 16, sensing element 1612 is disposed at the free end of protrusion 1611.
感測元件1612可由任何適合材料所形成且可具有任何適合的大小及形狀。可基於該接觸式感測器之操作原理來選擇感測元件1612之這些性質、以及任何其他性質。舉例而言,如果一接觸式感測區域1616係一電容性感測器,則感測元件1612可係一傳導材料,及/或一介電材料。一合適的介電材料可具有大於約3.9之一介電常數(或相對介電率)(例如,一高k介電材料)。其中接觸式感測區域1616係一連續性感測器,感測元件1612可係一傳導材料,諸如碳,金屬、或類似者。Sensing element 1612 can be formed from any suitable material and can have any suitable size and shape. These properties of the sensing element 1612, as well as any other properties, can be selected based on the operating principles of the touch sensor. For example, if a contact sensing region 1616 is a capacitive sensor, the sensing component 1612 can be a conductive material, and/or a dielectric material. A suitable dielectric material can have a dielectric constant (or relative dielectric constant) greater than about 3.9 (eg, a high-k dielectric material). The contact sensing area 1616 is a continuous sensor, and the sensing element 1612 can be a conductive material such as carbon, metal, or the like.
可用任何適合方式併入感測元件1612於可變形元件1610中。舉例而言,感測元件1612可與可變形元件1610共模製。在另一實例中,感測元件1612可沉積在可變形元件1610上。舉例而言,一或多層金屬(或任何其他適合的材料)可沉積於突起部1611之自由端部上。在又另一實例中,可變形元件1610可由本身經組態以藉由一對應之接觸式感測區域1616感測的一材料所形成,且因此可不使用離散感測元件1612。舉例而言,該材料可係聚矽氧或含內嵌在其中之傳導性粒子(諸如碳)的其他彈性體。亦設想用於整合材料與可變形元件1610的其他材料及技術。The sensing element 1612 can be incorporated into the deformable element 1610 in any suitable manner. For example, the sensing element 1612 can be co-molded with the deformable element 1610. In another example, sensing element 1612 can be deposited on deformable element 1610. For example, one or more layers of metal (or any other suitable material) may be deposited on the free ends of the protrusions 1611. In yet another example, the deformable element 1610 can be formed from a material that is itself configured to be sensed by a corresponding contact sensing region 1616, and thus the discrete sensing element 1612 can be eliminated. For example, the material can be polyoxygenated or other elastomers containing conductive particles (such as carbon) embedded therein. Other materials and techniques for integrating the material with the deformable element 1610 are also contemplated.
接觸式感測器1600之力感測裝置亦包括接觸式感測區域1616,其經組態以偵測感測元件1612以判定何時氣隙1615已完全塌陷及可變形元件1610已開始被壓縮。接觸式感測區域1616可經組態以用任何適合方式偵測感測元件1612。舉例而言,接觸式感測區域1616可包括電容性感測組件,該等電容性感測組件經組態以偵測由感測元件1612至接觸式感測區域1616之近接度所引起之一電容變化。舉另一實例而言,接觸式感測區域1616可包括電開關,該等電開關經組態以當一傳導感測元件1612接觸該等電開關時偵測一閉合電路。The force sensing device of the touch sensor 1600 also includes a contact sensing region 1616 that is configured to detect the sensing element 1612 to determine when the air gap 1615 has completely collapsed and the deformable element 1610 has begun to be compressed. The contact sensing area 1616 can be configured to detect the sensing element 1612 in any suitable manner. For example, the contact sensing region 1616 can include a capacitive sensing component configured to detect a change in capacitance caused by the proximity of the sensing component 1612 to the contact sensing region 1616. . As another example, the contact sensing region 1616 can include an electrical switch configured to detect a closed circuit when a conductive sensing component 1612 contacts the electrical switch.
接觸式感測區域1616可與第二感測元件1614整合。舉例而言,用於接觸式感測的接觸式感測區域1616及用於電容性力感測器1619之感測區域可經圖案化於相同基材上或以其他方式併入於相同基材中。舉另一實例而言,接觸式感測區域1616可設置在第二感測元件1614之頂部上。舉例而言,包含電接觸件、電容性感測組件、或類似者的接觸式感測區域1616可置放於第二感測元件1614之頂部上且選用地黏附至第二感測元件1614。Contact sensing region 1616 can be integrated with second sensing element 1614. For example, the contact sensing region 1616 for contact sensing and the sensing region for the capacitive force sensor 1619 can be patterned on the same substrate or otherwise incorporated into the same substrate in. As another example, the contact sensing region 1616 can be disposed on top of the second sensing element 1614. For example, a contact sensing region 1616 including an electrical contact, a capacitive sensing component, or the like can be placed on top of the second sensing component 1614 and selectively adhered to the second sensing component 1614.
相似於在圖14中之力感測裝置1400,力感測裝置1600形成跨越氣隙1615及可變形元件1610兩者的一電容性感測器1619,且因此電容性感測器1619展現自點401延伸至點404(相對應於線1702)的一力回應於曲線(在圖17中所展示者)。然而,當時力感測裝置1600依第一力量變曲線(例如,自點401至點402)或第二力量變曲線(例如,自點402至點404)操作時,電容性感測器1619可不提供一離散指示。接觸式感測器1600之力感測裝置提供此指示,允許感測電路系統應用一適合的力偏轉相關性。舉例而言,在氣隙1615完全塌陷之前且在該接觸式感測器指示一接觸事件(相對應於在圖17中之點1704)之前,該感測電路系統可應用相對應於氣隙1615之塌陷(自點401至點402)的一第一力偏轉相關性。在氣隙1615已完全塌陷之後,如由來自該接觸式感測器之一信號所偵測及指示(在點1704),該感測電路系統可應用相對應於可變形元件1610之壓縮(例如,自點402至點404)的一第二力偏轉相關性。Similar to the force sensing device 1400 of FIG. 14, the force sensing device 1600 forms a capacitive sensor 1619 that spans both the air gap 1615 and the deformable element 1610, and thus the capacitive sensor 1619 exhibits an extension from point 401. A force to point 404 (corresponding to line 1702) is in response to the curve (shown in Figure 17). However, when the force sensing device 1600 is operated according to a first force curve (eg, from point 401 to point 402) or a second force curve (eg, from point 402 to point 404), the capacitive sensor 1619 may not provide A discrete indication. The force sensing device of the touch sensor 1600 provides this indication, allowing the sensing circuitry to apply a suitable force deflection correlation. For example, the sensing circuitry can be applied to the air gap 1615 before the air gap 1615 is completely collapsed and before the contact sensor indicates a contact event (corresponding to point 1704 in FIG. 17). A first force deflection correlation of collapse (from point 401 to point 402). After the air gap 1615 has completely collapsed, as detected and indicated by a signal from one of the contact sensors (at point 1704), the sensing circuitry can apply compression corresponding to the deformable element 1610 (eg, A second force deflection correlation from point 402 to point 404).
雖然圖16繪示其中第一感測元件1605設置在上部堆疊1604上的一實施例,且因此在介於第一感測元件1605與第二感測元件1614之間之空間中包括氣隙1606,但是其他組態係可行。舉例而言,第一感測元件1605可設置在下部堆疊1608上而在氣隙1606之相對側上,或可設置於下部堆疊1608與可變形元件1610之間。無論第一感測元件1605及第二感測元件1614位於力感測裝置1600中的何處,一氣隙、一可變形元件、及一接觸式感測器可設置於第一感測元件1605與第二感測元件1614之間。另外,圖16繪示可變形元件1610經定位在下部堆疊1608上,其中突起部1611延伸朝向基底結構1620,且繪示接觸式感測區域1616經定位在基底結構1620上。在其他實施例中,這些組件之相對定位可交換,使得可變形元件1610定位在基底結構1620上,其中突起部1611延伸朝向下部堆疊1608,且感測區域1616定位在下部堆疊1608上之。應瞭解,此修改可產生至少關於可變形元件1610及接觸式感測區域1616之操作的一同等結果。Although FIG. 16 illustrates an embodiment in which the first sensing element 1605 is disposed on the upper stack 1604, and thus includes an air gap 1606 in a space between the first sensing element 1605 and the second sensing element 1614. , but other configurations are possible. For example, the first sensing element 1605 can be disposed on the lower stack 1608 on the opposite side of the air gap 1606, or can be disposed between the lower stack 1608 and the deformable element 1610. No matter where the first sensing component 1605 and the second sensing component 1614 are located in the force sensing device 1600, an air gap, a deformable component, and a contact sensor may be disposed on the first sensing component 1605 and Between the second sensing elements 1614. In addition, FIG. 16 illustrates that the deformable element 1610 is positioned on the lower stack 1608 with the protrusion 1611 extending toward the base structure 1620 and the contact sensing region 1616 being illustrated on the base structure 1620. In other embodiments, the relative positioning of the components can be swapped such that the deformable element 1610 is positioned on the base structure 1620 with the protrusions 1611 extending toward the lower stack 1608 and the sensing regions 1616 positioned on the lower stack 1608. It will be appreciated that this modification can produce at least an equivalent result with respect to the operation of the deformable element 1610 and the contact sensing region 1616.
圖18A係在圖16中之區1800的展開圖,圖中展示可形成圖16中之接觸式感測器的突起部1611、感測元件1612、及接觸式感測區域1616之一實例組態。第二感測元件1614可包括感測區域1810(諸如電容耦合至一接地或驅動層的電容極板或引線),以及接觸式感測區域1616。在圖18A中之接觸式感測區域1616包括引線1802、1804、1806、及1808。引線可係任何適合的材料(諸如傳導材料(例如,金屬、碳、ITO)之跡線、佈線、板、墊、或類似者),且可耦合至用於偵測與感測元件1612接觸或至感測元件1612之近接度的適合電路系統。舉例而言,引線可係電容性元件,其促進偵測由感測元件1612與引線接觸或近接引線所引起之一電容變化。舉另一實例而言,引線可係電接觸件,其促進偵測兩個或更多個接觸件之間之一閉合電路。18A is an expanded view of region 1800 of FIG. 16 showing an example configuration of a protrusion 1611, a sensing element 1612, and a contact sensing region 1616 that can form the contact sensor of FIG. . The second sensing element 1614 can include a sensing region 1810 (such as a capacitive plate or lead capacitively coupled to a ground or drive layer), and a contact sensing region 1616. The contact sensing region 1616 in FIG. 18A includes leads 1802, 1804, 1806, and 1808. The leads can be of any suitable material (such as traces, wiring, plates, pads, or the like of conductive materials (eg, metal, carbon, ITO)) and can be coupled for detecting contact with sensing element 1612 or Suitable circuitry to the proximity of sensing component 1612. For example, the leads can be capacitive elements that facilitate detecting a change in capacitance caused by the sensing element 1612 being in contact with the lead or the proximity lead. By way of another example, the leads can be electrical contacts that facilitate detecting a closed circuit between one or more of the contacts.
圖18B繪示當氣隙1615已完全塌陷且可變形元件1610與第二感測元件1614接觸時在圖16中之區1800。如所展示,介於感測元件1612與引線1802、1804、1806、及1808之間之近接度或接觸導致由對應對之引線1802、1804、1806、及1808進行偵測。雖然圖18A至圖18B繪示四個引線,但是此僅僅係一實例,且可使用更多或更少引線。另外,接觸式感測區域1616、感測元件1612、及引線1802、1804、1806、及1808之相對大小僅僅係例示性,且可基於各種因素及考量予以選擇。舉例而言,接觸式感測區域1616可足夠大以適應介於可變形元件1610與接觸式感測區域1616之間之欠對準。因此,甚至如果突起部1611及接觸式感測區域1616之中心未確切對齊,則該接觸式感測器仍將有效率偵測何時氣隙1615已完全塌陷。FIG. 18B illustrates region 1800 in FIG. 16 when air gap 1615 has completely collapsed and deformable element 1610 is in contact with second sensing element 1614. As shown, the proximity or contact between the sensing element 1612 and the leads 1802, 1804, 1806, and 1808 results in detection by the corresponding pair of leads 1802, 1804, 1806, and 1808. Although FIGS. 18A-18B illustrate four leads, this is merely an example, and more or fewer leads may be used. Additionally, the relative sizes of contact sensing region 1616, sensing element 1612, and leads 1802, 1804, 1806, and 1808 are merely exemplary and may be selected based on various factors and considerations. For example, the contact sensing region 1616 can be large enough to accommodate under-alignment between the deformable element 1610 and the contact sensing region 1616. Thus, even if the centers of the protrusions 1611 and the contact sensing regions 1616 are not exactly aligned, the contact sensor will still effectively detect when the air gap 1615 has completely collapsed.
圖19展示可變形元件1610或其一部分之一實例。可變形元件1610包含自一基底表面1900延伸突起部1611之一陣列。突起部1611可與基底表面1900一體形成。舉例而言,可變形元件1610可經模製(例如,射出模製)為一實質上均勻組成物之一體式、單塊組件。如上文所提及,在形成可變形元件1610之後,感測元件1612可與可變形元件1610共模製或其等可施加(例如,黏附、塗佈、或沉積)至突起部1611或在突起部1611上。在任一情況中,感測元件1612可至少部分內嵌在突起部1611中。亦設想用於緊固感測元件1612至突起部1611之其他技術。應瞭解,突起部1611係闡釋性用途,並且非必然相對於圖式中描繪之基底表面1900或任何其他組件之大小按比例繪製。Figure 19 shows an example of a deformable element 1610 or a portion thereof. The deformable element 1610 includes an array of protrusions 1611 extending from a substrate surface 1900. The protrusion 1611 may be integrally formed with the base surface 1900. For example, the deformable element 1610 can be molded (eg, injection molded) into a monolithic, monolithic assembly of substantially uniform composition. As mentioned above, after forming the deformable element 1610, the sensing element 1612 can be co-molded with the deformable element 1610 or the like can be applied (eg, adhered, coated, or deposited) to the protrusion 1611 or in the protrusion Part 1611. In either case, the sensing element 1612 can be at least partially embedded in the protrusion 1611. Other techniques for fastening the sensing element 1612 to the protrusion 1611 are also contemplated. It will be appreciated that the protrusions 1611 are for illustrative purposes and are not necessarily drawn to scale relative to the size of the substrate surface 1900 or any other component depicted in the drawings.
圖20展示第二感測元件1614或其一部分之一實例,第二感測元件1614包括感測區域1810(由純方格指示)及接觸式感測區域1616(由交叉影線方格指示)兩者,且可結合圖19中所展示之可變形元件1610使用。感測區域1810及接觸式感測區域1616兩者可形成在相同基材2000上(例如,一可撓曲電路材料),且可包括傳導跡線,諸如金屬、碳、ITO、或類似者。20 shows an example of a second sensing element 1614, or a portion thereof, the second sensing element 1614 includes a sensing region 1810 (indicated by a solid square) and a contact sensing region 1616 (indicated by a cross-hatched square) Both, and can be used in conjunction with the deformable element 1610 shown in FIG. Both the sensing region 1810 and the contact sensing region 1616 can be formed on the same substrate 2000 (eg, a flexible circuit material) and can include conductive traces such as metal, carbon, ITO, or the like.
在圖19及圖20中所展示之實例中,各突起部1611包括一感測元件1612且對應於在第二感測元件1614上之一接觸式感測區域1616。然而可能不是這樣,此係因為判定提供一合適壓縮抵抗性的突起部1611之量、配置及分佈的考量不同於推動接觸式感測區域之量、配置及分佈的考量。舉例而言,在一些實施方案中,一些突起部1611不對應於接觸式感測區域1616。在此類情況中,不對應於接觸式感測區域1616的突起部1611可省略感測元件1612,但是可經形成或經定形狀以確保所有突起部1611具有實質上相同高度。替代地,所有突起部1611可包括一感測元件1612,而無論是否突起部皆對應於一接觸式感測區域1616。此可確保所有該等突起部具有相同高度且實質上同時接觸一相對表面。In the example shown in FIGS. 19 and 20, each protrusion 1611 includes a sensing element 1612 and corresponds to one of the contact sensing regions 1616 on the second sensing element 1614. This may not be the case, however, because the considerations for determining the amount, configuration, and distribution of the protrusions 1611 that provide a suitable compression resistance are different from the considerations for pushing the amount, configuration, and distribution of the contact sensing regions. For example, in some embodiments, some of the protrusions 1611 do not correspond to the contact sensing area 1616. In such cases, the protrusions 1611 that do not correspond to the contact-sensing regions 1616 can omit the sensing elements 1612, but can be formed or shaped to ensure that all of the protrusions 1611 have substantially the same height. Alternatively, all of the protrusions 1611 can include a sensing element 1612, whether or not the protrusions correspond to a contact sensing area 1616. This ensures that all of the protrusions have the same height and substantially simultaneously contact an opposing surface.
圖21A係一實例接觸式感測器2100的剖面圖,圖中展示相似於在圖18A至圖18B中所展示者的一區段。雖然由在圖18A至圖18B中所展示之突起部1611及接觸式感測區域1616之所形成之接觸式感測器將感測組件及受感測組件置放在氣隙1615之相對側上,但是接觸式感測器2100經組態使得受感測組件及感測組件兩者可設置在一氣隙之一側上。21A is a cross-sectional view of an example contact sensor 2100 showing a section similar to that shown in FIGS. 18A-18B. Although the contact sensor formed by the protrusion 1611 and the contact sensing region 1616 shown in FIGS. 18A to 18B places the sensing component and the sensed component on opposite sides of the air gap 1615. However, the touch sensor 2100 is configured such that both the sense component and the sense component can be disposed on one side of an air gap.
接觸式感測器2100包括一可變形突起部2102,該可變形突起部可由任何適合的可變形材料(諸如聚矽氧、聚胺甲酸酯發泡體、橡膠、凝膠體、或類似者)所形成。一感測元件2104可與突起部2102合併。舉例而言,感測元件2104可置放在突起部2102之一孔穴2106或其他內部區域內。感測元件2104亦可內嵌在突起部2102之材料中(例如,經由共模製或嵌入模製)。如同感測元件1612,感測元件2104可由任何適合材料所形成或包括任何適合材料,諸如一介電材料及/或一傳導材料。The touch sensor 2100 includes a deformable protrusion 2102 that can be made of any suitable deformable material (such as polyfluorene oxide, polyurethane foam, rubber, gel, or the like). ) formed. A sensing element 2104 can be merged with the protrusion 2102. For example, the sensing element 2104 can be placed in one of the cavities 2106 or other interior regions of the protrusion 2102. Sensing element 2104 can also be embedded in the material of protrusion 2102 (eg, via co-molding or insert molding). As with sensing element 1612, sensing element 2104 can be formed of any suitable material or include any suitable material, such as a dielectric material and/or a conductive material.
接觸式感測器2100亦包括在一相鄰層2108中之引線2110。相鄰層2108可係在其中或上併入引線2110的一感測元件,諸如感測元件1614。替代地,相鄰層2108可專用於含有引線2110。如同在圖18A至圖18B中之引線1802、1804、1806、及1808,引線2110可經組態以用作為電容性元件(例如,電容耦合至感測元件2104且偵測感測元件2104之近接度之電容極板)、用於一連續性感測器之接觸件、或類似者。另外,引線2110可由任何適合材料所形成或包括任何適合材料,諸如傳導材料(例如,金屬、碳、ITO)之跡線、佈線、板、墊、或類似者。引線2110可耦合至用於偵測與感測元件2104接觸或至感測元件2104之近接度的適合電路系統。Contact sensor 2100 also includes leads 2110 in an adjacent layer 2108. Adjacent layer 2108 can be a sensing element, such as sensing element 1614, in which lead 2110 is incorporated. Alternatively, adjacent layer 2108 can be dedicated to contain leads 2110. As with leads 1802, 1804, 1806, and 1808 in FIGS. 18A-18B, lead 2110 can be configured to function as a capacitive component (eg, capacitively coupled to sensing component 2104 and detecting proximity of sensing component 2104) Capacitance plate), contact for a continuous sensor, or the like. Additionally, the leads 2110 can be formed of any suitable material or include any suitable material, such as traces, wiring, plates, pads, or the like of conductive materials (eg, metal, carbon, ITO). Lead 2110 can be coupled to a suitable circuitry for detecting contact with sensing element 2104 or proximity to sensing element 2104.
在接觸式感測器2100係一電容性感測器的情況中,可不需要介於引線2110與感測元件2104之間之實體接觸以偵測介於突起部2102與另一組件之間之接觸。而是,當突起部2102接觸另一組件(例如,因為一相鄰氣隙已完全塌陷)時,引線2110連同相關聯之電路系統可偵測介於感測元件2104與引線2110之間之距離變化,藉此觸發接觸式感測器2100。在此類情況中,孔穴2106可填充有一可變形材料,諸如聚矽氧,藉此囊封感測元件2104。In the case where the contact sensor 2100 is a capacitive sensor, physical contact between the lead 2110 and the sensing element 2104 may not be required to detect contact between the protrusion 2102 and another component. Rather, when the protrusion 2102 contacts another component (eg, because an adjacent air gap has completely collapsed), the lead 2110, along with associated circuitry, can detect the distance between the sensing element 2104 and the lead 2110. The change thereby triggers the touch sensor 2100. In such cases, the aperture 2106 can be filled with a deformable material, such as polyfluorene, thereby encapsulating the sensing element 2104.
圖21B繪示在已藉由一層2112使突起部2102變形之後的接觸式感測器2100,層2112形成已於其中設置突起部2102之一氣隙之一相對側。如所展示,已使感測元件2104與引線2110接觸,因此觸發接觸式感測器2100。然而,感測元件2104不需要實際上接觸引線2110以觸發接觸式感測器2100。舉例而言,在引線2110經組態為電容性感測器(或能夠偵測介於引線與另一物件之間之距離變化之任何其他類型感測器)的情況中,可藉由因層2112變形或以其他方式接觸突起部2102所引起之介於感測元件2104與引線2110之間之任何可偵測距離變化來觸發接觸式感測器2100。21B illustrates the contact sensor 2100 after the protrusion 2102 has been deformed by a layer 2112, the layer 2112 forming an opposite side of one of the air gaps in which the protrusion 2102 has been disposed. As shown, the sensing element 2104 has been brought into contact with the lead 2110, thus triggering the touch sensor 2100. However, the sensing element 2104 need not actually contact the lead 2110 to trigger the touch sensor 2100. For example, in the case where the lead 2110 is configured as a capacitive sensor (or any other type of sensor capable of detecting a change in distance between the lead and another object), the layer 2112 can be utilized The touch sensor 2100 is triggered by any other detectable distance change between the sensing element 2104 and the lead 2110 caused by deformation or otherwise contacting the protrusion 2102.
圖22A係一實例接觸式感測器2200的剖面圖,圖中展示相似於在圖18A至圖18B中所展示者的一區段。雖然由在圖18A至圖18B中所展示之突起部1611及接觸式感測區域1616之所形成之接觸式感測器將感測組件及受感測組件置放在氣隙1615之相對側上,但是接觸式感測器2200經組態使得受感測組件及感測組件兩者可設置在一氣隙之一側上。22A is a cross-sectional view of an example contact sensor 2200 showing a section similar to that shown in FIGS. 18A-18B. Although the contact sensor formed by the protrusion 1611 and the contact sensing region 1616 shown in FIGS. 18A to 18B places the sensing component and the sensed component on opposite sides of the air gap 1615. However, the touch sensor 2200 is configured such that both the sense component and the sense component can be disposed on one side of an air gap.
接觸式感測器2200包括一可變形突起部2202,該可變形突起部可由任何適合的可變形材料(諸如聚矽氧、聚胺甲酸酯發泡體、橡膠、凝膠體、或類似者)所形成。一感測元件2204可設置於突起部2202上方。舉例而言,一材料可設置於突起部2202之至少一部分上方,諸如藉由塗層、沉積(例如,物理氣相沉積或化學氣相沉積)、或任何其他適合的機制。接觸式感測器2200亦包括在層2206中接近突起部2202之引線2208。The touch sensor 2200 includes a deformable protrusion 2202 that can be made of any suitable deformable material (such as polyfluorene oxide, polyurethane foam, rubber, gel, or the like). ) formed. A sensing element 2204 can be disposed over the protrusion 2202. For example, a material can be disposed over at least a portion of the protrusions 2202, such as by coating, deposition (eg, physical vapor deposition or chemical vapor deposition), or any other suitable mechanism. Contact sensor 2200 also includes leads 2208 that are proximate to protrusions 2202 in layer 2206.
引線2208可經組態以用作為電容耦合至感測元件2204的電容性元件,藉此感測自引線2208至感測元件2204之距離變化。據此,感測元件2204可一傳導材料、一介電材料(例如,一高k介電材料)、或可電容耦合至引線2208且由引線2208感測的任何其他適合材料由所形成,或包括一傳導材料、一介電材料(例如,一高k介電材料)、或可電容耦合至引線2208且由引線2208感測的任何其他適合材料。Lead 2208 can be configured to act as a capacitive element capacitively coupled to sensing element 2204, thereby sensing a change in distance from lead 2208 to sensing element 2204. Accordingly, the sensing element 2204 can be formed of a conductive material, a dielectric material (eg, a high-k dielectric material), or any other suitable material that can be capacitively coupled to the lead 2208 and sensed by the lead 2208, or A conductive material, a dielectric material (eg, a high-k dielectric material), or any other suitable material that can be capacitively coupled to lead 2208 and sensed by lead 2208 is included.
圖22B繪示在已藉由一層2210使突起部2202變形之後的接觸式感測器2200,層2210形成於其中設置突起部2202之一氣隙之一相對側。如所展示,已使感測元件2204更接近引線2208,因此觸發接觸式感測器2200。FIG. 22B illustrates the contact sensor 2200 after the protrusion 2202 has been deformed by a layer 2210 formed on the opposite side of one of the air gaps in which the protrusion 2202 is disposed. As shown, the sensing element 2204 has been brought closer to the lead 2208, thus triggering the touch sensor 2200.
可使用接觸式感測器2100、2200,而非使用或結合關於圖18A至圖20所描述之接觸式感測器。舉例而言,可變形元件1610可包括提供相同或相似功能的複數個接觸式感測器2100或2200,而非一起形成一接觸式感測器以偵測接觸與可變形元件1610的突起部1611及感測區域1616。Contact sensors 2100, 2200 can be used instead of or in conjunction with the touch sensors described with respect to Figures 18A-20. For example, the deformable element 1610 can include a plurality of contact sensors 2100 or 2200 that provide the same or similar functions, rather than forming a contact sensor together to detect the protrusion 1611 of the contact and deformable element 1610. And sensing area 1616.
可於一力感測裝置之層或組件之任何者之間應用本文所描述之接觸式感測系統。舉例而言,雖然圖16描繪一接觸式感測器以偵測何時氣隙1615已塌陷,但是一接觸式感測器亦可或替代地經組態以偵測何時氣隙1606已塌陷。在一些情況中,在一力感測裝置之一堆疊中之多個氣隙可包括一接觸式感測器。藉由用此方式提供額外接觸式感測器,一電子裝置可判定哪些層已偏轉或正在偏轉,且可因此應用經調適用於正在偏轉之一或多個特定層的力偏轉相關性。藉由針對多個層之各者提供一相異力偏轉相關性,可高精確度判定施加至一表面之一力量。The contact sensing system described herein can be applied between any of the layers or components of a force sensing device. For example, while FIG. 16 depicts a touch sensor to detect when the air gap 1615 has collapsed, a touch sensor can alternatively or alternatively be configured to detect when the air gap 1606 has collapsed. In some cases, a plurality of air gaps in a stack of force sensing devices can include a contact sensor. By providing an additional contact sensor in this manner, an electronic device can determine which layers have been deflected or are deflecting, and thus can apply a force deflection correlation that is adapted to deflect one or more particular layers. By providing a different force deflection correlation for each of the multiple layers, one of the forces applied to one surface can be determined with high precision.
當前述實例之各者中所描述之可變形元件處於一未變形狀態時,可變形元件可在不同區中具有不同厚度及/或不同突起部高度。舉例而言,力感測裝置之基底結構及/或上部堆疊或下部堆疊(或任一力感測裝置之何其他層)可不具有均勻平坦表面。據此,為了提供跨氣隙之一相對恆定氣隙大小,可變形元件可在不同區中具有不同厚度。舉例而言,突起部可在一些區較大以考量介於一層或堆疊(例如,下部堆疊308)與一基底結構(例如,基底結構或層316)之間之一較大距離。When the deformable elements described in each of the foregoing examples are in an undeformed state, the deformable elements can have different thicknesses and/or different protrusion heights in different zones. For example, the base structure of the force sensing device and/or the upper stack or the lower stack (or any other layer of any force sensing device) may not have a uniform flat surface. Accordingly, in order to provide a relatively constant air gap size across one of the air gaps, the deformable elements can have different thicknesses in different zones. For example, the protrusions may be larger in some regions to account for a greater distance between one layer or stack (eg, lower stack 308) and a substrate structure (eg, base structure or layer 316).
在一些情況中,輸入表面可不跨整個輸入表面區均勻偏轉。舉例而言,在蓋件303之一邊緣附近(例如,靠近介於殼體104與蓋件303之間之接點)所施加之一力會引起蓋件303(且因此上部堆疊304及下部堆疊308)之偏轉小於施加於中心蓋件303中之相同量值之一力引起之偏轉。據此,可變形元件可在其中預期較小變形的區(例如,繞蓋件303之邊緣或周邊)中較厚,使得用力之實質上相同量值使可變形元件開始壓縮,無論在輸入表面上被施加力所在處。In some cases, the input surface may not be evenly deflected across the entire input surface area. For example, one of the forces applied near one edge of the cover 303 (eg, near the junction between the housing 104 and the cover 303) can cause the cover 303 (and thus the upper stack 304 and the lower stack) The deflection of 308) is less than the deflection caused by one of the same magnitudes applied to the central cover member 303. Accordingly, the deformable element can be thicker in areas where less deformation is desired (eg, around the edge or perimeter of the cover 303) such that the deformable element begins to compress with substantially the same magnitude of force, regardless of the input surface. Where the force is applied.
圖23A係沿圖1之線A-A檢視的圖1之裝置100之一實施例的剖面圖,圖中展示一總成2300,該總成可提供顯示、觸碰感測、及力/或感測功能性至裝置100,或可與其他組件整合以提供此類功能性。如圖23A中所展示,裝置100包括在總成2300中之力感測系統(相似於上文關於圖5至圖22所描述之感測器),以及定位於殼體104與蓋件303之間之一感測器2302(圖23B)。感測器2302結合在總成2300中之感測元件運作以判定蓋件303之一偏轉量,且因此判定施加至蓋件303之一力量。23A is a cross-sectional view of one embodiment of the device 100 of FIG. 1 taken along line AA of FIG. 1, showing an assembly 2300 that provides display, touch sensing, and force/or sensing. Functionality to device 100, or may be integrated with other components to provide such functionality. As shown in FIG. 23A, device 100 includes a force sensing system (similar to the sensor described above with respect to FIGS. 5-22) in assembly 2300, and is positioned between housing 104 and cover member 303. One of the sensors 2302 (Fig. 23B). The sensor 2302 operates in conjunction with the sensing element in the assembly 2300 to determine the amount of deflection of one of the covers 303, and thus the force applied to the cover 303.
總成2300包括上部堆疊304及下部堆疊308、氣隙306、310、及可變形元件314,所有皆係上文關於圖3A至圖3E所描述者。總成2300亦包括經定位在可變形元件314之一第一側(例如,在上方)上之一第一感測元件2304及經定位在可變形元件314之一第二側(例如,在下方)上之一第二感測元件2306。第一感測元件2304及第二感測元件2306可一起稱為一力感測器。Assembly 2300 includes upper stack 304 and lower stack 308, air gaps 306, 310, and deformable elements 314, all of which are described above with respect to Figures 3A-3E. The assembly 2300 also includes a first sensing element 2304 positioned on a first side (eg, above) of one of the deformable elements 314 and positioned on a second side of one of the deformable elements 314 (eg, below) One of the second sensing elements 2306. The first sensing element 2304 and the second sensing element 2306 can be collectively referred to as a force sensor.
第一感測元件2304及第二感測元件2306可相似於本文所描述之感測元件之任何者。舉例而言,第一感測元件2304可係一電容性驅動層,及第二感測元件2306可係電容耦合至該驅動層之一電容性感測層。第一感測元件2304及第二感測元件2306以及相關聯之電路系統可偵測可變形元件314之一變形量或偏轉,且因此判定施加至蓋件303之一力量。雖然總成2300展示第一感測元件2304及第二感測元件2306經定位在可變形元件314之相對側上,但是其他組態亦可行。舉例而言,第一感測元件2304可設置在框架構件309之底部上、上部堆疊上(或中)、或類似者。在一些情況中,在總成2300中可使用本文所描述之力感測裝置之任何者,諸如關於圖5、圖12、圖14、或圖16所展示及所描述者。The first sensing element 2304 and the second sensing element 2306 can be similar to any of the sensing elements described herein. For example, the first sensing component 2304 can be a capacitive driving layer, and the second sensing component 2306 can be capacitively coupled to one of the driving layers. The first sensing element 2304 and the second sensing element 2306 and associated circuitry can detect a deformation or deflection of the deformable element 314 and thus determine a force applied to the cover member 303. While the assembly 2300 shows that the first sensing element 2304 and the second sensing element 2306 are positioned on opposite sides of the deformable element 314, other configurations are possible. For example, the first sensing element 2304 can be disposed on the bottom of the frame member 309, on the upper stack (or in), or the like. In some cases, any of the force sensing devices described herein can be used in assembly 2300, such as shown and described with respect to FIG. 5, FIG. 12, FIG. 14, or FIG.
除包括在總成2300中之力感測器外,裝置100亦可包括設置於殼體104與蓋件303之間之一感測器2302。感測器2302可包括可回應於在蓋件303上之一所施加力而偏轉或變形的一柔性材料。感測器2302連同相關聯之感測電路系統可能夠偵測回應於一所施加力的蓋件303之一偏轉量,且結合在總成2300中之感測元件2304、2306來判定施加至蓋件303之一力量。In addition to the force sensor included in the assembly 2300, the device 100 can also include a sensor 2302 disposed between the housing 104 and the cover member 303. The sensor 2302 can include a flexible material that can deflect or deform in response to a force applied by one of the covers 303. The sensor 2302, along with the associated sensing circuitry, can detect the amount of deflection of the cover member 303 in response to an applied force, and the sensing elements 2304, 2306 incorporated in the assembly 2300 determine the application to the cover. One of the strengths of piece 303.
圖23B展示在圖23A中之區2308的展開圖,圖中展示感測器2302之細節。感測器2302可定位於殼體104之凸耳307與蓋件303之一部分之間,使得當一力施加至蓋件303時,感測器2302被按壓於凸耳307與蓋件303之該部分之間,因此使感測器2302變形。在圖23B中之凸耳307及蓋件303之幾何僅僅係例示性,及殼體104及蓋件303之不同實施例可具有不同於在圖23B中所展示者的形狀、幾何、及/或特徵。Figure 23B shows an expanded view of area 2308 in Figure 23A, showing details of sensor 2302. The sensor 2302 can be positioned between the lug 307 of the housing 104 and a portion of the cover member 303 such that when a force is applied to the cover member 303, the sensor 2302 is pressed against the lug 307 and the cover member 303. Between the parts, the sensor 2302 is thus deformed. The geometry of lug 307 and cover member 303 in Figure 23B is merely exemplary, and different embodiments of housing 104 and cover member 303 can have different shapes, geometries, and/or variations than those shown in Figure 23B. feature.
感測器2302包括一可變形部分2310。可變形部分2310可由任何適合材料所形成或包括任何適合材料,諸如聚矽氧、聚胺甲酸酯發泡體,橡膠、凝膠體、彈性體、或類似者。在一些情況中,可變形部分2310可具有黏著劑性質,使得感測器2302保持蓋件303至殼體104。The sensor 2302 includes a deformable portion 2310. The deformable portion 2310 can be formed from any suitable material or include any suitable material, such as polyfluorene oxide, polyurethane foam, rubber, gel, elastomer, or the like. In some cases, the deformable portion 2310 can have adhesive properties such that the sensor 2302 holds the cover 303 to the housing 104.
感測器2302亦包括一第一感測元件2312及一第二感測元件2314。第一感測元件2312及第二感測元件2314可定位在可變形部分2310之相對側(例如,一頂部及底部,如圖23B中所展示)上。第一感測元件2312及第二感測元件2314可形成一電容性感測器,在此情況中,第一感測元件2312及第二感測元件2314之一者可係一電容性驅動層,及另一者可係一電容性感測層。該電容性感測器可偵測可變形部分2310之一變形量,且因此促進偵測一所施加力量,如本文所論述。在一些情況中,感測器2302可係一電阻性感測器(或任何其他適合的感測器),在此情況中,可省略第一感測元件2312及第二感測元件2314,或用其他組件取代第一感測元件2312及第二感測元件2314。The sensor 2302 also includes a first sensing component 2312 and a second sensing component 2314. The first sensing element 2312 and the second sensing element 2314 can be positioned on opposite sides (eg, a top and bottom, as shown in FIG. 23B) of the deformable portion 2310. The first sensing component 2312 and the second sensing component 2314 can form a capacitive sensor. In this case, one of the first sensing component 2312 and the second sensing component 2314 can be a capacitive driving layer. And the other can be a capacitive sensing layer. The capacitive sensor detects a amount of deformation of the deformable portion 2310 and thus facilitates detecting an applied force, as discussed herein. In some cases, the sensor 2302 can be a resistive sensor (or any other suitable sensor), in which case the first sensing element 2312 and the second sensing element 2314 can be omitted, or Other components replace the first sensing element 2312 and the second sensing element 2314.
當一力施加至蓋件303時,感測器2302之可變形部分2310可偏轉或變形,使得第一感測元件2312及第二感測元件2314愈來愈靠一起。第一感測元件2312及第二感測元件2314以及相關聯之電路系統可判定該變形量及使該變形量與施加至蓋件303之一力量互相關。然而,隨著到達一定施加力量,可變形部分2310可到達一最大變形,其中較大施加力可不導致可變形部分2310之進一步變形。然而,在一些情況中,希望偵測所施加力大於此量。據此,感測器2302及在總成2300中之感測元件可感測不同範圍的所施加力。When a force is applied to the cover member 303, the deformable portion 2310 of the sensor 2302 can be deflected or deformed such that the first sensing element 2312 and the second sensing element 2314 are closer together. The first sensing element 2312 and the second sensing element 2314 and associated circuitry can determine the amount of deformation and correlate the amount of deformation with a force applied to the cover member 303. However, as a certain amount of force is applied, the deformable portion 2310 can reach a maximum deformation, wherein a larger applied force may not cause further deformation of the deformable portion 2310. However, in some cases, it is desirable to detect that the applied force is greater than this amount. Accordingly, the sensor 2302 and the sensing elements in the assembly 2300 can sense different ranges of applied forces.
舉例而言,感測器2302可經組態以判定跨越自未施加力至導致在圖23A中之氣隙306及310塌陷之一力量的力。直到該點,在總成2300中之感測器(由第一感測元件2304及第二感測元件2306所形成)可不偵測任何力,此係因為尚未使下部堆疊308與可變形元件314接觸。一旦下部堆疊308接觸可變形元件314,可由在總成2300中之感測元件2304、2306判定增加之力量。For example, the sensor 2302 can be configured to determine a force that spans from one of the unapplied forces to one of the forces that cause the air gaps 306 and 310 in FIG. 23A to collapse. Up to this point, the sensors in the assembly 2300 (formed by the first sensing element 2304 and the second sensing element 2306) may not detect any force, since the lower stack 308 and the deformable element 314 have not been made yet. contact. Once the lower stack 308 contacts the deformable element 314, the increased force can be determined by the sensing elements 2304, 2306 in the assembly 2300.
第一感測元件2312及第二感測元件2314可由任何適合材料所形成或包括任何適合材料,諸如金屬、ITO、或類似者。另外,可用任何適合方式將第一感測元件2312及第二感測元件2314應用至可變形部分2310或以其他方式與可變形部分2310合併。舉例而言,第一感測元件2312及第二感測元件2314可係或可包括內嵌在可變形部分2310中、經定位在可變形部分2310上、或以其他方式與可變形部分2310整合的傳導片材(例如,銅,銀,或金)。舉另一實例而言,第一感測元件2312及第二感測元件2314可係沉積在可變形部分2310上之ITO。The first sensing element 2312 and the second sensing element 2314 can be formed of any suitable material or include any suitable material, such as metal, ITO, or the like. Additionally, the first sensing element 2312 and the second sensing element 2314 can be applied to the deformable portion 2310 or otherwise combined with the deformable portion 2310 in any suitable manner. For example, the first sensing element 2312 and the second sensing element 2314 can be or can be embedded in the deformable portion 2310, positioned on the deformable portion 2310, or otherwise integrated with the deformable portion 2310 Conductive sheet (for example, copper, silver, or gold). As another example, the first sensing element 2312 and the second sensing element 2314 can be ITO deposited on the deformable portion 2310.
在一些情況中,第一感測元件2312及第二感測元件2314之任一者或兩者可不與可變形材料2310整合,而是可係分開之組件。舉例而言,第一感測元件2312及/或第二感測元件2314可係含有設置於其上之傳導材料的材料(例如,可撓曲電路材料)層。該等層可定位於可變形部分2310與蓋件303之間,及/或定位於可變形部分2310與殼體104之間,且可接合或以其他方式黏附至彼等組件。舉另一實例而言,第一感測元件2312及/或第二感測元件2314可直接圖案化在蓋件303及/或殼體104上。舉例而言,當裝置100處於其組裝組態時,ITO、傳導奈米線、或任何其他適合的材料可直接形成在蓋件303及殼體104之彼此相對之部分上。可使用前述實例之任何組合以整合第一感測元件2312及/或第二感測元件2314與裝置100。In some cases, either or both of the first sensing element 2312 and the second sensing element 2314 may not be integrated with the deformable material 2310, but may be separate components. For example, the first sensing element 2312 and/or the second sensing element 2314 can be a layer of a material (eg, a flexible circuit material) that is provided with a conductive material disposed thereon. The layers can be positioned between the deformable portion 2310 and the cover 303 and/or between the deformable portion 2310 and the housing 104 and can be joined or otherwise adhered to their components. As another example, the first sensing element 2312 and/or the second sensing element 2314 can be directly patterned on the cover member 303 and/or the housing 104. For example, when the device 100 is in its assembled configuration, ITO, conductive nanowires, or any other suitable material may be formed directly on the opposing portions of the cover member 303 and the housing 104. Any combination of the foregoing examples can be used to integrate first sensing element 2312 and/or second sensing element 2314 with device 100.
圖24係一實例力相對於偏轉曲線,其繪示在圖23A中所繪示之裝置之蓋件303如何回應於施加至其之一力輸入而偏轉。該力回應相似於在圖4中所展示者,其中一第一量變曲線係自點401至點402(相對應於氣隙306及310之塌陷)及一第二量變曲線係自點402至點404(相對應於可變形元件314之變形)。感測器2302可偵測氣隙306、310之變形,如由在圖24中之線2402所指示,而在總成2300中之力感測器偵測可變形元件314之變形,如由線2404所指示。雖然線2402、2404展示為非重疊,然而可非如此。舉例而言,甚至在氣隙306、310已塌陷之後,感測器2302可繼續偏轉且因此提供有意義之力資訊。在此類情況中,與感測器相關聯之感測電路系統可處理來自感測器兩者之資訊以判定一所施加力量。Figure 24 is an example force versus deflection curve showing how the cover member 303 of the device illustrated in Figure 23A deflects in response to a force input applied thereto. The force response is similar to that shown in Figure 4, wherein a first quantity curve is from point 401 to point 402 (corresponding to the collapse of air gaps 306 and 310) and a second quantity curve is from point 402 to point. 404 (corresponding to the deformation of the deformable element 314). The sensor 2302 can detect the deformation of the air gaps 306, 310 as indicated by line 2402 in FIG. 24, and the force sensor in the assembly 2300 detects the deformation of the deformable element 314, such as by the line. Indicated by 2404. Although lines 2402, 2404 are shown as non-overlapping, this may not be the case. For example, even after the air gaps 306, 310 have collapsed, the sensor 2302 can continue to deflect and thus provide meaningful force information. In such cases, the sensing circuitry associated with the sensor can process information from both of the sensors to determine an applied force.
圖25展示如透過裝置之蓋件303檢視的感測器2302之一部分。感測器2302之所繪示部分對應於感測器2302之一隅角部分。感測器2302包括各(例如,經由導體2503)電耦合在一起之第一驅動區域2502及各(例如,經由導體2505)電耦合在一起之第二驅動區域2504。第一驅動區域2502及第二驅動區域2504可一起形成在圖23B中所展示之第二感測元件2314,且可用一信號予以驅動或激發。如所展示,依一交替、指叉式圖案展示第一驅動區域2502及第二驅動區域2504,然而此僅僅係用於第一驅動區域2502及第二驅動區域2504之一實例組態。Figure 25 shows a portion of sensor 2302 as viewed by cover member 303 of the transmissive device. The depicted portion of sensor 2302 corresponds to one of the corner portions of sensor 2302. The sensor 2302 includes a first drive region 2502 that is electrically coupled together (eg, via conductors 2503) and a second drive region 2504 that is electrically coupled together (eg, via conductor 2505). The first drive region 2502 and the second drive region 2504 can be formed together in the second sensing element 2314 shown in Figure 23B and can be driven or energized with a signal. As shown, the first drive region 2502 and the second drive region 2504 are shown in an alternating, interdigitated pattern, however this is only for one instance configuration of the first drive region 2502 and the second drive region 2504.
感測器2302亦包括感測區域2506。感測區域2506電容耦合至驅動區域2502、2504且可連接至偵測及分析由驅動區域2502、2504在感測區域2506中誘發之信號的電路系統。各感測區域2506可與一個第一驅動區域2502及一個第二驅動區域2504重疊。由於可在不同時間及/或用不同信號(例如,具有不同頻率之信號)驅動該等驅動區域,一單一感測區域可提供兩個相異電容性測量,各電容性測量相對應於沿感測器2302之一不同位置。依此方式,感測器2302被像素化,允許更精準力測量且用於偵測在蓋件303上之一所施加力之一位置。The sensor 2302 also includes a sensing region 2506. Sensing region 2506 is capacitively coupled to drive regions 2502, 2504 and can be coupled to circuitry that detects and analyzes signals induced by drive regions 2502, 2504 in sense region 2506. Each of the sensing regions 2506 can overlap with a first driving region 2502 and a second driving region 2504. Since the driving regions can be driven at different times and/or with different signals (eg, signals having different frequencies), a single sensing region can provide two different capacitive measurements, each capacitive measurement corresponding to the sense of the sensation One of the detectors 2302 is in a different position. In this manner, the sensor 2302 is pixelated, allowing for more precise force measurements and for detecting one of the forces exerted by one of the covers 303.
圖26係沿圖1之線A-A檢視的一實施例裝置100的剖面圖,圖中展示定位在蓋件110下方之一顯示器堆疊2600。力及/或觸碰感測系統或其組件可與顯示器堆疊2600合併以促進在裝置100上之觸控及力輸入偵測。如本文所描述,裝置100可包括可促進感測在裝置100上之力及/或觸控輸入的傳導片材(諸如第一驅動層505,圖5)。26 is a cross-sectional view of an embodiment of the apparatus 100 taken along line A-A of FIG. 1, showing a display stack 2600 positioned below the cover member 110. The force and/or touch sensing system or components thereof can be combined with the display stack 2600 to facilitate touch and force input detection on the device 100. As described herein, device 100 can include a conductive sheet (such as first drive layer 505, FIG. 5) that can facilitate sensing force and/or touch input on device 100.
顯示器堆疊2600可包括定位於蓋件110與一顯示器層2604之間之一觸碰感測器2602。觸碰感測器2602可包括感測器,各感測器經組態以偵測在蓋件110上之使用者輸入(例如,觸控及/或力輸入)及該等使用者輸入之位置。可使用任何合適的觸碰感測器2602。舉例而言,在一實施例中,用定位於兩個電極層之間之一介電基材來形成觸碰感測器2602。該等電極層可由任何合適的光學透明材料所製成。舉例而言,在一實施例中,該等電極層由氧化銦錫(ITO)所製成。其他合適的材料包括(但不限於)奈米線或奈米線網格、一透明導電膜(例如,一聚合物膜)、碳奈米管、及超薄金屬膜。Display stack 2600 can include a touch sensor 2602 positioned between cover member 110 and a display layer 2604. The touch sensor 2602 can include a sensor, each sensor configured to detect user input (eg, touch and/or force input) on the cover member 110 and the location of the user input . Any suitable touch sensor 2602 can be used. For example, in one embodiment, the touch sensor 2602 is formed with a dielectric substrate positioned between two electrode layers. The electrode layers can be made of any suitable optically transparent material. For example, in one embodiment, the electrode layers are made of indium tin oxide (ITO). Other suitable materials include, but are not limited to, a nanowire or nanowire grid, a transparent conductive film (eg, a polymeric film), a carbon nanotube, and an ultra-thin metal film.
在觸碰感測器2602中之各電極層可包括一或多個電極。在一層中之該(等)電極與在其他電極層中之各別電極依至少一方向(例如,垂直)對齊以形成一或多個電容性感測器。透過一或多個電容性感測器之電容變化來偵測使用者輸入及該等使用者輸入之位置。如下文將更詳細描述,觸控及感測電路系統2632耦合至該等電極層且經組態以自各電容性感測器接收一輸出信號,該輸出信號表示各電容性感測器之電容。Each of the electrode layers in the touch sensor 2602 can include one or more electrodes. The (equal) electrode in one layer is aligned with at least one direction (eg, vertical) of the respective electrodes in the other electrode layers to form one or more capacitive sensors. The user input and the location of the user input are detected by a change in capacitance of one or more capacitive sensors. As will be described in more detail below, touch and sense circuitry 2632 is coupled to the electrode layers and configured to receive an output signal from each of the capacitive sensors, the output signals representing the capacitance of each capacitive sensor.
在觸碰感測器2602中之該等電極層之一者或兩者可經圖案化。舉例而言,在一實施例中,一個電極層經圖案化成經定位沿一第一軸(例如,列)的條,及其他電極層經圖案化成經定位沿一第二軸(例如,行)的條,該第二軸橫向於該第一軸。電容性感測器形成在該兩個電極層中之該等條之相交處。可基於一或多個電容性感測器之電容(或電容變化)來判定使用者輸入、及該等使用者輸入之位置。One or both of the electrode layers in touch sensor 2602 can be patterned. For example, in one embodiment, one electrode layer is patterned into strips that are positioned along a first axis (eg, columns), and other electrode layers are patterned to be positioned along a second axis (eg, rows) a strip, the second axis being transverse to the first axis. A capacitive sensor is formed at the intersection of the strips in the two electrode layers. The user input, and the location of the user input, can be determined based on the capacitance (or capacitance change) of one or more capacitive sensors.
顯示器層2604可包括:一前偏光器2606;一顯示器元件2608,其附接至前偏光器2606之一後表面;及一後偏光器2610,其附接至顯示器元件2608之一後表面。可使用任何合適的顯示器元件2608。實例顯示器元件2608包括(但不限於)一LCD元件、一LED元件、一OLED元件、或一OEL元件。在所闡釋之實施例中,顯示器元件2608係一LCD元件。Display layer 2604 can include a front polarizer 2606; a display element 2608 attached to a rear surface of one of the front polarizers 2606; and a rear polarizer 2610 attached to a rear surface of one of the display elements 2608. Any suitable display element 2608 can be used. Example display component 2608 includes, but is not limited to, an LCD component, an LED component, an OLED component, or an OEL component. In the illustrated embodiment, display element 2608 is an LCD element.
在一些情況中,由顯示器元件2608所產生之雜訊信號可與觸碰感測器2602電耦合。此耦合會不利地影響由觸碰感測器2602對使用者輸入之偵測。為了降低或排除來自與觸碰感測器2602耦合的顯示器雜訊,一傳導層2612可定位於觸碰感測器2602與前偏光器2606之間。傳導層2612可由任何合適的光學透明材料所製成。舉例而言,在一實施例中,傳導層2612由ITO所製成。In some cases, the noise signal generated by display element 2608 can be electrically coupled to touch sensor 2602. This coupling can adversely affect the detection of user input by touch sensor 2602. To reduce or eliminate display noise from coupling with touch sensor 2602, a conductive layer 2612 can be positioned between touch sensor 2602 and front polarizer 2606. Conductive layer 2612 can be made of any suitable optically transparent material. For example, in one embodiment, the conductive layer 2612 is made of ITO.
一傳導材料片材2614形成或塗佈在後偏光器2610之後表面上。傳導材料片材2614可由任何合適的傳導材料所製成。舉例而言,在一實施例中,傳導材料片材2614由一銀奈米線膜所製成。A sheet of conductive material 2614 is formed or coated on the surface behind the rear polarizer 2610. The sheet of conductive material 2614 can be made of any suitable conductive material. For example, in one embodiment, the sheet of conductive material 2614 is made from a silver nanowire film.
後偏光器2610可所製成由一電絕緣材料。傳導材料片材2614使後偏光器2610之後表面能夠用作為一導電表面。如下文將更詳細描述,後偏光器2610之導電表面用以傳輸用於包括該導電表面之一力感測器的驅動信號。The rear polarizer 2610 can be made of an electrically insulating material. The sheet of conductive material 2614 enables the surface behind the rear polarizer 2610 to function as a conductive surface. As will be described in more detail below, the conductive surface of the rear polarizer 2610 is used to transmit a drive signal for a force sensor that includes one of the conductive surfaces.
一傳導邊框2616附接至後偏光器2610之後表面(傳導邊框2616之結構、材料、功能等可相同或相似於連接元件706,圖7、圖10A)。傳導邊框2616定位成沿後偏光器2610之一周邊或邊緣之至少一部分。如將結合圖27至圖29更詳細描述,傳導邊框2616可係繞整個周邊延伸之一連續邊框,或傳導邊框2616可包括一或多個離散傳導條,其中各傳導條經定位成沿後偏光器2610之周邊之一各別部分。A conductive bezel 2616 is attached to the rear surface of the rear polarizer 2610 (the structure, material, function, etc. of the conductive bezel 2616 can be the same or similar to the connecting element 706, Figures 7, 10A). The conductive bezel 2616 is positioned along at least a portion of a perimeter or edge of the rear polarizer 2610. As will be described in greater detail in connection with Figures 27-29, conductive bezel 2616 can extend around one continuous frame of the entire perimeter, or conductive bezel 2616 can include one or more discrete conductive strips, with each conductive strip positioned to be rearwardly polarized Each of the peripheral portions of the device 2610.
在所闡釋之實施例中,顯示器堆疊2600延伸跨顯示器102之使用者可觀看區域108(圖1)且至非可觀看區域2618(其不對應於來自顯示器102之一可觀看輸出)中。替代地,在一些實施例中,在顯示器堆疊2600中之該等層之僅一子組延伸至非可觀看區域2618中。舉例而言,在顯示器層2604之部分可延伸至非可觀看區域2618中,而在顯示器堆疊2600中之其他層不延伸至非可觀看區域2618中。In the illustrated embodiment, display stack 2600 extends across user viewable area 108 (FIG. 1) of display 102 and to non-viewable area 2618 (which does not correspond to one viewable output from display 102). Alternatively, in some embodiments, only a subset of the layers in display stack 2600 extend into non-viewable area 2618. For example, portions of display layer 2604 can extend into non-viewable area 2618, while other layers in display stack 2600 do not extend into non-viewable area 2618.
在一些實施例中,傳導邊框2616可定位在後偏光器2610之部分(該等部分駐在非可觀看區域2618中)上,其允許用任何合適材料或多種材料(例如,(多種)不透明或透明材料)形成傳導邊框2616。舉例而言,可用一金屬或金屬合金(諸如銅、鋁、鉬、及鎳釩)形成傳導邊框2616。其他實施例可形成傳導邊框2616之至少一部分在使用者可觀看區域108內。在此類實施例中,至少在使用者可觀看區域108中的傳導邊框2616之部分可用一光學透明材料(諸如ITO)予以形成。In some embodiments, the conductive bezel 2616 can be positioned on a portion of the rear polarizer 2610 that resides in the non-viewable region 2618, which allows for any suitable material or materials (eg, opaque or transparent) Material) forms a conductive bezel 2616. For example, a conductive bezel 2616 can be formed from a metal or metal alloy such as copper, aluminum, molybdenum, and nickel vanadium. Other embodiments may form at least a portion of the conductive bezel 2616 within the user viewable area 108. In such embodiments, at least portions of the conductive bezel 2616 in the user viewable area 108 may be formed from an optically transparent material such as ITO.
在所闡釋之實施例中,一背光單元2620定位在後偏光器2610及傳導邊框2616下方。顯示器層2604連同背光單元2620用以在顯示器102上輸出影像。在一些實施方案中,可省略背光單元2620。In the illustrated embodiment, a backlight unit 2620 is positioned below the rear polarizer 2610 and the conductive bezel 2616. Display layer 2604, along with backlight unit 2620, is used to output an image on display 102. In some implementations, backlight unit 2620 can be omitted.
一第一電極層2622定位在背光單元2620下方且附接至背光單元2620。在一些實施方案中,第一電極層2622表示一電極陣列(例如,兩個或更多個電極)。在其他實施方案中,第一電極層2622係一單一電極。第一電極層2622可用任何合適的(不透明或透明)傳導材料(諸如一金屬或金屬合金)予以形成。實例金屬及金屬合金包括(但不限於)銅、鋁、鈦、鉭、鎳、鉻、鋯、鉬鈮、及鎳釩。A first electrode layer 2622 is positioned below the backlight unit 2620 and attached to the backlight unit 2620. In some embodiments, the first electrode layer 2622 represents an array of electrodes (eg, two or more electrodes). In other embodiments, the first electrode layer 2622 is a single electrode. The first electrode layer 2622 can be formed from any suitable (opaque or transparent) conductive material such as a metal or metal alloy. Example metals and metal alloys include, but are not limited to, copper, aluminum, titanium, niobium, nickel, chromium, zirconium, molybdenum niobium, and nickel vanadium.
在後偏光器2610之後表面上之傳導材料片材2614及第一電極層2622一起形成一力感測器。該力感測器可使用以偵測施加至蓋件110之一力量值或一力量。當第一電極層2622實施為一電極陣列時,傳導材料片材2614及第一電極層2622形成一電容性感測器陣列。各電容性感測器包括由傳導材料片材2614所形成之一電極及在第一電極層2622中之一各別電極。當一使用者輸入施加至蓋件110時,蓋件110偏轉且在至少一電容性感測器中之該等電極之間之一距離變化,其使該電容性感測器之電容改變。舉例而言,在所闡釋之實施例中,間隙2623基於施加至蓋件110之一使用者輸入而改變,其繼而使至少一電容性感測器之電容改變。The conductive material sheet 2614 and the first electrode layer 2622 on the surface after the rear polarizer 2610 together form a force sensor. The force sensor can be used to detect a force value or a force applied to the cover member 110. When the first electrode layer 2622 is implemented as an electrode array, the conductive material sheet 2614 and the first electrode layer 2622 form a capacitive sensor array. Each of the capacitive sensors includes an electrode formed of a sheet 26 of conductive material and a respective electrode in the first electrode layer 2622. When a user input is applied to the cover member 110, the cover member 110 deflects and changes a distance between the electrodes in at least one of the capacitive sensors, which changes the capacitance of the capacitive sensor. For example, in the illustrated embodiment, the gap 2623 is changed based on a user input applied to the cover member 110, which in turn changes the capacitance of at least one capacitive sensor.
在一些實施例中,第一電極層2622可用以偵測在蓋件110上之一或多個觸碰。在此類實施例中,可省略觸碰感測層2602,此係因為第一電極層2622具有使用以偵測觸控輸入及力輸入兩者之一雙重功能。In some embodiments, the first electrode layer 2622 can be used to detect one or more touches on the cover member 110. In such an embodiment, the touch sensing layer 2602 can be omitted because the first electrode layer 2622 has dual functions for detecting both touch input and force input.
裝置100亦可包括一支撐結構2624(其結構、材料、功能等可相同或相似於上文所論述之框架構件309、1207)。在所闡釋之實施例中,支撐結構2624由一傳導材料(例如,一金屬)所製成,但是其他實施例可用一不同材料(諸如塑膠、陶瓷、或一複合材料)形成支撐結構2624。在所闡釋之實施例中,支撐結構2624沿顯示器堆疊2600之一長度及一寬度延伸,但是此非必要。在其他實施例中,支撐結構2624可具有任何形狀及/或尺寸。舉例而言,支撐結構2624可具有一開口,一加勁構件可定位於該開口中(如關於圖3A之框架構件309及加勁構件312所描述)。The device 100 can also include a support structure 2624 (the structure, materials, functions, etc. can be the same or similar to the frame members 309, 1207 discussed above). In the illustrated embodiment, the support structure 2624 is made of a conductive material (e.g., a metal), but other embodiments may form the support structure 2624 from a different material, such as plastic, ceramic, or a composite. In the illustrated embodiment, the support structure 2624 extends along one of the lengths and a width of the display stack 2600, but this is not necessary. In other embodiments, the support structure 2624 can have any shape and/or size. For example, the support structure 2624 can have an opening in which a stiffening member can be positioned (as described with respect to the frame member 309 and the stiffening member 312 of FIG. 3A).
在所闡釋之實施例中,支撐結構2624具有一U形狀之剖面且附接至蓋件110,使得支撐結構2624係自蓋件110懸吊。在其他實施例中,支撐結構2624可連接至除蓋件110外之一組件。舉例而言,支撐結構2624可附接至裝置100之一殼體(例如,在圖1中之殼體104)或附接至在該殼體中之一框架或其他支撐組件。In the illustrated embodiment, the support structure 2624 has a U-shaped cross section and is attached to the cover member 110 such that the support structure 2624 is suspended from the cover member 110. In other embodiments, the support structure 2624 can be coupled to one of the components other than the cover member 110. For example, the support structure 2624 can be attached to one of the devices 100 (eg, the housing 104 in FIG. 1) or attached to one of the frames or other support components in the housing.
在一些實施例中,支撐結構2624可經建構及附接至蓋件110以界定介於支撐結構2624與第一電極層2622之間之一間隙2626。間隙2626允許顯示器堆疊2600回應於在蓋件110上之一所施加力而撓曲或移動。在一些實施例中,第一電極層2622可附接至支撐結構2624,而非背光單元2620。In some embodiments, the support structure 2624 can be constructed and attached to the cover member 110 to define a gap 2626 between the support structure 2624 and the first electrode layer 2622. The gap 2626 allows the display stack 2600 to flex or move in response to a force applied by one of the covers 110. In some embodiments, the first electrode layer 2622 can be attached to the support structure 2624 instead of the backlight unit 2620.
裝置100亦可包括一電池組2628。電池組2628提供電力至裝置100之各種組件。如圖26中所展示,一第二電極層2630可設置在電池組2628之一頂部表面上。在一些實施例中,施加至蓋件110之力量可足以引起顯示器堆疊2600偏轉,使得後偏光器2610接觸第一電極層2622。當顯示器堆疊2600偏轉至其中後偏光器2610接觸背光單元2620(或接觸第一電極層2622,如果背光單元2620不存在)之一點時,由該力感測器所偵測之該力量到達一最大位準(例如,一第一力量)。該力感測器無法偵測超過該最大位準之力量。顯示器堆疊2600偏轉至其中後偏光器2610接觸背光單元2620或第一電極層2622之一點可對應於在圖4中之力相對於偏轉曲線之第一量變曲線406。舉例而言,由包括第一電極層2622及傳導材料2614的力感測器所偵測之力之該最大位準可對應於在圖4中之點402。Device 100 can also include a battery pack 2628. Battery pack 2628 provides power to various components of device 100. As shown in FIG. 26, a second electrode layer 2630 can be disposed on a top surface of one of the battery packs 2628. In some embodiments, the force applied to the cover member 110 may be sufficient to cause the display stack 2600 to deflect such that the rear polarizer 2610 contacts the first electrode layer 2622. When the display stack 2600 is deflected to a point where the rear polarizer 2610 contacts the backlight unit 2620 (or contacts the first electrode layer 2622 if the backlight unit 2620 does not exist), the force detected by the force sensor reaches a maximum Level (for example, a first power). The force sensor cannot detect the force exceeding the maximum level. The display stack 2600 is deflected to a point in which the rear polarizer 2610 contacts the backlight unit 2620 or the first electrode layer 2622, which may correspond to the first amount curve 406 of the force in FIG. 4 relative to the deflection curve. For example, the maximum level of force detected by the force sensor including the first electrode layer 2622 and the conductive material 2614 may correspond to point 402 in FIG.
在此類實施例中,第二電極層2630(結合第一電極層2622或其他組件)可形成一第二力感測器,該第二力感測器藉由與介於第一電極層2622與第二電極層2630之間之一偏轉量(例如,一第二力量)相關聯而偵測超過該第一力量之力。舉例而言,在一些實施例中,第二電極層2630可用以測量介於第一電極層2622與第二電極層2630之間之一電容變化。替代地,第二電極層2630可用以偵測介於支撐結構2624之後表面2627與第二電極層2630之間之一電容變化。介於第一電極層2622與第二電極層2630之間(或介於支撐結構之後表面2627與第二電極層2630之間)之該偏轉可對應於在圖4中之第二量變曲線408。In such an embodiment, the second electrode layer 2630 (in combination with the first electrode layer 2622 or other components) can form a second force sensor by being interposed between the first electrode layer 2622 A force exceeding the first force is detected in association with a deflection amount (eg, a second force) between the second electrode layer 2630. For example, in some embodiments, the second electrode layer 2630 can be used to measure a change in capacitance between the first electrode layer 2622 and the second electrode layer 2630. Alternatively, the second electrode layer 2630 can be used to detect a change in capacitance between the surface 2627 and the second electrode layer 2630 between the support structure 2624. This deflection between the first electrode layer 2622 and the second electrode layer 2630 (or between the support structure rear surface 2627 and the second electrode layer 2630) may correspond to the second amount curve 408 in FIG.
如前文所描述,驅動及感測電路系統2632耦合至觸碰感測器2602。驅動及感測電路系統2632可定位在裝置100中之任何合適位置。驅動及感測電路系統2632經組態以提供驅動信號至觸碰感測器2602及接收來自觸碰感測器2602之輸出信號。舉例而言,當觸碰感測器2602包括一電容性感測器陣列時,驅動及感測電路系統2632耦合至各電容性感測器且經組態以感測或測量各電容性感測器之電容。一處理裝置可耦合至驅動及感測電路系統2632且經組態以接收表示各電容性感測器之所測量電容的信號。該處理裝置可經組態以使該等所測量電容與一力量互相關。Drive and sense circuitry 2632 is coupled to touch sensor 2602 as previously described. Drive and sense circuitry 2632 can be positioned at any suitable location in device 100. The drive and sense circuitry 2632 is configured to provide a drive signal to the touch sensor 2602 and to receive an output signal from the touch sensor 2602. For example, when the touch sensor 2602 includes a capacitive sensor array, the drive and sense circuitry 2632 is coupled to each of the capacitive sensors and configured to sense or measure the capacitance of each capacitive sensor. . A processing device can be coupled to the drive and sense circuitry 2632 and configured to receive signals indicative of the measured capacitance of each of the capacitive sensors. The processing device can be configured to correlate the measured capacitances with a force.
相似地,驅動電路系統2634耦合至傳導材料片材2614且經組態以提供驅動信號至後偏光器2610之後表面(例如,提供驅動信號至傳導材料片材2614)。在一些實施例中,驅動電路系統2634耦合至傳導邊框2616。Similarly, drive circuitry 2634 is coupled to conductive material sheet 2614 and is configured to provide a drive signal to the rear surface of rear polarizer 2610 (eg, to provide a drive signal to conductive material sheet 2614). In some embodiments, drive circuitry 2634 is coupled to conductive bezel 2616.
感測電路系統2636耦合至第一電極層2622且經組態以接收來自第一電極層2622之一或多個輸出信號。舉例而言,當該第一力感測器包括一電容性感測器陣列時,驅動及感測電路系統2634、2636耦合至各電容性感測器且經組態以感測或測量各電容性感測器之電容。一處理裝置可耦合至驅動及感測電路系統2634、2636且經組態以接收表示各電容性感測器之所測量電容的輸出信號。該處理裝置可經組態以使該等所測量電容與一力量互相關。如同驅動及感測電路系統2632,驅動電路系統2634及感測電路系統2636可位於裝置100中之任何合適位置。Sensing circuitry 2636 is coupled to first electrode layer 2622 and is configured to receive one or more output signals from first electrode layer 2622. For example, when the first force sensor includes a capacitive sensor array, drive and sense circuitry 2634, 2636 are coupled to each of the capacitive sensors and configured to sense or measure each capacitive sensing Capacitor. A processing device can be coupled to the drive and sense circuitry 2634, 2636 and configured to receive an output signal representative of the measured capacitance of each capacitive sensor. The processing device can be configured to correlate the measured capacitances with a force. As with the drive and sense circuitry 2632, the drive circuitry 2634 and the sense circuitry 2636 can be located at any suitable location in the device 100.
在後偏光器2610之後表面上(例如,在傳導材料片材2614上)所傳輸之驅動信號可與由顯示器元件2608(例如,一TFT層)所產生之雜訊解耦合,此係因為絕緣的後偏光器2610使傳導材料片材2614與顯示器元件2608實體上分開。此外,傳導邊框2616可降低介於後偏光器2610與傳導材料片材2614之間之接觸電阻,以及降低導材料片材2614之片材電阻。降低該接觸電阻及/或該片材電阻可增加由顯示器元件2608所產生之顯示器雜訊之抑制。The drive signal transmitted on the surface after the rear polarizer 2610 (e.g., on the conductive material sheet 2614) can be decoupled from the noise generated by the display element 2608 (e.g., a TFT layer) because of the insulation The rear polarizer 2610 physically separates the sheet of conductive material 2614 from the display element 2608. In addition, the conductive bezel 2616 can reduce the contact resistance between the rear polarizer 2610 and the conductive material sheet 2614, as well as reduce the sheet resistance of the conductive material sheet 2614. Reducing the contact resistance and/or the sheet resistance increases the suppression of display noise generated by display element 2608.
關於第二電極層2630,驅動電路系統2638耦合至第二電極層2630且經組態以提供驅動信號至第二電極層2630。驅動電路系統2638可位於裝置100中之任何合適位置。在一些實施例中,感測電路系統2636可經組態以接收來自第一電極層2622之一或多個輸出信號。耦合至感測電路系統2636之一處理裝置可經組態以接收該等輸出信號及使該等所測量電容與一力量互相關。Regarding the second electrode layer 2630, the drive circuitry 2638 is coupled to the second electrode layer 2630 and is configured to provide a drive signal to the second electrode layer 2630. Drive circuitry 2638 can be located at any suitable location in device 100. In some embodiments, sensing circuitry 2636 can be configured to receive one or more output signals from first electrode layer 2622. A processing device coupled to the sensing circuitry 2636 can be configured to receive the output signals and correlate the measured capacitances with a force.
圖27至圖29描繪在圖26中所展示之偏光器2610上之傳導邊框之實例配置。如圖27中所展示,該傳導邊框可包括形成在塗佈在一偏光器2700上之一傳導材料片材2710上之四個離散傳導條2702、2704、2706、2708。各傳導條2702、2704、2706、2708沿偏光器2700之一各別邊緣而形成。雖然圖27描繪四個傳導條,但是其他實施例不限於此配置。其他實施例可包括一或多個傳導條。圖27至圖29中所展示之實施例可表示在圖26中之偏光器2610上之傳導材料2614及傳導邊框2616的實施例。27 through 29 depict an example configuration of a conductive bezel on the polarizer 2610 shown in FIG. As shown in FIG. 27, the conductive bezel can include four discrete conductive strips 2702, 2704, 2706, 2708 formed on one of the sheets of conductive material 2710 coated on a polarizer 2700. Each of the conductive strips 2702, 2704, 2706, 2708 is formed along a respective edge of one of the polarizers 2700. Although FIG. 27 depicts four conductive strips, other embodiments are not limited to this configuration. Other embodiments may include one or more conductive strips. The embodiment shown in Figures 27-29 can represent an embodiment of conductive material 2614 and conductive bezel 2616 on polarizer 2610 in Figure 26.
在一些實施例中,傳導材料片材2710可用一各向異性材料予以形成,其在一方向之傳導比另一方向更多。在此類實施例中,離散傳導條或條2702、2704、2706、2708可更有效率降低傳導材料片材2710之片電阻及/或接觸電阻。In some embodiments, the sheet of conductive material 2710 can be formed from an anisotropic material that conducts more in one direction than the other. In such embodiments, the discrete conductive strips or strips 2702, 2704, 2706, 2708 can more effectively reduce the sheet resistance and/or contact resistance of the sheet of conductive material 2710.
圖28描繪定位在一偏光器2800上之一傳導材料片材2804上之一離散L形狀之傳導條2802。在所闡釋之實施例中,傳導條2802沿偏光器2800之兩個邊緣而形成。其他實施例可包括經配置以沿偏光器2800之各邊緣定位一傳導條的兩個「L」形狀之傳導條。28 depicts a discrete L-shaped conductive strip 2802 positioned on a sheet of conductive material 2804 on a polarizer 2800. In the illustrated embodiment, conductive strips 2802 are formed along both edges of polarizer 2800. Other embodiments may include two "L" shaped conductive strips configured to position a conductive strip along each edge of polarizer 2800.
圖29繪示沿偏光器2900之整個邊緣定位的一連續傳導邊框2902。在一些情況中,連續傳導邊框2902可比一或多個傳導條更有效率降低傳導材料片材2904之片材導電率及/或接觸電阻率。傳導條2702、2704、2706、2708及/或傳導邊框2802、2902可形成上文關於圖7及圖10A所描述之連接元件706。FIG. 29 illustrates a continuous conductive bezel 2902 positioned along the entire edge of the polarizer 2900. In some cases, the continuous conductive bezel 2902 can reduce the sheet conductivity and/or contact resistivity of the sheet of conductive material 2904 more efficiently than one or more of the conductive strips. Conductive strips 2702, 2704, 2706, 2708 and/or conductive bezels 2802, 2902 can form the connecting elements 706 described above with respect to Figures 7 and 10A.
雖然結合在一電子裝置中之一顯示器堆疊來描述在圖26至圖29中所展示之實施例,但是其他實施例不限於顯示器。一力感測器可形成在任何合適的蓋件(諸如一電子裝置之殼體(例如,在圖1中之殼體104、在圖2中之軌跡板206))下方。一絕緣基材可定位在該蓋件下方。一傳導材料片材形成在該絕緣基材之一後表面上方以在該絕緣基材之該後表面上產生一導電表面。換言之,該傳導材料片材轉化該絕緣基材之該後表面成一導電表面。一傳導邊框沿該傳導材料片材之至少一邊緣而形成,及一電極層定位在該絕緣基材下方。該絕緣基材之該導電表面及該電極層一起形成經組態以偵測在該蓋層上之一力輸入的一力感測器。While the embodiments shown in Figures 26-29 are described in connection with one display stack in an electronic device, other embodiments are not limited to displays. A force sensor can be formed under any suitable cover member, such as a housing of an electronic device (e.g., housing 104 in Figure 1, track plate 206 in Figure 2). An insulating substrate can be positioned below the cover member. A sheet of conductive material is formed over a rear surface of one of the insulating substrates to create a conductive surface on the rear surface of the insulating substrate. In other words, the sheet of conductive material converts the back surface of the insulating substrate into a conductive surface. A conductive bezel is formed along at least one edge of the sheet of conductive material, and an electrode layer is positioned below the insulating substrate. The electrically conductive surface of the insulative substrate and the electrode layer together form a force sensor configured to detect a force input on the cover layer.
在前文論述通篇,關於各種實例描述力感測裝置及接觸式感測器。然而,這些實例非意欲限制所描述之特定元件、層、或組件。舉例而言,本文描述為分開及/或相異之組件(例如,力感測裝置之層)可經組合,及本文描述為組合或整合之組件可被分開。另外,一些組件可被替換、新增或移除,而不偏離本揭露之範疇。舉例而言,如上文所提及,如果一力感測裝置不與一顯示器裝置整合或不是一顯示器裝置之部件,則可自該力感測裝置省略一顯示器結構。另外,本文所描述之任何個別層或結構可包括一或多個子層。舉例而言,一蓋件可包括多個子層,其包括玻璃、塗層、黏著劑、濾光器、及類似者。舉另一實例而言,可用黏著劑、接合層、或類似者將本文所描述之力感測裝置及接觸式感測器之任何層或組件緊固至相鄰層或結構,然而此類黏著劑及接合層非必然是本文所描述者。Throughout the foregoing, the force sensing device and the contact sensor are described with respect to various examples. However, these examples are not intended to limit the particular elements, layers, or components described. For example, components described herein as separate and/or dissimilar components (eg, layers of force sensing devices) can be combined, and components described herein as being combined or integrated can be separated. In addition, some components may be substituted, added or removed without departing from the scope of the disclosure. For example, as mentioned above, if a force sensing device is not integrated with a display device or is not a component of a display device, a display structure can be omitted from the force sensing device. Additionally, any individual layer or structure described herein can include one or more sub-layers. For example, a cover member can include a plurality of sub-layers including glass, coatings, adhesives, filters, and the like. By way of another example, any layer or component of the force sensing device and contact sensor described herein can be secured to an adjacent layer or structure with an adhesive, tie layer, or the like, however such adhesion The agent and tie layer are not necessarily those described herein.
圖30描繪根據本文所描述之實施例之一電子裝置之實例組件。在圖30中描繪之示意圖可對應於在圖1至圖2中描繪之裝置之組件,且事實上對應於其中可併入本文所描述之力感測的任何裝置。FIG. 30 depicts example components of an electronic device in accordance with an embodiment described herein. The schematic depicted in FIG. 30 may correspond to the components of the device depicted in FIGS. 1-2, and in fact corresponds to any device in which the force sensing described herein may be incorporated.
如圖30中所展示,一裝置3000包括操作上連接至電腦記憶體3004及/或電腦可讀取媒體3006的一處理單元3002。處理單元3002可經由一電子匯流排或橋接器操作上連接至記憶體3004及電腦可讀取媒體3006組件。處理單元3002可包括經組態以回應於電腦可讀取指令而執行操作的一或多個電腦處理器或微控制器。處理單元3002可包括該裝置之中央處理單元(CPU)。此外或替代地,處理單元3002可包括在該裝置內之其他處理器,包括特殊應用積體電路(ASIC)及其他微控制器裝置。As shown in FIG. 30, a device 3000 includes a processing unit 3002 operatively coupled to computer memory 3004 and/or computer readable medium 3006. The processing unit 3002 can be operatively coupled to the memory 3004 and the computer readable medium 3006 component via an electronic bus or bridge. Processing unit 3002 can include one or more computer processors or microcontrollers configured to perform operations in response to computer readable instructions. Processing unit 3002 can include a central processing unit (CPU) of the device. Additionally or alternatively, processing unit 3002 can include other processors within the device, including special application integrated circuits (ASICs) and other microcontroller devices.
記憶體3004可包括各式各樣類型非暫時性電腦可讀取儲存媒體,其包括舉例而言隨機存取記憶體(RAM)、唯讀記憶體(ROM)、可抹除可程式化記憶體(例如,EPROM及EEPROM)、或快閃記憶體。記憶體3004經組態以儲存電腦可讀取指令、感測器值、及其他永續性軟體元件。電腦可讀取媒體3006亦包括各式各樣類型非暫時性電腦可讀取儲存媒體包括,舉例而言,一硬碟儲存裝置、一固態儲存裝置、一可攜式磁性儲存裝置、或其他相似裝置。電腦可讀取媒體3006亦可經組態以儲存電腦可讀取指令、感測器值、力偏轉相關性、及其他永續性軟體元件。The memory 3004 can include a wide variety of non-transitory computer readable storage media including, by way of example, random access memory (RAM), read only memory (ROM), erasable programmable memory. (for example, EPROM and EEPROM), or flash memory. Memory 3004 is configured to store computer readable instructions, sensor values, and other resiliency software components. The computer readable medium 3006 also includes a wide variety of non-transitory computer readable storage media including, for example, a hard disk storage device, a solid state storage device, a portable magnetic storage device, or the like. Device. Computer readable medium 3006 can also be configured to store computer readable commands, sensor values, force deflection correlations, and other resiliency software components.
在此實例中,處理單元3002可操作以讀取儲存在記憶體3004及/或電腦可讀取媒體3006上的電腦可讀取指令。該等電腦可讀取指令可調適處理單元3002以執行上文關於圖1至圖25或下文關於圖31之實例程序所描述之操作或功能。具體而言,處理單元3002、記憶體3004、及/或電腦可讀取媒體3006可經組態以與下文所描述之力感測器3022協作,以基於是否一使用者輸入表面之一偏轉正在使在一力感測器中之一氣隙塌陷或使一可變形元件壓縮,藉由應用不同力偏轉相關性而判定施加至該使用者輸入表面之一力量。該等電腦可讀取指令可作為一電腦程式產品、軟體應用程式、或類似者予以提供。In this example, processing unit 3002 is operative to read computer readable instructions stored on memory 3004 and/or computer readable medium 3006. The computer readable instruction adaptable processing unit 3002 performs the operations or functions described above with respect to FIGS. 1 through 25 or the example programs described below with respect to FIG. In particular, processing unit 3002, memory 3004, and/or computer readable medium 3006 can be configured to cooperate with force sensor 3022, described below, based on whether one of the user input surfaces is deflecting The air gap is collapsed in a force sensor or a deformable element is compressed, and a force applied to the user input surface is determined by applying different force deflection correlations. The computer readable instructions can be provided as a computer program product, a software application, or the like.
如圖30中所展示,裝置3000亦包括一顯示器3008。顯示器3008可包括一液晶顯示器(LCD)、有機發光二極體(OLED)顯示器、LED顯示器、或類似者。如果顯示器3008係一LCD,則顯示器3008亦可包括一背光組件,可控制該背光組件以提供可變位準之顯示亮度。如果顯示器3008係一OLED或LED類型顯示器,則可藉由修改提供至顯示器元件的電信號來控制顯示器3008之亮度。顯示器3008可對應於上文所描述之上部堆疊與下部堆疊。As shown in FIG. 30, device 3000 also includes a display 3008. Display 3008 can include a liquid crystal display (LCD), an organic light emitting diode (OLED) display, an LED display, or the like. If display 3008 is an LCD, display 3008 can also include a backlight assembly that can be controlled to provide a variable level of display brightness. If display 3008 is an OLED or LED type display, the brightness of display 3008 can be controlled by modifying the electrical signals provided to the display elements. Display 3008 can correspond to the upper and lower stacks described above.
裝置3000亦可包括經組態以提供電力至裝置3000之組件的一電池組3009。電池組3009可包括連結在一起以提供一內部電力供應的一或多個儲電電池。電池組3009可操作上耦合至電源管理電路系統,該電源管理電路系統經組態以提供用於在裝置3000內個別組件或組件群組的適合電壓及電源位準。電池組3009可經由電源管理電路系統予以組態以接收來自一外部來源(諸如一AC電源插座)之電力。電池組3009可儲存所接收之電力,使得裝置3000可在未連接至一外部電源時操作達一段延長時期,其在可數小數至數天之範圍內。Device 3000 may also include a battery pack 3009 configured to provide power to components of device 3000. Battery pack 3009 can include one or more storage batteries that are coupled together to provide an internal power supply. Battery pack 3009 is operatively coupled to a power management circuitry that is configured to provide suitable voltage and power levels for individual components or groups of components within device 3000. Battery pack 3009 can be configured via power management circuitry to receive power from an external source, such as an AC power outlet. The battery pack 3009 can store the received power such that the device 3000 can operate for an extended period of time, not counting the range of fractions to days, when not connected to an external power source.
在一些實施例中,裝置3000包括一或多個輸入裝置3010。輸入裝置3010係經組態以接收使用者輸入的一裝置。輸入裝置3010可包括,舉例而言,按鈕、一觸碰啟動按鈕、一鍵盤、一小鍵盤、或類似者。在一些實施例中,輸入裝置3010可提供一專用或主要功能,其包括舉例而言一電源按鈕、音量按鈕、首頁按鈕、滾輪、及相機按鈕。一般而言,一觸碰感測器(例如,一觸控螢幕)或一力感測器亦可分類為一輸入裝置。然而,為了此闡釋性實例用途,觸碰感測器3020及力感測器3022描繪為在裝置3000內之相異組件。In some embodiments, device 3000 includes one or more input devices 3010. Input device 3010 is configured to receive a device input by a user. Input device 3010 can include, for example, a button, a touch activation button, a keyboard, a keypad, or the like. In some embodiments, input device 3010 can provide a dedicated or primary function including, for example, a power button, a volume button, a home button, a scroll wheel, and a camera button. In general, a touch sensor (eg, a touch screen) or a force sensor can also be classified as an input device. However, for this illustrative example use, touch sensor 3020 and force sensor 3022 are depicted as distinct components within device 3000.
裝置3000亦可包括一觸碰感測器3020(例如,觸碰感測器2602,圖26),其經組態以判定在裝置3000之一觸敏表面上的一觸控之一位置。觸碰感測器3020可包括根據一互電容或自電容方案操作之電容性電極或節點之一陣列。如本文所描述,觸碰感測器3020可與一顯示器堆疊或一力感測裝置之一或多個層整合以提供一觸控螢幕之觸碰感測功能性。觸碰感測器3020之該等電容性陣列可與上文所描述之力感測裝置整合,且除了電容性感測元件外亦可提供力感測功能性。Device 3000 can also include a touch sensor 3020 (eg, touch sensor 2602, FIG. 26) configured to determine a position of a touch on one of the touch-sensitive surfaces of device 3000. Touch sensor 3020 can include an array of capacitive electrodes or nodes that operate in accordance with a mutual capacitance or self capacitance scheme. As described herein, the touch sensor 3020 can be integrated with one or a plurality of layers of a display stack or a force sensing device to provide touch sensing functionality of a touch screen. The capacitive arrays of touch sensors 3020 can be integrated with the force sensing devices described above and can provide force sensing functionality in addition to capacitive sensing elements.
裝置3000亦可包括經組態以接收及/或偵測力輸入施加至裝置3000之一使用者輸入表面的一力感測器3022。力感測器3022可對應於本文所描述之力感測裝置或力感測器之任何者,且可包括或耦合至電容性感測元件,該等電容性感測元件促進偵測該力感測器之該等組件之相對位置變化(例如,由一力輸入所引起之偏轉)。Device 3000 can also include a force sensor 3022 configured to receive and/or detect a force input applied to a user input surface of device 3000. The force sensor 3022 can correspond to any of the force sensing devices or force sensors described herein, and can include or be coupled to a capacitive sensing component that facilitates detecting the force sensor The relative positional change of the components (e.g., the deflection caused by a force input).
如本文所描述,力感測器3022可包括接觸式感測器,該等接觸式感測器經組態以用信號發送何時藉由一力輸入而使一氣隙已完全塌陷。力感測器3022(包括該等接觸式感測器)可操作上耦合至處理單元3002,該處理單元可處理來自力感測器3022之信號,以判定在該使用者輸入表面上之一所施加力量,如上文所描述。As described herein, the force sensor 3022 can include a touch sensor that is configured to signal when an air gap has completely collapsed by a force input. A force sensor 3022 (including the contact sensors) is operatively coupled to the processing unit 3002, which can process signals from the force sensor 3022 to determine one of the user input surfaces Apply force as described above.
裝置3000亦可包括可用以偵測裝置3000之一環境條件、定向、位置、或一些其他態樣的一或多個感測器3024。可包括在裝置3000中之實例感測器3024包括(但不限於)一或多個加速度計、陀螺計、傾斜計、測角計、或磁力計。感測器3024亦可包括一或多個近接感測器,諸如一磁性霍爾效應感測器、電感式感測器、電容性感測器、連續性感測器、及類似者。Device 3000 can also include one or more sensors 3024 that can be used to detect one of the environmental conditions, orientations, locations, or some other aspect of device 3000. Example sensors 3024 that may be included in device 3000 include, but are not limited to, one or more accelerometers, gyroscopes, inclinometers, goniometers, or magnetometers. The sensor 3024 can also include one or more proximity sensors, such as a magnetic Hall effect sensor, an inductive sensor, a capacitive sensor, a continuous sensor, and the like.
亦可概括定義感測器3024以包括無線定位裝置,包括(但不限於)全球定位系統(GP)電路系統、Wi-Fi電路系統、蜂巢式通訊電路系統、及類似者。裝置3000亦可包括一或多個光學感測器,包括(但不限於)光偵測器、光感測器、影像感測器、紅外線感測器、及類似者。雖然在圖30中將相機3026描繪為一分開之元件,但是概括定義的感測器3024亦可包括含有或不含有一附隨光源或閃光燈的相機3026。感測器3024亦可包括一或多個聲學元件,諸如與一揚聲器元件單獨使用或組合使用之一麥克風。該等感測器亦可包括一溫度感測器、氣壓計、壓力感測器、高度計、濕度感測器、或其他相似環境感測器。The sensor 3024 can also be generally defined to include wireless positioning devices including, but not limited to, global positioning system (GP) circuitry, Wi-Fi circuitry, cellular communication circuitry, and the like. Device 3000 can also include one or more optical sensors including, but not limited to, photodetectors, light sensors, image sensors, infrared sensors, and the like. Although the camera 3026 is depicted in FIG. 30 as a separate component, the generally defined sensor 3024 can also include a camera 3026 with or without an accompanying light source or flash. The sensor 3024 can also include one or more acoustic elements, such as one of the microphones used alone or in combination with a single speaker element. The sensors may also include a temperature sensor, a barometer, a pressure sensor, an altimeter, a humidity sensor, or other similar environmental sensor.
裝置3000亦可包括經組態以捕獲一數位影像或其他光學資料的一相機3026。相機3026可包括一電荷耦合裝置、互補金屬氧化物半導體(CMOS)裝置、或經組態以轉換光成電信號的其他裝置。相機3026亦可包括一或多個光源,諸如一頻閃燈、閃光燈、或其他發光裝置。如上文所論述,相機3026可大致上分類為用於偵測在裝置3000附近之光學條件及/或物件的一感測器。然而,相機3026亦可用以建立可依一電子格式儲存的寫實影像,諸如JPG、GIF、TIFF、PNG、純影像檔案、或其他相似檔案類型。Device 3000 can also include a camera 3026 configured to capture a digital image or other optical material. Camera 3026 can include a charge coupled device, a complementary metal oxide semiconductor (CMOS) device, or other device configured to convert light into an electrical signal. Camera 3026 can also include one or more light sources, such as a strobe light, flash, or other illumination device. As discussed above, camera 3026 can be broadly classified as a sensor for detecting optical conditions and/or objects in the vicinity of device 3000. However, camera 3026 can also be used to create realistic images that can be stored in an electronic format, such as JPG, GIF, TIFF, PNG, pure image archives, or other similar file types.
裝置3000亦可包括一通訊埠3028,其經組態以傳輸及/或接收來自一外部或分開之裝置的信號或電通訊。通訊埠3028可經組態以經由一纜線、配接器、或其他類型電連接器而耦合至一外部裝置。在一些實施例中,通訊埠3028可用以耦合裝置3000至一配件,諸如一智慧型保護套(smart case)、智慧型蓋件、智慧型支架(smart stand)、鍵盤、或經組態以傳送及/或接收電信號的其他裝置。Apparatus 3000 can also include a communication port 3028 configured to transmit and/or receive signals or electrical communications from an external or separate device. Communication port 3028 can be configured to couple to an external device via a cable, adapter, or other type of electrical connector. In some embodiments, the communication port 3028 can be used to couple the device 3000 to an accessory, such as a smart case, a smart cover, a smart stand, a keyboard, or configured to transmit And/or other devices that receive electrical signals.
裝置3000可使用任何適合的技術或演算法來判定施加至一使用者輸入表面之一力量。舉例而言,裝置3000可使用來自力感測裝置之資料、讀數、或其他資訊,且接著,應用數學公式或諮詢模型或查詢表,以基於來自該力感測裝置之該資訊來判定一所施加力量。更具體而言,用於判定施加至包括一力感測裝置之一結構的一力量之一種實例技術包括諮詢使一感測器值(例如,一所偵測電容值)與一特定已知力互相關的一查詢表或其他資料結構。可由一校準程序填入該查詢表,藉此一已知力施加至在該使用者輸入表面上之各種位置。對於各位置,針對該感測器之各像素或感測區域的所得感測器值(其等可稱為校準值)儲存在該查詢表(或其他資料結構)中。據此,在該查詢表中存在針對各使用者輸入位置的一組校準值,校準值表示當該感測器經受一已知力時該感測器之所有像素或感測區域的感測器值。在一些情況中,存在針對各位置之多組校準值,諸如與不同已知量值之力相關聯之值。Device 3000 can use any suitable technique or algorithm to determine the force applied to a user input surface. For example, device 3000 can use data, readings, or other information from the force sensing device, and then apply a mathematical formula or consulting model or lookup table to determine a based on the information from the force sensing device. Apply strength. More specifically, an example technique for determining a force applied to a structure including a force sensing device includes consulting to cause a sensor value (eg, a detected capacitance value) to interact with a particular known force A related lookup table or other data structure. The lookup table can be populated by a calibration procedure whereby a known force is applied to various locations on the user input surface. For each location, the resulting sensor values (which may be referred to as calibration values) for each pixel or sensing region of the sensor are stored in the lookup table (or other data structure). Accordingly, there is a set of calibration values for each user input location in the lookup table, the calibration values representing the sensor values of all pixels or sensing regions of the sensor when the sensor is subjected to a known force. . In some cases, there are multiple sets of calibration values for each location, such as values associated with forces of different known magnitudes.
為了在正常操作期間判定施加至該使用者輸入表面之一力量,(例如,用觸碰感測器3020)判定在該輸入表面上之一觸控事件之一位置,並且使用該位置之校準值結合所偵測感測器值來判定實際所施加力。舉實例而言,如果相對應於在一給定位置之一觸控事件的所偵測感測器值係與在該位置處之一觸控事件之相關聯之校準值的約三倍,則裝置3000可判定該所施加力比該校準力大約三倍。To determine a force applied to the user input surface during normal operation, (eg, with touch sensor 3020) determine one of the touch events on the input surface and use the calibration value for the position The actual applied force is determined in conjunction with the detected sensor value. For example, if the detected sensor value corresponding to one of the touch events at a given location is approximately three times the calibration value associated with one of the touch events at that location, then Device 3000 can determine that the applied force is approximately three times greater than the calibration force.
用於判定一所施加力量之另一技術包括判定施加至一感測器之各像素或感測區域之一力量,及接著,將來自各像素或感測區域的該力相加以判定施加至該感測器之總力量。在使用此技術的情況中,可使用兩個感測元件之間之距離變化結合該兩個感測元件之間之一材料之一已知勁度,以判定施加至該像素或區域之該力。舉特定實例而言,一可變形元件(例如,可變形元件514,圖5)可定位於電容性感測元件之間。該等電容性感測元件可對應於在圖5中可分別係電容性感測層及驅動層之第二感測元件512及第三感測元件515。該等電容性感測元件亦可對應於在圖26中之第一電極層2622及傳導材料2614。藉由測量值該等電容性感測元件之間之一電容,裝置3000可判定由施加至該可變形元件一力所引起的該等感測元件之間之一距離(或一距離變化)。該距離變化可乘以該可變形元件之一勁度(例如,使材料之一預期偏轉或變形與一給定力互相關之一常數)以判定相對應於所偵測距離變化之該力量。如上文所提及,第二感測元件512及第三感測元件515可界定數個不同像素或感測區域(例如,區域702,圖7)。據此,前述技術可用以判定施加至各個別像素或感測區域之力,並且可組合(例如,相加)該等力以判定施加至該使用者輸入表面及/或該感測器之總力量。Another technique for determining an applied force includes determining a force applied to each pixel or sensing region of a sensor, and then applying a sum of the forces from each pixel or sensing region to the determination The total strength of the sensor. In the case of using this technique, a change in distance between two sensing elements can be used in combination with one of the materials of one of the two sensing elements, to determine the force applied to the pixel or region. . For a particular example, a deformable element (eg, deformable element 514, Figure 5) can be positioned between the capacitive sensing elements. The capacitive sensing elements can correspond to the second sensing element 512 and the third sensing element 515, which are respectively the capacitive sensing layer and the driving layer in FIG. The capacitive sensing elements may also correspond to the first electrode layer 2622 and the conductive material 2614 in FIG. By measuring the capacitance of one of the capacitive sensing elements, device 3000 can determine a distance (or a change in distance) between the sensing elements caused by a force applied to the deformable element. The change in distance can be multiplied by a stiffness of the deformable element (e.g., a constant that causes one of the materials to be deflected or deformed to correlate with a given force) to determine the force corresponding to the detected distance change. As mentioned above, the second sensing element 512 and the third sensing element 515 can define a number of different pixels or sensing regions (eg, region 702, Figure 7). Accordingly, the foregoing techniques can be used to determine the force applied to individual pixels or sensing regions, and can combine (eg, add) the forces to determine the total applied to the user input surface and/or the sensor. power.
在一些情況中,可針對各感測區域判定該可變形元件之勁度(例如,一勁度常數)。因此,針對各區域之距離測量可乘以該區域特有之一勁度常數,其可改良針對各像素或區域之力測量之精確度,且因此可改良該力感測器之總精確度。可手動判定針對各像素或感測區域之勁度常數,舉例而言,藉由施加一已知力至該可變形元件之各區(相對應於一像素或感測區域),及測量該可變形元件已偏轉之量或距離。在一些情況中,可依不同力進行多個測量以判定該可變形材料之一平均勁度常數或一勁度量變曲線。如與針對各感測區域使用相同勁度常數相比較,此可增加一感測器之精確度,此係因為勁度隨區域而變化。In some cases, the stiffness of the deformable element (eg, a stiffness constant) can be determined for each sensing region. Thus, the distance measurement for each region can be multiplied by a specific stiffness constant for that region, which can improve the accuracy of force measurements for each pixel or region, and thus can improve the overall accuracy of the force sensor. The stiffness constant for each pixel or sensing region can be manually determined, for example, by applying a known force to each region of the deformable element (corresponding to a pixel or sensing region), and measuring the deformable The amount or distance that the component has been deflected. In some cases, multiple measurements may be made according to different forces to determine an average stiffness constant or a constant metric curve for the one of the deformable materials. This can increase the accuracy of a sensor as compared to using the same stiffness constant for each sensing region, since the stiffness varies with the region.
前述技術之任一者(例如,諮詢一查詢表或基於一勁度常數來計算力)可用以判定施加至本文所描述之一給定感測器或感測裝置的力。在其中一裝置包括多個感測器的實施例中,可針對各感測器使用一不同技術。舉例而言,針對力感測裝置500(其包括第一電容性感測器518及第二電容性感測器519(圖5)),一查詢表可用以判定施加至第一電容性感測器518的力,及一以勁度為基礎之力計算可用以判定施加至第二電容性感測器519的力。舉另一實例而言,圖23A至圖23B之裝置包括定位於一殼體與一蓋件之間之一感測器2302,以及在該殼體內之一感測器(例如,該殼體包括第一感測元件2304及第二感測元件2306,連同在第一感測元件2304與第二感測元件2306之間之一可變形元件314)。在此情況中,一查詢表可用以判定施加至感測器2303的力,及一以勁度為基礎之計算可用以判定施加至在該殼體內之感測器(例如,第一感測元件2304及第二感測元件2306)的力。替代地,一查詢表技術可用於感測器兩者。Any of the foregoing techniques (eg, consulting a lookup table or calculating a force based on a stiffness constant) can be used to determine the force applied to a given sensor or sensing device described herein. In embodiments where one device includes multiple sensors, a different technique can be used for each sensor. For example, for force sensing device 500 (which includes first capacitive sensor 518 and second capacitive sensor 519 (FIG. 5)), a look-up table can be used to determine the application to first capacitive sensor 518. The force, and a stiffness-based force calculation can be used to determine the force applied to the second capacitive sensor 519. As another example, the device of Figures 23A-23B includes a sensor 2302 positioned between a housing and a cover, and a sensor within the housing (eg, the housing includes First sensing element 2304 and second sensing element 2306, together with one deformable element 314) between first sensing element 2304 and second sensing element 2306. In this case, a lookup table can be used to determine the force applied to the sensor 2303, and a stiffness based calculation can be used to determine the sensor applied to the housing (eg, the first sensing element) The force of 2304 and second sensing element 2306). Alternatively, a look-up table technique can be used for both sensors.
在使用兩個或更多個感測器的情況中,可組合針對各感測器所判定之力值,以產生表示施加至該使用者輸入表面的力之一單一值。舉例而言,參照力感測裝置500(圖5),第一電容性感測器518及第二電容性感測器519可回應於不同所施加力而偏轉。更具體而言,(介於第一感測元件505與第二感測元件512之間之)氣隙506及510可回應於具有一特定值之一所施加力而塌陷。因為氣隙506、510係在第一感測元件505與第二感測元件512之間,所以由這些感測元件界定之第一電容性感測器518可用以判定力直至特定值。然而,因為無法進一步縮減介於第一感測元件505與第二感測元件512之間之距離,所以第一電容性感測器518將不偵測超過該特定值的所施加力之值。然而,在氣隙506、510之塌陷之後,第二電容性感測器519可偵測力。據此,在第一電容性感測器518及第二電容性感測器519兩者產生力值的情況中,該等值可相加以判定施加至力感測裝置500之總力。可使用相同或一相似程序結合關於圖26所描述之力感測器,其中傳導材料2614及第一電極層2622形成一第一力感測器,及第一電極層2622及第二電極層2630形成一第二力感測器。Where two or more sensors are used, the force values determined for each sensor can be combined to produce a single value representative of the force applied to the user input surface. For example, referring to the force sensing device 500 (FIG. 5), the first capacitive sensor 518 and the second capacitive sensor 519 can be deflected in response to different applied forces. More specifically, the air gaps 506 and 510 (between the first sensing element 505 and the second sensing element 512) may collapse in response to a force applied by one of a particular value. Because the air gaps 506, 510 are between the first sensing element 505 and the second sensing element 512, the first capacitive sensor 518 defined by the sensing elements can be used to determine the force up to a particular value. However, since the distance between the first sensing element 505 and the second sensing element 512 cannot be further reduced, the first capacitive sensor 518 will not detect the value of the applied force exceeding the specific value. However, after collapse of the air gaps 506, 510, the second capacitive sensor 519 can detect the force. Accordingly, in the case where both the first capacitive sensor 518 and the second capacitive sensor 519 generate a force value, the values may be added to determine the total force applied to the force sensing device 500. The same or a similar procedure can be used in conjunction with the force sensor described with respect to FIG. 26, wherein the conductive material 2614 and the first electrode layer 2622 form a first force sensor, and the first electrode layer 2622 and the second electrode layer 2630 A second force sensor is formed.
圖31描繪用於判定施加在一電子裝置之一使用者輸入表面上之一力量之一實例程序3100。可在本文所論述之實例裝置之任何者上實施程序3100。舉例而言,可使用程序3100以判定該電子裝置應回應於力輸入而執行什麼動作(若有),且可使用舉例而言關於圖30所描述之處理單元及其他硬體元件予以實施。程序3100可係實施為儲存在該電子裝置之記憶體內的處理器可執行指令。Figure 31 depicts an example program 3100 for determining one of the forces applied to a user input surface of an electronic device. Program 3100 can be implemented on any of the example devices discussed herein. For example, program 3100 can be used to determine what action, if any, the electronic device should perform in response to the force input, and can be implemented using, for example, the processing unit and other hardware components described with respect to FIG. Program 3100 can be implemented as processor-executable instructions stored in the memory of the electronic device.
在操作3102中,判定是否一感測器信號對應於一第一間隔層之一變形(例如,一氣隙,如上文所描述)或一第二間隔層(例如,一可變形元件,如上文所描述)之一變形,或兩者之一組合。舉例而言,該裝置可監測一感測器信號之一變化率。如果該感測器信號之該變化率滿足一第一條件(例如,在一特定變形範圍內恆定或低於一臨限值),則該裝置可判定一氣隙正在塌陷或已塌陷。如果該感測器信號之該變化率滿足一第二條件(例如,在一特定變形範圍內增加或高於該臨限值),則該裝置可判定一氣隙已完全塌陷及一可變形元件已被壓縮或將要至少部分被壓縮。舉另一實例而言,該裝置可基於是否一接觸式感測器(例如,關於圖16及圖18A至圖22B所描述之接觸式感測器)指示該第一間隔層已完全塌陷,而判定是否一感測器信號對應於一第一間隔層或一第二間隔層之一塌陷。In operation 3102, it is determined whether a sensor signal corresponds to one of a first spacer layer (eg, an air gap, as described above) or a second spacer layer (eg, a deformable element, as described above) Description) One of the variants, or a combination of the two. For example, the device can monitor a rate of change of a sensor signal. If the rate of change of the sensor signal satisfies a first condition (e.g., constant or below a threshold within a particular range of deformation), then the device can determine that an air gap is collapsing or has collapsed. If the rate of change of the sensor signal satisfies a second condition (eg, increases or exceeds the threshold within a particular range of deformation), the device can determine that an air gap has completely collapsed and a deformable component has Compressed or will be at least partially compressed. By way of another example, the device can indicate that the first spacer layer has completely collapsed based on whether a contact sensor (eg, the touch sensor described with respect to Figures 16 and 18A-22B) It is determined whether a sensor signal corresponds to collapse of one of the first spacer layer or a second spacer layer.
在操作3104中,選擇一力偏轉相關性。如本文所描述,取決於是否該力感測器之偏轉對應於一第一間隔層(例如,一氣隙)之一塌陷或一第二間隔層(例如,一可變形元件)之變形,可使用一不同力偏轉相關性以判定一所施加力量。因此,如果該裝置在操作3102判定該感測器信號對應於該第一間隔層之一變形(諸如一氣隙之塌陷),則該裝置可在操作3104選擇一第一力偏轉相關性。如果該裝置在操作3102判定該感測器信號對應於該第二間隔層之一變形(諸如一可變形元件之壓縮),則該裝置可在操作3104選擇一第二力偏轉相關性,該第二力偏轉相關性不同於該第一力偏轉相關性。In operation 3104, a force deflection correlation is selected. As described herein, depending on whether the deflection of the force sensor corresponds to a collapse of one of the first spacer layers (eg, an air gap) or a deformation of a second spacer layer (eg, a deformable element), A different force deflects the correlation to determine an applied force. Thus, if the device determines at operation 3102 that the sensor signal corresponds to a deformation of one of the first spacer layers (such as a collapse of an air gap), then the device can select a first force deflection correlation at operation 3104. If the device determines at operation 3102 that the sensor signal corresponds to a deformation of one of the second spacer layers (such as compression of a deformable element), the device may select a second force deflection correlation at operation 3104, the The two-force deflection correlation is different from the first force deflection correlation.
在其中該裝置包括跨越不同間隔層的多個感測器(諸如該第一電容性感測器518及第二電容性感測器519,圖5)的實施例中,該裝置可選擇及使用多個力偏轉相關性。舉例而言,如果該裝置在操作3102判定偏轉對應於一第一間隔層及一第二間隔層兩者之一至少部分塌陷,則該裝置可針對各感測器選擇一適合的力偏轉相關性。In embodiments where the device includes a plurality of sensors across different spacer layers, such as the first capacitive sensor 518 and the second capacitive sensor 519, FIG. 5, the device can select and use multiple Force deflection correlation. For example, if the device determines at operation 3102 that the deflection corresponds to at least partial collapse of one of the first spacer layer and the second spacer layer, the device can select a suitable force deflection correlation for each sensor. .
在操作3106中,基於該(等)所選擇力偏轉相關性判定一所施加力量。舉例而言,該裝置藉由使用一查詢表、一以勁度為基礎之力計算、或實施該所選擇力偏轉相關性之另一技術,使由該感測器信號指示之偏轉量與一特定所施加力互相關。在其中該裝置包括多個感測器的實施例中,該裝置可使由各感測器指示之偏轉量與一力值互相關,及接著,將來自各感測器的該等力值相加以判定總所施加力量。In operation 3106, an applied force is determined based on the selected force deflection correlation. For example, the apparatus utilizes a look-up table, a stiffness-based force calculation, or another technique for performing the selected force deflection correlation, such that the amount of deflection indicated by the sensor signal is The specific applied forces are cross-correlated. In embodiments in which the device includes a plurality of sensors, the device can correlate the amount of deflection indicated by each sensor with a force value, and then, the force values from the respective sensors Determine the total force exerted by the general.
基於該所判定施加力量,該裝置可執行(或不執行)一定動作。舉例而言,如果該所施加力低於一臨限值,則該裝置可執行一動作,及如果該所施加力高於該臨限值,該裝置可執行另一動作。舉實例而言,如果該力低於該臨限值,則該裝置可移動一游標至相對應於觸控事件之位置的一位置,而如果該力高於該臨限值,則該裝置可記錄在該游標之該位置處的一選擇(例如,一滑鼠點選)。然而,此僅僅係一實例,且該裝置可基於該所判定施加力量而執行的可行動作範圍僅受限於該裝置之能力。Based on the determined force applied, the device may (or not perform) a certain action. For example, if the applied force is below a threshold, the device can perform an action, and if the applied force is above the threshold, the device can perform another action. For example, if the force is below the threshold, the device can move a cursor to a position corresponding to the position of the touch event, and if the force is higher than the threshold, the device can A selection is made at that location of the cursor (eg, a mouse click). However, this is merely an example, and the range of possible actions that the device can perform based on the determined applied force is limited only by the capabilities of the device.
如上文所提及,可使用含傳導邊框之力感測器片材或層。舉例而言,如關於圖7、圖10A,及圖26至圖29所描述,傳導片材可用作為用於電容性力感測系統的驅動層。傳導邊框可施加至該等傳導片材中或以其他方式包括在該等傳導片材中。圖32展示一種在一片材(諸如,如關於圖26至圖29所描述之一偏光器或關於圖5、圖7、及圖10A所描述之一力感測元件505)之一表面上製造傳導邊框之方法的流程圖。將結合圖33至圖37描述圖32。結合一卷對卷生產程序描述該方法。雖然結合一偏光器進行描述,但是該程序可用以在任何合適的膜或基材上產生一傳導邊框。此外,結合形成連續傳導邊框(例如,參見圖7、圖29)描述該方法,但是實施例不限於此類型傳導邊框。As mentioned above, a force sensor sheet or layer containing a conductive bezel can be used. For example, as described with respect to Figures 7, 10A, and 26-29, a conductive sheet can be used as a drive layer for a capacitive force sensing system. A conductive bezel can be applied to or otherwise included in the conductive sheets. 32 shows a fabrication on the surface of one of the sheets, such as one of the polarizers described with respect to FIGS. 26-29 or one of the force sensing elements 505 described with respect to FIGS. 5, 7, and 10A. A flow chart of a method of conducting a bezel. FIG. 32 will be described with reference to FIGS. 33 to 37. This method is described in conjunction with a roll-to-volume production process. Although described in connection with a polarizer, the procedure can be used to create a conductive bezel on any suitable film or substrate. Further, the method is described in connection with forming a continuous conductive bezel (see, for example, FIGS. 7 and 29), but the embodiment is not limited to this type of conductive bezel.
在其他實施例中,可使用其他製造程序在一偏光器或基材上製造一傳導邊框。實例製造程序包括(但不限於)物理或化學氣相沉積、使用一陰影遮罩之網版印刷或噴墨塗佈技術、以及膜遮罩及微影。In other embodiments, other manufacturing processes can be used to create a conductive bezel on a polarizer or substrate. Example fabrication procedures include, but are not limited to, physical or chemical vapor deposition, screen printing or inkjet coating techniques using a shadow mask, and film masks and lithography.
最初,如區塊3200中所展示,遮罩施加至一膜之一表面。在一實施例中,該膜係一偏光器膜,其包括形成或塗佈在該偏光器膜之一表面上的一傳導材料片材。如前文所描述,該偏光器膜將附接(例如,疊層)至一顯示器元件之後表面且用作為用於顯示器之一偏光器(例如,在圖26中之顯示器元件2608及後偏光器2610)。Initially, as shown in block 3200, a mask is applied to one of the surfaces of a film. In one embodiment, the film is a polarizer film comprising a sheet of conductive material formed or coated on one surface of the polarizer film. As previously described, the polarizer film will be attached (eg, laminated) to the back surface of a display element and used as a polarizer for the display (eg, display element 2608 and rear polarizer 2610 in FIG. 26) ).
各遮罩界定將由該傳導邊框所環繞或在該傳導邊框內部之該區。舉例而言,該等遮罩可界定一顯示器之使用者可觀看區域(例如,使用者可觀看區域108)。雖然描繪為具有一矩形形狀,但是一遮罩可具有任何給定形狀及/或尺寸。Each mask defines the area that will be surrounded by or within the conductive bezel. For example, the masks can define a user viewable area of a display (eg, user viewable area 108). Although depicted as having a rectangular shape, a mask can have any given shape and/or size.
在一些實施例中,各遮罩可係多個遮罩之一者。舉例而言,當在一膜基材上形成多個傳導條(例如,參見圖27)時,一遮罩界定將不包括傳導條之區。In some embodiments, each mask can be one of a plurality of masks. For example, when a plurality of conductive strips are formed on a film substrate (see, for example, Figure 27), a mask defines regions that will not include conductive strips.
圖33A至圖33B描繪施加遮罩至一膜之一表面。如圖33A中所展示,施加程序3300包括在一卷對卷生產系統中,使膜3302自一第一輥3304移動朝向一第二輥3306。在圖33A及33B中藉由箭頭3308表示此移動。在一實施例中,第二輥3306包括在圖32中所展示之方法之成品(例如,形成在該偏光器膜之表面上的傳導邊框之一集合)。在另一實施例中,第二輥3306包括形成在該膜之表面上之遮罩之一集合(例如,區塊3200之成品)。Figures 33A-33B depict the application of a mask to one of the surfaces of a film. As shown in Figure 33A, the application program 3300 includes moving the film 3302 from a first roll 3304 toward a second roll 3306 in a roll-to-roll production system. This movement is indicated by arrows 3308 in Figures 33A and 33B. In one embodiment, the second roller 3306 includes the finished product of the method illustrated in Figure 32 (e.g., a collection of conductive bezel formed on the surface of the polarizer film). In another embodiment, the second roll 3306 includes a collection of masks formed on the surface of the film (eg, finished product of block 3200).
一第三輥3310定位於第一輥3304與第二輥3306之間。第三輥3310包括隨著膜3302在第三輥3310下方移動而施加至膜3302之遮罩3312之一集合。圖33B繪示在已藉由第三輥3310施加遮罩3312至膜3302之後的俯視圖膜3302。A third roller 3310 is positioned between the first roller 3304 and the second roller 3306. The third roller 3310 includes a collection of masks 3312 that are applied to the film 3302 as the film 3302 moves under the third roller 3310. FIG. 33B illustrates a top view film 3302 after the mask 3312 has been applied to the film 3302 by the third roller 3310.
現在參照在圖32中之區塊3202,一傳導材料形成在該等遮罩及該膜之表面上方。該傳導材料係用以形成該等傳導邊框之材料。圖34A至圖34B展示形成該傳導材料於該膜及該等遮罩上方。形成程序3400包括使膜3302自一第四輥3402移動朝向一第五輥3404(由箭頭3406表示移動)。在一實施例中,第四輥3402對應於第一輥3304及第五輥3404對應於第二輥3306。在此類實施例中,第五輥3404包括形成在該偏光器膜之表面上的傳導邊框之一集合(例如,在圖32中所展示之方法之成品)。在其他實施例中,第四輥3402包括區塊3200之成品。Referring now to block 3202 of Figure 32, a conductive material is formed over the surfaces of the masks and the film. The conductive material is used to form the material of the conductive bezel. Figures 34A-B show the formation of the conductive material over the film and the masks. Forming process 3400 includes moving film 3302 from a fourth roller 3402 toward a fifth roller 3404 (represented by arrow 3406). In an embodiment, the fourth roller 3402 corresponds to the first roller 3304 and the fifth roller 3404 corresponds to the second roller 3306. In such an embodiment, the fifth roller 3404 includes a collection of conductive bezels formed on the surface of the polarizer film (e.g., the finished product of the method shown in Figure 32). In other embodiments, the fourth roller 3402 includes the finished product of the block 3200.
在所闡釋之實施例中,含有遮罩3312之膜3302進入一沉積室3408,其中一噴嘴3410沉積傳導材料3412至膜3302及遮罩3312上。該沉積可係一毯覆沉積,使得整個膜3302及遮罩3312具有沉積於其上之傳導材料。圖34B繪示在已藉由沉積室3408沉積傳導材料3412至膜3302及遮罩3312上之後的俯視圖膜3302。In the illustrated embodiment, the membrane 3302 containing the mask 3312 enters a deposition chamber 3408, wherein a nozzle 3410 deposits conductive material 3412 onto the membrane 3302 and the mask 3312. The deposit can be deposited as a blanket such that the entire film 3302 and mask 3312 have a conductive material deposited thereon. FIG. 34B illustrates a top view film 3302 after deposition of conductive material 3412 to film 3302 and mask 3312 by deposition chamber 3408.
現在參照在圖32中之區塊3204,在該傳導材料已形成在該等遮罩及該膜上方之後自該膜之表面上係移除等遮罩。圖35A至圖35B展示自膜3302移除遮罩3312。移除程序3500包括使膜3302自一第六輥3502移動朝向一第七輥3504(由箭頭3506表示移動)。在一實施例中,第六輥3502對應於第一輥3304及第七輥3504對應於第二輥3306。在此類實施例中,第七輥3504包括在圖32中所展示之方法之成品。在其他實施例中,第六輥3502包括區塊3202之成品。Referring now to block 3204 of Figure 32, a mask is removed from the surface of the film after the conductive material has been formed over the mask and the film. 35A-35B show the removal of the mask 3312 from the film 3302. The removal procedure 3500 includes moving the film 3302 from a sixth roller 3502 toward a seventh roller 3504 (represented by arrow 3506). In an embodiment, the sixth roller 3502 corresponds to the first roller 3304 and the seventh roller 3504 corresponds to the second roller 3306. In such an embodiment, the seventh roller 3504 includes the finished product of the method shown in FIG. In other embodiments, the sixth roller 3502 includes the finished product of the block 3202.
一第八輥3508定位於第六輥3502與第七輥3504之間。第八輥3508移除遮罩3312,而留下僅包括膜3302之區域3514。該傳導材料設置在繞區域3514之區上。圖35B繪示在已藉由第八輥3508移除遮罩3312之後的膜3302之俯視圖。An eighth roller 3508 is positioned between the sixth roller 3502 and the seventh roller 3504. The eighth roller 3508 removes the mask 3312 leaving an area 3514 that only includes the membrane 3302. The conductive material is disposed on the region around the region 3514. FIG. 35B illustrates a top view of the film 3302 after the mask 3312 has been removed by the eighth roller 3508.
可使用任何合適的程序以移除遮罩3312。舉例而言,在一實施例中,第八輥3508採用一靜電技術以移除遮罩3312。Any suitable procedure can be used to remove the mask 3312. For example, in one embodiment, the eighth roller 3508 employs an electrostatic technique to remove the mask 3312.
在一些實施例中,一成像系統(例如,一相機)可定位在膜3302上方、介於第八輥3508與第七輥3504之間。在已藉由第八輥3508移除該等遮罩之後,該成像系統或自動化光學檢測系統可用以檢測該膜是否有缺陷。In some embodiments, an imaging system (eg, a camera) can be positioned over the membrane 3302 between the eighth roller 3508 and the seventh roller 3504. After the masks have been removed by the eighth roller 3508, the imaging system or automated optical inspection system can be used to detect if the film is defective.
現在參照在圖32中之區塊3206,一保護性層形成在該膜之表面及該傳導材料上方。圖36A至圖36B展示形成該保護性層於該膜及該傳導材料上方。形成程序3600包括使膜3302自一第九輥3602移動朝向一第十輥3604(由箭頭3606表示移動)。在一實施例中,第九輥3602對應於第一輥3304及第十輥3604對應於第二輥3304。在此類實施例中,第十輥3604包括在圖32中所展示之方法之成品。在其他實施例中,第九輥3602包括區塊3204之成品。Referring now to block 3206 in Figure 32, a protective layer is formed over the surface of the film and over the conductive material. 36A-36B illustrate the formation of the protective layer over the film and the conductive material. Forming process 3600 includes moving film 3302 from a ninth roller 3602 toward a tenth roller 3604 (represented by arrow 3606). In an embodiment, the ninth roller 3602 corresponds to the first roller 3304 and the tenth roller 3604 corresponds to the second roller 3304. In such an embodiment, the tenth roller 3604 includes the finished product of the method shown in FIG. In other embodiments, the ninth roller 3602 includes the finished product of the block 3204.
一第十一輥3608定位於第九輥3602與第十輥3604之間。第十一輥3608施加保護性層3610於膜3302及傳導材料3412上方。圖36B繪示在已藉由第十一輥3608施加保護性層3610之後之膜3302的俯視圖。An eleventh roller 3608 is positioned between the ninth roller 3602 and the tenth roller 3604. The eleventh roll 3608 applies a protective layer 3610 over the film 3302 and the conductive material 3412. FIG. 36B illustrates a top view of film 3302 after protective layer 3610 has been applied by eleventh roll 3608.
現在參照在圖32中之區塊3208,該等傳導邊框被切割(例如,單切)以產生各由一傳導邊框所環繞之膜之個別區段。圖37A至圖37B展示產生由一傳導邊框所環繞之膜之各個別區段。切割程序3700包括使膜3302自一第十二輥3702移動朝向一第十三輥3704(由箭頭3706表示移動)。在一實施例中,第十二輥3702對應於第一輥3304及第十三輥3704對應於第二輥3306。在此類實施例中,第十三輥3704包括在圖32中所展示之方法之成品。在其他實施例中,第十二輥3702包括區塊3206之成品。Referring now to block 3208 in Figure 32, the conductive bezels are cut (e.g., single cut) to create individual segments of the film each surrounded by a conductive bezel. Figures 37A-37B illustrate the creation of individual sections of a film surrounded by a conductive bezel. The cutting procedure 3700 includes moving the film 3302 from a twelfth roller 3702 toward a thirteenth roller 3704 (represented by arrow 3706). In an embodiment, the twelfth roller 3702 corresponds to the first roller 3304 and the thirteenth roller 3704 corresponds to the second roller 3306. In such an embodiment, the thirteenth roller 3704 includes the finished product of the method shown in FIG. In other embodiments, the twelfth roller 3702 includes the finished product of the block 3206.
在所闡釋之實施例中,一單切系統3708定位在膜3302上方、介於第十二輥3702與第十三輥3704之間。單切系統3708包括一精密模切工具3710,該精密模切工具藉由一或多個對齊相機3712而對齊。In the illustrated embodiment, a single-cut system 3708 is positioned over the membrane 3302 between the twelfth roller 3702 and the thirteenth roller 3704. The single cut system 3708 includes a precision die cutting tool 3710 that is aligned by one or more alignment cameras 3712.
在一實施例中,精密模切工具3710使用區域3514(圖35)之一或多個隅角作為一切割參考3714以定位模切圖案3716。圖37B繪示在模切工具3710切割個別區段之前的含切割參考3714及模切圖案3716之膜3302的俯視圖。在圖37B中亦描繪兩個單切區段3718。各單切區段3718包括由一傳導邊框3722所環繞之膜3720之一區段。如前文所描述,膜3720之該區段包括形成在一偏光器膜上方之一傳導材料片材(例如,塗佈在圖26中之後偏光器2610上之傳導材料片材2614)。In one embodiment, the precision die cutting tool 3710 uses one or more corners of the region 3514 (FIG. 35) as a cutting reference 3714 to position the die cut pattern 3716. FIG. 37B illustrates a top view of film 3302 including cutting reference 3714 and die cut pattern 3716 prior to cutting individual segments by die cutting tool 3710. Two single cut sections 3718 are also depicted in Figure 37B. Each single cut section 3718 includes a section of film 3720 surrounded by a conductive bezel 3722. As previously described, this section of film 3720 includes a sheet of conductive material formed over a polarizer film (e.g., a sheet of conductive material 2614 coated on polarizer 2610 after FIG. 26).
參照在圖32中之區塊3210,各單切區段可接著附接至一顯示器層。具體而言,各單切區段可疊層至在顯示器層中的一後偏光器之一後表面。Referring to block 3210 in Figure 32, each single cut section can then be attached to a display layer. In particular, each single cut section can be laminated to one of the rear surfaces of a rear polarizer in the display layer.
遮罩(例如,在圖33B中之遮罩3312)之幾何及/或模切圖案(例如,在圖37B中之模切圖案3716)之幾何可經改變以調整傳導邊框之幾何。圖38至圖40展示用於判定傳導邊框之幾何之實例技術。在圖38中,模切圖案3800係使遮罩3802置中於模切圖案3800之中心的一矩形形狀。在執行單切程序之後,膜3806包括沿膜3806之邊緣延伸之一連續矩形傳導邊框3804。The geometry of the geometry and/or die cut pattern (e.g., the die cut pattern 3716 in Fig. 37B) of the mask (e.g., mask 3312 in Fig. 33B) can be varied to adjust the geometry of the conductive border. 38 through 40 illustrate example techniques for determining the geometry of a conductive bezel. In FIG. 38, the die cut pattern 3800 is such that the mask 3802 is centered in a rectangular shape at the center of the die cut pattern 3800. After performing the single-cut procedure, the membrane 3806 includes a continuous rectangular conductive bezel 3804 extending along the edge of the membrane 3806.
如圖39中所展示,模切圖案3900自遮罩3902偏移,使得遮罩3902之一邊緣在模切圖案3900外部。在執行單切程序之後,膜3906包括一U形狀之傳導邊框3904。在所闡釋之實施例中,邊緣遮罩3902之頂部位於模切圖案3900外部,以產生沿膜3906之兩個側邊緣及底部邊緣延伸的一U形狀之傳導邊框3904。然而,其他實施例不限於此呈現。傳導邊框3804之形狀及定向判定遮罩3902之哪個邊緣(或哪些邊緣)位於模切圖案3900外部。As shown in FIG. 39, the die cut pattern 3900 is offset from the mask 3902 such that one edge of the mask 3902 is outside the die cut pattern 3900. After performing the single cut procedure, the membrane 3906 includes a U-shaped conductive bezel 3904. In the illustrated embodiment, the top of edge mask 3902 is external to die cut pattern 3900 to create a U-shaped conductive bezel 3904 that extends along both side and bottom edges of film 3906. However, other embodiments are not limited to this presentation. The shape and orientation of the conductive bezel 3804 determines which edge (or edges) of the mask 3902 is outside of the die cut pattern 3900.
圖40繪示遮罩4002之四個邊緣之三者位於模切圖案4000外部的模切圖案4000。在執行單切程序之後,膜4006包括沿膜4006之一邊緣延伸的一線性傳導邊框4004。在所闡釋之實施例中,遮罩4002之底部邊緣之僅一部分定位在模切圖案4000內以產生沿膜4006之底部邊緣延伸的一線性傳導邊框4004。然而,其他實施例不限於此組態。傳導邊框之形狀及定向判定遮罩4002之哪個邊緣(或哪些邊緣)位於模切圖案4000外部。40 illustrates a die cut pattern 4000 of three of the four edges of the mask 4002 that are external to the die cut pattern 4000. After performing the single-cut process, film 4006 includes a linear conductive frame 4004 that extends along one edge of film 4006. In the illustrated embodiment, only a portion of the bottom edge of the mask 4002 is positioned within the die cut pattern 4000 to create a linear conductive bezel 4004 that extends along the bottom edge of the film 4006. However, other embodiments are not limited to this configuration. The shape and orientation of the conductive bezel determines which edge (or edges) of the mask 4002 is outside of the die cut pattern 4000.
為了解說用途,前文說明使用特定命名法以提供對所描述實施例之徹底理解。然而,所屬技術領域中具有通常知識者將明白,特定細節非實踐所描述之實施例所必要的。因此,提出本文描述之特定實施例之前文說明係為了闡釋及說明用途,而上述實施例非意圖窮舉或使實施例限於所揭示之精確形式。所屬技術領域中具有通常知識者將明白,鑑於前文教導進行許多修改及變化係可行的。再者,當在本文使用時,指組件位置的「於...上方」及「於...下方」等詞或其同義詞非必然係指相對於一外部參考的絕對位置,而是替代地係指參照圖式的組件之相對位置。For the purposes of this description, the foregoing descriptions are used to provide a thorough understanding of the described embodiments. However, it will be apparent to those skilled in the art that the specific details are not essential to the embodiments described. Therefore, the particular embodiments described herein are intended to be illustrative and illustrative, and are not intended to be It will be apparent to those skilled in the art that many modifications and variations are possible in light of the above teachings. Furthermore, as used herein, the terms "above" and "below" or "synonym" of the component are not necessarily referring to the absolute position relative to an external reference, but instead Refers to the relative position of the components in the reference schema.
100‧‧‧電子裝置100‧‧‧Electronic devices
102‧‧‧顯示器102‧‧‧ display
104‧‧‧殼體104‧‧‧Shell
106‧‧‧I/O裝置106‧‧‧I/O devices
108‧‧‧使用者可觀看區域108‧‧‧Users can view the area
110‧‧‧蓋件110‧‧‧Cleaning pieces
200‧‧‧膝上型電腦;裝置200‧‧‧ laptop computer; device
202‧‧‧顯示器202‧‧‧ display
204‧‧‧外殼204‧‧‧ Shell
206‧‧‧軌跡板206‧‧‧track board
300‧‧‧總成300‧‧‧assembly
301‧‧‧區301‧‧‧ District
302‧‧‧輸入力302‧‧‧ Input force
303‧‧‧蓋件303‧‧‧Cleaning pieces
304‧‧‧上部堆疊304‧‧‧Upper stacking
305‧‧‧介接構件305‧‧‧Intermediate components
306‧‧‧氣隙306‧‧‧ Air gap
307‧‧‧凸耳307‧‧‧ lugs
308‧‧‧下部堆疊308‧‧‧Lower stacking
309‧‧‧框架構件309‧‧‧Frame components
310‧‧‧氣隙310‧‧‧ Air gap
311‧‧‧結合構件311‧‧‧Combined components
312‧‧‧加勁構件312‧‧‧ stiffeners
313‧‧‧光源313‧‧‧Light source
314‧‧‧可變形元件314‧‧‧Deformable components
315‧‧‧光學堆疊315‧‧‧ Optical stacking
316‧‧‧基底結構或層316‧‧‧Base structure or layer
317‧‧‧區317‧‧‧ District
401‧‧‧點401‧‧ points
402‧‧‧點402‧‧‧ points
404‧‧‧點404‧‧‧ points
406‧‧‧第一量變曲線406‧‧‧ first variable curve
408‧‧‧第二量變曲線408‧‧‧Second amount curve
500‧‧‧力感測裝置500‧‧‧ force sensing device
504‧‧‧上部堆疊504‧‧‧Upper stacking
505‧‧‧第一感測元件;驅動層;第一驅動層505‧‧‧first sensing element; drive layer; first drive layer
506‧‧‧氣隙506‧‧‧ Air gap
508‧‧‧下部堆疊508‧‧‧Lower stacking
509‧‧‧加勁構件509‧‧‧ stiffening components
510‧‧‧氣隙510‧‧‧ Air gap
511‧‧‧選用之抗黏附層511‧‧‧Selected anti-adhesion layer
512‧‧‧第二感測元件;感測層512‧‧‧Second sensing element; sensing layer
514‧‧‧可變形元件514‧‧‧Deformable components
515‧‧‧第三感測元件;驅動層;第二驅動層515‧‧‧ third sensing element; drive layer; second drive layer
516‧‧‧基底結構516‧‧‧Base structure
518‧‧‧第一電容性感測器518‧‧‧First Capacitive Sensor
519‧‧‧第二電容性感測器519‧‧‧Second Capacitive Sensor
602‧‧‧線602‧‧‧ line
604‧‧‧線604‧‧‧ line
702‧‧‧感測區域702‧‧‧Sensing area
704‧‧‧驅動區域704‧‧‧Drive area
706‧‧‧連接元件706‧‧‧Connecting components
802‧‧‧基材802‧‧‧Substrate
804‧‧‧傳導層804‧‧‧Transmission layer
806‧‧‧基材806‧‧‧Substrate
808‧‧‧基材808‧‧‧Substrate
902‧‧‧傳導路徑902‧‧‧Transmission path
1002‧‧‧連接器分段1002‧‧‧Connector segmentation
1004‧‧‧傳導結合材料1004‧‧‧ Conductive bonding materials
1006‧‧‧連接器分段1006‧‧‧Connector segmentation
1008‧‧‧傳導黏著劑1008‧‧‧ Conductive Adhesive
1102‧‧‧傳導路徑1102‧‧‧ Conduction path
1200‧‧‧力感測裝置1200‧‧‧ force sensing device
1204‧‧‧上部堆疊1204‧‧‧Upper stacking
1206‧‧‧氣隙1206‧‧‧ Air gap
1207‧‧‧框架構件1207‧‧‧Frame components
1208‧‧‧下部堆疊1208‧‧‧Lower stacking
1209‧‧‧第一感測元件1209‧‧‧First sensing element
1210‧‧‧氣隙1210‧‧‧ Air gap
1213‧‧‧光學堆疊1213‧‧‧ Optical stacking
1214‧‧‧可變形元件1214‧‧‧Deformable components
1215‧‧‧第二感測元件1215‧‧‧Second sensing element
1216‧‧‧基底結構1216‧‧‧Base structure
1218‧‧‧電容性感測器1218‧‧‧Capacitive sensor
1302‧‧‧線Line 1302‧‧
1304‧‧‧線Line 1304‧‧
1400‧‧‧力感測裝置1400‧‧‧ force sensing device
1402‧‧‧電容性感測器1402‧‧‧Capacitive sensor
1502‧‧‧線Line 1502‧‧
1600‧‧‧力感測裝置1600‧‧‧ force sensing device
1604‧‧‧上部堆疊1604‧‧‧Upper stacking
1605‧‧‧第一感測元件1605‧‧‧First sensing element
1606‧‧‧氣隙1606‧‧‧ Air gap
1607‧‧‧框架構件1607‧‧‧Frame components
1608‧‧‧下部堆疊1608‧‧‧Lower stacking
1610‧‧‧可變形元件1610‧‧‧Deformable components
1611‧‧‧突起部1611‧‧‧Protruding
1612‧‧‧感測元件1612‧‧‧Sensor components
1614‧‧‧第二感測元件1614‧‧‧Second sensing element
1615‧‧‧氣隙1615‧‧‧ Air gap
1616‧‧‧接觸式感測區域1616‧‧‧Contact sensing area
1617‧‧‧光學堆疊1617‧‧‧ Optical stacking
1619‧‧‧電容性感測器1619‧‧‧Capacitive sensor
1620‧‧‧基底結構1620‧‧‧Base structure
1702‧‧‧線1702‧‧‧ line
1704‧‧‧點1704‧‧ points
1800‧‧‧區1800‧‧‧ District
1802‧‧‧引線1802‧‧‧ lead
1804‧‧‧引線1804‧‧‧ lead
1806‧‧‧引線1806‧‧‧ lead
1808‧‧‧引線1808‧‧‧ lead
1810‧‧‧感測區域1810‧‧‧Sensing area
1900‧‧‧基底表面1900‧‧‧Base surface
2000‧‧‧基材2000‧‧‧Substrate
2100‧‧‧接觸式感測器2100‧‧‧Contact Sensor
2102‧‧‧突起部;可變形突起部2102‧‧‧protrusion; deformable protrusion
2104‧‧‧感測元件2104‧‧‧Sensor components
2106‧‧‧孔穴2106‧‧‧ holes
2108‧‧‧層;感測元件2108‧‧‧layer; sensing element
2110‧‧‧引線2110‧‧‧Leader
2112‧‧‧層2112‧‧ layer
2200‧‧‧接觸式感測器2200‧‧‧Contact Sensor
2202‧‧‧變形突起部2202‧‧‧Deformation protrusion
2204‧‧‧感測元件2204‧‧‧Sensor components
2206‧‧‧層2206‧‧ layer
2208‧‧‧引線2208‧‧‧ lead
2210‧‧‧層2210‧‧ layer
2300‧‧‧總成2300‧‧‧assembly
2302‧‧‧感測器2302‧‧‧Sensor
2304‧‧‧第一感測元件2304‧‧‧First sensing element
2306‧‧‧第二感測元件2306‧‧‧Second sensing element
2308‧‧‧區2308‧‧‧ District
2310‧‧‧可變形部分2310‧‧‧Deformable part
2312‧‧‧第一感測元件2312‧‧‧First sensing element
2314‧‧‧第二感測元件2314‧‧‧Second sensing element
2402‧‧‧線Line 2402‧‧
2404‧‧‧線Line 2404‧‧
2502‧‧‧第一驅動區域2502‧‧‧First drive area
2503‧‧‧導體2503‧‧‧Conductor
2504‧‧‧第二驅動區域2504‧‧‧Second drive area
2505‧‧‧導體2505‧‧‧Conductor
2506‧‧‧感測區域2506‧‧‧Sensing area
2600‧‧‧顯示器堆疊2600‧‧‧Display stacking
2602‧‧‧觸碰感測器2602‧‧‧Touch sensor
2604‧‧‧顯示器層2604‧‧‧Display layer
2606‧‧‧前偏光器2606‧‧‧Pre-polarizer
2608‧‧‧顯示器元件2608‧‧‧Display components
2610‧‧‧後偏光器2610‧‧‧After polarizer
2612‧‧‧傳導層2612‧‧‧Transmission layer
2614‧‧‧傳導材料片材2614‧‧‧Transmission material sheet
2616‧‧‧傳導邊框2616‧‧‧ Conductive border
2618‧‧‧非可觀看區域2618‧‧‧Non-viewable area
2620‧‧‧背光單元2620‧‧‧Backlight unit
2622‧‧‧第一電極層2622‧‧‧First electrode layer
2623‧‧‧間隙2623‧‧‧ gap
2624‧‧‧支撐結構2624‧‧‧Support structure
2626‧‧‧間隙2626‧‧‧ gap
2627‧‧‧後表面2627‧‧‧Back surface
2628‧‧‧電池組2628‧‧‧Battery Pack
2630‧‧‧第二電極層2630‧‧‧Second electrode layer
2632‧‧‧觸控及感測電路系統2632‧‧‧Touch and Sensing Circuitry
2634‧‧‧驅動電路系統2634‧‧‧Drive Circuit System
2636‧‧‧驅動及感測電路系統2636‧‧‧Drive and sense circuitry
2638‧‧‧驅動電路系統2638‧‧‧Drive Circuit System
2700‧‧‧偏光器2700‧‧‧Polarizer
2702‧‧‧傳導條2702‧‧‧Transmission strip
2704‧‧‧傳導條2704‧‧‧Transmission strip
2706‧‧‧傳導條2706‧‧‧Transmission strip
2708‧‧‧傳導條2708‧‧‧Transmission strip
2710‧‧‧傳導材料片材2710‧‧‧Transmission material sheet
2800‧‧‧偏光器2800‧‧‧Polarizer
2802‧‧‧L形狀之傳導條2802‧‧‧L-shaped conductive strip
2804‧‧‧傳導材料片材2804‧‧‧Transmission material sheet
2900‧‧‧偏光器2900‧‧‧Polarizer
2902‧‧‧連續傳導邊框2902‧‧‧Continuous conduction border
2904‧‧‧傳導材料片材2904‧‧‧Transmission material sheet
3000‧‧‧裝置3000‧‧‧ device
3002‧‧‧處理單元3002‧‧‧Processing unit
3004‧‧‧電腦記憶體3004‧‧‧ computer memory
3006‧‧‧電腦可讀取媒體3006‧‧‧Computer readable media
3008‧‧‧顯示器3008‧‧‧ display
3009‧‧‧電池組3009‧‧‧Battery Pack
3010‧‧‧輸入裝置3010‧‧‧ Input device
3020‧‧‧觸碰感測器3020‧‧‧Touch sensor
3022‧‧‧力感測器3022‧‧‧ force sensor
3024‧‧‧感測器3024‧‧‧Sensor
3026‧‧‧相機3026‧‧‧ camera
3028‧‧‧通訊埠3028‧‧‧Communication埠
3100‧‧‧程序操作3100‧‧‧Program operation
3102‧‧‧操作3102‧‧‧Operation
3104‧‧‧操作3104‧‧‧Operation
3106‧‧‧操作3106‧‧‧ operation
3200‧‧‧區塊3200‧‧‧ Block
3202‧‧‧區塊3202‧‧‧ Block
3204‧‧‧區塊3204‧‧‧ Block
3206‧‧‧區塊3206‧‧‧ Block
3208‧‧‧區塊3208‧‧‧ Block
3210‧‧‧區塊Block 3210‧‧‧
3300‧‧‧施加程序3300‧‧‧ application procedure
3302‧‧‧膜3302‧‧‧ film
3304‧‧‧第一輥3304‧‧‧First roll
3306‧‧‧第二輥3306‧‧‧Second roller
3308‧‧‧箭頭(移動)3308‧‧‧Arrows (moving)
3310‧‧‧第三輥3310‧‧‧third roll
3312‧‧‧遮罩3312‧‧‧ mask
3400‧‧‧形成程序3400‧‧‧ Formation procedure
3402‧‧‧第四輥3402‧‧‧fourth roller
3404‧‧‧第五輥3404‧‧‧ fifth roll
3406‧‧‧箭頭(移動)3406‧‧‧ arrow (mobile)
3408‧‧‧沉積室3408‧‧‧Deposition room
3410‧‧‧噴嘴3410‧‧‧Nozzles
3412‧‧‧遮罩3412‧‧‧ mask
3500‧‧‧移除程序3500‧‧‧Remove procedures
3502‧‧‧第六輥3502‧‧‧6th roller
3504‧‧‧第七輥3504‧‧‧ seventh roller
3506‧‧‧箭頭(移動)3506‧‧‧Arrows (mobile)
3508‧‧‧第八輥3508‧‧‧8th roller
3514‧‧‧區域3514‧‧‧Area
3600‧‧‧形成程序3600‧‧‧ Formation procedure
3602‧‧‧第九輥3602‧‧‧9th roller
3604‧‧‧第十輥3604‧‧‧10th Roll
3606‧‧‧箭頭(移動)3606‧‧‧Arrows (moving)
3608‧‧‧第十一輥3608‧‧‧11th Roll
3610‧‧‧保護性層3610‧‧‧Protective layer
3700‧‧‧切割程序3700‧‧‧ cutting procedure
3702‧‧‧第十二輥3702‧‧‧12th Roll
3704‧‧‧第十三輥3704‧‧‧13th Roll
3706‧‧‧箭頭(移動)3706‧‧‧Arrows (mobile)
3708‧‧‧單切系統3708‧‧‧Single system
3710‧‧‧精密模切工具3710‧‧‧Precision die cutting tools
3712‧‧‧對齊相機3712‧‧‧Align the camera
3714‧‧‧切割參考3714‧‧‧ cutting reference
3716‧‧‧模切圖案3716‧‧‧ die-cut pattern
3718‧‧‧單切區段3718‧‧‧Single section
3720‧‧‧膜3720‧‧‧ film
3722‧‧‧傳導邊框3722‧‧‧ Conductive border
3800‧‧‧模切圖案3800‧‧‧ die-cut pattern
3802‧‧‧遮罩3802‧‧‧ mask
3804‧‧‧連續矩形傳導邊框3804‧‧‧Continuous rectangular conductive border
3806‧‧‧膜3806‧‧‧film
3900‧‧‧模切圖案3900‧‧‧ die-cut pattern
3902‧‧‧遮罩3902‧‧‧ mask
3904‧‧‧U形狀之傳導邊框3904‧‧‧U-shaped conductive border
3906‧‧‧膜3906‧‧‧ Film
4000‧‧‧模切圖案4000‧‧‧ die-cut pattern
4002‧‧‧遮罩4002‧‧‧ mask
4004‧‧‧膜4004‧‧‧ film
4006‧‧‧膜4006‧‧‧ film
經由以下結合附圖的實施方式可更易於理解本揭露,其中相似元件符號指稱相似結構組件,而其中: [圖1]展示併入一力感測裝置之一實例運算裝置。 [圖2]展示併入一力感測裝置之另一實例運算裝置。 [圖3A至圖3E]展示沿圖1之線A-A檢視的圖1之裝置的部分剖面圖。 [圖4]展示一力相對於圖1之裝置之偏轉曲線。 [圖5]展示沿圖1之線A-A檢視的一實例力感測裝置的剖面圖。 [圖6]展示一力相對於圖5之力感測裝置之偏轉曲線。 [圖7]展示圖5之力感測裝置之感測元件的展開圖。 [圖8]展示沿圖7中之線C-C檢視的圖7之感測元件的部分剖面圖。 [圖9]展示圖5之力感測裝置之一感測元件。 [圖10A至圖10B]展示圖5之力感測裝置之另一感測元件的實施例。 [圖11]展示圖5之力感測裝置之又另一感測元件。 [圖12]展示沿圖1之線A-A檢視的另一實例力感測裝置的剖面圖。 [圖13]展示一力相對於圖12之力感測裝置之偏轉曲線。 [圖14]展示沿圖1之線A-A檢視的又另一實例力感測裝置的剖面圖。 [圖15]展示一力相對於圖14之力感測裝置之偏轉曲線。 [圖16]展示沿圖1之線A-A檢視的又另一實例力感測裝置的剖面圖。 [圖17]展示一力相對於圖16之力感測裝置之偏轉曲線。 [圖18A至圖18B]展示圖17之力感測裝置的展開剖面圖。 [圖19]展示一可變形元件的透視圖。 [圖20]展示一感測元件的透視圖。 [圖21A至圖21B]展示一實例接觸式感測器的剖面圖。 [圖22A至圖22B]展示另一實例接觸式感測器的剖面圖。 [圖23A至圖23B]展示沿圖1之線A-A檢視的圖1之裝置的部分剖面圖,圖中展示在裝置中整合一力感測系統之一實施例。 [圖24]展示一力相對於圖23A至圖23B之力感測系統之偏轉曲線。 [圖25]展示圖23A至圖23B之力感測系統之一感測器。 [圖26]展示沿圖1中之線B-B檢視的圖1之電子裝置之一實例實施例的剖面圖。 [圖27]描繪在圖26中所展示之偏光器上的傳導邊框之一第一實例配置。 [圖28]描繪在圖26中所展示之偏光器上的傳導邊框之一第二實例配置。 [圖29]描繪在圖26中所展示之偏光器上的傳導邊框之一第三實例配置。 [圖30]展示一電子裝置之實例組件。 [圖31]展示用於判定施加至一使用者輸入表面之一力量的一實例程序。 [圖32]展示用於在一偏光器之一表面上製造傳導邊框之一實例程序。 [圖33A至圖33B]描繪施加遮罩至一膜之一表面。 [圖34A至圖34B]展示形成傳導材料於膜及遮罩上方。 [圖35A至圖35B]展示自膜移除遮罩。 [圖36A至圖36B]展示形成保護性層於膜及傳導材料上方。 [圖37A至圖37B]展示產生由一傳導邊框所環繞之膜之各個別區段。 [圖38]展示用於判定傳導邊框之幾何之一第一實例技術。 [圖39]展示用於判定傳導邊框之幾何之一第一實例技術。 [圖40]展示用於判定傳導邊框之幾何之一第一實例技術。The disclosure may be more readily understood by the following embodiments in conjunction with the accompanying drawings in which like reference numerals refer to similar structural components, wherein: FIG. 1 shows an example computing device incorporating one force sensing device. [Fig. 2] Another example arithmetic device incorporating a force sensing device is shown. 3A to 3E are partial cross-sectional views showing the apparatus of Fig. 1 taken along line A-A of Fig. 1. [Fig. 4] shows a deflection curve of a force with respect to the apparatus of Fig. 1. FIG. 5 is a cross-sectional view showing an example force sensing device taken along line A-A of FIG. 1. FIG. [Fig. 6] A deflection curve showing a force with respect to the force sensing device of Fig. 5. FIG. 7 is a developed view showing a sensing element of the force sensing device of FIG. 5. FIG. FIG. 8 is a partial cross-sectional view showing the sensing element of FIG. 7 taken along line C-C of FIG. 7. FIG. [Fig. 9] A sensing element showing one of the force sensing devices of Fig. 5. [Fig. 10A to 10B] An embodiment of another sensing element of the force sensing device of Fig. 5 is shown. [Fig. 11] Still another sensing element showing the force sensing device of Fig. 5. FIG. 12 is a cross-sectional view showing another example force sensing device taken along line A-A of FIG. 1. FIG. [Fig. 13] shows a deflection curve of a force with respect to the force sensing device of Fig. 12. Fig. 14 is a cross-sectional view showing still another example of the force sensing device taken along line A-A of Fig. 1. [Fig. 15] shows a deflection curve of a force with respect to the force sensing device of Fig. 14. Fig. 16 is a cross-sectional view showing still another example of the force sensing device taken along line A-A of Fig. 1. [Fig. 17] A deflection curve showing a force with respect to the force sensing device of Fig. 16. 18A to 18B are exploded cross-sectional views showing the force sensing device of Fig. 17. [Fig. 19] A perspective view showing a deformable member. [Fig. 20] A perspective view showing a sensing element. 21A-21B are cross-sectional views showing an example contact sensor. 22A-22B are cross-sectional views showing another example contact sensor. 23A-23B are partial cross-sectional views of the apparatus of Fig. 1 taken along line A-A of Fig. 1, showing an embodiment of integrating a force sensing system in the apparatus. [Fig. 24] A deflection curve showing a force with respect to the force sensing system of Figs. 23A to 23B. [Fig. 25] A sensor showing one of the force sensing systems of Figs. 23A to 23B. FIG. 26 is a cross-sectional view showing an example embodiment of the electronic device of FIG. 1 taken along line B-B of FIG. 1. FIG. [FIG. 27] A first example configuration depicting one of the conductive bezels on the polarizer shown in FIG. [Fig. 28] A second example configuration of one of the conductive bezels depicted on the polarizer shown in Fig. 26. [Fig. 29] A third example configuration depicting one of the conductive bezels on the polarizer shown in Fig. 26. [FIG. 30] An example component showing an electronic device. [Fig. 31] shows an example program for determining the force applied to a user input surface. [Fig. 32] shows an example program for manufacturing a conductive bezel on one surface of a polarizer. [Fig. 33A to Fig. 33B] depicting the application of a mask to one surface of a film. [Fig. 34A to Fig. 34B] showing formation of a conductive material over the film and the mask. [Fig. 35A to Fig. 35B] showing the removal of the mask from the film. [Fig. 36A-36B] shows the formation of a protective layer over the film and conductive material. [Fig. 37A-37B] shows various sections that produce a film surrounded by a conductive bezel. [Fig. 38] A first example technique for determining the geometry of a conductive bezel. [Fig. 39] shows a first example technique for determining the geometry of a conductive bezel. [Fig. 40] A first example technique for determining the geometry of a conductive bezel.
在附圖中使用的交叉影線(cross-hatching)或陰影係大致上提供用來闡明相鄰元件之間之邊界並且亦有助於圖式之辨識。據此,交叉影線或陰影之存在或不存在皆非表達或指示對於附圖中繪示的任何元件的特定材料、材料性質、元件比例、元件尺寸、相似繪示之元件的通用性,或任何其他特性、屬性或性質的偏好或需求。The cross-hatching or shading used in the figures is generally provided to clarify the boundaries between adjacent elements and also to aid in the identification of the drawings. Accordingly, the presence or absence of cross-hatching or shading is not an expression or indication of the particular material, material properties, component proportions, component dimensions, or versatility of similarly depicted components of any of the elements illustrated in the drawings, or A preference or requirement for any other characteristic, attribute or property.
Claims (20)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662382140P | 2016-08-31 | 2016-08-31 | |
US62/382,140 | 2016-08-31 | ||
US201662395888P | 2016-09-16 | 2016-09-16 | |
US62/395,888 | 2016-09-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201812558A true TW201812558A (en) | 2018-04-01 |
TWI650700B TWI650700B (en) | 2019-02-11 |
Family
ID=62639446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106129681A TWI650700B (en) | 2016-08-31 | 2017-08-31 | Force sensing architectures |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI650700B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111800960A (en) * | 2019-04-01 | 2020-10-20 | 苹果公司 | Electronic device and housing for electronic device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI796187B (en) * | 2022-03-29 | 2023-03-11 | 致伸科技股份有限公司 | Touchpad device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2071312B1 (en) * | 2007-12-13 | 2015-09-16 | Yamaha Corporation | Pressure sensor and data input apparatus |
US8890853B2 (en) * | 2013-01-11 | 2014-11-18 | Sharp Laboratories Of America, Inc. | In-pixel ultrasonic touch sensor for display applications |
JP6119518B2 (en) * | 2013-02-12 | 2017-04-26 | ソニー株式会社 | Sensor device, input device and electronic apparatus |
US10120506B2 (en) * | 2013-11-12 | 2018-11-06 | Microsoft Technology Licensing, Llc | Multi-touch capacitive sensing surface |
-
2017
- 2017-08-31 TW TW106129681A patent/TWI650700B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111800960A (en) * | 2019-04-01 | 2020-10-20 | 苹果公司 | Electronic device and housing for electronic device |
Also Published As
Publication number | Publication date |
---|---|
TWI650700B (en) | 2019-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11803276B2 (en) | Force sensing architectures | |
US10234987B2 (en) | Electrode sheet and touch input device | |
JP6177857B2 (en) | Pressure detection module and smartphone including the same | |
JP5897055B2 (en) | Pressure sensor and touch panel | |
KR102045169B1 (en) | Force determination based on capacitive sensing | |
US9207819B2 (en) | Touch sensing display panel and touch sensing liquid crystal display panel | |
TWI467451B (en) | Sensor apparatus and information processing apparatus | |
US20140176485A1 (en) | Touch screen, portable electronic device, and method of operating a touch screen | |
US20170269756A1 (en) | Touch screen and pressure touch detection method thereof | |
WO2010106759A1 (en) | Sensor device and information processing device | |
WO2015093065A1 (en) | Pressure detector and touch panel provided with pressure detector | |
TWI625653B (en) | Sensing device, input device and electronic device | |
TWI667595B (en) | Input device, sensor, keyboard and electronic device | |
JP2010086510A (en) | Dual-side integrated touch panel structure | |
JP2011100364A (en) | Sensor device and electronic apparatus | |
TW201106242A (en) | Input device and display device having the same | |
TW201706753A (en) | Electronic device | |
US11768548B2 (en) | Touch pad device and portable computer comprising same | |
TWI650700B (en) | Force sensing architectures | |
JP2012003522A (en) | Touch panel | |
JP2019527860A (en) | Touch substrate, touch panel, touch device having touch panel, and method for manufacturing touch panel | |
KR101184459B1 (en) | Pressure sensor | |
KR101191145B1 (en) | Touch film for capacitive type touchscreen, touchscreen comprising and mobile device comprising the same | |
US10761662B2 (en) | Touch panel, method for manufacturing touch panel, and touch display device | |
CN110007797A (en) | Flexible display panel and display device |