TW201811822A - 用於頭頸鱗狀細胞癌和其他癌症免疫治療的新型肽和支架 - Google Patents

用於頭頸鱗狀細胞癌和其他癌症免疫治療的新型肽和支架 Download PDF

Info

Publication number
TW201811822A
TW201811822A TW106128506A TW106128506A TW201811822A TW 201811822 A TW201811822 A TW 201811822A TW 106128506 A TW106128506 A TW 106128506A TW 106128506 A TW106128506 A TW 106128506A TW 201811822 A TW201811822 A TW 201811822A
Authority
TW
Taiwan
Prior art keywords
peptide
cancer
cell
cells
peptides
Prior art date
Application number
TW106128506A
Other languages
English (en)
Other versions
TWI796299B (zh
Inventor
安德列 馬爾
湯尼 文史恩克
艾尼塔 維比
寇雷特 宋
奧利佛 史古兒
金斯 弗里切
哈皮特 辛格
Original Assignee
德商英麥提克生物技術股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商英麥提克生物技術股份有限公司 filed Critical 德商英麥提克生物技術股份有限公司
Publication of TW201811822A publication Critical patent/TW201811822A/zh
Application granted granted Critical
Publication of TWI796299B publication Critical patent/TWI796299B/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/16Blood plasma; Blood serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4748Tumour specific antigens; Tumour rejection antigen precursors [TRAP], e.g. MAGE
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70539MHC-molecules, e.g. HLA-molecules
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2833Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against MHC-molecules, e.g. HLA-molecules
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3053Skin, nerves, brain
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • C12N5/0638Cytotoxic T lymphocytes [CTL] or lymphokine activated killer cells [LAK]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5158Antigen-pulsed cells, e.g. T-cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55522Cytokines; Lymphokines; Interferons
    • A61K2039/55527Interleukins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55522Cytokines; Lymphokines; Interferons
    • A61K2039/55527Interleukins
    • A61K2039/55533IL-2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/572Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/80Vaccine for a specifically defined cancer
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2312Interleukin-12 (IL-12)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/998Proteins not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/30Coculture with; Conditioned medium produced by tumour cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Oncology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Neurology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本發明涉及用於免疫治療方法的肽、蛋白質、核酸和細胞。特別是,本發明涉及癌症的免疫療法。本發明還涉及單獨使用或與其他腫瘤相關肽(刺激抗腫瘤免疫反應或體外刺激 T 細胞和轉入患者的疫苗複合物的活性藥物成分)聯合使用的腫瘤相關 T 細胞 (CTL) 肽表位。與主要組織相容性複合體 (MHC) 分子結合的肽或與此同類的肽也可能是抗體、可溶性 T 細胞受體和其他結合分子的靶標。

Description

用於頭頸鱗狀細胞癌和其他癌症免疫治療的新型肽和支架
本發明涉及用於免疫治療方法的肽、蛋白質、核酸和細胞。特別是,本發明涉及癌症的免疫療法。本發明還涉及單獨使用或與其他腫瘤相關肽(刺激抗腫瘤免疫反應或體外刺激 T 細胞和轉入患者的疫苗複合物的活性藥物成分)聯合使用的腫瘤相關 T 細胞 (CTL) 肽表位。與主要組織相容性複合體 (MHC) 分子結合的肽或與此同類的肽也可能是抗體、可溶性 T 細胞受體和其他結合分子的靶標。
本發明涉及數種新型肽序列及其變體,它們源自人腫瘤細胞的 HLA-I 類分子,可用于引發抗腫瘤免疫反應的疫苗組合物中或作為開發藥物/免疫活性化合物和細胞的目標。
頭頸鱗狀細胞癌 (HNSCC) 是異質腫瘤,其流行病學、病因和治療均具有差異 (Economopoulou et al., 2016)。這些腫瘤根據它們開始發生的部位來分類。它們包括口腔(嘴唇,前三分之二舌頭、牙齦、面頰和嘴唇內膜、口腔底、硬齶)癌、咽(鼻咽,口咽包括軟齶、舌底、扁桃體、下咽)癌、喉癌、鼻旁竇和鼻腔癌以及唾液腺癌 (National Cancer Institute, 2015)。
HNSCC 是世界上第六大常見惡性腫瘤,約占全球所有確診癌症病例的 6% (Economopoulou et al., 2016)。HNSCC 的特徵是發病率和解剖學分佈的地理差異很大 (Vigneswaran and Williams, 2014)。高風險國家位於南亞和東南亞(如,印度、斯里蘭卡、孟加拉、巴基斯坦)。在這些地區,口腔鱗狀細胞癌 (OSCC) 是男性中最常見的癌症,也是女性中第三大常見癌症 (Vigneswaran and Williams, 2014)。在歐洲,法國、匈牙利、斯洛伐克和斯洛維尼亞地區發現 OSCC 的發病率高。在美國,HNSCC 是男性中第八大常見的癌症。
HNSCC 的主要風險因素是飲酒和吸菸。HNSCC 其他風險因素包括飲用馬黛茶,還有醃製或鹽製食品,使用檳榔,職業暴露於木屑、石棉和合成纖維,輻射暴露,致癌型人乳頭瘤病毒 (HPV) 或 Epstein-Barr 病毒 (EBV) 和遺傳(特別是鼻咽 SCC 華裔) (National Cancer Institute, 2015)。
雖然 OSCC 和 喉 SCC 在發達國家有所下降,但是口咽 SCC 發病率有所增加。這歸因於 SCC 生物驅動因素的變化(HPV 相關 SCC 而不是吸菸相關的 SCC)。從 1988 年到 2004 年,HPV 相關口咽癌增加了 225% (National Cancer Institute, 2015)。HPV 陽性 HNSCC 可能代表一個獨特的疾病實體。這些腫瘤與生存顯著改善相關。
發病率取決於性別:男女比例範圍為 2:1 至 4:1(2014 年世衛組織基本藥物清單癌症藥物審查)。HNSCC 患者的五年總體生存率為 40-50% (World Health Organization, 2014)。雖然早期癌症(T1、T2)的治癒率為 70%-95% (Nat Cancer Inst),但大多數 HNSCC 患者存在局部晚期疾病 (Bauml et al., 2016)。
早期 HNSCC 的治療包括手術或放射的單一模式治療 (World Health Organization, 2014)。晚期癌症通過化療聯合手術和/或放療進行治療。
化療主要包括順鉑或含有順鉑的藥物組合,其中包括多西他賽,順鉑、氟尿嘧啶 (5-FU) 或順鉑、表柔比星、博來黴素或順鉑、5-FU。異維甲酸(13-順式視黃酸)用於口腔 SCC 和喉 SCC,每日 1 次,共使用 1 年,以降低二次腫瘤的發生率 (National Cancer Institute, 2015)。
HNSCC 被視為是一種免疫抑制疾病,其特徵在於免疫活性細胞和受損細胞因子分泌的失調 (Economopoulou et al., 2016)。HPV 陰性和 HPV 陽性腫瘤的免疫治療策略不同。
對於 HPV 陽性腫瘤,病毒癌蛋白 E6 和 E7 代表著良好的靶標,這是因為它們連續地通過腫瘤細胞中表達,對於保持 HPV 陽性癌細胞的轉化狀態必不可少。幾種疫苗療法目前正在 HPV 陽性 HNSCC 中進行研究,包括 DNA 疫苗、肽疫苗和涉及樹突狀細胞 (DC) 的疫苗。此外,正在進行的 II 期臨床試驗在 HPV 陽性腫瘤患者中研究了 淋巴細胞耗竭繼而自體輸注 TIL 的療效 (Economopoulou et al., 2016)。
在 HPV 陰性腫瘤中,目前正在使用和研究幾種免疫治療策略。嵌合 IgG1 抗 EGFR 單克隆抗體西妥昔單抗已被 FDA 批准用於組合化療,作為復發/轉移性 HNSCC 的標準一線治療。其他的抗 EGFR 單克隆抗體(包括帕尼單抗、尼妥珠單抗和紮妥木單抗)在 HNSCC 中進行了評估。一些免疫檢查點抑制劑在 HNSCC 的用途在臨床試驗中進行了研究。它們包括以下抗體:易普利姆瑪(抗 CTLA-4)、曲美木單抗(tremelimumab,抗 CTLA-4)、彭博羅珠單抗(pembrolizumab,抗 PD-1)、納武單抗(nivolumab,抗 PD-1)、durvalumab(抗 PD-1)、抗 KIR、urelumab(抗 CD137)和抗 LAG-3。
HNSCC 患者的兩項臨床研究評估了載有 p53 肽或凋亡腫瘤細胞的 DC 的用途。免疫應答令人滿意的,副作用可以接受。
數項研究使用了過繼性 T 細胞療法 (ACT) 進行。T 細胞被誘導對抗任何輻照的自體腫瘤細胞或 EB 病毒。疾病控制和總生存率結果是看好的 (Economopoulou et al., 2016)。
考慮到治療癌症相關的嚴重副作用和費用,通常有必要確定可用於治療癌症的因子,尤其是頭頸鱗狀細胞癌。通常也有必要確定代表癌症生物標誌物的因子,尤其是頭頸鱗狀細胞癌,從而更好地診斷癌症、評估預後和預測治療成功性。
癌症免疫治療代表了癌症細胞特異性靶向作用的一個選項,同時最大限度地減少副作用。癌症免疫療法利用存在的腫瘤相關抗原。
腫瘤相關抗原 (TAA) 的目前分類主要包括以下幾組: a) 癌-睾丸抗原:T 細胞能夠識別的最先確認的 TAA 屬於這一類抗原,由於其成員表達于組織學相異的人腫瘤中、正常組織中、僅在睾丸的精母細胞/精原細胞中、偶爾在胎盤中,因此,它最初被稱為癌-睾丸 (CT) 抗原。由於睾丸細胞不表達 HLA I 類和 II 類分子,所以,在正常組織中,這些抗原不能被 T 細胞識別,因此在免疫學上可考慮為具有腫瘤特異性。CT 抗原大家熟知的例子是 MAGE 家族成員和 NY-ESO-1。 b) 分化抗原:腫瘤和正常組織(腫瘤源自該組織)都含有 TAA。大多數已知的分化抗原發現於黑色素瘤和正常黑色素細胞中。許多此類黑色素細胞譜系相關蛋白參與黑色素的生物合成,因此這些蛋白不具有腫瘤特異性,但是仍然被廣泛用於癌症的免疫治療。例子包括,但不僅限於,黑色素瘤的酪氨酸酶和 Melan-A/MART-1 或攝護腺癌的 PSA。 c) 過量表達的 TAA:在組織學相異的腫瘤中以及許多正常組織中都檢測到了基因編碼被廣泛表達的 TAA,一般表達水準較低。有可能許多由正常組織加工和潛在提呈的表位低於 T 細胞識別的閾值水準,而它們在腫瘤細胞中的過量表達能夠透過打破先前確立的耐受性而引發抗癌反應。這類 TAA 的典型例子為 Her-2/neu、生存素、端粒酶或 WT1。 d) 腫瘤特異性抗原:這些獨特的 TAA 產生于正常基因(如 β-catenin、CDK4 等)的突變。這些分子變化中有一些與致瘤性轉化和/或進展相關。腫瘤特異性抗原一般可在不對正常組織帶來自體免疫反應風險的情況下誘導很強的免疫反應。另一方面,這些 TAA 在多數情況下只與其上確認了有 TAA 的確切腫瘤相關,並且通常在許多個體腫瘤之間並不都共用 TAA。在含有腫瘤特定(相關)同種型蛋白的情況下,如果肽源自腫瘤(相關)外顯子也可能出現肽腫瘤特異性(或相關性)。 e) 由異常翻譯後修飾產生的 TAA:此類 TAA 可能由腫瘤中既不具有特異性也不過量表達的蛋白產生,但其仍然具有腫瘤相關性(該相關性由主要對腫瘤具有活性的翻譯後加工所致)。此類 TAA 產生於變糖基化模式的改變,導致腫瘤產生針對 MUC1 的新型表位或在降解過程中導致諸如蛋白拼接的事件,這可能具有也可能不具有腫瘤特異性。 f) 腫瘤病毒蛋白:這些 TTA 是病毒蛋白,可在致癌過程中發揮關鍵作用,並且由於它們是外源蛋白(非人源蛋白),所以能夠激發 T 細胞反應。這類蛋白的例子有人乳頭狀瘤 16 型病毒蛋白、E6 和 E7,它們在宮頸癌中表達。
基於 T 細胞的免疫治療靶向作用于主要組織相容性複合體 (MHC) 分子提呈的來源於腫瘤相關蛋白或腫瘤特異性蛋白的肽表位。腫瘤特異性 T 淋巴細胞所識別的抗原,即其表位,可以是源自所有蛋白類型的分子,如酶、受體、轉錄因子等,它們在相應腫瘤的細胞中被表達,並且與同源未變的細胞相比,其表達通常上調。
MHC 分子有兩類:MHC I 類和 MHC II 類。MHC I 類分子由一條 α 重鏈和 β-2-微球蛋白,MHC II 類分子由一條 α 和一條 β 鏈組成。其三位構造形成一個結合槽,用於與肽進行非共價相互作用。
大部分有核細胞上都可發現 MHC-I 類分子。他們提呈主要為內源性的蛋白、缺陷核糖體產物 (DRIP) 和較大肽裂解生成的肽。然而,源自內體結構或外源性來源的肽也經常在 MHC-I 類分子上發現。這種 I-類分子非經典提呈方式在文獻中被稱為交叉提呈 (Brossart and Bevan, 1997; Rock et al., 1990)。MHC II 類分子主要發現于專業抗原提呈細胞 (APC) 上,並且主要提呈,例如,在內吞作用過程中由 APC 佔據並且隨後被加工的外源性或跨膜蛋白的肽。
肽和 MHC I 類的複合體由負載相應 T 細胞受體 (TCR) 的 CD8 陽性 T 細胞進行識別,而肽和 MHC II 類分子的複合體由負載相應 TCR 的 CD4 陽性輔助 T 細胞進行識別。因此,TCR、肽和 MHC 按照 1:1:1 的化學計量呈現,這一點已是共識。
CD4 陽性輔助 T 細胞在誘導和維持 CD8 陽性細胞毒性 T 細胞的有效反應中發揮巨大的重要作用。腫瘤相關抗原 (TAA) 衍生的 CD4 陽性 T 細胞表位的識別對開發能引發抗腫瘤免疫反應的藥物產品可能非常重要 (Gnjatic et al., 2003)。在腫瘤部位,T 輔助細胞維持著對細胞毒性 T 細胞 (CTL) 友好的細胞因子環境 (Mortara et al., 2006) 並吸引效應細胞,如 CTL、天然殺傷 (NK) 細胞、巨噬細胞和粒細胞 (Hwang et al., 2007)。
在沒有炎症的情況下,MHC II 類分子的表達主要局限於免疫系統細胞,尤其是專業抗原提呈細胞 (APC),例如,單核細胞、單核細胞源性細胞、巨噬細胞、樹突狀細胞。在癌症患者的腫瘤細胞中發現有 MHC II 類分子的表達 (Dengjel et al., 2006)。本發明的拉長(較長)肽可作為 MHC-II 類活性表位。
MHC-II 類表位活化的輔助 T 細胞在編排抗腫瘤免疫的 CTL 效應子功能中發揮著重要作用。觸發 TH1 細胞反應的輔助 T 細胞表位支援 CD8 陽性殺傷 T 細胞的效應子功能,其中包括直接作用於腫瘤細胞的細胞毒性功能(該類腫瘤細胞表面顯示有腫瘤相關肽/MHC 複合體)。這樣,腫瘤相關 T 輔助細胞表位單獨使用或與其他腫瘤相關肽結合使用可作為刺激抗腫瘤免疫反應的疫苗化合物的活性藥物成分。
哺乳動物(如小鼠) 模型顯示,即使沒有 CD8 陽性 T 淋巴細胞,CD4 陽性 T 細胞也能透過分泌干擾素-γ (IFNγ) 抑制血管生成而足以抑制腫瘤的表現 (Beatty and Paterson, 2001; Mumberg et al., 1999)。沒有 CD4 T細胞作為直接抗腫瘤效應因子的證據 (Braumuller et al., 2013; Tran et al., 2014)。
由於 HLA II 類分子的組成性表達通常僅限於免疫細胞,因此,直接從原發腫瘤中分離 II 類肽之前被認為是不可能的事。然而,Dengjel 等人成功地在腫瘤中直接識別了多個 MHC II 類表位 (WO 2007/028574, EP 1 760 088 B1)。
由於 CD8 依賴型和 CD4 依賴型這兩種反應共同並協同地促進抗腫瘤作用,因此,確定和表徵由 CD8+ T 細胞(配體:MHC I 類分子 + 肽表位)或 CD4 陽性 T 輔助細胞(配體:MHC II 類分子)識別的腫瘤相關抗原對開發腫瘤疫苗非常重要。
對於MHC I 類肽觸發(引發)細胞免疫反應的肽,它也必須與 MHC 分子結合。這一過程依賴於 MHC 分子的等位基因以及肽氨基酸序列的特異性多態性。MHC-I 類-結合肽的長度通常為 8-12 個氨基酸殘基,並且在其與 MHC 分子相應結合溝槽相互作用的序列中通常包含兩個保守殘基(「錨」)。這樣,每個 MHC 的等位基因都有「結合基序」,從而確定哪些肽能與結合溝槽特異性結合 。
在 MHC-I 類依賴性免疫反應中,肽不僅能與腫瘤細胞表達的某些 MHC-I 類分子結合,而且它們之後還必須能被 T 細胞負載的特異性 T 細胞受體 (TCR) 識別。
對於被 T 淋巴細胞識別為腫瘤特異性抗原或相關性抗原以及用於治療的蛋白質,必須具備特殊的條件。該抗原應主要由腫瘤細胞表達,而不由正常健康組織表達,或表達數量相對較少。在一個優選的實施方案中,與正常健康組織相比,所述肽應在腫瘤細胞中過度提呈。更為適宜的情況是,該相應抗原不僅出現於一種腫瘤中,而且濃度(即每個細胞的相應肽拷貝數目)高。腫瘤特異性抗原和腫瘤相關抗原往往是源自直接參與因細胞週期控制或凋亡抑制中的其功能而發生的正常細胞向腫瘤細胞轉化的蛋白。另外,這些直接導致轉化事件的蛋白的下游靶標可能會被上調,因此可能與腫瘤間接相關。這些間接腫瘤相關抗原也可能是預防接種方法的靶標 (Singh-Jasuja et al., 2004)。至關重要的是,表位存在於抗原氨基酸序列中,以確保這種來自腫瘤相關抗原的肽(「免疫原性肽」)可導致體外或體內 T 細胞反應。
基本上,任何能與 MHC 分子結合的肽都可能充當一個 T 細胞表位。誘導體外或體內 T 細胞反應的前提是存在具有相應 TCR 的 T 細胞並且不存在對該特定表位的免疫耐受性。
因此,TAA 是基於 T 細胞療法(包括但不限於腫瘤疫苗)研發的起點。識別和表徵 TAA 的方法通常基於對患者或健康受試者 T 細胞的使用情況,或基於腫瘤與正常組織肽之間差別轉錄特性或差別表達模式的產生。然而,對腫瘤組織或人腫瘤細胞株中過量表達或選擇性表達的基因的識別並不提供在免疫療法中使用這些基因所轉錄抗原的準確資訊。這是因為,有著相應 TCR 的 T 細胞必須要存在而且對這個特定表位的免疫耐受性必須不存在或為最低水準,因此,這些抗原的表位只有一部分適合這種應用。因此,在本發明的一非常優選的實施例中,只選擇那些針對可發現功能性和/或增殖性 T 細胞情況的過量提呈或選擇性提呈肽,這一點非常重要。這種功能性 T 細胞被定義為在以特異性抗原刺激後能夠克隆地擴展並能夠執行效應子功能(「效應子 T 細胞」)的 T 細胞。
在透過根據本發明的特定 TCR(例如可溶性 TCR)和抗體或其他結合分子(支架)靶向作用於肽-MHC 的情況下,潛在肽的免疫原性是次要的。在這些情況下,提呈是決定因素。
在本發明的第一方面,本發明涉及一種肽,包含選自包括 SEQ ID NO:1 至 SEQ ID NO:91 的組的一個氨基酸序列、或該序列的與 SEQ ID NO:1 至 SEQ ID NO:91 具有至少 77%,優選至少 88% 同源(優選至少 77% 或至少 88% 相同)的一種變體序列(其中所述變體與 MHC 結合和/或誘導 T 細胞與所述肽發生交叉反應),或其藥用鹽(其中所述肽不是潛在全長多肽)。
本發明進一步涉及本發明的一種肽,包含選自包括 SEQ ID NO:1 至 SEQ ID NO:91 的組的一個序列、或與 SEQ ID NO:1 至 SEQ ID NO:91 具有至少 77%、優選至少 88% 同源性(優選為至少 77% 或至少 88% 相同)的一種變體,其中所述肽或其變體的總長度為 8 至 100 個、優選為 8 至 30 個、最優選為 8 至 14 個氨基酸。
下表顯示了根據本發明的肽、它們各自的 SEQ ID NO、以及這些肽的可能源(潛在)基因。表 1 和表 2 中的所有肽均與 HLA-A*02 結合。表 2 中的肽之前在大型列表中已披露,作為高通量篩查結果,錯誤率高,或使用演算法計算出,但之前與癌症毫無關聯。表 3 中的肽是可與本發明其他肽組合使用的其他肽。表 4A 和 B 中的肽還可用於診斷和/或治療各種其他惡性疾病,這些疾病涉及過量表達或過度提呈各潛在多肽。 表 1:本發明中的肽。 J =磷酸絲氨酸 表 2:本發明中的其他肽,之前與癌症無已知的關聯。 表 3:用於個性化癌症療法的肽。
此外,本發明一般還涉及根據本發明肽,其用於治療增殖性疾病,例如,急性骨髓性白血病、乳腺癌、膽管癌、腦癌、慢性淋巴細胞白血病、結直腸癌、食管癌、膽囊癌、胃癌、肝細胞癌、黑色素瘤、非霍奇金淋巴瘤、非小細胞肺癌、卵巢癌、胰腺癌、攝護腺癌、腎細胞癌、小細胞肺癌、膀胱癌和子宮癌。
特別優選的是本發明的肽(單獨或組合),其選自包括 SEQ ID NO:1 至 SEQ ID NO:91 的組。更優選的是所述肽(單獨或組合)選自包括 SEQ ID NO:1 至 SEQ ID NO:31 的組(見表 1)並且其用於免疫治療頭頸鱗狀細胞癌、急性骨髓性白血病、乳腺癌、膽管癌、腦癌、慢性淋巴細胞性白血病、結直腸癌、食管癌、膽囊癌、胃癌、肝細胞癌、黑色素瘤、非霍奇金淋巴瘤、非小細胞肺癌、卵巢癌、胰腺癌、攝護腺癌、腎細胞癌、小細胞肺癌、膀胱癌、子宮癌,優選頭頸鱗狀細胞癌。
如示下面的表 4A 所示,其中本發明的許多肽也發現於其他腫瘤中,因此也可用於其他適應症的免疫治療。另請參閱圖 1 和實施例 1。 表 4A:本發明的肽及其在其他增殖性疾病(特別是其他癌性疾病)中的特定用途。該表顯示,對於其他腫瘤類型上的選定肽,發現他們過度提呈於 5% 以上測定的腫瘤樣本,或提呈於 5% 以上測定的腫瘤樣本且幾何學平均值腫瘤與正常組織的比值大於 3。過度提呈定義為與最高提呈的正常樣本相比,腫瘤樣本中的提呈更高。經測試過度提呈的正常組織有:脂肪組織、腎上腺、膽管、血細胞、血管、骨髓、腦、食道、眼、膽囊、心臟、腎、大腸、肝、肺、淋巴結、神經、胰腺、甲狀旁腺、腹膜、垂體、胸膜、唾液腺、骨骼肌、皮膚、小腸、脾、胃、甲狀腺、氣管、輸尿管、膀胱。 NSCLC=非小細胞肺癌,SCLC=小細胞肺癌,RCC=腎癌,CRC =結腸或直腸癌,GC =胃癌, HCC = 肝癌,PC =胰腺癌,PrC=攝護腺癌,白血病,BRCA =乳腺癌,OC=卵巢癌,MCC = 梅克爾細胞癌,NHL=非霍奇金淋巴瘤,AML=急性骨髓性白血病,CLL=慢性淋巴細胞白血病 表 4B:本發明的肽及其在其他增殖性疾病(特別是其他癌性疾病)中的特定用途。該表顯示,對於其他腫瘤類型的選定肽,發現他們過量提呈(特定提呈)於 5% 以上測定的腫瘤樣本,或提呈於 5% 以上測定的腫瘤樣本且幾何學平均值腫瘤與正常組織的比值大於 3。過度提呈定義為與最高提呈的正常樣本相比在腫瘤樣本上提呈更高。經測試相比過度提呈的正常組織有:脂肪組織、腎上腺、動脈、骨髓、腦、中樞神經、結腸、十二指腸、食道、眼、膽囊、心臟、腎、肝、肺、淋巴結、血細胞、胰腺、甲狀旁腺、外周神經、腹膜、垂體、胸膜、直腸、唾液腺、骨骼肌、皮膚、小腸、脾、胃、胸腺、甲狀腺、氣管、輸尿管、膀胱、靜脈。 NSCLC =非小細胞肺癌,HCC=肝癌,BRCA =乳腺癌,RCC =腎細胞癌,GC =胃癌,OC =卵巢癌。
因此,本發明的另一個方面涉及根據 SEQ ID No. 1、10、17、37、42、48、57、61、67、69、70、72、75、76、78 和 87 中任一項所述的本發明的至少一種肽在一種優選實施方案中聯合用於治療膽囊癌和/或膽管癌。
因此,本發明的另一個方面涉及根據 SEQ ID No. 2、20、50、60、61、63 和 64 中任一項所述的本發明的至少一種肽在一項優選實施方案中聯合用於治療 NSCLC。
因此,本發明的另一個方面涉及根據 SEQ ID No. 2、17、45、59、61、63、67、81、83、85、89 和 91 中任一項所述的本發明的至少一種肽在一項優選實施方案中聯合用於治療 SCLC。
因此,本發明的另一個方面涉及根據 SEQ ID No. 2、3、4、6、7、8、9、16、19、23、27、32、39、41、42、46、48、49、50、52、53、54、58、60、61、62、72、75、88 和 90 中任一項所述的本發明的至少一種肽在一項優選實施方案中聯合用於治療食管癌。
因此,本發明的另一個方面涉及根據 SEQ ID No. 3、4、7、8、15、16、19、20、21、24、27、31、32、39、45、46、47、48、50、51、53、56、58、60、64、69、73、74、78、81、85、86、88、89 和 90 中任一項所述的本發明的至少一種肽在一種優選實施方案中聯合用於治療膀胱癌。
因此,本發明的另一個方面涉及根據 SEQ ID No. 4、16、17、39、48、50、56、57、58、62、73、75、76、79 和 89 中任一項所述的本發明的至少一種肽在一項優選實施方案中聯合用於治療 BRCA。
因此,本發明的另一個方面涉及根據 SEQ ID No. 8、9、11、16、17、32、43、48、56、57、65、66、67、71、73、81、82、85、87、88 和 89 中任一項所述的本發明的至少一種肽在一項優選實施方案中聯合用於治療黑色素瘤。
因此,本發明的另一個方面涉及根據 SEQ ID No. 16、17、24、29、43、57、66、70、73、76、77 和 83 中任一項所述的本發明的至少一種肽在一種優選實施方案中聯合用於治療 AML。
因此,本發明的另一個方面涉及根據 SEQ ID No. 16、17、19、31、43、46、47、48、49、51、56、57、58、66、67、72、75、76、79、83、89、90 和 91 中任一項所述的本發明的至少一種肽在一種優選實施方案中聯合用於治療子宮癌。
因此,本發明的另一個方面涉及根據 SEQ ID No. 18、58、61 和 88 中任一項所述的本發明的至少一種肽在一項優選實施方案中聯合用於治療腦癌。
因此,本發明的另一個方面涉及根據 SEQ ID No. 32、43、48、59、60、61、63、66、73、76、79、83、85、86、87、89、90 和 91 中任一項所述的本發明的至少一種肽在一項優選實施方案中聯合用於治療 NHL。
因此,本發明的另一個方面涉及根據 SEQ ID No. 43、61、65、66、73、76、78、89、90 和 91 中任一項所述的本發明的至少一種肽在一種優選實施方案中聯合用於治療 CLL。
因此,本發明的另一個方面涉及根據 SEQ ID No. 45、47、51 、56、66 和 67 中任一項所述的本發明的至少一種肽在一項優選實施方案中聯合用於治療 OC。
因此,本發明的另一個方面涉及根據 SEQ ID No. 43、50、89 和 61 中任一項所述的本發明的至少一種肽在一項優選實施方案中聯合用於治療 GC。
因此,本發明的另一個方面涉及根據 SEQ ID No. 16、43、45、57、61、65、66 和 75 中任一項所述的本發明的至少一種肽在一項優選實施方案中聯合用於治療 HCC。
因此,本發明的另一個方面涉及根據 SEQ ID No. 43、61、62、87、89 和 90 中任一項所述的本發明的至少一種肽在一項優選實施方案中聯合用於治療 RCC。
因此,本發明的另一方面涉及根據本發明肽的用途 - 優選聯合用於治療選自頭頸鱗狀細胞癌、急性骨髓性白血病、乳腺癌、膽管癌、腦癌、慢性淋巴細胞性白血病、結直腸癌、食管癌、膽囊癌、胃癌、肝細胞癌、黑色素瘤、非霍奇金淋巴瘤、非小細胞肺癌、卵巢癌、胰腺癌、攝護腺癌、腎細胞癌、小細胞肺癌、膀胱癌、子宮癌組中的增殖性疾病。
本發明還涉及本發明的肽,其具有與主要組織相容性複合體 (MHC) I 或以拉長形式存在的例如長度變化的- MHC-II 類分子結合的能力。
本發明進一步涉及本發明中的肽,其中所述肽(每種肽)系由或基本系由根據 SEQ ID NO:1 至 SEQ ID NO:91 的一個氨基酸序列組成。
本發明進一步涉及本發明的肽,其中所述肽被修飾和/或包含非肽鍵。
本發明進一步涉及本發明的肽,其中所述肽為融合蛋白的一部分,特別是與 HLA-DR 抗原相關不變鏈 (Ii) 的 N-端氨基酸融合,或與抗體(例如,樹突狀細胞特定抗體)或抗體的序列融合。
本發明進一步涉及一種編碼本發明肽的核酸。本發明進一步涉及的本發明核酸為DNA、cDNA、PNA、RNA或前述核酸的組合。
本發明進一步涉及一種能表達和/或表達本發明核酸的表達載體。
本發明進一步涉及本發明的一種肽、本發明的一種核酸或本發明的一種治療疾病的藥用表達載體,特別是用於治療癌症。
本發明進一步涉及本發明中肽或本發明中所述肽複合體(含有 MHC)的特定抗體以及製造這些抗體的方法。
本發明進一步涉及本發明的 T 細胞受體 (TCR),特別是可溶性TCR (sTCRs) 和加工為自體或異體 T 細胞的克隆 TCR,以及製造這些 TCR 的方法和載有所述 TCR 或所述 TCR 交叉反應的 NK 細胞的製造方法。
抗體和 TCR 是根據本發明的肽現有免疫治療用途的另外實施方案。
本發明進一步涉及含本發明核酸或前述表達載體的一種宿主細胞。本發明進一步涉及本發明的宿主細胞,其為抗原提呈細胞,優選為樹突細胞。
本發明進一步涉及配製本發明一種肽的一種方法,所述方法包括培養本發明的宿主細胞和從所述宿主細胞或其培養基中分離肽。
本發明進一步涉及本發明中的所述方法,其中抗原透過與足夠量的含抗原提成細胞的抗原結合被載入表達於合適抗原提呈細胞或人工抗原呈遞細胞表面的 I 或 II 類 MHC 分子。
本發明進一步涉及本發明的方法,其中抗原提呈細胞由能表達含 SEQ ID NO:1 至 SEQ ID NO:91、優選為含 SEQ ID NO: 1 至 SEQ ID No: 31 所述肽的一個表達載體、或一個變體氨基酸序列組成。
本發明進一步涉及以本發明方法製造的啟動 T 細胞,其中所述 T 細胞有選擇性地識別一種細胞,該細胞表達含一種本發明氨基酸序列的多肽。
本發明進一步涉及一種殺傷患者靶細胞的方法,其中患者的靶細胞異常表達含本發明任何氨基酸序列的多肽,該方法包括給予患者按本發明方法製造的有效量 T 細胞。
本發明進一步涉及任何所述肽、本發明的核酸、本發明的表達載體、本發明的細胞、本發明的作為藥劑或製造藥劑的啟動 T 淋巴細胞、T 細胞受體或抗體或其他肽-和/或肽-MHC 結合分子的用途。所述藥劑優選為具有抗癌活性。
優選情況為,所述藥劑為基於可溶性 TCR 或抗體的細胞治療藥物、疫苗或蛋白質。
本發明進一步涉及根據本發明肽的用途,其中所述癌細胞為頭頸鱗狀細胞癌、急性骨髓性白血病、乳腺癌、膽管癌、腦癌、慢性淋巴細胞性白血病、結直腸癌、食管癌、膽囊癌、胃癌、肝細胞癌、黑色素瘤、非霍奇金淋巴瘤、非小細胞肺癌、卵巢癌、胰腺癌、攝護腺癌、腎細胞癌、小細胞肺癌、膀胱癌、子宮癌細胞,優選頭頸鱗狀細胞癌細胞。
本發明進一步涉及一種基於本發明肽的生物標誌物,在此成為「靶標」,其可用於診斷癌症,優選頭頸鱗狀細胞癌。所述標誌物可以肽本身過度提呈或相應基因過度表達。標誌物也可以用於預測治療成功的可能性,優選為免疫療法,最優選為靶向作用於該生物標誌物識別的相同靶標的免疫療法。例如,抗體或可溶性 TCR 可用於染色腫瘤切片以檢測是否存在相關肽與 MHC 複合。
或者,抗體具有進一步的效應子功能,如免疫刺激域或毒素。
本發明還涉及癌症治療中本發明新靶點的用途。
ALOX12B 參與終末皮膚分化和表皮屏障功能 (Furstenberger et al., 2007; Epp et al., 2007)。ALOX12B 是癌症中擴增的免疫抑制因子 (Rooney et al., 2015)。順鉑誘導且ATM 磷酸化 (p)-δNp63α。隨後,它上調 miR-185-5p,其下調 let7-5p,導致在鱗狀細胞癌中 ALOX12B 表達調節 (Ratovitski, 2013)。ALOX12B 與乳腺癌和肺癌風險有關 (Lee et al., 2009; Shen et al., 2009)。
ANKRD17 mRNA 水準在結直腸癌中廣泛下調,並使該蛋白成為用於結直腸癌檢測的多靶標測定組的潛在標誌物 (Ioana et al., 2010)。通過細胞週期蛋白 E/CdK2 磷酸化 ANKRD17,該蛋白參與細胞週期調控。過量表達促進進入 S 期,而表達耗竭抑制 DNA 複製、阻斷細胞週期進程並且上調腫瘤抑制基因 p53 和 p21 的表達 (Deng et al., 2009)。
ATP5G1 富含於胃癌的氧化磷酸化途徑 (Song et al., 2016)。頭頸鱗狀細胞癌中 ATP5G1 表達降低 (Koc et al., 2015)。肝臟再生增強因子 (ALR) 的敲減導致小鼠脂肪肝和肝細胞癌加速發展。此外,在 ALR 敲減小鼠中 ATP5G1 表達降低(Gandhi et al., 2015)。
與低中級別腫瘤相比,ATP5G2 在高級別膀胱癌腫瘤中甲基化程度更高 (Kitchen et al., 2016)。RIZ1 是一種腫瘤抑制因子,其耗竭導致 ATP5G2 表達的改變 (Xie et al., 2016b)。TP5G2 在雌激素和孕酮治療子宮內膜石川癌細胞系後高度表達 (Tamm-Rosenstein et al., 2013)。ATP5G2 啟動子在原發性腎細胞癌中甲基化 (Morris et al., 2011)。
ATP5G3 富含於胃癌的氧化磷酸化途徑 (Song et al., 2016)。ATP5G3 在 PPARα啟動時上調,該啟動與腫瘤進展負相關、抑制細胞遷移 (Huang and Chang, 2016)。ATP5G3 可能是一種輻射敏感性基因 (Tsuji et al., 2005)。
BTBD11 編碼BTB 結構域含 11 蛋白,並位於染色體 12q23.3 上(RefSeq, 2002)。BTBD11 在乳頭狀甲狀腺癌中差異表達 (Qu et al., 2016)。 BTBD11 是 TGF-β 靶基因 (Sawada et al., 2016)。BTBD11 在胃癌中突變(Leiserson et al., 2015; Leiserson et al., 2016)。
吸菸與非吸菸肺腺癌患者之間 CD276 的預後關係不同。CD276 高表達與吸菸有關 (Inamura et al., 2017)。CD276 在攝護腺癌中高甲基化 (Wang et al., 2016b)。CD276 受 miR-124 調節,後者在骨肉瘤中下調。TGF-β1 通過 SMAD 3 和 4 信號傳導上調 miR-155,導致 CEBPB 抑制 miR-143 減弱,這導致 CD276 的積累。CD276 受 miR-187 調節,後者在結直腸癌中下調 (Wang et al., 2016e; Trojandt et al., 2016; Zhou et al., 2016; Wang et al., 2016a)。CD276 通過影響 SREBP-1/FASN 信號傳導介導肺癌異常脂質代謝。可溶性 CD276 通過 TLR4/NF-κB 信號介導胰腺癌侵襲和轉移 (Xie et al., 2016a; Luo et al., 2016)。CD276 是一種免疫檢查點,可能是癌症治療中有希望的靶點。其可在腫瘤生長期間被靶向作用,抑制抗腫瘤免疫性,從而使新出現的腫瘤出現免疫逃逸 (Leung and Suh, 2014; Swatler and Kozlowska, 2016; Janakiram et al., 2016)。CD276 由大多數高危神經母細胞瘤表達,在腫瘤血管系統中過度表達,並在腫瘤生存和侵襲中起重要作用 (Bottino et al., 2014)。CD276 敲減增加化學敏感性並降低轉移可能性。CD276 敲減導致凋亡標誌物表達和 STAT3 磷酸化增加。黃茋甲苷靜脈內注射治療通過抑制非小細胞肺癌細胞中的 CD276 從而降低細胞生長並增加對順鉑的化學敏感性 (Nygren et al., 2011; He et al., 2016)。CD276 在食管癌、乳腺癌、膽囊癌、攝護腺癌和卵巢癌中過度表達 (Barach et al., 2011; Janakiram et al., 2012; Fauci et al., 2012; Chen et al., 2016; Liu et al., 2016)。CD276 過度表達與不良生存、預後和腫瘤分級相關。CD276 可促進癌症侵襲和進展。但是,CD276 也可能具有抗腫瘤作用。CD276 高表達是非小細胞肺癌中淋巴結轉移和晚期 TNM 分期的一項指標 (Yi and Chen, 2009; Loos et al., 2010; Nygren et al., 2011; Fauci et al., 2012; Wang et al., 2014a; Ye et al., 2016; Benzon et al., 2016; Wu et al., 2016)。CD276 下調自然殺傷細胞的細胞毒性,支援癌症免疫逃逸 (Bottino et al., 2014)。
CDH23 編碼鈣黏蛋白相關 23 蛋白,其是鈣黏素超家族的成員,其基因編碼鈣依賴性細胞黏附糖蛋白。編碼的蛋白質被認為參與了毛細管結構和毛束形成。該基因位於包含人耳聾基因座 DFNB12 和 USH1D 的區域中。Usher 徵候群 1D 和非徵候群常染色體遺傳性耳聾 DFNB12 由該鈣黏蛋白樣基因的等位基因突變引起。該基因的上調也可能與乳腺癌相關 (RefSeq, 2002)。TMPRSS3 是乳腺癌不良預後因子,可與 CDH23 相互作用 (Rui et al., 2015)。CDH23 在 ERα 表達乳腺癌細胞中的瘦蛋白處理後上調 (Binai et al., 2013)。CDH23 在乳腺癌中上調,可能參與早期轉移 (Apostolopoulou and Ligon, 2012)。在胰腺癌細胞系中可觀察到 CDH23 缺失(Suzuki et al., 2008)。
CDH3 參與致癌信號傳導並啟動整合素、受體酪氨酸激酶、小分子 GTP 酶、EMT 轉錄因子和其他鈣黏蛋白家族成員。CDH3 信號傳導誘導侵襲和轉移(Albergaria et al., 2011; Paredes et al., 2012; Bryan, 2015; Vieira and Paredes, 2015)。CDH3 的致癌活化參與胃癌發生(Resende et al., 2011)。CDH3 過度表達促進乳腺癌、膀胱癌、卵巢癌、攝護腺癌、子宮內膜癌、皮膚癌、胃癌、胰腺癌和結腸癌 (Albergaria et al., 2011; Paredes et al., 2007; Bryan and Tselepis, 2010; Reyes et al., 2013; Vieira and Paredes, 2015)。CDH3 是在基底樣乳腺癌中表達的基底上皮標誌物。BRCA1 癌的特徵在於基底標誌物如 CDH3 的表達,並顯示出高級別、高度增殖、ER 陰性和 HER3 陰性表型 (Honrado et al., 2006; Palacios et al., 2008; Rastelli et al., 2010; Dewar et al., 2011)。CDH3 是黑色素瘤和口腔鱗狀細胞癌中的腫瘤抑制因子 (Haass et al., 2005; Vieira and Paredes, 2015)。CDH3 可用作 EMT 標誌物。在腫瘤形成和進展過程中,E-鈣黏蛋白轉化為 N-鈣黏蛋白和 CDH3 表達 (Piura et al., 2005; Bonitsis et al., 2006; Bryan and Tselepis, 2010; Ribeiro and Paredes, 2014)。CDH3 和 β-連環蛋白之間的競爭性相互作用導致胃癌中細胞間相互作用和轉移受損 (Moskvina and Mal'kov, 2010)。CDH3 可能是結腸癌中癌症形成的早期標誌物 (Alrawi et al., 2006)。CDH3 的失調節是預後不良和惡化程度增加的標誌物 (Knudsen and Wheelock, 2005)。
CLCA2 過度表達下調 β-連環蛋白和 β-連環蛋白啟動基因(Ramena et al., 2016)。CLCA2 與 EVA1 強烈相互作用,EVA1 也可被 p53 和 p63 誘導、通常在引起 EMT 的乳腺癌中下調,並且對上皮分化非常重要。兩種蛋白質與 E-鈣黏蛋白相互作用 (Ramena et al., 2016)。成年急性骨髓性白血病中存在 AML1-CLCA2 和 RUNX1-CLCA2 基因融合產物 (Giguere and Hebert, 2010; Jiang et al., 2013)。DNA 損傷後,CLCA2 可被 p73、p53 和 p63 誘導,並充當增殖的抑制劑 (Walia et al., 2009; Sasaki et al., 2012; Yu et al., 2013; Ramena et al., 2016)。 CLCA2 表達在肺腺癌患者的迴圈腫瘤細胞中升高,檢測量增加與患者生存期縮短有關 (Hayes et al., 2006; Man et al., 2014)。與腺癌相比,CLCA2 在肺鱗狀細胞癌中表達較高,與組織學腫瘤分級相關。CLCA2 表達可用於檢測非小細胞肺癌和小細胞肺癌 (Hayes et al., 2006; Shinmura et al., 2014)。CLCA2 敲減導致上皮細胞間質轉化、癌細胞遷移和侵襲。在正常條件下,CLCA 2被認為可通過抑制 FAK 信號通路來抑制遷移和侵襲。CLCA2 介導與 β(4) 整合素相關的肺轉移 (Abdel-Ghany et al., 2001; Walia et al., 2012; Sasaki et al., 2012; Ramena et al., 2016)。CLCA2 由於啟動子高甲基化而在乳腺癌中下調,在結直腸癌中下調。CLCA2 在膀胱癌和黑色素瘤轉移癌轉移期間差異表達。在套細胞淋巴瘤中存在 CLCA2 拷貝數損失(Gruber and Pauli, 1999; Bustin et al., 2001; Li et al., 2004; Balakrishnan et al., 2006; Riker et al., 2008; Walia et al., 2012; Matin et al., 2014; Ramena et al., 2016)。
DSG1 在角化囊性牙源性腫瘤中過度表達,並且在口腔上皮內腫瘤中表達率高 (Aizawa et al., 2014; Heikinheimo et al., 2015)。DSG1 表達在棘層松解性鱗狀細胞癌中丟失,在軟骨肉瘤、口腔鱗狀細胞癌和肺癌中表達下降(Xin et al., 2014; Saaber et al., 2015; Galoian et al., 2015; Jurcic et al., 2015)。DSG1 表達受 GRHL1 調控,並且用標準化學皮膚癌方案治療的 GRHL1 陰性小鼠發生較少的乳頭狀瘤,但發生更多的鱗狀細胞癌 (Mlacki et al., 2014)。DSG1 是 Rhoda 和 GEF Bcr 的下游靶標,是一種角質細胞分化標誌物 (Dubash et al., 2013)。KLK5 裂解可能與口腔鱗狀細胞癌轉移灶形成有關的 DSG1。DSG1 水準降低可能與胰腺癌侵襲有關(Ramani et al., 2008; Jiang et al., 2011)。DSG1 染色陰性與肛門癌特異性存活改善有關,陽性染色與腫瘤體積大和淋巴結轉移相關。DSG1 的損失與頭頸鱗狀細胞癌的預後不良有關 (Wong et al., 2008; Myklebust et al., 2012)。對抗 DSG1 的自身抗體可以在副腫瘤性天皰瘡中檢測到 (Seishima et al., 2004)。
食管鱗狀細胞癌中 DSG3 表達被證明與組織學分級高度相關,對食管鱗狀細胞癌的生存期有影響,DSG3 表達陰性表示生存較差。因此,DSG3 可能參與食管鱗狀細胞癌的進展,並可作為一種預後標誌物(Fang et al., 2014)。在原發性肺腫瘤中,DSG3 和 DSG2 較高表達顯示與鱗狀細胞肺癌的診斷相關,而 DSG3 的較低表達顯示與腫瘤級別較高顯著相關。因此,DSG3 可作為鱗狀細胞肺癌的潛在診斷標誌物和肺癌的潛在分化標誌物 (Saaber et al., 2015)。DSG3 被描述為是一種在切除胰腺導管腺癌中的陰性預後生物標誌物,因為 DSG3 高表達與總體生存率差和腫瘤特異性生存率差相關。因此,DSG3 及其下游信號通路可能是表達 DSG3 的胰腺導管腺癌中可能的治療靶點 (Ormanns et al., 2015)。
DSP 表達下降與幾種癌症(包括乳腺癌、肺癌和宮頸癌)的腫瘤進展相關(Schmitt-Graeff et al., 2007; Davies et al., 1999; Yang et al., 2012b)。 DSP 的表達通過抑制 Wnt/β-連環蛋白信號通路而顯著抑制肺癌細胞的細胞增殖、錨定非依賴性生長、遷移和侵襲(Yang et al., 2012b)。
DST 可能與乳腺癌轉移有關 (Sun et al., 2006)。針對 DST 的自身抗體可在淋巴細胞性白血病和濾泡性淋巴瘤中發現到 (Aisa et al., 2005; Taintor et al., 2007)。在鼻咽癌中,DST 在 5-8F 細胞(高致瘤和轉移能力)中相較於 6-10B 細胞(具備致瘤能力但無轉移能力)上調 (Fang et al., 2005)。DST 在頭頸鱗狀細胞癌中高表達 (Lin et al., 2004)。在副腫瘤性天皰瘡中存在針對 DST 的自身抗體,這與腫瘤相關 (Yong and Tey, 2013; Wang et al., 2005; Preisz and Karpati, 2007; Zhu and Zhang, 2007)。攝護腺癌中的 DST 表達與疾病進展呈強烈逆相關 (Vanaja et al., 2003)。抗 DST自身抗體是黑色素瘤診斷的一個有前景的標誌物 (Shimbo et al., 2010)。DST 可發現於惡病質癌症患者的尿液 (Skipworth et al., 2010)。DST 在肺腺癌和鱗狀細胞癌中差異表達 (McDoniels-Silvers et al., 2002)。DST 明顯上調,伴隨浸潤性細胞生長 (Herold-Mende et al., 2001)。
EMC7 編碼 ER 膜蛋白複合物亞基 7,位於染色體 15q14 上(RefSeq, 2002)。EMC7 可能是癌症中新型的藥物靶標和診斷生物標誌物(Delgado et al., 2014)。在平陽黴素抑制舌鱗狀細胞癌細胞系中,EMC7 下調(Zheng et al., 2010)。
ESRP2 編碼上皮細胞型特異性剪接調節因子 (RefSeq, 2002)。 ESRP2 抑制不同癌症類型(包括肺癌和乳腺癌細胞)的癌細胞運動。ESRP2 在侵襲性前緣被 TGF-β 下調,導致上皮-間質轉化相關轉錄因子的表達增加 (Gemmill et al., 2011; Horiguchi et al., 2012; Ishii et al., 2014)。
F2RL1 的 PH 結構域結合基序中的突變足以降低乳腺腫瘤生長(Bar-Shavit et al., 2016)。F2RL1 在胃癌中過度表達,與患者的總體生存率呈負相關 (Sedda et al., 2014)。胰蛋白酶是由肥大細胞釋放的血管生成的介質,其活化 F2RL1,導致癌細胞增殖、侵襲和轉移 (Marech et al., 2014; Ammendola et al., 2014)。 F2RL1 受癌症中差異表達和突變的基因影響(D'Asti et al., 2014)。F2RL1 參與癌症進展、侵襲和轉移(Wojtukiewicz et al., 2015; Canto et al., 2012; Lima and Monteiro, 2013; Gieseler et al., 2013)。F2RL1 在腺癌、黑色素瘤、骨肉瘤、成膠質細胞瘤、腦膜瘤、白血病和鱗狀細胞癌中表達(Elste and Petersen, 2010)。F2RL1 調節作為 TGF-β1 型受體 ALK5 的表達。 F2RL1 啟動 MAP 激酶 (Oikonomopoulou et al., 2010; Witte et al., 2016)。組織因子和整合素的上調介導促進轉移的 F2RL1 信號傳導 (Kasthuri et al., 2009; Ruf et al., 2011; Kocaturk and Versteeg, 2012; Ruf, 2012; Kocaturk and Versteeg, 2013)。胰蛋白酶和 PAR2 形成促進增殖、侵襲和轉移的自分泌環。胰蛋白酶刺激可能通過表皮生長因子受體的 MMP- 和 PAR2- 依賴性啟動導致 MAPK-ERK 通路啟動 (Soreide et al., 2006)。
FAM160A1 編碼具有序列相似性 160 成員 A1 的家族,並且位於染色體 4q31.3 上 (RefSeq, 2002)。DAM131 與攝護腺癌雌激素相關受體 β 結合後,FAM160A1 表達發生改變 (Lu et al., 2015b)。攝護腺癌中存在 NFκB-FAM160A1 基因融合產物 (Teles, I et al., 2015)。與良性腫瘤相比,FAM160A1 在卵巢癌中上調 (Li et al., 2012a)。 FAM160A1 缺失可在家族性和早期發病的乳腺癌中發現 (Krepischi et al., 2012)。 FAM160A1 在結直腸癌中下調 (Li et al., 2012b)。
FANCE 與食管鱗狀細胞癌風險相關 (Li et al., 2013)。罕见的FANCE 下調可在頭頸鱗狀細胞癌中察到 (Wreesmann et al., 2007)。Chk1 介導了 DNA 交聯後的 FANCE 的磷酸化 (Wang et al., 2007)。家族性結直腸癌顯示雜合基因型 FANCE。范康尼氏貧血症 DNA 損傷修復可能與結直腸癌的遺傳性體質有關。得失位突變可能參與遺傳性食管鱗狀細胞癌。在一個乳腺癌家族中發現了 FANCE 的錯義變體 (Akbari et al., 2011; Seal et al., 2003; Esteban-Jurado et al., 2016)。 FANCE 參與順鉑敏感性的調節 (Taniguchi et al., 2003)。
FAT1 被描述為在頭頸鱗狀細胞癌中明顯突變,在宮頸腺癌、膀胱癌、早期 T 細胞前體急性淋巴細胞白血病、氟達拉濱難治慢性淋巴細胞性白血病、膠質母細胞瘤和結直腸癌中頻繁突變,在食管鱗狀細胞癌中突變 (Gao et al., 2014; Neumann et al., 2013; Morris et al., 2013; Messina et al., 2014; Mountzios et al., 2014; Cazier et al., 2014; Chung et al., 2015)。FAT1 被描述為在口腔癌中被壓抑,在浸潤性乳腺癌中優先下調 (Katoh, 2012)。FAT1 被描述為在白血病中上調,其與前 B 急性淋巴細胞白血病的不良預後相關 (Katoh, 2012)。FAT1 被證明在胰腺癌和肝細胞癌中上調 (Valletta et al., 2014; Wojtalewicz et al., 2014)。FAT1 被描述可通過河馬信號傳導的啟動來抑制腫瘤生長,並通過肌動蛋白聚合誘導 來促進腫瘤轉移 (Katoh, 2012)。FAT1 被證明是皮膚鱗狀細胞癌的一種候選癌症驅動基因 (Pickering et al., 2014)。FAT1 被描述為與 Wnt 信號傳導和腫瘤發生相關的一種腫瘤抑制因子 (Morris et al., 2013)。
FAT3 顯示,當雄激素受體沉寂後,在紫杉醇耐藥卵巢癌細胞系中下調,導致在這些細胞系中對紫杉醇敏感增加。因此,FAT3 可能是與紫杉醇抗性相關的候選基因 (Sun et al., 2015b)。FAT3 被證明在食管鱗狀細胞癌中突變,導致河馬信號傳導途徑的失調 (Gao et al., 2014)。FAT3 被證明在早期 T 細胞前體急性淋巴細胞白血病中週期性突變 (Neumann et al., 2013)。FAT3 被描述為一種具有腦膜腦膜瘤特定特徵的基因,因此,與這種亞型的良性腦膜瘤腫瘤發生有關 (Fevre-Montange et al., 2009)。FAT3 被描述為一種腫瘤抑制因子,對發育不良細胞的肺癌發展有抑制作用 (Rohrbeck and Borlak, 2009)。
FHAD1 在參與氧化應激反應的 NFE2 敲減後下調 (Williams et al., 2016)。FHAD1 的 CpG 甲基化可用作轉移性致死性攝護腺癌的生物標誌物 (Zhao et al., 2017)。FHAD1 在食管鱗狀細胞癌中下調,並可能有助於促進順鉑化學耐藥 (Tsutsui et al., 2015)。FHAD1 可能是乳腺癌的腫瘤抑制基因 (Iorns et al., 2012)。
G3BP1 編碼 G3BP 應激顆粒裝配因子 1,其是 DNA 解鏈酶之一,其優選部分解鏈的 3' 末端底物,並且還可以以 ATP 依賴方式解鏈部分 RNA/DNA 和 RNA/RNA 雙鏈體 (RefSeq, 2002)。G3BP1 可用作 HER2+ 乳腺癌藥物反應的生物標誌物 (Chien et al., 2016)。miR-193a-3p,其在體外和體內抑制肺癌的進展和轉移,下調 G3BP1 (Deng et al., 2015)。 G3BP1 是白藜蘆醇的直接靶標。G3BP1 的耗竭減少白藜蘆醇誘導的 p53 表達和細胞凋亡。G3BP1 是通過與 USP10(p53 特異性去泛素化酶)相互作用的 p53 負調節因子 (Oi et al., 2015)。G3BP1 由 MYCNOS 募集到 MYCN 的啟動子區域以調節其表達。G3BP1 負調節 PMP22 以增加乳腺癌的增殖 (Winslow et al., 2013; Vadie et al., 2015)。G3BP1 可能是由癌症識別肽和促凋亡肽組成的雙功能肽的靶點 (Meschenmoser et al., 2013)。晚期口腔鱗狀細胞癌對 G3BP1 敲減敏感,導致凋亡增加 (Xu et al., 2013)。 G3BP1 在乳腺癌、口腔鱗狀細胞癌、結腸癌、胰腺癌、肝細胞癌和胃癌中上調,並與患者預後、腫瘤大小、血管浸潤、T 分類、淋巴結轉移、TNM 分期及總體生存率降低有關 (Lo et al., 2012; Winslow et al., 2013; Min et al., 2015; Dou et al., 2016)。Y-盒結合蛋白 1 與 G3BP1 mRNA 的 5'UTR 結合以調節 G3BP1 應激顆粒成核劑應用於顆粒組裝的可用性。YB-1 或 G3BP1 的下調導致應激顆粒形成和腫瘤侵襲下降 (Ward et al., 2011; Annibaldi et al., 2011; Somasekharan et al., 2015)。G3BP1 控制 H+-ATP 酶的活性和 β-F1-ATP 酶 mRNA 的翻譯 (Willers and Cuezva, 2011)。G3BP1 與電離輻射前後的早幼粒細胞白血病核體共定位 (Liu et al., 2010)。表沒食子兒茶素沒食子酸酯是綠茶的主要化合物,通過與 G3BP1 結合抑制肺部腫瘤發生。G3BP1 表達受洛伐他汀影響 (Klawitter et al., 2010; Shim et al., 2010)。G3BP1 通過上調 Slug 參與癌細胞生長、凋亡、運動、遷移、侵襲和轉移。G3BP1 的敲減可降低 Slug 表達,增加上皮標誌物 E-鈣黏蛋白。乳腺癌中 G3BP1 的上調通過 Smad 信號通路啟動上皮-間質轉化。G3BP1 參與 Ras 和 NF-κB 信號傳導、泛素蛋白酶體途徑和 RNA 加工 (French et al., 2002; Zhang et al., 2015; Dou et al., 2016)。G3BP1 強迫表達促進肝細胞癌細胞遷移 (Dou et al., 2016)。
GAR1 能啟動 p53 (Zhang et al., 2012)。GAR1 參與端粒酶複合物 (Zhu et al., 2004; Rashid et al., 2006; Tomlinson et al., 2008; Pigullo et al., 2009; Low and Tergaonkar, 2013; Heidenreich et al., 2014)。GAR1 對細胞活力很重要 (Lubben et al., 1995)。
ITGB4 與攝護腺癌、胃癌、乳腺癌、口腔鱗狀細胞癌和卵巢癌相關,並且被證明在胰腺導管腺癌中上調 (Chen et al., 2014; Xin et al., 2014; Zubor et al., 2015; Masugi et al., 2015; Gao et al., 2015; Kawakami et al., 2015)。ITGB4(也稱為 CD104)往往與 α6 亞基關聯,並可能在幾種浸潤性癌症的生物學中發揮重要作用,如食管鱗狀細胞癌、膀胱癌和卵巢癌 (Kwon et al., 2013; Pereira et al., 2014; Chen et al., 2014)。ITGB4 單核苷酸多態性似乎影響腫瘤的侵襲性和存活,並可能對乳腺癌患者具有預後價值 (Brendle et al., 2008)。
KDM5B 編碼蛋白 JARID1B,這是一種賴氨酸特異性組蛋白去甲基化酶,其能夠通過使組蛋白 H3 的賴氨酸 4 去甲基化來抑制某些腫瘤抑制基因 (RefSeq, 2002)。作為表觀遺傳因子,KDM5B 通過抑制 p53 表達為人 OSCC、頭頸鱗狀細胞癌 (HNSCC)、乳腺癌和肺癌的增殖、遷移和侵襲提供支援 (Shen et al., 2015; Tang et al., 2015a; Zhao and Liu, 2015; Lin et al., 2015)。另外,稱為 JARID1B 的 KDM5B 通過 PTEN/AKT 信號轉導在各種腫瘤類型中促進轉移上皮-間質轉化 (Tang et al., 2015a)。
KLHL21 在肝細胞癌中上調,可用作生物臨床標誌物 (Shi et al., 2016)。KLHL21 是 IKKβ 的負調節因子。KLHL21 表達在促炎症刺激後在巨噬細胞中下調。KLHL21 過度表達抑制 IKKβ 啟動和 IκBα 降解 (Mei et al., 2016)。KLHL21 被異常基因融合轉錄因子 ASPSCR1-TFE3 過度表達,ASPSCR1-TFE3 在兩個不同的實體:肺泡軟組織肉瘤和腎細胞癌中發現 (Kobos et al., 2013)。 KLHL21 可能參與癌症發生 (Martinez et al., 2010)。KLHL21 是細胞分裂所必需的,並且調節染色體乘客複合體在細胞分裂後期從染色體轉移到主軸中區。它與基於 Cullin3 的 E3 泛素連接酶相互作用,並直接與 Aurora B 結合,導致其泛素化 (Maerki et al., 2009)。 KLHL21 通過靶向作用於 IKKβ 來負調節 TNFα 啟動的 NF-κB 信號傳導 (Mei et al., 2016)。
KLK6 編碼激肽釋放酶相關肽酶 6,其是肽酶 S1 家族絲氨酸蛋白酶的激肽釋放酶亞族的成員。越來越多的證據表明,許多激肽釋放酶涉及致癌作用,一些有可能成為癌症和其他疾病的新型生物標誌物。這種蛋白酶的表達受類固醇激素調節,並且可能在多種人類癌症和來自銀屑病患者的血清中升高。編碼的蛋白酶可能參與澱粉樣蛋白前體蛋白和 α-突觸核蛋白的裂解,從而分別將這種蛋白酶牽涉到阿爾茨海默氏症和帕金森病中。該基因位於染色體 19 上的基因簇 (RefSeq, 2002)。KLK6 可被 p53 誘導,其表達增加胃癌的自噬作用和耐藥性 (Kim et al., 2016)。KLK6 下調與 GNA13 表達增加有關,其與良性乳腺腫瘤的侵襲性相關 (Teo et al., 2016)。KLK6 能夠上調和下調幾種可能影響細胞週期、MYC、MAPK 和其他信號通路的miRNA (Sidiropoulos et al., 2016)。KLK6 屬於與轉移性結直腸癌中帕尼單抗耐藥相關的狀況 (Barry et al., 2016)。KLK6 與脊髓損傷、腫瘤細胞轉移和 α 突觸核蛋白聚集疾病(如帕金森病)後發生的軸突生長調節相關 (Xi et al., 2015)。KLK6 在高侵襲性 PC3 攝護腺癌和卵巢癌中過度表達,在宮頸癌前期病變中失調節 (Tamir et al., 2014; Hwang and Lindholm, 2015)。KLK6 可用作多種實體(包括肝細胞癌、乳腺癌、結腸癌、胃腸癌和星形細胞瘤)的生物標誌物 (Vakrakou et al., 2014; Yu et al., 2015b; Grin et al., 2015; Schrader et al., 2015; Drucker et al., 2015; Mange et al., 2016)。KLK6 與晚期漿液性卵巢癌的總生存率相關,其表達可能與其他臨床參數相關 (Kolin et al., 2014; Dorn et al., 2015; Yang et al., 2016a; Leung et al., 2016; Ahmed et al., 2016)。
CD34 在頭頸鱗狀細胞癌中的表達與細胞週期進程相關,其敲減上調 KRT1 表達 (Ettl et al., 2016)。在桔梗皂苷 D 治療後,KRT1 在 HepG2 細胞中下調 (Lu et al., 2015a)。來自鮑溫病淺表侵襲性癌的透明細胞灶的免疫組織化學染色檢測顯示 KRT1 陰性 (Misago et al., 2016)。miR-944 通過上調 p53 和削弱 ERK 信號傳導誘導 KRT1 表達 (Kim et al., 2015)。KRT1 表達在早期和晚期鱗狀細胞癌中上調 (Tang et al., 2015b)。核降解下調 KRT1 表達 (Naeem et al., 2015)。 KRT1 表達可能是分化狀態的標誌物。其可與 NMP-52 和 AFP 表達一起用於檢測肝細胞癌 (Attallah et al., 2015; Bruna et al., 2017)。KRT1 在二十二碳六烯酸治療後上調,已知其可降低乳腺癌侵襲 (Blanckaert et al., 2015)。來自甲細胞癌的增殖嗜鹼性細胞未能表達 KRT1 (Wang et al., 2015a)。 KRT1 的上調與 Notch1 受體刺激間接相關 (Vliet-Gregg et al., 2015)。S100A7 下調 KRT1 (Li et al., 2015)。 KRT1 的表達與口腔鱗狀細胞癌中 p21 和 hsp70 的表達有關。KRT1 缺失與 Klf4 缺乏相關,Klf4 是抑制細胞增殖並促進分化的轉錄因子 (Paparella et al., 2015; Frohwitter et al., 2016)。
KRT13 編碼作為角蛋白基因家族成員的角蛋白 13。維他命 D 改變 KRT13 表達 (Narayanan, 2006)。 CK13 的免疫染色在黏液表皮樣癌的表皮樣組分中呈陽性,在管狀腺瘤和下頜腺產生的溶瘤癌中呈陰性 (Muramatsu et al., 2003; Matsuzaka et al., 2004; do Prado et al., 2007)。 α6β4 整合素的異常表達上調 KRT13,這是皮膚鱗狀細胞癌發展的早期事件 (Tennenbaum et al., 1996)。KRT13 可用作宮頸上皮內瘤變的生物標誌物。KRT13 損失是腫瘤分級和轉移性尿路上皮細胞癌分期的標誌物。KRT13 表達是皮膚癌進展的標誌物 (Slaga et al., 1995; Southgate et al., 1999; Duggan, 2002; Baak et al., 2006)。KRT13 表達在口腔癌幹細胞和口腔鱗狀細胞癌中下調 (Morgan and Su, 1994; Sinha et al., 2013)。
KRT14 在各種鱗狀細胞癌(如食管癌、肺癌、喉癌、宮頸癌)以及腺瘤牙源性腫瘤中高度表達。但是,在膀胱小細胞癌中不存在,在肺腺癌、胃腺癌、結直腸腺癌、肝細胞癌、胰腺導管腺癌、乳腺浸潤性導管癌、甲狀腺乳頭狀癌和子宮內膜樣腺癌中較弱 (Xue et al., 2010; Terada, 2012; Vasca et al., 2014; Hammam et al., 2014; Shruthi et al., 2014)。在膀胱癌中,KRT14 表達與較差生存期強烈相關 (Volkmer et al., 2012)。
MCF-7 乳腺癌細胞長時間暴露於乙醇會上調 KRT15,這是一種惡性腫瘤相關基因 (Gelfand et al., 2017)。具有侵襲性生長的基底細胞癌顯示 KRT15 陰性表達 (Ziari et al., 2015)。KRT15 可用於區分螺旋腺瘤和圓柱瘤 (Sellheyer, 2015)。KRT15 在膀胱癌發生中依次上調 (Chuang et al., 2014)。在皮膚癌中下調的 SIRT2 抑制作為上皮幹細胞標誌物的 KRT15 表達 (Wang et al., 2014b)。KRT15 是一種毛囊幹細胞標誌物 (Bongiovanni et al., 2014; Koba et al., 2015; Narisawa et al., 2015)。與良性眼表面鱗狀腫瘤相比,KRT15 是在惡性腫瘤中更強烈地表達的一種未分化基底細胞標誌物 (Nagata et al., 2014)。球形體選定的表皮鱗狀細胞癌具有豐富的 KRT15 表達 (Adhikary et al., 2013)。KRT15 在尿路上皮癌中上調 (Tai et al., 2013)。與頭頸部腫瘤相關的光化性角化病的 KRT15 染色在 7% 的病例中和 36% 的腺樣囊性癌中呈陽性。與硬皮病形式基底細胞癌和微囊性附件癌相比,結締組織增生性毛髮上皮瘤的染色較高 (Sabeti et al., 2013; Evangelista and North, 2015; North et al., 2015; Solus et al., 2016)。KRT15 上調影響非小細胞肺癌的總生存期,可用作 NSCLC 鑒別診斷的標誌物 (Gomez-Morales et al., 2013; Boyero et al., 2013)。KRT15 受 p53 和 ER 調節 (Lion et al., 2013)。
KRT16 過度表達發現於基底樣乳腺癌細胞系以及原位癌中。其他人未發現非復發性成釉細胞瘤和復發性成釉細胞瘤之間 KRT16 免疫組化表達的顯著差異 (Joosse et al., 2012; Ida-Yonemochi et al., 2012; Safadi et al., 2016)。此外,矽片分析表明了轉移性乳腺癌中 KRT16 表達與較短無復發生存之間相關 (Joosse et al., 2012)。
KRT5 被證明年輕女性的乳腺癌中上調 (Johnson et al., 2015)。KRT5 被證明與年輕女性乳腺癌的較差無病生存以及激素受體陽性乳腺癌絕經前患者的臨床結果相關 (Johnson et al., 2015; Sato et al., 2014)。KRT5 被證明通過乳腺癌細胞系 HCC1937 和 T47D 中的腫瘤抑制因子 BRCA1 調節 (Gorski et al., 2010)。KRT5 被證明在惡性胸膜間皮瘤中失調 (Melaiu et al., 2015)。KRT5 被描述為惡性間皮瘤的診斷性間皮標誌物 (Arif and Husain, 2015)。KRT5 被證明與子宮內膜癌進展有關 (Zhao et al., 2013)。KRT5 被證明在疣狀癌患者的浸潤性腫瘤區域下調 (Schumann et al., 2012)。KRT5 被證明屬於四個蛋白質系列的一部分,與正常組織樣本相比,其在結直腸癌活檢物中差異表達 (Yang et al., 2012a)。KRT5 和四個蛋白系列的其他三個蛋白被描述為新型標誌物以及結直腸癌治療的潛在標靶 (Yang et al., 2012a)。KRT5 被描述為與基底細胞癌有關 (Depianto et al., 2010)。KRT5 被描述為確定尿路上皮癌幹細胞的候選基因 (Hatina and Schulz, 2012)。
KRT6A 被描述為七基因特徵的一部分,可以用作預後模型來預測手術後接受輔助化療的三陰性乳腺癌患者的遠期無復發生存 (Park et al., 2015b)。KRT6A 被證明在瘤牛角癌中和胃癌中上調 (El-Rifai et al., 2002; Koringa et al., 2013)。KRT6A 顯示在兩例具有外骨骼黏液樣軟骨肉瘤形態學和免疫組織化學特徵的外陰肉瘤中下調 (Dotlic et al., 2014)。KRT6A 表達顯示在口腔鱗狀細胞癌中改變 (Chanthammachat et al., 2013)。KRT6A 顯示與傷口修復期間原癌基因 Src 激酶活性的負調節和皮膚角質形成細胞的遷移潛能有關。這在癌症等相關背景下可能很重要 (Rotty and Coulombe, 2012)。KRT6A 顯示標記可產生類似于人類正常樣乳腺癌的獨特乳腺腫瘤模型的乳腺雙電位祖細胞 (Bu et al., 2011)。KRT6A 被描述為 25 基因轉錄網路特徵的重要組成部分,可用於區分肺腺癌和鱗狀細胞癌 (Chang et al., 2011)。
KRT6B 被證明是在食管癌細胞系 KYSE170 中下調基因的候選物 (Kan et al., 2006)。KRT6B 被證明在腎細胞癌、散發性牙源性角化囊性瘤和瘤牛角癌中上調 (Koringa et al., 2013; Hu et al., 2015; Heikinheimo et al., 2007)。KRT6B 功能喪失顯示抑制 notch1 的表達,並誘導體外腎細胞癌細胞死亡。因此,KRT6B 與 notch1 的相互作用被描述為促進腎細胞癌進展 (Hu et al., 2015)。KRT6B 被描述為基底樣乳腺癌相關細胞角蛋白,其表達在細胞系 HCC1187 和 HCC70 中基底樣樣腫瘤相關 GABRP 表達降低後減少 (Sizemore et al., 2014)。ERK1/2 選擇性抑制還被證明可導致基底樣細胞角蛋白(如 KRT6B)的表達降低,並且在基底樣乳腺癌中遷移降低 (Sizemore et al., 2014)。因此,GABRP-ERK1/2-細胞角蛋白軸參與維持基底樣乳腺癌的遷移表型 (Sizemore et al., 2014)。KRT6B 顯示與傷口修復期間原癌基因 Src 激酶活性的負調節和皮膚角質形成細胞的遷移潛能有關。這在癌症等相關背景下可能很重要 (Rotty and Coulombe, 2012)。KRT6B 被描述為 25 基因轉錄網路特徵的重要組成部分,可用於區分肺腺癌和鱗狀細胞癌 (Chang et al., 2011)。KRT6B 被證明在苯並 (a) 芘誘導人永生化口腔上皮細胞的腫瘤發生期間差異性表達 (Li et al., 2008)。
KRT6C 被描述為 25 基因轉錄網路特徵的重要組成部分,可用於區分肺腺癌和鱗狀細胞癌 (Chang et al., 2011)。
KRT75 編碼角蛋白 75,其是染色體 12 長臂上聚集的 II 型角蛋白家族的成員。編碼的蛋白質在頭髮和指甲形成中起重要作用。該基因的變異與假性毛囊炎 (PFB) 和毛髮鬆動徵候群 (LAHS) 等毛髮疾病有關 (RefSeq, 2002)。與親本細胞系相比,KRT75 在體內傳代和再衍生的攝護腺細胞系中下調 (Sivanathan et al., 2014)。KRT75 在甲母質瘤中表達,可能表明對甲床和甲峽有分化作用 (Perrin et al., 2011)。KRT75 在 21T 乳腺細胞中下調 (Xu et al., 2010)。蛋白酶體抑制劑和地塞米松可改變 KRT75 的表達 (Kinyamu et al., 2008)。
LAP3 的抑制被證明可通過 fascin 和 MMP-2/9 的下調導致卵巢癌細胞系 ES-2 中侵襲抑制。因此,LAP3 可以充當潛在的抗轉移治療靶標 (Wang et al., 2015b)。LAP3 的高表達被證明與惡性腫瘤的分級和膠質瘤患者的預後不良相關 (He et al., 2015)。LAP3 被證明可通過調節細胞生長、遷移和侵襲而促進神經膠質瘤的進展,因而可能是一個新的預測因子 (He et al., 2015)。在高微衛星不穩定性的胃癌和結直腸癌中檢測到涉及氨基酸代謝的基因(包括 LAP3)的移碼突變 (Oh et al., 2014)。LAP3 被證明在肝細胞癌、食管鱗狀細胞癌和攝護腺癌中上調 (Zhang et al., 2014a; Tian et al., 2014; Lexander et al., 2005)。LAP3 被證明通過調節細胞週期和晚期細胞遷移的 G1/S 期檢查點,以促進肝癌細胞增殖 (Tian et al., 2014)。LAP3 的表達進一步顯示與肝細胞癌的預後和惡性發展相關 (Tian et al., 2014)。食管鱗狀細胞癌細胞系 ECA109 中 LAP3 的沉寂被證明可降低細胞增殖和集落形成,而 LAP3 敲減導致細胞週期停滯 (Zhang et al., 2014a)。食管鱗狀細胞癌細胞系 TE1 中 LAP3 過度表達被證明有利於細胞增殖和侵襲 (Zhang et al., 2014a)。因此,LAP3 被證明在食管鱗狀細胞癌的惡性發展中發揮作用 (Zhang et al., 2014a)。
高水準的 LGALS7 與癌症浸潤性、生長和轉移增加的乳腺癌的侵襲性表型相關 (Grosset et al., 2016)。LGALS7 在結直腸癌患者血清中差異表達,而 CRC 腫瘤免疫組織化學染色中 LGALS7 呈陰性 (Lim et al., 2016)。LGALS7 在攝護腺癌、宮頸癌和外陰鱗狀細胞癌中下調,並與晚期臨床分期、分化程度差和區域淋巴結轉移相關。再次表達導致凋亡增加。啟動子甲基化增加與 VSCC 的晚期臨床分期、分化程度差和區域淋巴結轉移相關 (Labrie et al., 2015; Jiang et al., 2015; Higareda-Almaraz et al., 2016)。細胞質表達的 LGALS7 抑制 p53 並增加乳腺癌的化學耐藥性 (Grosset et al., 2014)。LGALS7 在正常卵巢組織中不表達而在上皮性卵巢癌中表達。表達在高級別和轉移性腫瘤中更為常見,與總生存相關。LGALS7 表達由突變型 p53 誘導 (Kim et al., 2013; Labrie et al., 2014)。LGALS7 可用作轉移性皮膚黑色素瘤的生物標誌物。它也與頭頸鱗狀細胞癌和基底細胞癌的臨床參數相關 (Timar et al., 2010; Cada et al., 2009)。LGALS7 與乳腺癌發病率有關 (Tang et al., 2008)。LGALS7 表達可以由 p53 誘導並能夠促凋亡 (Ueda et al., 2004)。
LGALS7B 能增強 HER2 陽性乳腺癌的侵襲性 (Grosset et al., 2016)。LGALS7B 調節參與凋亡、組織形態發生、代謝、轉運、趨化因子活性和免疫應答的分子 (Higareda-Almaraz et al., 2016)。LGALS7B 在宮頸癌中下調。與低 Gal-1 表達相關的高 LGALS7B 表達與更好的預後相關 (Higareda-Almaraz et al., 2016)。LGALS7B 在外陰鱗狀細胞癌中高甲基化 (Jiang et al., 2015)。攝護腺癌中 LGALS7B 再表達增強對依託泊苷和順鉑的化學敏感性 (Labrie et al., 2015)。LGALS7B 在外陰鱗狀細胞癌、攝護腺癌和結直腸癌中下調。LGALS7B 下調與晚期臨床分期、腫瘤分化不良和區域淋巴結轉移有關 (Labrie et al., 2015; Lim et al., 2016; Jiang et al., 2015)。細胞因子 LGALS7B 抑制 dox 誘導的 PARP-1 裂解,導致抑制 p53 啟動並降低乳腺癌中的 p21 和 CDKN1A 表達 (Grosset et al., 2014)。LGALS7B 上調細胞凋亡並抑制 IL-2 和 IFN-γ 表達 (Yamaguchi et al., 2013)。LGALS7B 在卵巢癌中過度表達,與較大年齡、高死亡率、腫瘤體積增加和生存差相關 (Kim et al., 2013; Labrie et al., 2014)。LGALS7B 的免疫組織化學染色可用於區分唾液腺腫瘤類型 (Remmelink et al., 2011)。LGALS7B 在頭頸部基底細胞癌中下調。在頭頸鱗狀細胞癌中,LGALS7B 顯示不同的表達模式,並且不同的表達水準與角質化和分化相關 (Cada et al., 2009)。
MALL 可用於分類肺癌亞型 (Watanabe et al., 2010)。MALL 可能是攝護腺癌中的轉移抑制基因 (Yi et al., 2009)。MALL mRNA 和蛋白表達在結腸癌患者中降低,與血管浸潤、疾病復發、轉移或死亡有關。MALL 損失與總生存率和無病生存率下降有關。MALL 過度表達抑制細胞增殖且抑制細胞系中的遷移 (Fan et al., 2011; Kim et al., 2008a; Wang et al., 2016c)。MALL 可在攝護腺癌細胞系分泌的攝護腺體上發現,其與小窩蛋白 1 相互作用 (Llorente et al., 2004)。MALL 在非小細胞肺癌和宮頸鱗狀細胞癌中下調。它在膠質瘤細胞中差異表達 (Ai et al., 2003; Hatta et al., 2004; Kettunen et al., 2004)。
MCM4 表達與上調的碳酸酐 IX 相關,碳酸酐 IX 是一種跨膜糖蛋白,其與幾種實體(包括食管癌)的生存和癌症進展有關 (Huber et al., 2015)。Has-miR-615-3p 可能通過調節 MCM4 牽涉鼻咽癌 (Chen et al., 2015)。MCM4 可能在膀胱癌發展中發揮作用 (Zekri et al., 2015)。p53 獲取功能的突變增加 MCM4 在乳腺癌中的表達 (Polotskaia et al., 2015)。MCM4 在人類皮膚癌中有突變,顯示降低 DNA 解旋酶的活性降低 (Ishimi and Irie, 2015)。MCM4 過度表達只與乳腺癌較短生存弱相關。MCM 複合體所有六個部分的過度表達與較短生存強烈相關 (Kwok et al., 2015)。MCM4 在肺腺癌和喉鱗狀細胞癌中差異表達 (Lian et al., 2013; Zhang et al., 2014b)。MCM4 在宮頸癌中顯著過度表達 (Das et al., 2013; Das et al., 2015)。MCM4 可用作結直腸癌的一種生物標誌物 (Fijneman et al., 2012)。
抗酶抑制劑抑制 ODC1 的泛素非依賴性降解,導致多胺形成加速,引發胃癌、乳腺癌、肝細胞癌和食管鱗狀細胞癌的發展 (Qiu et al., 2016)。吡羅昔康抑制參與非黑色素瘤皮膚癌發生的 ODC1 依賴性多胺產生 (Campione et al., 2015)。ODC1 調節對細胞分裂調控、分化、成熟和凋亡重要的腐胺 (Ramani et al., 2014; Zdrojewicz and Lachowski, 2014)。ODC1 是 Myc 和 MYCN 靶基因,ODC1 高表達與神經母細胞瘤的無事件生存降低有關 (Funakoshi-Tago, 2012; Saletta et al., 2014)。阻斷 ODC1 可用於結直腸癌的化學預防治療 (Zhou et al., 2012)。
PARP9(也稱為 ARTD9)編碼聚(ADP-核糖)聚合酶家族成員 9,位於染色體 3q21.1 上 (RefSeq, 2002)。DTX3L 與 ARTD8 和 PARP9 形成複合體,通過抑制腫瘤抑制因子 IRF1,促進轉移性攝護腺癌細胞的增殖、化學耐藥性和存活 (Bachmann et al., 2014)。PARP9 抑制彌漫性大 B 細胞淋巴瘤中的 IFN-γ-STAT1-IRF1-p53 信號傳導並啟動原癌基因 IRF2 和 BCL-6 的表達。這導致 DLBCL 的增殖、存活和化學耐藥性 (Camicia et al., 2013)。PARP9 表達為 IFN-γ誘導型 (Juszczynski et al., 2006)。PARP9 可能是彌漫性大 B 細胞淋巴瘤中的藥物靶點。PARP9 是高危化學耐藥性 DLBCL 中的致癌存活因子 (Bachmann et al., 2014; Aguiar et al., 2005; Camicia et al., 2015)。
PKP1 被證明在攝護腺癌和食管腺癌中下調 (Kaz et al., 2012; Yang et al., 2015)。非腫瘤、攝護腺 BPH-1 細胞系中 PKP1 的敲減導致細胞凋亡減少和基因(如,攝護腺癌相關 SPOCK1 基因)差異表達 (Yang et al., 2015)。總體來說,PKP1 和 SPOCK1 表達改變似乎是攝護腺癌中的頻繁和嚴重事件,表明 PKP1 具有腫瘤抑制功能 (Yang et al., 2015)。PKP1 表達下降被證明與口腔鱗狀細胞癌中顯著更短的至遠處轉移發生時間有關 (Harris et al., 2015)。通過啟動子甲基化導致的 PKP1 損失被描述為與 Barrett 食管進展為食管腺癌相關 (Kaz et al., 2012)。PKP1 被證明在非小細胞肺癌中上調,可能是區分鱗狀細胞癌樣本的良好標誌物 (Sanchez-Palencia et al., 2011)。PKP1 被證明在分化良好的脂肪肉瘤細胞系 GOT3 中上調 (Persson et al., 2008)。PKP1 表達下降被描述為可促進頭頸鱗狀細胞癌的活動性增加 (Sobolik-Delmaire et al., 2007)。PKP1 損失被證明與宮頸癌發生有關 (Schmitt-Graeff et al., 2007)。PKP1 被證明與口咽鱗狀細胞癌患者的局部復發或轉移以及不良預後有關 (Papagerakis et al., 2003)。
PLEC 在結直腸腺癌、頭頸鱗狀細胞癌和胰腺癌中過度表達 (Lee et al., 2004; Katada et al., 2012; Bausch et al., 2011)。
周斑蛋白在 T24CDDPR 膀胱癌細胞中降低 (Taoka et al., 2015)。與健康組織相比,膀胱癌的 PPL 染色較低。PPL 損失與病理分期和存活有關 (Matsumoto et al., 2014)。PPL 與上皮樣腫瘤細胞相關 (Kohn et al., 2014)。EVPL、周斑蛋白和外皮蛋白陰性小鼠顯示皮膚癌抗性表型 (Cipolat et al., 2014; Natsuga et al., 2015; Natsuga et al., 2016)。PPL 在三陰性乳腺癌中高度表達 (Choi et al., 2013)。周斑蛋白由於超甲基化在食管鱗狀細胞癌中下調。ESCC 中 PPL 敲減與細胞移動和附著減少有關 (Otsubo et al., 2015; Tonoike et al., 2011)。副腫瘤性天皰瘡顯示具有對抗 PPL 的自身抗體 (Yong and Tey, 2013; Li et al., 2009; Probst et al., 2009; Zimmermann et al., 2010)。
PRKDC 是子宮內膜異位症相關卵巢癌和乳腺癌中常見的突變基因 (Er et al., 2016; Wheler et al., 2015)。在結直腸癌中,與正常組織相比,PRKDC 在癌組織中上調。PRKDC 高表達的患者表現出較差的總生存期 (Sun et al., 2016)。
PRNP 編碼膜糖基磷脂醯肌醇錨定的糖蛋白,其往往聚集成棒狀結構並且包含五個八肽的串聯重複序列的高度不穩定區域。重複區域以及該基因其他區域的突變與各種朊病毒疾病有關。該基因已經發現有重疊開放閱讀框,其編碼較小的、結構不相關的蛋白質 AltPrp (RefSeq, 2002)。雖然其生理作用尚未完全確定,但 PRNP 參與神經幹細胞的自我更新、多能基因表達、增殖和分化。PNRP 在包括膠質母細胞瘤、乳腺癌、攝護腺癌和結直腸癌的人腫瘤中起作用 (Yang et al., 2016b; Corsaro et al., 2016)。在結直腸癌中,PRNP 已被證明可促進上皮-間質轉化 (Du et al., 2013)。PNRP 與 MGr1-Ag/37LRP 聯合的過度表達可預測胃癌預後差 (Zhou et al., 2014)。PNRP 表達與細胞的氧化還原狀態有關,可能參與抗氧化防禦。PNRP 沉寂被證明可使癌細胞對乳腺癌和結腸癌的抗癌藥物敏感 (Sauer et al., 1999; Meslin et al., 2007; Park et al., 2015a; Yun et al., 2016)。
PROM2 在肺腺癌中特異性上調 (Bao et al., 2016)。PROM2 在彈力纖維瘤和人攝護腺癌中表達。PROM2 在低侵襲性攝護腺癌中表達較高,在高侵襲性攝護腺癌中表達較低 (Yamazaki, 2007; Zhang et al., 2002)。PROM2 在結腸癌中下調 (Deng et al., 2013)。PROM2 表達可用於區分腎嫌色細胞癌和腫瘤細胞瘤 (Rohan et al., 2006)。
RIPK4 被證明在皮膚鱗狀細胞癌中下調 (Poligone et al., 2015)。RIPK4 與舌鱗癌細胞系 TCA-8113 的遷移和侵襲,彌漫性大 B 細胞淋巴瘤的生存期以及宮頸鱗狀細胞癌總體生存、無病生存、進展和不良預後相關 (Wang et al., 2014c; Liu et al., 2015; Kim et al., 2008b)。RIPK4 與家族性胰腺癌相關 (Lucito et al., 2007)。RIPK4 可能是宮頸鱗狀細胞癌的一個潛在的診斷性和獨立的預後標誌物,是舌癌預後和治療的生物標誌物 (Wang et al., 2014c; Liu et al., 2015)。
RNASE7 表達在皮膚癌中逐漸降低 (Scola et al., 2012)。RNASE7 表達受幾種致白血病蛋白酪氨酸激酶的影響 (Pierce et al., 2008)。
RPL8 表達可受 MYC 誘導的核抗原和核仁蛋白 66 的影響 (Chowdhury et al., 2014)。RPL8 可能參與骨肉瘤發生 (Sun et al., 2015a; Yang and Zhang, 2013)。RPL8 受 MYC 啟動的 NO-66 調節 (Ge et al., 2012)。RPL8 突變與 Diamond-Blackfan 貧血有關 (Gazda et al., 2012)。RPL8 表達可能與化療反應有關 (Salas et al., 2009)。 RPL8 在肝細胞癌中失調節 (Liu et al., 2007)。在黑色素瘤中可發現 RPL8 的 MHCII 依賴性表達 (Swoboda et al., 2007)。
SERPINB5 是很多癌症類型(包括乳腺癌、肺癌、頭頸癌、口腔癌和攝護腺癌)診斷一個有價值的分子標誌物和預後的預測因子 (Marioni et al., 2009; Lonardo et al., 2010; Sager et al., 1996; Sheng, 2004)。SERPINB5 充當 HDAC1 活性的內源性調節劑,並與 p53 腫瘤抑制途徑相互作用 (Maass et al., 2000; Kaplun et al., 2012)。
SLC25A3 在慢性骨髓性白血病中去調節 (Oehler et al., 2009)。SLC25A3 的耗竭可消除對 BAX 的應激誘導線粒體靶向作用 (Buttner et al., 2011)。
在紫杉醇誘導的神經性疼痛大鼠中 SLC6A11 表達降低,這是在用紫杉醇治療的癌症患者中可觀察到的現象 (Yadav et al., 2015)。ALA 及其甲酯 MAL 是用於皮膚癌光動力治療的前藥。它們的攝取由 SLC6A11 介導 (Novak et al., 2011; Schulten et al., 2012; Baglo et al., 2013)。用丙戊酸鈉長期治療膠質瘤細胞減少 SLC6A11 mRNA 的表達 (Gao et al., 2003)。
SLC6A15 被超甲基化從而在結直腸癌中下調,可能是基於糞便測定法的候選生物標誌物 (Kim et al., 2011; Mitchell et al., 2014)。
SLC7A1 在急性骨髓性白血病原始細胞中組成性表達。這些原始細胞在精氨酸迴圈途徑酶中缺乏,導致精氨酸積累和細胞增殖和存活 (Mussai et al., 2015)。SLC7A1 在結直腸癌中過度表達,導致精氨酸積累和細胞生長。13號染色體基因過度表達在 CRC 中很常見 (Camps et al., 2013; Lu et al., 2013)。SLC7A1 可用作巨噬細胞分化的標誌物。在誘導 THP1 單核細胞分化過程中其表達增加 (Barilli et al., 2011)。MCF-7 乳腺癌細胞系的生長依賴於 L-精氨酸。它表達 SLC7A1,SLC7A1 敲減導致精氨酸攝取減少、細胞活力降低和凋亡增加 (Abdelmagid et al., 2011)。SLC7A1 表達與許多癌症中表達的血紅素加氧酶-1 的表達強烈相關,促進腫瘤生長和存活 (Tauber et al., 2010)。SLC7A1 是肝細胞特異性 miR-122 的直接靶標,在肝細胞癌中下調。miR-122 下調導致 SLC7A1 上調和細胞內精氨酸水準增加。該途徑也是結直腸癌衍生肝轉移的重要機制 (Kedde and Agami, 2008; Iino et al., 2013; Kishikawa et al., 2015)。蛋白激酶 C 的啟動導致 SLC7A1 內化。應激導致 SLC7A1 的差異性表達 (Kakuda et al., 1998; Rotmann et al., 2006)。
SUDS3 損失導致細胞形態改變和細胞遷移增加 (Smith et al., 2012)。SUDS3 參與胸腺細胞分化 (Lee et al., 2012)。SUDS3 可能具有抗腫瘤作用 (Ramakrishna et al., 2012)。USP17 對 SUDS3 進行去泛素化,導致 SUDS3 相關 HDAC 活性在癌症中發生改變 (Ramakrishna et al., 2011)。 SUDS3 參與有絲分裂 (Pondugula et al., 2009)。SUDS3 在乳腺癌中表達 (Silveira et al., 2009)。SUDS3 控制染色體分離,並可與 p53 相互作用 (David et al., 2006)。
TENM2 可能涉及月經初潮的年齡。早期 AAM 與 2 型糖尿病、乳腺癌和卵巢癌以及心血管疾病相關,晚期 AAM 與低骨礦物質密度和心理障礙相關 (Yermachenko and Dvornyk, 2016)。生活在高度污染地區的肺癌患者中存在 DOCK2-TENM2 基因融合轉錄物 (Yu et al., 2015a)。TENM2 在大多數惡性間皮瘤細胞中表達 (Ziegler et al., 2012)。TENM2 在食管鱗狀細胞癌中可能下調 (Kan et al., 2006)。
II 期結腸癌 TGM5 的局灶性缺失可能是該實體的驅動因素 (Brosens et al., 2010)。在非小細胞肺癌中發生的 TGM5 突變在吸菸者和非吸菸者之間顯示無差異 (Yongjun Zhang et al., 2013; Broderick et al., 2009; Rafnar et al., 2011; Choi et al., 2016)。攝護腺癌中 TGFBR3 損失也下調了 TGM5 (Sharifi et al., 2007)。
XIRP1 在基底樣乳腺癌的轉移癌中突變 (Hoadley et al., 2016)。與 ER+ HER2- 乳腺癌相比,三陰性乳腺癌中富含 XIRP1 啟動子基序特徵 (Willis et al., 2015)。XIRP1 在維他命 C 治療後上調,這也降低了癌細胞的生長 (Marshall et al., 2012; Nagappan et al., 2013)。XIRP1 在頭頸鱗狀細胞癌中突變,可能是一種腫瘤抑制基因 (Lee et al., 2010)。XIRP1 是一種氧化應激相關基因 (Baluchamy et al., 2010)。
ZBED6 是 IGF2 的轉錄抑制因子,其在結直腸癌中過度表達並促進細胞增殖。ZBED6 的敲減影響細胞週期,並導致 RKO 細胞系的細胞生長增強和 HCT116 細胞中細胞生長減少。ZBED6 是參與 Wnt、Hippo、TGF-β、EGFR 和 PI3K 信號傳導的幾種基因的轉錄抑制因子,它們都參與結直腸癌發生 (Markljung et al., 2009; Andersson, 2009; Andersson et al., 2010; Huang et al., 2014; Jiang et al., 2014; Clark et al., 2015; Akhtar et al., 2015)。
是否能刺激免疫反應取決於是否存在被宿主免疫系統視為異物的抗原。發現腫瘤相關抗原的存在增加了運用宿主免疫系統干預腫瘤生長的可能性。目前,針對癌症免疫治療,正在探索利用免疫系統的體液和細胞進行免疫的各種機制。
細胞免疫反應的特定元素能特異性地識別和破壞腫瘤細胞。從腫瘤浸潤細胞群或外周血中分離出的 T-細胞表明,這些細胞在癌症的天然免疫防禦中發揮了重要作用。特別是 CD8 陽性 T 細胞在這種反應中發揮重要作用,TCD8+ 能識別通常8至10個源自蛋白或位於細胞質的缺損核糖體產物 (DRIP) 的氨基酸殘基的主要組織相容性複合體 (MHC) 所載的肽中所含的I類分子。人 MHC 分子也稱為人白細胞-抗原 (HLA)。
術語「T 細胞反應」是指由一種肽在體外或體內誘導的效應子功能的特異性擴散和啟動。對於 MHC I 類限制性細胞毒性 T 細胞,效應子功能可能為溶解肽脈衝的、肽前體脈衝的或天然肽提呈的靶細胞、分泌細胞因子,優選為肽誘導的干擾素-γ,TNF-α 或 IL-2,分泌效應分子,優選為肽誘導的顆粒酶或穿孔素,或脫顆粒。
本文所用「肽」這一術語,系指一系列氨基酸殘基,通常透過相鄰氨基酸的 α-氨基和羰基之間的肽鍵來連接。這些肽的長度優選為 9 個氨基酸,但至短可為 8 個氨基酸長度,至長可為 10、11、12、13 或 14 個氨基酸或更長,如果為 MHC-II 類肽時(本發明肽的拉長變體),至長可為 13、14、15、16、17、18、19 或 20 個氨基酸長度或更長。
因此,「肽」這一術語應包括一系列氨基酸殘基的鹽,通常透過相鄰氨基酸的 α-氨基和羰基之間的肽鍵來連接。優選的情況是,鹽為肽的藥用鹽,例如:氯化物或乙酸(三氟乙酸)鹽。必須注意的是,本發明肽的鹽與其體內狀態的肽基本上不同,因為該不是體內的鹽。
術語「肽」應也包括「寡肽」。本文使用的術語「寡肽」是指一系列氨基酸殘基,通常透過相鄰氨基酸的 α-氨基和羰基之間的肽鍵來連接。寡肽的長度對於本發明來說並不十分關鍵,只要在寡肽中保持正確的表位即可。通常,寡肽長度約小於 30 個氨基酸殘基,約長於 15 個氨基酸。
「多肽」這一術語是指一系列氨基酸殘基,通常透過相鄰氨基酸的 α-氨基和羰基之間的肽鍵來連接。多肽的長度對於本發明來說並不十分關鍵,只要保持正確的表位即可。與術語肽或寡肽相對,「多肽」這一術語是指包含多於約 30 個氨基酸殘基的分子。
一種肽、寡肽、蛋白質或編碼該分子的核苷酸如果能誘導免疫反應,則具有「免疫原性」(因此是本發明中的一種「免疫原」)。在本發明的情況下,免疫原性的更具體定義是誘導 T 細胞反應的能力。因此,「免疫原」是一種能夠誘導免疫反應的分子,並且在本發明的情況下,是一種能誘導 T 細胞反應的分子。在另一方面,所述免疫原可以是肽,肽與 MHC 的複合體、和/或用於提高特異性抗體或 TCR 抗性的蛋白。
I 類 T 細胞「表位」要求的是一種結合至 MHC I 類受體上的短肽,從而形成一種三元複合體(MHC I 類 α鏈、β-2-微球蛋白和肽),其可以透過 T 細胞負載匹配 T 細胞受體與具有適當親和力的 MHC/肽複合物結合來識別。結合至 MHC I 類分子的肽的典型長度為 8-14 個氨基酸,最典型為 9 個氨基酸長度。
在人類中,有三種編碼 MHC I 類分子的不同基因位點(人 MHC分子也是指定的人白細胞抗原 (HLA)):HLA-A、HLA-B 和 HLA-C。HLA-A*01、HLA-A*02 和 HLA-B*07 是可從這些基因位點表達的不同 MHC I 類等位元基因的實例。 表 5:HLA-A*02 和 HLA-A*24 和最常見 HLA-DR 血清類型的表達頻率 F。頻率根據 Mori 等人 (Mori et al., 1997) 使用的 Hardy-Weinberg 公式 F = 1 – (1-Gf)² 改編,從美國人群範圍內的單體型頻率中推導出。由於連鎖不平衡,某些 HLA-DR 等位基因內的 A*02 或 A*24 組合與其預期單一頻率相比,可能是濃縮的或頻率較低。有關詳細資訊,請參閱 Chanock 等人的文獻 (Chanock et al., 2004)。
本發明的肽,優選當如本文描述納入本發明的疫苗時與 A*02 結合。疫苗還可能包括泛結合 MHC II 類肽。因此,本發明的疫苗可用於治療 A*02 陽性患者中的癌症,但不因為這些肽的廣泛結核性而必須選擇 II 類 MHC 同種異型。
如果本發明的 A*02 肽與結合至另一等位基因例如 A*24 的肽組合,與單獨的 MHC I 類等位基因相比,可治療更高比例的患者群體。雖然在大多數人群中,低於 50% 的患者可由單獨的等位基因來解決問題,但是本發明中一種含 HLA-A*24 和 HLA-A*02 表位的疫苗可以治療任何相關人群中至少 60% 的患者。具體來說,各區域中,以下比例的患者這些等位基因中的至少一個有肯定效果:美國 61%、西歐 62%、中國 75%、韓國 77%、日本 86%(根據 www.allelefrequencies.net 計算)。
在一項優選的實施方案中,術語「核苷酸序列」系指去氧核苷酸的雜聚物。
編碼特定肽、寡肽或多肽的核苷酸序列可為天然核苷酸序列,也可為合成核苷酸序列。一般來說,編碼肽、多肽以及本發明蛋白的 DNA 片段由 cDNA 片段和短寡核苷酸銜接物,或一系列寡核苷酸組成,以提供一種合成基因,該基因能夠在包含源自微生物或病毒操縱子的調節元素的重組轉錄單元中被表達。
如本文所用的術語「肽的核苷酸編碼」系指對肽進行核苷酸序列編碼,其中該肽包括與將由用於產生 TCR 的樹突細胞或另一細胞系統所表達該序列的生物系統相容的人工(人造)啟動和停止密碼子。
本文提到的核酸序列既包括單鏈核酸也包括雙鏈核酸。因此,除非本文另有所指,否則,例如對於 DNA,具體的序列是該序列的單鏈 DNA、該序列與其互補序列的雙工(雙鏈 DNA)以及該序列的互補序列。
「編碼區」這一術語是指在基因的天然基因組環境中天然或正常編碼該基因的表達產物的那部分基因,即,體內編碼該基因的天然表達產物的區域。
編碼區可來自非突變(「正常」)基因、突變基因或異常基因,甚至還可以來自 DNA 序列,完全可在實驗室中使用本領域熟知的 DNA 合成方法合成。
「表達產物」這一術語是指多肽或蛋白,它是基因和遺傳碼退化並因而編碼同樣的氨基酸所造成的任何核酸序列編碼同等物的翻譯產物。
「片斷」這一術語,當指的是一種編碼序列時,表示包含非完整編碼區的 DNA 的一部分,其表達產物與完整編碼區表達產物基本上具有相同的生物學功能或活性。
「DNA 片段」這一術語是指一種 DNA 聚合物,以單獨的片段形式或一種較大 DNA 結構的組分形式存在,它們從至少分離過一次的 DNA 中以基本純淨的形式獲得,即不含污染性內源性材料,並且獲得的數量或濃度能夠使用標準生化方法,例如使用克隆載體,進行識別、操縱和回收該片段及其組分核苷酸序列。此類片段以開放閱讀框架(未被內部未翻譯序列打斷)或內含子(通常提呈于真核基因中)的形式存在。未翻譯 DNA 序列可能存在於開放閱讀框架的下游,在那裏其不會干預編碼區的操縱或表達。
「引物」這一術語表示一種短核酸序列,其可與一個 DNA 鏈配對,並在 DNA 聚合酶開始合成去氧核糖核酸鏈之處提供一個游離的 3'-OH 末端。
「啟動子」這一術語表示參與 RNA 聚合酶的結合從而啟動轉錄的 DNA 區域。
術語「分離」表示一種物質從其原來的環境(例如,如果是天然發生的則是天然環境)中被移走。例如,活體動物中的天然核苷酸或多肽不是分離的,但是,從天然系統中一些或所有共存物質中分離出來的核苷酸或多肽是分離的。此類多核苷酸可能是載體的一部分和/或此類多核苷酸和多肽可能是一種組合物的一部分,並且由於該載體或組合物不是其天然環境的一部分,因此它仍然是分離的。
本發明中披露的多核苷酸和重組或免疫原性多肽也可能以「純化」的形式存在。術語「純化」並非要求絕對的純度;它只是一個相對的定義,可以包括高度純化或部分純化的製劑,相關領域技術人員能理解這些術語。例如,各個從已用傳統方法純化為具有電泳同質性的 cDNA 庫中分離出的各種克隆物。明確考慮到將起始材料或天然物質純化至少一個數量級,優選為兩或三個數量級,更優選為四或五個數量級。此外,明確涵蓋所述多肽的純度優選為 99.999%,或至少為 99.99% 或 99.9%;甚而適宜為以重量計 99% 或更高。
根據本發明公開的核酸和多肽表達產物,以及包含此類核酸和/或多肽的表達載體可能以「濃縮的形式」存在。本文使用的術語「濃縮」是指材料的濃度至少是其自然濃度的大約 2、5、10、100 或 1000 倍,有優勢的是,按重量計為 0.01%,優選為至少 0.1%。也明確考慮到,按重量計約為 0.5%、1%、5%、10% 和 20% 的濃縮製劑。序列、構型、載體、克隆物以及包含本發明的其他材料可有優勢地以濃縮或分離的形式存在。「活性片段」這一術語是指產生免疫反應的片段(即具有免疫原性活性),通常是一種肽、多肽或核酸序列的片段,不論是單獨或可選地與合適的佐劑一起或在載體中給予一種動物,比如哺乳動物,例如兔子或小鼠,也包括人;這種免疫反應採用的形式是在接受動物(如:人)體內刺激 T 細胞反應。或者,「活性片段」也可用於誘導體外 T 細胞反應。
本文使用的「部分」(portion)、「節段」(segment)、「片段」(fragment) 這幾個術語,當與多肽相關地使用時是指殘基的連續序列,比如氨基酸殘基,其序列形成一個較大序列的子集。例如,如果一個多肽以任一種肽鏈內切肽酶(如胰蛋白酶或糜蛋白酶)進行處理,則該處理獲得的寡肽會代表起始多肽的部分、節段或片段。當與多核苷酸相關地使用時,這些術語系指用任何核酸內切酶處理所述多核苷酸產生的產物。
根據本發明,術語「等同度百分比」或「等同百分比」,如果指的是序列,則表示在待對比序列(「被對比序列」)與所述序列或權利要求的序列(「參考序列」)對準之後將被對比序列與所述序列或權利要求的序列進行比較。然後根據下列公式計算等同度百分比: 等同度百分比= 100 [1 -(C/R)] 其中 C 是參考序列與被對比序列之間對準長度上參考序列與被對比序列之間的差異數量,其中 (i) 參考序列中每個堿基或氨基酸序列在被對比序列中沒有對應的對準堿基或氨基酸; (ii) 參考序列中每個空隙,以及 (iii) 參考序列中每個對準堿基或氨基酸與被比對比序列中對準堿基或氨基酸不同,即構成一個差異以及 (iiii) 必須在對準序列的第 1 位置開始對準; 並且 R 是參考序列與被對比序列對準長度上在參考序列中產生任何空隙也計算為一個堿基或氨基酸的參考序列中的堿基或氨基酸數目。
如果「被對比序列」和「參考序列」之間存在的一個對準按上述計算的等同度百分比大致等於或大於指定的最低等同度百分比,則被對比序列與參考序列具有指定的最低等同度百分比,雖然可能存在按本文上述計算的等同度百分比低於指定等同度百分比的對準。
因此,如上所述,本發明提出了一種肽,其包括選自 SEQ ID NO:1 至 SEQ ID NO:91 群組的一個序列、或與 SEQ ID NO:1 至 SEQ ID NO:91 具有 88% 同源性的其變體、或誘導與該肽發生T細胞交叉反應的一個變體。本發明所述的肽具有與主要組織相容性複合體 (MHC) I 或所述肽拉長版本的 II 類分子結合的能力。
在本發明中,「同源性」一詞系指兩個氨基酸序列之間的同一度(參見上文的等同度百分比,如肽或多肽序列。前文所述的「同源」是透過將理想條件下調整的兩個序列與待比較序列進行比對後確定的。此類序列同源性可透過使用 ClustalW 等演算法創建一個排列而進行計算。也可用使用一般序列分析軟體,更具體地說,是 Vector NTI、GENETYX 或由公共資料庫提供的其他工具。
本領域技術人員能評估特定肽變體誘導的 T 細胞是否可與該肽本身發生交叉反應 (Appay et al., 2006; Colombetti et al., 2006; Fong et al., 2001; Zaremba et al., 1997)。
發明人用給定氨基酸序列的「變體」表示,一個或兩個氨基酸殘基等的側鏈透過被另一個天然氨基酸殘基的側鏈或其他側鏈取代而發生改變,這樣,這種肽仍然能夠以含有給定氨基酸序列(由 SEQ ID NO:1 至 SEQ ID NO:91 組成)的肽大致同樣的方式與 HLA 分子結合。例如,一種肽可能被修飾以便至少維持(如沒有提高)其能與 HLA-A*02 或 -DR 等合適 MHC 分子的結合槽相互作用和結合,以及至少維持(如沒有提高)其與啟動 T 細胞的 TCR 結合的能力。
隨後,這些 T 細胞可與細胞和殺傷細胞發生交叉反應,這些細胞表達多肽(其中包含本發明中定義的同源肽的天然氨基酸序列)。正如科學文獻和資料庫 (Rammensee et al., 1999; Godkin et al., 1997) 中所述,HLA-A 結合肽的某些位點通常為錨定殘基,可形成一種與 HLA 結合槽的結合模序相稱的核心序列,其定義由構成結合槽的多肽鏈的極性、電物理、疏水性和空間特性確定。因此,本領域技術人員能夠透過保持已知的錨殘基來修飾 SEQ ID No: 1 至 SEQ ID NO:91 提出的氨基酸序列,並且能確定這些變體是否保持與 MHC I 或 II 類分子結合的能力。本發明的變體保持與啟動 T 細胞的 TCR 結合的能力,隨後,這些 T 細胞可與表達一種包含本發明定義的同源肽的天然氨基酸序列的多肽的細胞發生交叉反應並殺死該等細胞。
如果無另有說明,那麼本文公開的原始(未修飾)肽可以透過在肽鏈內的不同(可能為選擇性)位點上取代一個或多個殘基而被修飾。優選情況是,這些取代位於氨基酸鏈的末端。此取代可能是保守性的,例如,其中一個氨基酸被具有類似結構和特點的另一個氨基酸所取代,比如其中一個疏水性氨基酸被另一個疏水性氨基酸取代。更保守的取代是具有相同或類似的大小和化學性質的氨基酸間的取代,例如,亮氨酸被異亮氨酸取代。在天然同源蛋白質家族序列變異的研究中,某些氨基酸的取代往往比其他氨基酸更具有耐受性,這些氨基酸往往表現出與原氨基酸的大小、電荷、極性和疏水性之間的相似性相關,這是確定「保守取代」的基礎。
在本文中,保守取代定義為在以下五種基團之一的內部進行交換:基團 1 — 小脂肪族、非極性或略具極性的殘基 (Ala, Ser, Thr, Pro, Gly);基團 2 — 極性、帶負電荷的殘基及其醯胺 (Asp, Asn, Glu, Gln) ;基團 3 — 極性、帶正電荷的殘基 (His, Arg, Lys) ;基團 4 — 大脂肪族非極性殘基 (Met, Leu, Ile, Val, Cys) 以及基團 5 — 大芳香殘基 (Phe, Tyr, Trp)。
較不保守的取代可能涉及一個氨基酸被另一個具有類似特點但在大小上有所不同的氨基酸所取代,如:丙氨酸被異亮氨酸殘基取代。高度不保守的取代可能涉及一個酸性氨基酸被另一個具有極性或甚至具有鹼性性質的氨基酸所取代。然而,這種「激進」取代不能認為是無效的而不予考慮,因為化學作用是不完全可預測的,激進的取代可能會帶來其簡單化學原理中無法預見的偶然效果。
當然,這種取代可能涉及普通 L-氨基酸之外的其他結構。因此,D-氨基酸可能被本發明的抗原肽中常見的 L-氨基酸取代,也仍在本公開的範圍之內。此外,非標準氨基酸(即,除了常見的天然蛋白原氨基酸)也可以用於取代之目的,以生產根據本發明的免疫原和免疫原性多肽。
如果在一個以上位置上的取代發現導致肽的抗原活性基本上等於或大於以下定義值,則對這些取代的組合進行測試,以確定組合的取代是否產生對肽抗原性的疊加或協同效應。肽內被同時取代的位置最多不能超過 4 個。
基本上由本文所指氨基酸序列組成的一種肽可能有一個或兩個非錨定氨基酸(見下面錨基序相關內容)被交換,而不存在這種情況,即相比於未修飾的肽,與人類主要組織相容性複合體 (MHC) –I 或 II 類分子的能力基本上被改變或受到不利影響。在另一實施方案中,在基本上由本文所述氨基酸序列組成的肽中,一個或兩個氨基酸可與其保守交換夥伴交換(見下文),而不存在這種情況,即相比於未修飾的肽,與人類主要組織相容性複合體 (MHC) –I 或 II 類分子的能力基本上被改變或受到不利影響。
這些基本不與 T 細胞受體互動的氨基酸殘基可透過取代其他幾乎不影響 T 細胞反應並不妨礙與相關 MHC 結合的氨基酸而得到修飾。因此,除了特定限制性條件外,本發明的肽可能為任何包括給定氨基酸序列或部分或其變體的肽(發明人所用的這個術語包括寡肽或多肽)。 表 6:根據 SEQ ID NO: 4、6 和 10 的肽的變體和基序
較長(拉長)的肽也可能適合。MHC I 類表位(通常長度為 8 至 11 個氨基酸)可能由肽從較長的肽或包含實際表位的蛋白中加工而產生。兩側有實際表位的殘基優選為在加工過程中幾乎不影響暴露實際表位所需蛋白裂解的殘基。
本發明的肽可被拉長多達四個氨基酸,即 1、2、3 或 4 個氨基酸,可按照 4:0 與 0:4之間的任何組合添加至任意一端。本發明的拉長組合可見表 7 。 表 7:本發明肽的拉長(延長)組合
拉伸/延長的氨基酸可以是所述蛋白或任何其他氨基酸的原序列肽。拉長可用于增強所述肽的穩定性或溶解性。
因此,本發明所述的表位可能與天然腫瘤相關表位或腫瘤特異性表位相同,也可能包括來自參考肽的不超過四個殘基的不同肽,只要它們有基本相同的抗原活性即可。
在一項替代實施方案中,肽的一邊或雙邊被拉長 4 個以上的氨基酸,優選最多 30 個氨基酸的總長度。這可形成 MHC-II 類結合肽。結合至 MHC II 類肽可透過本領域中已知的方法進行測試。
因此,本發明提出了 MHC I 類表位的肽和變體,其中所述肽或抗體的總長度為 8 至 100 個、優選為 8 至 30 個、最優選為 8 至 14 個氨基酸長度(即 10、11、12、13、14 個氨基酸,如果為拉長 II 類結合肽時,長度也可為 15、16、17、18 、19 、20、21 或 22 個氨基酸)。
當然,本發明的肽或變體能與人主要組織相容性複合體 (MHC) I 或 II 類分子結合。肽或變體與 MHC 複合物的結合可用本領域內的已知方法進行測試。
優選情況是,當本發明的肽特異性 T 細胞相比於取代肽受到檢測時,如果取代肽在相對於背景肽溶解度增加達到最大值的一半,則該肽濃度不超過約 1 mM,優選為不超過約 1 µM,更優選為不超過約 1 nM,再優選為不超過約 100 pM,最優選為不超過約 10 pM。也優選為,取代肽被 一個以上的 T 細胞識別,最少為 2 個,更優選為 3 個。
在本發明的一個特別優選實施方案中,肽系由或基本系由根據 SEQ ID NO: 1 至 SEQ ID NO: 91 所選的氨基酸序列組成。
基本由「...組成」系指本發明的肽,除了根據 SEQ ID NO: 1 至 SEQ ID NO: 91 中的任一序列或其變體組成外,還含有位於其他 N 和/或 C 端延伸處的氨基酸,而它們不一定能形成作為 MHC 分子表位的肽。
但這些延伸區域對有效將本發明中的肽引進細胞具有重要作用。在本發明的一實施例中,該肽為融合蛋白的一部分,含來自 NCBI、GenBank 登錄號 X00497 的 HLA-DR 抗原相關不變鏈(p33,以下稱為「Ii」)的 80 個 N-端氨基酸等。在其他的融合中,本發明的肽可以被融合到本文所述的抗體、或其功能性部分,特別是融合入抗體的序列,以便所述抗體進行特異性靶向作用,或者,例如進入本文所述的樹突狀細胞特異性抗體。
此外,該肽或變體可進一步修飾以提高穩定性和/或與 MHC 分子結合,從而引發更強的免疫反應。肽序列的該類優化方法是本領域內所熟知的,包括,例如,反式肽鍵和非肽鍵的引入。
在反式肽鍵氨基酸中,肽 (-CO-NH -) 並未連接其殘基,但是其肽鍵是反向的。這種逆向反向模擬肽 (retro-inverso peptidomimetics) 可透過本領域已知的方法製備,例如:Meziere 等人在 (Meziere et al., 1997) 中所述的方法,以引用的方式併入本文。這種方法涉及製備包含骨架(而並非側鏈)改變的模擬肽。Meziere 等人 (Meziere et al., 1997) 的研究顯示,這些類比肽有利於 MHC 的結合和輔助性 T 細胞的反應。以 NH-CO 鍵替代 CO-NH 肽鍵的逆向反向肽大大地提高了抗水解性能。
非肽鍵為-CH2 -NH、-CH2 S-、-CH2 CH2 -、-CH=CH-、-COCH2 -、-CH(OH)CH2 -和 -CH2 SO-等。美國 4897445 號專利提出了多肽鏈中非肽鍵 (-CH2 -NH) 的非固相合成法,該方法涉及按標準程序合成的多肽以及透過氨基醛和一種含 NaCNBH3 的氨基酸相互作用而合成的非肽鍵。
含上述序列的肽可與其氨基和/或羧基末端的其他化學基團進行合成,從而提高肽的穩定性、生物利用度、和/或親和力等。例如,苄氧羰基、丹醯基等疏水基團或叔丁氧羰基團可加入肽的氨基末端。同樣,乙醯基或 9-芴甲氧羰基可能位於肽的氨基末端。此外,疏水基團、叔丁氧羰基團或氨基團都可能被加入肽的羧基末端。
另外,本發明中的所有肽都可能經合成而改變其空間構型。例如,可能使用這些肽的一個或多個氨基酸殘基的右旋體,通常不是其左旋體。更進一步地,本發明中肽的至少一個氨基酸殘基可被熟知的一個非天然氨基酸殘基取代。諸如此類的改變可能有助於增加本發明肽的穩定性、生物利用度和/或結合作用。
同樣,本發明中的肽或變體可在合成肽之前或之後透過特異氨基酸的反應而進行化學修飾。此類修飾的實施例為本領域所熟知,例如,在 R. Lundblad 所著的《 Chemical Reagents for Protein Modification》 (3rd ed. CRC Press, 2004) (Lundblad, 2004) 中有概述,以參考文獻的方式併入本文。雖然氨基酸的化學修飾方法無限制,但其包括(但不限於)透過以下方法修飾:醯基化、脒基化、賴氨酸吡哆基化、還原烷基化、以 2,4,6-三硝基苯磺酸 (TNBS) 三硝基苯基化氨基團、透過將半胱氨酸過甲酸氧化為磺基丙氨酸而對羧基團和巰基進行氨基修飾、形成易變衍生物、與其他巰基化合物形成混合二硫化合物、與馬來醯亞胺反應,與碘乙酸或碘乙醯胺羧甲基化、在鹼性 pH 值下與氰酸鹽甲氨醯化。在這方面,技術人員參考了《Current Protocols In Protein Science》 (Eds. Coligan et al. (John Wiley and Sons NY 1995-2000) ) (Coligan et al., 1995) 中第 15 章所述的在蛋白質化學修飾相關的廣泛方法。
簡言之,修飾蛋白質的精氨醯殘基等往往基於於鄰二羰基化合物(如苯甲醯甲醛、2,3 –丁二酮以及 1,2-烯巳二酮)的反應而形成加合物。另一個實施例是丙酮醛與精氨酸殘基的反應。半胱氨酸可在賴氨酸和組氨酸等親核位點不作隨同修飾的情況下就得到修飾。因此,有大量試劑可進行半胱氨酸的修飾。Sigma-Aldrich (http://www.sigma-aldrich.com) 等公司的網站含有具體試劑的資訊。
蛋白質中二硫鍵的選擇性還原也很普遍。二硫鍵可在生物制藥熱處理中形成和氧化。伍德沃德氏試劑 K 可用於修飾特定的谷氨酸殘基。N-(3-二甲氨基丙基)-N´-乙基-碳二亞胺可用于形成賴氨酸殘基和谷氨酸殘基的分子內交聯。例如:焦碳酸二乙酯是修飾蛋白質組氨酸殘基的試劑。組氨酸也可使用 4-羥基-2-壬烯醛進行修飾。賴氨酸殘基與其他α-氨基團的反應,例如,有利於肽結合到蛋白/肽的表面或交聯處。賴氨酸聚是多(乙烯)乙二醇的附著點,也是蛋白質糖基化的主要修飾位點。蛋白質的蛋氨酸殘基可透過碘乙醯胺、溴乙胺、氯胺 T 等被修飾。
四硝基甲烷和 N-乙醯基咪唑可用於酪氨酸殘基的修飾。經二酪氨酸形成的交聯可透過過氧化氫/銅離子完成。
對色氨酸修飾的最近研究中使用了 N-溴代琥珀醯亞胺、2-羥基-5-硝基苄溴或 3-溴-3-甲基-2- (2 –硝苯巰基) -3H-吲哚 (BPNS-糞臭素)。
當蛋白與戊二醛、聚乙二醇二丙烯酸酯和甲醛的交聯用於配製水凝膠時,治療性蛋白和含聚乙二醇的肽的成功修飾往往可延長迴圈半衰期。針對免疫治療的變態反應原化學修飾往往透過氰酸鉀的氨基甲醯化實現。
本發明的另一實施方案涉及一種非天然肽,其中所述肽系由或基本系由根據 SEQ ID No:1 至 SEQ ID No:156 的一個氨基酸序列組成,並經合成產生(即,合成)為一種藥用鹽。合成產生肽的方法是本領域公知的。本發明肽的鹽與其體內狀態的肽基本上不同,因為這些體內產生的肽不是鹽。該肽的非天然鹽形式介導肽的溶解度,特別是包含所述肽的藥物組合物的情況下,例如,本文所公開的肽疫苗。為了向需治療的受試者有效地提供肽,需要肽具有充分、至少基本的溶解度。優選地,鹽為肽的藥用鹽。本發明的這些鹽包括堿和堿土鹽類,諸如 Hofmeister 系列的鹽,包含陰離子 PO4 3- 、SO4 2- 、CH3 COO- 、Cl- 、Br- 、NO3 - 、ClO4 - 、I- 、SCN- 和陽離子 NH4 + 、Rb+ 、K+ 、Na+ 、Cs+ 、Li+ 、Zn2+ 、Mg2+ 、Ca2+ 、Mn2+ 、Cu2+ 和 Ba2+ 。特別地,鹽選自 (NH4 )3 PO4 、(NH4 )2 HPO4 、(NH4 )H2 PO4 、(NH4 )2 SO4 、NH4 CH3 COO、NH4 Cl、NH4 Br、NH4 NO3 、NH4 CIO4 、NH4 I、NH4 SCN、Rb3 PO4 、Rb2 HPO4 、RbH2 PO4 、Rb2 SO4 、Rb4 CH3 COO、Rb4 Cl、Rb4 Br、Rb4 NO3 、Rb4 CIO4 、Rb4 I、Rb4 SCN、K3 PO4 、K2 HPO4 、KH2 PO4 、K2 SO4 、KCH3 COO、KCl、KBr、KNO3 、KClO4 、KI、KSCN、Na3 PO4 、Na2 HPO4 、NaH2 PO4 、Na2 SO4 、NaCH3 COO、NaCl、NaBr、NaNO3 、NaCIO4 、NaI、NaSCN、ZnCI2 Cs3PO4 、Cs2 HPO4 、CsH2 PO4 、Cs2 SO4 、CsCH3 COO、CsCl、CsBr、CsNO3 、CsCIO4 、CsI、CsSCN、Li3 PO4 、Li2 HPO4 、LiH2 PO4 、Li2 SO4 、LiCH3 COO、LiCl、LiBr、LiNO3 、LiClO4 、LiI、LiSCN、Cu2 SO4 、Mg3 (PO4 )2 、Mg2 HPO4 、Mg(H2 PO4 )2 、Mg2 SO4 、Mg(CH3 COO)2 、MgCl2 、MgBr2 、Mg(NO3 )2 、Mg(ClO4 )2 、MgI2 、Mg(SCN)2 、MnCl2 、Ca3 (PO4 ),、Ca2 HPO4 、Ca(H2 PO4 )2 、CaSO4 、Ca(CH3 COO)2 、CaCl2 、CaBr2 、Ca(NO3 )2 、Ca(ClO4 )2 、CaI2 、Ca(SCN)2 、Ba3 (PO4 )2 、Ba2 HPO4 、Ba(H2 PO4 )2 、BaSO4 、Ba(CH3 COO)2 、BaCl2 、BaBr2 、Ba(NO3 )2 、Ba(ClO4 )2 、BaI2 和 Ba(SCN)2 。特別優選為 NH 乙酸、MgCl2 、KH2 PO4 、Na2 SO4 、KCl、NaCl 和 CaCl2 ,例如:氯化物或乙酸鹽(三氟乙酸)鹽。
一種肽或變體,其中肽被修飾或含非肽鍵,優選為本發明的實施例。一般來說,肽和變體(至少含氨基酸殘基之間的肽聯接)可使用 Lukas 等人 (Lukas et al., 1981) 以及此處引用的參考文獻所披露的固相肽合成 Fmoc-聚醯胺模式進行合成。芴甲氧羰基 (Fmoc) 團對 N-氨基提供臨時保護。使用 N, N-二甲基甲醯胺中的 20% 二甲基呱啶中對這種堿高度敏感的保護基團進行重複分裂。由於它們的丁基醚 (在絲氨酸蘇氨酸和酪氨酸的情況下)、丁基酯 (在谷氨酸和天門冬氨酸的情況下)、叔丁氧羰基衍生物 (在賴氨酸和組氨酸的情況下)、三苯甲基衍生物 (在半胱氨酸的情況下) 及 4-甲氧基-2,3,6-三甲基苯磺醯基衍生物 (在精氨酸的情況下),側鏈功能可能會受到保護。只要穀氨醯胺和天冬醯胺為 C-末端殘基,側鏈氨基功能保護所使用的是由 4,4'-二甲氧基二苯基團。固相支撐基於聚二甲基丙烯醯胺聚合物,其由三個單體二甲基丙烯醯胺(骨架單體)、雙丙烯醯乙烯二胺(交聯劑)和 N-丙烯醯肌胺酸甲酯(功能劑)構成。使用的肽-樹脂聯劑為酸敏感的 4 -羥甲基苯氧乙酸衍生物。所有的氨基酸衍生物均作為其預製對稱酸酐衍生物加入,但是天冬醯胺和穀氨醯胺除外,它們使用被逆轉的 N, N-二環己基碳二亞胺/1-羥基苯並三唑介導的耦合程序而加入。所有的耦合和脫保護反應用茚三酮、硝基苯磺酸或 isotin 測試程序監測。合成完成後,用濃度為 95% 含 50% 清道夫混合物的三氟醋酸,從伴隨去除側鏈保護基團的樹脂支承物中裂解肽。常用的清道夫混合物包括乙二硫醇、苯酚、苯甲醚和水,準確的選擇依據合成肽的氨基酸組成。此外,固相和液相方法結合使用對肽進行合成是可能的(例如,請參閱 (Bruckdorfer et al., 2004) 以及本文引用的參考文獻)
三氟乙酸用真空中蒸發、隨後用承載粗肽的二乙基乙醚滴定進行去除。用簡單萃取程序(水相凍乾後,該程序制得不含清道夫混合物的肽)清除任何存在的清道夫混合物。肽合成試劑一般可從 Calbiochem-Novabiochem(英國諾丁漢)獲得。
純化可透過以下技術的任何一種或組合方法進行,如:再結晶法、體積排阻色譜法、離子交換色譜法、疏水作用色譜法以及(通常)反相高效液相色譜法(如使用乙腈/水梯度分離)。
可以使用薄層色譜法、電泳特別是毛細管電泳、固相萃取(CSPE)、反相高效液相色譜法、酸解後的氨基酸分析、快原子轟擊(FAB)質譜分析以及MALDI和ESI-Q-TOF質譜分析進行肽分析。
為了選擇過度提呈的肽,計算了提呈圖,其顯示樣本中位元提呈量以及複製變化。該特點使相關腫瘤實體的樣本與正常組織樣本的基線值並列。可透過計算調節線性混合效應模型 (Pinheiro et al., 2015) 的 p 值將以上每個特點併入過度提呈分數中,從而透過假發現率 (Benjamini and Hochberg, 1995) 調整多項檢驗(參見實施例 1、圖 1)。
對於透過質譜法對 HLA 配體的識別和相對定量,對來自衝擊冷凍組織樣本的 HLA 分子進行純化並對 HLA 相關肽進行分離。分離的肽分開,並透過線上納米-電噴霧-電離 (nanoESI) 液相色譜- 譜 (LC-MS) 實驗進行鑒定。由此產生的肽序列的驗證方法是,將頭頸鱗狀細胞癌樣本(N = 17 個 A*02 陽性樣本)中記錄的自然腫瘤相關肽 (TUMAP) 的片段模式與相同序列相應合成參考肽的片段模式進行比較。由於這些肽被直接鑒定為原發性腫瘤 HLA 分子的配體,因此這些結果為來自 14 名頭頸鱗狀細胞癌患者的原發癌症組織上確定肽的自然加工和提呈提供了直接證據。
發現管道 XPRESIDENT® v2.1(例如,參見 US 2013-0096016,並在此透過引用將其整體併入本文)考慮到識別和選擇相關過量提呈的候選肽疫苗,這基於與幾種不同的非癌組織和器官相比癌症或其他受感染組織的 HLA 限制肽水準直接相對定量結果。這透過以下方法實現:使用專有資料分析管道處理的 LC-MS 採集資料、結合序列識別演算法、譜聚類、計算離子、保留時間調整、充電狀態卷積以及正態化而開發無標記差異化定量方法。
為每種肽和樣本確立了提呈水準,包括誤差估計值。腫瘤組織大量提呈的肽以及腫瘤與非腫瘤組織和器官中過量提呈的肽已經得到確定。
對來自頭頸鱗狀細胞癌組織樣本的 HLA 肽複合物進行純化,並且對 HLA 相關肽使用 LC-MS 進行分離和分析(見實施例)。本申請中包含的所有 TUMAP 使用原發性頭頸鱗狀細胞癌樣本的方法進行鑒定,確認其在原發性頭頸鱗狀細胞癌上的提呈。
在多個頭頸鱗狀細胞癌和正常組織上確定的 TUMAP 用無標記 LC-MS 資料的離子計數方法進行量化。該方法假定肽的 LC-MS 信號區域與樣本中其豐度相關。各種 LC-MS 實驗中肽的所有量化信號在集中趨勢基礎上進行正常化,根據每個樣品進行平均,併合併入柱狀圖(被稱為提呈圖)。提呈圖整合了不同分析方法,如:蛋白資料庫檢索、譜聚類、充電狀態卷積(除電)和保留時間校準和正態化。
除了過量提呈肽之外,也測試了潛在基因的 mRNA 表達。mRNA 資料透過 RNA 測序分析正常組織和癌組織獲得(見實施例 2、圖 2)。 正常組織資料的額外來源是從 3000 個正常組織樣本中公開獲得的 RNA 表達資料的資料庫 (Lonsdale, 2013)。 獲得自蛋白的肽在癌組織中顯示高表達編碼mRNA,但是在重要正常組織中非常低或不存在,這些肽作為優選肽納入本發明。
本發明提出了有利於治療癌腫/腫瘤,優選為治療過量提呈或只提呈本發明肽的頭頸鱗狀細胞癌。這些肽由質譜分析法直接顯示出,而由 HLA 分子自然提呈于原發性頭頸鱗狀細胞癌樣本中。
與正常組織相比,癌症中高度過量表達肽來源的許多源基因/蛋白質(也指定為「全長蛋白」或「潛在蛋白」)- 本發明相關的「正常組織」是健康[插入主要適應症的正常組織]細胞或其他正常組織細胞,這表明腫瘤與這些源基因的高度關聯性(見實施例 2)。此外,這些肽本身也在腫瘤組織中過度提呈(本發明相關的「腫瘤組織」是指來自頭頸鱗狀細胞癌患者的樣本),但不在正常組織中過度提呈(見實施例 1)。
HLA 結合肽能夠被免疫系統識別,特別是 T 淋巴細胞。T 細胞可破壞提呈被識別 HLA/肽複合體的細胞(如:提呈衍生肽的頭頸鱗狀細胞癌細胞)。
本發明的所有肽已被證明具有刺激 T 細胞反應的能力,並過量提呈,因而可用于製備本發明的抗體和/或 TCR,例如可溶性 TCR(參見實施例 3 和實施例 4)。此外,肽與相應的 MHC 組合時,也可用于製備本發明的抗體和/或 TCR,特別是 sTCR。各個方法均為技術人員所熟知,並在各個文獻中可找到。因此,本發明的肽可用于在患者中產生免疫反應,從而能夠毀滅腫瘤細胞。患者的免疫反應能夠透過直接給予患者所述肽或前體物質(如,加長肽、蛋白或編碼這些肽的核酸),較理想是與加強免疫原性的製劑相結合,而進行誘導。源自該治療性疫苗的免疫反應預期能夠高度特異性地對抗腫瘤細胞,因為本發明的目標肽在正常組織上提呈的複製數目較少,防止患者發生對抗正常細胞的不良自體免疫反應的風險。
本說明書還涉及包含一個 α 鏈和一個 β 鏈 (「α/β TCR」) 的 T 細胞受體 (TCR)。還提供了由 MHC 分子提呈時可與 TCR 和抗體結合的本發明的肽。本說明書還涉及核酸、載體和用於表達 TCR 的宿主細胞和本說明書的肽;以及使用它們的方法。
術語 「T細胞受體」 (縮寫 TCR) 是指一種異二聚體分子,其包含一個 α 多肽鏈(α 鏈)和一個 β 多肽鏈(β鏈),其中所述異二聚體受體能夠結合由 HLA 分子提呈的肽抗原。該術語還包括所謂的 γ/δ TCR。
在一個實施方案中,本說明書提供了如本文中所描述的產生 TCR 的方法,該方法包括在適於促進 TCR 表達的條件下培養能夠表達 TCR 的宿主細胞。
另一個方面,本說明書涉及一種根據本說明書的方法,其中所述抗原透過與足夠量的含抗原提成細胞的抗原結合被載入表達於合適抗原提呈細胞或人工抗原呈遞細胞表面的 I 或 II 類 MHC 分子,或該抗原透過四聚化被載入 I 或 II 類 MHC 四聚體/ I 或 II 類 MHC 複合單體。
α/β TCR 的 α 和 β 鏈和 γ/δ TCR 的 γ 和 δ 鏈通常被視為各自有兩個「結構域」,即可變和恒定結構域。可變結構域由可變區 (V) 和連接區 (J) 的組合。可變結構域還可能包括一個前導區 (L)。β 和δ鏈還可能包括一個多樣區 (D)。α 和 β 恒定結構域還可能包括錨定 α 和 β 鏈至細胞膜的 C 末端跨膜 (TM) 結構域。
相對於 γ/δ 的 TCR,如本文所用的術語 「TCR γ可變域」是指無前導區 (L) 的 TCR γ V (TRGV) 區與 TCR γ (TRGJ) 區的組合,術語 TCR γ恒定結構域是指細胞外TRGC區域,或 C-末端截短 TRGC 序列。同樣地,「TCR δ可變域」是指無前導區 (L) 的 TCR δ V (TRDV) 區與 TCR δ D/J (TRDD/TRDJ) 區的組合,術語 「TCR δ恒定結構域」是指細胞外TRDC區域,或 C-末端截短 TRDC 序列。
本說明書的 TCR 優選結合至本發明的肽 HLA分子複合體,其具有約 100 µM或更小、約 50 µM或更小、約 25 µM或更小或約 10 µM或更小的結合親和力 (KD)。更為優選的情況是具有約 1 µM或更小、約 100 nM或更小、約 50 nM 或更小或約 25 nM或更小結合親和力的高親和力 TCR。本發明 TCR 優選結合親和力範圍的非限制性示例包括約 1 nM 至約 10 nM;約 10 nM 至約 20 nM;約 20 nM 至約 30 nM;約 30 nM 至約 40 nM;約 40 nM 至約 50 nM;約 50 nM 至約 60 nM;約 60 nM 至約 70 nM;約 70 nM 至約 80 nM;約 80 nM 至約 90 nM;以及約 90 nM 至約 100 nM。
與本說明書 TCR 相關,本文使用的「特異性結合」及其語法變體用於表示對 100μM 或更小的肽-HLA 分子複合體有結合親和力 (KD) 的 TCR。
本說明書的 α/β 異二聚體 TCR可能具有其恒定結構域之間的引入二硫鍵。這種類型的優選 TCR 包括那些具有一個 TRAC 恒定域序列和 TRBC1 或 TRBC2 恒定域序列的 TCR,除非 TRAC 的蘇氨酸 48 和 TRBC1 或 TRBC2 的絲氨酸 57被半胱氨酸殘基取代,所述半胱氨酸形成 TRAC 恒定域序列和 TCR 的 TRBC1 或 TRBC2 恒定區序列之間的二硫鍵。
不論具有或不具有上述的引入鏈間鍵,本說明書的α/β 雜二聚體TCR 可能具有一個 TRAC 恒定域序列和一個 TRBC1 或 TRBC2 恒定結構域序列,並且 TRAC 恒定結構域序列和 TCR 的 TRBC1 或 TRBC2 恒定結構域序列可能透過 TRAC 外顯子 2 的 Cys4 和 TRBC1或 TRBC2 外顯子2 的 Cys4 之間的天然二硫鍵相連。
本說明書的 TCR 可能包括選自由放射性核素、螢光團和生物素組成組中的可檢測標記。本說明書的 TCR可能共軛至治療活性劑,如放射性核素、化學治療劑或毒素。
在一個實施方案中,具有在 α 鏈中至少一個突變和/或具有在 β 鏈中至少一個突變的 TCR 與未突變 TCR 相比,已經修改了糖基化。
在一個實施方案中,在 TCR α 鏈和/或 TCR β 鏈中包括至少一個突變的 TCR 對肽 HLA 分子複合體有結合親和力和/或結合半衰期,其是包含未突變 TCR α 鏈和/或未突變 TCR β 鏈的 TCR 的結合親和力的至少兩倍。腫瘤特異性 TCR 親和力增強及其開發依賴於存在最佳 TCR 親和力的窗口。這樣窗口的存在是根據觀察結果:HLA-A2 限制性病原體特異性 TCR 與 HLA-A2 限制性腫瘤相關自身抗原特異性 TCR 相比, KD 值通常大約低 10 倍。現已知,儘管腫瘤抗原可能具有免疫原性,但是因為腫瘤來自個體自身的細胞,因此僅突變蛋白質或翻譯加工改變的蛋白將被免疫系統視為外來物質。上調或過度表達(所謂的自體抗原)的抗原不一定誘導針對腫瘤的功能免疫應答:表達對這些抗原具有高度反應性的 TCR 的 T 細胞會在一種稱為中樞耐受的程序中在胸腺內被不利選擇,也就是說只有對自身抗原具有低親和力 TCR 的細胞才仍然存在。因此,本說明書的 TCR 或變體對肽與本發明肽的親和力可透過本領域熟知的方法來增強。
本說明書還涉及一種識別和分離本發明 TCR 的一種方法,所述方法包括:用 A2/肽單體從 HLA-A*02 陰性健康供體孵育 PBMC,用四聚體-藻紅蛋白 (PE) 孵育 PBMC 並透過螢光啟動細胞分選 (FACS) – Calibur方法分析分離高親和力 T 細胞。
本說明書還涉及一種識別和分離本發明 TCR 的一種方法,所述方法包括:獲得含整個人體 TCRαβ 基因位點 (1.1 and 0.7 Mb) 的轉基因小鼠(其 T 細胞表達多樣化人類 TCR,用於補償小鼠 TCR 缺乏),用肽對小鼠進行免疫處理,用四聚體 - 藻紅蛋白 (PE) 孵育從轉基因小鼠中獲得的PBMC,並透過螢光啟動細胞分選 (FACS) – Calibur方法分析分離高親和力 T 細胞。
一方面,為了獲得表達本說明書 TCR 的 T 細胞,編碼本說明書 TCR-α和/或TCR-β 鏈的核酸被克隆入表達載體,諸如 γ 反轉錄病毒或慢病毒。重組病毒產生,然後測試功能,如抗原專一性和功能性親合力。然後,最終產品的等分試樣被用於轉導靶 T 細胞群體(一般純化自患者的 PBMC),在輸入患者前展開。
另一方面,為了獲得表達本說明書 TCR 的T細胞,TCR RNA 透過本領域中已知的技術(例如,體外轉錄系統)合成。然後,體外合成的TCR RNA透過電穿孔來重新表達腫瘤特異性 TCR-α 和/或 TCR-β 鏈被引入獲得自健康供體的初級CD8+ T 細胞。
為了增加表達,編碼本說明書 TCR 的核酸在操作上可連接到強啟動子,例如逆轉錄病毒長末端重複序列 (LTR)、巨細胞病毒 (CMV)、鼠幹細胞病毒 (MSCV) U3、磷酸甘油酸激酶 (PGK)、β 肌動蛋白、泛素蛋白和猿猴病毒 40 (SV40)/CD43複合啟動子、延伸因子 (EF) -1a和脾臟病灶形成病毒 (SFFV) 啟動子。在一優選實施方案中,啟動子與被表達的核酸異源。
除了強啟動子外,本說明書的 TCR 表達盒可能含有附加的元素,可提高轉基因表達,包括中樞多聚嘌呤區 (CPPT), 其促進了慢病毒構建體的核易位 (Follenzi et al., 2000), 和土撥鼠肝炎病毒轉錄後調控元素 (WPRE), 其透過提高 RNA 穩定性增加轉基因表達水準 (Zufferey et al., 1999)。
本發明 TCR 的 α 和 β 鏈可由位於分開的載體核酸進行編碼,或者可透過位於同一載體的多核苷酸編碼。
實現高水準的 TCR 表面表達需要引入 TCR 的 TCR-α 和 TCR-β 鏈高水準轉錄。為了實現它,本說明書的 TCR-α 和 TCR-β 鏈可在單一的載體中被克隆入雙順反子構建體,其已被證明能夠克服這一障礙。使用 TCR-α 和 TCR-β 鏈在之間的病毒核糖體間進入位元點 (IRES) 導致兩鏈的協同表達,因為 TCR-α 和 TCR-β 鏈均由在翻譯過程中分成兩個蛋白質的單一轉錄物產生,從而確保了產生 TCR-α 和 TCR-β 鏈的相等摩爾比。(Schmitt et al. 2009)。
編碼本說明書 TCR 的核酸可以是被優化以從宿主細胞增加表達的密碼子。遺傳密碼冗餘讓一些氨基酸被一個以上的密碼子編碼,但某些密碼子沒有其他密碼子「優化」,因為匹配 tRNA 以及其他因子的相對可用性 (Gustafsson et al., 2004)。修改 TCR-α 和 TCR-β 基因序列使得每個氨基酸被用於哺乳動物基因表達的最佳密碼子編碼,以及消除 mRNA 不穩定性基序或隱蔽剪接位元點,已顯示可顯著提高 TCR-α 和 TCR-β 基因表達 (Scholten et al., 2006)。
此外,引入的和內源性 TCR 鏈之間的錯配可能會導致獲得特異性,其構成自身免疫的顯著風險。例如,混合 TCR 二聚體的形成可能會減少可用以形成正確配對 TCR 複合體的 CD3 分子數目,因此,可以顯著降低表達所引入 TCR的細胞的功能性親合力 (Kuball et al., 2007)。
為了減少錯配,本說明書引入的 TCR 鏈的 C-末端結構域可以進行修改以促進鏈間親和力,同時降低引入鏈與內源 TCR 配對的能力。這些策略可能包括用鼠配對物取代人類 TCR-α 和 TCR-β C端結構域(鼠化 C 端結構域);透過引入第二個半胱氨酸殘基到引入 TCR 的 TCR-α 和 TCR-β 鏈產生 C 末端結構域的第二個鏈間二硫鍵(半胱氨酸修飾);交換 TCR-α 和 TCR-β 鏈 C 端結構域的相互作用殘基(「杵臼結構」);直接融合 TCR-α和 TCR-β 鏈可變結構域至 CD3ζ(CD3ζ 融合)(Schmitt et al. 2009)。
在一實施方案中,宿主細胞被改變結構以表達本說明書的 TCR。在一優選實施方案中,宿主細胞為人 T 細胞或 T 細胞祖細胞。在一些實施方案中,T 細胞或 T 細胞祖細胞從癌症患者中獲得。在另一些實施方案中,T 細胞或 T 細胞祖細胞從健康供體中獲得。本說明書的宿主細胞相對於待治療的患者可以為同種異體或自體的。在一實施方案中,宿主是被轉化以表達 α/β TCR 的 γ/δ T 細胞。
「藥物組合物」是指適合在醫療機構用於人體的組合物。優選地,藥物組合物為無菌狀態,並根據 GMP 指南生產。
藥物組合物包括游離形式或以一種藥用鹽形式存在的肽(也參見上文)。此處使用的「藥用鹽」系指所公開的肽的一種衍生物,其中該肽由制酸或藥劑的堿鹽進行改性。例如,用與適合的酸反應的游離堿(通常其中的中性藥物有一個中性–NH2 基團)製備酸式鹽。適合製備酸鹽的酸包括有機酸,如:乙酸、丙酸、羥基酸、丙酮酸、草酸、蘋果酸、丙二酸、丁二酸、馬來酸、富馬酸、酒石酸、檸檬酸、苯甲酸酸、肉桂酸、扁桃酸、甲磺酸、乙磺酸、对甲基苯磺酸、水楊酸等等、以及無機酸,如:鹽酸、氫溴酸、硫酸、硝酸和磷酸等。相反,可在一種肽上提呈的酸性基團的堿鹽製劑使用藥用堿基進行製備,如氫氧化鈉、氫氧化鉀、氫氧化銨、氫氧化鈣、三甲胺等等。
在特別優選的實施方案中,藥物組合物包括乙酸(醋酸鹽),三氟乙酸鹽或鹽酸(氯化物)形式的肽或 TCR 蛋白。
本發明中所述的藥劑優選為一種免疫治療藥劑,例如,一種疫苗。該疫苗可直接給到患者的受影響器官,也可i.d.、i.m.、s.c.、i.p. 和 i.v. 注射方式全身給藥,或體外應用到來自患者或其細胞株的細胞(隨後再將這些細胞注入到患者中),或體外用於從來自患者的免疫細胞的一個細胞亞群(然後再將細胞重新給予患者)。如果核酸體外注入細胞,可能有益於細胞轉染,以共同表達免疫刺激細胞因子(如白細胞介素-2)。肽可完全單獨給藥,也可與免疫刺激佐劑相結合(見下文)、或與免疫刺激細胞因子聯合使用、或以適當的輸送系統給藥(例如脂質體)。該肽也可共軛形成一種合適的載體(如鑰孔蟲戚血藍蛋白 (KLH) 或甘露)到合適的載體 (參閱WO 95/18145 及 (Longenecker et al., 1993))。肽也可能被標記,可能是融合蛋白,或可能是雜交分子。在本發明中給出序列的肽預計能刺激 CD4 或 CD8 T 細胞。然而,在有 CD4 T-輔助細胞的幫助時,CD8 T 細胞刺激更加有效。因此,對於刺激 CD8 T 細胞的 MHC-I 類表位,一種雜合分子的融合夥伴或片段提供了刺激 CD4 陽性 T 細胞的適當表位。CD4- 和 CD8 刺激表位為本領域所熟知、並包括本發明中確定的表位。
一方面,疫苗包括至少含有 SEQ ID NO:1 至 SEQ ID NO:91 中提出的一種肽以及至少另外一種肽,優選為 2 至 50 個、更優選為 2 至 25 個、再優選為 2 至 20 個、最優選為 2、3、4、5、6、7、8、9、10、11、12 、13、14、15、16、17 或 18 個肽。肽可能從一個或多個特定 TAA 中衍生,並且可能與 MHC I 類分子結合。
另一方面,本發明提出了一種編碼本發明中肽或肽變體的核酸(如多聚核苷酸)。多聚核苷酸可能為,例如,DNA、cDNA、PNA、RNA 或其組合物,它們可為單鏈和/或雙鏈、或多聚核苷酸的原生或穩定形式(如:具有硫代磷酸骨架的多聚核苷酸),並且只要它編碼肽,就可能包含也可能不包含內含子。當然,多聚核苷酸只能編碼加入天然肽鍵並含有天然氨基酸殘基的肽。另一個方面,本發明提出了一種可根據本發明表達多肽的表達載體。
對於連接多核苷酸,已經開發出多種方法,尤其是針對 DNA,可透過向載體補充可連接性末端等方法進行連接。例如,可向 DNA 片段加入補充性均聚物軌道,之後 DNA 片段被插入到載體 DNA。然後,透過補充性均聚物尾巴的氫鍵結合,將載體和 DNA 片段結合,從而形成重組 DNA 分子。
含有一個或多個酶切位點的合成接頭為 DNA 片段與載體連接提供了另一種方法。含各種限制性核酸內切酶的合成接頭可透過多種管道購得,其中包括從國際生物技術公司(International Biotechnologies Inc, New Haven, CN, 美國)購得。
編碼本發明多肽的 DNA 理想修飾方法是使用 Saiki 等人 (Saiki et al., 1988) 所採用的聚合酶鏈反應方法。此方法可用於將 DNA 引入合適的載體(例如,透過設計合適的酶切位點),也可用於本領域已知的其他有用方法修飾 DNA。如果使用病毒載體,痘病毒載體或腺病毒載體為優選。
之後,DNA (或在逆轉錄病毒載體情況下,RNA)可能表達於合適的宿主,從而製成含本發明肽或變體的多肽。因此,可根據已知技術使用編碼本發明肽或變體的 DNA,用本文所述方法適當修飾後,構建表達載體,然後表達載體用於轉化合適宿主細胞,從而表達和產生本發明中的多肽。此類技術包括那些公開於,例如,美國專利 4,440,859、4,530,901、4,582,800、4,677,063、4,678,751、4,704,362、4,710,463、4,757,006、4,766,075 和 4,810,648。
編碼含本發明化合物多肽的 DNA (或在逆轉錄病毒載體情況下,RNA)可能被加入到其他多種 DNA 序列,從而引入到合適的宿主中。同伴 DNA 將取決於宿主的性質、DNA 引入宿主的方式、以及是否需要保持為游離體還是要相互結合。
一般來說,DNA 可以適當的方向和正確的表達閱讀框架附著到一種表達載體(如質粒)中。如有必要,該 DNA 可能與所需宿主所識別的相應轉錄和翻譯調節控制核苷酸序列連接,儘管表達載體中一般存在此類控制功能。然後,該載體透過標準方法被引入宿主。一般來說,並不是所有的宿主都會被載體轉化。因此,有必要選擇轉化過的宿主細胞。選擇方法包括用任何必要的控制元素向表達載體插入一個 DNA 序列,該序列對轉化細胞中的可選擇性屬性(如抗生素耐藥性)進行編碼。
另外,有這種選擇屬性的基因可在另外一個載體上,該載體用來協同轉化所需的宿主細胞。
然後,本發明中的重組 DNA 所轉化的宿主細胞在本文中所述本領域技術人員熟悉的合適條件下培養足夠長的時間,從而表達之後可回收的肽。
有許多已知的表達系統,包括細菌(如大腸桿菌和枯草芽孢桿菌)、酵母(如酵母菌)、絲狀真菌(如曲黴菌)、植物細胞、動物細胞及昆蟲細胞。該系統可優選為哺乳動物細胞,如來自 ATCC 細胞生物學庫 (Cell Biology Collection) 中的 CHO 細胞。
典型的哺乳動物細胞組成型表達載體質粒包括 CMV 或含一個合適的多聚 A 尾巴的 SV40 啟動子以及抗性標誌物(如新黴素)。一個實例為從 Pharmacia 公司(Piscataway,新澤西,美國)獲得的 pSVL。一種可誘導型哺乳動物表達載體的例子是 pMSG,也可以從 Pharmacia 公司獲得。有用的酵母質粒載體是 pRS403-406 和 pRS413-416,一般可從 Stratagene Cloning Systems 公司(La Jolla, CA 92037,美國)獲得。質粒 pRS403、pRS404、pRS405 和 pRS406 是酵母整合型質粒 (YIp),並插入了酵母可選擇性標記物 HIS3、TRP1、LEU2 和 URA3。pRS413-416 質粒為酵母著絲粒質粒 (Ycp)。基於 CMV 啟動子的載體(如,來自於 Sigma-Aldrich 公司)提供了暫態或穩定的表達、胞漿表達或分泌,以及 FLAG、3xFLAG、c-myc 或 MATN 不同組合物中的 N-端或 C-端標記。這些融合蛋白可用於檢測、純化及分析重組蛋白。雙標融合為檢測提供了靈活性。
強勁的人巨細胞病毒 (CMV) 啟動子調控區使得 COS 細胞中的組成蛋白表達水準高達 1 mg/L。對於較弱的細胞株,蛋白水準一般低於 0.1 mg/L。SV40 複製原點的出現將導致 DNA 在 SV40 複製容納性 COS 細胞中高水準複製。例如,CMV 載體可包含細菌細胞中的 pMB1(pBR322 的衍生物)複製原點、細菌中進行氨苄青黴素抗性選育的 鈣-內醯胺酶基因、hGH polyA 和 f1 的原點。含前胰島素原引導 (PPT) 序列的載體可使用抗 FLAG 抗體、樹脂和板引導 FLAG 融合蛋白分泌到進行純化的培養基中。其他與各種宿主細胞一起應用的載體和表達系統是本領域熟知眾所周知的。
在另一個實施方案中,對本發明的兩個或更多的肽或肽變體進行編碼,因此,以一個連續順序(類似於「一串珠子」的構建體)表達。在達到目標,所述肽或肽變體可能透過連接子氨基酸的延伸處(例如 LLLLLL)連接或融合一起,也可能他們之間沒有任何附加的肽而被連接。這些構建體也可用於癌症治療,可誘導涉及 MHC I 和 MHC II 類分子的免疫應答。
本發明還涉及一種宿主細胞,其以本發明的多核苷酸載體構建轉化而來。宿主細胞可為原核細胞,也可為真核細胞。在有些情況下,細菌細胞為優選原核宿主細胞,典型為大腸桿菌株,例如,大腸桿菌菌株 DH5(從 Bethesda Research Laboratories 公司(Bethesda, MD, 美國)獲得)和 RR1(從美國菌種保藏中心(ATCC), Rockville, MD, 美國(編號 ATCC 31343)獲得)。首選的真核宿主細胞包括酵母、昆蟲和哺乳動物細胞,優選為脊椎動物細胞,如:小鼠、大鼠、猴子或人成纖維細胞和結腸癌細胞株中的細胞。酵母宿主細胞包括 YPH499、YPH500 和 YPH501,一般可從 Stratagene Cloning Systems 公司(La Jolla, CA 92037, 美國)獲得。首選哺乳動物宿主細胞包括中國倉鼠卵巢 (CHO) 細胞為 ATCC 中的 CCL61 細胞、NIH 瑞士小鼠胚胎細胞 NIH/3T3 為 ATCC 中的 CRL 1658 細胞、猴腎源性 COS-1 細胞為 ATCC 中的 CRL 1650 細胞以及人胚胎腎細胞的 293 號細胞。首選昆蟲細胞為 Sf9 細胞,可用杆狀病毒表達載體轉染。有關針對表達選擇合適宿主細胞的概要,可從教科書 (Paulina Balbás and Argelia Lorence 《Methods in Molecular Biology Recombinant Gene Expression, Reviews and Protocols》Part One, Second Edition, ISBN 978-1-58829-262-9) 和技術人員知道的其他文獻中查到。
含本發明 DNA 結構的適當宿主細胞的轉化可使用大家熟知的方法完成,通常取決於使用載體的類型。關於原核宿主細胞的轉化,請參見,例如,Cohen 等人的文獻 (Cohen et al., 1972) 和 (Green and Sambrook, 2012)。酵母細胞的轉化在 Sherman 等人的文章 (Sherman et al., 1986) 中進行了描述。Beggs (Beggs, 1978) 中所述的方法也很有用。對於脊椎動物細胞,轉染這些細胞的試劑等,例如,磷酸鈣和 DEAE-葡聚糖或脂質體配方,可從 Stratagene Cloning Systems 公司或 Life Technologies 公司(Gaithersburg, MD 20877,美國)獲得。電穿孔也可用於轉化和/或轉染細胞,是本領域用於轉化酵母細胞、細菌細胞、昆蟲細胞和脊椎動物細胞大家熟知的方法。
被成功轉化的細胞(即含本發明 DNA 結構的細胞)可用大家熟知的方法(如 PCR)進行識別。另外,上清液存在的蛋白可使用抗體進行檢測。
應瞭解,本發明中的某些宿主細胞用於製備本發明中的肽,例如細菌細胞、酵母細胞和昆蟲細胞。但是,其他宿主細胞可能對某些治療方法有用。例如,抗原提呈細胞(如樹突狀細胞)可用于表達本發明中的肽,使他們可以加載入相應的 MHC 分子中。因此,本發明提出了含本發明中核酸或表達載體的一種宿主細胞。
在一個優選實施方案中,宿主細胞為抗原提呈細胞,尤其是樹突狀細胞或抗原提呈細胞。2010 年 4 月 29 日,美國食品和藥物管理局 (FDA) 批准載有含攝護腺酸性磷酸酶 (PAP) 的重組融合蛋白可用於治療無症狀或症狀輕微的轉移性 HRPC (Rini et al., 2006; Small et al., 2006)。
另一方面,本發明提出了一種配製一種肽及其變體的方法,該方法包括培養宿主細胞和從宿主細胞或其培養基中分離肽。
在另一個實施方案中,本發明中的肽、核酸或表達載體用於藥物中。例如,肽或其變體可製備為靜脈 (i.v.) 注射劑、皮下 (s.c.) 注射劑、皮內 (i.d.) 注射劑、腹膜內 (i.p.) 注射劑、肌肉 (i.m.) 注射劑。肽注射的優選方法包括 s.c.、i.d.、i.p.、i.m. 和 i.v. 注射。DNA 注射的優選方法為 i.d.、i.m.、s.c.、i.p. 和 i.v. 注射。例如,給予 50 µg 至 1.5 mg,優選為 125 µg 至 500 µg 的肽或 DNA,這取決於具體的肽或 DNA。上述劑量範圍在以前的試驗中成功使用 (Walter et al., 2012)。
用於主動免疫接種的多聚核苷酸可為基本純化形式,也可包被於載體或輸送系統。核酸可能為 DNA、cDNA、PNA、RNA,也可能為其組合物。這種核酸的設計和引入方法為本領域所熟知。例如,文獻中有其概述 (Teufel et al., 2005)。多核苷酸疫苗很容易製備,但這些載體誘導免疫反應的作用模式尚未完全瞭解。合適的載體和輸送系統包括病毒 DNA 和/或 RNA,如基於腺病毒、牛痘病毒、逆轉錄病毒、皰疹病毒、腺相關病毒或含一種以上病毒元素的混合病毒的系統。非病毒輸送系統包括陽離子脂質體和陽離子聚合物,是 DNA 輸送所屬領域內熟知的系統。也可使用物理輸送系統,如透過「基因槍」。肽或核酸編碼的肽可以是一種融合蛋白,例如,含刺激 T 細胞進行上述 CDR 的表位。
本發明的藥劑也可能包括一種或多種佐劑。佐劑是那些非特異性地增強或加強免疫反應的物質(例如,透過 CD8-陽性 T 細胞和輔助 T(TH ) 細胞介導的對一種抗原的免疫應答,因此被視為對本發明的藥劑有用。適合的佐劑包括(但不僅限於)1018ISS、鋁鹽、AMPLIVAX® 、AS15、BCG、CP-870,893、CpG7909、CyaA、dSLIM、鞭毛蛋白或鞭毛蛋白衍生的 TLR5 配體、FLT3 配體、GM-CSF、IC30、IC31、咪喹莫特 (ALDARA® )、resiquimod、ImuFact IMP321、白細胞介素 IL-2、IL-13、IL-21、干擾素 α 或 β,或其聚乙二醇衍生物、IS Patch、ISS、ISCOMATRIX、ISCOMs、JuvImmune® 、LipoVac、MALP2、MF59、單磷醯脂A、Montanide IMS 1312、Montanide ISA 206、Montanide ISA 50V、Montanide ISA-51、水包油和油包水乳狀液、OK-432、OM-174、OM-197-MP-EC、ONTAK、OspA、PepTel® 載體系統、基於聚丙交酯複合乙交酯 [PLG] 和右旋糖苷微粒、重組人乳鐵傳遞蛋白 SRL172、病毒顆粒和其他病毒樣顆粒、YF-17D、VEGF trap、R848、β-葡聚糖、Pam3Cys、源自皂角苷、分支桿菌提取物和細菌細胞壁合成模擬物的 Aquila 公司的 QS21 刺激子,以及其他專有佐劑,如:Ribi's Detox、Quil 或 Superfos。優選佐劑如:弗氏佐劑或 GM-CSF。前人對一些樹突狀細胞特異性免疫佐劑(如 MF59)及其製備方法進行了描述 (Allison and Krummel, 1995)。也可能使用細胞因子。一些細胞因子直接影響樹突狀細胞向淋巴組織遷移(如,TNF-),加速樹突狀細胞成熟為 T 淋巴細胞的有效抗原提呈細胞(如,GM-CSF、IL-1 和 IL-4)(美國 5849589 號專利,特別以其完整引用形式併入本文),並充當免疫佐劑(如 IL-12、IL-15、IL-23、IL-7、IFN-α、IFN-β) (Gabrilovich et al., 1996)。
據報告,CpG 免疫刺激寡核苷酸可提高佐劑在疫苗中的作用。如果沒有理論的約束, CpG 寡核苷酸可透過 Toll 樣受體 (TLR) (主要為 TLR9)啟動先天(非適應性)免疫系統從而起作用。CpG 引發的 TLR9 活化作用提高了對各種抗原的抗原特異性體液和細胞反應,這些抗原包括肽或蛋白抗原、活病毒或被殺死的病毒、樹突狀細胞疫苗、自體細胞疫苗以及預防性和治療性疫苗中的多糖結合物。更重要的是,它會增強樹突狀細胞的成熟和分化,導致 TH1 細胞的活化增強以及細胞毒性 T 淋巴細胞 (CTL) 生成加強,甚至 CD4 T 細胞説明的缺失。甚至有疫苗佐劑的存在也能維持 TLR9 活化作用誘發的 TH1 偏移,這些佐劑如:正常促進 TH2 偏移的明礬或弗氏不完全佐劑 (IFA)。CpG 寡核苷酸與以下其他佐劑或配方一起製備或聯合給藥時,表現出更強的佐劑活性,如微粒、納米粒子、脂肪乳或類似製劑,當抗原相對較弱時,這些對誘發強反應尤為必要。他們還能加速免疫反應,使抗原劑量減少約兩個數量級,在有些實驗中,對不含CpG 的全劑量疫苗也能產生類似的抗體反應 (Krieg, 2006)。美國 6406705 B1 號專利對 CpG 寡核苷酸、非核酸佐劑和抗原結合使用促使抗原特異性免疫反應進行了描述。一種 CpG TLR9 拮抗劑為 Mologen 公司(德國柏林)的 dSLIM(雙幹環免疫調節劑),這是本發明藥物組合物的優選成分。也可使用其他如 TLR 結合分子,如:RNA 結合 TLR7、TLR8 和/或 TLR9。
其他有用的佐劑例子包括(但不限於)化學修飾性 CpG (如 CpR、Idera)、dsRNA 模擬物,如,Poly(I:C) 及其衍生物(如:AmpliGen、Hiltonol、多聚-(ICLC)、多聚 (IC-R)、多聚 (I:C12U))、非 CpG 細菌性 DNA 或 RNA 以及免疫活性小分子和抗體,如:環磷醯胺、舒尼替單抗、貝伐單抗®、西樂葆、NCX-4016、西地那非、他達拉非、伐地那非、索拉非尼、替莫唑胺、temsirolimus、XL-999、CP-547632、帕唑帕尼、VEGF Trap、ZD2171、AZD2171、抗-CTLA4、免疫系統的其他抗體靶向性主要結構(如:抗-CD40、抗-TGFβ、抗-TNFα受體) 和 SC58175,這些藥物都可能有治療作用和/或充當佐劑。技術人員無需過度進行不當實驗就很容易確定本發明中有用的佐劑和添加劑的數量和濃度。
首選佐劑是抗-CD40、咪喹莫特、瑞喹莫德、GM-CSF、環磷醯胺、舒尼替尼、貝伐單抗、干擾素α、CpG 寡核苷酸及衍生物、多聚(I:C)及衍生物、RNA、西地那非和PLG或病毒顆粒的微粒製劑。
本發明藥物組合物的一個優選實施方案中,佐劑從含集落刺激因子製劑中選擇,如粒細胞巨噬細胞集落刺激因子(GM-CSF,沙格司亭)、環磷醯胺、咪喹莫特、resiquimod 和干擾素-α。
本發明藥物組合物的一個優選實施方案中,佐劑從含集落刺激因子製劑中選擇,如粒細胞巨噬細胞集落刺激因子(GM-CSF,沙格司亭)、環磷醯胺、咪喹莫特和 resimiquimod。在本發明藥物組合物的一個優選實施方案中,佐劑為環磷醯胺、咪喹莫特或 resiquimod。更優選的佐劑是 Montanide IMS 1312、Montanide ISA 206、Montanide ISA 50V、Montanide ISA-51、聚-ICLC (Hiltonol®) 和抗CD40 mAB或其組合物。
此組合藥物為非腸道注射使用,如皮下、皮內、肌肉注射,也可口服。為此,肽和其他選擇性分子在藥用載體中分解或懸浮,優選為水載體。此外,組合物可包含輔料,如:緩衝劑、結合劑、衝擊劑、稀釋劑、香料、潤滑劑等。這些肽也可與免疫刺激物質合用,如:細胞因子。可用於此類組合物的更多輔料可在從 A. Kibbe 所著的 Handbook of Pharmaceutical Excipients (Kibbe, 2000) 等書中獲知。此組合藥物可用於阻止、預防和/或治療腺瘤或癌性疾病。例如,EP2112253 中有示例製劑。
重要的是要認識到,透過本發明的疫苗引發的免疫應答在不同的細胞階段和開發的不同階段攻擊癌症。而且不同的癌症相關信號通路被攻擊。這相對於其他疫苗的優勢,這些疫苗只針對一個或幾個靶標,這可能會導致腫瘤很容易適應於攻擊(腫瘤逃逸)。此外,並非所有的個體腫瘤都表達相同模式的抗原。因此,幾個腫瘤相關肽的組合確保了每個腫瘤都承擔至少一些靶標。該組合物以這樣的方式設計,預期每個腫瘤可表達幾種抗原並覆蓋腫瘤生長和維持所需要的幾種獨立的途徑。因此,疫苗可易於「現成的」用於較大患者群體。這意味著,預選擇接受疫苗治療的患者可限制為 HLA 分型,無需抗原表達的任何額外的生物標誌物評估,但仍然確保多個靶標同時被誘導的免疫應答攻擊,這對於療效很重要 (Banchereau et al., 2001; Walter et al., 2012)。
本文所用的「支架」一詞是指與(如抗原)決定因子特異性結合的分子。在一項實施方案中,支架是能夠引導其所連接的實體(例如,(第二)抗原結合部分) 至目標靶點,例如,至特定類型的腫瘤細胞或承載抗原決定簇的腫瘤基質(如根據目前申請中肽和 MHC 的複合體)。在另一項實施例中,支架能夠透過其靶抗原(例如 T 細胞受體複合體抗原)啟動信號通路。支架包括但不限於抗體及其片段,抗體的抗原結合區,其包含抗體重鏈可變區和抗體輕鏈可變區,結合的蛋白包括至少一個錨蛋白重複序列基元和單域抗原結合 (SDAB) 分子、適體、(可溶)TCR 和(經修飾的)細胞,例如同種異體或自體 T 細胞。為了評估某個分子是否是結合至靶點的支架,可進行結合測定。
「特定」結合系指,與其他天然肽-MHC 複合體相比,該支架與感興趣的肽-MHC複合體更好地結合,結合程度為,擁有能夠殺死承載特定靶點細胞的活性分子的支架不能夠殺死無特定靶點但提呈一個或多個其他肽-MHC複合體的另一細胞。如果交叉反應性肽-MHC 的肽並不是天然的,即,並非來自人 HLA-多肽組,則結合至其他肽-MHC 複合體是無關緊要的。評估靶細胞殺傷的測試在本領域中是公知的。它們應該含有未改變的肽-MHC 提呈的靶細胞(原發細胞或細胞系)或載有肽的細胞進行,以便達到天然肽-MHC 的水準。
各支架可包括一個標記,其透過確定是否存在或不存在標籤所提供的信號可檢測到結合支架。例如,該支架可用螢光染料或任何其他適用的細胞標記分子進行標記。此類標記分子是本領域中公知的。例如,透過螢光染料進行的螢光標記可透過螢光或鐳射掃描顯微術或流式細胞術提供結合適體的視覺化。
各支架可與第二個活性分子(例如 IL-21、抗 CD3、抗 CD28)共軛。
關於多肽支架的進一步資訊,可參閱,例如,在 WO 2014/071978A1 背景技術部分,並作為參考文獻引用。
本發明還涉及適體。適體(例如,參見 WO 2014/191359 及其中引用的文獻)是短的單鏈核酸分子,其可以折疊為所定義的三維結構並識別特定的靶標結構。它們似乎是開發靶向治療的合適替代方法。適體已顯示可選擇性與具有高親和力和特異性的複合體靶標相結合。
識別細胞表面分子的適體在過去十年內已經確定,並為開發診斷和治療方法提供了手段。由於適體已顯示幾乎無毒性和免疫原性,因此,它們是生物醫學應用中有前景的候選物質。事實上適體,例如攝護腺特異性膜抗原識別適體,已被成功地用於靶向治療並在體內模型的異種移植物中顯示出功能。此外,認識到特定腫瘤細胞系的適體也已確定。
可選擇 DNA 適體來揭示各種癌細胞的廣譜識別屬性,特別是那些來自於實體瘤的細胞,而非致瘤和主要健康細胞不被識別。如果所識別的適體不僅識別腫瘤特異性子類型,而且與一系列腫瘤相互作用,這使適體適用于作為所謂的廣譜診斷和治療手段。
此外,用流式細胞儀對細胞結合行為的研究顯示,適體在納摩爾範圍內顯示出很好的親和力。
適體用於診斷和治療目的。此外,也可能顯示,一些適體被腫瘤細胞吸取,因而可作為抗癌劑靶向遞送的分子賦形劑,例如 siRNA 進入腫瘤細胞。
可選擇適體針對複合體的靶標,如細胞和組織以及包含、優選包括根據任何 SEQ ID NO 1 至 SEQ ID NO 91 的一個序列、根據當前發明的肽複合體與 MHC 分子,使用細胞 SELEX(透過指數富集的配體系統進化)技術。
本發明中的肽可用于生成和開發出針對 MHC/肽複合物的特定抗體。這些抗體可用於治療,將毒素或放射性物質靶向病變組織。這些抗體的另一用途是為了成像之目的(如 PET)將放射性核素靶向病變組織。這可有助於檢測小轉移灶或確定病變組織的大小和準確位置。
因此,本發明的另一方面是提出產生特異性結合至與 HLA 限制性抗原絡合的 I 或 II 類人主要組織相容性複合體 (MHC) 的一種重組抗體的方法,該方法包括:用可溶形式的與 HLA 限制性抗原絡合的 (MHC) I 或 II 類分子對包含表達所述主要組織相容性說複合體 (MHC) I 或 II 類的基因工程非人哺乳動物進行免疫;將 mRNA 分子與產生所述非人哺乳動物細胞的抗體分離;產生一個噬菌體顯示庫,顯示由所述 mRNA 分子編碼的蛋白分子;以及將至少一個噬菌體與所述噬菌體顯示庫分離,所述的至少一個噬菌體顯示所述抗體特異性地結合至與 HLA 限制性抗原絡合的所述人主要組織相容性說複合體 (MHC) I 或 II 類。
本發明的另一方面提出一種抗體,其特異性結合至與一種 HLA 限制性抗原絡合的 I 或 II 類人主要組織相容性說複合體 (MHC),其中該抗體優選為多克隆抗體、單克隆抗體、雙特異性抗體和/或嵌合抗體。
產生這種抗體和單鏈 I 類主要組織相容性複合物的相應方法,以及產生這些抗體的其他工具在 WO 03/068201、WO 2004/084798、WO 01/72768、WO 03/070752 以及出版物 (Cohen et al., 2003a; Cohen et al., 2003b; Denkberg et al., 2003) 中進行了披露,為了本發明之目的,所有參考文獻透過引用被完整地併入本文。
優選地,該抗體與複合體的結合親和力低於 20 納摩爾,優選為低於 10 納摩爾,這在本發明情況下也被視為具有「特異性」。
本發明涉及一種肽,包含選自 SEQ ID NO:1 至 SEQ ID NO:91 組成的組的一個序列或該序列的與 SEQ ID NO:1 至 SEQ ID NO:91 具有 88% 同源性(優選為相同)的一種變體,或誘導與所述變異肽發生 T 細胞交叉反應的一種變體,其中,所述肽不是基本的全長多肽。
本發明進一步涉及一種肽,包含選自 SEQ ID NO:1 至 SEQ ID NO:91 組成的組的一個序列、或與 SEQ ID NO:1 至 SEQ ID NO:91 具有至少 88% 同源性(優選為相同)的一種變體,其中所述肽或變體的總長度為 8 至 100 個、優選為 8 至 30 個、最優選為 8 至 14 個氨基酸。
本發明進一步涉及本發明的肽,其具有與主要組織相容性複合體 (MHC) I 或 II 類分子結合的能力。
本發明進一步涉及本發明中的肽,其中肽系由或基本系由根據 SEQ ID NO:1 至 SEQ ID NO:91 的一個氨基酸序列組成。
本發明進一步涉及本發明的肽,其中該肽(在化學上)被修飾和/或包含非肽鍵。
本發明進一步涉及本發明的肽,其中該肽為融合蛋白的一部分,特別包括 HLA-DR 抗原相關不變鏈 (Ii ) 的 N-端氨基酸,或其中該肽與一種抗體(例如,樹突狀細胞特定抗體)融合。
本發明進一步涉及一種核酸,其編碼本發明所述肽,前提是該肽並非完整(完全)的人蛋白。
本發明進一步涉及一種本發明的核酸,為 DNA、cDNA、PNA、RNA,也可能為其組合物。
本發明進一步涉及一種能表達本發明核酸的表達載體。
本發明進一步涉及本發明的一種肽、本發明的一種核酸或本發明的一種藥用表達載體,特別是用於治療頭頸鱗狀細胞癌。
本發明進一步涉及含本發明核酸或本發明表達載體的一種宿主細胞。
本發明進一步涉及本發明的宿主細胞,其為抗原提呈細胞,優選為樹突細胞。
本發明進一步涉及配製本發明一種肽的一種方法,所述方法包括培養本發明的宿主細胞和從所述宿主細胞或其培養基中分離肽。
本發明進一步涉及本發明中的方法,其中抗原透過與足夠量的含抗原提成細胞的抗原結合被載入表達於合適抗原提呈細胞表面的 I 或 II 類 MHC 分子。
本發明進一步涉及本發明的方法,其中該抗原提呈細胞包括一個表達載體,該載體有能力表達含 SEQ ID NO:1 至 SEQ ID NO:91 的肽或所述變體氨基酸序列。
本發明進一步涉及以本發明方法製造的啟動 T 細胞,其中所述 T 細胞有選擇性地識別一種細胞,該細胞異常表達含一種本發明氨基酸序列的多肽。
本發明進一步涉及一種殺傷患者靶細胞的方法,其中患者的靶細胞異常表達含本發明任何氨基酸序列的多肽,該方法包括給予患者本發明的有效量 T 細胞。
本發明進一步涉及任何所述肽、本發明的一種核酸、本發明的一種表達載體、本發明的一種細胞、本發明一種作為藥劑或製造藥劑的啟動細胞毒性 T 淋巴細胞的用途。本發明進一步涉及一種本發明的用途,其中藥劑可有效抗癌。
本發明進一步涉及一種本發明的用途,其中該藥劑為一種疫苗。本發明進一步涉及一種本發明的用途,其中藥劑可有效抗癌。
本發明進一步涉及根據本發明肽的用途,其中所述癌細胞為頭頸鱗狀細胞癌或其他實體或血液學腫瘤細胞,如:急性骨髓性白血病、乳腺癌、膽管癌、腦癌、慢性淋巴細胞性白血病、結直腸癌、食管癌、膽囊癌、胃癌、肝細胞癌、黑色素瘤、非霍奇金淋巴瘤、非小細胞肺癌、卵巢癌、胰腺癌、攝護腺癌、腎細胞癌、小細胞肺癌、膀胱癌、子宮癌細胞。
本發明進一步涉及一種基於本發明肽的特定標誌物蛋白和生物標誌物,在此成為「靶標」,其可用於診斷和/或判斷頭頸鱗狀細胞癌的預後。本發明還涉及這些供癌症治療使用的新靶點。
本文中術語「抗體」為廣義上的定義,既包括多克隆也包括單克隆抗體。除了完整或「全部」的免疫球蛋白分子,「抗體」這一術語還包括這些免疫球蛋白分子和人源化免疫球蛋白分子的片段(如,CDR、Fv、Fab 和 Fc 片段)或聚合物,只要它們表現出本發明的任何期望屬性(例如,頭頸鱗狀細胞癌 標誌物(多)肽的特異性結合、將毒素傳遞給癌症標誌物基因表達水準增加時的頭頸鱗狀細胞癌癌細胞和/或抑制頭頸鱗狀細胞癌標誌物多肽的活性)。
只要有可能,本發明的抗體可從商業來源購買。本發明的抗體也可能使用已知的方法制得。技術人員會瞭解全長頭頸鱗狀細胞癌標誌物多肽或其片段可用于製備本發明的抗體。用於產生本發明抗體的多肽可部分或全部地由天然源經純化而得,也可利用重組 DNA 技術生產。
例如,本發明的編碼肽的 cDNA,例如,該肽為根據 SEQ ID NO:1 至 SEQ ID NO:91 多肽的肽,或其中一個變體或片段,可在原核細胞中(如:細菌)或真核細胞(如:酵母、昆蟲或哺乳動物細胞)中表達,之後,可純化重組蛋白,並用於產生一種特異性結合用於產生本發明抗體的頭頸鱗狀細胞癌標誌物多肽的單克隆或多克隆抗體製劑。
本領域的技術人員會認識到,兩種或兩種以上不同集合的單克隆抗體或多克隆抗體能最大限度地增加獲得一種含預期用途所需的特異性和親和力(例如,ELISA 法、免疫組織化學、體內成像、免疫毒素療法)的抗體的可能性。根據抗體的用途,用已知的方法對其期望活性進行測試(例如,ELISA 法、免疫組織化學、免疫治療等;要獲取產生和測試抗體的進一步指導,請參閱,例如,Greenfield, 2014 (Greenfield, 2014))。例如,該抗體可用 ELISA 法或免疫印跡法、免疫組織化學染色福馬林固定的癌組織或冰凍的組織切片進行檢測。在初次體外表徵後,用於治療或體內診斷用途的抗體根據已知的臨床測試方法進行檢測。
此處使用的術語「單克隆抗體」系指從大量同質抗體中獲得的一種抗體,即,由相同的抗體組成的抗體群,但可能少量提呈的自然突變除外。此處所述的單克隆抗體具體包括「嵌合」抗體,其中一部分重鏈和/或輕鏈與從特定物種中獲得的抗體或屬於特定抗體類型和分類型抗體的相應序列相同(同質),同時,剩餘鏈與從其他物種中獲得的抗體或屬於特定抗體類型和子類型抗體的相應序列以及這些抗體的片段相同(同質),只要他們表現出預期的拮抗活性(美國 4816567 號專利,其在此以其整體併入)。
本發明的單克隆抗體可能使用雜交瘤方法制得。在雜交瘤方法中,老鼠或其他適當的宿主動物,通常用免疫製劑以引發產生或能產生將特異性結合至免疫製劑的抗體。或者,淋巴細胞可在體外進行免疫。
單克隆抗體也可由 DNA 重組方法制得,如:美國 4816567 號專利所述。編碼本發明單克隆抗體的 DNA 可很容易地使用傳統程序進行分離和測序(例如:透過使用能與編碼鼠抗體重鏈和輕鏈的基因特異性結合的寡核苷酸探針)。
體外方法也適用於製備單價抗體。抗體消化以產生抗體的片段,尤其是 Fab 片段,可以透過使用本領域已知的常規技術完成。例如,可以透過使用木瓜蛋白酶完成消化。木瓜蛋白酶消化的實施例在 WO 94/29348和美國 4342566 號專利中有描述。抗體的木瓜蛋白酶消化通常產生兩種相同的抗原結合性片段,稱為 Fab 片段(每個片段都有一個抗原結合點)和殘餘 Fc 片段。胃蛋白酶處理產生一個 F(ab')2 片段和一個 pFc' 片段。
抗體片段,不論其是否附著於其他序列,均可包括特定區域或特定氨基酸殘基的插入、刪除、替換、或其他選擇性修飾,但前提是,片段的活性與非修飾的抗體或抗體片段相比沒有顯著的改變或損害。這些修飾可提供一些額外的屬性,如:刪除/添加可與二硫鍵結合的氨基酸,以增加其生物壽命、改變其分泌特性等。在任何情況下,抗體片段必須擁有生物活性的特性,如:結合活性、調節結合域的結合力等。抗體的功能性或活性區域可透過蛋白特定區域的基因突變、隨後表達和測試所表達的多肽進行確定。這些方法為本行業技術人員所熟知,可包括編碼抗體片段的核酸的特定位點基因突變。
本發明的抗體可進一步包括人源化抗體或人抗體。非人(如:鼠)抗體的人源化形式為嵌合抗體免疫球蛋白、免疫球蛋白鏈或其片段(如:Fv、Fab、Fab' 或抗體的其他抗原結合序列),其中包含從非人免疫球蛋白中獲得的最小序列。人源化抗體包括人免疫球蛋白(受體抗體),其中來自受體互補決定區 (CDR) 的殘基被來自非人物種(供體抗體)(如具有與其特異性、親和力和能力的小鼠、大鼠或兔子)CDR 的殘基取代。在某些情況下,人類免疫球蛋白的 Fv 框架 (FR) 殘基被相應的非人殘基取代。人源化抗體可能還包括既非受體抗體、也非輸入 CDR 或框架序列中發現的殘基。一般來說,人源化抗體將包括幾乎所有的至少一個、通常為二個可變域,其中,全部或幾乎全部的 CDR 區域均對應於非人免疫球蛋白的區域並且全部或幾乎全部的 FR區域均為人免疫球蛋白相同序列的區域。理想情況是,人源化抗體還將包括至少免疫球蛋白恒定區 (Fc) 的一部分,通常是人免疫球蛋白的恒定區的一部分。
人源化非人抗體的方法為本行業所熟知。一般來說,人源化抗體具有一個或多個從非人源頭引入的氨基酸殘基。這些非人氨基酸殘基往往被稱為「輸入」殘基,通常從「輸入」可變域中獲得。人源化基本上可以透過將齧齒動物 CDR 或 CDR 序列取代為相應的人抗體序列而完成。因此,這種「人源化」抗體為嵌合抗體(美國 4816567 號專利),其中大大少於完整的人可變域被來自於非人物種的相應序列取代。在實踐中,人源化抗體通常為人抗體,其中有些 CDR 殘基以及可能的一些 FR 殘基被來自齧齒動物抗體中的類似位點的殘基取代。
可使用免疫後在內源性免疫球蛋白產生缺失時能產生完整人抗體的轉基因動物(如:小鼠)。例如,它被描述為,嵌合和種系突變小鼠中的抗體重鏈連接區域基因的純合性缺失導致內源性抗體生成的完全抑制。在此種系變種小鼠中人種系免疫球蛋白基因陣列的轉移在抗原挑戰後將導致人抗體的生成。人抗體也可在噬菌體展示庫中產生。
本發明的抗體優選為透過藥用載體的形式給予受試者。通常,在製劑中使用適量的藥用鹽,以使製劑等滲。藥用載體的例子包括生理鹽水、林格氏液和葡萄糖溶液。溶液的 pH 值優選為約 5 至 8,更優選為約 7 至 7.5。此外,載體還包括緩釋製劑,如:含有抗體的固體疏水性聚合物半透性基質,其中基質為有形物品形式,如:薄膜、脂質體或微粒。本行業的技術人員熟知,某些載體可能為更優選,取決於例如,抗體的給藥途徑和濃度。
該抗體可透過注射(如:靜脈內、腹腔內、皮下、肌肉內)或透過輸注等其他方法給予受試者、患者或細胞,確保其以有效的形式傳輸到血液中。這些抗體也可以透過瘤內或瘤周途徑給予,從而發揮局部和全身的治療作用。局部或靜脈注射為優選。
抗體給藥的有效劑量和時間表可根據經驗確定,並且作出此類決定屬本行業的技術範圍內。本行業的技術人員會明白,必須給予的抗體劑量根據以下因素會有所不同,例如:接受抗體的受試者、給藥途徑、使用的抗體以及其他正在使用的藥物的特定類型。單獨使用的抗體的通常日劑量可能為約 1 µg/kg 至最多 100 mg/kg 體重或更多,這取決於上述因素。給予抗體,優選為治療頭頸鱗狀細胞癌後,治療抗體的療效可透過技術人員熟知的不同方法評估。例如:接受治療的受試者癌症的大小、數量和/或分佈可使用標準腫瘤成像技術進行監測。因治療而給予的抗體與不給予抗體時的病程相比,可阻止腫瘤生長、導致腫瘤縮小、和/或阻止新腫瘤的發展,這樣的抗體是一種有效治療癌症的抗體。
本發明的另一方面提出了製備識別特異性肽-MHC複合物的可溶性 T 細胞受體 (sTCR) 的一種方法。這種可溶性 T 細胞受體可從特異性 T 細胞克隆中產生,並且它們的親和力可以透過互補決定區靶向誘變而增加。為了 T 細胞受體選擇之目的,可以使用噬菌體展示(美國2010/0113300, (Liddy et al., 2012))。為了在噬菌體展示期間以及實際使用為藥物時穩定 T 細胞受體之目的,可透過非天然二硫鍵、其他共價鍵(單鏈 T 細胞受體)或透過二聚化結構域連接 α 和 β 鏈 (Boulter et al., 2003; Card et al., 2004; Willcox et al., 1999)。T 細胞受體可以連接到毒素、藥物、細胞因子(參見US 2013/0115191)、域招募效應細胞,如抗 CD3 域等,以便對靶細胞執行特定的功能。此外,它可能表達於用於過繼轉移的 T 細胞。進一步的資訊可在 WO 2004/033685A1 和 WO 2004/074322A1 中找到。 sTCR 的組合在 WO 2012/056407A1 中進行了描述。WO 2013/057586A1 中公開了製備的進一步的方法。
此外,可用本發明的肽和/或 TCR 或抗體或其他結合分子在活檢樣本的基礎上驗證病理師對癌症的診斷。
該抗體或 TCR 也可用於體內診斷實驗。一般來說,抗體用放射性核素標記(如:111 In、99 Tc、14 C、131 I、3 H、32 P 或35 S),從而可免疫閃爍掃描法使腫瘤局限化。在一實施方案中,其中的抗體或片段與兩個或兩個以上選自包括上述蛋白的組的蛋白質靶標的細胞外域結合,並且親和力值 (Kd) 低於 1 x 10µM。
診斷用抗體可透過各種影像學方法使用適合檢測的探針進行標記。探針檢測方法包括但不限於,螢光、光、共聚焦和電鏡方法;磁共振成像和光譜學技術;透視、電腦斷層掃描和正電子發射斷層掃描。合適的探針包括但不限於,螢光素、羅丹明、曙紅及其它螢光團、放射性同位素、黃金、釓和其他稀土、順磁鐵、氟-18 和其他正電子發射放射性核素。此外,探針可能是雙功能或多功能的,並且用一種以上的上述方法可進行檢測。這些抗體可用所述的探針直接或間接進行標記。抗體探針的連接,包括探針的共價連接、將探針融合入抗體、以及螯合化合物的共價連接從而結合探針、以及其他本行業熟知的方法。對於免疫組織化學方法,疾病組織樣本可能是新鮮或冷凍或可能包埋於石蠟中以及用福馬林等防腐劑固定。固定或包埋的切片包括與標記一抗和二抗接觸的樣本,其中該抗體用於檢測原位 蛋白的表達。
本發明的另一方面包括一種體外製備啟動的 T 細胞的方法,該方法包括將 T 細胞與載有抗原的人 MHC 分子進行體外連接,這些分子在合適的抗原提呈細胞表面表達足夠的一段時間從而以抗原特異性方式啟動 T 細胞,其中所述抗原為根據本發明所述的一種肽。優選情況是足夠量的抗原與抗原提呈細胞一同使用。
優選情況是,哺乳動物細胞的TAP 肽轉運載體缺乏或水準下降或功能降低。缺乏 TAP 肽轉運載體的適合細胞包括 T2、RMA-S 和果蠅細胞。TAP 是與抗原加工相關的轉運載體。
人體肽載入的缺陷細胞株 T2 從屬美國菌種保藏中心(ATCC, 12301 Parklawn Drive, Rockville, Maryland 20852,美國)目錄號 CRL1992;果蠅細胞株 Schneider 2 號株從屬 ATCC 目錄 CRL 19863;小鼠 RMA-S 細胞株 Ljunggren 等人描述過 (Ljunggren and Karre, 1985)。
優選情況是,宿主細胞在轉染前基本上不表達 MHC I 類分子。刺激因子細胞還優選為表達對 T 細胞共刺激信號起到重要作用的分子,如,B7.1、B7.2、ICAM-1 和 LFA 3 中的任一種分子。大量 MHC I 類分子和共刺激分子的核酸序列可從 GenBank 和 EMBL 資料庫中公開獲得。
當 MHC I 類表位用作一種抗原時,T 細胞為 CD8 陽性 T 細胞。
如果抗原提呈細胞受到轉染而表達這種表位,則優選的細胞包括一個表達載體,該載體有能力表達含 SEQ ID NO:1 至 SEQ ID NO:91 的肽或變體氨基酸序列。
可使用其他一些方法來體外生成 T 細胞。例如,自體腫瘤浸潤性淋巴細胞可用于生成 CTL。Plebanski 等人在 (Plebanski et al., 1995) 使用自體外周血淋巴細胞 (PLB) 制得 T 細胞。另外,也可能用肽或多肽脈衝處理樹突狀細胞或透過與重組病毒感染而製成自體 T 細胞。此外,B 細胞可用於製備自體 T 細胞。此外,用肽或多肽脈衝處理或用重組病毒感染的巨噬細胞可用於配製自體 T 細胞。S. Walter 等人在 (Walter et al., 2003) 中描述了透過使用人工抗原提呈細胞 (aAPC) 體外啟動 T 細胞,這也是生成作用於所選肽的T 細胞的一種合適方法。在本發明中,根據生物素:鏈黴素生物化學方法透過將預製的MHC:肽複合物耦合到聚苯乙烯顆粒(微球)而生成 aAPC。該系統實現了對 aAPC 上的 MHC 密度進行精確調節,這使得可以在血液樣本中選擇地引發高或低親合力的高效抗原特異性 T 細胞反應。除了 MHC:肽複合物外,aAPC 還應攜運含共刺激活性的其他蛋白,如耦合至表面的抗-CD28 抗體。此外,此類基於 aAPC 的系統往往需要加入適當的可溶性因子,例如,諸如白細胞介素 12 的細胞因子。
也可用同種異體細胞制得 T 細胞,在 WO 97/26328 中詳細描述了一種方法,以參考文獻方式併入本文。例如,除了果蠅細胞和 T2 細胞,也可用其他細胞來提呈肽,如 CHO 細胞、杆狀病毒感染的昆蟲細胞、細菌、酵母、牛痘感染的靶細胞。此外,也可使用植物病毒(例如,參閱 Porta 等人在 (Porta et al., 1994) 中描述了將豇豆花葉病毒開發為一種提呈外來肽的高產系統。
被啟動的 T 細胞直接針對本發明中的肽,有助於治療。因此,本發明的另一方面提出了用本發明前述方法制得的啟動 T 細胞。
按上述方法製成的啟動 T 細胞將會有選擇性地識別異常表達含 SEQ ID NO:1 至 SEQ ID NO 91 氨基酸序列的多肽。
優選情況是,T 細胞透過與其含 HLA/肽複合物的 TCR 相互作用(如,結合)而識別該細胞。T 細胞是殺傷患者靶細胞方法中有用的細胞,其靶細胞異常表達含本發明中氨基酸序列的多肽。此類患者給予有效量的啟動 T 細胞。給予患者的 T 細胞可能源自該患者,並按上述方法啟動(即,它們為自體 T 細胞)。或者,T 細胞不是源自該患者,而是來自另一個人。當然,優選情況是該供體為健康人。發明人使用「健康個人」系指一個人一般狀況良好,優選為免疫系統合格,更優選為無任何可很容易測試或檢測到的疾病。
根據本發明,CD8-陽性 T 細胞的體內靶細胞可為腫瘤細胞(有時表達 MHC-II 類抗原)和/或腫瘤周圍的基質細胞(腫瘤細胞)(有時也表達 MHC-II 類抗原; (Dengjel et al., 2006))。
本發明所述的 T 細胞可用作治療性組合物中的活性成分。因此,本發明也提出了一種殺傷患者靶細胞的方法,其中患者的靶細胞異常表達含本發明中氨基酸序列的多肽,該方法包括給予患者上述有效量的 T 細胞。
發明人所用的「異常表達」的意思還包括,與正常組織表達水準相比,多肽過量表達,或該基因在從腫瘤獲得的組織中未表達而在腫瘤中表達。「過量表達」系指多肽水準至少為正常組織中的 1.2 倍;優選為至少為正常組織中的 2 倍,更優選為至少 5 或 10 倍。
T 細胞可用本領域已知的方法制得(如,上述方法)。
T 細胞繼轉移方案為本領域所熟知的方案。綜述可發現於:Gattioni et al. 和 Morgan et al. (Gattinoni et al., 2006; Morgan et al., 2006)。
本發明的另一個方面包括使用與 MHC 複合的肽,以生成 T 細胞受體,其核酸被克隆並被引入至宿主細胞,優選為 T 細胞。然後,該透過基因工程改變的 T 細胞可轉給患者用於癌症治療。
本發明的任一分子(即肽、核酸、抗體、表達載體、細胞,啟動 T 細胞、T 細胞受體或編碼核酸)都有益於治療疾病,其特點在於細胞逃避免疫反應的打擊。因此,本發明的任一分子都可用作藥劑或用於製造藥劑。這種分子可單獨使用也可與本發明中的其他分子或已知分子聯合使用。
本發明還涉及一種套件,其包括: (a) 一個容器,包含上述溶液或凍乾粉形式的藥物組合物; (b) 可選的第二個容器,其含有凍乾粉劑型的稀釋劑或重組溶液;和 (c) 可選的(i)溶液使用或(ii)重組和/或凍乾製劑使用的說明。
該套件還步包括一個或多個 (iii) 緩衝劑,(iv) 稀釋劑,(v) 過濾液,(vi) 針,或 (v) 注射器。容器最好是瓶子、小瓶、注射器或試管,可以為多用途容器。藥物組合物最好是凍乾的。
本發明中的套件優選包含一種置於合適容器中的凍乾製劑以及重組和/或使用說明。適當的容器包括,例如瓶子、西林瓶 (如雙室瓶)、注射器 (如雙室注射器) 和試管。該容器可能由多種材料製成,如玻璃或塑膠。試劑盒和/或容器最好有容器或關於容器的說明書,指明重組和/或使用的方向。例如,標籤可能表明凍乾劑型將重組為上述肽濃度。該標籤可進一步表明製劑用於皮下注射。
存放製劑的容器可使用多用途西林瓶,使得可重複給予(例如,2-6 次)重組劑型。該套件可進一步包括裝有合適稀釋劑(如碳酸氫鈉溶液)的第二個容器。
稀釋液和凍乾製劑混合後,重組製劑中的肽終濃度優選為至少 0.15 mg/mL/肽 (=75µg),不超過 3 mg/mL/肽 (=1500µg)。該套件還可包括商業和用戶角度來說可取的其他材料,包括其他緩衝劑、稀釋劑,過濾液、針頭、注射器和帶有使用說明書的包裝插頁。
本發明中的套件可能有一個單獨的容器,其中包含本發明所述的藥物組合物製劑,該製劑可有其他成分(例如,其他化合物或及其藥物組合物),也可無其他成分,或者每種成分都有其不同容器。
優選情況是,本發明的套件包括與本發明的一種製劑,包裝後與第二種化合物(如佐劑(例如 GM-CSF)、化療藥物、天然產品、激素或拮抗劑、抗血管生成劑或抑制劑、凋亡誘導劑或螯合劑)或其藥物組合物聯合使用。該套件的成分可進行預絡合或每種成分在給予患者之前可放置於單獨的不同容器。該套件的成分可以是一種或多種溶液,優選為水溶液,更優選為無菌水溶液。該套件的成分也可為固體形式,加入合適的溶劑後轉換為液體,最好放置於另一個不同的容器中。
治療套件的容器可能為西林瓶、試管、燒瓶、瓶子、注射器、或任何其他盛裝固體或液體的工具。通常,當成分不只一種時,套件將包含第二個西林瓶或其他容器,使之可以單獨定量。該套件還可能包含另一個裝載藥用液體的容器。優選情況是,治療套件將包含一個設備(如,一個或多個針頭、注射器、滴眼器、吸液管等),使得可注射本發明的藥物(本套件的組合物)。
本發明的藥物配方適合以任何可接受的途徑進行肽給藥,如口服(腸道)、鼻內、眼內、皮下、皮內、肌內,靜脈或經皮給藥。優選為皮下給藥,最優選為皮內給藥,也可透過輸液泵給藥。
由於本發明的肽從頭頸鱗狀細胞癌中分離而得,因此,本發明的藥劑優選用於治療頭頸鱗狀細胞癌。
本發明進一步涉及為個體患者製備個體化藥物的一種方法,其中包括:製造含選自預篩選 TUMAP 存儲庫至少一種肽的藥物組合物,其中藥物組合物中所用的至少一種肽選擇為適合於個體患者。在一項實施方案中,藥物組合物為一種疫苗。該方法也可以改動以產生下游應用的 T 細胞克隆物,如:TCR 隔離物或可溶性抗體和其他治療選擇。
「個體化藥物」系指專門針對個體患者的治療,將僅用於該等個體患者,包括個體化活性癌症疫苗以及使用自體組織的過繼細胞療法。
如本文所述,「存儲庫」應指已經接受免疫原性預篩查和/或在特定腫瘤類型中過量提呈的一組或一系列肽。「存儲庫」一詞並不暗示,疫苗中包括的特定肽已預先製造並儲存於物理設備中,雖然預期有這種可能性。明確預期所述肽可以用於新製造每種個體化疫苗,也可能被預先製造和儲存。存儲庫(例如,資料庫形式)由腫瘤相關肽組成,其在各種 HLA-A HLA-B 和 HLA-C 等位元基因頭頸鱗狀細胞癌患者的腫瘤組織中高度過度表達。其可能含有包括 MHC I 類和 MHC II 類肽或拉長的 MHC I 類肽。除了從幾種頭頸鱗狀細胞癌組織中採集的腫瘤相關肽外,存儲庫還可能包含 HLA-A*02 和 HLA-A*24 標記肽。這些肽可對 TUMAP 誘導的 T 細胞免疫進行量化比較,從而可得出疫苗抗腫瘤反應能力的重要結論。其次,在沒有觀察到來自患者「自身」抗原 TUMAP 的任何疫苗誘導的 T 細胞反應時,它們可作為來自「非自身」抗原的重要陽性對照肽。第三,它還可對患者的免疫功能狀態得出結論。
存儲庫的 TUMAP 透過使用一種功能基因組學方法進行鑒定,該方法結合了基因表達分析、質譜法和 T 細胞免疫學 (XPresident ®)。該方法確保了只選擇真實存在于高百分比腫瘤但在正常組織中不表達或僅很少量表達的 TUMAP 用於進一步分析。對於初始肽的選擇,患者頭頸鱗狀細胞癌樣本和健康供體的血液以循序漸進的方法進行分析: 1. 惡性材料的 HLA 配體用質譜法確定 2. 使用全基因組信使核糖核酸 (mRNA) 表達分析法用於確定惡性腫瘤組織(頭頸鱗狀細胞癌)與一系列正常器官和組織相比過度表達的基因。 3. 確定的 HLA 配體與基因表達資料進行比較。腫瘤組織上過度提呈或選擇性提呈的肽,優選為第 2 步中檢測到的選擇性表達或過量表達基因所編碼的考慮為多肽疫苗的合適候選 TUMAP。 4. 文獻檢索以確定更多證據以支持確認為 TUMP 的肽的相關性 5. 過度表達在 mRNA 水準的相關性由腫瘤組織第 3 步選定的 TUMAP 重新檢測而確定,並且在健康組織上缺乏(或不經常)檢測。 6. 為了評估透過選定的肽誘導體內 T 細胞反應是否可行,使用健康供體以及頭頸鱗狀細胞癌患者的人 T 細胞進行體外免疫原性測定。
一方面,在將所述肽加入存儲庫之前,對其進行篩查以瞭解免疫原性。舉例來說(但不限於此),納入存儲庫的肽的免疫原性的確定方法包括體外 T 細胞啟動,具體為:用裝載肽/MHC 複合物和抗 CD28 抗體的人工抗原提呈細胞反復刺激來自健康供體的 CD8+ T 細胞。
這種方法優選用於罕見癌症以及有罕見表達譜的患者。與含目前開發為固定組分的多肽雞尾酒相反的是,存儲庫可將腫瘤中抗原的實際表達於疫苗進行更高程度的匹配。在多目標方法中,每名患者將使用幾種「現成」肽的選定單一肽或組合。理論上來說,基於從 50 抗原肽庫中選擇例如 5 種不同抗原肽的一種方法可提供大約 170萬 種可能的藥物產品 (DP) 組分。
在一方面,選擇所述肽用於疫苗,其基於個體患者的適合性,並使用本發明此處或後文所述的方法。
HLA 表型、轉錄和肽組學資料從患者的腫瘤材料和血液樣本中收集,以確定最合適每名患者且含有「存儲庫」和患者獨特(即突變)TUMAP 的肽。將選擇的那些肽選擇性地或過度表達于患者腫瘤中,並且可能的情況下,如果用患者個體 PBMC 進行檢測,則表現出很強的體外免疫原性。
優選的情況是,疫苗所包括的肽的一種確定方法包括:(a) 識別由來自個體患者腫瘤樣本提呈的腫瘤相關肽 (TUMAP);(b) 將 (a) 中鑒定的肽與上述肽的存儲庫(資料庫)進行比對;且 (c) 從與患者中確定的腫瘤相關肽相關的存儲庫(資料庫)中選擇至少一種肽。例如,腫瘤樣本提呈的 TUMAP 的鑒定方法有:(a1) 將來自腫瘤樣本的表達資料與所述腫瘤樣本組織類型相對應的正常組織樣本的表達資料相比對,以識別腫瘤組織中過量表達或異常表達的蛋白;以及 (a2) 將表達資料與結合到腫瘤樣本中 I 類 MHC 和/或 II 類分子的 MHC 配體序列想關聯,以確定來源於腫瘤過量表達或異常表達的蛋白質的 MHC 配體。優選情況是,MHC 配體的序列的確定方法是:洗脫來自腫瘤樣本分離的 MHC 分子結合肽,並測序洗脫配體。優選情況是,腫瘤樣本和正常組織從同一患者獲得。
除了使用存儲庫(資料庫)模型選擇肽以外,或作為一種替代方法,TUMAP 可能在新患者中進行鑒定,然後列入疫苗中。作為一種實施例,患者中的候選 TUMAP 可透過以下方法進行鑒定:(a1) 將來自腫瘤樣本的表達資料與所述腫瘤樣本組織類型相對應的正常組織樣本的表達資料相比對,以識別腫瘤組織中過量表達或異常表達的蛋白;以及 (a2) 將表達資料與結合到腫瘤樣本中 I 類 MHC 和/或 II 類分子的 MHC 配體序列想關聯,以確定來源於腫瘤過量表達或異常表達的蛋白質的 MHC 配體。作為另一實施例,蛋白的鑒定方法為可包含突變,其對於腫瘤樣本相對于個體患者的相應正常組織是獨特的,並且 TUMAP 可透過特異性靶向作用於變異來鑒定。例如,腫瘤以及相應正常組織的基因組可透過全基因組測序方法進行測序:為了發現基因蛋白質編碼區域的非同義突變,從腫瘤組織中萃取基因組 DNA 和 RNA,從外周血單核細胞 (PBMC) 中提取正常非突變基因組種系 DNA。運用的 NGS 方法只限于蛋白編碼區的重測序(外顯子組重測序)。為了這一目的,使用供應商提供的靶序列富集試劑盒來捕獲來自人樣本的外顯子 DNA,隨後使用 HiSeq2000(Illumina公司)進行測序。此外,對腫瘤的 mRNA 進行測序,以直接定量基因表達,並確認突變基因在患者腫瘤中表達。得到的數以百萬計的序列讀數透過軟體演算法處理。輸出列表中包含突變和基因表達。腫瘤特異性體突變透過與 PBMC 衍生的種系變化比較來確定,並進行優化。然後,為了存儲庫可能測試新確定的肽瞭解如上所述的免疫原性,並且選擇具有合適免疫原性的候選 TUMAP 用於疫苗。
在一個示範實施方案中,疫苗中所含肽透過以下方法確定:(a) 用上述方法識別由來自個體患者腫瘤樣本提呈的腫瘤相關肽 (TUMAP);(b) 將 (a) 中鑒定的肽與進行腫瘤(與相應的正常組織相比)免疫原性和過量提呈預篩查肽的存儲庫進行比對;(c) 從與患者中確定的腫瘤相關肽相關的存儲庫中選擇至少一種肽;及 (d) 可選地在 (a) 中選擇至少一種新確定的肽,確認其免疫原性。
在一個示範實施方案中,疫苗中所含肽透過以下方法確定:(a) 識別由來自個體患者腫瘤樣本提呈的腫瘤相關肽 (TUMAP);以及 (b) 在 (a) 中選擇至少一種新確定的肽,並確認其免疫原性。
一旦選定了用於個體化肽疫苗的肽時,則產生疫苗。該疫苗優選為一種液體製劑,包括溶解於 20-40% DMSO 之間,優選為約 30-35% DMSO,例如,約 33% DMSO 中的個體肽。
列入產品的每種肽都溶於 DMSO 中。單個肽溶液濃度的選擇取決於要列入產品中的肽的數量。單肽-DMSO 溶液均等混合,以實現一種溶液中包含所有的肽,且濃度為每肽~2.5 mg/ml。然後該混合溶液按照1:3比例用注射用水進行稀釋,以達到在 33% DMSO 中每肽 0.826 mg/ml 的濃度。稀釋的溶液透過 0.22 μm 無菌篩檢程序進行過濾。從而獲得最終本體溶液。
最終本體溶液填充到小瓶中,在使用前儲存於-20℃下。一個小瓶包含 700 μL 溶液,其中每種肽含有 0.578 mg。其中的 500 μL(每種肽約 400 μg)將用於皮內注射。
本發明的肽除了用於治療癌症,也可用於診斷。由於肽由頭頸鱗狀細胞癌細胞產生,並且已確定這些肽在正常組織中不存在或水準較低,因此這些肽可用於診斷癌症是否存在。
血液樣本中組織活檢物含權利要求的肽,可有助於病理師診斷癌症。用抗體、質譜或其他本領域內已知的方法檢測某些肽可使病理師判斷該組織樣本為惡性的還是炎症或一般病變,也可用作頭頸鱗狀細胞癌的生物標誌物。肽基團的提呈使得能對病變組織進行分類或進一步分成子類。
對病變標本中肽的檢測使得能對免疫系統治療方法的利益進行判斷,特別是如果 T- 淋巴細胞已知或預計與作用機制有關。MHC 表達的缺失是一種機制,充分說明了哪些受感染的惡性細胞逃避了免疫監視。因此,肽的提呈表明,分析過的細胞並沒有利用這種機制。
本發明的肽可用於分析淋巴細胞對肽的反應(如 T 細胞反應),或抗體對肽或 MHC 分子絡合的肽發生的反應。這些淋巴細胞反應可以作為預後指標,決定是否採取進一步的治療。這些反應也可以用作免疫療法中的替代反應指標,旨在以不同方式誘導淋巴細胞反應,如接種蛋白疫苗、核酸、自體材料、淋巴細胞過繼轉移。基因治療中,淋巴細胞對肽發生的反應可以在副作用的評估中考慮。淋巴細胞反應監測也可能成為移植療法隨訪檢查中的一種有價值的工具,如,用於檢測移植物抗宿主和宿主抗移植物疾病。
下列描述優選方案的實施例將對本發明進行說明,並參照隨附圖表(但是不僅限於此)。考慮到本發明的目的,文中引用的所有參考文獻透過引用的方式併入在本文中。 實施例 1細胞表面提呈的腫瘤相關肽的識別和定量 組織樣本
患者的腫瘤組織獲得自:Asterand(Detroit, MI, 美國 & Royston, Herts, 英國)、ProteoGenex Inc.(Culver City, CA,美國)。正常組織獲得自 Asterand(Detroit, MI, 美國& Royston, Herts, 英國)、Bio-Options Inc. (Brea, CA, 美國)、BioServe(Beltsville, MD, 美國)、Capital BioScience Inc.(Rockville, MD, 美國)、Geneticist Inc.(Glendale, CA, 美國)、京都府立醫科大學 (KPUM)(Kyoto, 日本)、ProteoGenex Inc.(Culver City, CA, 美國)、Tissue Solutions Ltd (Glasgow, 英國)、日內瓦大學醫院(Geneva, 瑞士)、海德堡大學醫院(Heidelberg, 德國)、慕尼克大學醫院(Munich, 德國)、蒂賓根大學醫院(Tübingen, 德國)。所有患者在手術或屍檢前都獲得了書面知情同意。切除後組織立即進行冷休克處理,在分離 TUMAP 前儲存於 -70°C 或以下。從組織樣本中分離 HLA
根據方案 (Falk et al., 1991; Seeger et al., 1999) 略加修改,使用HLA-A*02特異性抗體BB7.2、HLA-A、HLA-B、HLA¬C特異性抗體W6/32、CNBr活化的瓊脂糖凝膠、酸處理和超濾方法以免疫沉澱法從實體組織中獲得了冷凍組織樣本的 HLA 肽庫。質譜分析
獲得的 HLA 肽庫根據其疏水性用反相色譜 (nanoAcquity UPLC system, Waters) 分離,洗脫肽用裝有電噴霧源的 LTQ- velos 融合雜交質譜 (ThermoElectron) 進行了分析。肽庫被直接載入填充有 1.7 µm C18 反相材料 (Waters) 的分析用熔煉石英微毛細管柱(75 µm 內徑x 250 mm),應用流速為 400 nL 每分鐘。隨後,使用來自流速為 300 nL每分鐘、濃度為10% 至 33% 溶劑 B 中的兩步180分鐘二元梯度法對肽進行分離。梯度由溶劑 A(含0.1% 甲酸的水)和溶劑 B(含0.1 % 甲酸的乙腈)。金鍍膜玻璃毛細管 (PicoTip, New Objective) 用於引入到納升電噴霧源。使用前 5 (TOP5) 策略在資料依賴模式下操作 LTQ-Orbitrap 質譜儀。簡言之,首先以高精確品質完全掃描在 orbitrap 開始一個掃描週期 (R= 30 000),之後用先前選定離子的動態排除技術在 orbitrap 中對 5 種含量最為豐富的前體離子進行 MS/MS 掃描 (R = 7500)。串聯質譜以 SEQUEST 和另一種手動控制器進行解讀。生成的自然肽破碎模式與合成序列相同參考肽的破碎模式進行比較後,確保了被識別的肽序列。
無標記相對 LC-MS定量透過離子計數(即透過LC-MS功能提取和分析)來進行 (Mueller et al., 2007)。該方法假定肽的 LC-MS 信號區域與樣本中其豐度相關。提取的特徵透過充電狀態去卷積和保留時間校準進行進一步處理 (Mueller et al., 2008; Sturm et al., 2008)。最後,所有的 LC-MS 特徵與序列鑒定結果交叉引用,以將不同樣本和組織的定量資料與肽呈遞特徵結合。定量資料根據集中資料以兩層方式進行正態化處理,以說明技術和生物學複製變異。因此,每個被識別的肽均可與定量資料相關,從而可得出樣本和組織之間的相對定量。此外,對候選肽獲得的所有定量資料進行手動檢查,以確保資料的一致性,並驗證自動化分析的準確度。對於每種肽,計算了提呈圖,其顯示樣本平均提呈量以及複製變化。這些特徵使頭頸鱗狀細胞癌樣本與正常組織樣本的基線值並列。示範性過度提呈肽的提呈譜示於圖 1 中。示範性肽的提呈分數見表 8。 表 8:提呈分數。該表列出了與一系列正常組織相比在腫瘤上非常高度過量提呈 (+++)、與一系列正常組織相比在腫瘤上高度過量提呈 (++) 或與一系列正常組織相比在腫瘤上過量提呈 (+) 的 HLA-A*02 肽。被認為與腫瘤比較相關的一系列正常組織組包括:脂肪組織、腎上腺、膽管、血細胞、血管、骨髓、腦、食道、眼、膽囊、頭頸部、心臟、腎、大腸、肝、肺、淋巴結、神經、胰腺、甲狀旁腺、腹膜、垂體、胸膜、骨骼肌、皮膚、小腸、脾、胃、甲狀腺、氣管、輸尿管、膀胱。 實施例 2編碼本發明肽的基因的表達譜
與正常細胞相比在腫瘤細胞上一種肽過度提呈或特定提呈足夠其在免疫治療中有效使用,一些肽為腫瘤特異性的,儘管存在其源蛋白也存在于正常組織中。但是,mRNA 表達譜增加了免疫治療目標肽選擇中其他級別的安全性。特別是對於具有高安全性風險的治療選擇,諸如親和力成熟的 TCR,理想的目標肽將來源於對該腫瘤獨一無二且不出現于正常組織中的蛋白。RNA 來源與製備
手術切除組織標本按如上所述(參見實施例 1)在獲得每名患者的書面知情同意後提供。手術後立即速凍腫瘤組織標本,之後在液態氮中用杵臼勻漿。使用 TRI 試劑(Ambion 公司, Darmstadt,德國)之後用 RNeasy(QIAGEN公司,Hilden,德國)清理從這些樣本中製備總 RNA;這兩種方法都根據製造商的方案進行。
用於 RNASeq 實驗來自健康人體組織的總 RNA 獲得自: Asterand(Detroit,MI,美國&Royston,Herts,英國)、BioCat GmbH(Heidelberg,德國)、Bio-Options Inc.(Brea,CA,美國)、BioServe(Beltsville,MD,美國)、Capital BioScience Inc. Rockwell,MD,美國)、Geneticist Inc.(Glendale,CA,美國)、Istituto Nazionale Tumori“Pascale”(Naples,意大利)、ProteoGenex Inc.(Culver City,CA,美國)、海德堡大院(Heidelberg、德國)。用於 RNASeq 實驗來自腫瘤組織的總 RNA 獲得自:Asterand(Detroit,MI,美國&Royston,Herts,英國)、ProteoGenex Inc.(Culver City,CA,美國)。
所有RNA樣品的質量和數量在Agilent 2100生物分析儀(Agilent,Waldbronn,德國)上使用RNA 6000 Pico LabChip試劑盒 (Agilent) 評估。RNA 序列實驗
透過新一代測序技術 (RNAseq) 由 CeGaT(Tübingen,德國)對腫瘤和正常組織的 RNA 樣本進行基因表達分析。簡言之,根據供應商的方案(Illumina Inc., San Diego, CA,美國),其中包括 RNA 碎片化、cDNA 轉化和測序適配器的加入,利用 Illumina HiSeq v4 試劑盒準備測序文庫。從多個樣本獲得的文庫根據製造商的說明等摩爾混合並在 Illumina HiSeq 2500 定序器上測序,產生 50bp 的單端讀數。處理的讀數使用 STAR 軟體映射至人類基因組 (GRCh38)。根據 ENSEMBL 序列資料庫的說明 (Ensembl77),表達資料在轉錄水準設置為 RPKM(每百萬映射讀數每千堿基讀數,由 Cufflinks 軟體生成)並在外顯子水準上設置(總讀數,由 Bedtools 軟體生成)。外顯子讀數被歸為外顯子長度和校準尺寸,以獲得 RPKM 值。
本發明的代表性源基因在頭頸鱗狀細胞癌中高度過量表達的表達譜如圖 2所示。進一步代表性基因的表達分數見表 9。 表9:表達分數。該表列出了與一系列正常組織相比在腫瘤上非常高度過量表達 (+++)、與一系列正常組織相比在腫瘤上高度過量表達 (++) 或與一系列正常組織相比在腫瘤上過量表達 (+) 的基因的肽。 本基線得分根據以下相關正常組織的測量值計算:脂肪組織、腎上腺、動脈、膽管、血細胞、骨髓、腦、軟骨、結腸、食道、眼、膽囊、頭頸部和唾液腺、心臟、腎、肝、肺、淋巴結、胰腺、甲狀旁腺、外周神經、腹膜、垂體腺、胸膜、直腸、骨骼肌、皮膚、小腸、脾、胃、甲狀腺、氣管、輸尿管、膀胱、靜脈。如果獲得同一組織類型幾個樣本的表達資料,則使用各樣本的算術平均值進行計算。 實施例 3MHC-I 類提呈肽的體外免疫原性
為了獲得關於本發明 TUMAP 的免疫原性資訊,發明人使用體外 T 細胞擴增分析方法進行了研究,其中該分析方法基於使用裝載肽/MHC 複合物和抗CD28 抗體的人工抗原提呈細胞 (aAPC) 進行反復刺激。用這種方法,發明人可顯示,本發明的 HLA-A*0201 限制 TUMAP 具有免疫原性,這表明這些肽為對抗人 CD8+ 前體 T 細胞的 T 細胞表位(表 10)。CD8+ T 細胞體外啟動
為了用載有肽-MHC複合物 (pMHC) 和抗 CD28 抗體的人工抗原提呈細胞進行體外刺激,發明人首先從德國 University clinics Mannheim 中獲取健康供體 CD8 微珠(Miltenyi Biotech, Bergisch-Gladbach,德國)透過積極選擇白細胞清除術後新鮮HLA-A*02 產物而分離出 CD8+ T 細胞。
PBMC 和分離出的 CD8+ 淋巴細胞使用前在 T 細胞培養基 (TCM) 中培養,培養基包括 RPMI- Glutamax (Invitrogen公司,Karlsruhe,德國)並補充 10% 熱滅活人 AB 血清(PAN-Biotech 公司,Aidenbach,德國)、100U/ml 青黴素/ 100 µg/ml 鏈黴素(Cambrex公司,Cologne,德國),1mM 丙酮酸鈉(CC Pro公司,Oberdorla,德國)和20 µg/ml 慶大黴素(Cambrex公司)。在此步驟,2.5 ng/ml 的 IL-7 (PromoCell公司,Heidelberg,德國) 和 10 U / ml 的 IL- 2(Novartis Pharma 公司,Nürnberg,德國)也加入 TCM。
對於pMHC/抗-CD28 塗層珠的生成、T 細胞的刺激和讀出,使用每刺激條件四個不同 pMHC 分子以及每個讀出條件 8 個不同的 pMHC 分子在高度限定的體外系統中進行。
純化的共刺激小鼠 IgG2a 抗人 CD28 抗體 9.3 (Jung et al., 1987) 使用製造商 (Perbio公司,波恩,德國)推薦的 N-羥基琥珀醯亞胺生物素進行化學生物素化處理。所用珠為 5.6 µm的鏈黴抗生物素蛋白包裹的多聚苯乙烯顆粒(Bangs Labooratories,伊利諾州,美國)。
用於陽性和陰性對照刺激物的 pMHC 分別為A*0201/MLA-001(從 Melan-A/MART-1中修飾制得的肽ELAGIGILTV (SEQ ID NO: 157))和A*0201/DDX5-001(從 DDX5 中獲得的YLLPAIVHI (SEQ ID NO: 158))。
800.000 珠/200 µl 包裹於含有 4 x 12.5 ng 不同生物素-pMHC 的 96 孔板、進行洗滌,隨後加入體積為 200 µl 的 600 ng生物素抗-CD28。在 37℃ 下,在含 5 ng/ml IL-12 (PromoCell) 的 200 µl TCM 中共培養 1x106 CD8+T 細胞與 2x105 的清洗塗層珠 3 天,從而啟動刺激。之後,一半培養基與補充 80 U/ml IL-2 的新鮮 TCM 進行交換,並且培養在 37℃ 下持續 4 天。這種刺激性週期總共進行 3 次。對於使用每條件 8 種不同 pMHC 分子的 pMHC 多聚體讀出,二維組合編碼方法如前述使用 (Andersen et al., 2012),稍作修飾,涵蓋耦合至 5 種不同的螢光染料。最後,用 Live/dead near IR 染料(Invitrogen公司,Karlsruhe,德國)、CD8-FITC 抗體克隆 SK1(BD公司,Heidelberg,德國)和螢光 pMHC多聚體而執行多聚體分析。對於分析,使用了配有合適鐳射儀和篩檢程序的 BD LSRII SORP 細胞儀。肽特異性細胞以占總 CD8+ 細胞的百分比形式進行計算。多聚體分析結果使用 FlowJo 軟體 (Tree Star 公司,Oregon,美國) 進行評估。特定多聚體+ CD8+淋巴細胞的體外填裝用與陰性對照刺激組比較而進行檢測。如果健康供體中的至少一個可評價的體外刺激孔在體外刺激後發現含有特異性 CD8+ T 細胞株(即該孔包含至少 1% 特定多聚體+ CD8+ T 細胞,並且特定多聚體+的百分比至少為陰性對照刺激中位數的 10 倍),則檢測給定抗原的免疫原性。頭頸鱗狀細胞癌肽體外免疫原性
對於受到測試的 HLA-I 類肽,可透過肽特異性 T 細胞株的生成證明其體外免疫原性。TUMAP 特異性多聚體對本發明的 2 種肽染色後流式細胞儀檢測的典型結果如圖 3 所示,同時也含有相應的陰性對照資訊。TUMAP 特異性多聚體對本發明的 3 種肽染色後流式細胞儀檢測的其他典型結果如圖 4 所示,同時也含有相應的陰性對照資訊。本發明 17 種肽的結果匯總於表 10A。本發明 17 種肽的其他結果匯總於表 10B。 表 10A:本發明中 HLA I 類肽的體外免疫原性 申請人對本發明的肽所做的體外免疫原性實驗的示例性結果。<20 % = +; 20 % - 49 % = ++; 50 % - 69 %= +++; >= 70 % = ++++ 表 10B:本發明中 HLA I 類肽的體外免疫原性 申請人對本發明的 HLA-A*02 限制肽所做的體外免疫原性實驗的示例性結果。提示了體外免疫原性實驗的結果。陽性孔和供體(其他可評價)的百分比概括為 <20 % = +;20 % - 49 % = ++;50 % - 69 %= +++;>= 70 %= ++++ 實施例 4肽的合成
所有的肽透過使用 Fmoc 策略以標準、廣為接受的固相肽合成法合成。每個肽的身份和純度已使用質譜和 RP-HPLC 分析法確定。用凍乾法(三氟乙酸鹽)獲得白色至類白色的肽,純度為 >50%。所有的 TUMAP 優選作為三氟乙酸鹽或乙酸鹽進行給藥,其他藥用鹽形式也可以。 實施例 5MHC 結合測定
本發明基於 T 細胞療法的候選肽進一步測試其 MHC 結合能力(親和性)。單個肽-MHC 複合體透過 UV-配體交換產生,其中,紫外線敏感肽經紫外線照射後裂解,與分析的相關肽交換。只有能夠有效地結合並穩定肽接受 MHC 分子的候選肽才能阻止 MHC 複合物的解離。為了確定交換反應的產率,將基於穩定 MHC 複合物輕鏈 (β2m) 的檢測結果進行 ELISA 測定。檢測總體上按照 Rodenko 等人在 (Rodenko et al., 2006) 中描述的方法進行。
96 孔 MAXISorp 板 (NUNC) 在室溫下在 PBS 中以 2ug/ml 鏈黴包被過夜,四次洗滌並在37℃ 下在含封閉緩衝液的 2% BSA 中封閉 1 小時。折疊的 HLA-A*02:01/MLA-001 單體作為標準品,涵蓋 15-500ng/ml 的範圍。紫外線交換反應的肽-MHC 單體在封閉緩衝液中稀釋100倍。樣本在 37℃ 下孵育 1 小時,洗滌四次,在 37℃ 下以 2ug/ml HRP 綴合抗-β2m 溫育 1 小時,再次洗滌,並以 NH2 SO4 封堵的 TMB 溶液進行檢測。在 450nm 處測量吸收。在生成和產生抗體或其片段時和/或 T 細胞受體或其片段時,通常優選顯示為高交換產率(優選為高於50%,最優選為高於75%)的候選肽,這是因為它們對MHC分子表現出足夠的親合力,並能防止 MHC 複合體的解離。 表 11:MHC-I 類結合分數。HLA-I 類限制肽與 HLA-A*02:01 的結合根據肽交換產量分類: >10% = +; >20% = ++; >50 = +++; > 75% = ++++
參考文獻列表 Abdel-Ghany, M. et al., J Biol Chem 276 (2001): 25438-25446 Abdelmagid, S. A. et al., J Cell Biochem. 112 (2011): 1084-1092 Adhikary, G. et al., PLoS.One. 8 (2013): e84324 Aguiar, R. C. et al., J Biol Chem 280 (2005): 33756-33765 Ahmed, N. et al., Biol Chem 397 (2016): 1265-1276 Ai, R. et al., Gene Expr. 11 (2003): 35-45 Aisa, Y. et al., Int.J Hematol. 82 (2005): 266-269 Aizawa, S. et al., J Oral Sci. 56 (2014): 209-214 Akbari, M. R. et al., Hum.Genet. 129 (2011): 573-582 Akhtar, Ali M. et al., Proc.Natl.Acad.Sci.U.S.A 112 (2015): 7743-7748 Albergaria, A. et al., Int.J Dev.Biol 55 (2011): 811-822 Allison, J. P. et al., Science 270 (1995): 932-933 Alrawi, S. J. et al., Anticancer Res 26 (2006): 107-119 Ammendola, M. et al., Biomed.Res Int. 2014 (2014): 154702 Andersen, R. S. et al., Nat.Protoc. 7 (2012): 891-902 Andersson, L., Cold Spring Harb.Symp.Quant.Biol 74 (2009): 319-325 Andersson, L. et al., Transcription. 1 (2010): 144-148 Annibaldi, A. et al., PLoS.One. 6 (2011): e29024 Apostolopoulou, M. et al., PLoS.One. 7 (2012): e33289 Appay, V. et al., Eur.J Immunol. 36 (2006): 1805-1814 Arif, Q. et al., Arch.Pathol.Lab Med. 139 (2015): 978-980 Attallah, A. M. et al., Tumour.Biol 36 (2015): 7667-7674 Baak, J. P. et al., J Clin Pathol. 59 (2006): 1017-1028 Bachmann, S. B. et al., Mol Cancer 13 (2014): 125 Baglo, Y. et al., PLoS.One. 8 (2013): e65200 Bailey, C. M. et al., J Cell Physiol 209 (2006): 617-624 Balakrishnan, A. et al., Genes Chromosomes.Cancer 45 (2006): 883-892 Baluchamy, S. et al., In Vitro Cell Dev.Biol Anim 46 (2010): 718-725 Banchereau, J. et al., Cell 106 (2001): 271-274 Bao, L. et al., Cell Biol Toxicol. 32 (2016): 419-435 Bar-Shavit, R. et al., Methods Cell Biol 132 (2016): 341-358 Barach, Y. S. et al., Trends Mol.Med 17 (2011): 47-55 Barilli, A. et al., J Leukoc.Biol 90 (2011): 293-303 Barry, G. S. et al., Oncotarget. 7 (2016): 18953-18964 Bauml, J. M. et al., Ther.Adv.Med.Oncol 8 (2016): 168-175 Bausch, D. et al., Clin Cancer Res 17 (2011): 302-309 Beatty, G. et al., J Immunol 166 (2001): 2276-2282 Beggs, J. D., Nature 275 (1978): 104-109 Benjamini, Y. et al., Journal of the Royal Statistical Society.Series B (Methodological), Vol.57 (1995): 289-300 Benzon, B. et al., Prostate Cancer Prostatic.Dis. (2016) Binai, N. A. et al., Endocrine. 44 (2013): 496-503 Blanckaert, V. et al., Int.J Oncol 46 (2015): 2649-2655 Bongiovanni, L. et al., Vet.Dermatol. 25 (2014): 138-140 Bonitsis, N. et al., Exp.Oncol 28 (2006): 187-193 Bottino, C. et al., Front Immunol. 5 (2014): 56 Bouameur, J. E. et al., J Invest Dermatol. 134 (2014): 885-894 Boulter, J. M. et al., Protein Eng 16 (2003): 707-711 Boyero, L. et al., Int.J Med Sci. 10 (2013): 1166-1173 Braumuller, H. et al., Nature (2013) Brendle, A. et al., Carcinogenesis 29 (2008): 1394-1399 Broderick, P. et al., Cancer Res 69 (2009): 6633-6641 Brosens, R. P. et al., J Pathol. 221 (2010): 411-424 Brossart, P. et al., Blood 90 (1997): 1594-1599 Bruckdorfer, T. et al., Curr.Pharm.Biotechnol. 5 (2004): 29-43 Bruna, F. et al., Stem Cell Res 18 (2017): 5-13 Bryan, R. T., Philos.Trans.R Soc.Lond B Biol Sci. 370 (2015): 20140042 Bryan, R. T. et al., J Urol. 184 (2010): 423-431 Bu, W. et al., Oncogene 30 (2011): 4399-4409 Bustin, S. A. et al., DNA Cell Biol 20 (2001): 331-338 Buttner, S. et al., EMBO J 30 (2011): 2779-2792 Cada, Z. et al., Histol.Histopathol. 24 (2009): 41-48 Camicia, R. et al., J Cell Sci. 126 (2013): 1969-1980 Camicia, R. et al., Mol.Cancer 14 (2015): 207 Campione, E. et al., Drug Des Devel.Ther. 9 (2015): 5843-5850 Camps, J. et al., Cancer Res 73 (2013): 2003-2013 Canto, I. et al., Mini.Rev Med Chem 12 (2012): 804-811 Card, K. F. et al., Cancer Immunol Immunother. 53 (2004): 345-357 Cazier, J. B. et al., Nat Commun. 5 (2014): 3756 Chang, H. H. et al., Cancer 117 (2011): 353-360 Chanock, S. J. et al., Hum.Immunol. 65 (2004): 1211-1223 Chanthammachat, P. et al., Arch.Oral Biol 58 (2013): 1677-1685 Chen, J. et al., Int.J Clin Exp.Pathol. 8 (2015): 2026-2032 Chen, L. et al., Oncotarget. (2016) Chen, Q. et al., PLoS.One. 9 (2014): e88386 Chien, A. J. et al., Breast Cancer Res Treat. 155 (2016): 521-530 Choi, J. R. et al., Ann.Occup.Environ.Med 28 (2016): 13 Choi, Y. K. et al., Cancer Genomics Proteomics. 10 (2013): 265-275 Chowdhury, R. et al., Nature 510 (2014): 422-426 Chuang, J. J. et al., Toxicol.Appl.Pharmacol. 279 (2014): 322-330 Chung, T. K. et al., Int.J Cancer 137 (2015): 776-783 Cipolat, S. et al., Elife. 3 (2014): e01888 Clark, D. L. et al., J Anim Sci. 93 (2015): 2546-2558 Cohen, C. J. et al., J Mol Recognit. 16 (2003a): 324-332 Cohen, C. J. et al., J Immunol 170 (2003b): 4349-4361 Cohen, S. N. et al., Proc.Natl.Acad.Sci.U.S.A 69 (1972): 2110-2114 Coligan, J. E. et al., Current Protocols in Protein Science (1995) Colombetti, S. et al., J Immunol. 176 (2006): 2730-2738 Corsaro, A. et al., Oncotarget. 7 (2016): 38638-38657 D'Asti, E. et al., Semin.Thromb.Hemost. 40 (2014): 284-295 Das, M. et al., PLoS.One. 8 (2013): e69607 Das, M. et al., Tumour.Biol 36 (2015): 9987-9994 David, G. et al., Oncogene 25 (2006): 7354-7360 Davies, E. L. et al., Eur.J Cancer 35 (1999): 902-907 Delgado, A. P. et al., Cancer Genomics Proteomics. 11 (2014): 201-213 Deng, M. et al., J Biol Chem 284 (2009): 7875-7888 Deng, W. et al., Cell Physiol Biochem. 35 (2015): 1677-1688 Deng, Y. et al., Cancer Invest 31 (2013): 97-102 Dengjel, J. et al., Clin Cancer Res 12 (2006): 4163-4170 Denkberg, G. et al., J Immunol 171 (2003): 2197-2207 Depianto, D. et al., Nat Genet. 42 (2010): 910-914 Dewar, R. et al., Arch.Pathol.Lab Med 135 (2011): 422-429 do Prado, R. F. et al., Oral Surg.Oral Med Oral Pathol.Oral Radiol.Endod. 104 (2007): e40-e44 Dorn, J. et al., Oncol Lett. 9 (2015): 418-424 Dotlic, S. et al., Appl.Immunohistochem.Mol.Morphol. 22 (2014): 537-542 Dou, N. et al., Am.J Cancer Res 6 (2016): 2641-2650 Drucker, K. L. et al., BMC.Cancer 15 (2015): 565 Du, L. et al., Cancer Res 73 (2013): 2682-2694 Dubash, A. D. et al., J Cell Biol 202 (2013): 653-666 Duggan, M. A., Gan To Kagaku Ryoho 29 Suppl 1 (2002): 176-193 Economopoulou, P. et al., Ann.Transl.Med. 4 (2016): 173 Eichler, T. E. et al., Kidney Int. 90 (2016): 568-579 El-Rifai, W. et al., Cancer Res 62 (2002): 6823-6826 Elste, A. P. et al., J Mol.Histol. 41 (2010): 89-99 Epp, N. et al., J Cell Biol 177 (2007): 173-182 Er, T. K. et al., J Mol.Med.(Berl) (2016) Esteban-Jurado, C. et al., Eur.J Hum.Genet. 24 (2016): 1501-1505 Ettl, T. et al., Clin Exp.Med (2016) Evangelista, M. T. et al., J Cutan.Pathol. 42 (2015): 824-831 Falk, K. et al., Nature 351 (1991): 290-296 Fan, J. et al., Clin Cancer Res 17 (2011): 2908-2918 Fang, W. K. et al., Asian Pac.J Cancer Prev. 15 (2014): 871-876 Fang, W. Y. et al., Acta Biochim.Biophys.Sin.(Shanghai) 37 (2005): 541-546 Fauci, J. M. et al., Gynecol.Oncol 127 (2012): 420-425 Fevre-Montange, M. et al., Int.J Oncol 35 (2009): 1395-1407 Fijneman, R. J. et al., Clin Cancer Res 18 (2012): 2613-2624 Fong, L. et al., Proc.Natl.Acad.Sci.U.S.A 98 (2001): 8809-8814 French, J. et al., Histochem.J 34 (2002): 223-231 Frohwitter, G. et al., Oncol Lett. 12 (2016): 107-113 Funakoshi-Tago, M., Yakugaku Zasshi 132 (2012): 1267-1272 Furstenberger, G. et al., Prostaglandins Other Lipid Mediat. 82 (2007): 128-134 Gabrilovich, D. I. et al., Nat Med. 2 (1996): 1096-1103 Galoian, K. et al., Mol.Clin Oncol 3 (2015): 171-178 Gandhi, C. R. et al., Gastroenterology 148 (2015): 379-391 Gao, W. et al., BMC.Cancer 15 (2015): 367 Gao, Y. et al., Di Yi.Jun.Yi.Da.Xue.Xue.Bao. 23 (2003): 885-887 Gao, Y. B. et al., Nat Genet. 46 (2014): 1097-1102 Gattinoni, L. et al., Nat Rev.Immunol 6 (2006): 383-393 Gazda, H. T. et al., Hum.Mutat. 33 (2012): 1037-1044 Ge, W. et al., Nat Chem Biol 8 (2012): 960-962 Gelfand, R. et al., Int.J Oncol 50 (2017): 49-65 Gemmill, R. M. et al., Cancer Lett. 300 (2011): 66-78 Gieseler, F. et al., Cell Commun.Signal. 11 (2013): 86 Giguere, A. et al., Cancer Genet.Cytogenet. 202 (2010): 94-100 Gnjatic, S. et al., Proc Natl.Acad.Sci.U.S.A 100 (2003): 8862-8867 Godkin, A. et al., Int.Immunol 9 (1997): 905-911 Gomez-Morales, M. et al., Histopathology 63 (2013): 103-113 Gorski, J. J. et al., Breast Cancer Res Treat. 122 (2010): 721-731 Green, M. R. et al., Molecular Cloning, A Laboratory Manual 4th (2012) Greenfield, E. A., Antibodies: A Laboratory Manual 2nd (2014) Grin, A. et al., Hum.Pathol. 46 (2015): 541-548 Grosset, A. A. et al., BMC.Cancer 14 (2014): 801 Grosset, A. A. et al., PLoS.One. 11 (2016): e0166731 Gruber, A. D. et al., Cancer Res 59 (1999): 5488-5491 Gupta, S. K. et al., Innate.Immun. 19 (2013): 86-97 Haass, N. K. et al., Pigment Cell Res 18 (2005): 150-159 Hammam, O. et al., J Egypt.Soc.Parasitol. 44 (2014): 733-740 Harris, T. M. et al., Arch.Pathol.Lab Med. 139 (2015): 494-507 Hatina, J. et al., Neoplasma 59 (2012): 728-736 Hatta, M. et al., J Obstet.Gynaecol.Res 30 (2004): 53-58 Hayes, D. C. et al., Anticancer Res 26 (2006): 1567-1575 He, C. S. et al., Cell Physiol Biochem. 40 (2016): 1221-1229 He, X. et al., Int.J Biol Macromol. 72 (2015): 1081-1089 Heidenreich, B. et al., Curr.Opin.Genet.Dev. 24 (2014): 30-37 Heikinheimo, K. et al., J Dent.Res 86 (2007): 544-549 Heikinheimo, K. et al., J Dent.Res 94 (2015): 101-111 Herold-Mende, C. et al., Cell Tissue Res 306 (2001): 399-408 Higareda-Almaraz, J. C. et al., BMC.Cancer 16 (2016): 680 Hoadley, K. A. et al., PLoS.Med 13 (2016): e1002174 Honrado, E. et al., Crit Rev Oncol Hematol. 59 (2006): 27-39 Horiguchi, K. et al., Oncogene 31 (2012): 3190-3201 Hu, J. et al., Int.J Clin Exp.Pathol. 8 (2015): 9182-9188 Huang, Y. P. et al., Biomedicine.(Taipei) 6 (2016): 3 Huang, Y. Z. et al., Sci.Rep. 4 (2014): 4570 Huber, A. R. et al., BMC.Gastroenterol. 15 (2015): 80 Hwang, M. L. et al., J Immunol. 179 (2007): 5829-5838 Hwang, Y. S. et al., J Cancer Prev. 20 (2015): 121-128 Ida-Yonemochi, H. et al., Mod.Pathol. 25 (2012): 784-794 Iino, I. et al., Cancer Sci. 104 (2013): 624-630 Inamura, K. et al., Lung Cancer 103 (2017): 44-51 Ioana, M. et al., J Gastrointestin.Liver Dis. 19 (2010): 155-159 Iorns, E. et al., Breast Cancer Res Treat. 135 (2012): 79-91 Ishii, H. et al., J Biol Chem 289 (2014): 27386-27399 Ishimi, Y. et al., J Biochem. 157 (2015): 561-569 Janakiram, M. et al., Discov Med 14 (2012): 229-236 Janakiram, M. et al., Immunotherapy 8 (2016): 809-819 Jiang, L. et al., PLoS.One. 9 (2014): e94187 Jiang, M. M. et al., Zhongguo Shi Yan.Xue.Ye.Xue.Za Zhi. 21 (2013): 821-829 Jiang, R. et al., J Biol Chem 286 (2011): 9127-9135 Jiang, Y. et al., Oncol Lett. 10 (2015): 3826-3831 Johnson, R. H. et al., Oncotarget. (2015) Joosse, S. A. et al., Clin Cancer Res 18 (2012): 993-1003 Jung, G. et al., Proc Natl Acad Sci U S A 84 (1987): 4611-4615 Jurcic, V. et al., Histol.Histopathol. 30 (2015): 945-953 Juszczynski, P. et al., Mol.Cell Biol 26 (2006): 5348-5359 Kakuda, D. K. et al., Biochim.Biophys.Acta 1414 (1998): 75-84 Kan, T. et al., Oncology 70 (2006): 25-33 Kaplun, A. et al., Crit Rev Eukaryot.Gene Expr. 22 (2012): 249-258 Kasthuri, R. S. et al., J Clin Oncol 27 (2009): 4834-4838 Katada, K. et al., J Proteomics. 75 (2012): 1803-1815 Katoh, M., Int.J Oncol 41 (2012): 1913-1918 Kawakami, K. et al., Int.J Oncol (2015) Kaz, A. M. et al., Genes Chromosomes.Cancer 51 (2012): 384-393 Kedde, M. et al., Cell Cycle 7 (2008): 899-903 Kettunen, E. et al., Cancer Genet.Cytogenet. 149 (2004): 98-106 Kibbe, A. H., Handbook of Pharmaceutical Excipients rd (2000) Kim, H. J. et al., Anticancer Res 33 (2013): 1555-1561 Kim, K. et al., Int.J Colorectal Dis. 23 (2008a): 569-580 Kim, K. H. et al., Nucleic Acids Res 43 (2015): 7462-7479 Kim, S. W. et al., Blood 111 (2008b): 1644-1653 Kim, T. W. et al., Oncotarget. (2016) Kim, Y. H. et al., Ann.Surg.Oncol 18 (2011): 2338-2347 Kinyamu, H. K. et al., Mol.Carcinog 47 (2008): 845-885 Kishikawa, T. et al., Oncotarget. 6 (2015): 8339-8352 Kitchen, M. O. et al., Epigenetics. 11 (2016): 237-246 Klawitter, J. et al., Breast Cancer Res 12 (2010): R16 Knudsen, K. A. et al., J Cell Biochem. 95 (2005): 488-496 Koba, S. et al., Am.J Dermatopathol. 37 (2015): e31-e36 Kobos, R. et al., J Pathol. 229 (2013): 743-754 Koc, E. C. et al., Mitochondrion. 24 (2015): 113-121 Kocaturk, B. et al., Thromb.Res 129 Suppl 1 (2012): S69-S75 Kocaturk, B. et al., J Thromb.Haemost. 11 Suppl 1 (2013): 285-293 Kohn, K. W. et al., PLoS.One. 9 (2014): e99269 Kolin, D. L. et al., Biol Chem 395 (2014): 1087-1093 Koringa, P. G. et al., Vet.Comp Oncol (2013) Krepischi, A. C. et al., Breast Cancer Res 14 (2012): R24 Krieg, A. M., Nat Rev.Drug Discov. 5 (2006): 471-484 Kwok, H. F. et al., Am.J Cancer Res 5 (2015): 52-71 Kwon, J. et al., Int J Oncol 43 (2013): 1523-1530 Labrie, M. et al., PLoS.One. 10 (2015): e0131307 Labrie, M. et al., Oncotarget. 5 (2014): 7705-7721 Lee, D. J. et al., Cancer Biol Ther. 10 (2010): 689-693 Lee, D. M. et al., Environ.Toxicol.Pharmacol. 34 (2012): 858-868 Lee, J. Y. et al., Carcinogenesis 30 (2009): 1528-1531 Lee, K. Y. et al., J Med. 35 (2004): 141-149 Leiserson, M. D. et al., Genome Biol 16 (2015): 160 Leiserson, M. D. et al., Genome Biol 17 (2016): 168 Leung, F. et al., Cancer Epidemiol.Biomarkers Prev. 25 (2016): 1333-1340 Leung, J. et al., Immune.Netw. 14 (2014): 265-276 Lexander, H. et al., Anal.Quant.Cytol.Histol. 27 (2005): 263-272 Li, J. et al., Chin Med J (Engl.) 122 (2009): 486-495 Li, J. Z. et al., Chin Med.J (Engl.) 121 (2008): 1882-1890 Li, L. et al., Asian Pac.J Cancer Prev. 13 (2012a): 3265-3270 Li, T. et al., Exp.Dermatol. 24 (2015): 342-348 Li, W. Q. et al., Carcinogenesis 34 (2013): 1536-1542 Li, X. et al., Oncogene 23 (2004): 1474-1480 Li, X. et al., Biochem.Biophys.Res Commun. 419 (2012b): 148-153 Li, Y. et al., J Cell Physiol 212 (2007): 675-681 Lian, M. et al., PLoS.One. 8 (2013): e84854 Liddy, N. et al., Nat Med. 18 (2012): 980-987 Lim, L. C. et al., Pathol.Oncol Res 22 (2016): 169-177 Lima, L. G. et al., Biosci.Rep. 33 (2013) Lin, C. S. et al., Cancer Lett. 368 (2015): 36-45 Lin, H. S. et al., Arch.Otolaryngol.Head Neck Surg. 130 (2004): 311-316 Lion, M. et al., Cell Cycle 12 (2013): 1211-1224 Liu, C. L. et al., Eur.Rev Med Pharmacol.Sci. 20 (2016): 4466-4473 Liu, D. Q. et al., Sci.Rep. 5 (2015): 11955 Liu, J. et al., J Biochem. 148 (2010): 659-667 Liu, Y. et al., Oncol Rep. 18 (2007): 943-951 Ljunggren, H. G. et al., J Exp.Med. 162 (1985): 1745-1759 Llorente, A. et al., J Cell Sci. 117 (2004): 5343-5351 Lo, W. Y. et al., J Proteomics. 77 (2012): 154-166 Lonardo, F. et al., Curr.Pharm.Des 16 (2010): 1877-1881 Longenecker, B. M. et al., Ann N.Y.Acad.Sci. 690 (1993): 276-291 Lonsdale, J., Nat.Genet. 45 (2013): 580-585 Loos, M. et al., Clin Dev.Immunol. 2010 (2010): 683875 Low, K. C. et al., Trends Biochem.Sci. 38 (2013): 426-434 Lu, J. J. et al., Chin J Nat Med. 13 (2015a): 673-679 Lu, Y. et al., BMC.Mol.Biol 16 (2015b): 21 Lu, Y. et al., PLoS.One. 8 (2013): e73866 Lubben, B. et al., J Biol Chem 270 (1995): 11549-11554 Lucito, R. et al., Cancer Biol Ther. 6 (2007): 1592-1599 Lukas, T. J. et al., Proc.Natl.Acad.Sci.U.S.A 78 (1981): 2791-2795 Lundblad, R. L., Chemical Reagents for Protein Modification 3rd (2004) Luo, D. et al., Biochem.Biophys.Res Commun. (2016) Maass, N. et al., Acta Oncol 39 (2000): 931-934 Maerki, S. et al., J Cell Biol 187 (2009): 791-800 Man, Y. et al., Tohoku J Exp.Med 234 (2014): 29-40 Mange, A. et al., J Proteomics. 142 (2016): 114-121 Marech, I. et al., World J Gastroenterol. 20 (2014): 8910-8920 Marioni, G. et al., Acta Otolaryngol. 129 (2009): 476-480 Markljung, E. et al., PLoS.Biol 7 (2009): e1000256 Marshall, P. A. et al., J Steroid Biochem.Mol.Biol 132 (2012): 147-159 Martinez, O. et al., PLoS.One. 5 (2010): e10398 Masugi, Y. et al., Lab Invest 95 (2015): 308-319 Matin, S. F. et al., Urol.Oncol 32 (2014): 309-316 Matsumoto, K. et al., Biomed.Res 35 (2014): 201-206 Matsuzaka, K. et al., Bull.Tokyo Dent.Coll. 45 (2004): 229-233 McDoniels-Silvers, A. L. et al., Clin Cancer Res 8 (2002): 1127-1138 Mei, Z. Z. et al., J Biol Chem 291 (2016): 18176-18189 Melaiu, O. et al., Mutat.Res 771 (2015): 6-12 Meschenmoser, K. et al., In Vivo 27 (2013): 431-442 Meslin, F. et al., Cancer Res 67 (2007): 10910-10919 Messina, M. et al., Blood 123 (2014): 2378-2388 Meziere, C. et al., J Immunol 159 (1997): 3230-3237 Min, L. et al., Histopathology 67 (2015): 677-688 Misago, N. et al., J Dermatol. 43 (2016): 439-442 Mitchell, S. M. et al., BMC.Cancer 14 (2014): 54 Mlacki, M. et al., PLoS.One. 9 (2014): e89247 Morgan, P. R. et al., Eur.J Cancer B Oral Oncol 30B (1994): 160-166 Morgan, R. A. et al., Science 314 (2006): 126-129 Mori, M. et al., Transplantation 64 (1997): 1017-1027 Morris, L. G. et al., Nat Genet. 45 (2013): 253-261 Morris, M. R. et al., Oncogene 30 (2011): 1390-1401 Mortara, L. et al., Clin Cancer Res. 12 (2006): 3435-3443 Moskvina, L. V. et al., Arkh.Patol. 72 (2010): 58-61 Mountzios, G. et al., Ann.Oncol 25 (2014): 1889-1900 Mueller, L. N. et al., J Proteome.Res 7 (2008): 51-61 Mueller, L. N. et al., Proteomics. 7 (2007): 3470-3480 Mumberg, D. et al., Proc.Natl.Acad.Sci.U.S.A 96 (1999): 8633-8638 Muramatsu, T. et al., Oral Oncol 39 (2003): 199-203 Mussai, F. et al., Blood 125 (2015): 2386-2396 Myklebust, M. P. et al., Br.J Cancer 106 (2012): 756-762 Naeem, A. S. et al., Cell Death.Differ. 22 (2015): 2123-2132 Nagappan, A. et al., BMC.Biochem. 14 (2013): 24 Nagata, M. et al., PLoS.One. 9 (2014): e93164 Narayanan, B. A., Curr.Cancer Drug Targets. 6 (2006): 711-727 Narisawa, Y. et al., J Dermatol. 42 (2015): 445-452 National Cancer Institute, (5-6-2015), www.cancer.gov Natsuga, K. et al., J Invest Dermatol. (2015) Natsuga, K. et al., J Invest Dermatol. 136 (2016): 99-106 Neumann, M. et al., Blood 121 (2013): 4749-4752 North, J. P. et al., Am.J Surg.Pathol. 39 (2015): 1347-1356 Novak, B. et al., Naunyn Schmiedebergs Arch.Pharmacol. 384 (2011): 583-602 Nygren, M. K. et al., Front Biosci.(Elite.Ed) 3 (2011): 989-993 Oehler, V. G. et al., Blood 114 (2009): 3292-3298 Oh, H. R. et al., Cell Oncol (Dordr.) 37 (2014): 455-461 Oi, N. et al., Oncogene 34 (2015): 2660-2671 Oikonomopoulou, K. et al., Biol Chem 391 (2010): 299-310 Ormanns, S. et al., Br.J Cancer 113 (2015): 1460-1466 Otsubo, T. et al., Cancer Med 4 (2015): 415-425 Palacios, J. et al., Pathobiology 75 (2008): 85-94 Papagerakis, S. et al., Hum.Pathol. 34 (2003): 565-572 Paparella, M. L. et al., J Oral Pathol.Med 44 (2015): 801-809 Paredes, J. et al., Breast Cancer Res 9 (2007): 214 Paredes, J. et al., Biochim.Biophys.Acta 1826 (2012): 297-311 Park, J. Y. et al., Oncotarget. 6 (2015a): 5342-5353 Park, Y. H. et al., Int.J Cancer 136 (2015b): 1976-1984 Pereira, P. M. et al., Org.Biomol.Chem. 12 (2014): 1804-1811 Perrin, C. et al., Am.J Dermatopathol. 33 (2011): 131-139 Persson, F. et al., Cancer Lett. 260 (2008): 37-47 Pickering, C. R. et al., Clin Cancer Res 20 (2014): 6582-6592 Pierce, A. et al., Mol.Cell Proteomics. 7 (2008): 853-863 Pigullo, S. et al., Pediatr.Blood Cancer 52 (2009): 376-378 Pinheiro, J. et al., nlme: Linear and Nonlinear Mixed Effects Models (http://CRAN.R-project.org/packe=nlme) (2015) Piura, B. et al., Harefuah 144 (2005): 261-5, 303, 302 Plebanski, M. et al., Eur.J Immunol 25 (1995): 1783-1787 Poligone, B. et al., J Invest Dermatol. 135 (2015): 869-876 Polotskaia, A. et al., Proc.Natl.Acad.Sci.U.S.A 112 (2015): E1220-E1229 Pondugula, S. et al., Mol.Cell Biol 29 (2009): 4891-4905 Porta, C. et al., Virology 202 (1994): 949-955 Preisz, K. et al., Orv.Hetil. 148 (2007): 979-983 Probst, C. et al., Clin Chim.Acta 410 (2009): 13-18 Qiu, S. et al., Cancer Sci. (2016) Qu, T. et al., Mol.Med Rep. 14 (2016): 5041-5048 Rafnar, T. et al., Cancer Res 71 (2011): 1356-1361 Ramakrishna, S. et al., PLoS.One. 7 (2012): e37772 Ramakrishna, S. et al., J Biol Chem 286 (2011): 10505-10514 Ramani, D. et al., Clin Nutr. 33 (2014): 14-22 Ramani, V. C. et al., BMC.Cancer 8 (2008): 373 Ramena, G. et al., PLoS.One. 11 (2016): e0147489 Rammensee, H. et al., Immunogenetics 50 (1999): 213-219 Rashid, R. et al., Mol.Cell 21 (2006): 249-260 Rastelli, F. et al., Tumori 96 (2010): 875-888 Ratovitski, E. A., FEBS Lett. 587 (2013): 3581-3586 RefSeq, The NCBI handbook [Internet], Chapter 18, (2002), http://www.ncbi.nlm.nih.gov/books/NBK21091/ Remmelink, M. et al., Histopathology 58 (2011): 543-556 Resende, C. et al., Helicobacter. 16 Suppl 1 (2011): 38-44 Reyes, C. et al., Appl.Immunohistochem.Mol.Morphol. 21 (2013): 283-286 Ribeiro, A. S. et al., Front Oncol 4 (2014): 371 Riker, A. I. et al., BMC.Med Genomics 1 (2008): 13 Rini, B. I. et al., Cancer 107 (2006): 67-74 Rock, K. L. et al., Science 249 (1990): 918-921 Rohan, S. et al., Clin Cancer Res 12 (2006): 6937-6945 Rohrbeck, A. et al., PLoS.One. 4 (2009): e7315 Rooney, M. S. et al., Cell 160 (2015): 48-61 Rotmann, A. et al., Biochem.J 395 (2006): 117-123 Rotty, J. D. et al., J Cell Biol 197 (2012): 381-389 Ruf, W., Thromb.Res 130 Suppl 1 (2012): S84-S87 Ruf, W. et al., J Thromb.Haemost. 9 Suppl 1 (2011): 306-315 Rui, X. et al., Int.J Clin Exp.Pathol. 8 (2015): 5435-5442 Saaber, F. et al., Pathol.Res Pract. 211 (2015): 208-213 Sabeti, S. et al., Indian J Dermatol. 58 (2013): 331-336 Safadi, R. A. et al., Oral Surg.Oral Med.Oral Pathol.Oral Radiol. 121 (2016): 402-411 Sager, R. et al., Curr.Top.Microbiol.Immunol. 213 ( Pt 1) (1996): 51-64 Saiki, R. K. et al., Science 239 (1988): 487-491 Salas, S. et al., Int.J Cancer 125 (2009): 851-860 Saletta, F. et al., BBA.Clin 1 (2014): 59-77 Sanchez-Palencia, A. et al., Int.J Cancer 129 (2011): 355-364 Sasaki, Y. et al., Cancer Biol Ther. 13 (2012): 1512-1521 Sato, T. et al., Oncogene 33 (2014): 2215-2224 Sauer, H. et al., Free Radic.Biol Med 27 (1999): 1276-1283 Sawada, K. et al., J Oral Sci. 58 (2016): 325-331 Schmitt-Graeff, A. et al., Histopathology 51 (2007): 87-97 Schrader, C. H. et al., Mol.Cancer 14 (2015): 107 Schulten, R. et al., Naunyn Schmiedebergs Arch.Pharmacol. 385 (2012): 969-979 Schumann, H. et al., Br.J Dermatol. 167 (2012): 929-936 Scola, N. et al., Br.J Dermatol. 167 (2012): 591-597 Seal, S. et al., Cancer Res 63 (2003): 8596-8599 Sedda, S. et al., World J Gastroenterol. 20 (2014): 11977-11984 Seeger, F. H. et al., Immunogenetics 49 (1999): 571-576 Seishima, M. et al., Arch.Dermatol. 140 (2004): 1500-1503 Sellheyer, K., J Cutan.Pathol. 42 (2015): 90-101 Sharifi, N. et al., Prostate 67 (2007): 301-311 Shen, M. et al., Environ.Mol.Mutagen 50 (2009): 285-290 Shen, X. et al., Tumour.Biol 36 (2015): 7133-7142 Sheng, S., Front Biosci. 9 (2004): 2733-2745 Sherman, F. et al., Laboratory Course Manual for Methods in Yeast Genetics (1986) Shi, L. et al., BMC.Cancer 16 (2016): 815 Shim, J. H. et al., Cancer Prev.Res (Phila) 3 (2010): 670-679 Shimbo, T. et al., PLoS.One. 5 (2010): e10566 Shinmura, K. et al., Dis.Markers 2014 (2014): 619273 Shruthi, D. K. et al., J Oral Maxillofac.Pathol. 18 (2014): 365-371 Sidiropoulos, K. G. et al., Mol.Oncol 10 (2016): 993-1007 Silveira, A. C. et al., Cancer Lett. 276 (2009): 32-37 Singh-Jasuja, H. et al., Cancer Immunol.Immunother. 53 (2004): 187-195 Sinha, N. et al., Oral Oncol 49 (2013): 854-862 Sivanathan, L. et al., Prostate 74 (2014): 537-546 Sizemore, G. M. et al., J Biol Chem 289 (2014): 24102-24113 Skipworth, R. J. et al., Int.J Oncol 36 (2010): 973-982 Slaga, T. J. et al., Prog.Clin Biol Res 391 (1995): 1-20 Small, E. J. et al., J Clin Oncol. 24 (2006): 3089-3094 Smith, K. T. et al., Mol.Cell Proteomics. 11 (2012): 1815-1828 Sobolik-Delmaire, T. et al., Cell Commun.Adhes. 14 (2007): 99-109 Solus, J. F. et al., Int.J Surg.Pathol. 24 (2016): 29-36 Somasekharan, S. P. et al., J Cell Biol 208 (2015): 913-929 Song, B. et al., Exp.Ther.Med 12 (2016): 2455-2468 Soreide, K. et al., J Pathol. 209 (2006): 147-156 Southgate, J. et al., Histol.Histopathol. 14 (1999): 657-664 Sturm, M. et al., BMC.Bioinformatics. 9 (2008): 163 Sun, B. C. et al., Zhonghua Yi.Xue.Za Zhi. 86 (2006): 1808-1812 Sun, L. et al., Mol.Med Rep. 12 (2015a): 4266-4272 Sun, N. K. et al., Oncotarget. 6 (2015b): 27065-27082 Sun, S. et al., Gene 584 (2016): 90-96 Suzuki, A. et al., Cancer Sci. 99 (2008): 986-994 Swatler, J. et al., Postepy Hig.Med Dosw.(Online.) 70 (2016): 25-42 Swoboda, R. K. et al., Cancer Res 67 (2007): 3555-3559 Tai, G. et al., PLoS.One. 8 (2013): e81167 Taintor, A. R. et al., J Am.Acad.Dermatol. 56 (2007): S73-S76 Tamir, A. et al., J Ovarian.Res 7 (2014): 109 Tamm-Rosenstein, K. et al., PLoS.One. 8 (2013): e68907 Tang, B. et al., Oncotarget. 6 (2015a): 12723-12739 Tang, H. B. et al., Zhonghua Yi.Xue.Za Zhi. 88 (2008): 1553-1556 Tang, X. H. et al., Oncotarget. 6 (2015b): 24424-24435 Taniguchi, T. et al., Nat Med 9 (2003): 568-574 Taoka, Y. et al., Biomed.Res 36 (2015): 253-261 Tauber, S. et al., Mol.Cancer 9 (2010): 200 Teles, Alves, I et al., Oncogene 34 (2015): 568-577 Tennenbaum, T. et al., J Investig.Dermatol.Symp.Proc. 1 (1996): 157-161 Teo, C. R. et al., Cell Signal. 28 (2016): 1479-1488 Terada, T., Int.J Clin Exp.Pathol. 5 (2012): 596-600 Teufel, R. et al., Cell Mol Life Sci. 62 (2005): 1755-1762 Tian, S. Y. et al., Int.J Clin Exp.Pathol. 7 (2014): 3752-3762 Timar, J. et al., Clin Exp.Metastasis 27 (2010): 371-387 Tomlinson, R. L. et al., Mol.Biol Cell 19 (2008): 3793-3800 Tonoike, Y. et al., BMC.Cell Biol 12 (2011): 41 Tran, E. et al., Science 344 (2014): 641-645 Trojandt, S. et al., Hum.Immunol. 77 (2016): 1223-1231 Tsuji, A. B. et al., Biochem.Biophys.Res Commun. 333 (2005): 1370-1377 Tsutsui, M. et al., Int.J Oncol 47 (2015): 867-874 Ueda, S. et al., Cancer Res 64 (2004): 5672-5676 Vadie, N. et al., RNA.Biol 12 (2015): 893-899 Vakrakou, A. et al., Biol Chem 395 (2014): 1105-1117 Valletta, D. et al., Carcinogenesis 35 (2014): 1407-1415 Vanaja, D. K. et al., Cancer Res 63 (2003): 3877-3882 Vasca, V. et al., Oncol Lett. 8 (2014): 2501-2504 Vieira, A. F. et al., Mol.Cancer 14 (2015): 178 Vigneswaran, N. et al., Oral Maxillofac.Surg.Clin North Am. 26 (2014): 123-141 Vliet-Gregg, P. A. et al., Virology 478 (2015): 50-60 Volkmer, J. P. et al., Proc.Natl.Acad.Sci.U.S.A 109 (2012): 2078-2083 Walia, V. et al., Cancer Res 69 (2009): 6624-6632 Walia, V. et al., Oncogene 31 (2012): 2237-2246 Walter, S. et al., J Immunol 171 (2003): 4974-4978 Walter, S. et al., Nat Med. 18 (2012): 1254-1261 Wang, J. et al., Br.J Dermatol. 153 (2005): 558-564 Wang, L. et al., J Cutan.Pathol. 42 (2015a): 361-367 Wang, L. et al., Int.J Cancer 134 (2014a): 2764-2771 Wang, L. et al., Tumour.Biol 37 (2016a): 14939-14947 Wang, M. et al., Exp.Dermatol. 23 (2014b): 636-638 Wang, S. et al., Cytokine 86 (2016b): 110-118 Wang, X. et al., Oncotarget. 7 (2016c): 22911-22927 Wang, X. et al., Proc.Natl.Acad.Sci.U.S.A 110 (2013): 15997-16002 Wang, X. et al., Mol.Cell Biol 27 (2007): 3098-3108 Wang, X. et al., Eur.J Pharmacol. 768 (2015b): 116-122 Wang, X. et al., Sci.Rep. 6 (2016d): 19006 Wang, X. et al., Int.J Biol Markers 29 (2014c): e150-e159 Wang, Z. S. et al., Oncotarget. 7 (2016e): 44266-44276 Ward, A. M. et al., RNA.Biol 8 (2011): 1173-1186 Watanabe, T. et al., Cancer Cell Int. 10 (2010): 2 Wheler, J. J. et al., BMC.Cancer 15 (2015): 442 Willcox, B. E. et al., Protein Sci. 8 (1999): 2418-2423 Willers, I. M. et al., Biochim.Biophys.Acta 1807 (2011): 543-551 Williams, L. M. et al., Aquat.Toxicol. 180 (2016): 141-154 Willis, S. et al., Meta Gene 4 (2015): 129-141 Winslow, S. et al., Mol.Cancer 12 (2013): 156 Witte, D. et al., J Clin Med 5 (2016) Wojtalewicz, N. et al., PLoS.One. 9 (2014): e90461 Wojtukiewicz, M. Z. et al., Cancer Metastasis Rev 34 (2015): 775-796 Wong, M. P. et al., Pathology 40 (2008): 611-616 World Health Organization, (2014), http://www.who.int/en/ Wreesmann, V. B. et al., ORL J Otorhinolaryngol.Relat Spec. 69 (2007): 218-225 Wu, S. et al., Oncotarget. (2016) Xi, Y. et al., Monoclon.Antib.Immunodiagn.Immunother. 34 (2015): 346-353 Xie, C. et al., Sci.Rep. 6 (2016a): 27528 Xie, X. et al., Obesity.(Silver.Spring) 24 (2016b): 389-397 Xin, Z. et al., Virchows Arch. 465 (2014): 35-47 Xu, C. et al., PLoS.Genet. 9 (2013): e1003169 Xu, X. et al., Proteomics. 10 (2010): 1374-1390 Xue, L. Y. et al., Zhonghua Zhong.Liu Za Zhi. 32 (2010): 838-844 Yadav, R. et al., J Neurochem. 133 (2015): 857-869 Yamaguchi, T. et al., Exp.Dermatol. 22 (2013): 840-842 Yamazaki, K., Ultrastruct.Pathol. 31 (2007): 209-219 Yang, C. et al., Tumour.Biol (2015) Yang, F. et al., Biomed.Rep. 4 (2016a): 681-686 Yang, H. Y. et al., J Proteomics. 75 (2012a): 3639-3653 Yang, J. et al., Curr.Opin.Oncol 25 (2013): 398-406 Yang, L. et al., Carcinogenesis 33 (2012b): 1863-1870 Yang, L. et al., J Biol Chem 291 (2016b): 3905-3917 Ye, Z. et al., Cell Physiol Biochem. 39 (2016): 1568-1580 Yermachenko, A. et al., Gene 590 (2016): 85-89 Yi, K. H. et al., Immunol.Rev 229 (2009): 145-151 Yi, Y. et al., Mol.Cytogenet. 2 (2009): 18 Yong, A. A. et al., Australas.J Dermatol. 54 (2013): 241-250 Yongjun Zhang, M. M. et al., J Cancer Res Ther. 9 (2013): 660-663 Yu, X. J. et al., EBioMedicine 2 (2015a): 583-590 Yu, Y. et al., ACS Appl.Mater.Interfaces. 7 (2015b): 4401-4405 Yu, Y. et al., PLoS.One. 8 (2013): e83943 Yun, C. W. et al., Anticancer Res 36 (2016): 4449-4458 Zaremba, S. et al., Cancer Res. 57 (1997): 4570-4577 Zdrojewicz, Z. et al., Postepy Hig.Med Dosw.(Online.) 68 (2014): 393-403 Zekri, A. R. et al., Asian Pac.J Cancer Prev. 16 (2015): 3543-3549 Zhang, H. et al., Oncotarget. 6 (2015): 17039-17053 Zhang, Q. et al., Endocrinology 143 (2002): 4788-4796 Zhang, S. et al., J Mol.Histol. 45 (2014a): 283-292 Zhang, W. et al., Tumori 100 (2014b): 338-345 Zhang, Y. et al., PLoS.One. 7 (2012): e30188 Zhao, L. H. et al., Genet.Mol.Res 14 (2015): 5417-5426 Zhao, L. J. et al., Chin Med.J (Engl.) 126 (2013): 4260-4264 Zhao, S. et al., Clin Cancer Res 23 (2017): 311-319 Zheng, G. et al., FEBS J 277 (2010): 4506-4518 Zhou, L. et al., Int.J Cancer 135 (2014): 2329-2337 Zhou, P. et al., Eur.J Cancer Prev. 21 (2012): 231-240 Zhou, X. et al., Oncotarget. 7 (2016): 67196-67211 Zhu, X. et al., J Dermatol. 34 (2007): 503-511 Zhu, Y. et al., Mol.Biol Cell 15 (2004): 81-90 Ziari, K. et al., Biologicals 43 (2015): 181-185 Ziegler, A. et al., Cancer Lett. 326 (2012): 1-7 Zimmermann, J. et al., J Dtsch.Dermatol.Ges. 8 (2010): 598-606 Zubor, P. et al., Mol.Biol.Rep. 42 (2015): 977-988
圖 1A 至 1D 顯示了正常組織(白色柱)和和頭頸鱗狀細胞癌(黑色柱)中各種肽的過量提呈。圖 1A)基因符號:KRT6C、KRT6A、KRT6B,肽:GLAGGFGGPGFPV (SEQ ID NO.:1);從左至右的組織:6脂肪組織,8腎上腺,1膽管,24血細胞,15血管,10骨髓,15大腦,7乳房,11食管,2眼睛,6膽囊,16心臟,17腎臟,27大腸,24肝,49肺,7淋巴結,12神經,5卵巢,15胰腺,6甲狀旁腺,3腹膜,7垂體腺,10胎盤,3胸膜,11攝護腺,9骨骼肌,11皮膚,16小腸,13脾,9胃,8睾丸,3胸腺,8甲狀腺,18氣管,7輸尿管,8膀胱,6子宮,12頭頸部,17HNSCC。圖 1B)基因符號:KRT、KRT6A、KRT6B,肽:SLYGLGGSKRISI (SEQ ID NO.:3);從左至右的組織:6脂肪組織,8腎上腺,1膽管,24血細胞,15血管,10骨髓,15大腦,7乳房,11食管,2眼睛,6膽囊,16心臟,17腎臟,27大腸,24肝,49肺,7淋巴結,12神經,5卵巢,15胰腺,6甲狀旁腺,3腹膜,7垂體腺,10胎盤,3胸膜,11攝護腺,9骨骼肌,11皮膚,16小腸,13脾,9胃,8睾丸,3胸腺,8甲狀腺,18氣管,7輸尿管,8膀胱,6子宮,12頭頸部,17HNSCC。圖 1C)基因符號:KRT5,肽:STASAITPSV (SEQ ID NO.:9);從左至右的組織:6脂肪組織,8腎上腺,1膽管,24血細胞,15血管,10骨髓,15大腦,7乳房,11食管,2眼睛,6膽囊,16心臟,17腎臟,27大腸,24肝,49肺,7淋巴結,12神經,5卵巢,15胰腺,6甲狀旁腺,3腹膜,7垂體腺,10胎盤,3胸膜,11攝護腺,9骨骼肌,11皮膚,16小腸,13脾,9胃,8睾丸,3胸腺,8甲狀腺,18氣管,7輸尿管,8膀胱,6子宮,12頭頸部,17HNSCC。圖 1D)基因符號:SLC25A3,肽:FVAGYIAGV (SEQ ID NO.:61);從左至右的組織:3細胞系(2腎臟,1胰腺),7正常組織(1腎上腺,1結腸,2淋巴結,1胎盤,2脾),36癌組織(5白細胞白血病,3腦癌,1食管癌,1膽囊癌,5頭頸癌,1腎癌,1肝癌,8肺癌,4淋巴結癌,3卵巢癌,2胃癌)。圖 1E 至 1Q 顯示了各種肽在不同癌症組織中的過度提呈(黑點)。上面部分:根據技術重複測量值的中值 MS 信號強度繪製為點,單一 HLA-A*02 陽性正常組織為灰色點,檢測到該肽的腫瘤樣本為黑點。腫瘤和正常樣本按照器官起源分組,箱須圖代表了多個樣本歸一化信號強度的中位數,第 25 和第 75 百分位(箱)以及最小值和最大值(須)。正常器官根據風險類別排列順序(血細胞、血管、腦、肝、肺:高風險,灰色點;生殖器官、乳腺、攝護腺:低風險,灰色點;所有其他器官:中等風險;灰色點)。下面部分:每個器官的相對肽檢測頻率顯示為脊柱圖。圖表下面的數位表示每個器官分析的總樣本數中檢測到肽的樣本數(正常樣本 N = 526,腫瘤樣本 N = 562)。如果在一個樣本上檢測到肽,但因技術原因無法量化,則該樣本納入檢測頻率圖中,但圖表上部分不顯示任何點。組織(從左到右):正常樣本:血細胞;bloodvess(血管);腦;心;肝;肺;脂肪(脂肪組織);adren.gl. (腎上腺);膽管;膀胱; BM(骨髓);軟骨;esoph(食管);眼;gallb(膽囊);頭頸部;腎;large_int(大腸);LN(淋巴結);神經;胰腺; parathyr(甲狀旁腺); perit(腹膜);pituit(垂體);胸膜; skel.mus(骨骼肌);皮膚;small_int(小腸);脾;胃;甲狀腺;氣管;輸尿管;乳房;卵巢;胎盤;攝護腺;睾丸;胸腺;子宮。腫瘤樣本:AML:急性骨髓性白血病;BRCA:乳腺癌;CCC:膽管細胞癌;CLL:慢性淋巴細胞性白血病;CRC:結直腸癌;GBC:膽囊癌;GBM:膠質母細胞瘤;GC:胃癌;GEJC:胃賁門食管癌;HCC:肝細胞癌;HNSCC:頭頸癌;MEL:黑色素瘤;NHL:非霍奇金淋巴瘤;NSCLC:非小細胞肺癌;OC:卵巢癌;OSCAR:食管癌;PACA:胰腺癌;PRCA:攝護腺癌;RCC:腎細胞癌;SCLC:小細胞肺癌;UBC:膀胱癌;UEC:子宮內膜癌。圖 1E)基因符號:KRT6C、KRT6A、KRT1、KRT6B、KRT75、KRT5,肽:PVCPPGGIQEV (SEQ ID NO: 2),圖 1F)基因符號:PKP1,肽:SMLNNIINL (SEQ ID NO:15),圖 1G)基因符號:PRKDC,肽:GLIEWLENTV (SEQ ID NO:45),圖 1H)基因符號:ATP5G2、ATP5G1、ATP5G3,肽:AILGFALSEA (SEQ ID NO:57),圖 1I)基因符號:ITGB4,肽:SLSDIQPCL (SEQ ID NO:58),圖 1J)基因符號:KRT5,肽:ALMDEINFMKM (SEQ ID NO:63),圖 1K)基因符號:ESRP2,肽:ALASAPTSV (SEQ ID NO:75),圖 1L)基因符號:PARP9,肽:ILFDEVLTFA (SEQ ID NO:76),圖 1M)基因符號:MCM4,肽:QLLQYVYNL (SEQ ID NO:83),圖 1N)基因符號:FHAD1,肽:QLIEKITQV (SEQ ID NO:85),圖 1O)基因符號:PLEC,肽:ALPEPSPAA (SEQ ID NO:87),圖 1P)基因符號:G3BP1,肽:TLNDGVVVQV (SEQ ID NO:90),圖 1Q)基因符號:ODC1,肽:MLFENMGAYTV (SEQ ID NO.:91)。
圖 2A 至 C 顯示了本發明的源基因的代表性表達特徵,這些基因在一系列正常組織(白色柱)的頭頸鱗狀細胞癌中以及 15 個頭頸鱗狀細胞癌樣本(黑色柱)中高度過度表達或專門表達。圖 2A)基因符號:PGLYRP4,肽:AIYEGVGWNV (SEQ ID NO:33);圖 2B)基因符號:PAPL,肽:KLLPGVQYV (SEQ ID NO:38);圖 2C)基因符號:LGALS7、LGALS7B,肽:RLVEVGGDVQL (SEQ ID NO.:53)。
圖 3 顯示了示例性的免疫原性資料:肽特定多聚體染色後流式細胞儀結果。
圖 4 顯示健康 HLA-A*02+ 供體的肽特異性 CD8+ T 細胞體外反應的示例性結果。CD8+ T 細胞製備的方法為:使用抗CD28 mAb 和 HLA-A*02 塗層的人工 APC 分別與 Seq ID NO.: 17 肽(A,左圖)、Seq ID NO.: 28 肽(B,左圖)和 Seq ID NO.: 29 肽(C,左圖)合成。經過 12 個週期的刺激後,用 A*02/Seq ID NO.: 17 (A)、A*02/Seq ID NO.: 28 (B) 或 A*02/Seq ID NO.: 29 (C) 的 2D 多聚體染色法對肽反應性細胞進行檢測。右圖(A、B 和 C)顯示用不相關A*02/肽複合體刺激的細胞對照染色。活單細胞在 CD8+ 淋巴細胞上得到門控。Boolean 門控幫助排除用不同肽特定的多聚體檢測的假陽性事件。提示了特異性多聚體+ 細胞和 CD8+ 淋巴細胞的頻率。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無

Claims (20)

  1. 一種肽,其包括選自 SEQ ID No. 1 至 SEQ ID No. 91 組成群組的一個氨基酸序列、以及與 SEQ ID No. 1 至 SEQ ID No. 91 具有至少 88% 同源性的其變體序列並且其中所述變體與主要組織相容性複合體 (MHC) 結合和/或誘導與該變體肽發生 T 細胞交叉反應;以及其一種藥用鹽,其中所述肽不是一種全長多肽。
  2. 如請求項 1 中所述的肽或其變體,其中所述肽或其變體的總長度為 8 至 100 個氨基酸、優選為 8 至 30 個氨基酸、更優選為 8 至 16 個氨基酸、最優選為該肽該肽系由或基本系由根據 SEQ ID No. 1 至 SEQ ID No. 91 的氨基酸序列組成。
  3. 如請求項 1 或 2 中所述的肽或其變體,其中所述肽被修飾和/或包含非肽鍵,或其中所述肽為融合蛋白的一部分,尤其包含 HLA-DR 抗原相關不變鏈 (Ii ) 的 N-端氨基酸。
  4. 一種抗體,特別是可溶性或膜結合性抗體,其特異性地識別如請求項 1 至 3 中的肽或其變體,與 MHC 分子結合時優選為如請求項 1 或 2 中任一項所述的肽或變體。
  5. 一種 T 細胞受體,優選為與 HLA 配體反應的可溶性或膜結合 T 細胞受體,其中所述配體由與選自 SEQ ID No. 1 至 SEQ ID No. 91 組成的組的氨基酸序列至少 75% 同源性,優選為至少 88% 同源性,或其中所述氨基酸序列由任何 SEQ ID No. 1 至 SEQ ID No. 91 組成。
  6. 如請求項 5 中所述的 T 細胞受體,其中所述 T 細胞受體作為可溶性分子提供並任選具有進一步的效應子功能,如免疫刺激域或毒素。
  7. 一種適體,其特異性地識別如請求項 1 至 3 中的肽或其變體,優選為如請求項 1 至 2 中任一項所述的、與 MHC 分子結合的肽或變體。
  8. 一種核酸,其編碼如請求項 1 至 3 中任一項所述的肽或其變體,如請求項 4 所述的抗體,如請求項 5 或 6 所述的 TCR 或如請求項 7 所述的適體,其中所述核酸任選連接到異源啟動子序列或表達所述核酸的表達載體。
  9. 一種重組宿主細胞,其包括如請求項 1 至 3 中所述的肽、如請求項 8 中所述的表達載體,其中所述宿主細胞優選為抗原提成細胞,例如樹突狀細胞或 T 細胞或 NK 細胞。
  10. 如請求項 1 至 3 任一項中所述的肽或其變體、如請求項 4 中所述的抗體、如請求項 5 或 6 中所述的 TCR、如請求項 7 中所述的適體、如請求項 8 中所述的核酸或表達載體或如請求項 9 中所述的藥用宿主細胞。
  11. 一種製備如請求項 1 至 3 任一項所述的肽或其變體、如請求項 4 所述的抗體或如請求項 5 或 6 中所述的 TCR 的方法,該方法包括培養如請求項 9 所述的宿主細胞、其表達如請求項 8 所述的核酸或表達載體,以及從所述宿主細胞或其培養基中分離出所述肽或其變體、抗體或 TCR。
  12. 一種體外製備啟動的 T 淋巴細胞的方法,該方法包括將 T 細胞與載有抗原的人 I 或 II 類 MHC 分子進行體外連接,這些分子在合適的抗原提呈細胞表面或人工類比的抗原提呈細胞結構表面上表達足夠的一段時間從而以抗原特異性方式啟動 T 細胞,其中所述抗原為權利要求1或2任一項中所述的肽。
  13. 如請求項 12 中所述的方法製成的啟動 T 淋巴細胞,其有選擇性地識別一種細胞,該細胞提呈含權利要求 1 或 2 任一項中給定氨基酸序列的多肽。
  14. 一種藥物組合物,其包括至少一種活性成分,該成分選自以下項組成的組 a) 選自由 SEQ ID No. 1 至 SEQ ID No. 91 組成的基團的一種肽; b) 與根據 a) 中的肽和/或肽 MHC 複合體產生反應的一種 T 細胞受體; c) 由根據 a) 中所述的肽以及 HLA-DR 抗原相關不變鏈 (Ii) 的 第 1 至 80 N-端氨基酸組成的融合蛋白; d) 編碼 a) 至 c) 任一項的一種核酸或一種包含所述核酸的表達載體。 e) 包括 d) 中表達載體的宿主細胞, f) 一種啟動的 T 淋巴細胞,通過一種方法獲得,該方法包括將 T 細胞與 a) 中所述肽進行體外連接,該肽在合適的抗原提呈細胞表面表達足夠的一段時間從而以抗原特異性方式啟動所述 T 細胞;以及將這些活化的 T 細胞轉入自體或其他患者的方法; g) 與 a) 中一種肽和/或肽-MHC 複合體反應的一種抗體或可溶性 T 細胞受體和/或提供根據 a) 所述的並有可能通過與免疫啟動域或毒素融合而修飾的一種肽, h) 一種適體,其識別選自包含 SEQ ID No. 1 至 SEQ ID No. 91 的組的一種肽和/或選自包含 SEQ ID No. 1 至 SEQ ID No. 91 的組一種肽與 MHC 分子的一種複合體, i) 根據 a) 至 h) 任一項的一種共軛或標記肽或支架以及藥用載體,或藥用賦形劑和/或穩定劑。
  15. 如請求項 1 至 3 任一項中所述的肽、如請求項 4 中所述的抗體、如請求項 5 或 6 中所述的 TCR、如請求項 13 中所述的活化的 T 淋巴細胞、如請求項 8 中所述的一種表達載體或如請求項 9 中所述的宿主細胞在診斷和/或治療癌症中或製備抗癌藥物中的用途,其中所述癌症優選為選自頭頸鱗狀細胞癌、急性骨髓性白血病、乳腺癌、膽管癌、腦癌、慢性淋巴細胞性白血病、結直腸癌、食管癌、膽囊癌、胃癌、肝細胞癌、黑色素瘤、非霍奇金淋巴瘤、非小細胞肺癌、卵巢癌、胰腺癌、攝護腺癌、腎細胞癌、小細胞肺癌、膀胱癌、子宮癌和顯示肽 SEQ ID No. 1 至 SEQ ID No. 91 從其中衍生的蛋白過度表達的其他腫瘤的組。
  16. 一個套件,包括: a) 一個容器包含一種藥物組合物,其含有如請求項 1 至 3 任一項所述的肽或變體、如請求項 4 所述的抗體、如請求項 5 或 6 所述的 TCR、如請求項 13 所述的啟動 T 淋巴細胞、如請求項 8 所述的核酸或表達載體、或如請求項 9 中所述的宿主細胞,為溶液或凍乾形式; b) 可選地,第二個容器,其含有凍乾粉劑型的稀釋劑或重組溶液; c) 可選地,至少一種以上肽,選自由 SEQ ID No. 1 至 SEQ ID No. 156,優選為 SEQ ID No. 1 至 SEQ ID No. 91 的基團,以及 d) 可選地,(i) 使用溶液或 (ii) 重組和/或使用凍乾粉劑型的說明書。
  17. 一種用於生產個性化抗癌疫苗或用於個體患者的基於化合物的和/或細胞療法,所述方法包括: a) 識別所述個體患者腫瘤樣本提呈的腫瘤相關肽 (TUMAP); b) 將 a) 中確定的肽與已經接受過免疫原性預篩查和/或與正常組織相比在腫瘤中過度提呈的存儲庫的肽進行比較。 c) 選擇與患者中識別的 TUMAP 匹配的存儲庫中的至少一種肽;和 d) 製造和/或構想基於步驟 c) 的所述個性化疫苗或基於化合物的或細胞療法。
  18. 如請求項 17 中所述的方法,其中所述 TUMAP 通過以下方法識別,包括: a1) 將腫瘤樣本的表達資料與腫瘤樣本組織類型相應的正常組織樣本的表達資料進行比較,以識別在腫瘤樣本中過度表達或異常表達的蛋白;和 a2) 將表達資料與腫瘤樣本中 MHC I 類和/或 II 類分子結合的 MHC 配體序列相關聯,以識別腫瘤過度表達或異常的蛋白質衍生的 MHC 配體。
  19. 如請求項 17 或 18 中所述的方法,其中存儲庫包含的肽用基於以下步驟進行識別: aa.通過高度並行的方法,例如微陣列或基於測序的表達譜,進行全基因組信使核糖核酸 (mRNA) 表達分析,其包括識別相較于正常組織在惡性組織中過度表達的基因; ab.選擇步驟 aa 檢測到的特異性表達或過量表達的基因所編碼的肽,以及 ac.通過選定的肽確定誘導體內 T 細胞反應,包括使用健康供體或所述患者的人類 T 細胞的體外免疫原性測定;或 ba.用質譜法識別來自所述腫瘤樣本的 HLA 配體; bb.通過高度並行的方法,例如微陣列或基於測序的表達譜,進行全基因組信使核糖核酸 (mRNA) 表達分析,其包括識別相較于正常組織在惡性組織中過度表達的基因; bc.比較識別的 HLA 配體與所述基因表達資料; bd. 選擇步驟 bc 檢測到的特異性表達或過量表達的基因所編碼的肽; be.重新檢測腫瘤組織上來自步驟 bd 的選定 TUMAP、其在健康組織上缺乏或不經常檢測,並確定在 mRNA 水準上過度表達的相關性;以及 bf.通過選定的肽確定誘導體內 T 細胞反應,包括使用健康供體或所述患者的人類 T 細胞的體外免疫原性測定。
  20. 如請求項 17 至 19 任一項所述的方法,其進一步包括以下步驟:識別與該個體患者相應正常組織相比對所述腫瘤樣本具有唯一性的至少一種突變,以及選擇與突變相關並包含於疫苗或用於產生細胞療法的一種肽。
TW106128506A 2016-08-26 2017-08-23 用於頭頸鱗狀細胞癌和其他癌症免疫治療的新型肽和支架 TWI796299B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662379864P 2016-08-26 2016-08-26
US62/379,864 2016-08-26
DE102016115974.3 2016-08-26
DE102016115974 2016-08-26
??102016115974.3 2016-08-26

Publications (2)

Publication Number Publication Date
TW201811822A true TW201811822A (zh) 2018-04-01
TWI796299B TWI796299B (zh) 2023-03-21

Family

ID=59738331

Family Applications (2)

Application Number Title Priority Date Filing Date
TW106128506A TWI796299B (zh) 2016-08-26 2017-08-23 用於頭頸鱗狀細胞癌和其他癌症免疫治療的新型肽和支架
TW111136019A TW202304970A (zh) 2016-08-26 2017-08-23 用於頭頸鱗狀細胞癌和其他癌症免疫治療的新型肽和支架

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW111136019A TW202304970A (zh) 2016-08-26 2017-08-23 用於頭頸鱗狀細胞癌和其他癌症免疫治療的新型肽和支架

Country Status (19)

Country Link
US (16) US10376542B2 (zh)
EP (2) EP3988563A3 (zh)
JP (2) JP2019536426A (zh)
KR (2) KR20230128312A (zh)
CN (1) CN109803981A (zh)
AU (2) AU2017315139B2 (zh)
BR (1) BR112019003513A2 (zh)
CA (1) CA3033115A1 (zh)
CL (4) CL2019000460A1 (zh)
CO (1) CO2019002466A2 (zh)
CR (4) CR20190094A (zh)
MA (1) MA46037A (zh)
MX (2) MX2019002067A (zh)
MY (1) MY198110A (zh)
PE (1) PE20190628A1 (zh)
PH (1) PH12019500313A1 (zh)
SG (2) SG10202101871YA (zh)
TW (2) TWI796299B (zh)
WO (1) WO2018037085A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202043256A (zh) 2019-01-10 2020-12-01 美商健生生物科技公司 前列腺新抗原及其用途
WO2021136240A1 (zh) * 2019-12-30 2021-07-08 白素梅 人4IgB7-H3的突变编码基因及其调节免疫的应用
JP2023521219A (ja) * 2020-04-14 2023-05-23 ウニヴェルシテ ド モントリオール 急性骨髄性白血病(aml)に対する新規の腫瘍特異的抗原及びそれらの使用
CN112245564A (zh) * 2020-11-03 2021-01-22 哈尔滨医科大学 一种注射用血管生成抑肽冻干制剂及其冻干方法

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440859A (en) 1977-05-27 1984-04-03 The Regents Of The University Of California Method for producing recombinant bacterial plasmids containing the coding sequences of higher organisms
US4704362A (en) 1977-11-08 1987-11-03 Genentech, Inc. Recombinant cloning vehicle microbial polypeptide expression
LU88257I2 (zh) 1978-12-22 1994-02-03
US4530901A (en) 1980-01-08 1985-07-23 Biogen N.V. Recombinant DNA molecules and their use in producing human interferon-like polypeptides
US4342566A (en) 1980-02-22 1982-08-03 Scripps Clinic & Research Foundation Solid phase anti-C3 assay for detection of immune complexes
US4678751A (en) 1981-09-25 1987-07-07 Genentech, Inc. Hybrid human leukocyte interferons
US4766075A (en) 1982-07-14 1988-08-23 Genentech, Inc. Human tissue plasminogen activator
US4582800A (en) 1982-07-12 1986-04-15 Hoffmann-La Roche Inc. Novel vectors and method for controlling interferon expression
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4757006A (en) 1983-10-28 1988-07-12 Genetics Institute, Inc. Human factor VIII:C gene and recombinant methods for production
US4677063A (en) 1985-05-02 1987-06-30 Cetus Corporation Human tumor necrosis factor
US4810648A (en) 1986-01-08 1989-03-07 Rhone Poulenc Agrochimie Haloarylnitrile degrading gene, its use, and cells containing the gene
US4897445A (en) 1986-06-27 1990-01-30 The Administrators Of The Tulane Educational Fund Method for synthesizing a peptide containing a non-peptide bond
DK0701571T3 (da) 1993-06-03 1997-09-15 Therapeutic Antibodies Inc Antistoffragmenter til terapi
AUPM322393A0 (en) 1993-12-24 1994-01-27 Austin Research Institute, The Mucin carbohydrate compounds and their use in immunotherapy
DE69723230T2 (de) 1996-01-17 2004-05-27 Imperial College Innovations Ltd. Immunotherapie mit verwendung von zytotoxischen t lymphozyten (ctl)
US5849589A (en) 1996-03-11 1998-12-15 Duke University Culturing monocytes with IL-4, TNF-α and GM-CSF TO induce differentiation to dendric cells
US6406705B1 (en) 1997-03-10 2002-06-18 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US6783961B1 (en) * 1999-02-26 2004-08-31 Genset S.A. Expressed sequence tags and encoded human proteins
US7235642B1 (en) * 1999-01-12 2007-06-26 Genentech, Inc. Anti-PRO 1313 antibodies
CA2296792A1 (en) * 1999-02-26 2000-08-26 Genset S.A. Expressed sequence tags and encoded human proteins
JP2004503213A (ja) 2000-03-27 2004-02-05 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミテッド 1本鎖クラスi主要組織適合性複合体、それをコードする構築物およびそれを生成する方法
US20040191260A1 (en) 2003-03-26 2004-09-30 Technion Research & Development Foundation Ltd. Compositions capable of specifically binding particular human antigen presenting molecule/pathogen-derived antigen complexes and uses thereof
CN101712721A (zh) 2000-06-05 2010-05-26 阿尔托生物科学有限公司 T细胞受体融合物及共轭物以及其使用方法
AU2003207628A1 (en) * 2002-01-18 2003-09-02 Incyte Corporation Structural and cytoskeleton-associated proteins
US6992176B2 (en) 2002-02-13 2006-01-31 Technion Research & Development Foundation Ltd. Antibody having a T-cell receptor-like specificity, yet higher affinity, and the use of same in the detection and treatment of cancer, viral infection and autoimmune disease
AU2003216341A1 (en) 2002-02-20 2003-09-09 Dyax Corporation Mhc-peptide complex binding ligands
CA2501870C (en) 2002-10-09 2013-07-02 Avidex Limited Single chain recombinant t cell receptors
NZ570811A (en) 2002-11-09 2009-11-27 Immunocore Ltd T cell receptor display
GB0304068D0 (en) 2003-02-22 2003-03-26 Avidex Ltd Substances
DK1806359T3 (da) * 2005-09-05 2010-06-14 Immatics Biotechnologies Gmbh Tumorassocierede peptider, der bindes promiskuøst til Humant Leukocyt-Antigen (HLA) klasse II molekyler
DE602005016112D1 (de) * 2005-09-05 2009-10-01 Immatics Biotechnologies Gmbh Tumorassoziierte Peptide, die HLA Klasse I oder II-Moleküle binden, und anti-Tumor Impfstoffe
ES2553270T3 (es) * 2007-07-27 2015-12-07 Immatics Biotechnologies Gmbh Nuevo epítopo inmunogénico para inmunoterapia
WO2009095447A1 (en) * 2008-01-30 2009-08-06 Pieris Ag Muteins of tear lipocalin having affinity to human c-met receptor tyrosine kinase and methods for obtaining the same
US20090263574A1 (en) 2008-04-21 2009-10-22 Quinn Daniel E Method of restoring an article
JP2011519049A (ja) * 2008-04-29 2011-06-30 イミューンエクサイト インコーポレイテッド 免疫調節組成物およびその使用方法
GB201004575D0 (en) 2010-03-19 2010-05-05 Immatics Biotechnologies Gmbh Composition of tumor associated peptides and related anti cancer vaccine for the treatment of gastric cancer and other cancers
GB201006360D0 (en) 2010-04-16 2010-06-02 Immatics Biotechnologies Gmbh Method for differentially quantifying naturally processed HLA-restricted peptides for cancer, autoimmune and infectious diseases immunotherapy development
US20140170168A1 (en) 2010-10-26 2014-06-19 Yoram Reiter Antibodies which bind soluble t-cell receptor ligands
US9187541B2 (en) * 2011-04-27 2015-11-17 The Regents Of The University Of California Anti-microbial peptides and methods of use thereof
WO2013057586A1 (en) 2011-10-19 2013-04-25 Oslo Universitetssykehus Hf Compositions and methods for producing soluble t - cell receptors
EP2834259A4 (en) * 2012-04-02 2016-08-24 Moderna Therapeutics Inc MODIFIED POLYNUCLEOTIDES
WO2013158773A2 (en) * 2012-04-17 2013-10-24 The Research Institute At Nationwide Children's Hospital Rnase 7 antimicrobial peptides
ES2603589T3 (es) 2012-11-08 2017-02-28 F. Hoffmann-La Roche Ag Ácidos nucleicos que codifican polipéptidos quiméricos para la identificación sistemática de bibliotecas
WO2014168242A1 (ja) * 2013-04-12 2014-10-16 Jnc株式会社 歯周病特異的ペプチドに対するモノクローナル抗体およびその用途
EP2808392A1 (en) 2013-05-28 2014-12-03 Rheinische Friedrich-Wilhelms-Universität Bonn Aptamers and use of the aptamers in the diagnosis and treatment of cancer
TWI714869B (zh) * 2013-08-05 2021-01-01 德商伊瑪提克斯生物科技有限公司 新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物
GB201319446D0 (en) * 2013-11-04 2013-12-18 Immatics Biotechnologies Gmbh Personalized immunotherapy against several neuronal and brain tumors
GB201408255D0 (en) * 2014-05-09 2014-06-25 Immatics Biotechnologies Gmbh Novel immunotherapy against several tumours of the blood, such as acute myeloid leukemia (AML)
GB201411037D0 (en) * 2014-06-20 2014-08-06 Immatics Biotechnologies Gmbh Novel immunotherapy against several tumors of the blood, in particular chronic lymphoid leukemai (CLL)
GB201511792D0 (en) * 2015-07-06 2015-08-19 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against esopageal cancer and other cancers

Also Published As

Publication number Publication date
CL2021000550A1 (es) 2021-07-19
US20200155602A1 (en) 2020-05-21
US20200254022A1 (en) 2020-08-13
CA3033115A1 (en) 2018-03-01
EP3988563A2 (en) 2022-04-27
CL2021000548A1 (es) 2021-07-19
JP2019536426A (ja) 2019-12-19
AU2017315139A1 (en) 2019-04-11
PH12019500313A1 (en) 2019-10-28
US10668100B1 (en) 2020-06-02
US20180055883A1 (en) 2018-03-01
CR20210066A (es) 2021-03-01
US20190307801A1 (en) 2019-10-10
KR20190039812A (ko) 2019-04-15
US20210252061A1 (en) 2021-08-19
MY198110A (en) 2023-08-03
US10525084B2 (en) 2020-01-07
CO2019002466A2 (es) 2019-03-29
MX2019002067A (es) 2019-06-03
CR20210068A (es) 2021-02-26
SG10202101871YA (en) 2021-04-29
US20220323501A1 (en) 2022-10-13
US20190117693A1 (en) 2019-04-25
US20190030075A1 (en) 2019-01-31
US20190192571A1 (en) 2019-06-27
BR112019003513A2 (pt) 2019-05-21
US20200000848A1 (en) 2020-01-02
US20210069250A1 (en) 2021-03-11
US11123370B2 (en) 2021-09-21
AU2021282532A1 (en) 2022-01-06
PE20190628A1 (es) 2019-04-26
AU2017315139B2 (en) 2021-11-11
CR20210067A (es) 2021-02-26
US10722536B1 (en) 2020-07-28
US10238691B1 (en) 2019-03-26
US10842817B2 (en) 2020-11-24
EP3504228A1 (en) 2019-07-03
US10596196B2 (en) 2020-03-24
US10780125B2 (en) 2020-09-22
US20200254017A1 (en) 2020-08-13
EP3988563A3 (en) 2022-07-27
US10376542B2 (en) 2019-08-13
US20200323912A1 (en) 2020-10-15
CL2021000549A1 (es) 2021-07-19
CR20190094A (es) 2019-06-11
WO2018037085A1 (en) 2018-03-01
US20210401888A1 (en) 2021-12-30
TW202304970A (zh) 2023-02-01
AU2021282532B2 (en) 2023-06-08
US10195232B1 (en) 2019-02-05
US20220323502A1 (en) 2022-10-13
MA46037A (fr) 2019-07-03
CN109803981A (zh) 2019-05-24
KR20230128312A (ko) 2023-09-04
JP2022033740A (ja) 2022-03-02
SG11201901176XA (en) 2019-03-28
CL2019000460A1 (es) 2019-05-31
US10272114B1 (en) 2019-04-30
US11058726B2 (en) 2021-07-13
US20190111081A1 (en) 2019-04-18
TWI796299B (zh) 2023-03-21
US10688131B2 (en) 2020-06-23
MX2022002193A (es) 2022-03-11

Similar Documents

Publication Publication Date Title
TWI641617B (zh) 用於膀胱癌和其它癌症免疫治療的肽、肽組合物和基於細胞的藥物
TW201920233A (zh) 用於多種癌症之免疫治療的新穎胜肽、胜肽的組合物及支架
TW201902917A (zh) 用於各種腫瘤免疫治療的新型肽和肽複合物
TW201930348A (zh) 用於乳腺癌和其他癌症免疫治療的新型肽和肽組合物
AU2021282532B2 (en) Novel peptides and scaffolds for use in immunotherapy against head and neck squamous cell carcinoma and other cancers
TW201800417A (zh) 新型肽、肽組合物作為靶標以及用於膽囊癌、膽管癌和其他癌症免疫治療
TW201920252A (zh) 用於對抗多種癌症的免疫療法的新胜肽及胜肽組合
NZ791721A (en) Novel peptides and scaffolds for use in immunotherapy against head and neck squamous cell carcinoma and other cancers