TW201810802A - Antenna structure with tunable radiation pattern - Google Patents
Antenna structure with tunable radiation pattern Download PDFInfo
- Publication number
- TW201810802A TW201810802A TW105127179A TW105127179A TW201810802A TW 201810802 A TW201810802 A TW 201810802A TW 105127179 A TW105127179 A TW 105127179A TW 105127179 A TW105127179 A TW 105127179A TW 201810802 A TW201810802 A TW 201810802A
- Authority
- TW
- Taiwan
- Prior art keywords
- metal arm
- wire
- ground plane
- capacitor
- diode
- Prior art date
Links
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Aerials With Secondary Devices (AREA)
Abstract
Description
本發明有關於一種天線,且特別是一種可調整輻射場型的天線結構。 The present invention relates to an antenna, and more particularly to an antenna structure that can adjust the radiation pattern.
現在的筆記型電腦、平板電腦等終端裝置必備無線連網功能,因此無線模組及天線是必要的元件。因應終端裝置產品所使用的無線網路環境可能隨著時間與地點都不相同的情況,傳統上應用於終端裝置的天線設計一般僅考慮其天線效率、天線增益以及特定吸收率(SAR),或者考慮全向性輻射場型以作為設計考量的基本要求。 Nowadays, terminal devices such as notebook computers and tablet computers must have wireless networking functions, so wireless modules and antennas are necessary components. In view of the fact that the wireless network environment used by the terminal device products may be different with time and place, the antenna design conventionally applied to the terminal device generally only considers its antenna efficiency, antenna gain, and specific absorption rate (SAR), or Consider the omnidirectional radiation pattern as a basic requirement for design considerations.
然而,天線的輻射場型依據天線基本工作原理而有所差異,例如偶極天線(dipole antenna)能夠產生全向性(omnidirectional)的輻射場型,平板天線(patch antenna)能夠產生側向(broadside)的輻射場型。在產品上的天線設計已固定的情況下,因應筆記型電腦與平板電腦所遇到的各種不同通訊環境,可能造成某些時間或某些應用情況的通訊不良或資料傳輸速度變差的情況。 However, the radiation pattern of the antenna varies depending on the basic operating principle of the antenna. For example, a dipole antenna can generate an omnidirectional radiation pattern, and a patch antenna can generate a lateral side (broadside). The radiation field type. In the case where the antenna design on the product is fixed, in response to various communication environments encountered by the notebook computer and the tablet computer, communication failure or data transmission speed may be deteriorated at certain times or in some applications.
為了解決前述的先前技術問題,本發明實施例提供 一種可調整輻射場型的天線結構,利用單一天線設計,以實現輻射場型可調整的效果,藉此達成可因應使用環境而改變(或提升)資料傳輸速度。 In order to solve the foregoing prior art problem, the embodiment of the present invention provides An antenna structure with adjustable radiation field type, which utilizes a single antenna design to achieve an adjustable effect of the radiation field type, thereby achieving a change (or promotion) of data transmission speed in response to the use environment.
本發明實施例提供一種可調整輻射場型的天線結構,包括單極天線、控制單元以及第一反射單元。單極天線垂直設置在接地面上並接收射頻訊號饋入以產生具有在一水平面的全向型輻射場型的四分之一波長共振模態。控制單元受控於第一控制訊號以決定是否利用第一導線與第二導線輸出第一直流控制電壓,第一直流控制電壓使第一導線的直流電位大於第二導線的直流電位,第二導線電性連接於接地面與控制單元之間。第一反射單元設置於單極天線的第一側邊,第一反射單元包括第一金屬臂、第一射頻二極體、第二金屬臂以及第一電容。第一金屬臂具有第一端與第二端,第一金屬臂平行於單極天線,且第一金屬臂的第一端與接地面的距離大於第一金屬臂的第二端與接地面的距離。第一射頻二極體具有陽極端與陰極端,第一射頻二極體的陽極端連接第一金屬臂的第二端,第一射頻二極體的陰極端連接接地面。第二金屬臂具有第一端與第二端,第二金屬臂的第一端連接第一金屬臂的第二端,第二金屬臂的第二端電性連接第一導線。第一電容具有第一端與第二端,第一電容的第一端連接第二金屬臂的第二端,第一電容的第二端連接接地面,其中第一導線的走線由第二金屬臂的第二端起始且沿著第一電容附近而向接地面延伸以電性連接至控制單元。當控制單元利用第一導線與第二導線輸出第一直流控制電壓時,第一射頻二極體導通,第一金屬臂藉由第一射頻二極體而與接地面短路導通,用以提升相對於第 一側邊的第一對向側邊的天線增益,其中短路導通至接地面的第一金屬臂的長度等效於單極天線的操作頻率所對應的波長的四分之一。當控制單元不利用第一導線與第二導線輸出第一直流控制電壓時,第一射頻二極體不導通,且對於射頻訊號而言,第一金屬臂與第二金屬臂藉由第一電容短路至接地面以構成半波長短路路徑,藉此避免影響單極天線的全向性輻射場型。 Embodiments of the present invention provide an antenna structure capable of adjusting a radiation field type, including a monopole antenna, a control unit, and a first reflection unit. The monopole antenna is vertically disposed on the ground plane and receives the RF signal feed to produce a quarter-wave resonance mode having an omnidirectional radiation pattern in a horizontal plane. The control unit is controlled by the first control signal to determine whether to output the first DC control voltage by using the first wire and the second wire, the first DC control voltage is such that the DC potential of the first wire is greater than the DC potential of the second wire, The two wires are electrically connected between the ground plane and the control unit. The first reflective unit is disposed on the first side of the monopole antenna, and the first reflective unit includes a first metal arm, a first radio frequency diode, a second metal arm, and a first capacitor. The first metal arm has a first end and a second end, the first metal arm is parallel to the monopole antenna, and the first end of the first metal arm is at a greater distance from the ground plane than the second end of the first metal arm and the ground plane distance. The first RF electrode has an anode end and a cathode end. The anode end of the first RF diode is connected to the second end of the first metal arm, and the cathode end of the first RF diode is connected to the ground plane. The second metal arm has a first end and a second end, the first end of the second metal arm is connected to the second end of the first metal arm, and the second end of the second metal arm is electrically connected to the first wire. The first capacitor has a first end and a second end, the first end of the first capacitor is connected to the second end of the second metal arm, and the second end of the first capacitor is connected to the ground plane, wherein the trace of the first wire is connected by the second The second end of the metal arm begins and extends along the vicinity of the first capacitor to the ground plane for electrical connection to the control unit. When the control unit outputs the first DC control voltage by using the first wire and the second wire, the first RF diode is turned on, and the first metal arm is short-circuited with the ground plane by the first RF diode to improve Relative to the first The antenna gain of the first opposite side of one side, wherein the length of the first metal arm that is shorted to the ground plane is equivalent to one quarter of the wavelength corresponding to the operating frequency of the monopole antenna. When the control unit does not use the first wire and the second wire to output the first DC control voltage, the first RF diode is not turned on, and for the RF signal, the first metal arm and the second metal arm are first The capacitor is shorted to the ground plane to form a half-wave short-circuit path, thereby avoiding affecting the omnidirectional radiation pattern of the monopole antenna.
綜上所述,本發明實施例提供一種可調整輻射場型的天線結構,利用控制第一反射單元的第一射頻二極體導通時,第一反射單元的第一金屬臂形成四分之一波長的共振反射體,提升相對於第一側邊的第一對向側邊的天線增益,藉以達到天線結構整體的輻射場型可調整的目的。當第一射頻二極體不導通時,第一反射單元形成半波長接地結構,無反射效果,天線結構整體的輻射場型維持與單極天線原本的輻射場型相同。 In summary, the embodiment of the present invention provides an antenna structure capable of adjusting a radiation field. When the first RF diode that controls the first reflection unit is turned on, the first metal arm of the first reflection unit forms a quarter. The resonant reflector of the wavelength enhances the antenna gain relative to the first opposite side of the first side, thereby achieving the purpose of adjusting the radiation field of the antenna structure as a whole. When the first RF diode is not conducting, the first reflecting unit forms a half-wavelength grounding structure, and has no reflection effect, and the radiation pattern of the antenna structure as a whole is maintained the same as the original radiation field of the monopole antenna.
為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明之詳細說明與附圖,但是此等說明與所附圖式僅是用來說明本發明,而非對本發明的權利範圍作任何的限制。 For a better understanding of the features and technical aspects of the present invention, reference should be made to the accompanying drawings The scope is subject to any restrictions.
1‧‧‧處理單元 1‧‧‧Processing unit
2‧‧‧無線模組 2‧‧‧Wireless Module
3‧‧‧具有可調整場型的天線結構 3‧‧‧An antenna structure with adjustable field type
31、71‧‧‧單極天線 31, 71‧‧‧ monopole antenna
32‧‧‧控制單元 32‧‧‧Control unit
33‧‧‧第一反射單元 33‧‧‧First reflection unit
CT1‧‧‧第一控制訊號 CT1‧‧‧ first control signal
34a‧‧‧第一導線 34a‧‧‧First wire
34b‧‧‧第二導線 34b‧‧‧second wire
V1‧‧‧第一直流控制電壓 V1‧‧‧ first DC control voltage
X、Y、Z‧‧‧軸 X, Y, Z‧‧‧ axes
d‧‧‧距離 D‧‧‧distance
331‧‧‧第一金屬臂 331‧‧‧First metal arm
331a‧‧‧第一金屬臂的第一端 331a‧‧‧First end of the first metal arm
331b‧‧‧第一金屬臂的第二端 331b‧‧‧The second end of the first metal arm
332‧‧‧第二金屬臂 332‧‧‧second metal arm
332a‧‧‧第二金屬臂的第一端 332a‧‧‧ the first end of the second metal arm
332b‧‧‧第二金屬臂的第二端 332b‧‧‧ second end of the second metal arm
333‧‧‧第一電容 333‧‧‧first capacitor
334‧‧‧第一射頻二極體 334‧‧‧First RF Diode
321‧‧‧開關 321‧‧‧ switch
322‧‧‧直流電源 322‧‧‧DC power supply
62‧‧‧微波基板 62‧‧‧Microwave substrate
CT2‧‧‧第二控制訊號 CT2‧‧‧second control signal
34c‧‧‧第三導線 34c‧‧‧ third conductor
34d‧‧‧第四導線 34d‧‧‧fourth wire
35‧‧‧第二反射單元 35‧‧‧second reflection unit
351‧‧‧第三金屬臂 351‧‧‧ Third metal arm
351a‧‧‧第一金屬臂的第一端 351a‧‧‧First end of the first metal arm
351b‧‧‧第一金屬臂的第二端 351b‧‧‧The second end of the first metal arm
352‧‧‧第四金屬臂 352‧‧‧fourth metal arm
352a‧‧‧第二金屬臂的第一端 352a‧‧‧First end of the second metal arm
352b‧‧‧第二金屬臂的第二端 352b‧‧‧second end of the second metal arm
353‧‧‧第二電容 353‧‧‧second capacitor
354‧‧‧第二射頻二極體 354‧‧‧Second RF diode
V2‧‧‧第二直流控制電壓 V2‧‧‧second DC control voltage
73‧‧‧反射單元 73‧‧‧Reflective unit
圖1是本發明實施例提供的具有可調整輻射場型的天線結構的終端裝置的部分功能方塊圖。 FIG. 1 is a partial functional block diagram of a terminal device having an antenna structure with an adjustable radiation field according to an embodiment of the present invention.
圖2是本發明實施例提供的可調整輻射場型的天線結構的架構示意圖。 2 is a schematic structural diagram of an antenna structure of an adjustable radiation field according to an embodiment of the present invention.
圖3A是本發明實施例提供的可調整輻射場型的天線結構在第 一射頻二極體導通狀態的輻射場型圖。 FIG. 3A is an antenna structure of an adjustable radiation field according to an embodiment of the present invention. A radiation pattern of a radio-frequency diode in a conducting state.
圖3B是本發明實施例提供的可調整輻射場型的天線結構在第一射頻二極體不導通狀態的輻射場型圖。 FIG. 3B is a radiation pattern diagram of the antenna structure of the adjustable radiation field type in the non-conducting state of the first radio frequency diode according to the embodiment of the present invention.
圖4是本發明實施例提供的可調整輻射場型的天線結構其實際應用的結構圖。 FIG. 4 is a structural diagram of an actual application of an antenna structure capable of adjusting a radiation field according to an embodiment of the present invention.
圖5是本發明另一實施例提供的具有兩個反射單元的可調整輻射場型的天線結構其實際應用的結構圖。 FIG. 5 is a structural diagram of an actual application of an adjustable radiation field type antenna structure having two reflection units according to another embodiment of the present invention.
圖6A是圖5實施例的可調整輻射場型的天線結構在第一射頻二極體與第二射頻二極體皆不導通時的輻射場型圖。 FIG. 6A is a radiation pattern diagram of the antenna structure of the adjustable radiation field of the embodiment of FIG. 5 when the first RF diode and the second RF diode are not conducting.
圖6B是圖5實施例的可調整輻射場型的天線結構在第一射頻二極體導通時的輻射場型圖。 6B is a radiation pattern diagram of the antenna structure of the adjustable radiation field of the embodiment of FIG. 5 when the first RF diode is turned on.
圖6C是圖5實施例的可調整輻射場型的天線結構在的二射頻二極體導通時的輻射場型圖。 6C is a radiation pattern diagram of the antenna structure of the adjustable radiation field type of the embodiment of FIG. 5 when the two radio frequency diodes are turned on.
圖7是本發明另一實施例提供的具有四個反射單元的可調整輻射場型的天線結構其實際應用的結構圖。 FIG. 7 is a structural diagram of an actual application of an adjustable radiation field type antenna structure having four reflection units according to another embodiment of the present invention.
本發明實施例的具有可調整輻射場型的天線結構可應用於各種無線終端裝置,例如筆記型電腦、平板電腦、一體電腦或智慧電視,可讓無線終端裝置針對各種應用情境調整收發訊號強弱的方向。以下以圖1的可調整輻射場型的天線結構的終端裝置的部分功能方塊圖作為說明。終端裝置內具有處理單元1、無線模組2與具有可調整輻射場型的天線結構3。具有可調整輻射場型的天線結構3包括單極天線31、控制單元32與第一反射單元33。處 理單元1連接無線模組2與控制單元32,處理單元1控制無線模組2收發訊號(及處理所收發的訊號),且處理單元1經由控制單元32控制第一反射單元33的工作狀態。無線模組2連接單極天線31以提供射頻訊號饋入。終端裝置的其他相關功能方塊(例如電源電路、顯示單元、輸入單元),在此予以省略,所屬技術領域具有通常知識者應能輕易了解如筆記型電腦、平板電腦、一體電腦或智慧電視的終端裝置各自的主要功能及其附屬電路方塊,在此不做贅述。 The antenna structure with adjustable radiation field type of the embodiment of the invention can be applied to various wireless terminal devices, such as a notebook computer, a tablet computer, an integrated computer or a smart TV, which can enable the wireless terminal device to adjust the strength of the transmission and reception signals for various application scenarios. direction. Hereinafter, a partial functional block diagram of the terminal device of the antenna structure of the adjustable radiation field type of FIG. 1 will be described. The terminal device has a processing unit 1, a wireless module 2 and an antenna structure 3 having an adjustable radiation field type. The antenna structure 3 having an adjustable radiation pattern includes a monopole antenna 31, a control unit 32 and a first reflection unit 33. At The processing unit 1 is connected to the wireless module 2 and the control unit 32. The processing unit 1 controls the wireless module 2 to transmit and receive signals (and processes the transmitted and received signals), and the processing unit 1 controls the operating state of the first reflecting unit 33 via the control unit 32. The wireless module 2 is connected to the monopole antenna 31 to provide RF signal feed. Other related functional blocks of the terminal device (for example, a power supply circuit, a display unit, an input unit) are omitted herein, and those skilled in the art should be able to easily understand a terminal such as a notebook computer, a tablet computer, an integrated computer or a smart TV. The main functions of the devices and their associated circuit blocks are not described herein.
本發明實施例利用切換第一反射單元33的狀態,以達到輻射場型可調整的目的。請參照圖2,圖2是本發明實施例提供的可調整輻射場型的天線結構的架構示意圖。圖2的天線結構並未按比例繪製,僅是用以幫助說明,圖2中的天線各部元件的形狀也並非用以限定本發明。在圖2中,單極天線31是垂直設置在接地面39上並接收射頻訊號饋入以產生具有在一水平面(X-Y平面)的全向型輻射場型的四分之一波長共振模態,所述接地面39是終端裝置(如筆記型電腦)的系統接地,例如是筆記型電腦或一體電腦(或智慧電視)的螢幕上緣的系統接地面。 The embodiment of the present invention utilizes the state of switching the first reflecting unit 33 to achieve the purpose of adjusting the radiation field type. Please refer to FIG. 2. FIG. 2 is a schematic structural diagram of an antenna structure of an adjustable radiation field according to an embodiment of the present invention. The antenna structure of FIG. 2 is not drawn to scale, and is merely illustrative to help illustrate that the shapes of the various components of the antenna of FIG. 2 are not intended to limit the invention. In FIG. 2, the monopole antenna 31 is vertically disposed on the ground plane 39 and receives the RF signal feed to generate a quarter-wave resonance mode having an omnidirectional radiation pattern in a horizontal plane (XY plane). The ground plane 39 is the system ground of a terminal device (such as a notebook computer), such as the system ground plane of the upper edge of the screen of a notebook computer or an integrated computer (or smart TV).
再參照圖2,單極天線31主要產生線性極化的輻射場型,單極天線31接受射頻饋入訊號以產生第一極化方向的輻射場型,在圖2中的單極天線31是產生垂直極化輻射場型(在圖2中,所述垂直極化方向是平行Z軸)。控制單元32受控於第一控制訊號CT1以決定是否利用第一導線34a與第二導線34b輸出第一直流控制電壓V1,第一直流控制電壓V1使第一導線34a的直流電位大於第二導線34b的直流電位,第二導線34b電性連接於接地面39與控制單元32之間。第一反射單元33設置於單極天線31的第一側邊(在圖2中 是右側邊,位於+Y軸向的側邊),第一反射單元33與單極天線31的距離d較佳例如是單極天線31的操作頻率所對應波長的0.15倍至0.5倍(即0.15 λ至0.5 λ),但本發明並不因此限定。第一反射單元33包括第一金屬臂331、第一射頻二極體334、第二金屬臂332以及第一電容333。第一金屬臂331具有第一端331a與第二端331b,第一金屬臂331平行於單極天線31,且第一金屬臂331的第一端331a與接地面39的距離大於第一金屬臂331的第二端331b與接地面39的距離。第一射頻二極體334具有陽極端與陰極端,第一射頻二極體334的陽極端連接第一金屬臂331的第二端331b,第一射頻二極體334的陰極端連接接地面39。第二金屬臂332具有第一端332a與第二端332b,第二金屬臂332的第一端332a連接第一金屬臂331的第二端331b,第二金屬臂331的第二端331b電性連接第一導線34a。第一電容333具有第一端與第二端,第一電容333的第一端連接第二金屬臂332的第二端332b,第一電容333的第二端連接接地面39,其中第一導線34a的走線由第二金屬臂332的第二端332b起始且沿著第一電容333附近而向接地面延伸以電性連接至控制單元32。在圖2中的第一導線34a的走線僅是用以示意,第一導線34a的走線的實施方式將在後續圖4進一步說明。 Referring again to FIG. 2, the monopole antenna 31 mainly produces a linearly polarized radiation pattern, and the monopole antenna 31 receives the RF feed signal to generate a radiation pattern of the first polarization direction. The monopole antenna 31 in FIG. 2 is A vertically polarized radiation pattern is produced (in Figure 2, the vertical polarization direction is a parallel Z axis). The control unit 32 is controlled by the first control signal CT1 to determine whether to output the first DC control voltage V1 by using the first wire 34a and the second wire 34b. The first DC control voltage V1 makes the DC potential of the first wire 34a larger than the first The DC potential of the two wires 34b is electrically connected between the ground plane 39 and the control unit 32. The first reflecting unit 33 is disposed on the first side of the monopole antenna 31 (in FIG. 2 The right side is located on the side of the +Y axis. The distance d between the first reflection unit 33 and the monopole antenna 31 is preferably 0.15 to 0.5 times the wavelength corresponding to the operating frequency of the monopole antenna 31 (ie, 0.15). λ to 0.5 λ), but the invention is not limited thereby. The first reflective unit 33 includes a first metal arm 331, a first RF diode 334, a second metal arm 332, and a first capacitor 333. The first metal arm 331 has a first end 331a and a second end 331b. The first metal arm 331 is parallel to the monopole antenna 31, and the first end 331a of the first metal arm 331 is at a greater distance from the ground plane 39 than the first metal arm. The distance between the second end 331b of the 331 and the ground plane 39. The first RF terminal 334 has an anode end and a cathode end. The anode end of the first RF diode 334 is connected to the second end 331b of the first metal arm 331. The cathode end of the first RF diode 334 is connected to the ground plane 39. . The second metal arm 332 has a first end 332a and a second end 332b. The first end 332a of the second metal arm 332 is connected to the second end 331b of the first metal arm 331, and the second end 331b of the second metal arm 331 is electrically connected. The first wire 34a is connected. The first capacitor 333 has a first end and a second end, the first end of the first capacitor 333 is connected to the second end 332b of the second metal arm 332, and the second end of the first capacitor 333 is connected to the ground plane 39, wherein the first lead The trace of 34a is initiated by the second end 332b of the second metal arm 332 and extends along the vicinity of the first capacitor 333 toward the ground plane to be electrically connected to the control unit 32. The trace of the first wire 34a in Figure 2 is for illustration only, and the embodiment of the trace of the first wire 34a will be further illustrated in Figure 4 below.
另外,為了不影響第一反射單元33與單極天線31的距離設定,第二金屬臂332可設置由第一金屬臂331的第二端331b處起始朝向遠離單極天線31的方向延伸。詳細的說,相比於第二金屬臂332的第一端332a,第二金屬臂332的第二端332b較遠離單極天線31。換句話說,藉由將第一金屬臂331設置於單極天線31與第二金屬臂332之間,使得第二金屬臂332的形狀與配置不受限於 第一反射單元33與單極天線31的間距。 In addition, in order not to affect the distance setting of the first reflecting unit 33 and the monopole antenna 31, the second metal arm 332 may be disposed to extend from the second end 331b of the first metal arm 331 toward the direction away from the monopole antenna 31. In detail, the second end 332b of the second metal arm 332 is farther from the monopole antenna 31 than the first end 332a of the second metal arm 332. In other words, by arranging the first metal arm 331 between the monopole antenna 31 and the second metal arm 332, the shape and configuration of the second metal arm 332 are not limited. The spacing between the first reflecting unit 33 and the monopole antenna 31.
控制單元32可包括受控於第一控制訊號CT1的開關321與直流電壓源322,開關321用以切換是否傳送直流電壓源322的第一直流控制電壓V1至第一射頻二極體334。第一直流控制電壓V1的值需要是大於第一射頻二極體334的導通電壓(臨界電壓)。依據第一射頻二極體334的導通與否,第一反射單元33的兩種狀態將於以下說明。 The control unit 32 can include a switch 321 controlled by the first control signal CT1 and a DC voltage source 322 for switching whether to transmit the first DC control voltage V1 of the DC voltage source 322 to the first RF diode 334. The value of the first DC control voltage V1 needs to be greater than the turn-on voltage (threshold voltage) of the first RF diode 334. Depending on whether the first RF diode 334 is turned on or not, the two states of the first reflecting unit 33 will be described below.
第一反射單元33的第一種狀態如下所述:當控制單元32利用第一導線34a與第二導線34b輸出第一直流控制電壓時V1,第一射頻二極體導通334。第一金屬臂331藉由第一射頻二極體334而與接地面39短路導通,用以提升相對於第一側邊(+Y軸向)的第一對向側邊(-Y軸向)的天線增益,其中短路導通至接地面39的第一金屬臂331的長度等效於單極天線31的操作頻率所對應的波長的四分之一。並且第一電容333對單極天線31的操作頻率而言總是視為導通,使得對於單極天線31的操作頻率而言,第二金屬臂332第二端藉由第一電容333而短路接地。對於射頻訊號的頻率為5GHz的情況而言,第一電容333的電容值為大於80pF較佳,例如為200pF,但本發明並不限定射頻訊號的頻率(或稱為天線操作頻率)與第一電容333的電容值。也就是說,不但第二金屬臂332的第一端332a因為第一射頻二極體334的導通而接地,且對於所使用的射頻訊號而言,第二端332b也藉由第一電容333而接地,使得當第二射頻二極體334導通時第二金屬臂332整體為接地。在此第一種操作狀態,相較於傳統上單獨只有單極天線31時在X-Y平面的全向性輻射場型,可見圖3A所示的輻射場型朝向第一對向側邊(-Y 軸向)偏移。第一金屬臂331成為四分之一波長的共振反射體,因此影響整體的輻射場型,使得第一反射單元產生反射的效果。在實際應用時,例如當單極天線31是操作在5GHz時,第一金屬臂331的長度約為15毫米(mm)左右(5GHz的電磁波在真空中的波長的四分之一),若將第一反射單元33設置於微波基板(例如FR4基板),則可依據微波基板材料的介電系數而進一步縮短第一金屬臂331的實際長度。 The first state of the first reflecting unit 33 is as follows: When the control unit 32 outputs the first DC control voltage V1 by using the first wire 34a and the second wire 34b, the first RF diode is turned on 334. The first metal arm 331 is short-circuited with the ground plane 39 by the first RF diode 334 for lifting the first opposite side (-Y axis) with respect to the first side (+Y axis) The antenna gain, wherein the length of the first metal arm 331 that is shorted to the ground plane 39 is equivalent to one quarter of the wavelength corresponding to the operating frequency of the monopole antenna 31. And the first capacitor 333 is always regarded as being turned on for the operating frequency of the monopole antenna 31, so that the second end of the second metal arm 332 is short-circuited to the ground by the first capacitor 333 for the operating frequency of the monopole antenna 31. . For the case where the frequency of the RF signal is 5 GHz, the capacitance value of the first capacitor 333 is preferably greater than 80 pF, for example, 200 pF, but the present invention does not limit the frequency of the RF signal (or the antenna operating frequency) and the first The capacitance value of the capacitor 333. That is, not only the first end 332a of the second metal arm 332 is grounded due to the conduction of the first RF diode 334, but also the second end 332b is also used by the first capacitor 333 for the RF signal used. The grounding is such that the second metal arm 332 is entirely grounded when the second RF diode 334 is turned on. In this first operational state, the radiation pattern shown in Fig. 3A is oriented toward the first opposite side (-Y) compared to the omnidirectional radiation pattern in the X-Y plane when the monopole antenna 31 is conventionally alone. Axial) offset. The first metal arm 331 becomes a quarter-wavelength resonant reflector, thus affecting the overall radiation pattern, so that the first reflecting unit produces a reflection effect. In practical applications, for example, when the monopole antenna 31 is operated at 5 GHz, the length of the first metal arm 331 is about 15 millimeters (mm) (a quarter of the wavelength of a 5 GHz electromagnetic wave in a vacuum), if When the first reflecting unit 33 is disposed on the microwave substrate (for example, the FR4 substrate), the actual length of the first metal arm 331 can be further shortened according to the dielectric coefficient of the microwave substrate material.
第一反射單元33的第二種狀態如下所述:當控制單元32不利用第一導線34a與第二導線34b輸出第一直流控制電壓V1時,第一射頻二極體334不導通。對於單極天線31的操作頻率而言,第一金屬臂331與第二金屬臂332藉由第一電容333短路至接地面39以構成半波長短路路徑,藉此避免影響單極天線31的全向性輻射場型。也就是說,除了第一金屬臂331的大約四分之一波長路徑,第二金屬臂332更提供了四分之一波長的短路路徑,第一金屬臂331與第二金屬臂332共同構成半波長短路路徑。當單極天線31是操作在5GHz時,第一金屬臂331、第二金屬臂332與第一電容333構成的半波長短路路徑其並不是5GHz頻率的共振反射體。因此,單極天線31即使激發此半波長短路路徑上的電流,此半波長短路路徑上的電流仍不影響整體的輻射場型。參照圖3B,可見輻射場型仍保持大約為全向性的輻射場型。 The second state of the first reflecting unit 33 is as follows: When the control unit 32 does not output the first DC control voltage V1 by using the first wire 34a and the second wire 34b, the first RF diode 334 is not turned on. For the operating frequency of the monopole antenna 31, the first metal arm 331 and the second metal arm 332 are short-circuited to the ground plane 39 by the first capacitor 333 to form a half-wave short-circuit path, thereby avoiding affecting the entire monopole antenna 31. Radiation radiation field type. That is to say, in addition to the approximately one-quarter wavelength path of the first metal arm 331, the second metal arm 332 further provides a short-wavelength path of a quarter wavelength, and the first metal arm 331 and the second metal arm 332 together form a half. Wavelength short circuit path. When the monopole antenna 31 is operated at 5 GHz, the first metal arm 331, the second metal arm 332, and the first capacitor 333 constitute a half-wavelength short-circuit path which is not a resonant reflector of 5 GHz frequency. Therefore, even if the monopole antenna 31 excites the current on the half-wavelength short-circuit path, the current on the half-wavelength short-circuit path does not affect the overall radiation pattern. Referring to Figure 3B, it can be seen that the radiation pattern still maintains an approximately omnidirectional radiation pattern.
在實際應用時,控制單元32的切換可以例如依據接收信號強度指示(Received Signal Strength Indicator,RSSI),而判斷選擇何種切換的輻射場型狀態以做無線網路通訊之用,例如:選擇接收信號強度指示較大的輻射場型狀態作為通訊之用,且可 因應接收信號強度指示的變化而改變輻射場型的切換狀態。但本發明並不因此限定決定如何切換輻射場型的因素。 In actual application, the switching of the control unit 32 may determine, according to a Received Signal Strength Indicator (RSSI), for example, which switching radiation field state is selected for wireless network communication, for example, selecting to receive. The signal strength indicates a large radiation field state for communication and The switching state of the radiation pattern is changed in response to a change in the received signal strength indication. However, the invention does not therefore limit the factors that determine how to switch the radiation pattern.
請參照圖4,圖4是本發明實施例提供的可調整輻射場型的天線結構其實際應用的結構圖。在實際應用時,單極天線31可設置於微波基板62,例如以蝕刻製程形成於微波基板62,並利用同軸電纜線饋入。第一反射單元33也可設置於微波基板63,同樣可藉由蝕刻製程形成於微波基板63,第一電容333與第一射頻二極體334較佳為表面黏著元件。接下來說明,實現第一導線34a的走線由第二金屬臂332的第二端332b起始且沿著第一電容333附近而向接地面延伸以電性連接至控制單元32的方式。第一導線34a具有第一端與第二端,第一導線34a可設置在微波基板62的另一面(背面),且第一導線34a的第一端利用貫孔導電連接第二金屬臂332,且第一導線34a的走線由第一導線34a的第一端起始且沿著第一電容333附近而向接地面39延伸至第一導線34a的第二端,然後第一導線34a的第二端電性連接控制單元32。設置第一導線34a的走線沿著第一電容333的原因是,就單極天線31的操作頻率而言,電容333總是視為導通的狀態,故將第一導線34a的走線靠近第一電容333,可以使第一導線34a的電流路徑與第一電容333的電流路徑彼此接近,而可將第一導線34a的電流路徑與第一電容333的電流路徑視為在大致為同一個位置的電流路徑,因此第一導線34a的電流大體上(或實質上)不改變第一反射單元33所形成結構的電流路徑對於單極天線31輻射場型的影響。另一方面,第二導線34b可直接連接於接地面39與控制單元32之間,用以電性連接第一射頻二極體334的陰極以形成第一射頻二極體334與控制單元32之間的 接地路徑。 Please refer to FIG. 4. FIG. 4 is a structural diagram of an antenna structure of an adjustable radiation field according to an embodiment of the present invention. In practical applications, the monopole antenna 31 can be disposed on the microwave substrate 62, for example, formed on the microwave substrate 62 by an etching process, and fed through the coaxial cable. The first reflective unit 33 can also be disposed on the microwave substrate 63, and can also be formed on the microwave substrate 63 by an etching process. The first capacitor 333 and the first RF diode 334 are preferably surface-mounting components. Next, the manner in which the trace of the first wire 34a is initiated by the second end 332b of the second metal arm 332 and extends along the vicinity of the first capacitor 333 to the ground plane to be electrically connected to the control unit 32 is illustrated. The first wire 34a has a first end and a second end. The first wire 34a can be disposed on the other side (back surface) of the microwave substrate 62, and the first end of the first wire 34a is electrically connected to the second metal arm 332 by using the through hole. And the trace of the first wire 34a starts from the first end of the first wire 34a and extends along the vicinity of the first capacitor 333 to the ground plane 39 to the second end of the first wire 34a, and then the first wire 34a The two ends are electrically connected to the control unit 32. The reason why the trace of the first wire 34a is disposed along the first capacitor 333 is that the capacitor 333 is always regarded as the conductive state in terms of the operating frequency of the monopole antenna 31, so that the trace of the first wire 34a is close to the first A capacitor 333 can make the current path of the first wire 34a and the current path of the first capacitor 333 close to each other, and can regard the current path of the first wire 34a and the current path of the first capacitor 333 as being substantially at the same position. The current path, and thus the current of the first wire 34a, substantially (or substantially) does not change the effect of the current path of the structure formed by the first reflecting unit 33 on the radiation pattern of the monopole antenna 31. On the other hand, the second wire 34b can be directly connected between the grounding surface 39 and the control unit 32 for electrically connecting the cathode of the first RF diode 334 to form the first RF diode 334 and the control unit 32. Between Ground path.
以下將進一步說明,利用兩個反射單元進行場型控制的實施例。請參照圖5,圖5是本發明另一實施例提供的具有兩個反射單元的可調整輻射場型的天線結構其實際應用的結構圖。相較於圖4的應用例子,圖5的實施例中的天線結構更包括第二反射單元35。第二反射單元35大致與第一反射單元33相同,其差異僅在於第二反射單元35所設置的位置與第一反射單元33所設置的位置不相同,且第二反射單元35與第一反射單元33彼此獨立的受控於控制單元32。詳細的說,控制單元32受控於第二控制訊號CT2以決定是否利用第三導線34c與第四導線34d輸出第二直流控制電壓V2,第二直流控制電壓V2使第三導線34c的直流電位大於第四導線34d的直流電位,第四導線34d電性連接於接地面39與控制單元32之間。第二反射單元35設置於單極天線31的第二側邊(-Y軸向),第二反射單元35包括第三金屬臂351、第二射頻二極體354、第四金屬臂352以及第二電容353。第二反射單元35可設置於微波基板62,第三金屬臂351與第四金屬臂352藉由蝕刻製程形成於此微波基板62,第二電容353與第二射頻二極體354為表面黏著元件。第三金屬臂351具有第一端351a與第二端352b,第三金屬臂351平行於單極天線31,且第三金屬臂351的第一端351a與接地面39的距離大於第三金屬臂351的第二端351b與接地面39的距離。第二射頻二極體354具有陽極端與陰極端,第二射頻二極體354的陽極端連接第三金屬臂351的第二端351b,第二射頻二極體354的陰極端連接接地面39。第四金屬臂352具有第一端352a與第二端352b,第四金屬臂352的第一端352a連接第三金屬臂351的第二端351b,第四金 屬臂352的第二端352b電性連接第三導線34c。第二電容353具有第一端與第二端,第二電容353的第一端連接第四金屬臂352的第二端352b,第二電容353的第二端連接接地面39,其中第三導線34c的走線由第四金屬臂352的第二端352b起始且沿著第二電容353附近而向接地面39延伸以電性連接至控制單元32。當控制單元32利用第三導線34c與第四導線34d輸出第二直流控制電壓V2時,第二射頻二極體354導通,第三金屬臂351藉由第二射頻二極體354而與接地面39短路導通,用以提升相對於第二側邊(-Y軸向)的第二對向側邊(+Y軸向)的天線增益,其中短路導通至接地面39的第三金屬臂351的長度等效於單極天線31的操作頻率所對應的波長的四分之一。當控制單元31不利用第三導線34c與第四導線34d輸出第二直流控制電壓V2時,第二射頻二極體354不導通,且對於射頻訊號而言,第三金屬臂351與第四金屬臂352藉由第二電容353短路至接地面39以構成半波長短路路徑,藉此避免影響單極天線31的全向性輻射場型。在圖5中因為第一反射單元33與第二反射單元35彼此相對,故圖5的實施例中的第二對向側邊恰好是的第一反射單元33的第一側邊,但本發明並不因此限定。 An embodiment of field type control using two reflecting units will be further explained below. Please refer to FIG. 5. FIG. 5 is a structural diagram of an antenna structure of an adjustable radiation field type having two reflection units according to another embodiment of the present invention. Compared to the application example of FIG. 4, the antenna structure in the embodiment of FIG. 5 further includes a second reflection unit 35. The second reflecting unit 35 is substantially the same as the first reflecting unit 33 except that the position where the second reflecting unit 35 is disposed is different from the position where the first reflecting unit 33 is disposed, and the second reflecting unit 35 and the first reflection are Units 33 are controlled independently of each other by control unit 32. In detail, the control unit 32 is controlled by the second control signal CT2 to determine whether to output the second DC control voltage V2 by using the third wire 34c and the fourth wire 34d, and the second DC control voltage V2 is such that the DC potential of the third wire 34c is The fourth wire 34d is electrically connected between the grounding surface 39 and the control unit 32. The second reflection unit 35 is disposed on the second side (−Y axis) of the monopole antenna 31, and the second reflection unit 35 includes the third metal arm 351, the second RF diode 354, the fourth metal arm 352, and the Two capacitors 353. The second reflective unit 35 can be disposed on the microwave substrate 62. The third metal arm 351 and the fourth metal arm 352 are formed on the microwave substrate 62 by an etching process, and the second capacitor 353 and the second RF diode 354 are surface adhesion components. . The third metal arm 351 has a first end 351a and a second end 352b, the third metal arm 351 is parallel to the monopole antenna 31, and the first end 351a of the third metal arm 351 is at a greater distance from the ground plane 39 than the third metal arm The distance between the second end 351b of the 351 and the ground plane 39. The second RF diode 354 has an anode end and a cathode end, the anode end of the second RF diode 354 is connected to the second end 351b of the third metal arm 351, and the cathode end of the second RF diode 354 is connected to the ground plane 39. . The fourth metal arm 352 has a first end 352a and a second end 352b, and the first end 352a of the fourth metal arm 352 is connected to the second end 351b of the third metal arm 351, the fourth gold The second end 352b of the arm 352 is electrically connected to the third wire 34c. The second capacitor 353 has a first end and a second end, the first end of the second capacitor 353 is connected to the second end 352b of the fourth metal arm 352, and the second end of the second capacitor 353 is connected to the ground plane 39, wherein the third wire The trace of 34c is initiated by the second end 352b of the fourth metal arm 352 and extends along the vicinity of the second capacitor 353 to the ground plane 39 for electrical connection to the control unit 32. When the control unit 32 outputs the second DC control voltage V2 by using the third wire 34c and the fourth wire 34d, the second RF diode 354 is turned on, and the third metal arm 351 is connected to the ground plane by the second RF diode 354. 39 short-circuited to increase the antenna gain of the second opposite side (+Y-axis) with respect to the second side (-Y-axis), wherein the short-circuit is conducted to the third metal arm 351 of the ground plane 39 The length is equivalent to one quarter of the wavelength corresponding to the operating frequency of the monopole antenna 31. When the control unit 31 does not use the third wire 34c and the fourth wire 34d to output the second DC control voltage V2, the second RF diode 354 is non-conductive, and for the RF signal, the third metal arm 351 and the fourth metal The arm 352 is shorted to the ground plane 39 by the second capacitor 353 to form a half wavelength short circuit path, thereby avoiding affecting the omnidirectional radiation pattern of the monopole antenna 31. In FIG. 5, since the first reflecting unit 33 and the second reflecting unit 35 are opposed to each other, the second opposite side in the embodiment of FIG. 5 is exactly the first side of the first reflecting unit 33, but the present invention Not limited by this.
再者,類似於第一導線34a的較佳設置方式,第三導線34c的較佳設置方式描述如下,第三導線34c可設置在微波基板62的另一面(背面),且第三導線34c的第一端利用貫孔導電連接第四金屬臂352,且第三導線34c的走線由第三導線34c的第一端起始且沿著第二電容353附近而向接地面39延伸至第三導線34c的第二端,然後第三導線34c的第二端電性連接控制單元32。 Moreover, similarly to the preferred arrangement of the first wire 34a, the preferred arrangement of the third wire 34c is described as follows. The third wire 34c can be disposed on the other side (back side) of the microwave substrate 62, and the third wire 34c The first end electrically connects the fourth metal arm 352 with the through hole, and the trace of the third wire 34c starts from the first end of the third wire 34c and extends along the vicinity of the second capacitor 353 to the ground plane 39 to the third The second end of the wire 34c, and then the second end of the third wire 34c is electrically connected to the control unit 32.
另外,為了不影響第二反射單元53與單極天線31的 距離設定,第四金屬臂352可設置由第三金屬臂351的第二端351b處起始朝向遠離單極天線31的方向延伸。再者,第三金屬臂351與單極天線31的距離是單極天線31的操作頻率所對應波長的0.15倍至0.5倍為較佳。當單極天線的操作頻率為5GHz,第二電容353的電容值較佳的為大於80pF。第二反射單元35的原理與第一反射單元33的原理大致相同,不再贅述。 In addition, in order not to affect the second reflecting unit 53 and the monopole antenna 31 With the distance setting, the fourth metal arm 352 can be disposed to extend from the second end 351b of the third metal arm 351 toward the direction away from the monopole antenna 31. Furthermore, it is preferable that the distance between the third metal arm 351 and the monopole antenna 31 is 0.15 to 0.5 times the wavelength corresponding to the operating frequency of the monopole antenna 31. When the operating frequency of the monopole antenna is 5 GHz, the capacitance of the second capacitor 353 is preferably greater than 80 pF. The principle of the second reflecting unit 35 is substantially the same as that of the first reflecting unit 33, and will not be described again.
以下將說明,依據第一反射單元33與第二反射單元35的第一射頻二極體334與第二射頻二極體354的導通情況,輻射場型可以分為三種應用,分別對應圖6A、圖6B與圖6C所示的輻射場型。請參照圖6A,圖6A是圖5實施例的可調整輻射場型的天線結構在第一射頻二極體334與第二射頻二極體354皆不導通時的輻射場型圖,此時輻射場型大致維持全向性的輻射場型。而圖6B是圖5實施例的可調整輻射場型的天線結構在第一射頻二極體334導通且第二射頻二極體354不導通時的輻射場型圖,輻射場型朝向第二反射單元35偏移(-Y軸向)。接著,參照圖6C,圖6C是圖5實施例的可調整輻射場型的天線結構在第二射頻二極體354導通且第一射頻二極體334不導通時的輻射場型圖,輻射場型朝向第一反射單元33偏移(+Y軸向)。 In the following, according to the conduction state of the first RF diode 334 and the second RF diode 354 of the first reflection unit 33 and the second reflection unit 35, the radiation pattern can be divided into three applications, corresponding to FIG. 6A respectively. The radiation pattern shown in Figures 6B and 6C. Referring to FIG. 6A, FIG. 6A is a radiation pattern diagram of the adjustable radiation field type antenna structure of the embodiment of FIG. 5 when the first RF diode 334 and the second RF diode 354 are not conducting. The field type generally maintains an omnidirectional radiation pattern. 6B is a radiation pattern diagram of the adjustable radiation field type antenna structure of the embodiment of FIG. 5 when the first RF diode 334 is turned on and the second RF diode 354 is not turned on, and the radiation pattern is oriented toward the second reflection. Unit 35 is offset (-Y axis). 6C, FIG. 6C is a radiation pattern of the adjustable radiation field type antenna structure of the embodiment of FIG. 5 when the second RF diode 354 is turned on and the first RF diode 334 is not conducting. The pattern is offset toward the first reflecting unit 33 (+Y axis).
更進一步,本發明實施例所提供的可調整輻射場型的天線結構可具有超過兩個反射單元,且可依據使用需要而選擇反射單元的數量以及每一個反射單元的位置,上述的具有一個反射單元與兩個反射單元的實施例僅用以幫助說明原理,可依此類推至具有三個或三個以上的反射單元的情況。例如參照圖7的例子是使用對稱設置在單極天線71的四個側邊的反射單元73,每一個 反射單元73的功能相同於圖2的第一反射單元33,不再贅述。圖7中的天線各部元件經過比例調整以方便繪製,在實際實施時,每一個反射單元73與單極天線31的距離較佳是單極天線71的操作頻率所對應波長的0.15倍至0.5倍(即0.15 λ至0.5 λ)。圖7中也省略了控制單元與控制二極體導通狀態的導線。依據前面實施例所提的運作機制,藉由四個反射單元73的狀態切換,可以控制X-Y平面的輻射場型。圖7中的四個反射單元73的結構與相對位置僅是用以舉例說明,本發明也不因此限定。 Further, the antenna structure of the adjustable radiation field type provided by the embodiment of the present invention may have more than two reflecting units, and the number of reflecting units and the position of each reflecting unit may be selected according to the needs of use, and the above has a reflection. Embodiments of the unit and the two reflecting units are only used to help illustrate the principle, and so can be pushed to the case of having three or more reflecting units. For example, referring to the example of Fig. 7, reflection units 73 symmetrically disposed on the four sides of the monopole antenna 71 are used, each of which The function of the reflecting unit 73 is the same as that of the first reflecting unit 33 of FIG. 2 and will not be described again. The components of the antennas in FIG. 7 are scaled to facilitate drawing. In actual implementation, the distance between each of the reflecting units 73 and the monopole antenna 31 is preferably 0.15 to 0.5 times the wavelength corresponding to the operating frequency of the monopole antenna 71. (ie 0.15 λ to 0.5 λ). The wires of the control unit and the control diode conduction state are also omitted in FIG. According to the operation mechanism proposed in the previous embodiment, the radiation pattern of the X-Y plane can be controlled by the state switching of the four reflection units 73. The structure and relative positions of the four reflecting units 73 in FIG. 7 are only for illustration, and the present invention is not limited thereto.
綜上所述,本發明實施例所提供的可調整輻射場型的天線結構利用導通第一反射單元的第一射頻二極體,使第一反射單元形成四分之一波長的共振反射體,提升相對於第一側邊的第一對向側邊的天線增益,藉以達到天線結構整體的輻射場型可調整的目的。當第一射頻二極體不導通時,第一反射單元形成半波長短路接地,無反射效果,天線結構整體的輻射場型維持與單極天線原本的輻射場型大致相同。同理,當具有第二反射單元時,利用導通第二反射單元的第二射頻二極體,可提升相對於第二側邊的第二對向側邊的天線增益。依此類推,本發明實施例的可調整輻射場型的天線結構可推廣應用於具有多個反射單元的情況,藉以達到輻射場型及增益可多方向調整的效果。 In summary, the antenna structure of the adjustable radiation field according to the embodiment of the present invention uses the first radio frequency diode that turns on the first reflection unit to form the first reflection unit to form a quarter-wavelength resonant reflector. The antenna gain of the first opposite side of the first side is increased, thereby achieving the purpose of adjusting the radiation field of the antenna structure as a whole. When the first RF diode is not conducting, the first reflecting unit forms a half-wave short-circuit grounding, and has no reflection effect, and the radiation pattern of the antenna structure as a whole is maintained substantially the same as the original radiation field of the monopole antenna. Similarly, when the second reflective unit is provided, the antenna gain of the second opposite side with respect to the second side can be increased by using the second radio frequency diode that turns on the second reflective unit. By analogy, the antenna structure of the adjustable radiation field type of the embodiment of the present invention can be applied to a case with multiple reflection units, thereby achieving the effect of multi-directional adjustment of the radiation field type and the gain.
以上所述僅為本發明之實施例,其並非用以侷限本發明之專利範圍。 The above description is only an embodiment of the present invention, and is not intended to limit the scope of the invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105127179A TWI613866B (en) | 2016-08-23 | 2016-08-23 | Antenna structure with tunable radiation pattern |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105127179A TWI613866B (en) | 2016-08-23 | 2016-08-23 | Antenna structure with tunable radiation pattern |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI613866B TWI613866B (en) | 2018-02-01 |
TW201810802A true TW201810802A (en) | 2018-03-16 |
Family
ID=62014667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105127179A TWI613866B (en) | 2016-08-23 | 2016-08-23 | Antenna structure with tunable radiation pattern |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI613866B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI670896B (en) * | 2018-07-05 | 2019-09-01 | 泓博無線通訊技術有限公司 | Antenna unit and adaptive antenna control module having the same |
TWI752774B (en) * | 2020-12-30 | 2022-01-11 | 財團法人工業技術研究院 | Highly integrated pattern-variable multi-antenna array |
US11569585B2 (en) | 2020-12-30 | 2023-01-31 | Industrial Technology Research Institute | Highly integrated pattern-variable multi-antenna array |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1197317A (en) * | 1982-05-13 | 1985-11-26 | Prakash Bhartia | Broadband microstrip antenna with varactor diodes |
CA1239223A (en) * | 1984-07-02 | 1988-07-12 | Robert Milne | Adaptive array antenna |
US7696946B2 (en) * | 2004-08-18 | 2010-04-13 | Ruckus Wireless, Inc. | Reducing stray capacitance in antenna element switching |
US7646343B2 (en) * | 2005-06-24 | 2010-01-12 | Ruckus Wireless, Inc. | Multiple-input multiple-output wireless antennas |
GB0905770D0 (en) * | 2009-04-03 | 2009-05-20 | Siemens Ag | Bias control |
-
2016
- 2016-08-23 TW TW105127179A patent/TWI613866B/en active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI670896B (en) * | 2018-07-05 | 2019-09-01 | 泓博無線通訊技術有限公司 | Antenna unit and adaptive antenna control module having the same |
TWI752774B (en) * | 2020-12-30 | 2022-01-11 | 財團法人工業技術研究院 | Highly integrated pattern-variable multi-antenna array |
US11569585B2 (en) | 2020-12-30 | 2023-01-31 | Industrial Technology Research Institute | Highly integrated pattern-variable multi-antenna array |
Also Published As
Publication number | Publication date |
---|---|
TWI613866B (en) | 2018-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106129613B (en) | Antenna structure capable of adjusting radiation field type | |
US9466886B2 (en) | Antenna device | |
JP5969821B2 (en) | Antenna device | |
US10211533B2 (en) | Dual band printed antenna | |
TWI613866B (en) | Antenna structure with tunable radiation pattern | |
US11329382B1 (en) | Antenna structure | |
CN103378420A (en) | Antenna system | |
CN110212299B (en) | Array antenna module with adjustable element factors | |
US20100090912A1 (en) | Multi-frequency antenna and an electronic device having the multi-frequency antenna thereof | |
TWI608657B (en) | Antenna structure with tunable radiation pattern | |
CN107681254B (en) | Control module and multi-antenna device with same | |
WO2018163695A1 (en) | Multiband antenna and wireless communication device | |
US10211517B2 (en) | Mobile device | |
CN205900786U (en) | Adjustable radiation pattern's antenna structure | |
US11355847B2 (en) | Antenna structure | |
CN111293429B (en) | Automatic switching intelligent antenna device | |
US11923622B2 (en) | Antenna and wireless communication device | |
US20130300631A1 (en) | Antenna with feeder and electronic device | |
TWI662744B (en) | Controlable antenna unit and antenna module of electronic device | |
TWI740383B (en) | Auto-switch smart antenna device | |
US20100013716A1 (en) | Multi-frequency antenna and an electronic device having the multi-frequency antenna | |
US12107352B2 (en) | Antenna for sending and/or receiving electromagnetic signals | |
CN111244630B (en) | Switchable antenna module | |
CN109149060B (en) | Controllable antenna module and electronic device with same | |
TWI692150B (en) | Controlable antenna module and electronic device having the same |