TW201810569A - Semiconductor device structures - Google Patents
Semiconductor device structures Download PDFInfo
- Publication number
- TW201810569A TW201810569A TW105105818A TW105105818A TW201810569A TW 201810569 A TW201810569 A TW 201810569A TW 105105818 A TW105105818 A TW 105105818A TW 105105818 A TW105105818 A TW 105105818A TW 201810569 A TW201810569 A TW 201810569A
- Authority
- TW
- Taiwan
- Prior art keywords
- metal layer
- passivation
- layer
- semiconductor device
- device structure
- Prior art date
Links
Landscapes
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
本發明係有關於半導體裝置結構,特別係有關於半導體裝置結構的鈍化層及頂部金屬層之佈局。 The present invention relates to semiconductor device structures, and more particularly to the layout of passivation layers and top metal layers of semiconductor device structures.
近年來,半導體裝置在電腦、消費電子等領域中發展快速。目前,半導體裝置技術在金屬氧化物半導體場效電晶體的產品市場中已被廣泛接受,具有很高的市場佔有率。 In recent years, semiconductor devices have developed rapidly in the fields of computers and consumer electronics. At present, semiconductor device technology has been widely accepted in the product market of metal oxide semiconductor field effect transistors, and has a high market share.
薄膜電阻(thin-film resistors)器被廣泛地應用於各種積體電路(integrated circuits)中,其中多晶矽電阻(poly resistor)器為主要的高電阻元件之一。由於近年來在智慧電子(smart products)、物聯網(networking)和車用電子(automotive electronics)的蓬勃發展使得薄膜電阻器的精準度受到重視。雖然目前存在的半導體裝置已足夠應付它們原先預定的用途,但它們仍未在各個方面皆徹底的符合要求,例如,現今半導體裝置面臨薄膜電阻器的電阻值有飄移率過大的問題,而機械應力(mechanical stress)是造成電阻飄移的主要原因之一。例如,在半導體裝置的後段製程中,各道製程中所產生的應力使得下層的電阻器產生壓阻效應(piezoresistance effect)。因此,如何藉由製程上或結構上的改良而降低薄膜電阻器的電阻值之飄移率是值得研究的課題。 Thin-film resistors are widely used in various integrated circuits in which a poly resistor is one of the main high-resistance elements. The precision of thin film resistors has been valued in recent years in the booming of smart products, networking and automotive electronics. Although the existing semiconductor devices are sufficient for their intended use, they have not been fully met in all respects. For example, today's semiconductor devices face the problem that the resistance of the thin film resistor has an excessive drift rate, and the mechanical stress (Mechanical stress) is one of the main causes of resistance drift. For example, in the latter stage of a semiconductor device, the stress generated in each process causes the underlying resistor to have a piezoresistance effect. Therefore, how to reduce the drift rate of the resistance value of the thin film resistor by the process or structural improvement is a subject worth studying.
本揭露的一些實施例係關於半導體裝置結構,其包含半導體基底,內金屬層設置於半導體基底上,頂部金屬層設置於內金屬層上,其中頂部金屬層具有第一部分及第二部分,第一部分完全覆蓋內金屬層,第二部分圍繞第一部分,且第一部分與第二部分隔開,以及鈍化層設置於頂部金屬層上,其中鈍化層具有挖空圖案,以露出頂部金屬層。 Some embodiments of the present disclosure relate to a semiconductor device structure including a semiconductor substrate, an inner metal layer disposed on the semiconductor substrate, and a top metal layer disposed on the inner metal layer, wherein the top metal layer has a first portion and a second portion, the first portion The inner metal layer is completely covered, the second portion surrounds the first portion, and the first portion is spaced apart from the second portion, and the passivation layer is disposed on the top metal layer, wherein the passivation layer has a hollowed out pattern to expose the top metal layer.
本揭露的另一些實施例係關於半導體裝置結構,其包含半導體基底,內金屬層設置於半導體基底上,頂部金屬層設置於內金屬層上,鈍化層設置於頂部金屬層上,鈍化層包含第一鈍化部分和第二鈍化部分與該第一鈍化部分隔開,其中第二鈍化部分圍繞第一鈍化部分,且第一鈍化部分與第二鈍化部分間的空隙露出頂部金屬層。 Further embodiments of the present disclosure relate to a semiconductor device structure including a semiconductor substrate, an inner metal layer disposed on the semiconductor substrate, a top metal layer disposed on the inner metal layer, a passivation layer disposed on the top metal layer, and a passivation layer including A passivation portion and a second passivation portion are spaced apart from the first passivation portion, wherein the second passivation portion surrounds the first passivation portion, and a void between the first passivation portion and the second passivation portion exposes the top metal layer.
100‧‧‧半導體基底 100‧‧‧Semiconductor substrate
110‧‧‧多晶矽層 110‧‧‧Polysilicon layer
120‧‧‧介電層 120‧‧‧ dielectric layer
130、213、260‧‧‧導孔 130, 213, 260‧ ‧ lead holes
210‧‧‧內金屬層 210‧‧‧Inner metal layer
220‧‧‧頂部金屬層 220‧‧‧Top metal layer
222‧‧‧第一部分 222‧‧‧Part I
224‧‧‧第二部分 224‧‧‧Part II
230‧‧‧鈍化層 230‧‧‧ Passivation layer
232‧‧‧第一鈍化部分 232‧‧‧ first passivation
232a、232b、211a、212a‧‧‧區塊 Blocks 232a, 232b, 211a, 212a‧‧
234‧‧‧第二鈍化部分 234‧‧‧Second passivation
240‧‧‧層間介電層 240‧‧‧Interlayer dielectric layer
250‧‧‧挖空圖案 250‧‧‧ hollowed out pattern
252‧‧‧第一挖空區 252‧‧‧First Knockout Area
254‧‧‧第二挖空區 254‧‧‧Second hollowed out area
256‧‧‧連接部 256‧‧‧Connecting Department
300‧‧‧半導體裝置結構 300‧‧‧Semiconductor device structure
第1A圖係顯示根據一些實施例,半導體裝置結構的剖面示意圖。 1A is a cross-sectional view showing the structure of a semiconductor device in accordance with some embodiments.
第1B圖係顯示根據一些實施例,如第1A圖所示的半導體裝置結構中鈍化層和頂部金屬層的佈局之上視圖。 1B is a top view showing the layout of the passivation layer and the top metal layer in the semiconductor device structure as shown in FIG. 1A, in accordance with some embodiments.
第2A圖係顯示根據一些實施例,半導體裝置結構的剖面示意圖。 2A is a cross-sectional view showing the structure of a semiconductor device in accordance with some embodiments.
第2B圖係顯示根據一些實施例,如第2A圖所示的半導體裝置結構中鈍化層和頂部金屬層的佈局之上視圖。 2B is a top view showing the layout of the passivation layer and the top metal layer in the semiconductor device structure as shown in FIG. 2A, in accordance with some embodiments.
第3A-3B圖係顯示根據一些實施例,半導體裝置結構中鈍化層的佈局之上視圖。 3A-3B is a top view showing the layout of a passivation layer in a semiconductor device structure in accordance with some embodiments.
第4A圖係顯示根據一些實施例,內金屬層的剖面示意圖。 Figure 4A shows a schematic cross-sectional view of an inner metal layer in accordance with some embodiments.
第4B圖係顯示根據一些實施例,如第4A圖所示的內金屬層的佈局之上視圖。 Figure 4B shows a top view of the layout of the inner metal layer as shown in Figure 4A, in accordance with some embodiments.
以下針對本揭露之半導體裝置結構的佈局作詳細說明。應了解的是,以下之敘述提供許多不同的實施例或例子,用以實施本揭露之不同樣態。以下所述特定的元件及排列方式儘為簡單描述本揭露。當然,這些僅用以舉例而非本揭露之限定。此外,在不同實施例中可能使用重複的標號或標示。這些重複僅為了簡單清楚地敘述本揭露,不代表所討論之不同實施例及/或結構之間具有任何關連性。再者,當述及一第一材料層位於一第二材料層上或之上時,包括第一材料層與第二材料層直接接觸之情形。或者,亦可能間隔有一或更多其它材料層之情形,在此情形中,第一材料層與第二材料層之間可能不直接接觸。 The layout of the semiconductor device structure of the present disclosure will be described in detail below. It will be appreciated that the following description provides many different embodiments or examples for implementing the various aspects of the disclosure. The specific elements and arrangements described below are provided to provide a brief description of the disclosure. Of course, these are only used as examples and not as a limitation of the disclosure. Moreover, repeated numbers or labels may be used in different embodiments. These repetitions are merely for the purpose of simplicity and clarity of the disclosure, and are not intended to be a limitation of the various embodiments and/or structures discussed. Furthermore, when a first material layer is on or above a second material layer, the first material layer is in direct contact with the second material layer. Alternatively, it is also possible to have one or more layers of other materials interposed, in which case there may be no direct contact between the first layer of material and the second layer of material.
必需了解的是,為特別描述或圖示之元件可以此技術人士所熟知之各種形式存在。此外,當某層在其它層或基板「上」時,有可能是指「直接」在其它層或基板上,或指某層在其它層或基板上,或指其它層或基板之間夾設其它層。 It is to be understood that the elements specifically described or illustrated may be in various forms well known to those skilled in the art. In addition, when a layer is "on" another layer or substrate, it may mean "directly" on another layer or substrate, or a layer on another layer or substrate, or between other layers or substrates. Other layers.
此外,實施例中可能使用相對性的用語,例如「較低」或「底部」及「較高」或「頂部」,以描述圖示的一個元件對於另一元件的相對關係。能理解的是,如果將圖示的裝置翻轉使其上下顛倒,則所敘述在「較低」側的元件將會成為在「較高」側的元件。 In addition, relative terms such as "lower" or "bottom" and "higher" or "top" may be used in the embodiments to describe the relative relationship of one element to another. It will be understood that if the illustrated device is flipped upside down, the component described on the "lower" side will be the component on the "higher" side.
在此,「約」、「大約」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內。在此給定的數量為大約的數量,意即在沒有特定說明的情況下,仍可隱含「約」、「大約」之含義。 Here, the terms "about" and "about" are usually expressed within 20% of a given value or range, preferably within 10%, and more preferably within 5%. The quantity given here is an approximate quantity, meaning that the meaning of "about" or "about" may be implied without specific explanation.
注意本發明係揭露半導體裝置結構中鈍化層與頂部金屬層的佈局之實施例,且上述實施例可被包含於例如微處理器、記憶元件及/或其他元件之積體電路(IC)中。上述積體電路(IC)也可包括不同的被動和主動微電子元件,例如薄膜電阻(thin-film resistor)、其他類型電容(例如金屬-絕緣體-金屬電容(metal-insulator-metal capacitor,MIMCAP))、電感、二極體、金屬氧化物半導體場效電晶體(Metal-Oxide-Semiconductor field-effect transistors,MOSFETs)、互補式MOS電晶體、雙載子接面電晶體(BJTs)、橫向擴散型MOS電晶體(LDMOS)、高功率MOS電晶體或其他類型的電晶體。在本發明所屬技術領域中具有通常知識者可以了解也可使用其他類型的半導體元件。 It is noted that the present invention discloses an embodiment of the layout of the passivation layer and the top metal layer in the structure of the semiconductor device, and the above embodiments may be included in an integrated circuit (IC) such as a microprocessor, a memory element, and/or other components. The integrated circuit (IC) may also include different passive and active microelectronic components, such as thin-film resistors, other types of capacitors (eg, metal-insulator-metal capacitors (MIMCAP)). ), Inductors, Diodes, Metal-Oxide-Semiconductor Field-effect transistors (MOSFETs), Complementary MOS transistors, Bi-carrier junction transistors (BJTs), Lateral Diffusion MOS transistor (LDMOS), high power MOS transistor or other type of transistor. Those of ordinary skill in the art to which the present invention pertains will appreciate that other types of semiconductor components can be used as well.
本發明欲解決半導體裝置中薄膜電阻器的電阻值飄移率過大的問題,而本發明所舉的實施例係利用半導體裝置中鈍化層和頂部金屬層之間的佈局來減輕後段製程中產生不等向的壓力,避免下層的元件(例如為薄膜電阻器)產生壓阻效應。 The present invention is intended to solve the problem that the resistance value of the thin film resistor in the semiconductor device is excessively large, and the embodiment of the present invention utilizes the layout between the passivation layer and the top metal layer in the semiconductor device to alleviate the unequalities in the subsequent process. The pressure is applied to avoid the piezoresistive effect of the underlying components, such as thin film resistors.
參閱第1A圖,第1A圖係顯示根據一些實施例,半導體裝置結構300的剖面示意圖。半導體裝置結構300包含半導體基底100。半導體基底100包含矽。或者,半導體基底100可包含其他元素半導體,也可包含化合物半導體,例如碳化矽 (silicon carbide)、砷化鎵(gallium arsenic)、砷化銦(indium arsenide)及磷化銦(indium phosphide)。半導體基底100可包含合金半導體,例如矽鍺(silicon germanium)、矽鍺碳(silicon germanium carbide)、砷磷化鎵(gallium arsenic phosphide)及銦磷化鎵(gallium indium phosphide)。在一些實施例,半導體基底100包含磊晶層,例如,半導體基底100具有位於半導體塊材上的磊晶層。再者,半導體基底100可包含絕緣上覆半導體(semiconductor-on-insulator,SOI)結構。例如,半導體基底100可包含下埋氧化(buried oxide,BOX)層,其藉由例如植氧分離(separation by implanted oxide,SIMOX)或其他適合的技術,例如晶圓接合(bonding)和研磨製程來形成。 Referring to FIG. 1A, FIG. 1A is a cross-sectional view showing a semiconductor device structure 300 in accordance with some embodiments. The semiconductor device structure 300 includes a semiconductor substrate 100. The semiconductor substrate 100 comprises germanium. Alternatively, the semiconductor substrate 100 may include other elemental semiconductors, and may also include a compound semiconductor such as tantalum carbide. (silicon carbide), gallium arsenic, indium arsenide, and indium phosphide. The semiconductor substrate 100 may comprise an alloy semiconductor such as silicon germanium, silicon germanium carbide, gallium arsenic phosphide, and gallium indium phosphide. In some embodiments, the semiconductor substrate 100 includes an epitaxial layer, for example, the semiconductor substrate 100 has an epitaxial layer on the semiconductor bulk. Furthermore, the semiconductor substrate 100 may comprise a semiconductor-on-insulator (SOI) structure. For example, the semiconductor substrate 100 may comprise a buried oxide (BOX) layer by, for example, separation by implanted oxide (SIMOX) or other suitable techniques, such as wafer bonding and polishing processes. form.
半導體基底100也包含各種p型摻雜區及/或n型摻雜區,其藉由例如離子佈植及/或擴散製程來植入。這些摻雜區包含n型井區、p型井區、輕摻雜區(light doped region,LDD)、重摻雜源極和汲極(S/D)及各種通道摻雜輪廓來組成各種不同的IC裝置,例如互補式金屬氧化物半導體場效電晶體(CMOSFET)、影像感測器,及/或薄膜電阻。半導體基底100可更包含其他元件,例如形成於基底內或基底上的電阻器或電容器。 The semiconductor substrate 100 also includes various p-type doped regions and/or n-type doped regions that are implanted by, for example, ion implantation and/or diffusion processes. These doped regions include n-type well regions, p-type well regions, light doped regions (LDD), heavily doped source and drain (S/D), and various channel doping profiles to make up various IC devices, such as complementary metal oxide semiconductor field effect transistors (CMOSFETs), image sensors, and/or thin film resistors. The semiconductor substrate 100 may further comprise other components, such as resistors or capacitors formed in or on the substrate.
半導體基底100也可包含隔離部件。隔離部件將半導體基底100內各種不同的裝置區隔開。隔離部件包含由不同製程技術形成的不同結構,例如,隔離部件可包含淺溝槽隔離(shallow trench isolation,STI)部件。形成STI可包含在半導體基底100蝕刻出溝槽及在溝槽內填入絕緣材料,例如氧化矽、 氮化矽、氮氧化矽或上述組合。填完後的溝槽可具有多層結構,例如將熱氧化襯層和氮化矽填入溝槽。可實施化學機械研磨(chemical mechanical polishing,CMP)來研磨多餘的絕緣材料和平坦化隔離部件的上表面。 The semiconductor substrate 100 can also include isolation features. The isolation features separate the various device regions within the semiconductor substrate 100. The isolation features comprise different structures formed by different process technologies, for example, the isolation features may comprise shallow trench isolation (STI) features. Forming the STI may include etching a trench in the semiconductor substrate 100 and filling the trench with an insulating material, such as hafnium oxide, Niobium nitride, niobium oxynitride or a combination thereof. The filled trench may have a multi-layered structure, such as a thermal oxide liner and tantalum nitride filled into the trench. Chemical mechanical polishing (CMP) may be performed to grind excess insulating material and planarize the upper surface of the spacer member.
半導體裝置結構300包含多晶矽層110和介電層120。如第1A圖所示,介電層120設置於半導體基底110上,多晶矽層110設置於半導體基底110上且位於介電層120內。多晶矽層110由含矽氣體製成,含矽氣體包含二氯矽烷(dichlorosilane,DCS)、矽烷(SiH4)、甲基矽烷(SiCH6)及其他適合的氣體或其組合。多晶矽層110可藉由化學氣相沉積(chemical vapor deposition,CVD)製程、物理氣相沉積(physical vapor deposition,PVD)製程或其他適合的製程來形成。介電層120係由氮化矽、氮氧化矽、碳化矽、氧化矽、氮碳化矽、其他適合的材料或其組合製成,介電層120可藉由沉積製程形成。沈積製程包含化學氣相沈積、物理氣相沈積、原子層沈積(atomic layer deposition,ALD)、高密度電漿化學氣相沈積(high density plasma CVD,HDPCVD)、金屬有機化學氣相沈積(metal organic CVD,MOCVD)、遙控式電漿化學氣相沉積(remote plasma CVD,RPCVD)、電漿增強型化學氣相沈積(PECVD)、電鍍(plating)、其他合適的方法或前述之組合。在一些實施例,多晶矽層110具有許多圖案化區塊,其中一部分可作為半導體裝置結構130的閘極結構(未繪示),另一部分可構成薄膜電阻器。在一些實施例,多晶矽層110亦可用其他半導體材料取代。 The semiconductor device structure 300 includes a polysilicon layer 110 and a dielectric layer 120. As shown in FIG. 1A , the dielectric layer 120 is disposed on the semiconductor substrate 110 , and the polysilicon layer 110 is disposed on the semiconductor substrate 110 and located in the dielectric layer 120 . The polysilicon layer 110 is made of a germanium containing gas comprising dichlorosilane (DCS), decane (SiH 4 ), methyl decane (SiCH 6 ), and other suitable gases or combinations thereof. The polysilicon layer 110 can be formed by a chemical vapor deposition (CVD) process, a physical vapor deposition (PVD) process, or other suitable processes. The dielectric layer 120 is made of tantalum nitride, hafnium oxynitride, tantalum carbide, tantalum oxide, tantalum carbide, other suitable materials, or a combination thereof, and the dielectric layer 120 can be formed by a deposition process. The deposition process includes chemical vapor deposition, physical vapor deposition, atomic layer deposition (ALD), high density plasma CVD (HDPCVD), and metal organic chemical vapor deposition (metal organic). CVD, MOCVD), remote plasma CVD (RPCVD), plasma enhanced chemical vapor deposition (PECVD), plating, other suitable methods, or combinations of the foregoing. In some embodiments, the polysilicon layer 110 has a plurality of patterned regions, one of which may serve as a gate structure (not shown) of the semiconductor device structure 130, and another portion may constitute a thin film resistor. In some embodiments, the polysilicon layer 110 can also be replaced with other semiconductor materials.
半導體裝置結構300包含導孔(via)130,如第1A圖 所示,導孔130設置於多晶矽層110上且位於介電層120內,其係用來電性連接多晶矽層110與位於多晶矽層110上方的內金屬層(internal metal layer)210。導孔130包含導電材料,例如鋁(Al)、銅(Cu)、鎢(W)、鈦(Ti)、鉭(Ta)、氮化鈦(titanium nitride,TiN)、氮化鉭(tantalum nitride,TaN)、矽化鎳(nickel silicide,NiSi)、矽化鈷(cobalt silicide,CoSi)、碳化鉭(tantulum carbide,TaC)、矽氮化鉭(tantulum silicide nitride,TaSiN)、碳氮化鉭(tantalum carbide nitride,TaCN)、鋁化鈦(titanium aluminide,TiAl),鋁氮化鈦(titanium aluminide nitride,TiAlN)、其他適合的導電材料或前述之組合。在一些實施例,如第1A圖所示,部分的多晶矽層110並未電性連接至內金屬層210,亦即,部分的多晶矽層110上並未設置導孔130。 The semiconductor device structure 300 includes a via 130, as shown in FIG. As shown, the via 130 is disposed on the polysilicon layer 110 and located within the dielectric layer 120 for electrically connecting the polysilicon layer 110 to an internal metal layer 210 over the polysilicon layer 110. The via 130 includes a conductive material such as aluminum (Al), copper (Cu), tungsten (W), titanium (Ti), tantalum (Ta), titanium nitride (TiN), tantalum nitride (tantalum nitride, TaN), nickel silicide (NiSi), cobalt silicide (CoSi), tantalum carbide (TaC), tantulum silicide nitride (TaSiN), tantalum carbide nitride , TaCN), titanium aluminide (TiAl), titanium aluminide nitride (TiAlN), other suitable conductive materials or a combination of the foregoing. In some embodiments, as shown in FIG. 1A, a portion of the polysilicon layer 110 is not electrically connected to the inner metal layer 210, that is, a portion of the polysilicon layer 110 is not provided with via holes 130.
半導體裝置結構300更包含頂部金屬層220、導孔(via)260及層間介電層(interlayer dielectric,ILD)240。如第1A圖所示,層間介電層240設置於介電層120上方。內金屬層210設置於多晶矽層110上,並經由導孔130電性連接至多晶矽層110。頂部金屬層220設置於內金屬層210上,且藉由導孔260與內金屬層210電性連接。內金屬層210、導孔260及頂部金屬層220可視為半導體裝置結構300的內連線結構。 The semiconductor device structure 300 further includes a top metal layer 220, a via 260, and an interlayer dielectric (ILD) 240. As shown in FIG. 1A, an interlayer dielectric layer 240 is disposed over the dielectric layer 120. The inner metal layer 210 is disposed on the polysilicon layer 110 and electrically connected to the polysilicon layer 110 via the via 130. The top metal layer 220 is disposed on the inner metal layer 210 and electrically connected to the inner metal layer 210 through the via 260. The inner metal layer 210, the vias 260, and the top metal layer 220 can be considered as interconnect structures of the semiconductor device structure 300.
內金屬層210、導孔260及頂部金屬層220的形成可包含鑲嵌製程(damascene process),其係在層間介電層240內先形成溝槽及導孔的開口,接著在溝槽及導孔的開口內填充金屬材料。金屬材料可藉由電化學電鍍製程、化學氣相沉積、原子層沉積、物理氣相沉積、前述之組合或類似的方式形成,金屬 材料可選自於由銅、鎢、鋁、銀、金、前述之組合,或類似的材料所組成的群組。雖然在第1A圖僅繪示一層內金屬層210,但在其他的一些實施例,內金屬層210更包含多層金屬和導孔結構,本發明的範疇並非以此為限。 The formation of the inner metal layer 210, the via hole 260 and the top metal layer 220 may include a damascene process in which an opening of a trench and a via hole is formed in the interlayer dielectric layer 240, followed by a trench and a via hole. The opening is filled with a metal material. The metal material may be formed by electrochemical plating process, chemical vapor deposition, atomic layer deposition, physical vapor deposition, a combination of the foregoing, or the like, metal The material may be selected from the group consisting of copper, tungsten, aluminum, silver, gold, combinations of the foregoing, or similar materials. Although only one inner metal layer 210 is illustrated in FIG. 1A, in other embodiments, the inner metal layer 210 further includes a plurality of layers of metal and via structures, and the scope of the present invention is not limited thereto.
此外,層間介電層240可包含由多個介電材料形成的多層結構,如氧化矽、氮化矽、氮氧化矽、磷矽酸鹽玻璃(phosphosilicate glass,PSG)、硼磷矽玻璃(borophosphosilicate glass,BPSG)、低介電常數(low-k)介電材料或其他適合的介電材料。低介電常數介電材料包含氟化石英玻璃(fluorinated silica glass,FSG)、碳摻雜氧化矽(carbon doped silicon oxide)、無定形氟化碳(amorphous fluorinated carbon)、聚對二甲苯(parylene)、對苯並環丁烯(bis-benzocyclobutenes,BCB)、聚亞醯胺(polyimide),但並不限於此。層間介電層240可藉由化學氣相沉積、物理氣相沉積、原子層沉積、旋轉塗佈或其他適合的製程來形成。應注意的是,層間介電層240可為多種材料形成的單層或多層結構,本發明的範疇並非以此為限。 In addition, the interlayer dielectric layer 240 may comprise a multilayer structure formed of a plurality of dielectric materials, such as hafnium oxide, tantalum nitride, hafnium oxynitride, phosphosilicate glass (PSG), borophosphosilicate. Glass, BPSG), low dielectric constant (low-k) dielectric material or other suitable dielectric material. The low-k dielectric material comprises fluorinated silica glass (FSG), carbon doped silicon oxide, amorphous fluorinated carbon, and parylene. , but not limited to, bis-benzocyclobutenes (BCB), polyimide. The interlayer dielectric layer 240 can be formed by chemical vapor deposition, physical vapor deposition, atomic layer deposition, spin coating, or other suitable process. It should be noted that the interlayer dielectric layer 240 may be a single layer or a multilayer structure formed of a plurality of materials, and the scope of the present invention is not limited thereto.
如第1A圖所示,頂部金屬層220包含第一部分222和第二部分224。在一些實施例,第一部分222完全覆蓋內金屬層210,亦即,第一部分222的投影區域完全覆蓋內金屬層210的投影區域。第二部分224圍繞第一部分222,且藉由層間介電層240與第一部分222隔開。在一些實施例,由上視角度觀之,第一部分222為一實心矩形區塊,第二部分224為一環形區塊。雖然在第1A圖僅繪示頂部金屬層220包含兩區塊,但在其他的一些實施例,頂部金屬層220的第二部分224可更包含兩個以上 的環形區塊,第一部分222亦包含其他實心形狀,本發明的範疇並非以此為限。在一些實施例,內金屬層210藉由導孔260與頂部金屬層220的第一部分222電性連接。在一些實施例,頂部金屬層220的第二部分224未與內金屬層210電性連接。 As shown in FIG. 1A, the top metal layer 220 includes a first portion 222 and a second portion 224. In some embodiments, the first portion 222 completely covers the inner metal layer 210, that is, the projected area of the first portion 222 completely covers the projected area of the inner metal layer 210. The second portion 224 surrounds the first portion 222 and is separated from the first portion 222 by an interlayer dielectric layer 240. In some embodiments, from a top perspective, the first portion 222 is a solid rectangular block and the second portion 224 is an annular block. Although only the top metal layer 220 includes two blocks in FIG. 1A, in other embodiments, the second portion 224 of the top metal layer 220 may further include two or more. The first block 222 also includes other solid shapes, and the scope of the present invention is not limited thereto. In some embodiments, the inner metal layer 210 is electrically connected to the first portion 222 of the top metal layer 220 via vias 260. In some embodiments, the second portion 224 of the top metal layer 220 is not electrically connected to the inner metal layer 210.
如第1A圖所示,半導體裝置結構300更包含鈍化層230設置於頂部金屬層220的上方。鈍化層230由氧化物形成,例如氧化矽、未摻雜的矽酸鹽玻璃(un-doped silicate glass,USG)、或類似的氧化物。此外,鈍化層230亦可為複合材料層,例如鈍化層230包含氧化矽層,以及在此氧化矽層上的氮化矽層所組成的複合材料層。 As shown in FIG. 1A, the semiconductor device structure 300 further includes a passivation layer 230 disposed above the top metal layer 220. The passivation layer 230 is formed of an oxide such as hafnium oxide, undoped silicate glass (USG), or the like. In addition, the passivation layer 230 may also be a composite material layer, for example, the passivation layer 230 includes a ruthenium oxide layer, and a composite material layer composed of a tantalum nitride layer on the ruthenium oxide layer.
在一些實施例,鈍化層230包含第一鈍化部分232及第二鈍化部分234,鈍化層230內具有挖空圖案250以露出下方的頂部金屬層220。挖空圖案250的形成包含使用微影圖案化製程和蝕刻製程。微影圖案化製程包含光阻塗佈(例如旋轉塗佈)、軟烤、光罩對位、曝光、曝後烤、將光阻顯影、沖洗、乾燥(例如硬烤)、其他合適的製程或前述之組合。另外,微影曝光製程可由其他適當的方法,例如無遮罩微影、電子束寫入(electron-beam writing)及離子束寫入(ion-beam writing)進行或取代。蝕刻製程包含乾蝕刻、濕蝕刻或其他蝕刻方法。 In some embodiments, the passivation layer 230 includes a first passivation portion 232 and a second passivation portion 234 having a hollowed out pattern 250 therein to expose the underlying top metal layer 220. The formation of the knockout pattern 250 includes the use of a lithographic patterning process and an etch process. The lithographic patterning process includes photoresist coating (eg, spin coating), soft baking, reticle alignment, exposure, post exposure, development of photoresist, rinsing, drying (eg, hard bake), other suitable processes, or Combination of the foregoing. In addition, the lithography process can be performed or replaced by other suitable methods, such as maskless lithography, electron-beam writing, and ion-beam writing. The etching process includes dry etching, wet etching, or other etching methods.
接下來,參閱第1A及1B圖,第1B圖係顯示根據一些實施例,如第1A圖所示的半導體裝置結構300中鈍化層230和頂部金屬層220佈局的上視圖。為清楚顯示鈍化層230、挖空圖案250與頂部金屬層220的佈局,在第1B圖中省略了其他的元件。 Next, referring to FIGS. 1A and 1B, FIG. 1B is a top view showing the layout of the passivation layer 230 and the top metal layer 220 in the semiconductor device structure 300 as shown in FIG. 1A, in accordance with some embodiments. In order to clearly show the layout of the passivation layer 230, the hollowed out pattern 250, and the top metal layer 220, other elements are omitted in FIG. 1B.
在一些實施例,鈍化層230的第一鈍化部分232完全覆蓋頂部金屬層220的第一部分222,且覆蓋部分的第二部分224。挖空圖案250露出頂部金屬層220的第二部分224。如第1B圖所示,第一鈍化部分232的面積大於頂部金屬層220的第一部分222的面積,第二鈍化部分234的面積小於頂部金屬層220的第二部分224的面積。在一些實施例,第一鈍化部分232為一實心矩形區塊,第二鈍化部分234為一環形區塊,且藉由挖空圖案250與第一鈍化部分232隔開。雖然在第1A圖僅繪示鈍化層230包含兩個區塊,但在其他的一些實施例,第二鈍化部分234更包含兩個以上的環形區塊,第一鈍化部分232亦包含其他實心形狀區塊,本發明的範疇並非以此為限。 In some embodiments, the first passivation portion 232 of the passivation layer 230 completely covers the first portion 222 of the top metal layer 220 and covers the second portion 224 of the portion. The hollowed out pattern 250 exposes the second portion 224 of the top metal layer 220. As shown in FIG. 1B, the area of the first passivation portion 232 is greater than the area of the first portion 222 of the top metal layer 220, and the area of the second passivation portion 234 is less than the area of the second portion 224 of the top metal layer 220. In some embodiments, the first passivation portion 232 is a solid rectangular block, and the second passivation portion 234 is an annular block and is separated from the first passivation portion 232 by a hollowed out pattern 250. Although only the passivation layer 230 includes two blocks in FIG. 1A, in other embodiments, the second passivation portion 234 further includes more than two annular blocks, and the first passivation portion 232 also includes other solid shapes. Blocks, the scope of the present invention is not limited thereto.
挖空圖案250的面積並無特別限制,在一些實施例,挖空圖案250的面積與鈍化層230的面積比約小於25%的範圍間。 The area of the knockout pattern 250 is not particularly limited. In some embodiments, the area of the hollowed out pattern 250 and the area ratio of the passivation layer 230 are less than about 25%.
此外,如第1A圖所示,內金屬層210未被頂部金屬層220的第二部分224覆蓋,亦未被第二鈍化部分234覆蓋。多晶矽層110未被頂部金屬層220的第二部分224覆蓋,亦未被第二鈍化部分234覆蓋。 Furthermore, as shown in FIG. 1A, the inner metal layer 210 is not covered by the second portion 224 of the top metal layer 220 and is not covered by the second passivation portion 234. The polysilicon layer 110 is not covered by the second portion 224 of the top metal layer 220 and is not covered by the second passivation portion 234.
接下來,參閱第2A-2B圖,第2A圖係顯示根據另一些實施例,半導體裝置結構300的剖面示意圖。第2B圖係顯示根據一些實施例,如第2A圖所示的半導體裝置結構300中鈍化層230和頂部金屬層200佈局的上視圖。為簡潔說明的目的,第2A-2B圖的元件與前述第1A-1B圖相同或相似的元件省略不再重複敘述。 Next, referring to Figures 2A-2B, Figure 2A shows a cross-sectional view of a semiconductor device structure 300 in accordance with further embodiments. 2B is a top view showing the layout of passivation layer 230 and top metal layer 200 in semiconductor device structure 300 as shown in FIG. 2A, in accordance with some embodiments. For the purpose of brevity, the elements of the 2A-2B drawings are the same as or similar to those of the above-mentioned 1A-1B, and the description thereof will not be repeated.
第2A圖所示的實施例與第1A圖所示的實施例之不同處在於鈍化層230的佈局。如第2A圖所示,在一些實施例,挖空圖案250包含第一挖空區252及第二挖空區254。第一挖空區252露出部分位於鈍化層230下方的頂部金屬層220的第一部分222,第二挖空區254露出位於鈍化層230下方的頂部金屬層220的第二部分224。如第2B圖所示,第二挖空區254圍繞第一挖空區252,且與第一挖空區252隔開。在一些實施例,第一鈍化部分232覆蓋頂部金屬層220部分的第一部分222及部分的第二部分224。在此實施例中,頂部金屬層220的第一部分222未被第一鈍化部分232完全覆蓋。如第2A圖所示,多晶矽層110對應到挖空圖案250的第一挖空區252,亦即,多晶矽層110未被鈍化層230覆蓋。在此實施例中,第一鈍化部分232為鏤空的環形區塊,且經由第一挖空區252露出了頂部金屬層220的第一部分222。 The difference between the embodiment shown in FIG. 2A and the embodiment shown in FIG. 1A lies in the layout of the passivation layer 230. As shown in FIG. 2A, in some embodiments, the knockout pattern 250 includes a first hollowed out area 252 and a second hollowed out area 254. The first hollowed out region 252 exposes a first portion 222 of the top metal layer 220 that is partially below the passivation layer 230, and the second hollowed out region 254 exposes the second portion 224 of the top metal layer 220 under the passivation layer 230. As shown in FIG. 2B, the second hollowed out zone 254 surrounds the first hollowed out zone 252 and is spaced apart from the first hollowed out zone 252. In some embodiments, the first passivation portion 232 covers the first portion 222 of the portion of the top metal layer 220 and the second portion 224 of the portion. In this embodiment, the first portion 222 of the top metal layer 220 is not completely covered by the first passivation portion 232. As shown in FIG. 2A, the polysilicon layer 110 corresponds to the first hollowed out region 252 of the hollowed out pattern 250, that is, the polysilicon layer 110 is not covered by the passivation layer 230. In this embodiment, the first passivation portion 232 is a hollowed annular block and the first portion 222 of the top metal layer 220 is exposed via the first hollowed out region 252.
第一挖空區252的面積並無特別限制,在一些實施例,第一挖空區252的面積與頂部金屬層220的第一部分222的面積比約大於50%的範圍間。 The area of the first hollowed out area 252 is not particularly limited. In some embodiments, the area of the first hollowed out area 252 is greater than the area ratio of the first portion 222 of the top metal layer 220 by more than about 50%.
接下來,參閱第3A-3B圖,第3A-3B圖係顯示根據另一些實施例,半導體裝置結構300的鈍化層230的佈局之上視圖。為簡潔說明目的,第3A-3B圖僅繪示鈍化層230所包含的區塊及挖空圖案250所包含的挖空區。 Next, referring to FIGS. 3A-3B, FIGS. 3A-3B are top views showing the layout of the passivation layer 230 of the semiconductor device structure 300, in accordance with further embodiments. For the sake of brevity, the 3A-3B diagram only shows the block included in the passivation layer 230 and the hollowed out area included in the hollowed out pattern 250.
如第3A圖所示,在一些實施例,挖空圖案250更包含一個或多個連接部256,第一挖空區252藉由連接部256與第二挖空區254連接。在此實施例,第一鈍化部分232由複數個不 連續的區塊232a組成。如第3A圖所示,在一些實施例中,第一鈍化部分232的每一個區塊232a具有L形狀。這些區塊232a具有一旋轉對稱中心(center of rotational symmetry),使得這些區塊232a所組成的圖案(亦即,第一鈍化部分232的佈局)經由旋轉360°/n(n為大於1的整數)後,能得到一樣的圖案。例如,在第3A圖所示的實施例中,第一鈍化部分232的四個區塊232a以四個區塊232a的中心為旋轉對稱中心,並且旋轉90°以後,可得到一樣的圖案。 As shown in FIG. 3A, in some embodiments, the hollowed out pattern 250 further includes one or more connections 256 that are coupled to the second hollowed out area 254 by a joint 256. In this embodiment, the first passivation portion 232 is composed of a plurality of Consisting of blocks 232a. As shown in FIG. 3A, in some embodiments, each of the blocks 232a of the first passivation portion 232 has an L shape. These blocks 232a have a center of rotational symmetry such that the pattern of the blocks 232a (i.e., the layout of the first passivation portion 232) is rotated by 360°/n (n is an integer greater than one) After that, you can get the same pattern. For example, in the embodiment shown in Fig. 3A, the four blocks 232a of the first passivation portion 232 are centered on the center of rotation symmetry with the center of the four blocks 232a, and after rotating by 90, the same pattern can be obtained.
如第3B圖所示,在另一些實施例,可蝕刻移除第2B圖之環形的第一鈍化部分232的角落,使第一挖空區252與第二挖空區254連接,亦即,第一鈍化部分232的角落被蝕刻移除的部分可視為連接區256。在此實施例,第一鈍化部分232由複數個不連續的區塊232b組成。如第3B圖所示,第一鈍化部分232的每一個區塊232b為矩形。這些區塊232b具有一旋轉對稱中心,使得這些區塊232b所組成的圖案(亦即,第一鈍化部分232的佈局)經由旋轉360°/n(n為大於1的整數)後,能得到一樣的圖案。例如,在第3B圖所示的實施例中,第一鈍化部分232的四個區塊232b以四個區塊232b的中心為旋轉對稱中心,並且旋轉90°以後,可得到一樣的圖案。 As shown in FIG. 3B, in other embodiments, the corners of the annular first passivation portion 232 of FIG. 2B may be etched away to connect the first hollowed out region 252 with the second hollowed out region 254, ie, A portion of the first passivation portion 232 where the corners are etched away may be considered as the connection region 256. In this embodiment, the first passivation portion 232 is comprised of a plurality of discrete blocks 232b. As shown in FIG. 3B, each of the blocks 232b of the first passivation portion 232 is rectangular. These blocks 232b have a center of rotational symmetry such that the pattern of the blocks 232b (i.e., the layout of the first passivation portion 232) is obtained by rotating 360°/n (n is an integer greater than 1). picture of. For example, in the embodiment shown in Fig. 3B, the four blocks 232b of the first passivation portion 232 are centered on the center of rotation symmetry with the center of the four blocks 232b, and after rotating by 90, the same pattern can be obtained.
雖然第3A-3B圖的實施例僅繪示第一鈍化部分232具有四個區塊,但在其他的一些實施例,第一鈍化部分232更包含其他不同數目的區塊,且每一個區塊亦包含其他形狀,本發明的範疇並非以此為限。 Although the embodiment of the 3A-3B diagram only shows that the first passivation portion 232 has four blocks, in other embodiments, the first passivation portion 232 further includes other different numbers of blocks, and each block Other shapes are also included, and the scope of the present invention is not limited thereto.
參閱第4A-4B圖,第4A圖係顯示根據一些實施例, 內金屬層的剖面示意圖,第4B圖係顯示根據一些實施例,如第4A圖所示的內金屬層的佈局之上視圖。為簡潔說明目的,第4B圖僅繪示內金屬層210包含的第一內金屬層211及第二內金屬層212所包含的複數區塊。 Referring to Figures 4A-4B, Figure 4A shows, in accordance with some embodiments, A cross-sectional view of the inner metal layer, and FIG. 4B shows a top view of the layout of the inner metal layer as shown in FIG. 4A, in accordance with some embodiments. For the sake of brevity, FIG. 4B only shows the plurality of blocks included in the first inner metal layer 211 and the second inner metal layer 212 included in the inner metal layer 210.
在一些實施例,如第4A圖所示,內金屬層210包含第一內金屬層211、設置於第一內金屬層211上的第二內金屬層212及導孔213,第一內金屬層211與第二內金屬層212藉由層間介電層240隔開,且藉由導孔213連結。如第4B圖所示,在一些實施例,第一內金屬層211和第二內金屬層212由複數個不連續的區塊組成,例如,第一內金屬層211由複數個沿第一方向延伸的區塊211a組成,第二內金屬層212由複數個沿第二方向延伸的區塊212a組成,第一分向與第二方向垂直。在一些實施例,區塊211a及區塊212a的形狀包含片狀、條狀、塊狀或上述組合。在一些實施例,區塊211a及區塊212a彼此垂直,在一些實施例,區塊211a及區塊212a可彼此平行。另外,如第4A圖所示,一部分的區塊212a藉由導孔與區塊211a連接,一部分的區塊212a未與區塊211a連接。在一些實施例,一部分的區塊211a及區塊212a亦可以設置在頂部金屬層220的第二部分224的正下方,並且經由導孔213與頂部金屬層220的第二部分224連接。 In some embodiments, as shown in FIG. 4A, the inner metal layer 210 includes a first inner metal layer 211, a second inner metal layer 212 disposed on the first inner metal layer 211, and a via 213. The first inner metal layer The second inner metal layer 212 is separated from the second inner metal layer 212 by the interlayer dielectric layer 240 and connected by the via holes 213. As shown in FIG. 4B, in some embodiments, the first inner metal layer 211 and the second inner metal layer 212 are composed of a plurality of discontinuous blocks, for example, the first inner metal layer 211 is composed of a plurality of first directions. The extended inner block 212 is composed of a plurality of blocks 212a extending in the second direction, and the first partial direction is perpendicular to the second direction. In some embodiments, the shape of the block 211a and the block 212a includes a sheet shape, a strip shape, a block shape, or a combination thereof. In some embodiments, block 211a and block 212a are perpendicular to one another, and in some embodiments, block 211a and block 212a may be parallel to each other. Further, as shown in Fig. 4A, a part of the block 212a is connected to the block 211a by the via hole, and a part of the block 212a is not connected to the block 211a. In some embodiments, a portion of the block 211a and the block 212a may also be disposed directly below the second portion 224 of the top metal layer 220 and connected to the second portion 224 of the top metal layer 220 via the via 213.
雖然第4A-4B圖的實施例僅繪示內金屬層210包含第一內金屬層211、第二內金屬層212及導孔213,但在其他的一些實施例,內金屬層210更包含其他金屬層或導孔,且每一金屬層亦由片狀、條狀、塊狀或上述組合的區塊所組成,本發明的範疇並非以此為限。 Although the embodiment of FIG. 4A-4B only shows that the inner metal layer 210 includes the first inner metal layer 211, the second inner metal layer 212, and the via 213, in other embodiments, the inner metal layer 210 further includes other The metal layer or the via hole, and each metal layer is also composed of a sheet, a strip, a block or a combination of the above, and the scope of the present invention is not limited thereto.
本發明的實施例所示的半導體裝置結構的鈍化層具有各種挖空圖案的佈局方式,這些佈局方式減少鈍化層所帶來的壓力(stress),且頂部金屬層設置於鈍化層之挖空圖案區的下方,能夠達到保護下方元件(例如內金屬層)的效果。此外,以條狀、片狀或環狀來設計頂部金屬層之佈局來作為鈍化層與半導體基底間的緩衝結構,亦可減少在後段製程中產生不等向的壓力,避免下層的元件產生壓阻效應。傳統半導體裝置的薄膜電阻器之電阻值飄移率過大的原因主要來自壓阻效應的貢獻,藉由本揭示之半導體裝置結構的鈍化層與頂部金屬層之佈局可以避免位於鈍化層下方的元件產生壓阻效應,因此,本揭示的半導體裝置的薄膜電阻器之電阻值的飄移率低於傳統的半導體裝置之薄膜電阻器。例如,本揭示的半導體裝置的薄膜電阻器之電阻值飄移之公差(tolerance)小於5%,傳統半導體裝置的薄膜電阻器之電阻值飄移之公差則大於10%。 The passivation layer of the semiconductor device structure shown in the embodiment of the present invention has a layout manner of various hollow patterns, which reduces the stress caused by the passivation layer, and the top metal layer is disposed on the hollowed out pattern of the passivation layer. Below the zone, the effect of protecting the underlying components, such as the inner metal layer, can be achieved. In addition, the layout of the top metal layer is designed in a strip shape, a sheet shape or a ring shape as a buffer structure between the passivation layer and the semiconductor substrate, and the unequal pressure is generated in the back-end process to prevent the underlying components from being pressed. Resistance effect. The reason why the resistance value of the thin film resistor of the conventional semiconductor device is excessively large is mainly due to the contribution of the piezoresistive effect. The layout of the passivation layer and the top metal layer of the semiconductor device structure of the present disclosure can prevent the piezoresistive of the component under the passivation layer. Effect, therefore, the drift value of the resistance value of the thin film resistor of the semiconductor device of the present disclosure is lower than that of the conventional semiconductor device. For example, the thin film resistor of the semiconductor device of the present disclosure has a tolerance of drift of resistance value of less than 5%, and the resistance of the thin film resistor of the conventional semiconductor device has a tolerance of more than 10%.
雖然本揭露的實施例及其優點已揭露如上,但應該瞭解的是,任何所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作更動、替代與潤飾。此外,本揭露之保護範圍並未侷限於說明書內所述特定實施例中的製程、機器、製造、物質組成、裝置、方法及步驟,任何所屬技術領域中具有通常知識者可從本揭露揭示內容中理解現行或未來所發展出的製程、機器、製造、物質組成、裝置、方法及步驟,只要可以在此處所述實施例中實施大抵相同功能或獲得大抵相同結果皆可根據本揭露使用。因此,本揭露之保護範圍包括上述製程、機器、製造、物質組成、裝置、方法及步驟。 另外,每一申請專利範圍構成個別的實施例,且本揭露之保護範圍也包括各個申請專利範圍及實施例的組合。 Although the embodiments of the present disclosure and its advantages are disclosed above, it should be understood that those skilled in the art can make changes, substitutions, and refinements without departing from the spirit and scope of the disclosure. In addition, the scope of the disclosure is not limited to the processes, machines, manufactures, compositions, devices, methods, and steps in the specific embodiments described in the specification, and those of ordinary skill in the art may disclose the disclosure It is understood that the processes, machines, manufactures, compositions, devices, methods, and procedures that are presently or in the future may be used in accordance with the present disclosure as long as they can perform substantially the same function or achieve substantially the same results in the embodiments described herein. Accordingly, the scope of protection of the present disclosure includes the above-described processes, machines, manufacturing, material compositions, devices, methods, and procedures. In addition, each patent application scope constitutes an individual embodiment, and the scope of protection of the disclosure also includes a combination of the scope of the patent application and the embodiments.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105105818A TWI594384B (en) | 2016-02-26 | 2016-02-26 | Semiconductor device structures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105105818A TWI594384B (en) | 2016-02-26 | 2016-02-26 | Semiconductor device structures |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI594384B TWI594384B (en) | 2017-08-01 |
TW201810569A true TW201810569A (en) | 2018-03-16 |
Family
ID=60189078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105105818A TWI594384B (en) | 2016-02-26 | 2016-02-26 | Semiconductor device structures |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI594384B (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8897470B2 (en) * | 2009-07-31 | 2014-11-25 | Macronix International Co., Ltd. | Method of fabricating integrated semiconductor device with MOS, NPN BJT, LDMOS, pre-amplifier and MEMS unit |
US8426745B2 (en) * | 2009-11-30 | 2013-04-23 | Intersil Americas Inc. | Thin film resistor |
US8659085B2 (en) * | 2010-08-24 | 2014-02-25 | Stmicroelectronics Pte Ltd. | Lateral connection for a via-less thin film resistor |
US9768132B2 (en) * | 2012-03-14 | 2017-09-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor structure and method of forming the same |
CN106659464B (en) * | 2014-04-18 | 2020-03-20 | 蝴蝶网络有限公司 | Ultrasonic transducers in Complementary Metal Oxide Semiconductor (CMOS) wafers and related devices and methods |
-
2016
- 2016-02-26 TW TW105105818A patent/TWI594384B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI594384B (en) | 2017-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI754962B (en) | Semiconductor structure and method of fabricating the same | |
US10861899B2 (en) | Interconnect structure for stacked device and method | |
US6812127B2 (en) | Method of forming semiconductor device including silicon oxide with fluorine, embedded wiring layer, via holes, and wiring grooves | |
US9385216B2 (en) | Monolithically integrated active snubber | |
US12021148B2 (en) | Semiconductor device with metal cap on gate | |
US8592945B2 (en) | Large dimension device and method of manufacturing same in gate last process | |
CN109427655B (en) | Interconnection structure of semiconductor device and method of manufacturing the same | |
US10978345B2 (en) | Interconnect structure for stacked device | |
US20240313111A1 (en) | Semiconductor structure and method of forming the same | |
US9190326B2 (en) | Semiconductor device having a post feature and method of manufacturing the same | |
US20190067149A1 (en) | Planar passivation layers | |
US10381303B2 (en) | Semiconductor device structures | |
TWI594384B (en) | Semiconductor device structures | |
US11282744B2 (en) | Enhanced intermetal dielectric adhesion | |
TW202044598A (en) | A method of fabricating a metal-insulator-metal (mim) capacitor structure | |
TWI750098B (en) | Semiconductor device structure with conductive polymer liner and method for forming the same | |
CN107180820B (en) | Semiconductor device structure | |
TW202431434A (en) | Method of fabricating semiconductor device | |
TW202414762A (en) | Semiconductor device including insulating structure surrounding through via and method for forming the same |