TW201807946A - Flexible electronic device - Google Patents

Flexible electronic device Download PDF

Info

Publication number
TW201807946A
TW201807946A TW105127599A TW105127599A TW201807946A TW 201807946 A TW201807946 A TW 201807946A TW 105127599 A TW105127599 A TW 105127599A TW 105127599 A TW105127599 A TW 105127599A TW 201807946 A TW201807946 A TW 201807946A
Authority
TW
Taiwan
Prior art keywords
electronic device
piezoelectric element
flexible electronic
flexible substrate
flexible
Prior art date
Application number
TW105127599A
Other languages
Chinese (zh)
Other versions
TWI634733B (en
Inventor
嚴進嶸
Original Assignee
創王光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 創王光電股份有限公司 filed Critical 創王光電股份有限公司
Priority to TW105127599A priority Critical patent/TWI634733B/en
Publication of TW201807946A publication Critical patent/TW201807946A/en
Application granted granted Critical
Publication of TWI634733B publication Critical patent/TWI634733B/en

Links

Abstract

A flexible electronic device that can be folded and unfolded in three different dimensions is disclosed. The present disclosure provides a flexible electronic device comprising: a flexible substrate comprising a predetermined bending area, the predetermined bending area having a first surface and a second surface opposite the first surface; and at least one piezoelectric element arranged on the first surface of the predetermined bending area and capable of receiving a first electric signal, wherein the at least one piezoelectric element can contract or expand in response to the received electric signal so as to deform the flexible substrate in a first deformation direction.

Description

可撓式電子裝置Flexible electronic device

本發明大體上係關於電子裝置;具體而言,本發明係關於可撓式電子裝置。The present invention generally relates to electronic devices; in particular, the present invention relates to flexible electronic devices.

目前已發展的可撓式電子裝置僅能以有限的曲率彎曲,而無法如摺紙藝術般靈活地彎折,現有技術彎曲度至多僅能達到曲率2mm的彎曲度,並且僅能達到單一維度的折疊,而無法以多次對折的方式折疊電子裝置,並且僅能以機械方式彎折,因而有容易收納、攜載運輸之缺點,進而限制了電子裝置應用的可能性。 因此亟需一種可撓式電子裝置可以自動收納,方便攜載、運輸傳遞、並可輕易地自動展開回復。Currently, the developed flexible electronic device can only bend with limited curvature, and cannot flex flexibly like the art of origami. The prior art can only bend at a curvature of at most 2 mm and can only achieve a single dimension of folding. However, the electronic device cannot be folded in a plurality of folds, and can only be mechanically bent, so that it has the disadvantage of being easily stored, carried, and transported, thereby limiting the possibility of application of the electronic device. Therefore, there is a need for a flexible electronic device that can be automatically stored, portable, transported, and easily and automatically resumed.

為了解決先前技術中存在的問題,本案發明人提出了妥適的發明構思,並由下述諸多不同的實施例加以體現。 本發明的一個實施例是一種可撓式電子裝置,其包含一可撓基板及至少一第一壓電元件。該可撓基板包含一預定彎折區,該預定彎折區具有一第一表面及與該第一表面相對的一第二表面。該至少一第一壓電元件位於該預定彎折區的該第一表面上,並可以接收一第一電信號,其中該至少一第一壓電元件可以回應於所接收的該電信號而收縮或伸張,使該可撓基板以一第一形變方向形變。 藉助於壓電元件,使用者可以在不直接接觸可撓式電子裝置的情況下使其產生形變。舉例來說,使用者可以透過無線電信號控制壓電元件而對可撓式電子裝置進行遠距離的彎曲、折疊或張開操作。 在一個實施例中,該可撓式電子裝置進一步包含至少一第二壓電元件,其位於該預定彎折區的該第二表面並可以接收一第二電信號,其中該至少一第二壓電元件可以回應於所接收的該第二電信號而收縮或伸張,使該可撓基板以一第二方向形變。 由於不同位置的壓電元件可以使可撓基板在不同的方向上產生形變,因此可以使可撓式電子裝置沿著不同的方向進行彎曲、折疊或張開操作,增加型態變化的靈活度,達成如摺紙藝術(origami)的效果。 在一個實施例中,該第一形變方向與該第二形變方向相反。例如,若第一壓電元件可以折疊可撓基板,那麼第二壓電元件則可以張開可撓基板。 在一個實施例中,該第二狀態形變係回復為該可撓基板之一原始狀態。因此,根據本實施例的可撓式電子裝置在經過折疊後仍然可以恢復原狀。 在一個實施例中,可撓性電子裝置進一步包含位於該可撓基板上之一感測器。感測器可用以感測不同型態的信號,並增加可撓性電子裝置的功能。感測器的靈敏度可以與可撓基板的表面積相關聯。在一個實施例中,感測器的靈敏度在可撓基板完全張開的時候最大,並隨著其折疊而縮小。在一個實施例中,可撓基板可以根據對感測器靈敏度的需求而藉由形變、折疊及/或張開來改變其型態及/或表面積及/或體積。 在一個實施例中,該感測器為一生理信號感測器。可以感測的生理信號包括血糖、心跳、神經傳導訊號、特定種類細胞於血液中的濃度等。隨著需求不同,感測器經組態以感測不同的生理信號。在一個實施例中,生理信號感測器可以感測特定基因、細胞或病毒等等之存在與否。 在一個實施例中,可撓性電子裝置進一步包含一傳感器(transducer)。傳感器能夠將非電學能量(例如力學能,例如熱、體溫、生命體活動所自然產生的搖擺、脈搏等)轉換成其他形式的能量,例如電能。在一個實施例中,傳感器可以使該可撓性電子裝置在不具有額外的電池或是電池電量已耗盡的情況下自行充電。 在一個實施例中,可撓性電子裝置進一步包含一第三壓電元件。第三壓電元件可以用來提供不同的形變方向,增加可撓基板改變型態的靈活度。第三壓電元件也可以用來接收生理訊號而使該可撓性電子裝置自行充電。在一個實施例中,第三壓電元件可以將生物體的心跳及/或血液流動所產生的力學能、神經傳導信號、轉換成電能,並將該電能儲存起來或者是提供給其他需要電力才能運作的區塊。 在一個實施例中,可撓性電子裝置的預定彎折區具有一第一預定折線區及一第二預定折線區,該第一預定折線區及該第二預定折線區交叉。交叉的角度可以是九十度,也可以是其他適當的角度。複數個預定折線區可以增加可撓基板型態變化的靈活程度,也可以增加可撓式電子裝置體積可改變的程度。 在一個實施例中,預定彎折區、第一預定折線區、及/或第二預定折線區包含特定物理特徵或型態特徵,例如凹槽。物理特徵或型態特徵可以調整可撓基板的整體及/或局部受力狀況,以提高可撓基板型態改變的靈活度。 在一個實施例中,壓電元件配置於鄰近凹槽處。由於凹槽會使可撓基板變薄,因此可使壓電元件更容易地使可撓基板產生形變。 在一個實施例中,可撓性電子裝置進一步包含一無線通訊模組,該無線通訊模組與該至少一第一壓電元件耦合以提供該電信號。舉例來說,可撓性電子裝置的使用者可以透過無線通訊信號而遠距離地控制可撓基板的形變。在一個實施例中,可撓性電子裝置可以植入生物體;在這種情況下,使用者可以透過無線通訊信號而控制已植入於生物體內的可撓性電子裝置的型態變化,不需要經過直接接觸。In order to solve the problems in the prior art, the inventors of the present invention have proposed appropriate inventive concepts and are embodied by the following various embodiments. One embodiment of the present invention is a flexible electronic device including a flexible substrate and at least a first piezoelectric element. The flexible substrate includes a predetermined bending region having a first surface and a second surface opposite the first surface. The at least one first piezoelectric element is located on the first surface of the predetermined bending region and can receive a first electrical signal, wherein the at least one first piezoelectric element can contract in response to the received electrical signal Or stretching to deform the flexible substrate in a first deformation direction. By means of the piezoelectric element, the user can deform the flexible electronic device without directly contacting it. For example, the user can control the piezoelectric element by radio signals to perform long-distance bending, folding or opening operations on the flexible electronic device. In one embodiment, the flexible electronic device further includes at least one second piezoelectric element located on the second surface of the predetermined bending zone and capable of receiving a second electrical signal, wherein the at least one second pressure The electrical component can contract or stretch in response to the received second electrical signal to deform the flexible substrate in a second direction. Since the piezoelectric elements in different positions can deform the flexible substrate in different directions, the flexible electronic device can be bent, folded or opened in different directions, thereby increasing the flexibility of the type change. Achieve the effect of origami. In one embodiment, the first deformation direction is opposite to the second deformation direction. For example, if the first piezoelectric element can fold the flexible substrate, the second piezoelectric element can open the flexible substrate. In one embodiment, the second state deformation is restored to one of the original states of the flexible substrate. Therefore, the flexible electronic device according to the present embodiment can be restored to its original state after being folded. In one embodiment, the flexible electronic device further includes a sensor on the flexible substrate. The sensor can be used to sense different types of signals and increase the functionality of the flexible electronic device. The sensitivity of the sensor can be correlated to the surface area of the flexible substrate. In one embodiment, the sensitivity of the sensor is greatest when the flexible substrate is fully expanded and shrinks as it folds. In one embodiment, the flexible substrate can be altered in shape and/or surface area and/or volume by deformation, folding, and/or flare depending on the sensitivity of the sensor. In one embodiment, the sensor is a physiological signal sensor. Physiological signals that can be sensed include blood glucose, heartbeat, nerve conduction signals, concentrations of specific types of cells in the blood, and the like. Depending on the requirements, the sensor is configured to sense different physiological signals. In one embodiment, the physiological signal sensor can sense the presence or absence of a particular gene, cell or virus, and the like. In one embodiment, the flexible electronic device further includes a transducer. The sensor is capable of converting non-electrical energy (eg, mechanical energy, such as heat, body temperature, rocking, pulse, etc. naturally generated by living body activity) into other forms of energy, such as electrical energy. In one embodiment, the sensor can cause the flexible electronic device to self-charge without an additional battery or if the battery is exhausted. In one embodiment, the flexible electronic device further includes a third piezoelectric element. The third piezoelectric element can be used to provide different deformation directions and increase the flexibility of the flexible substrate change pattern. The third piezoelectric element can also be used to receive physiological signals to cause the flexible electronic device to self-charge. In one embodiment, the third piezoelectric element can convert the mechanical energy generated by the heartbeat and/or blood flow of the living body, the nerve conduction signal, into electrical energy, and store the electrical energy or provide other electrical power. Working block. In one embodiment, the predetermined bending zone of the flexible electronic device has a first predetermined fold line region and a second predetermined fold line region, the first predetermined fold line region and the second predetermined fold line region intersecting. The angle of intersection can be ninety degrees or other suitable angles. The plurality of predetermined fold line regions can increase the flexibility of the flexible substrate type change, and can also increase the extent to which the flexible electronic device can be changed in volume. In one embodiment, the predetermined bend zone, the first predetermined fold line zone, and/or the second predetermined fold line zone comprise specific physical features or profile features, such as grooves. The physical features or profile features can adjust the overall and/or local stress conditions of the flexible substrate to increase the flexibility of the flexible substrate type change. In one embodiment, the piezoelectric element is disposed adjacent the recess. Since the groove thins the flexible substrate, the piezoelectric element can more easily deform the flexible substrate. In one embodiment, the flexible electronic device further includes a wireless communication module coupled to the at least one first piezoelectric element to provide the electrical signal. For example, a user of a flexible electronic device can remotely control the deformation of the flexible substrate through wireless communication signals. In one embodiment, the flexible electronic device can be implanted into the living body; in this case, the user can control the type change of the flexible electronic device that has been implanted in the living body through the wireless communication signal, Need to be in direct contact.

圖1(a)所示為根據本發明之一實施例的可撓基板1。可撓基板1包含預定彎折區10、上表面1a及下表面1b。上表面1a置有至少一個第一壓電元件11及功能模組13。下表面1b可以置有至少一個第二壓電元件12(圖1(a)未示)。 可撓基板1可以根據不同的情況而以不同的材料製成。可用的材料包含矽酮(silicone)、聚醯亞胺(polyimide, PI)、聚對苯二甲酸乙二酯(PET)、聚丙烯(PP)、聚萘二甲酸乙二醇酯(PEN)、聚碳酸酯(PC)、聚酯(PES)、環烯烴共聚合體(COC)、前述材料的複合材料、具有可撓性且對生物體沒有影響的材料、具有可撓性且可植入生物體而不會被生物體排斥的材料、及其他適合材料。可撓基板1可以根據不同的需求而有不同的可撓性。在一實施例中,可撓基板1的可撓性足以使其在X、Y、Z三個方向上都產生形變以彎曲成U型。在一實施例中,可撓基板1的可撓性足以使其在X、Y、Z三個方向的任一個方向或是全部三個方向都可以對折。在一實施例中,可撓基板1在對折後可以張開並回復原狀。在一實施例中,可撓基板1的可撓性足以使其在X、Y、Z三個方向的任一個方向上對折數次,例如2-5次、5-10次、11-15次、16-20次、或是更多次。在一實施例中,可撓基板1的可撓性足以使其在對折多次後仍然可以對折並回復原狀。 可撓基板1可以包含一或多層,不同層之間可以具有相同的材料,也可以具有不同的材料。各層的可撓程度可以完全相同,也可以部分不同,也可以完全不同。可撓基板1可以包含電路層,該電路層可以包含主動電路、被動電路、感測器、電路連接線路、及其他適合的電路元件。可撓基板1的厚度可以在大約1微米(micrometer,μm)及大約100微米之間。 可撓基板1包含一預定彎折區10,且至少一個第一壓電元件11配置在上表面1a及預定彎折區10之上。第一壓電元件11可以藉由功能模組13或是其他圖1(a)中未顯示的功能模組所提供的電信號而收縮或伸張,進而產生機械力。如圖1(a)所示,預定彎折區10上有多個第一壓電元件11。當一數量的第一壓電元件11同時接收電信號而收縮或伸張時可以使可撓基板1沿著預定彎折區10產生形變而彎曲可撓基板1。也就是說,第一壓電元件11可以使可撓基板1在沒有直接受到外力接觸的情況下使可撓基板1產生形變。在一個實施例中,功能模組13包含無線通訊模組,並且可以藉由將所接收的無線訊號提供至第一壓電元件11而使其收縮或伸張並進而使可撓基板1產生形變。 第一壓電元件11的材料可以包括鈦酸鉛鋯(PZT)、聚偏氟乙烯(PVDF)、氧化鋅(ZNO)及/或其他適合材料。第一壓電元件11可以具有不同數目及大小。圖1(a)所示的實施例具有數個比較小的第一壓電元件11;圖1(b)所示的實施例則具有一條狀的的第一壓電元件11沿預定彎折區配置。 功能模組13可以視可撓基板1所處的應用環境而具有不同的功能。圖1(a)中雖然只畫出4個功能模組,但只是用於示意,而非用以限定功能模組的數目。功能模組13可以包含機構模組、有線通訊模組、無線通訊模組、微控制器模組、感測模組、生理信號監測模組、電力供應模組、發光模組、布局線路、微帶線、磁學模組、光學模組、聲學模組、或其他適用的模組。 圖2(a)所示為根據本發明之一實施例的可撓基板之剖面圖。可撓基板1不但可以在上表面1a具有第一壓電元件11,也可以在下表面1b具有至少一個第二壓電元件12。第二壓電元件12配置於預定彎折區10之上。在一個實施例中,第二壓電元件12的位置對應於第一壓電元件11的位置。如同第一壓電元件11,第二壓電元件12也可以藉由接收電信號而收縮或伸張並進而產生機械力。在一個實施例中,第二壓電元件12的收縮或伸張使可撓基板1產生形變。第一壓電元件11與第二壓電元件12可以使可撓基板1產生相同方向的形變,也可以使可撓基板1產生不同方向的形變。在一個實施例中,第一壓電元件11與第二壓電元件12使可撓基板1產生形變的方向相反。 如圖2(b)所示,第一壓電元件11或是第二壓電元件12產生的機械力可以使可撓基板1朝正Z方向彎曲。在一個實施例中,第一壓電元件11與第二壓電元件12會使可撓基板1產生相反方向的彎曲;此時其中一者使可撓基板1彎曲後,可以藉由提供電信號至另外一者而使可撓基板1朝相反方向彎曲並使可撓基板1恢復原狀。圖2(c)則畫出另外一種可能的彎曲方向。 為了使第一壓電元件11及/或第二壓電元件12更容易地彎曲可撓基板1,可以在可撓基板1上第一壓電元件11及/或第二壓電元件12下方提供一些物理特徵及/或型態特徵以改變其受力特性。如圖2(d)所示,上表面1a及下表面1b均設有凹槽101,且第一壓電元件11及第二壓電元件12均配置在凹槽101上或凹槽101內。在圖2(d)所示的實施例中,凹槽101使可撓基板1在預定彎折區10之處變薄,從而使第一壓電元件11及第二壓電元件12在產生相同的機械力的情況下能夠使可撓基板1更易於形變。凹槽101可以比第一壓電元件11及/或第二壓電元件12大,也可以比較小。在圖2(d)所示的實施例中,第一壓電元件11比上表面1a的凹槽101小並且置於其中,第一壓電元件12比上表面1b的凹槽101大並且位於凹槽101上方。在一個實施例中,只有上表面1a或是下表面1b設有凹槽101。在一個實施例中,上表面1a的凹槽101的大小與下表面1b的凹槽101的大小不同。在一個實施例中,每一個第一壓電元件11及第二壓電元件12下方都設有凹槽101。在一個實施例中,只有部分的第一壓電元件11及/或第二壓電元件12下方設有凹槽101。 圖3所示為根據本發明之一實施例的可撓基板3。可撓基板3與圖1(a)所示的可撓基板1類似,因此以下僅就兩者間不同之處加以說明。在可撓基板3的上表面3a置有兩組壓電元件,分別是沿著Y方向的第一壓電元件11a及沿著X方向的第一壓電元件11b,其分別對應至彼此交錯的第一預定折線區10a及第二預定折線區10b。第一壓電元件11a及第一壓電元件11b可藉由其接收的電信號而使可撓基板3分別沿著第一預定折線區10a及第二預定折線區10b產生形變、彎曲及/或折疊。圖3中的第一預定折線區10a及第二預定折線區10b以九十度交錯,但在不同的實施例中可以以不同角度交錯而具有不同的折疊方向。在其他的實施例中,可撓基板的上表面3a及/或下表面3b均可以置有對應至複數個預定折線區的壓電元件,例如2個預定折線區、3個預定折線區、4個預定折線區、5個預定折線區、6個預定折線區、7個預定折線區、8個預定折線區、或更多數目的預定折線區。 圖4所示為根據本發明之一實施例的可撓式電子裝置之折疊功能的示意圖。圖4所示的可撓式電子裝置為正方形,但在不同的實施例中可以具有不同的形狀,例如具有不同長寬比例的長方形、多邊形、圓形。圖4所示的可撓式電子裝置可以包含如圖1(a)、圖1(b)或圖3所示之可撓基板,或者是根據在不脫離本發明精神的範圍內的實施例所製造之可撓基板。第一狀態41為可撓式電子裝置未經形變、彎曲或折疊的原始狀態。由於圖4所示的可撓式電子裝置具有符合本發明精神的可撓基板,故可以沿著不同的預定彎折/折線區進行折疊。在一個實施例中,可以根據摺紙藝術(origami)的原理而將可撓式電子裝置進行多次折疊而成為第二狀態42。在一個實施例中,呈第二狀態42的可撓式電子裝置可以再度根據摺紙藝術的原理而被折疊成第三狀態43。與呈第一狀態41的可撓式電子裝置相比,呈第三狀態43的可撓式電子裝置佔據更小的體積,因此可以具有更多應用。在一個實施例中,可撓式電子裝置是生理狀態(如血糖、心跳、神經訊號、血液流動等)感測器。若生理狀態感測器的面積或體積過大,可能會在植入生物體的過程中產生困難。由於根據本發明的實施例所製造之可撓式電子裝置可以折疊,所以可以減少植入生物體的過程中所發生的困難。在一個實施例中,呈第三狀態43的可撓式電子裝置可以視需要而展開並回復成第一狀態41。在一個實施例中,依據本發明的實施例所製造之生理狀態感測器可以在折起並植入生物體後再發送適當訊號使其張開。在一個實施例中,可撓式電子裝置的形變、折起與張開可由無線通訊信號來控制。雖然圖4中只有三種折疊狀態,但是根據本發明的實施例之可撓式電子裝置可以具有更多種不同的折疊狀態。 圖5所示為根據本發明之一實施例的可撓式電子裝置之電路區塊圖5,以彰顯其可以具有的功能。電路區塊圖5中的各區塊可用以實現圖1(a)所示的功能模組13的功能,也可用以實現其他所需要的功能。 在一個實施例中,電路區塊圖5包含微控制器501、第一壓電元件502a、第二壓電元件502b、第三壓電元件502c、感測器503、電力供應模組504、通訊模組505、及傳感器506。由於電路區塊圖5主要用於示意,所以圖中所示的各模組的數目不必然限制實施例中各模組的數目。技藝人士可以在不脫離本發明精神的範圍內視其需要而增加或減少各模組的功能及/或數目。此外,雖然電路區塊圖5中的各模組沒有以實線相連,但實際上技藝人士可以根據實際應用需要而利用習知手段將各模組相連及/或相耦合;各模組間不同的相連/耦合方式、形式、圖樣等等並不會脫離本發明的精神。另外,如前所述,本發明之可撓式電子裝置中的可撓基板可以具有一或多層,故電路區塊圖5的各個區塊可以實做於可撓基板的不同層中,而不脫離本發明的精神;單一區塊中的不同部分也可以分別實做於不同層中並以習知方式相互連接。 微控制器501可以因應不同需要而有不同的大小、材料及功耗。微控制器501可以包含數位運算模組(例如中央處理器(CPU))、揮發性及/或非揮發性記憶體、輸入/輸出(I/O)介面、通訊介面、匯流排介面、時脈產生器、數位/類比轉換器、除錯電路等等。微控制器501可以由離散元件構成,也可以由積體電路構成,也可以由積體電路搭配離散元件構成。在一個實施例中,微控制器501中可以存在適當的軟體程式以自動地在適當的時間、周邊物理參數等情況下藉由控制壓電元件502a-502c的收縮或伸張並進而控制可撓式電子裝置之形變、折疊、開放等動作。例如,微控制器501可以被設定為在每天固定的時間使可撓式電子裝置張開,並在另一個固定的時間使可撓式電子裝置閉合。 第一壓電元件502a、第二壓電元件502b、第三壓電元件502c可用於電能及機械能之間的轉換。在一個實施例中,該等壓電元件可用以使可撓式電子裝置產生形變。在一個實施例中,壓電元件可用以提供電力。 感測器503可用以偵測物理信號,例如機械式的、電磁式的、熱力學式的、光學式的、聲學式的、生理學式的(例如血糖、心跳、特定種類細胞於血液中的濃度、神經傳導、血液流動等)等等。在一個實施例中,感測器503不需要額外電力即可運作。在一個實施例中,感測器503需要額外電力才可運作。在一個實施例中,感測器503可以經由微控制器501及/或通訊模組505所控制。在一個實施例中,可撓式電子裝置是可植入生物體的生理信號感測器,且感測器503是血糖感測器,且微控制器501經程式化以在固定的時間藉由控制壓電元件502a-502c而張開可撓式電子裝置以增加感測器503的靈敏度並指示感測器503量測血糖,並在量測完畢以後藉由控制壓電元件502a-502c而將可撓式電子裝置折疊起來。 電力供應模組504用來對需要電力才能運作的模組/區塊提供電力以確保其適當的運作。電力供應模組504可以是電池、大容量電容、無線充電接收器等等。 通訊模組505可用以提供電路區塊圖5中各區塊之間的通訊,也可用以提供可撓式電子裝置與外界之間的通訊。通訊模組505可提供有線通訊,也可提供無線通訊,也可以兩者都提供。通訊模組505並非必然是基於電學原理,而也可以基於其他物理原理,例如力學、聲學(例如聲納)、熱力學、量子力學等。在一個實施例中,通訊模組505可以作為外界用來控制可撓式電子裝置之微控制器501、壓電元件502a-502c及其他模組之間的媒介。在一個實施例中,通訊模組505可以接收無線信號以控制壓電元件502a-502c的收縮或伸張並進而控制可撓式電子裝置之形變、折疊、開放等動作。在一個實施例中,通訊模組505可以接收感測器503量測的信號並將其傳輸至外界,例如外部的電腦或資料庫。在一個實施例中,通訊模組505可以與可撓式電子裝置的使用者的其他設備耦合,例如手機、電腦、手錶等等。 傳感器(transducer)506能夠將非電學能量(例如力學能,例如熱、體溫、生命體活動所自然產生的搖擺、脈搏等)轉換成其他形式的能量,例如電能。在一個實施例中,傳感器506可做通訊或信號處理之用。在一個實施例中,傳感器506可供應電力給其他裝置或區塊。 圖6(a)所示為根據本發明之一實施例的可撓基板6。可撓基板6與圖1(a)所示的可撓基板1類似,因此以下僅就兩者間不同之處加以說明。可撓基板6包含至少一第一壓電元件11及感應線圈601。感應線圈601可以由其他電路控制以在需要的時候產生磁力,以增加彎折度。在圖6(a)所示的實施例中,可撓基板6包含第一感應線圈601a及第二感應線圈601b,分別置於預定彎折區的兩側。在其他的實施例中,感應線圈601的數目及位置可以針對實際應用需要而調整。 參見圖6(b)。在第一壓電元件11使可撓基板6產生形變/彎折期間,可以對第一感應線圈601a及第二感應線圈601b通以電流使其產生相吸的磁力,以增加可撓基板6的形變量。在一個實施例中,可以對第一感應線圈601a及第二感應線圈601b通以不同的電流使其產生相斥的磁力,以促使可撓基板6展開,進而可以回復原狀。 本說明書及其摘要部分只是闡述發明人所預期的本發明之一或多個實施例,並非窮舉所有的實施例。本說明書及其摘要部分不應用以限制申請人所申請的專利範圍。 上文有使用區塊的方式來描述本發明的不同實施例之不同功能。各區塊之間的邊界劃定只是為了便於描述。只要能適當的實現所述指定功能及其相對關係,便毋須死板地遵守上文或圖式中所劃定的邊界。 本說明書中針對特定實施例之描述可以充分地揭露本發明之一般性質,使得技藝人士在不脫離本發明之一般精神的情況下可以針對特定應用情況而對任何實施例做出相應、適當、不過度的修改,這些修改仍然不脫離本發明的範圍及其均等範圍。 本發明所申請的專利範圍是以後附申請專利範圍及其均等範圍所界定,而非由說明書、摘要及圖式所限制。Figure 1 (a) shows a flexible substrate 1 in accordance with an embodiment of the present invention. The flexible substrate 1 includes a predetermined bending region 10, an upper surface 1a, and a lower surface 1b. The upper surface 1a is provided with at least one first piezoelectric element 11 and a functional module 13. The lower surface 1b may be provided with at least one second piezoelectric element 12 (not shown in Fig. 1(a)). The flexible substrate 1 can be made of different materials depending on different conditions. Useful materials include silicone, polyimide (PI), polyethylene terephthalate (PET), polypropylene (PP), polyethylene naphthalate (PEN), Polycarbonate (PC), polyester (PES), cyclic olefin copolymer (COC), composite of the foregoing materials, materials having flexibility and no influence on living organisms, flexible and implantable organisms Materials that are not rejected by organisms, and other suitable materials. The flexible substrate 1 can have different flexibility depending on different needs. In an embodiment, the flexibility of the flexible substrate 1 is sufficient to cause deformation in three directions of X, Y, and Z to be bent into a U shape. In an embodiment, the flexibility of the flexible substrate 1 is sufficient to be folded in either of the three directions of X, Y, and Z or all three directions. In an embodiment, the flexible substrate 1 can be opened and restored to its original shape after being folded in half. In an embodiment, the flexibility of the flexible substrate 1 is sufficient to fold it in multiple directions in any of the three directions of X, Y, and Z, for example, 2-5 times, 5-10 times, 11-15 times. , 16-20 times, or more. In one embodiment, the flexible substrate 1 is flexible enough to be folded and returned to its original shape after being folded in multiple times. The flexible substrate 1 may comprise one or more layers, and the different layers may have the same material or different materials. The degree of flexibility of each layer may be identical, partially different, or completely different. The flexible substrate 1 can include a circuit layer that can include active circuitry, passive circuitry, sensors, circuit connections, and other suitable circuit components. The thickness of the flexible substrate 1 can be between about 1 micrometer (μm) and about 100 micrometers. The flexible substrate 1 includes a predetermined bending region 10, and at least one first piezoelectric element 11 is disposed above the upper surface 1a and the predetermined bending region 10. The first piezoelectric element 11 can be contracted or stretched by the electrical signal provided by the functional module 13 or other functional modules not shown in FIG. 1(a) to generate mechanical force. As shown in FIG. 1(a), the predetermined bending region 10 has a plurality of first piezoelectric elements 11. When the number of first piezoelectric elements 11 simultaneously shrinks or stretches while receiving an electrical signal, the flexible substrate 1 can be deformed along the predetermined bending region 10 to bend the flexible substrate 1. That is, the first piezoelectric element 11 can cause the flexible substrate 1 to deform the flexible substrate 1 without being directly contacted by external force. In one embodiment, the functional module 13 includes a wireless communication module and can be contracted or stretched by providing the received wireless signal to the first piezoelectric element 11 to thereby deform the flexible substrate 1. The material of the first piezoelectric element 11 may include lead zirconate titanate (PZT), polyvinylidene fluoride (PVDF), zinc oxide (ZNO), and/or other suitable materials. The first piezoelectric elements 11 can have different numbers and sizes. The embodiment shown in Fig. 1(a) has a plurality of relatively small first piezoelectric elements 11; the embodiment shown in Fig. 1(b) has a strip-shaped first piezoelectric element 11 along a predetermined bending area. Configuration. The function module 13 can have different functions depending on the application environment in which the flexible substrate 1 is located. Although only four functional modules are shown in FIG. 1(a), they are only used for illustration, not for limiting the number of functional modules. The function module 13 can include a mechanism module, a wired communication module, a wireless communication module, a microcontroller module, a sensing module, a physiological signal monitoring module, a power supply module, a lighting module, a layout line, and a micro With wires, magnetic modules, optical modules, acoustic modules, or other suitable modules. 2(a) is a cross-sectional view of a flexible substrate in accordance with an embodiment of the present invention. The flexible substrate 1 may have not only the first piezoelectric element 11 on the upper surface 1a but also at least one second piezoelectric element 12 on the lower surface 1b. The second piezoelectric element 12 is disposed above the predetermined bending zone 10. In one embodiment, the position of the second piezoelectric element 12 corresponds to the position of the first piezoelectric element 11. Like the first piezoelectric element 11, the second piezoelectric element 12 can also contract or stretch by receiving an electrical signal and thereby generate a mechanical force. In one embodiment, the contraction or stretching of the second piezoelectric element 12 causes the flexible substrate 1 to deform. The first piezoelectric element 11 and the second piezoelectric element 12 can cause the flexible substrate 1 to be deformed in the same direction, and the flexible substrate 1 can be deformed in different directions. In one embodiment, the first piezoelectric element 11 and the second piezoelectric element 12 reverse the direction in which the flexible substrate 1 is deformed. As shown in FIG. 2(b), the mechanical force generated by the first piezoelectric element 11 or the second piezoelectric element 12 can bend the flexible substrate 1 in the positive Z direction. In one embodiment, the first piezoelectric element 11 and the second piezoelectric element 12 cause the flexible substrate 1 to bend in opposite directions; at this time, one of the flexible substrates 1 can be bent to provide an electrical signal. To the other, the flexible substrate 1 is bent in the opposite direction and the flexible substrate 1 is restored to its original shape. Figure 2(c) shows another possible bending direction. In order to make the first piezoelectric element 11 and/or the second piezoelectric element 12 bend the flexible substrate 1 more easily, it may be provided under the first piezoelectric element 11 and/or the second piezoelectric element 12 on the flexible substrate 1. Some physical features and / or type features to change its force characteristics. As shown in FIG. 2(d), the upper surface 1a and the lower surface 1b are each provided with a groove 101, and the first piezoelectric element 11 and the second piezoelectric element 12 are both disposed on the groove 101 or in the groove 101. In the embodiment shown in FIG. 2(d), the groove 101 thins the flexible substrate 1 at a predetermined bending region 10, so that the first piezoelectric element 11 and the second piezoelectric element 12 are identical. In the case of mechanical force, the flexible substrate 1 can be more easily deformed. The groove 101 may be larger or smaller than the first piezoelectric element 11 and/or the second piezoelectric element 12. In the embodiment shown in Fig. 2(d), the first piezoelectric element 11 is smaller than the groove 101 of the upper surface 1a and is placed therein, the first piezoelectric element 12 is larger than the groove 101 of the upper surface 1b and located Above the groove 101. In one embodiment, only the upper surface 1a or the lower surface 1b is provided with a recess 101. In one embodiment, the size of the groove 101 of the upper surface 1a is different from the size of the groove 101 of the lower surface 1b. In one embodiment, a groove 101 is provided under each of the first piezoelectric element 11 and the second piezoelectric element 12. In one embodiment, only a portion of the first piezoelectric element 11 and/or the second piezoelectric element 12 is provided with a recess 101 below it. Figure 3 shows a flexible substrate 3 in accordance with an embodiment of the present invention. The flexible substrate 3 is similar to the flexible substrate 1 shown in Fig. 1(a), and therefore only the differences between the two will be described below. Two sets of piezoelectric elements are disposed on the upper surface 3a of the flexible substrate 3, which are a first piezoelectric element 11a along the Y direction and a first piezoelectric element 11b along the X direction, respectively, which are respectively staggered with each other. The first predetermined fold line area 10a and the second predetermined fold line area 10b. The first piezoelectric element 11a and the first piezoelectric element 11b can deform, bend and/or respectively deform the flexible substrate 3 along the first predetermined polygonal line region 10a and the second predetermined polygonal line region 10b by the electrical signals received by the first piezoelectric element 11a and the first piezoelectric element 11b. fold. The first predetermined fold line region 10a and the second predetermined fold line region 10b in Fig. 3 are staggered at ninety degrees, but may be staggered at different angles and have different fold directions in different embodiments. In other embodiments, the upper surface 3a and/or the lower surface 3b of the flexible substrate may be provided with piezoelectric elements corresponding to a plurality of predetermined polygonal line regions, for example, two predetermined polygonal line regions, three predetermined polygonal line regions, and four One predetermined folding line area, five predetermined folding line areas, six predetermined folding line areas, seven predetermined folding line areas, eight predetermined folding line areas, or a greater number of predetermined folding line areas. 4 is a schematic diagram of a folding function of a flexible electronic device in accordance with an embodiment of the present invention. The flexible electronic device shown in FIG. 4 is square, but may have different shapes in different embodiments, such as rectangular, polygonal, and circular shapes having different aspect ratios. The flexible electronic device shown in FIG. 4 may include a flexible substrate as shown in FIG. 1(a), FIG. 1(b) or FIG. 3, or according to an embodiment within the scope of the spirit of the present invention. A flexible substrate manufactured. The first state 41 is an original state in which the flexible electronic device is not deformed, bent, or folded. Since the flexible electronic device shown in FIG. 4 has a flexible substrate in accordance with the spirit of the present invention, it can be folded along different predetermined bending/folding regions. In one embodiment, the flexible electronic device can be folded multiple times into a second state 42 according to the principle of origami. In one embodiment, the flexible electronic device in the second state 42 can be folded into the third state 43 again according to the principles of origami art. Compared to the flexible electronic device in the first state 41, the flexible electronic device in the third state 43 occupies a smaller volume and thus can have more applications. In one embodiment, the flexible electronic device is a physiological state (eg, blood glucose, heartbeat, neural signals, blood flow, etc.) sensors. If the area or volume of the physiological state sensor is too large, it may cause difficulty in implanting the living body. Since the flexible electronic device manufactured according to the embodiment of the present invention can be folded, the difficulty occurring in the process of implanting the living body can be reduced. In one embodiment, the flexible electronic device in the third state 43 can be deployed and returned to the first state 41 as needed. In one embodiment, a physiological condition sensor fabricated in accordance with an embodiment of the present invention may send an appropriate signal to open after folding and implanting the organism. In one embodiment, the deformation, folding, and opening of the flexible electronic device can be controlled by wireless communication signals. Although there are only three folded states in FIG. 4, the flexible electronic device according to an embodiment of the present invention can have a wider variety of folded states. 5 is a circuit block diagram 5 of a flexible electronic device in accordance with an embodiment of the present invention to illustrate the functions it may have. Circuit Blocks The blocks in Figure 5 can be used to implement the functions of the function module 13 shown in Figure 1 (a), and can also be used to implement other required functions. In one embodiment, the circuit block diagram 5 includes a microcontroller 501, a first piezoelectric element 502a, a second piezoelectric element 502b, a third piezoelectric element 502c, a sensor 503, a power supply module 504, and a communication. Module 505, and sensor 506. Since the circuit block diagram 5 is mainly for illustration, the number of modules shown in the drawings does not necessarily limit the number of modules in the embodiment. The function and/or number of modules may be increased or decreased by those skilled in the art without departing from the scope of the invention. In addition, although the modules in the circuit block diagram 5 are not connected by solid lines, in fact, the skilled person can use the conventional means to connect and/or couple the modules according to actual application requirements; The connected/coupled manner, form, pattern, etc., does not depart from the spirit of the invention. In addition, as described above, the flexible substrate in the flexible electronic device of the present invention may have one or more layers, so that the blocks of the circuit block FIG. 5 can be implemented in different layers of the flexible substrate without Without departing from the spirit of the invention, different parts of a single block may be separately implemented in different layers and interconnected in a conventional manner. The microcontroller 501 can have different sizes, materials, and power consumptions depending on different needs. The microcontroller 501 can include a digital computing module (such as a central processing unit (CPU)), volatile and/or non-volatile memory, an input/output (I/O) interface, a communication interface, a bus interface, and a clock. Generator, digital/analog converter, debug circuit, etc. The microcontroller 501 may be composed of discrete elements, or may be composed of integrated circuits, or may be composed of integrated circuits and discrete elements. In one embodiment, an appropriate software program may be present in the microcontroller 501 to automatically control the flexion or extension of the piezoelectric elements 502a-502c and control the flexible state at appropriate times, peripheral physical parameters, and the like. The deformation, folding, opening and the like of the electronic device. For example, the microcontroller 501 can be configured to open the flexible electronic device at a fixed time each day and to close the flexible electronic device at another fixed time. The first piezoelectric element 502a, the second piezoelectric element 502b, and the third piezoelectric element 502c can be used for conversion between electrical energy and mechanical energy. In one embodiment, the piezoelectric elements can be used to deform the flexible electronic device. In one embodiment, a piezoelectric element can be used to provide electrical power. The sensor 503 can be used to detect physical signals, such as mechanical, electromagnetic, thermodynamic, optical, acoustic, physiological (eg, blood glucose, heartbeat, concentration of specific types of cells in the blood) , nerve conduction, blood flow, etc.) and so on. In one embodiment, the sensor 503 operates without additional power. In one embodiment, sensor 503 requires additional power to operate. In one embodiment, the sensor 503 can be controlled via the microcontroller 501 and/or the communication module 505. In one embodiment, the flexible electronic device is a physiological signal sensor of the implantable organism, and the sensor 503 is a blood glucose sensor, and the microcontroller 501 is programmed to be used at a fixed time. The piezoelectric elements 502a-502c are controlled to open the flexible electronics to increase the sensitivity of the sensor 503 and to instruct the sensor 503 to measure blood glucose, and after the measurement is completed, by controlling the piezoelectric elements 502a-502c The flexible electronic device is folded up. The power supply module 504 is used to power modules/blocks that require power to operate to ensure proper operation. The power supply module 504 can be a battery, a bulk capacitor, a wireless charging receiver, and the like. The communication module 505 can be used to provide communication between the blocks in the circuit block diagram 5, and can also be used to provide communication between the flexible electronic device and the outside world. The communication module 505 can provide wired communication, wireless communication, or both. The communication module 505 is not necessarily based on electrical principles, but may be based on other physical principles such as mechanics, acoustics (eg, sonar), thermodynamics, quantum mechanics, and the like. In one embodiment, the communication module 505 can be used as an intermediary between the microcontroller 501, the piezoelectric elements 502a-502c, and other modules used to control the flexible electronic device. In one embodiment, the communication module 505 can receive wireless signals to control the contraction or extension of the piezoelectric elements 502a-502c and thereby control the deformation, folding, opening, etc. of the flexible electronic device. In one embodiment, the communication module 505 can receive the signals measured by the sensor 503 and transmit them to the outside world, such as an external computer or library. In one embodiment, the communication module 505 can be coupled to other devices of the user of the flexible electronic device, such as a cell phone, a computer, a watch, and the like. Transducer 506 is capable of converting non-electrical energy (eg, mechanical energy, such as heat, body temperature, sway, pulse, etc. naturally generated by living body activity) into other forms of energy, such as electrical energy. In one embodiment, sensor 506 can be used for communication or signal processing. In one embodiment, sensor 506 can supply power to other devices or blocks. Figure 6 (a) shows a flexible substrate 6 in accordance with an embodiment of the present invention. The flexible substrate 6 is similar to the flexible substrate 1 shown in Fig. 1(a), and therefore only the differences between the two will be described below. The flexible substrate 6 includes at least one first piezoelectric element 11 and an induction coil 601. The induction coil 601 can be controlled by other circuitry to generate a magnetic force when needed to increase the degree of bending. In the embodiment shown in FIG. 6(a), the flexible substrate 6 includes a first induction coil 601a and a second induction coil 601b, which are respectively placed on both sides of a predetermined bending zone. In other embodiments, the number and location of the inductive coils 601 can be adjusted for practical application needs. See Figure 6(b). During the deformation/bending of the flexible substrate 6 by the first piezoelectric element 11, current may be applied to the first induction coil 601a and the second induction coil 601b to generate a magnetic attraction force to increase the flexible substrate 6. Shape variable. In one embodiment, the first induction coil 601a and the second induction coil 601b may be subjected to different currents to generate a repulsive magnetic force to cause the flexible substrate 6 to be unfolded, thereby returning to the original state. The description and its summary are merely illustrative of one or more embodiments of the invention, This specification and its abstract portions are not intended to limit the scope of the patents filed by the applicant. The manner in which blocks are used above to describe the different functions of different embodiments of the present invention. The boundaries between the blocks are delineated for ease of description. As long as the specified functions and their relative relationships can be properly implemented, the boundaries defined above or in the drawings are not required to be rigidly adhered to. The description of the specific embodiments of the present invention can fully delineate the general nature of the present invention, so that the skilled person can make corresponding, appropriate, and not for any embodiment for a specific application without departing from the general spirit of the invention. Excessive modifications may be made without departing from the scope and equivalence of the invention. The scope of the patent application is defined by the scope of the appended claims and their equivalents, and not by the description, the abstract and the drawings.

1‧‧‧可撓基板1‧‧‧Flexible substrate

1a‧‧‧上表面1a‧‧‧ upper surface

1b‧‧‧下表面1b‧‧‧ lower surface

3‧‧‧可撓基板3‧‧‧Flexible substrate

5‧‧‧電路區塊圖5‧‧‧Circuit block diagram

6‧‧‧可撓基板6‧‧‧Flexible substrate

10‧‧‧預定彎折區10‧‧‧ Scheduled bend zone

10a‧‧‧第一預定折線區10a‧‧‧First scheduled fold area

10b‧‧‧第二預定折線區10b‧‧‧Second scheduled fold area

11‧‧‧第一壓電元件11‧‧‧First Piezoelectric Element

11a‧‧‧第一壓電元件11a‧‧‧First Piezoelectric Element

11b‧‧‧第一壓電元件11b‧‧‧First Piezoelectric Element

12‧‧‧第二壓電元件12‧‧‧second piezoelectric element

13‧‧‧功能模組13‧‧‧ functional modules

41‧‧‧第一狀態41‧‧‧First state

42‧‧‧第二狀態42‧‧‧Second state

43‧‧‧第三狀態43‧‧‧ third state

101‧‧‧凹槽101‧‧‧ Groove

501‧‧‧微控制器501‧‧‧Microcontroller

502a‧‧‧第一壓電元件502a‧‧‧First Piezoelectric Element

502b‧‧‧第二壓電元件502b‧‧‧second piezoelectric element

502c‧‧‧第三壓電元件502c‧‧‧third piezoelectric element

503‧‧‧感測器503‧‧‧ sensor

504‧‧‧電力供應模組504‧‧‧Power supply module

505‧‧‧通訊模組505‧‧‧Communication Module

506‧‧‧傳感器506‧‧‧ sensor

601‧‧‧感應線圈601‧‧‧Induction coil

601a‧‧‧第一感應線圈601a‧‧‧First induction coil

601b‧‧‧第二感應線圈601b‧‧‧second induction coil

圖1(a)所示為根據本發明之一實施例的可撓基板之立體圖。 圖1(b)所示為根據本發明之一實施例的可撓基板之立體圖。 圖2(a)所示為根據本發明之一實施例的可撓基板之剖面圖。 圖2(b)所示為根據本發明之一實施例的可撓基板之剖面圖。 圖2(c)所示為根據本發明之一實施例的可撓基板之剖面圖。 圖2(d)所示為根據本發明之一實施例的可撓基板之剖面圖。 圖3所示為根據本發明之一實施例的可撓基板之立體圖。 圖4所示為根據本發明之一實施例的可撓式電子裝置之折疊功能的示意圖。 圖5所示為根據本發明之一實施例的可撓式電子裝置之電路區塊圖。 圖6(a)所示為根據本發明之一實施例的可撓基板之立體圖。 圖6(b)所示為根據本發明之一實施例的可撓基板之立體圖。 注意各個圖式都只是用以示意,並非用以限定尺寸、數目、比例或連接關係。Figure 1 (a) is a perspective view of a flexible substrate in accordance with an embodiment of the present invention. Figure 1 (b) is a perspective view of a flexible substrate in accordance with an embodiment of the present invention. 2(a) is a cross-sectional view of a flexible substrate in accordance with an embodiment of the present invention. 2(b) is a cross-sectional view of a flexible substrate in accordance with an embodiment of the present invention. 2(c) is a cross-sectional view of a flexible substrate in accordance with an embodiment of the present invention. 2(d) is a cross-sectional view of a flexible substrate in accordance with an embodiment of the present invention. 3 is a perspective view of a flexible substrate in accordance with an embodiment of the present invention. 4 is a schematic diagram of a folding function of a flexible electronic device in accordance with an embodiment of the present invention. FIG. 5 is a circuit block diagram of a flexible electronic device in accordance with an embodiment of the present invention. Figure 6 (a) is a perspective view of a flexible substrate in accordance with an embodiment of the present invention. Figure 6 (b) is a perspective view of a flexible substrate in accordance with an embodiment of the present invention. Note that the various figures are for illustrative purposes only and are not intended to limit the size, number, proportion or connection.

Claims (13)

一種可撓式電子裝置,其包含: 一可撓基板,該可撓基板包含一預定彎折區,該預定彎折區具有一第一表面及與該第一表面相對的一第二表面;及 至少一第一壓電元件,其位於該預定彎折區的該第一表面上,並可以接收一第一電信號,其中該至少一第一壓電元件可以回應於所接收的該電信號而收縮或伸張,使該可撓基板以一第一形變方向形變。A flexible electronic device, comprising: a flexible substrate, the flexible substrate comprising a predetermined bending region, the predetermined bending region having a first surface and a second surface opposite to the first surface; At least one first piezoelectric element located on the first surface of the predetermined bending zone and capable of receiving a first electrical signal, wherein the at least one first piezoelectric component is responsive to the received electrical signal Shrinking or stretching causes the flexible substrate to deform in a first deformation direction. 如請求項1之可撓性電子裝置,該可撓式電子裝置進一步包含: 至少一第二壓電元件,其位於該預定彎折區的該第二表面並可以接收一第二電信號,其中該至少一第二壓電元件可以回應於所接收的該第二電信號而收縮或伸張,使該可撓基板以一第二方向形變,其中該第一形變方向與該第二形變方向相反。The flexible electronic device of claim 1, further comprising: at least one second piezoelectric element located on the second surface of the predetermined bending zone and capable of receiving a second electrical signal, wherein The at least one second piezoelectric element may contract or stretch in response to the received second electrical signal to deform the flexible substrate in a second direction, wherein the first deformation direction is opposite to the second deformation direction. 如請求項1之可撓性電子裝置,其中該第二狀態形變係回復為該可撓基板之一原始狀態。The flexible electronic device of claim 1, wherein the second state deformation is restored to one of the original states of the flexible substrate. 如請求項1之可撓性電子裝置,其進一步包含位於該可撓基板上之一感測器。The flexible electronic device of claim 1, further comprising a sensor on the flexible substrate. 如請求項3之可撓性電子裝置,其中該感測器為一生理信號感測器。The flexible electronic device of claim 3, wherein the sensor is a physiological signal sensor. 如請求項1之可撓性電子裝置,其進一步包含一傳感器(transducer),使該可撓性電子裝置自行充電。The flexible electronic device of claim 1, further comprising a transducer for self-charging the flexible electronic device. 如請求項1之可撓性電子裝置,其進一步包含一第三壓電元件,其可以接收生理訊號而使該可撓性電子裝置自行充電。The flexible electronic device of claim 1, further comprising a third piezoelectric element that receives the physiological signal to cause the flexible electronic device to self-charge. 如請求項1之可撓性電子裝置,其中該預定彎折區具有一第一預定折線區及一第二預定折線區,該第一預定折線區及該第二預定折線區交叉。The flexible electronic device of claim 1, wherein the predetermined bending zone has a first predetermined folding line area and a second predetermined folding line area, the first predetermined folding line area and the second predetermined folding line area intersecting. 如請求項8之可撓性電子裝置,其中該第一預定折線區與該第二預定折線區中之至少一者包含一凹槽。The flexible electronic device of claim 8, wherein at least one of the first predetermined fold line region and the second predetermined fold line region comprises a recess. 如請求項9之可撓性電子裝置,其中該至少一第一壓電元件在該凹槽上或在該凹槽中。The flexible electronic device of claim 9, wherein the at least one first piezoelectric element is on the groove or in the groove. 如請求項1之可撓性電子裝置,其進一步包含一無線通訊模組,該無線通訊模組與該至少一第一壓電元件耦合以提供該電信號至該至少一第一壓電元件。The flexible electronic device of claim 1, further comprising a wireless communication module coupled to the at least one first piezoelectric element to provide the electrical signal to the at least one first piezoelectric element. 如請求項1之可撓式電子裝置,其中該可撓基板的材料包含下列至少之一者:矽酮(silicone)、聚醯亞胺(PI)、聚對苯二甲酸乙二酯(PET)、聚丙烯(PP)、聚萘二甲酸乙二醇酯(PEN)、聚碳酸酯(PC)、聚酯(PES)、環烯烴共聚合體(COC)及其複合材料。The flexible electronic device of claim 1, wherein the material of the flexible substrate comprises at least one of the following: silicone, polyimine (PI), polyethylene terephthalate (PET) Polypropylene (PP), polyethylene naphthalate (PEN), polycarbonate (PC), polyester (PES), cyclic olefin copolymer (COC) and composite materials thereof. 如請求項1之可撓性電子裝置,其進一步包含一第一感應線圈及一第二感應線圈,該第一感應線圈及該第二感應線圈分別置於該預定彎折區的兩側。The flexible electronic device of claim 1, further comprising a first inductive coil and a second inductive coil, the first inductive coil and the second inductive coil being respectively disposed on opposite sides of the predetermined bending region.
TW105127599A 2016-08-26 2016-08-26 Flexible electronic device TWI634733B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105127599A TWI634733B (en) 2016-08-26 2016-08-26 Flexible electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105127599A TWI634733B (en) 2016-08-26 2016-08-26 Flexible electronic device

Publications (2)

Publication Number Publication Date
TW201807946A true TW201807946A (en) 2018-03-01
TWI634733B TWI634733B (en) 2018-09-01

Family

ID=62189894

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105127599A TWI634733B (en) 2016-08-26 2016-08-26 Flexible electronic device

Country Status (1)

Country Link
TW (1) TWI634733B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112343349A (en) * 2020-11-12 2021-02-09 重庆交通大学 Piezoelectric conduit, prestressed tendon pretensioning and bending device and prestressed tendon pretensioning and bending construction method
CN113936560A (en) * 2021-11-05 2022-01-14 合肥维信诺科技有限公司 Flexible folding display device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201347728A (en) * 2012-05-17 2013-12-01 Ind Tech Res Inst Sensing structure for physiological signal, stethoscope therewith and manufacturing method thereof
TWI529984B (en) * 2012-08-17 2016-04-11 國立臺南大學 Flexible surface acoustic wave (saw) device, piezoelectric substrate and method of making the same
JP6113581B2 (en) * 2013-06-12 2017-04-12 株式会社東芝 Pressure sensor, acoustic microphone, blood pressure sensor, and touch panel
KR102130259B1 (en) * 2014-09-02 2020-07-03 애플 인크. Wearable electronic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112343349A (en) * 2020-11-12 2021-02-09 重庆交通大学 Piezoelectric conduit, prestressed tendon pretensioning and bending device and prestressed tendon pretensioning and bending construction method
CN112343349B (en) * 2020-11-12 2022-01-28 重庆交通大学 Piezoelectric conduit, prestressed tendon pretensioning and bending device and prestressed tendon pretensioning and bending construction method
CN113936560A (en) * 2021-11-05 2022-01-14 合肥维信诺科技有限公司 Flexible folding display device
CN113936560B (en) * 2021-11-05 2023-11-07 合肥维信诺科技有限公司 Flexible folding display device

Also Published As

Publication number Publication date
TWI634733B (en) 2018-09-01

Similar Documents

Publication Publication Date Title
Dahiya et al. Directions toward effective utilization of tactile skin: A review
Pyo et al. Recent progress in flexible tactile sensors for human‐interactive systems: from sensors to advanced applications
Wang et al. Toward perceptive soft robots: Progress and challenges
Costa et al. Recent progress on piezoelectric, pyroelectric, and magnetoelectric polymer‐based energy‐harvesting devices
Xie et al. Flexible self-powered multifunctional sensor for stiffness-tunable soft robotic gripper by multimaterial 3D printing
US11860048B2 (en) Capacitive and tactile sensors and related sensing methods
Shian et al. Dielectric elastomer based “grippers” for soft robotics
Kappassov et al. Tactile sensing in dexterous robot hands
US9836123B2 (en) Bussed haptic actuator system and method
Cannata et al. An embedded artificial skin for humanoid robots
Kim et al. Soft inflatable sensing modules for safe and interactive robots
Germann et al. Active connection mechanism for soft modular robots
JP2020528633A (en) Hand-mounted interface device
TWI634733B (en) Flexible electronic device
CN109427955B (en) Self-driven multistage sensor, preparation method thereof, sensing method and electronic skin
JP2019120676A (en) Tactile sensor
US10065322B2 (en) Actively controlled microarchitectures with programmable bulk material properties
Zhang et al. Recent progress in three-dimensional flexible physical sensors
CN104931161A (en) Force detection device and robot
Tadesse et al. Piezoelectric actuation and sensing for facial robotics
Van Volkinburg et al. Development of a wearable controller for gesture-recognition-based applications using polyvinylidene fluoride
TWM541123U (en) Flexible electronic device
KR20200073450A (en) Flexible piezoelectric array sensor system
CN206140521U (en) Robot
KR20160061854A (en) Wearable device including energy conversion device