TW201807941A - Method for controlling a converter - Google Patents

Method for controlling a converter Download PDF

Info

Publication number
TW201807941A
TW201807941A TW105127637A TW105127637A TW201807941A TW 201807941 A TW201807941 A TW 201807941A TW 105127637 A TW105127637 A TW 105127637A TW 105127637 A TW105127637 A TW 105127637A TW 201807941 A TW201807941 A TW 201807941A
Authority
TW
Taiwan
Prior art keywords
converter
voltage
coefficient
control signal
predetermined
Prior art date
Application number
TW105127637A
Other languages
Chinese (zh)
Other versions
TWI581550B (en
Inventor
劉邦榮
張哲瑋
Original Assignee
國立臺北科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺北科技大學 filed Critical 國立臺北科技大學
Priority to TW105127637A priority Critical patent/TWI581550B/en
Application granted granted Critical
Publication of TWI581550B publication Critical patent/TWI581550B/en
Publication of TW201807941A publication Critical patent/TW201807941A/en

Links

Abstract

A method for controlling a converter includes : (a) converting an analog input voltage and an analog output voltage to a digital input voltage and a digital output voltage respectively by an ADC; (b) calculating an auxiliary slope ma based on the digital output voltage and a variable slope proportional to a difference of the digital input voltage and the digital output voltage based on the digital input voltage and the digital output voltage by a hybrid controller, wherein ma=-[alpha]Vo, and [alpha] is a coefficient; (c) calculating a intersection voltage Vd and then the coefficient [alpha] and a duty cycle of a control signal by the hybrid controller at least based on the relationship of the auxiliary slope, the variable slope, and a compensation voltage Vc generated by a compensation circuit such that the converter has fast line transient response.

Description

轉換器控制方法Converter control method

本發明是有關於一種控制方法,特別是指一種轉換器控制方法。The present invention relates to a control method, and more particularly to a converter control method.

參閱圖1,習知的一種非反相升降壓轉換器(Noninverting Buck-Boost Converter;NBB Converter)包含一第一開關911、一第一二極體921、一電感器93、一第二開關912、一第二二極體922、一電容器94、一閘驅動器96、一脈寬調變控制器97、及一補償電路98。該非反相升降壓轉換器電連接一直流電源90以接收一輸入電壓,並將該輸入電壓轉換為一輸出電壓,且將該輸出電壓輸出至一負載95。該補償電路98接收該輸出電壓,並作迴路的相位邊際(Phase Margin)、直流增益(DC Gain)、及頻寬增加之其中至少一種補償,以輸出一補償電壓。該脈寬調變控制器(Pulse Width Modulation Controller;PWM Controller)97接收該補償電壓,並據以產生一控制信號。Referring to FIG. 1 , a non-inverting buck-boost converter (NBB Converter) includes a first switch 911, a first diode 921, an inductor 93, and a second switch 912. A second diode 922, a capacitor 94, a gate driver 96, a pulse width modulation controller 97, and a compensation circuit 98. The non-inverting buck-boost converter is electrically connected to the DC power source 90 to receive an input voltage, convert the input voltage into an output voltage, and output the output voltage to a load 95. The compensation circuit 98 receives the output voltage and performs at least one of a phase margin (Phase Margin), a DC gain (DC Gain), and an increase in bandwidth to output a compensation voltage. The Pulse Width Modulation Controller (PWM Controller) 97 receives the compensation voltage and generates a control signal accordingly.

該非反相升降壓轉換器操作在一降壓模式、一升壓模式、及一升降壓模式之間。當該非反相升降壓轉換器操作該升降壓模式時,該閘驅動器96將該脈寬調變控制器97所產生的該控制信號,輸出至該第一開關911及該第二開關912,以同時控制該第一開關911及該第二開關912導通的佔空比(Duty Cycle)。The non-inverting buck-boost converter operates between a buck mode, a boost mode, and a buck-boost mode. When the non-inverting buck-boost converter operates the buck-boost mode, the gate driver 96 outputs the control signal generated by the pulse width modulation controller 97 to the first switch 911 and the second switch 912 to At the same time, the duty ratio (Duty Cycle) of the first switch 911 and the second switch 912 is controlled.

當該非反相升降壓轉換器操作在該降壓模式時,該閘驅動器96控制該第二開關912不導通,且將該脈寬調變控制器97所產生的該控制信號,輸出至該第一開關911,以控制該第一開關911導通的佔空比da 。此時,Vo =da *VinWhen the non-inverting buck-boost converter is operated in the buck mode, the gate driver 96 controls the second switch 912 to be non-conducting, and outputs the control signal generated by the pulse width modulation controller 97 to the first A switch 911 controls the duty ratio d a at which the first switch 911 is turned on. At this time, V o =d a *V in .

當該非反相升降壓轉換器操作該升壓模式時,該閘驅動器96控制該第一開關911導通,且將該脈寬調變控制器97所產生的該控制信號,輸出至該第二開關912,以控制該第二開關912導通的佔空比db 。此時,Vo =Vin /(1-db )。When the non-inverting buck-boost converter operates the boost mode, the gate driver 96 controls the first switch 911 to be turned on, and outputs the control signal generated by the pulse width modulation controller 97 to the second switch. 912, to control the duty ratio d b of the second switch 912 to be turned on. At this time, V o =V in /(1-d b ).

參閱圖1與圖2,圖2說明該輸入電壓Vin 、該補償電壓Vc1 、Vc2 、該控制信號的佔空比d1 、d2 、一鋸齒波上限電壓VH 、及一鋸齒波下限電壓VL 之間的關係。該脈寬調變控制器97包含一鋸齒波信號,並根據該鋸齒波信號及該補償電壓Vc ,作電壓大小的比較,以產生該控制信號且調變該控制信號的佔空比d1 、d2 (圖2)。該鋸齒波信號的最大值及最小值分別為該鋸齒波上限電壓VH 及該鋸齒波下限電壓VL 。當該非反相升降壓轉換器操作在該降壓模式及該升壓模式時,該補償電壓分別如公式(1)及(2)。其中,VM =VH -VL......(1)......(2)Referring to FIG. 1 and FIG. 2, FIG. 2 illustrates the input voltage V in , the compensation voltages V c1 , V c2 , the duty ratios d 1 , d 2 of the control signals, a sawtooth upper limit voltage V H , and a sawtooth wave The relationship between the lower limit voltages V L . The pulse width modulation controller 97 includes a sawtooth wave signal, and compares the voltage magnitude according to the sawtooth wave signal and the compensation voltage V c to generate the control signal and modulate the duty ratio d 1 of the control signal. , d 2 (Figure 2). The maximum value and the minimum value of the sawtooth wave signal are the sawtooth wave upper limit voltage V H and the sawtooth wave lower limit voltage V L , respectively . When the non-inverting buck-boost converter operates in the buck mode and the boost mode, the compensation voltages are as shown in equations (1) and (2), respectively. Where V M = V H - V L . ......(1) ......(2)

圖2還說明當該輸入電壓改變時,例如由Vin1 變為Vin2 時,視該非反相升降壓轉換器操作該降壓模式或該升壓模式,該補償電壓還是要滿足公式(1)或公式(2),因此,該補償電壓差值ΔVc 分別如公式(3)及(4)。......(3)......(4)2 also illustrates that when the input voltage changes, for example, from V in1 to V in2 , the non-inverting buck-boost converter operates the buck mode or the boost mode, and the compensation voltage still satisfies the formula (1). Or formula (2), therefore, the compensation voltage difference ΔV c is as shown in equations (3) and (4), respectively. ...(3) ...(4)

習知的該非反相升降壓轉換器雖然可以操作在該降壓模式、該升壓模式、及該升降壓模式之間,但實際上為實現高效率(Efficiency)的電壓轉換,當該輸入電壓大於或等於該輸出電壓時,該非反相升降壓轉換器操作在該降壓模式,而當該輸入電壓小於該輸出電壓時,該非反相升降壓轉換器操作在該升壓模式,也就是說,該非反相升降壓轉換器會避免操作在該升降壓模式。然而,習知的該非反相升降壓轉換器的該補償電路98通常具有一較大的補償電容,且該補償電容輸出該補償電壓,因此,該補償電壓不能作立即的改變,更重要的是,由公式(3)或(4)可知,當該輸入電壓改變時,該補償電壓差值ΔVc 的數值也大,該非反相升降壓轉換器需要時間才能使得該輸出電壓再次穩定,換句話說,該非反相升降壓轉換器的線電壓暫態反應(Line Transient Response)不佳。The conventional non-inverting step-up and step-down converter can operate between the buck mode, the boost mode, and the buck-boost mode, but actually implements high-efficiency voltage conversion when the input voltage is applied. When the output voltage is greater than or equal to the output voltage, the non-inverting buck-boost converter operates in the buck mode, and when the input voltage is less than the output voltage, the non-inverting buck-boost converter operates in the boost mode, that is, The non-inverting step-up and step-down converter will avoid operating in the buck-boost mode. However, the compensation circuit 98 of the conventional non-inverting buck-boost converter generally has a large compensation capacitor, and the compensation capacitor outputs the compensation voltage. Therefore, the compensation voltage cannot be changed immediately, and more importantly, It can be known from formula (3) or (4) that when the input voltage changes, the value of the compensation voltage difference ΔV c is also large, and the non-inverting step-up and step-down converter takes time to make the output voltage stabilize again. In other words, the line voltage transient response of the non-inverting buck-boost converter is not good.

因此,本發明的目的,即在提供一種線電壓暫態反應快速的轉換器控制方法。Accordingly, it is an object of the present invention to provide a converter control method that is fast in line voltage transient response.

於是,本發明轉換器控制方法,適用於一轉換器,該轉換器接收一控制信號控制一開關導通或不導通,以將一輸入電壓Vin 轉換為一輸出電壓Vo ,該轉換器控制方法藉由一數位控制器實施,該數位控制器包含一類比數位轉換器、一補償電路、及一混合控制器,該轉換器控制方法包含下列步驟: (a)藉由該類比數位轉換器將類比的該輸入電壓及該輸出電壓分別轉換為數位的該輸入電壓及該輸出電壓; (b)藉由該混合控制器根據數位的該輸出電壓計算一輔助斜率ma ,並根據數位的該輸入電壓及該輸出電壓計算一可變斜率,其中,,α為一係數,該可變斜率正比於該輸入電壓與該輸出電壓的差值;及 (c)藉由該混合控制器至少根據該輔助斜率、該可變斜率、及該補償電路所產生的一補償電壓Vc 之間的關係,計算一交點電壓Vd ,進而計算獲得該係數α及該控制信號的佔空比。Therefore, the converter control method of the present invention is applicable to a converter that receives a control signal to control whether a switch is turned on or off to convert an input voltage V in into an output voltage V o . The converter control method Implemented by a digital controller, the digital controller includes an analog-to-digital converter, a compensation circuit, and a hybrid controller. The converter control method includes the following steps: (a) analogy by the analog-to-digital converter The input voltage and the output voltage are respectively converted into digital input voltage and the output voltage; (b) calculating, by the hybrid controller, an auxiliary slope m a according to the output voltage of the digit, and according to the input voltage of the digit And calculating a variable slope of the output voltage, wherein , α is a coefficient that is proportional to a difference between the input voltage and the output voltage; and (c) generated by the hybrid controller based at least on the auxiliary slope, the variable slope, and the compensation circuit the relationship between a compensation voltage V c, calculation of the intersection of a voltage V d, then calculate the coefficient α is obtained and the duty ratio control signal.

在一些實施態樣中,其中,當該轉換器是非反相升降壓轉換器(Noninverting Buck-Boost Converter;NBB Converter)且操作在一降壓模式時,其中,在步驟(b)中,定義該可變斜率為msaw,β為一係數。在步驟(c)中,該混合控制器根據下列公式計算該交點電壓,並進而計算該係數α、該係數β、及該控制信號的佔空比da ,其中,Vvalley 為一參數電壓,Ts 為該控制信號的週期,In some implementations, wherein the converter is a non-inverting buck-boost converter (NBB Converter) and operates in a buck mode, wherein in step (b), the The variable slope is m saw , , β is a coefficient. In the step (c), the hybrid controller calculates the intersection voltage according to the following formula, and further calculates the coefficient α, the coefficient β, and the duty ratio d a of the control signal, wherein V valley is a parameter voltage, T s is the period of the control signal, , .

在一些實施態樣中,其中,在步驟(c)中,該控制信號的佔空比da。該係數α等於該係數β,且該係數α為。Vc,buck 為一預定中間值,該預定中間值等於一預定最大值及一預定最小值的平均值,該預定最大值及該預定最小值分別是該轉換器的該輸入電壓及一輸出電流在最壞情況(Worst Case)分析時,該補償電壓的最大值及最小值。In some implementations, wherein, in step (c), the duty cycle d a of the control signal is . The coefficient α is equal to the coefficient β, and the coefficient α is . V c,buck is a predetermined intermediate value, the predetermined intermediate value is equal to an average value of a predetermined maximum value and a predetermined minimum value, and the predetermined maximum value and the predetermined minimum value are respectively the input voltage and an output current of the converter The maximum and minimum values of the compensation voltage in the worst case (Worst Case) analysis.

在另一些實施態樣中,當該轉換器是非反相升降壓轉換器(Noninverting Buck-Boost Converter;NBB Converter)且操作在一升壓模式時,其中,在步驟(b)中,定義該可變斜率為mb,β為一係數。在步驟(c)中,該混合控制器還根據另一可變斜率msaw 及公式,計算該交點電壓,並進而計算該係數α、該係數β、該係數γ、及該控制信號的該佔空比db ,其中,Vvalley 為一參數電壓,Ts 為該控制信號的週期,In other implementations, when the converter is a non-inverting buck-boost converter (NBB Converter) and operates in a boost mode, wherein in step (b), the The slope is m b , , β is a coefficient. In step (c), the hybrid controller is further based on another variable slope m saw and formula Calculating the intersection voltage, and further calculating the coefficient α, the coefficient β, the coefficient γ, and the duty ratio d b of the control signal, wherein V valley is a parameter voltage, and T s is a period of the control signal , , .

在另一些實施態樣中,在步驟(c)中,該控制信號的佔空比db。該係數β等於該係數γ,且該係數α為。Vc,boost 為一預定中間值,該預定中間值等於一預定最大值及一預定最小值的平均值,該預定最大值及該預定最小值分別是該轉換器的該輸入電壓及一輸出電流在最壞情況(Worst Case)分析時,該補償電壓的最大值及最小值。In other implementations, in step (c), the duty cycle d b of the control signal is . The coefficient β is equal to the coefficient γ, and the coefficient α is . V c, boost is a predetermined intermediate value, the predetermined intermediate value being equal to an average of a predetermined maximum value and a predetermined minimum value, wherein the predetermined maximum value and the predetermined minimum value are respectively the input voltage and an output current of the converter The maximum and minimum values of the compensation voltage in the worst case (Worst Case) analysis.

在另一些實施態樣中,當該轉換器是順向轉換器(Forward Converter)、返馳式轉換器(Flyback Converter)、半橋轉換器(Half Bridge Converter)、及全橋轉換器(Full Bridge Converter)之其中任一種時,其中,在步驟(c)中,該係數α為,Vc,converter 為一預定中間值,該預定中間值等於一預定最大值及一預定最小值的平均值,該預定最大值及該預定最小值分別是該轉換器的該輸入電壓及一輸出電流在最壞情況(Worst Case)分析時,該補償電壓的最大值及最小值,K為一係數且相關於該轉換器的一變壓器(Transformer)的線圈匝數比。In other implementations, when the converter is a forward converter, a flyback converter, a half bridge converter, and a full bridge converter (Full Bridge) In any of the Converters, wherein in the step (c), the coefficient α is , V c, converter is a predetermined intermediate value, the predetermined intermediate value is equal to an average value of a predetermined maximum value and a predetermined minimum value, the predetermined maximum value and the predetermined minimum value are respectively the input voltage and an output of the converter When the current is analyzed in the worst case (Worst Case), the maximum and minimum values of the compensation voltage, K is a coefficient and is related to the turns ratio of a transformer of the converter.

本發明的功效在於:當該輸入電壓改變時,藉由該混合控制器根據該輸入電壓及該輸出電壓計算該轉換器的該控制信號的佔空比,使得在該補償電壓不改變或相對習知技術的改變量很小的情況下,該控制信號能控制該轉換器持續輸出穩定的該輸出電壓,而實現一種混合前饋輸入(Hybrid Input Feedforward)且具有快速線電壓暫態反應(Line Transient Response)的轉換器控制方法。The effect of the present invention is that when the input voltage is changed, the hybrid controller calculates the duty ratio of the control signal of the converter according to the input voltage and the output voltage, so that the compensation voltage does not change or relative In the case that the amount of change in the technology is small, the control signal can control the converter to continuously output the stable output voltage, and realize a hybrid feedforward input (Hybrid Input Feedforward) with fast line voltage transient response (Line Transient) Response) converter control method.

在本發明被詳細描述的前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it should be noted that in the following description, similar elements are denoted by the same reference numerals.

參閱圖3,圖3是本發明轉換器控制方法所適用的一非反相升降壓轉換器(Noninverting Buck-Boost Converter;NBB Converter)的一實施例,該非反相升降壓轉換器包含一第一開關Qa 、一第一二極體D1 、一電感器L、一第二開關Qb 、一第二二極體D2 、一電容器Co 、一閘驅動器(Gate Driver)1、二定比電路(Scaling)71、72、及一數位控制器8。該數位控制器8包括一類比數位轉換器(ADC)6、一多工器(Mux)5、一軟啟動電路(Soft Start Circuit)4、一補償電路(Compensator)3、及一混合控制器2。Referring to FIG. 3, FIG. 3 is an embodiment of a non-inverting buck-boost converter (NBB Converter) to which the converter control method of the present invention is applied. The non-inverting buck-boost converter includes a first The switch Q a , a first diode D 1 , an inductor L, a second switch Q b , a second diode D 2 , a capacitor C o , a gate driver (1) Scaling 71, 72, and a digital controller 8. The digital controller 8 includes an analog-to-digital converter (ADC) 6, a multiplexer (Mux) 5, a soft start circuit (Soft Start Circuit) 4, a compensation circuit (Compensator) 3, and a hybrid controller 2. .

該非反相升降壓轉換器接收一直流的輸入電壓Vin ,並將該輸入電壓Vin 轉換為一直流的輸出電壓Vo ,且將該輸出電壓Vo 輸出至一負載RL 。該數位控制器8可以用數位積體電路的晶片來實現,而該二定比電路71、72分別接收該輸入電壓Vin 及該輸出電壓Vo ,並將該輸入電壓Vin 及該輸出電壓Vo 按一預定比例縮小至該晶片所能承受的電壓範圍。該類比數位轉換器6將該輸入電壓Vin 及該輸出電壓Vo 的類比信號轉換為數位信號。該多工器5在該轉換器初始啟動時,將該輸入電壓Vin 或該輸出電壓Vo 輸出至該軟啟動電路4,以避免初始的過程中該輸出電壓Vo 劇烈地變化。當該轉換器的初始啟動結束後,該多工器5將該輸入電壓Vin 及該輸出電壓Vo 輸出至該補償電路3。該補償電路3相當於習知技術中的補償電路98,用於接收該輸出電壓Vo ,並作迴路的相位邊際(Phase Margin)、直流增益(DC Gain)、及頻寬增加之其中至少一種補償,以輸出一補償電壓。該混合控制器2實施該轉換器控制方法,並產生一控制信號。The non-inverting step-up and step-down converter receives the input voltage V in in constant current, converts the input voltage V in into a continuous output voltage V o , and outputs the output voltage V o to a load R L . The digital controller 8 can be implemented by a chip of a digital integrated circuit, and the two fixed ratio circuits 71, 72 respectively receive the input voltage V in and the output voltage V o , and the input voltage V in and the output voltage V o is scaled down to a voltage range that the wafer can withstand. The analog-to-digital converter 6 converts the analog signal of the input voltage V in and the output voltage V o into a digital signal. The multiplexer 5 outputs the input voltage V in or the output voltage V o to the soft start circuit 4 when the converter is initially started to prevent the output voltage V o from drastically changing during the initial process. When the initial startup of the converter is completed, the multiplexer 5 outputs the input voltage V in and the output voltage V o to the compensation circuit 3. The compensation circuit 3 is equivalent to the compensation circuit 98 in the prior art for receiving the output voltage V o and performing at least one of a phase margin (Phase Margin), a DC gain (DC Gain), and an increase in bandwidth of the loop. Compensation to output a compensation voltage. The hybrid controller 2 implements the converter control method and generates a control signal.

該非反相升降壓轉換器操作在一降壓模式(Buck Mode)、一升壓模式(Boost Mode)、及一升降壓模式(Buck-Boost Mode)之間。當該非反相升降壓轉換器操作該升降壓模式時,該閘驅動器1將該混合控制器2所產生的該控制信號,輸出至該第一開關Qa 及該第二開關Qb ,以同時控制該第一開關Qa 及該第二開關Qb 導通的佔空比(Duty Cycle)da 、dbThe non-inverting buck-boost converter operates between a Buck Mode, a Boost Mode, and a Buck-Boost Mode. When the non-inverting buck-boost converter operates the buck-boost mode, the gate driver 1 outputs the control signal generated by the hybrid controller 2 to the first switch Q a and the second switch Q b simultaneously controlling the first switch and the second switch Q a Q b oN duty ratio (Duty Cycle) d a, d b.

當該非反相升降壓轉換器操作在該降壓模式時,該閘驅動器1控制該第二開關Qb 不導通,且將該混合控制器2所產生的該控制信號,輸出至該第一開關Qa ,以控制該第一開關Qa 導通的佔空比da 。此時,即穩態(Steady State)時,Vo =da *VinWhen the non-inverting buck-boost converter is operated in the buck mode, the gate driver 1 controls the second switch Q b to be non-conducting, and outputs the control signal generated by the hybrid controller 2 to the first switch Q a , to control the duty ratio d a of the first switch Q a to be turned on. At this time, that is, Steady State, V o =d a *V in .

當該非反相升降壓轉換器操作該升壓模式時,該閘驅動器1控制該第一開關Qa 導通,且將該混合控制器2所產生的該控制信號,輸出至該第二開關Qb ,以控制該第二開關Qb 導通的佔空比db 。此時,即穩態時,Vo =Vin /(1-db )。When the non-inverting buck-boost converter operates the boost mode, the gate driver 1 controls the first switch Q a to be turned on, and outputs the control signal generated by the hybrid controller 2 to the second switch Q b To control the duty ratio d b of the second switch Q b to be turned on. At this time, that is, at steady state, V o =V in /(1-d b ).

參閱圖3、圖4與圖5,該轉換器控制方法包含步驟S1~S3。以下先說明該非反相升降壓轉換器操作在該降壓模式時,該轉換器控制方法的各步驟。圖5是一時序示意圖,說明該非反相升降壓轉換器操作在該降壓模式且該輸入電壓Vin 改變時,多個變數之間的關係。Referring to FIG. 3, FIG. 4 and FIG. 5, the converter control method includes steps S1 to S3. The steps of the converter control method when the non-inverting buck-boost converter operates in the buck mode will be described below. FIG 5 is a timing diagram indicating that the non-inverting buck-boost converter and the operating relationship between the input voltage V is changed in a plurality of variables in the buck mode.

於步驟S1,該類比數位轉換器將類比的該輸入電壓Vin 及該輸出電壓Vo 分別轉換為數位的該輸入電壓Vin 及該輸出電壓VoIn step S1, the class than the analog digital converter to the input voltage V in and the output voltage V o respectively converted bit number of the input voltage V in and the output voltage V o.

於步驟S2,該混合控制器2根據數位的該輸出電壓Vo 計算一輔助斜率ma ,如公式(5),並根據數位的該輸入電壓Vin 及該輸出電壓Vo 計算一可變斜率msawa ,如公式(6)。...公式(5)...公式(6) 其中,α為一係數,β為另一係數,且單位都為秒分之一(1/sec)。In step S2, the hybrid controller 2 calculates an assist slope m a The number of bits of the output voltage V o, as shown in equation (5), and calculates a variable slope according to the number of bits of the input voltage V in and the output voltage V o m sawa , as in formula (6). ...formula (5) Equation (6) where α is a coefficient, β is another coefficient, and the unit is one second (1/sec).

於步驟S3,該混合控制器2至少根據該輔助斜率ma 、該可變斜率msawa 、及該補償電路3所產生的該補償電壓Vc 之間的關係,計算一交點電壓Vda ,進而計算獲得該係數α及該控制信號的佔空比da 。更詳細地說,該混合控制器2根據下列公式計算該交點電壓Vda ,並進而計算該係數α、該係數β、及該控制信號的佔空比da ,其中,Vvalley 為一參數電壓,Ts 為該控制信號的週期,也就是相當於習知技術的鋸齒波週期。...公式(7)...公式(8)In step S3, the controller 2 based at least on the mixing of the secondary slope m a, the relationship between the variable slope m sawa, and said compensation circuit 3 generates the compensation voltage V c, calculates a point of intersection voltage V da, further The coefficient α and the duty ratio d a of the control signal are calculated. In more detail, the hybrid controller 2 calculates the intersection voltage Vda according to the following formula, and further calculates the coefficient α, the coefficient β, and the duty ratio d a of the control signal, wherein V valley is a parameter voltage , T s is the period of the control signal, that is, the sawtooth period corresponding to the prior art. ...formula (7) ...formula (8)

由圖5可推導出公式(7)及公式(8),再將公式(5)~(7)代入公式(8),可得公式(9)如下。...公式(9)Equation (7) and formula (8) can be derived from Fig. 5, and then equations (5) to (7) are substituted into equation (8), and equation (9) can be obtained as follows. ...formula (9)

當該輸入電壓Vin 由Vin1 改變為Vin2 且達穩態時,該控制信號的佔空比da 應與習知技術的脈寬調變控制方法的佔空比相同,且根據電感伏秒平衡(Inductor Voltage-Second Balance)定理,該參數電壓Vvalley 等於0,因此,可以獲得公式(10)的條件方程式。...公式(10)When the input voltage V in is changed from V in1 to V in2 and reaches a steady state, the duty ratio d a of the control signal should be the same as the duty ratio of the pulse width modulation control method of the prior art, and according to the inductance volt The Inductor Voltage-Second Balance theorem, the parameter voltage V valley is equal to 0, and therefore, the conditional equation of the formula (10) can be obtained. ...formula (10)

為使公式(10)成立,該係數α必須要等於該係數β。再者,當該負載RL 所需的負載電流改變時,此時,該參數電壓Vvalley 不等於0,將公式(7)的該參數電壓Vvalley 代入公式(9),則可以獲得公式(11)。...公式(11)In order for equation (10) to hold, the coefficient α must be equal to the coefficient β. Further, when the required load R L of the load current changes, this time, the voltage V valley parameter is not equal to 0, the equation (7) is the voltage V valley parameter into the formula (9), can be obtained formula ( 11). ...formula (11)

當該負載RL 所需的負載電流改變而達穩態時,該控制信號的佔空比da 會等於Vo /Vin ,因此,根據電感伏秒平衡定理,公式(11)的第2項會等於0。也就是說,當該負載電流改變時,該輸出電壓Vo 會短暫改變,此時,該補償電壓Vc 會稍微改變以補償該輸出電壓Vo 的變化,因此,為使該補償電壓Vc 的變化量最小化,該係數α設定為如公式(12),其中,Vc,buck 為一預定中間值,該預定中間值等於一預定最大值及一預定最小值的平均值,而該預定最大值及該預定最小值分別是該非反相升降壓轉換器的該輸入電壓Vin 及一輸出電流在最壞情況(Worst Case)分析時,該補償電壓Vc 的最大值及最小值。...公式(12)When the load current required by the load R L changes to a steady state, the duty ratio d a of the control signal will be equal to V o /V in , and therefore, according to the inductance volt-second equilibrium theorem, the second of the formula (11) The item will be equal to 0. That is to say, when the load current changes, the output voltage V o changes briefly. At this time, the compensation voltage V c changes slightly to compensate for the change of the output voltage V o . Therefore, in order to make the compensation voltage V c The amount of change is minimized, and the coefficient α is set as in the formula (12), wherein V c, buck is a predetermined intermediate value equal to an average of a predetermined maximum value and a predetermined minimum value, and the predetermined the predetermined maximum and minimum value, respectively, when the non-inverting buck-boost converter and the input voltage V in an output current in a worst case analysis (worst case), the compensation of supply voltage V c maximum and minimum values. ...formula (12)

參閱圖3、圖4與圖6,以下先說明該非反相升降壓轉換器操作在該升壓模式時,該轉換器控制方法的各步驟。圖6是一時序示意圖,說明該非反相升降壓轉換器操作在該升壓模式且該輸入電壓Vin 改變時,多個變數之間的關係。Referring to FIG. 3, FIG. 4 and FIG. 6, the steps of the converter control method when the non-inverting step-up/down converter operates in the boost mode will be described below. FIG 6 is a timing diagram indicating that the non-inverting buck-boost converter operation and the relationship between the input voltage V is changed in a plurality of variables in the boost mode.

步驟S1與操作在該降壓模式時相同,而在步驟S2,該輔助斜率ma 及該可變斜率mb 重新定義如公式(14)及(15)。...公式(14)...公式(15) 其中,α為一係數,β為另一係數,且單位都為秒分之一(1/sec)。Step S1 is the same as when operating in the buck mode, and in step S2, the auxiliary slope m a and the variable slope m b are redefined as in equations (14) and (15). ...formula (14) Equation (15) where α is a coefficient, β is another coefficient, and the unit is one second (1/sec).

於步驟S3,與操作在該降壓模式相似,但該混合控制器2還根據另一可變斜率msawb 如公式(13),及公式(16)與(17),計算該交點電壓Vdb ,並進而計算該係數α、該係數β、該係數γ、及該控制信號的該佔空比db ,其中,Vvalley 為一參數電壓,Ts 為該控制信號的週期,也就是相當於習知技術的鋸齒波週期。...公式(13)...公式(16)...公式(17)In step S3, the operation is similar to the step-down mode, but the hybrid controller 2 calculates the intersection voltage V db according to another variable slope m sawb as in equation (13) and equations (16) and (17). And further calculating the coefficient α, the coefficient β, the coefficient γ, and the duty ratio d b of the control signal, wherein V valley is a parameter voltage, and T s is a period of the control signal, that is, equivalent The sawtooth cycle of the prior art. ...formula (13) ...formula (16) ...formula (17)

由圖6可推導出公式(16)至公式(17),再將公式(13) ~(16)代入公式(17),可得公式(18)如下。...公式(18)Equation (16) to Equation (17) can be derived from Fig. 6, and equations (13) to (16) are substituted into equation (17), and equation (18) can be obtained as follows. ...formula (18)

與操作在該降壓模式時相似,當該輸入電壓Vin 由Vin1 改變為Vin2 且達穩態時,該控制信號的佔空比db 應與習知技術的脈寬調變控制方法的佔空比相同,且根據電感伏秒平衡(Inductor Voltage-Second Balance)定理,該參數電壓Vvalley 等於0,因此,可以獲得公式(19)的條件方程式。...公式(19)Similar to when operating in the buck mode, when the input voltage V in is changed from V in1 to V in2 and reaches a steady state, the duty ratio d b of the control signal should be the pulse width modulation control method of the prior art. The duty ratio is the same, and according to the Inductor Voltage-Second Balance theorem, the parameter voltage V valley is equal to 0, and therefore, the conditional equation of the formula (19) can be obtained. ...formula (19)

為使公式(19)成立,該係數β必須要等於該係數γ。再者,當該負載RL 所需的負載電流改變時,此時,該參數電壓Vvalley 不等於0,將公式(18)可以改寫成公式(20)。...公式(20)In order for equation (19) to hold, the coefficient β must be equal to the coefficient γ. Furthermore, when the load current required for the load R L changes, at this time, the parameter voltage V valley is not equal to 0, and the formula (18) can be rewritten into the formula (20). ...formula (20)

當該負載RL 所需的負載電流改變而達穩態時,該控制信號的佔空比db 會等於(Vo -Vin )/Vin ,因此,根據電感伏秒平衡定理,公式(20)的第2項會等於0。相似地,當該負載電流改變時,該輸出電壓Vo 會短暫改變,此時,該補償電壓Vc 會稍微改變以補償該輸出電壓Vo 的變化,因此,為使該補償電壓Vc 的變化量最小化,該係數α設定為如公式(21),其中,Vc,boost 為一預定中間值,該預定中間值等於一預定最大值及一預定最小值的平均值,該預定最大值及該預定最小值分別是該轉換器的該輸入電壓Vin 及一輸出電流在最壞情況(Worst Case)分析時,該補償電壓Vc 的最大值及最小值。...公式(21)When the load current required by the load R L changes to a steady state, the duty ratio d b of the control signal will be equal to (V o -V in )/V in , and therefore, according to the inductance volt-second equilibrium theorem, the formula The second item of 20) will be equal to zero. Similarly, when the load current changes, the output voltage V o changes briefly. At this time, the compensation voltage V c changes slightly to compensate for the change of the output voltage V o . Therefore, in order to make the compensation voltage V c The amount of change is minimized, and the coefficient α is set as in the formula (21), wherein V c, boost is a predetermined intermediate value, the predetermined intermediate value being equal to an average value of a predetermined maximum value and a predetermined minimum value, the predetermined maximum value and said predetermined minimum value, respectively, of the converter when the input voltage V in and an output current in a worst case analysis (worst case), the compensation of supply voltage V c maximum and minimum values. ...formula (21)

由公式(11)及(20)來看,(Vc -αVo Ts )可以視為該補償電壓Vc 的調整量,即ΔVc ,再相較於習知技術的公式(3)及(4)可知,藉由本發明轉換器控制方法所產生的該補償電壓Vc 的變化量ΔVc 遠小於習知技術的補償電壓差值ΔVc ,因此,當該輸入電壓Vin 發生變化時,本發明能提供快速的線電壓暫態反應。From the equations (11) and (20), (V c -αV o T s ) can be regarded as the adjustment amount of the compensation voltage V c , that is, ΔV c , which is compared with the conventional technique (3) and (4) It can be seen that the variation ΔV c of the compensation voltage V c generated by the converter control method of the present invention is much smaller than the compensation voltage difference ΔV c of the prior art, and therefore, when the input voltage V in changes, The present invention provides a fast line voltage transient response.

另外要特別補充說明的是:在本實施例中,該轉換器是以非反相升降壓轉換器為例作說明,而在其他實施例中,當該轉換器是順向轉換器(Forward Converter)、返馳式轉換器(Flyback Converter)、半橋轉換器(Half Bridge Converter)、及全橋轉換器(Full Bridge Converter)之其中任何一種時,由於該等轉換器的與該非反相升降壓轉換器的主要差異在於增加一變壓器(Transformer),使得輸出電壓Vo 或輸出電流具有相關於線圈匝數比的對應關係。同理,本發明轉換器控制方法也可以適用,而推導出該係數α的公式如下,其中,Vc,converter 為一預定中間值,該預定中間值等於一預定最大值及一預定最小值的平均值,該預定最大值及該預定最小值分別是該轉換器的該輸入電壓Vin 及一輸出電流在最壞情況(Worst Case)分析時,該補償電壓Vc 的最大值及最小值,K為一係數且相關於該轉換器的該變壓器的線圈匝數比。...公式(22)In addition, it should be particularly noted that in the embodiment, the converter is exemplified by a non-inverting buck-boost converter, and in other embodiments, when the converter is a forward converter (Forward Converter) ), any of the flyback converter (Flyback Converter), half bridge converter (Half Bridge Converter), and full bridge converter (Full Bridge Converter), due to the non-inverting buck-boost of the converter The main difference of the converter is the addition of a transformer such that the output voltage Vo or the output current has a corresponding relationship with respect to the turns ratio of the coil. Similarly, the converter control method of the present invention is also applicable, and the formula for deriving the coefficient α is as follows, wherein V c, converter is a predetermined intermediate value, the predetermined intermediate value being equal to a predetermined maximum value and a predetermined minimum value. The average value, the predetermined maximum value and the predetermined minimum value are respectively the maximum and minimum values of the input voltage V in of the converter and an output current in a worst case (Worst Case) analysis, the compensation voltage V c , K is a coefficient and is related to the coil turns ratio of the transformer of the converter. ...formula (22)

此外,要特別說明的是:該混合控制器2計算該轉換器的該控制信號在不同時間點的佔空比時,並不是在該控制信號的每一個脈波週期都需要執行本發明轉換器控制方法的步驟S1至S3,例如該混合控制器2可以藉由執行轉換器控制方法先算出該等係數(α、β、γ),再於不同時間點隨著步驟S1所獲得的數位的該輸入電壓及該輸出電壓,不再計算步驟S3的該等係數(α、β、γ),而仍能計算出該控制信號的佔空比。再者,計算該控制信號的佔空比的公式(11)及(20)也可以藉由本說明書中所提及的其他公式或是藉由本發明領域之習知技術的其他已知公式作相互代入與置換而獲得,不在此限。In addition, it should be particularly noted that when the hybrid controller 2 calculates the duty ratio of the control signal of the converter at different time points, the converter of the present invention is not required to be executed in each pulse period of the control signal. Steps S1 to S3 of the control method, for example, the hybrid controller 2 may first calculate the coefficients (α, β, γ) by performing a converter control method, and then the digits obtained with the step S1 at different time points The input voltage and the output voltage do not calculate the coefficients (α, β, γ) of step S3, but still calculate the duty cycle of the control signal. Furthermore, the formulas (11) and (20) for calculating the duty ratio of the control signal can also be substituted by other formulas mentioned in the specification or by other known formulas of the prior art in the field of the invention. Obtained with replacement, not limited to this.

綜上所述,本發明轉換器控制方法能夠在該輸入電壓Vin 改變時,藉由該混合控制器2根據該輸入電壓Vin 及該輸出電壓Vo 計算該轉換器的該控制信號的佔空比,使得在該補償電壓Vc 不改變或相對習知技術的改變量很小的情況下,該控制信號能控制該轉換器持續輸出穩定的該輸出電壓Vo ,而實現一種混合前饋輸入(Hybrid Input Feedforward)且具有快速線電壓暫態反應(Line Transient Response),故確實能達成本發明的目的。In summary, the converter control method of the present invention can calculate the occupation of the control signal of the converter by the hybrid controller 2 according to the input voltage V in and the output voltage V o when the input voltage V in is changed. The air ratio is such that the control signal can control the converter to continuously output the stable output voltage V o while the compensation voltage V c does not change or the amount of change of the prior art is small, thereby implementing a hybrid feedforward. The input (Hybrid Input Feedforward) and the fast line voltage transient response (Line Transient Response) can indeed achieve the object of the present invention.

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。However, the above is only the embodiment of the present invention, and the scope of the invention is not limited thereto, and all the simple equivalent changes and modifications according to the scope of the patent application and the patent specification of the present invention are still Within the scope of the invention patent.

Qa‧‧‧第一開關
Qb‧‧‧第二開關
D1‧‧‧第一二極體
D2‧‧‧第二二極體
L‧‧‧電感器
Co‧‧‧電容器
RL‧‧‧負載
Vin‧‧‧輸入電壓
Vin1‧‧‧輸入電壓
Vin2‧‧‧輸入電壓
Vo‧‧‧輸出電壓
VH‧‧‧鋸齒波上限電壓
VL‧‧‧鋸齒波下限電壓
Vc1‧‧‧補償電壓
Vc2‧‧‧補償電壓
ΔVc‧‧‧補償電壓差值
valley‧‧‧參數電壓
Vda1‧‧‧交點電壓
Vda2‧‧‧交點電壓
Vdb1‧‧‧交點電壓
Vdb2‧‧‧交點電壓
t‧‧‧時間
Ts‧‧‧鋸齒波週期
d1、d2‧‧‧佔空比
da1、da2佔空比
msawa1‧‧‧可變斜率
msawa2‧‧‧可變斜率
ma‧‧‧輔助斜率
mb1‧‧‧可變斜率
mb2‧‧‧可變斜率
msawb1‧‧‧可變斜率
msawb2‧‧‧可變斜率
1‧‧‧閘驅動器
2‧‧‧混合控制器
3‧‧‧補償電路
4‧‧‧軟啟動電路
5‧‧‧多工器
6‧‧‧類比數位轉換器
71、72‧‧‧定比電路
8‧‧‧數位控制器
90‧‧‧直流電源
911‧‧‧第一開關
912‧‧‧第二開關
921‧‧‧第一二極體
922‧‧‧第二二極體
93‧‧‧電感器
94‧‧‧電容器
95‧‧‧負載
96‧‧‧閘驅動器
97‧‧‧脈寬調變控制器
98‧‧‧補償電路
Q a ‧‧‧first switch
Q b ‧‧‧second switch
D 1 ‧‧‧First Diode
D 2 ‧‧‧Secondary
L‧‧‧Inductors
C o ‧‧‧ capacitor
R L ‧‧‧load
V in ‧‧‧ input voltage
V in1 ‧‧‧ input voltage
V in2 ‧‧‧ input voltage
V o ‧‧‧output voltage
V H ‧‧‧Sawtooth upper limit voltage
V L ‧‧‧Sawtooth lower limit voltage
V c1 ‧‧‧compensation voltage
V c2 ‧‧‧compensation voltage ΔV c ‧‧‧compensation voltage difference
Valley ‧‧‧parameter voltage
V da1 ‧‧‧ intersection voltage
V da2 ‧‧‧ intersection voltage
V db1 ‧‧‧ intersection voltage
V db2 ‧‧‧ intersection voltage
t‧‧‧Time
T s ‧‧‧Sawtooth cycle
d 1 , d 2 ‧‧ ‧ duty cycle
d a1 , d a2 duty cycle
m sawa1 ‧‧‧Variable slope
m sawa2 ‧‧‧Variable slope
m a ‧‧‧Auxiliary slope
m b1 ‧‧‧Variable slope
m b2 ‧‧‧Variable slope
m sawb1 ‧‧‧Variable slope
m sawb2 ‧‧‧Variable slope
1‧‧ ‧ brake driver
2‧‧‧Hybrid controller
3‧‧‧Compensation circuit
4‧‧‧Soft start circuit
5‧‧‧Multiplexer
6‧‧‧ analog digital converter
71, 72‧‧ ‧ fixed ratio circuit
8‧‧‧Digital Controller
90‧‧‧DC power supply
911‧‧‧ first switch
912‧‧‧second switch
921‧‧‧First Diode
922‧‧‧second diode
93‧‧‧Inductors
94‧‧‧ capacitor
95‧‧‧load
96‧‧ ‧ brake driver
97‧‧‧ Pulse width modulation controller
98‧‧‧Compensation circuit

本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一電路示意圖,說明習知的一種非反相升降壓轉換器; 圖2是一時序示意圖,輔助說明圖1的非反相升降壓轉換器的運作關係; 圖3是一電路示意圖,說明本發明轉換器控制方法所適用的一非反相升降壓轉換器; 圖4是一流程圖,說明本發明轉換器控制方法的一實施例的步驟; 圖5是一時序示意圖,說明本發明非反相升降壓轉換器操作在一降壓模式時的運作關係;及 圖6是一時序示意圖,說明本發明非反相升降壓轉換器操作在一升壓模式時的運作關係。Other features and effects of the present invention will be apparent from the following description of the drawings, wherein: Figure 1 is a circuit diagram illustrating a conventional non-inverting buck-boost converter; Figure 2 is a timing diagram FIG. 3 is a circuit diagram illustrating a non-inverting buck-boost converter applicable to the converter control method of the present invention; FIG. 4 is a flow chart. The steps of an embodiment of the converter control method of the present invention are illustrated; FIG. 5 is a timing diagram illustrating the operational relationship of the non-inverting buck-boost converter of the present invention operating in a buck mode; and FIG. 6 is a timing diagram. The operational relationship of the non-inverting step-up and step-down converter of the present invention operating in a boost mode will be described.

Claims (6)

一種轉換器控制方法,適用於一轉換器,該轉換器接收一控制信號控制一開關導通或不導通,以將一輸入電壓Vin 轉換為一輸出電壓Vo ,該轉換器控制方法藉由一數位控制器實施,該數位控制器包含一類比數位轉換器、一補償電路、及一混合控制器,該轉換器控制方法包含下列步驟: (a)藉由該類比數位轉換器將類比的該輸入電壓及該輸出電壓分別轉換為數位的該輸入電壓及該輸出電壓; (b)藉由該混合控制器根據數位的該輸出電壓計算一輔助斜率ma ,並根據數位的該輸入電壓及該輸出電壓計算一可變斜率,其中,,α為一係數,該可變斜率正比於該輸入電壓與該輸出電壓的差值;及 (c)藉由該混合控制器至少根據該輔助斜率、該可變斜率、及該補償電路所產生的一補償電壓Vc 之間的關係,計算一交點電壓Vd ,進而計算獲得該係數α及該控制信號的佔空比。A converter control method is applicable to a converter that receives a control signal to control whether a switch is turned on or off to convert an input voltage V in into an output voltage V o . The converter control method is Implemented by a digital controller comprising an analog-to-digital converter, a compensation circuit, and a hybrid controller, the converter control method comprising the steps of: (a) analogizing the input by the analog-to-digital converter The voltage and the output voltage are respectively converted into digital input voltage and the output voltage; (b) calculating, by the hybrid controller, an auxiliary slope m a according to the output voltage of the digit, and the output voltage according to the digit and the output The voltage is calculated as a variable slope, wherein , α is a coefficient that is proportional to a difference between the input voltage and the output voltage; and (c) generated by the hybrid controller based at least on the auxiliary slope, the variable slope, and the compensation circuit the relationship between a compensation voltage V c, calculation of the intersection of a voltage V d, then calculate the coefficient α is obtained and the duty ratio control signal. 如請求項1所述的轉換器控制方法,當該轉換器是非反相升降壓轉換器(Noninverting Buck-Boost Converter;NBB Converter)且操作在一降壓模式時,其中, 在步驟(b)中,定義該可變斜率為msaw,β為一係數, 在步驟(c)中,該混合控制器根據下列公式計算該交點電壓,並進而計算該係數α、該係數β、及該控制信號的佔空比da ,其中,Vvalley 為一參數電壓,Ts 為該控制信號的週期,The converter control method according to claim 1, when the converter is a non-inverted buck-boost converter (NBB Converter) and operates in a buck mode, wherein in step (b) , defining the variable slope as m saw , , β is a coefficient, in step (c), the hybrid controller calculates the intersection voltage according to the following formula, and further calculates the coefficient α, the coefficient β, and the duty ratio d a of the control signal, wherein, V Valley is a parameter voltage, T s is the period of the control signal, , . 如請求項2所述的轉換器控制方法,其中,在步驟(c)中,該控制信號的佔空比da, 該係數α等於該係數β,且該係數α為, Vc,buck 為一預定中間值,該預定中間值等於一預定最大值及一預定最小值的平均值,該預定最大值及該預定最小值分別是該轉換器的該輸入電壓及一輸出電流在最壞情況(Worst Case)分析時,該補償電壓的最大值及最小值。The converter control method according to claim 2, wherein, in the step (c), the duty ratio d a of the control signal is , the coefficient α is equal to the coefficient β, and the coefficient α is And Vc , buck is a predetermined intermediate value, the predetermined intermediate value being equal to an average of a predetermined maximum value and a predetermined minimum value, wherein the predetermined maximum value and the predetermined minimum value are respectively the input voltage and an output of the converter The maximum and minimum values of the compensation voltage when the current is analyzed in the worst case (Worst Case). 如請求項1所述的轉換器控制方法,當該轉換器是非反相升降壓轉換器(Noninverting Buck-Boost Converter;NBB Converter)且操作在一升壓模式時,其中, 在步驟(b)中,定義該可變斜率為mb,β為一係數, 在步驟(c)中,該混合控制器還根據另一可變斜率msaw 及公式,計算該交點電壓,並進而計算該係數α、該係數β、該係數γ、及該控制信號的該佔空比db ,其中,Vvalley 為一參數電壓,Ts 為該控制信號的週期,The converter control method according to claim 1, wherein when the converter is a non-inverting buck-boost converter (NBB Converter) and operating in a boost mode, wherein, in step (b) , defining the variable slope as m b , , β is a coefficient, in step (c), the hybrid controller is further based on another variable slope m saw and formula Calculating the intersection voltage, and further calculating the coefficient α, the coefficient β, the coefficient γ, and the duty ratio d b of the control signal, wherein V valley is a parameter voltage, and T s is a period of the control signal , , . 如請求項4所述的轉換器控制方法,其中,在步驟(c)中,該控制信號的佔空比db, 該係數β等於該係數γ,且該係數α為, Vc,boost 為一預定中間值,該預定中間值等於一預定最大值及一預定最小值的平均值,該預定最大值及該預定最小值分別是該轉換器的該輸入電壓及一輸出電流在最壞情況(Worst Case)分析時,該補償電壓的最大值及最小值。The converter control method according to claim 4, wherein, in the step (c), the duty ratio d b of the control signal is , the coefficient β is equal to the coefficient γ, and the coefficient α is And V c, boost is a predetermined intermediate value, the predetermined intermediate value being equal to an average of a predetermined maximum value and a predetermined minimum value, wherein the predetermined maximum value and the predetermined minimum value are respectively the input voltage and an output of the converter The maximum and minimum values of the compensation voltage when the current is analyzed in the worst case (Worst Case). 如請求項1所述的轉換器控制方法,當該轉換器是順向轉換器(Forward Converter)、返馳式轉換器(Flyback Converter)、半橋轉換器(Half Bridge Converter)、及全橋轉換器(Full Bridge Converter)之其中任一種時,其中,在步驟(c)中,該係數α為, Vc,converter 為一預定中間值,該預定中間值等於一預定最大值及一預定最小值的平均值,該預定最大值及該預定最小值分別是該轉換器的該輸入電壓及一輸出電流在最壞情況(Worst Case)分析時,該補償電壓的最大值及最小值,K為一係數且相關於該轉換器的一變壓器(Transformer)的線圈匝數比。The converter control method according to claim 1, wherein the converter is a forward converter, a flyback converter, a half bridge converter, and a full bridge conversion. In any of the (Full Bridge Converter), wherein in step (c), the coefficient α is And V c, the converter is a predetermined intermediate value, the predetermined intermediate value being equal to an average value of a predetermined maximum value and a predetermined minimum value, wherein the predetermined maximum value and the predetermined minimum value are respectively the input voltage and an output of the converter When the current is analyzed in the worst case (Worst Case), the maximum and minimum values of the compensation voltage, K is a coefficient and is related to the turns ratio of a transformer of the converter.
TW105127637A 2016-08-29 2016-08-29 Method for Controlling a Converter TWI581550B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105127637A TWI581550B (en) 2016-08-29 2016-08-29 Method for Controlling a Converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105127637A TWI581550B (en) 2016-08-29 2016-08-29 Method for Controlling a Converter

Publications (2)

Publication Number Publication Date
TWI581550B TWI581550B (en) 2017-05-01
TW201807941A true TW201807941A (en) 2018-03-01

Family

ID=59367248

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105127637A TWI581550B (en) 2016-08-29 2016-08-29 Method for Controlling a Converter

Country Status (1)

Country Link
TW (1) TWI581550B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112737327A (en) * 2019-10-28 2021-04-30 圣邦微电子(北京)股份有限公司 DC-DC converter and control circuit thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6166527A (en) * 2000-03-27 2000-12-26 Linear Technology Corporation Control circuit and method for maintaining high efficiency in a buck-boost switching regulator
US6984967B2 (en) * 2003-10-29 2006-01-10 Allegro Microsystems, Inc. Multi-mode switching regulator
TWI319258B (en) * 2006-12-04 2010-01-01 Faraday Tech Corp Control circuit and method for a multi-mode buck-boost switching regulator
US8102162B2 (en) * 2008-07-30 2012-01-24 Intersil Americas Inc. Buck controller having integrated boost control and driver
TWI473407B (en) * 2012-09-19 2015-02-11 Univ Nat Cheng Kung Digital non-inverting buck-boost dc-to-dc converting control system
US20150280559A1 (en) * 2014-03-29 2015-10-01 Vaibhav Vaidya Unified control scheme for non-inverting high-efficiency buck-boost power converters

Also Published As

Publication number Publication date
TWI581550B (en) 2017-05-01

Similar Documents

Publication Publication Date Title
US9882488B2 (en) Enhanced power mode transitions in buck-boost converters
KR101840412B1 (en) Buck switch-mode power converter large signal transient response optimizer
JP5320424B2 (en) DC-DC converter control device and DC-DC converter
TWI457740B (en) Current sensing apparatus and voltage converter apparatus
US9479047B2 (en) System and method for controlling a power supply with a feed forward controller
TWI474598B (en) System and method for switching frequency and peak current regulation of a power converter
TWI479788B (en) Switching regulator controller and method of controlling switching regulator
CN103532373B (en) Switching regulator output capacitor current estimates
TWI422128B (en) Power regulator,and system and method for controlling output of power regulator
TWI638508B (en) Multi-phase switching regulator and control circuit and control method thereof
JP2012531179A (en) System, method and apparatus for controlling a converter using input / output linearization
KR20100051881A (en) Switch mode power supply (smps) and methods thereof
JP2013165537A (en) Switching regulator, control method thereof, and power supply device
TWI551020B (en) Power converter with average current limiting
TWI483523B (en) Multi-phase dc-dc converter and control method thereof
US20080007235A1 (en) Switching power supply circuit
TWI434494B (en) A power converter control circuit with adaptive voltage position control function and method thereof
IT202000013627A1 (en) A CONTROL CIRCUIT FOR AN ELECTRONIC CONVERTER, RELATED INTEGRATED CIRCUIT, ELECTRONIC CONVERTER AND PROCEDURE
US10700607B2 (en) Control method and control circuit of a multi-phase converter
TW201409906A (en) Control circuit, time calculating unit, and operating method for control circuit
TWI430069B (en) Constant frequency on-time control system and method and voltage regulator using the same
WO2019207663A1 (en) Power conversion device
TWI581550B (en) Method for Controlling a Converter
CN107306086B (en) DC/DC converter
US20230327552A1 (en) Switching power supply, and control circuit and control method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees