本發明概言之係關於用於氣體流之改良純化之系統及其使用方法。更具體而言,本發明係關於用於純化及回收C3+組份之系統及方法。本發明係關於提供C3+組份回收之NGL回收系統及方法,其與藉由現有可用之任一液體烴提取技術所獲得之回收相當或更高。本文中所揭示之方法及系統能夠在高於膨脹式渦輪機及IPOR技術之溫度之溫度下操作時達成較高液體烴回收,藉此容許較低之構造材料成本及操作成本。 在一些實施例中,本揭示內容係關於用於自具有低濃度之C3+組份之初始流體體積流、自富含C3+組份之初始流體體積流及自受水及/或二氧化碳污染之初始流體體積流回收C3+組份之方法。在一些實施例中,本發明係關於處理流體體積以產生液體天然氣之方法。在一些實施例中,本發明係關於包含吸附器(例如變壓吸附器或變熱吸附器)及穩定器之系統。在本文中所揭示之各個實施例中,製程中及/或系統中之最低溫度可在以下範圍內:約-30℃至約50℃、約0℃至約50℃、約5℃至約50℃、約10℃至約30℃或約20℃至約40℃。 現參考以下各圖及實例闡述各個實施例。在闡述若干例示性實施例之前,應瞭解,本揭示內容不限於以下描述中所述之構造或製程步驟之細節。可根據所闡述之原理以各種方式實踐或實施其他實施例。 圖1A圖解說明根據實施例之用於自具有低C3+組份濃度之流回收NGL之製程100之簡化圖。圖1B圖解說明根據另一實施例之用於自具有低C3+組份濃度之流回收NGL之製程100B之簡化圖。圖2繪示根據圖1A及1B之簡化圖之用於回收NGL之製程之示意圖200。圖1A、1B及2將同時論述。以數字1開始之所有編號均將係指圖1A及1B中所繪示之元件,其中以B結束之編號僅係指圖1B。以數字2開始之所有編號均將係指圖2中所繪示之元件。 進給至製程中之初始流體體積在經歷預處理之後可經處理以去除某些雜質或增加別處C3+組份之濃度。或者,進給至製程中之初始流體體積在本文中所揭示之NGL回收製程中可未經處理及可經歷處理。依據方框205,未經處理之流體體積可視情況經由流線105或105B進給至壓縮機110或110B中以產生初始流體體積。流線105或105B中之初始流體體積可藉助壓縮機路由。流105或105B中之初始流體體積可與再循環流165混合以形成流線115或115B。C3+組份之濃度為C1-A或C1-AB之流線115或115B可視情況較進入壓縮機之流線105或105B之濃度高至少1.5倍。初始流體體積可在約0.2 MSCFH進料/ft3
吸附劑[1]至約10 MSCFH進料/ft3
吸附劑範圍內。應瞭解,在某些實施例中,由於在處理工廠及處理單元大小、複雜性、構形、客戶需求等方面之顯著變化,初始流體體積可落在該等範圍之外。 流線115或115B中之初始流體體積可具有第一濃度(C1-A或C1-AB)之C3+組份。基於初始流體體積中之總莫耳數及基於自穩定器之流出物產生之可選再循環流(下文更詳細地論述)是否將混合至進料流中(如圖1A中之流165及115所示)或將不混合至進料流中(如圖1B中之流165B及115B所示),C1-A或C1-AB可在約0.1莫耳%至約50莫耳%、約0.1莫耳%至約24莫耳%、約1莫耳%至約50莫耳%、約10莫耳%至約40莫耳%、約10莫耳%至約35莫耳%或約10莫耳%至約25莫耳%之C3+組份範圍內。依據方框210,初始流體體積在與可選再循環流165混合之後可經由流線115進給至吸附器120中,該吸附器具有對於C3+組份具有選擇性之吸附劑。或者,依據方框210,初始流體體積可經由流線115B進給至吸附器120B中,且隨後,依據可選方框255,可選再循環流165B可進給至吸附器120B中。依據方框215,該製程可進一步包含使初始流體體積及/或可選再循環流與吸附劑接觸,以產生吸附器底部流125或125B (依據方框220)及吸附器流出物流135或135B (依據方框225),其C3+組份之濃度分別為C3-A或C3-AB及C2-A或C2-AB。來自吸附器底部體積之濃度C3-A或C3-AB可高於來自吸附器流出物流之濃度C2-A或C2-AB。 在一些實施例中,吸附器可係變壓吸附器。變壓吸附器可包含對於C3+組份具有選擇性之吸附劑。吸附器可在將防止於吸附器中形成水合物之溫度範圍下操作(若製程中存在水)。吸附器中之溫度(取決於製程中是否存在水)可在以下範圍內:約-30°C至約200℃、約-28℃至約200℃、約0℃至約200℃、約25℃至約150℃或約25℃至約70℃。吸附劑可選自由以下組成之群:矽膠、氧化鋁、過錳酸鉀、沸石(例如,分子篩沸石)、金屬有機框架(MOF)、活性碳、分子篩碳、聚合物、樹脂、黏土及其組合。吸附劑可包含複數個粒子。在一些實施例中,吸附劑可具有將增加吸附劑對C3+組份之親和力之最佳參數,例如BET表面積、孔體積、容積密度、質量、體積及直徑。 在一些實施例中,吸附劑可包含呈以下形式之MOF:粉末、糰粒、擠出物、顆粒或獨立膜。在某些實施例中,MOF係呈MOF粒子形式。在一些實施例中,吸附劑材料係具有由YO2
及X2
O3
構成之框架結構之沸石材料,其中Y係四價元素且X係三價元素。在一個實施例中,Y係選自由以下組成之群:Si、Sn、Ti、Zr、Ge及其兩者或更多者之組合。在一個實施例中,Y係選自由以下組成之群:Si、Ti、Zr及其兩者或更多者之組合。在一個實施例中,Y係Si及/或Sn。在一個實施例中,Y係Si。在一個實施例中,X係選自由以下組成之群:Al、B、In、Ga及其兩者或更多者之組合。在一個實施例中,X係選自由以下組成之群:Al、B、In及其兩者或更多者之組合。在一個實施例中,X係Al及/或B。在一個實施例中,X係Al。在某些實施例中,沸石係呈以下形式:粒子、糰粒、擠出物、顆粒、粉末或獨立膜。在某些實施例中,沸石係呈沸石粒子形式。 在某些實施例中,吸附劑可經活化。活化可包括使吸附劑經歷各種條件足夠時間以活化吸附劑材料,該等條件包括(但不限於)環境溫度、真空、惰性氣體流或其任一組合。 在變壓吸附器中,使初始流體體積與吸附劑接觸及產生吸附器流出物流135或135B可在初始吸附壓力下進行。產生C3+組份濃度更高(C3-A或C3-AB)之底部體積流125或125B可在最終解吸壓力下進行。初始吸附壓力可在約1巴(bar)至約70巴、約5巴至約50巴或約10巴至約30巴範圍內。最終解吸壓力可在約0.2巴至約6巴或約0.3巴至約2巴範圍內。 可將變壓吸附器程式化至循環時間中,其中維持吸附壓力達對於有效吸附C3+組份(然而對於不期望組份之吸附低效)最佳之預定持續時間。非限制性之例示性吸附循環時間可在以下範圍內:約20秒至約10分鐘、約30秒至約10分鐘或約1分鐘至約4分鐘。在吸附循環之後,均衡循環之實施時期可較吸附循環時間短約4倍(在約5秒至約2.5分鐘、約7.5秒至約2.5分鐘或約15秒至約1分鐘範圍內)。通常均衡時間可足夠長以確保床在均衡步驟期間將不會流化或升高。在循環時間完成時,可將壓力降低至最終解吸壓力。減壓步驟之持續時間可較吸附循環短約2倍至4倍(例如,在約5秒至約2.5分鐘、約7.5秒至約2.5分鐘或約15秒至約1分鐘、約10秒至約5分鐘、約15秒至約5分鐘或約30秒至約2分鐘範圍內)。 在一些實施例中,吸附器之底部體積流125或125B之濃度C3-A或C3-AB可大於流線115或115B之初始進料體積之濃度C1-A或C1-AB。反過來,流線115或115B之初始進料體積之濃度C1-A或C1-AB可大於吸附器之流出物體積流135或135B之濃度C2-A或C2-AB。C3-A或C3-AB可較C2-A或C2-AB大至少約3倍。在一些實施例中,基於流125或125B中流體之總莫耳數,C3-A或C3-AB可係100莫耳%之C3+組份,且流135或135B可不含C3+組份,即C2-A或C2-AB可係0。在一些實施例中,C3-A或C3-AB可較C1-A或C1-AB大至少約2倍至約100倍。基於流145或145B (或125或125B)中之總莫耳數,C3-A或C3-AB可在約10莫耳%至約80莫耳%、約25莫耳%至約80莫耳%或約30莫耳%至約80莫耳%之C3+組份範圍內。 該製程可進一步包含依據方框230視情況將吸附器之底部體積之流125或125B進給至壓縮機130或130B中,並產生體積流145或145B。依據方框235,該製程可進一步包含將體積流145或145B (或若不存在壓縮機,則為125或125B)進給至穩定器140或140B中。若製程中存在水,則穩定器可在將防止於穩定器中形成水合物之溫度範圍及壓力範圍下操作。穩定器中之溫度可端視於水是否存在於製程中而變化且可在約-28℃至約150℃或約5℃至約150℃範圍內。穩定器中之壓力可在約5巴至約50巴或約10巴至約30巴範圍內。若製程中存在水,則穩定器之操作溫度可高於水合物形成之溫度。若製程中不存在水,則穩定器之操作溫度可在上述溫度範圍之較低範圍內。 隨後,依據方框240及245,該製程可包含分別產生第一量及第二量之吸附器之底部體積。且依據方框250,第一量之吸附器之底部體積可經由流155或155B液化。穩定器之底部之操作溫度可在約30℃至約200℃、約40℃至約120℃或約50℃至約90℃範圍內。液體C3+組份可係此實施例中所繪示之製程中回收之最終NGL。在一些實施例中,基於流155或155B中C3+組份之莫耳分數及初始進料流中C3+組份之莫耳分數所計算,該製程可包含將進給至NGL回收製程之初始流體體積中所存在之C3+組份回收約70%或更多、約80%或更多、約85%或更多、約90%或更多、約95%或更多、約98%或更多。 流經穩定器之流出物流之第二量之底部體積可視情況經由流165直接再循環至初始進料體積中,其中流165及115可在其進給至吸附器120之前混合。在其他實施例中,流經穩定器之流出物流之第二量之底部體積可視情況經由流165B再循環並依序進給至吸附器120B (例如,進料流115B可首先進給至吸附器120B且之後再循環流165B可進給至吸附器)。在再循環之前,該製程可包含將第二量之底部體積進給穩定器之塔頂冷凝器,在存在水之製程中,在將防止於穩定器之塔頂冷凝器中形成水合物之溫度下操作。在一些實施例中,若不存在水,則穩定器之塔頂冷凝器可在低於若存在水之溫度下操作。穩定器之塔頂冷凝器之溫度可在以下範圍內:約-30℃至約50℃、約5℃至約50℃、約10℃至約30℃或約20℃至約40℃。在一些實施例中,在可使C3+組份冷凝而無需額外致冷之較高溫度下操作穩定器之塔頂冷凝器可係有利的。 圖3圖解說明用於自富含C3+組份之流回收NGL之製程300之簡化圖。圖4繪示根據圖3之簡化圖用於回收NGL之製程之示意圖400。圖3及4將同時論述。以數字3及4開始之所有編號均將分別係指圖3及4中所繪示之元件。 進給至製程中之初始流體體積可具有第一濃度(C1-B)之C3+組份。基於初始流體體積之總莫耳數,C1-B可在約40莫耳%至約100莫耳%、約50莫耳%至約100莫耳%、約55莫耳%至約90莫耳%或約65莫耳%至約85莫耳%之C3+組份範圍內。依據方框405,初始流體體積可經由流線305進給至流線315中,然後流線315進給至穩定器330。初始流體體積可在約0.2 MSCFH進料/ft3
吸附劑至約10 MSCFH進料/ft3
吸附劑範圍內。穩定器可在將防止於穩定器中形成水合物之溫度範圍下操作(當製程中存在水時)。當製程中不存在水時,穩定器可在與當存在水時之操作溫度相比較低之溫度下操作。穩定器之操作溫度可在約-30℃至約150℃、約5℃至約150℃範圍內,且操作壓力可在約5巴至約50巴或約10巴至約30巴範圍內。 隨後,依據方框410及420,該製程可包含在穩定器中分別產生第一量及第二量之初始流體體積。且依據方框415,穩定器中所產生之第一量之初始流體體積可經由流325液化。液體C3+組份可係此實施例中所繪示之製程中回收之最終NGL。基於流325中C3+組份之莫耳分數及初始進料流305中C3+組份之莫耳分數所計算,該製程可包含將進給至NGL回收製程之初始流體體積中所存在之C3+組份回收約70%或更多、約80%或更多、約85%或更多、約90%或更多、約95%或更多、約98%或更多或約70%至約99%。 該製程可包含將穩定器中所產生之第二量之底部體積進給至穩定器之塔頂冷凝器。在一些實施例中,當製程中存在水時,穩定器之塔頂冷凝器可在將防止於穩定器之塔頂冷凝器中形成水合物之溫度下操作。在其他實施例中,穩定器之塔頂冷凝器可在較製程中存在水時其操作溫度低之溫度下操作。穩定器之塔頂冷凝器之操作溫度可在以下範圍內:約-30℃至約50℃、約0℃至約50℃、約5℃至約50℃、約10℃至約30℃或約20℃至約40℃。穩定器中所產生之第二量之初始流體體積可具有第二濃度(C2-B)之C3+組份。依據方框425,該製程可包含將具有濃度C2-B之C3+組份之流335進給至吸附器310中。吸附器可係變壓吸附器且其可包含對於C3+組份具有選擇性之吸附劑。吸附劑可選自由以下組成之群:矽膠、氧化鋁、沸石、MOF及碳。吸附劑可包含複數個粒子。在一些實施例中,吸附劑可具有將增加吸附劑對C3+組份之親和力之最佳參數,例如BET表面積、孔體積、容積密度、質量及體積。吸附器可在以下範圍內之溫度下操作:約-30℃至約200℃、約0℃至約200℃、約25℃至約150℃或約25℃至約70℃。在一些實施例中,吸附器可在將防止於吸附器中形成水合物之溫度下操作(若製程中存在水)。 該製程可進一步包含使穩定器中所產生之第二量之初始流體體積與吸附器中之吸附劑接觸(依據方框430)以產生底部流345 (依據方框440)及流出物流355 (依據方框435),其C3+組份之濃度分別為C4-B及C3-B。來自底部體積之濃度C4-B可高於來自流出物流之濃度C3-B。C4-B亦可高於進入吸附器之流335之濃度C2-B。C2-B可高於C3-B。 在一些實施例中,基於流345中流體之總莫耳數,C4-B可在約10莫耳%至約80莫耳%、約20莫耳%至約70莫耳%、約30莫耳%至約65莫耳%或約40莫耳%至約60莫耳%之C3+組份範圍內。基於流355中流體之總莫耳數,流355可含有至多約30莫耳%、至多約20莫耳%、至多約10莫耳%或至多約5莫耳%之C3+組份,即C3-B可係0。在一些實施例中,C4-B可較C3-B大至少3倍。在一些實施例中,基於流335中流體之總莫耳數,C2-B可在約5莫耳%至約60莫耳%、約5莫耳%至約50莫耳%或約20莫耳%至約50莫耳%之C3+組份範圍內,且C4-B可較C2-B大約2倍至100倍。 在變壓吸附器中,使穩定器中所產生之第二量之初始流體體積與吸附劑接觸並產生吸附器流出物流355可在初始吸附壓力下進行。產生C3+組份濃度更高之吸附器之底部體積流345可在最終解吸壓力下進行。初始吸附壓力可高於最終解吸壓力。初始吸附壓力可在約1巴至約70巴、約5巴至約50巴或約10巴至約30巴範圍內。最終解吸壓力可在約0.2巴至約6巴或約0.3巴至約2巴範圍內。 可將變壓吸附器程式化至循環時間中,其中維持吸附壓力達對於有效吸附C3+組份(然而對於不期望組份之吸附低效)最佳之預定持續時間。非限制性之例示性吸附循環時間可在約20秒至約10分鐘或約1分鐘至約4分鐘範圍內。在循環時間完成時,可將壓力降低至最終解吸壓力。 該製程可進一步包含依據方框445視情況將濃度為C4-B之吸附器之底部體積之流345進給至壓縮機320中,並產生體積流365以形成具有第五濃度(C5-B)之C3+組份之流315,其中C5-B可大於C4-B。 圖5A繪示根據實施例之用於自受水污染之初始流體體積流回收NGL之製程500之簡化圖。圖5B繪示根據另一實施例之用於自受水污染之初始流體體積回收NGL之製程500B之簡化圖。以數字5開始之所有編號均將係指圖5A及5B中所繪示之元件,其中以B結束之編號僅係指圖5B。 初始流體體積可視情況經由流505或505B進給至壓縮機510或510B中以產生流515或515B。流515或515B可進給至吸附器520或520B中,例如變壓吸附器。吸附器可產生流出物流535或535B及具有濃C3+組份流之底部流525或525B,即,流525或525B中C3+組份之濃度可大於流515或515B中C3+組份之濃度。底部流525或525B可視情況進給至壓縮機530或530B中以獲得流545或545B。 濃縮流545或545B可包含水,其可在穩定器之前去除。流545或545B可進給至三相分離器540或540B中以將水自流去除。三相分離器可產生包含水之底部流555或555B、包含液體有機物(富含C3+組份)之中間流565或565B及包含呈氣相之有機化學品之流出物流575或575B。底部流555或555B中所分離之水可自製程去除且中間及流出物流565或565B及575或575B可進給至穩定器550或550B中。穩定器550或550B可產生包含高純度及高濃度之C3+組份之穩定器底部流585或585B。可使穩定器底部流585或585B液化以形成最終NGL產物。穩定器亦可產生C3+組份濃度較低之流出物流595或595B。流出物流595或595B可經過穩定器之塔頂冷凝器且然後可視情況再循環至吸附器中。在實施例中,流出物流595可進給回至流515 (或505)中,其中流515 (或505)及595可在其進給至吸附器520中之前混合。在其他實施例中,流出物流595B可在單獨步驟中依序進給至吸附器520B中,例如,在進料流515B (或505B)之後進給至吸附器520B中。若流595B之C3+組份濃度高於流515B (或505B)中C3+組份之濃度,則可繼續進行此實施例。 圖6繪示用於自受二氧化碳污染之初始流體體積流回收NGL之製程600之簡化圖。初始流體體積可視情況經由流605進給至壓縮機610中以產生流615。流615可進給至吸附器620中,例如變壓吸附器。吸附器可產生流出物流635及具有濃C3+組份流之底部流625,即,流625中C3+組份之濃度可大於流615 (或當不存在壓縮機時為605)中C3+組份之濃度。底部流625可視情況進給至壓縮機630中以產生流645。 流645可進給至穩定器640中。穩定器640可產生包含高純度及高濃度之C3+組份之穩定器底部流655。可使穩定器底部流655液化以形成最終NGL產物。穩定器亦可產生流出物流665,其具有低濃度之C3+組份且進一步受二氧化碳污染。流出物流665可經過穩定器之塔頂冷凝器且然後可進給至適於吸附及/或去除二氧化碳之分離裝置650中(例如,膜或具有對二氧化碳之選擇性優於C3+組份之吸附劑的吸附容器)。分離裝置650可產生兩個流675及685。流685可富含自製程去除之二氧化碳且可含有小濃度之C3+組份。流675可進給至初始流體體積流615中。 圖7圖解說明關於處理流體體積之方法之製程700之圖,該方法包含:使該流體體積與吸附劑710接觸,其中在接觸之前流720中之流體體積具有第一濃度(C1)之C3+組份,且在接觸之後流730中之流體之一部分具有第二濃度(C2)之C3+組份,該第二濃度大於該第一濃度。該方法可進一步包含方框740,使具有第二濃度之C3+組份之流體體積(即流730)之一部分液化,其中所得液體可具有第三濃度之C3+組份(流750中為C3),該第三濃度可大於該第二濃度。具有較低濃度之C3+組份之該部分流體體積可經由流760引導至後續之製程步驟。 在一些實施例中,本發明係關於包含以下之系統:變壓吸附器,其包含適於自流體體積吸附C3+組份之吸附劑;及穩定器,其用於在以下範圍內之溫度下回收液體C3+組份(經過穩定器之塔頂冷凝器):約-30℃至約50℃、約0℃至約50℃、約5℃至約50℃、約10℃至約30℃或約20℃至約40℃。在一些實施例中,溫度可使得其將防止於穩定器之塔頂冷凝器中形成水合物。變壓吸附器中之吸附劑可選自由以下組成之群:矽膠、氧化鋁、沸石、MOF及碳。吸附劑可適於接觸流體體積,使得當流體體積具有第一濃度之C3+組份時,流體體積具有第二濃度之C3+組份,其中該第二濃度可較該第一濃度大約2倍至約100倍。在一些實施例中,變壓吸附器及/或穩定器可由不銹鋼或與經過之流體體積相容之任何其他材料構造。實例
闡述以下實例以幫助理解本文中所述之實施例,且不應解釋為具體地限制本文中所述及所主張之實施例。在熟習此項技術者之知識面內之此等變化形式(包括現在已知或以後發展之所有等效形式之取代)以及調配物之變化或實驗設計之微小變化均視為落在本文中所併入之實施例之範圍內。實例 1 - 自具有正常 - 富含 C3+ 含量之進料之 NGL 回收之案例研究
以下實例說明在圖8中所圖解說明之製程流程圖上進行之模擬案例研究。模擬中之吸附床之體積為18.1 m3
、長度為2.8 m且直徑為2.8 m。製程條件及輸入及輸出流之流組成(以莫耳%計)於下表1中說明。
表1說明在與進料流中之C3+組份之濃度相比時,穩定器底部流中之C3+組份之濃度增加。在模擬中所使用之用於穩定器之塔頂冷凝器之溫度係約7℃。在模擬中所使用之功率在第一階段係約408.3 kw且在第二階段係約519.5 kw。 表2說明製程條件及製程中各種流之流組成。在圖8中,進料流811在MIX-801中與經處理之吸附器底部流851混合以形成流849。流849進給至穩定器820中以形成富含C3+組份之穩定器底部流848及穩定器流出物流847,穩定器流出物流847再循環至吸附器系統810。流842係含有高含量之C1及C2組份及低C3組份殘餘物之吸附器流出物流。流842藉助額外製程單元(壓縮機K-802)經歷處理,產生具有升高之溫度及壓力之流867。流843係含有高含量之C3+組份及低C1及C2組份殘餘物之吸附器底部流。流843在改變流體之溫度及壓力之額外製程單元及流(流經K-800、856、E-803、804、K-801、812、E-804、857及E-802)中經歷處理。 製程單元K-800、K-801及K-802表示用於調整流及/或製程單元之壓力之壓縮機。E-803、E-804及E-802表示用於調整流及/或製程單元之溫度之熱交換器。MIX-801表示用於合併複數個流之混合閥及/或混合容器。圖8中之流編號對應於表2中之流編號。 實例 2 - 自具有低 C3+ 含量之進料之 NGL 回收製程之案例研究
以下實例說明在圖9中所圖解說明之流程圖上進行之模擬案例研究。模擬中之吸附床之體積為8.8 m3
,長度為2.9 m且直徑為2.0 m。製程條件及輸入及輸出流之流組成(以莫耳%計)於下表3中說明。
表3說明在與進料流中之C3+組份之濃度相比時,穩定器底部流中之C3+組份之濃度增加。在模擬中所使用之用於穩定器之塔頂冷凝器之溫度係約7℃。在模擬中所使用之功率在第一階段係約48 kw,在第二階段係約44 kw且在第三階段係約35 kw。在模擬中幫浦所使用之功率對於第一幫浦係約0.09 kw且對於第二幫浦係約0.32 kw。在製程中所使用之總功率共計為約127.41 kw (170.73 hp)。 表4說明製程條件及製程中各種流之流組成。在圖9中,進料流911在MIX-900中與來自穩定器之流出物之再循環流947混合以形成流949。流949進給至吸附器系統910中。流942係含有高含量之C1及C2組份及低C3組份殘餘物之吸附器流出物流。流942藉助額外製程單元(壓縮機K-902)經歷處理,產生具有升高之溫度及壓力之流967。流943係含有高含量之C3+組份及低C1及C2組份殘餘物之吸附器底部流。流943在額外製程單元及流(K-900、956、E-903、904、V-901、903、K-901、912、E-904、957、962、V-900、902、K-903、901、E-902及961)中經歷處理。最終,形成進給至穩定器920之流963。產生富含C3+組份之穩定器底部流948及穩定器流出物流947,穩定器流出物流947再循環至吸附器系統。 製程單元K-900、K-901、K-902及K-903表示用於調整流及/或製程單元之壓力之壓縮機。製程單元E-903、E-904及E-902表示用於調整流及/或製程單元之溫度之熱交換器。MIX-900表示用於合併複數個流之混合閥及/或混合容器。V-901及V-900表示可(例如)用於自流分離水之製程單元。圖9中之流編號對應於表4中之流編號。
模擬中之製程單元V-901及V-900用於為製程去除水,如下表5中所匯總之流904、903、962及957、902、961之組成明顯可見。底部流962及961富含水,利用幫浦P-900及幫浦P-901將水自製程去除。 實例 3 - 自具有低 - 正常 C3+ 含量之進料之 NGL 回收之案例研究
以下實例說明在圖9中所圖解說明之流程圖上進行之模擬案例研究。模擬中之吸附床之體積為0.8 m3
,長度為1.6 m且直徑為0.8 m。此實例及其他實例中之吸附床之大小不應解釋為限制性的且可在(例如)約0.2 ft3
/MSCFH進料至約10 ft3
/MSCFH進料範圍內。製程條件及輸入及輸出流之流組成於下表6中說明。
表6說明在與進料流中之C3+組份之濃度相比時,穩定器底部流中之C3+組份之濃度增加。在模擬中所使用之用於穩定器之塔頂冷凝器之溫度係約27℃。在模擬中所使用之功率在第一階段係約10 kw,在第二階段係約10 kw且在第三階段係約4.8 kw。在模擬中幫浦所使用之功率對於第一幫浦為約0.22 kw且對於進料壓縮機為約80 kw,壓力自2.5巴增加至20巴。 表7說明製程條件及製程中各種流之流組成。圖9中之製程與針對案例研究2之實例2中所闡述之製程類似。圖9中之流編號對應於下表7中之流編號。 實例 4 - 自具有水之進料之 NGL 回收製程之案例研究
以下實例說明在圖10中所圖解說明之流程圖上進行之模擬案例研究。 表8說明製程條件及製程中各種流之流組成。在圖10中,進料流1011可視情況在K-1004中壓縮以形成流1007,然後流1007可在MIX-1001中與自穩定器之流出物產生之再循環流1047混合以形成混合流1049。流1049進給至吸附器系統1010中。流1042係含有高含量之C1及C2組份及低C3組份殘餘物之吸附器流出物流。流1042藉助額外製程單元(壓縮機K-1002)經歷處理,產生具有升高之溫度及壓力之流1067。流1043係含有高含量之C3+組份及低C1及C2組份殘餘物之吸附器底部流。流1043在額外製程單元及流(K-1000、1056、E-1003、1004、K-1001、1012、E-1004、1057、V-1000、1002、1061、10161、K-1003、P-1001、1001、E-1002、1051、V-1001、1062、P-1000、10162、1003、1006及1005)中經歷處理。最終,流1005、1006及1003在MIX-1000中混合以形成流1063,流1063進給至穩定器1020。富含C3+組份之穩定器底部流1048及穩定器流出物流1047離開該穩定器,且流1047再循環至吸收劑系統1010。流1047與進料流1007在MIX-1001中混合且然後進給至吸附器系統1010。 製程單元E-1003、E-1004、E-1002繪示熱交換器並容許製程中之溫度變化。製程單元K-1000、K-1001、K-1002、K-1003及K-1004繪示壓縮機並容許製程中之壓力變化。製程單元V-1000及V-1001係三相分離器,其中底部流(10161及10162)分離液體水,中間流(1061及1062)分離液相中之有機化合物且頂部流(1002及1003)分離蒸氣相中之有機化合物。製程單元P-1000及P-1001表示幫浦。製程單元MIX-1000及MIX-1001表示用以合併複數個流之混合閥及/或混合容器。圖10中之流編號對應於表8中之流編號。
模擬中之製程單元V-1001及V-1000用於自製程去除水,如自下表9中所匯總之流1057、10161、1061、1002及1051、10162、1062、1003之組成明顯可見。 實例 5 - 自具有二氧化碳之進料之 NGL 回收製程之案例研究
以下實例說明在圖11中所圖解說明之流程圖上進行之模擬案例研究。 表10說明製程條件及製程中各種流之流組成。在圖11中,進料流1111可視情況在K-1104中壓縮以形成流1107。然後流1107可與流1146在MIX-1101中混合。流1146係在當穩定器之流出物流1147在製程單元X-1101中經歷處理時產生。具體而言,製程單元X-1101可係分離裝置,例如包含膜或吸附器之裝置。分離裝置可藉助流1148A自製程去除二氧化碳,藉此產生流1146,流1146之二氧化碳之量低於穩定器流出物流1147中所存在之二氧化碳之量。然後流1146可與進料流1107在MIX-1101A中混合以形成流1149。 流1149進給至吸附器系統1110中。流1142係含有高含量之C1及C2組份及低C3組份殘餘物之吸附器流出物流。流1142藉助額外製程單元(壓縮機K-1102)經歷處理,產生具有升高之溫度及壓力之流1167。流1143係含有高含量之C3+組份及低C1及C2組份殘餘物之吸附器底部流。流1143在額外製程單元及流(K-1100、1156、MIX-1102、1192、E-1103、1104、V-1101、1103、K-1101、1112、E-1104、1157、1162、V-1100、1102、1161、K-1103、P-1101、P-1100、1101、E-1102、1151、1106及1105)中經歷處理。最終,流1105、1106及1103在MIX-1100中混合以形成流1163,其進給至穩定器1120。產生富含C3+組份之穩定器底部流1148及穩定器流出物流1147,穩定器流出物流1147在X-1101中處理之後再循環至吸附器系統1110。 製程單元E-1103、E-1104、E-1102繪示熱交換器並容許製程中之溫度變化。製程單元K-1100、K-1101、K-1102、K-1103及K-1104繪示壓縮機並容許製程中之壓力變化。製程單元V-1100及V-1101可用於自製程去除水。製程單元P-1100及P-1101表示幫浦。製程單元MIX-1100及MIX-1101表示用於合併複數個流之混合閥及/或混合容器。圖10中之流編號對應於表10中之流編號。
模擬中之製程單元X-1101用於自製程去除二氧化碳,如自下表11中所匯總之流1147、1148A及1146之組成明顯可見。 實例 6 - 具有排放再循環之 NGL 回收製程之案例研究
以下實例說明在圖12中所圖解說明之流程圖上進行之模擬案例研究。 表12說明製程條件及製程中各種流之流組成。在圖12中,進料流1211可視情況在壓縮機K-1204中壓縮以形成流1207,然後流1207可與自穩定器之流出物產生之再循環流1247及與流1295在MIX-1201中混合以形成混合流1249。流1249進給至吸附器系統1210中。流1242係含有高含量之C1及C2組份及低C3組份殘餘物之吸附器流出物流。流1242藉助額外製程單元(壓縮機K-1202)經歷處理,產生具有升高之溫度及壓力之流1267。流1291係含有高含量之C3+組份及低C1及C2組份殘餘物之吸附器底部流。流1290係在吸附製程期間在吸附步驟之後產生之排放流且與進料同時。在一些實施例中,排放流1290可在所有一或多個均衡步驟完成之後產生。在一些實施例中,排放流1290可在均衡步驟之前或之間產生。 一或多個均衡步驟有助於自與吸附劑接觸之進料流分離非選擇性粒子(即,填充吸附劑中之空隙空間之進料氣體粒子)。該(等)均衡步驟可進一步有助於吸附劑之初步減壓。在初步增壓期間,可在將選擇性粒子保持在吸附器中的同時自吸附器去除非選擇性粒子。此防止初始進料流中所存在之非選擇性粒子稀釋隨後分離為吸附器流出物流1242及吸附器底部流1291之選擇性粒子。 單一均衡可將非選擇性粒子之含量減少一半。兩個均衡可將非選擇性粒子之含量再減少約三分之一(除自第一均衡所得之減少以外)。三個均衡可將非選擇性粒子之含量再減少約四分之一(除自第一及第二均衡所得之減少以外)。因此,非選擇性粒子之減少隨著所進行之均衡次數而減少。因此,雖然均衡可減少吸附器中之一些非選擇性粒子,但在一些實施例中,一些非選擇性粒子仍可保留在吸附器中之吸附劑之空隙中。吸附器中較低含量之非選擇性粒子可有利於進一步濃縮具有C3+組份之吸附器底部流。 來自單元1210之流1290可在壓縮機K-1205中壓縮並進給至MIX-1201中,在此其可與進料流1207及穩定器流出物流1247混合以形成混合吸附進料流1249。吸附器底部流1291在額外製程單元及流(K-1200、1250、MIX-1202、1292、E-1203、1204、K-1201、1212、E-1204、1257、V-1200、1202、12161、1261、K-1203、1201、P-1201、E-1202、1251、V-1201、1262、P-1200、12162、1203、1206及1205)中經歷處理。最終,流1205、1206及1203在MIX-1200中混合以形成流1263,其進給至穩定器1220。可形成富含C3+組份之穩定器底部流1248及穩定器流出物流1247,穩定器流出物流1247可再循環至吸收劑系統1210。 製程單元E-1203、E-1204及E-1202繪示熱交換器並容許製程中之溫度變化。製程單元K-1200、K-1201、K-1202、K-1203、K-1204及K-1205繪示壓縮機並容許製程中之壓力變化。製程單元V-1200及V-1201係三相分離器,其中底部流(12161及12162)分離液體水,中間流(1261及1262)分離液相中之有機化合物且頂部流(1202及1203)分離蒸氣相中之有機化合物。製程單元P-1200及P-1201表示幫浦。製程單元MIX-1200、MIX-1201及MIX-1202表示用以合併複數個流之混合閥及/或混合容器。圖12中之流編號對應於表12中之流編號。 實例 7 - 本發明實例對比較技術
圖13繪示比較現有直接致冷及IPOR技術與根據實施例之本發明技術之C3+回收、馬力及最冷製程溫度之圖。 如圖13中所圖解說明,本發明技術與直接致冷技術相比達成顯著更高之C3+回收,同時較IPOR技術在顯著更高之溫度下操作。 除非本文中另有指示或上下文明顯矛盾,否則在闡述本文中所論述之材料及方法之上下文(尤其在下文申請專利範圍之上下文)中使用術語「一(a、an)」及「該」以及相似指示物均應解釋為涵蓋單數與複數二者。除非本文中另有指示,否則本文中所列舉之值範圍僅意欲作為個別提及此範圍內之每一單獨值之速記方法,且每一單獨值係如同在本文中個別列舉一般併入本說明書中。除非本文中另有指示或上下文另外明顯矛盾,否則本文中所闡述之所有方法均可以任何適宜順序實施。使用本文中所提供之任何及所有實例或例示性語言(例如,「例如」)僅意欲更好地說明材料及方法,且並不對範圍加以限制。本說明書中之任何語言均不應解釋為指示任何未主張要素對於實踐所揭示材料及方法係必不可少的。 整個本說明書中對「一個實施例」、「某些實施例」、「一些實施例」、「一或多個實施例」或「實施例」之提及意指與該實施例一起闡述之特定特徵、結構、材料或特性包括於本揭示內容之至少一個實施例中。因此,在整個本說明書中各個地方出現之片語(例如) 「在一或多個實施例中」、「在某些實施例中」、「在一些實施例中」、「在一個實施例中」或「在實施例中」不一定係指本揭示內容之同一實施例。此外,在一或多個實施方案中,特定特徵、結構、材料或特性可以任一適宜方式來組合。 儘管已參照特定實施例闡述本文中所揭示之實施例,但應瞭解,該等實施例僅說明本揭示內容之原理及應用。熟習此項技術者將明瞭,可在不背離本揭示內容之精神及範圍之情形下對本揭示內容之方法及設備作出各種修改及變化。因此,本揭示內容意欲包括在隨附申請專利範圍及其等效內容範圍內之修改及變化形式,且呈現上文所闡述之實施例用於說明而非限制目的。 另外,術語「或」意欲指包括性「或」而非排他性「或」。當在本文中使用術語「約」或「大約」時,此意欲指所呈現之標稱值精確在±10%內。SUMMARY OF THE INVENTION The present invention relates to systems for improved purification of gas streams and methods of use thereof. More specifically, the present invention relates to systems and methods for purifying and recovering C3+ components. The present invention is directed to an NGL recovery system and method for providing C3+ component recovery that is comparable or higher than that obtained by any of the liquid hydrocarbon extraction techniques currently available. The methods and systems disclosed herein are capable of achieving higher liquid hydrocarbon recovery when operated at temperatures above the temperature of the expansion turbine and IPOR technology, thereby allowing for lower construction material costs and operating costs. In some embodiments, the present disclosure relates to an initial fluid volume flow from a C3+ component having a low concentration, an initial fluid volume flow from a C3+ rich component, and an initial fluid contaminated with water and/or carbon dioxide. The method of recovering the C3+ component by volume flow. In some embodiments, the present invention is directed to a method of treating a fluid volume to produce liquid natural gas. In some embodiments, the present invention is directed to a system comprising an adsorber (e.g., a pressure swing adsorber or a heat swing adsorber) and a stabilizer. In various embodiments disclosed herein, the lowest temperature in the process and/or in the system can be in the range of from about -30 ° C to about 50 ° C, from about 0 ° C to about 50 ° C, from about 5 ° C to about 50. °C, from about 10 ° C to about 30 ° C or from about 20 ° C to about 40 ° C. Various embodiments are now described with reference to the following figures and examples. Before the present invention is illustrated, it is understood that the disclosure is not limited to the details of the construction or process steps described in the following description. Other embodiments may be practiced or carried out in various ways depending upon the principles set forth. 1A illustrates a simplified diagram of a process 100 for recovering NGL from a stream having a low C3+ component concentration, in accordance with an embodiment. FIG. 1B illustrates a simplified diagram of a process 100B for recovering NGL from a stream having a low C3+ component concentration, in accordance with another embodiment. 2 is a schematic diagram 200 of a process for recovering NGL according to the simplified diagrams of FIGS. 1A and 1B. Figures 1A, 1B and 2 will be discussed simultaneously. All numbers starting with the number 1 will refer to the elements depicted in Figures 1A and 1B, with the number ending with B referring only to Figure 1B. All numbers starting with the number 2 will refer to the elements depicted in Figure 2. The initial fluid volume fed into the process can be treated to remove certain impurities or increase the concentration of the C3+ component elsewhere after undergoing pretreatment. Alternatively, the initial fluid volume fed into the process may be untreated and may undergo processing in the NGL recovery process disclosed herein. According to block 205, the untreated fluid volume may optionally be fed to compressor 110 or 110B via streamline 105 or 105B to produce an initial fluid volume. The initial fluid volume in streamline 105 or 105B can be routed by means of a compressor. The initial fluid volume in stream 105 or 105B can be mixed with recycle stream 165 to form streamline 115 or 115B. The streamline 115 or 115B of the C3+ component having a concentration of C1-A or C1-AB may be at least 1.5 times higher than the concentration of the streamline 105 or 105B entering the compressor. The initial fluid volume can be at about 0.2 MSCFH feed / ft3
Adsorbent [1] to about 10 MSCFH feed / ft3
Within the scope of the adsorbent. It will be appreciated that in certain embodiments, the initial fluid volume may fall outside of such ranges due to significant changes in processing plant and processing unit size, complexity, configuration, customer requirements, and the like. The initial fluid volume in streamline 115 or 115B can have a C3+ component of a first concentration (C1-A or C1-AB). Whether to mix into the feed stream based on the total number of moles in the initial fluid volume and the optional recycle stream (discussed in more detail below) generated from the effluent from the stabilizer (see streams 165 and 115 in Figure 1A) Shown) or will not be mixed into the feed stream (as shown by streams 165B and 115B in Figure IB), C1-A or C1-AB may be from about 0.1 mole% to about 50 mole%, about 0.1 mole Ear to about 24 mole%, about 1 mole% to about 50 mole%, about 10 mole% to about 40 mole%, about 10 mole% to about 35 mole%, or about 10 mole% Up to about 25 mole % of the C3+ component range. According to block 210, the initial fluid volume, after mixing with the optional recycle stream 165, can be fed via line 115 to the adsorber 120, which has a sorbent that is selective for the C3+ component. Alternatively, in accordance with block 210, the initial fluid volume may be fed to adsorber 120B via streamline 115B, and then, depending on optional block 255, optional recycle stream 165B may be fed into adsorber 120B. According to block 215, the process can further include contacting the initial fluid volume and/or the optional recycle stream with the adsorbent to produce the adsorber bottoms stream 125 or 125B (according to block 220) and the adsorber effluent stream 135 or 135B (According to block 225), the concentration of the C3+ component is C3-A or C3-AB and C2-A or C2-AB, respectively. The concentration C3-A or C3-AB from the bottom volume of the adsorber can be higher than the concentration C2-A or C2-AB from the adsorber effluent stream. In some embodiments, the adsorber can be a pressure swing adsorber. The pressure swing adsorber can comprise an adsorbent that is selective for the C3+ component. The adsorber can be operated at a temperature range that will prevent hydrate formation in the adsorber (if water is present in the process). The temperature in the adsorber (depending on whether water is present in the process) can be in the range of from about -30 ° C to about 200 ° C, from about -28 ° C to about 200 ° C, from about 0 ° C to about 200 ° C, about 25 ° C. To about 150 ° C or from about 25 ° C to about 70 ° C. The adsorbent can be selected from the group consisting of silicone, alumina, potassium permanganate, zeolite (for example, molecular sieve zeolite), metal organic framework (MOF), activated carbon, molecular sieve carbon, polymer, resin, clay, and combinations thereof. . The adsorbent can comprise a plurality of particles. In some embodiments, the adsorbent can have optimal parameters that will increase the affinity of the adsorbent for the C3+ component, such as BET surface area, pore volume, bulk density, mass, volume, and diameter. In some embodiments, the adsorbent can comprise an MOF in the form of a powder, agglomerate, extrudate, granule or separate membrane. In certain embodiments, the MOF is in the form of MOF particles. In some embodiments, the sorbent material is provided by YO2
And X2
O3
A zeolitic material constituting a frame structure in which Y is a tetravalent element and X is a trivalent element. In one embodiment, the Y system is selected from the group consisting of Si, Sn, Ti, Zr, Ge, and combinations of two or more thereof. In one embodiment, the Y system is selected from the group consisting of Si, Ti, Zr, and combinations of two or more thereof. In one embodiment, Y is Si and/or Sn. In one embodiment, Y is Si. In one embodiment, the X system is selected from the group consisting of: Al, B, In, Ga, and combinations of two or more thereof. In one embodiment, the X system is selected from the group consisting of: Al, B, In, and combinations of two or more thereof. In one embodiment, X is Al and/or B. In one embodiment, X is Al. In certain embodiments, the zeolite is in the form of particles, pellets, extrudates, granules, powders, or separate membranes. In certain embodiments, the zeolite is in the form of zeolite particles. In certain embodiments, the adsorbent can be activated. Activation can include subjecting the adsorbent to various conditions for a time sufficient to activate the adsorbent material, including but not limited to ambient temperature, vacuum, inert gas flow, or any combination thereof. In a pressure swing adsorber, contacting the initial fluid volume with the adsorbent and generating the adsorber effluent stream 135 or 135B can be carried out at an initial adsorption pressure. The bottom volume stream 125 or 125B that produces a higher C3+ component concentration (C3-A or C3-AB) can be carried out at the final desorption pressure. The initial adsorption pressure can range from about 1 bar to about 70 bar, from about 5 bar to about 50 bar, or from about 10 bar to about 30 bar. The final desorption pressure can range from about 0.2 bar to about 6 bar or from about 0.3 bar to about 2 bar. The pressure swing adsorber can be programmed into a cycle time in which the adsorption pressure is maintained for a predetermined predetermined duration for effective adsorption of the C3+ component (although for adsorption of undesirable components). Non-limiting exemplary adsorption cycle times can range from about 20 seconds to about 10 minutes, from about 30 seconds to about 10 minutes, or from about 1 minute to about 4 minutes. After the adsorption cycle, the period of implementation of the equalization cycle can be about 4 times shorter than the adsorption cycle time (from about 5 seconds to about 2.5 minutes, from about 7.5 seconds to about 2.5 minutes, or from about 15 seconds to about 1 minute). Usually the equilibration time can be long enough to ensure that the bed will not fluidize or rise during the equalization step. When the cycle time is complete, the pressure can be reduced to the final desorption pressure. The duration of the depressurization step can be about 2 to 4 times shorter than the adsorption cycle (eg, from about 5 seconds to about 2.5 minutes, from about 7.5 seconds to about 2.5 minutes, or from about 15 seconds to about 1 minute, from about 10 seconds to about 5 minutes, about 15 seconds to about 5 minutes, or about 30 seconds to about 2 minutes). In some embodiments, the concentration C3-A or C3-AB of the bottom volume stream 125 or 125B of the adsorber can be greater than the concentration C1-A or C1-AB of the initial feed volume of the streamline 115 or 115B. Conversely, the concentration C1-A or C1-AB of the initial feed volume of streamline 115 or 115B can be greater than the concentration C2-A or C2-AB of the effluent volume stream 135 or 135B of the adsorber. C3-A or C3-AB can be at least about 3 times larger than C2-A or C2-AB. In some embodiments, based on the total number of moles of fluid in stream 125 or 125B, C3-A or C3-AB may be 100% by mole of C3+ components, and stream 135 or 135B may be free of C3+ components, ie, C2 -A or C2-AB can be 0. In some embodiments, C3-A or C3-AB can be at least about 2 fold to about 100 fold greater than C1-A or C1-AB. Based on the total number of moles in stream 145 or 145B (or 125 or 125B), C3-A or C3-AB can range from about 10 mole% to about 80 mole%, from about 25 mole% to about 80 mole%. Or from about 30 mole % to about 80 mole % of the C3+ component. The process may further include feeding a stream 125 or 125B of the bottom volume of the adsorber to the compressor 130 or 130B as appropriate, according to block 230, and producing a volume stream 145 or 145B. According to block 235, the process may further include feeding the volume stream 145 or 145B (or 125 or 125B if no compressor is present) to the stabilizer 140 or 140B. If water is present in the process, the stabilizer can operate at a temperature range and pressure range that will prevent hydrate formation in the stabilizer. The temperature in the stabilizer can vary depending on whether water is present in the process and can range from about -28 ° C to about 150 ° C or from about 5 ° C to about 150 ° C. The pressure in the stabilizer can range from about 5 bars to about 50 bars or from about 10 bars to about 30 bars. If water is present in the process, the operating temperature of the stabilizer can be higher than the temperature at which the hydrate is formed. If water is not present in the process, the operating temperature of the stabilizer may be within a lower range of the above temperature range. Subsequently, in accordance with blocks 240 and 245, the process can include a bottom volume of the adsorbers that produce the first and second amounts, respectively. And according to block 250, the bottom volume of the first amount of adsorber can be liquefied via stream 155 or 155B. The operating temperature at the bottom of the stabilizer can range from about 30 ° C to about 200 ° C, from about 40 ° C to about 120 ° C, or from about 50 ° C to about 90 ° C. The liquid C3+ component can be the final NGL recovered in the process illustrated in this example. In some embodiments, based on the molar fraction of the C3+ component in stream 155 or 155B and the molar fraction of the C3+ component in the initial feed stream, the process can include an initial fluid volume to be fed to the NGL recovery process. The C3+ component present therein recovers about 70% or more, about 80% or more, about 85% or more, about 90% or more, about 95% or more, about 98% or more. The second amount of bottom volume of the effluent stream flowing through the stabilizer may optionally be recycled directly to the initial feed volume via stream 165, wherein streams 165 and 115 may be mixed prior to their feeding to adsorber 120. In other embodiments, the second amount of bottom volume of the effluent stream flowing through the stabilizer may optionally be recycled via stream 165B and sequentially fed to adsorber 120B (eg, feed stream 115B may be fed first to the adsorber) 120B and then recycle stream 165B can be fed to the adsorber). Prior to recycling, the process may include a bottom condenser that feeds a second amount of bottom volume to the stabilizer, in the presence of water, at a temperature that will prevent hydrate formation in the overhead condenser of the stabilizer Under the operation. In some embodiments, if water is not present, the top condenser of the stabilizer can be operated at a temperature below the presence of water. The temperature of the overhead condenser of the stabilizer can be in the range of from about -30 ° C to about 50 ° C, from about 5 ° C to about 50 ° C, from about 10 ° C to about 30 ° C, or from about 20 ° C to about 40 ° C. In some embodiments, an overhead condenser that operates the stabilizer at a higher temperature that can condense the C3+ component without additional refrigeration can be advantageous. FIG. 3 illustrates a simplified diagram of a process 300 for recovering NGL from a stream rich in C3+ components. 4 is a schematic diagram 400 of a process for recovering NGL according to the simplified diagram of FIG. Figures 3 and 4 will be discussed simultaneously. All numbers starting with numbers 3 and 4 will refer to the elements depicted in Figures 3 and 4, respectively. The initial fluid volume fed into the process can have a C3+ component of a first concentration (C1-B). Based on the total molar volume of the initial fluid volume, C1-B can range from about 40 mole% to about 100 mole%, from about 50 mole% to about 100 mole%, from about 55 mole% to about 90 mole%. Or from about 65 mole % to about 85 mole % of the C3+ component. According to block 405, the initial fluid volume may be fed to streamline 315 via streamline 305, which is then fed to stabilizer 330. The initial fluid volume can be at about 0.2 MSCFH feed / ft3
Adsorbent to approximately 10 MSCFH feed / ft3
Within the scope of the adsorbent. The stabilizer can operate at a temperature range that will prevent hydrate formation in the stabilizer (when water is present in the process). When water is not present in the process, the stabilizer can be operated at a lower temperature than the operating temperature when water is present. The operating temperature of the stabilizer can range from about -30 ° C to about 150 ° C, from about 5 ° C to about 150 ° C, and the operating pressure can range from about 5 bars to about 50 bars or from about 10 bars to about 30 bars. Subsequently, in accordance with blocks 410 and 420, the process can include generating a first amount and a second amount of the initial fluid volume in the stabilizer, respectively. And in accordance with block 415, the first amount of initial fluid volume produced in the stabilizer can be liquefied via stream 325. The liquid C3+ component can be the final NGL recovered in the process illustrated in this example. Based on the molar fraction of the C3+ component in stream 325 and the molar fraction of the C3+ component in the initial feed stream 305, the process can include the C3+ component present in the initial fluid volume fed to the NGL recovery process. Recovering about 70% or more, about 80% or more, about 85% or more, about 90% or more, about 95% or more, about 98% or more, or about 70% to about 99% . The process can include feeding a second amount of bottom volume produced in the stabilizer to the overhead condenser of the stabilizer. In some embodiments, when water is present in the process, the top condenser of the stabilizer can be operated at a temperature that will prevent hydrate formation in the overhead condenser of the stabilizer. In other embodiments, the top condenser of the stabilizer can be operated at a temperature at which the operating temperature is lower than in the presence of water in the process. The operating temperature of the overhead condenser of the stabilizer can be in the range of from about -30 ° C to about 50 ° C, from about 0 ° C to about 50 ° C, from about 5 ° C to about 50 ° C, from about 10 ° C to about 30 ° C or about 20 ° C to about 40 ° C. The second amount of initial fluid volume produced in the stabilizer can have a C3+ component of the second concentration (C2-B). According to block 425, the process can include feeding a stream 335 having a C3+ component of concentration C2-B to the adsorber 310. The adsorber can be a pressure swing adsorber and it can comprise an adsorbent that is selective for the C3+ component. The adsorbent can be selected from the group consisting of silicone, alumina, zeolite, MOF and carbon. The adsorbent can comprise a plurality of particles. In some embodiments, the adsorbent can have optimal parameters that will increase the affinity of the adsorbent for the C3+ component, such as BET surface area, pore volume, bulk density, mass, and volume. The adsorber can be operated at temperatures ranging from about -30 ° C to about 200 ° C, from about 0 ° C to about 200 ° C, from about 25 ° C to about 150 ° C, or from about 25 ° C to about 70 ° C. In some embodiments, the adsorber can be operated at a temperature that will prevent hydrate formation in the adsorber (if water is present in the process). The process can further include contacting a second amount of the initial fluid volume produced in the stabilizer with the adsorbent in the adsorber (according to block 430) to produce a bottoms stream 345 (according to block 440) and an effluent stream 355 (depending on At block 435), the concentrations of the C3+ components are C4-B and C3-B, respectively. The concentration C4-B from the bottom volume can be higher than the concentration C3-B from the effluent stream. C4-B may also be higher than the concentration C2-B of stream 335 entering the adsorber. C2-B can be higher than C3-B. In some embodiments, based on the total number of moles of fluid in stream 345, C4-B can range from about 10 mole% to about 80 mole%, from about 20 mole% to about 70 mole%, about 30 moles. % to about 65 mol% or about 40 mol% to about 60 mol% of the C3+ component range. Based on the total number of moles of fluid in stream 355, stream 355 can contain up to about 30 mole percent, up to about 20 mole percent, up to about 10 mole percent, or up to about 5 mole percent of the C3+ component, ie, C3- B can be 0. In some embodiments, C4-B can be at least 3 times greater than C3-B. In some embodiments, based on the total number of moles of fluid in stream 335, C2-B can range from about 5 mole% to about 60 mole%, from about 5 mole% to about 50 mole%, or about 20 moles. % to about 50 mole % of the C3+ component range, and C4-B can be about 2 to 100 times more than C2-B. In a pressure swing adsorber, contacting a second amount of the initial fluid volume produced in the stabilizer with the adsorbent and producing the adsorber effluent stream 355 can be carried out at an initial adsorption pressure. The bottom volume stream 345 of the adsorber that produces a higher concentration of C3+ components can be carried out at the final desorption pressure. The initial adsorption pressure can be higher than the final desorption pressure. The initial adsorption pressure can range from about 1 bar to about 70 bar, from about 5 bar to about 50 bar, or from about 10 bar to about 30 bar. The final desorption pressure can range from about 0.2 bar to about 6 bar or from about 0.3 bar to about 2 bar. The pressure swing adsorber can be programmed into a cycle time in which the adsorption pressure is maintained for a predetermined predetermined duration for effective adsorption of the C3+ component (although for adsorption of undesirable components). Non-limiting exemplary adsorption cycle times can range from about 20 seconds to about 10 minutes or from about 1 minute to about 4 minutes. When the cycle time is complete, the pressure can be reduced to the final desorption pressure. The process may further include feeding a stream 345 of the bottom volume of the adsorber having a concentration of C4-B to the compressor 320 as appropriate, according to block 445, and generating a volume stream 365 to form a fifth concentration (C5-B). Stream 315 of the C3+ component, wherein C5-B can be greater than C4-B. 5A is a simplified diagram of a process 500 for recovering NGL from an initial fluid volume stream that is contaminated with water, in accordance with an embodiment. 5B is a simplified diagram of a process 500B for recovering NGL from an initial fluid volume contaminated with water, in accordance with another embodiment. All numbers starting with the number 5 will refer to the elements illustrated in Figures 5A and 5B, with the number ending with B referring only to Figure 5B. The initial fluid volume may optionally be fed to compressor 510 or 510B via stream 505 or 505B to produce stream 515 or 515B. Stream 515 or 515B can be fed to adsorber 520 or 520B, such as a pressure swing adsorber. The adsorber can produce an effluent stream 535 or 535B and a bottoms stream 525 or 525B having a concentrated C3+ component stream, i.e., the concentration of the C3+ component in stream 525 or 525B can be greater than the concentration of the C3+ component in stream 515 or 515B. Bottom stream 525 or 525B may optionally be fed into compressor 530 or 530B to obtain stream 545 or 545B. Concentrated stream 545 or 545B can contain water that can be removed prior to the stabilizer. Stream 545 or 545B can be fed to three phase separator 540 or 540B to remove water from the stream. The three-phase separator can produce a bottoms stream 555 or 555B comprising water, an intermediate stream 565 or 565B comprising liquid organics (rich in C3+ components) and an effluent stream 575 or 575B comprising organic chemicals in the gas phase. The water separated in bottom stream 555 or 555B can be removed by the process and intermediate and effluent streams 565 or 565B and 575 or 575B can be fed into stabilizer 550 or 550B. Stabilizer 550 or 550B can produce a stabilizer bottom stream 585 or 585B comprising a high purity and high concentration C3+ component. The stabilizer bottom stream 585 or 585B can be liquefied to form the final NGL product. The stabilizer can also produce an effluent stream 595 or 595B having a lower concentration of C3+ components. The effluent stream 595 or 595B can pass through the overhead condenser of the stabilizer and can then be recycled to the adsorber as appropriate. In an embodiment, effluent stream 595 can be fed back to stream 515 (or 505), where streams 515 (or 505) and 595 can be mixed before it is fed into adsorber 520. In other embodiments, the effluent stream 595B can be fed sequentially to the adsorber 520B in a separate step, for example, after the feed stream 515B (or 505B) is fed to the adsorber 520B. This example can be continued if the concentration of the C3+ component of stream 595B is higher than the concentration of the C3+ component of stream 515B (or 505B). 6 is a simplified diagram of a process 600 for recovering NGL from an initial fluid volume stream contaminated with carbon dioxide. The initial fluid volume may optionally be fed to compressor 610 via stream 605 to produce stream 615. Stream 615 can be fed to adsorber 620, such as a pressure swing adsorber. The adsorber can produce an effluent stream 635 and a bottom stream 625 having a concentrated C3+ component stream, i.e., the concentration of the C3+ component in stream 625 can be greater than the concentration of the C3+ component in stream 615 (or 605 when no compressor is present). . The bottom stream 625 can optionally be fed into the compressor 630 to produce a stream 645. Stream 645 can be fed into stabilizer 640. Stabilizer 640 can produce a stabilizer bottom stream 655 comprising a high purity and high concentration C3+ component. The stabilizer bottom stream 655 can be liquefied to form the final NGL product. The stabilizer can also produce an effluent stream 665 that has a low concentration of C3+ components and is further contaminated with carbon dioxide. The effluent stream 665 can pass through the overhead condenser of the stabilizer and can then be fed to a separation unit 650 suitable for adsorbing and/or removing carbon dioxide (eg, a membrane or an adsorbent having a selectivity to carbon dioxide that is superior to the C3+ component) Adsorption container). Separation device 650 can generate two streams 675 and 685. Stream 685 can be enriched in carbon dioxide removed by the home process and can contain small concentrations of C3+ components. Stream 675 can be fed into initial fluid volume stream 615. 7 illustrates a diagram of a process 700 for a method of treating a fluid volume, the method comprising: contacting the fluid volume with an adsorbent 710, wherein the volume of fluid in the stream 720 prior to contacting has a C3+ group of a first concentration (C1) And a portion of the fluid in stream 730 after contacting has a second concentration (C2) of C3+ components, the second concentration being greater than the first concentration. The method can further include block 740 of partially liquefying one of the fluid volumes (i.e., stream 730) having a second concentration of C3+ components, wherein the resulting liquid can have a third concentration of C3+ components (C3 in stream 750), The third concentration can be greater than the second concentration. The portion of the fluid volume having a lower concentration of the C3+ component can be directed via stream 760 to subsequent processing steps. In some embodiments, the present invention is directed to a system comprising: a pressure swing adsorber comprising an adsorbent adapted to adsorb a C3+ component from a fluid volume; and a stabilizer for recovering at a temperature within the range Liquid C3+ component (passing the top condenser of the stabilizer): from about -30 ° C to about 50 ° C, from about 0 ° C to about 50 ° C, from about 5 ° C to about 50 ° C, from about 10 ° C to about 30 ° C or about 20 °C to about 40 °C. In some embodiments, the temperature may be such that it will prevent hydrate formation in the overhead condenser of the stabilizer. The adsorbent in the pressure swing adsorber can be selected from the group consisting of silicone, alumina, zeolite, MOF and carbon. The adsorbent can be adapted to contact the fluid volume such that when the fluid volume has a first concentration of C3+ components, the fluid volume has a second concentration of C3+ components, wherein the second concentration can be about 2 times greater than the first concentration. 100 times. In some embodiments, the pressure swing adsorber and/or stabilizer may be constructed of stainless steel or any other material that is compatible with the volume of fluid passing therethrough.Instance
The following examples are set forth to aid in understanding the embodiments described herein and are not to be construed as limiting the embodiments described and claimed herein. Such variations in the knowledge of those skilled in the art, including substitutions of all equivalents now known or later developed, and minor variations in the formulation or experimental design are considered to be within the context of this disclosure. Within the scope of the embodiments incorporated.Instance 1 - Since it has normal - Rich C3+ Content of feed NGL Case study of recycling
The following example illustrates a simulation case study conducted on the process flow diagram illustrated in FIG. The volume of the adsorption bed in the simulation is 18.1 m3
It has a length of 2.8 m and a diameter of 2.8 m. The process conditions and flow composition of the input and output streams (in mole %) are illustrated in Table 1 below.
Table 1 illustrates the increase in the concentration of the C3+ component in the bottom stream of the stabilizer when compared to the concentration of the C3+ component in the feed stream. The temperature of the overhead condenser used in the simulator used in the simulation was about 7 °C. The power used in the simulation was approximately 408.3 kw in the first phase and approximately 519.5 kw in the second phase. Table 2 illustrates the process conditions and the composition of the various flow streams in the process. In FIG. 8, feed stream 811 is mixed with treated adsorber bottom stream 851 in MIX-801 to form stream 849. Stream 849 is fed to stabilizer 820 to form a stabilizer-rich bottoms stream 848 and a stabilizer effluent stream 847 enriched in C3+ components, and a stabilizer effluent stream 847 is recycled to adsorber system 810. Stream 842 is an adsorber effluent stream containing high levels of C1 and C2 components and low C3 component residues. Stream 842 undergoes processing by means of an additional process unit (compressor K-802) to produce stream 867 with elevated temperature and pressure. Stream 843 is a bottom stream of adsorber containing a high content of C3+ components and low C1 and C2 component residues. Stream 843 undergoes processing in additional process units and streams that change the temperature and pressure of the fluid (flowing through K-800, 856, E-803, 804, K-801, 812, E-804, 857, and E-802). Process units K-800, K-801, and K-802 represent compressors for regulating the pressure of the flow and/or process unit. E-803, E-804, and E-802 represent heat exchangers for adjusting the temperature of the flow and/or process unit. MIX-801 represents a mixing valve and/or mixing vessel for combining a plurality of streams. The stream number in Fig. 8 corresponds to the stream number in Table 2. Instance 2 - Since it has a low C3+ Content of feed NGL Case study of recycling process
The following example illustrates a simulation case study conducted on the flow chart illustrated in FIG. The volume of the adsorption bed in the simulation is 8.8 m3
It has a length of 2.9 m and a diameter of 2.0 m. The process conditions and flow composition of the input and output streams (in mole %) are illustrated in Table 3 below.
Table 3 illustrates the increase in the concentration of the C3+ component in the bottom stream of the stabilizer when compared to the concentration of the C3+ component in the feed stream. The temperature of the overhead condenser used in the simulator used in the simulation was about 7 °C. The power used in the simulation was about 48 kw in the first phase, about 44 kw in the second phase, and about 35 kw in the third phase. The power used by the pump in the simulation is about 0.09 kw for the first pump and about 0.32 kw for the second pump. The total power used in the process is approximately 124.71 kw (170.73 hp). Table 4 illustrates the process conditions and the composition of the various flow streams in the process. In Figure 9, feed stream 911 is mixed with recycle stream 947 from the effluent from the stabilizer in MIX-900 to form stream 949. Stream 949 is fed to adsorber system 910. Stream 942 is an adsorber effluent stream containing high levels of C1 and C2 components and low C3 component residues. Stream 942 undergoes processing by means of an additional process unit (compressor K-902) to produce stream 967 with elevated temperature and pressure. Stream 943 is a bottom stream of adsorber containing a high content of C3+ components and low C1 and C2 component residues. Stream 943 is in additional process units and streams (K-900, 956, E-903, 904, V-901, 903, K-901, 912, E-904, 957, 962, V-900, 902, K-903) Processed in 901, E-902 and 961). Finally, a stream 963 that is fed to the stabilizer 920 is formed. A stabilizer bottom stream 948 enriched in C3+ components and a stabilizer effluent stream 947 are produced, and a stabilizer effluent stream 947 is recycled to the adsorber system. Process units K-900, K-901, K-902, and K-903 represent compressors for regulating the pressure of the flow and/or process unit. Process units E-903, E-904, and E-902 represent heat exchangers for adjusting the temperature of the flow and/or process unit. MIX-900 denotes a mixing valve and/or mixing vessel for combining a plurality of streams. V-901 and V-900 denote process units that can, for example, be used to separate water from a free flow. The stream numbers in Fig. 9 correspond to the stream numbers in Table 4.
The process units V-901 and V-900 in the simulation were used to remove water for the process, and the compositions of streams 904, 903, 962 and 957, 902, 961 summarized in Table 5 below are clearly visible. The bottom streams 962 and 961 are enriched in water, and the water-making process is removed using the pump P-900 and the pump P-901. Instance 3 - Since it has a low - normal C3+ Content of feed NGL Case study of recycling
The following example illustrates a simulation case study conducted on the flow chart illustrated in FIG. The volume of the adsorption bed in the simulation is 0.8 m3
It has a length of 1.6 m and a diameter of 0.8 m. The size of the adsorbent bed in this and other examples should not be construed as limiting and may be, for example, about 0.2 ft.3
/MSCFH feeds to approximately 10 ft3
/MSCFH feed range. The process conditions and the flow of the input and output streams are illustrated in Table 6 below.
Table 6 illustrates the increase in the concentration of the C3+ component in the bottom stream of the stabilizer when compared to the concentration of the C3+ component in the feed stream. The temperature of the overhead condenser used in the simulator used in the simulation was about 27 °C. The power used in the simulation was about 10 kw in the first phase, about 10 kw in the second phase, and about 4.8 kw in the third phase. The power used by the pump in the simulation was about 0.22 kw for the first pump and about 80 kw for the feed compressor, and the pressure was increased from 2.5 bar to 20 bar. Table 7 illustrates the process conditions and the composition of the various flow streams in the process. The process in Figure 9 is similar to the process illustrated in Example 2 of Case Study 2. The flow numbers in Figure 9 correspond to the flow numbers in Table 7 below. Instance 4 - Self-feeding with water NGL Case study of recycling process
The following example illustrates a simulation case study conducted on the flow chart illustrated in FIG. Table 8 illustrates the process conditions and the composition of the various flow streams in the process. In Figure 10, feed stream 1011 may optionally be compressed in K-1004 to form stream 1007, which may then be mixed in MIX-1001 with recycle stream 1047 produced from the effluent from the stabilizer to form a mixed stream 1049. . Stream 1049 is fed to adsorber system 1010. Stream 1042 is an adsorber effluent stream containing high levels of C1 and C2 components and low C3 component residues. Stream 1042 undergoes processing by means of an additional process unit (compressor K-1002) to produce a stream 1067 having elevated temperatures and pressures. Stream 1043 is an adsorber bottoms stream containing a high level of C3+ components and low C1 and C2 component residues. Stream 1043 is in additional process units and streams (K-1000, 1056, E-1003, 1004, K-1001, 1012, E-1004, 1057, V-1000, 1002, 1061, 10161, K-1003, P-1001) Processes are experienced in 1001, E-1002, 1051, V-1001, 1062, P-1000, 10162, 1003, 1006, and 1005). Finally, streams 1005, 1006, and 1003 are mixed in MIX-1000 to form stream 1063, which is fed to stabilizer 1020. The stabilizer bottoms stream 1048 and the stabilizer effluent stream 1047 enriched in the C3+ component exit the stabilizer and the stream 1047 is recycled to the absorbent system 1010. Stream 1047 is mixed with feed stream 1007 in MIX-1001 and then fed to adsorber system 1010. Process units E-1003, E-1004, E-1002 illustrate the heat exchanger and allow for temperature variations in the process. Process units K-1000, K-1001, K-1002, K-1003, and K-1004 illustrate the compressor and allow for pressure variations in the process. Process unit V-1000 and V-1001 are three-phase separators, in which the bottom stream (10161 and 10162) separates the liquid water, the intermediate stream (1061 and 1062) separates the organic compounds in the liquid phase and the top stream (1002 and 1003) separates. An organic compound in the vapor phase. Process units P-1000 and P-1001 represent pumps. The process units MIX-1000 and MIX-1001 represent mixing valves and/or mixing vessels for combining a plurality of streams. The stream numbers in Fig. 10 correspond to the stream numbers in Table 8.
The process units V-1001 and V-1000 in the simulation were used to remove water by the process, as shown by the composition of streams 1057, 10161, 1061, 1002 and 1051, 10162, 1062, 1003 summarized in Table 9 below. Instance 5 - Self-contained with carbon dioxide NGL Case study of recycling process
The following example illustrates a simulation case study conducted on the flow chart illustrated in FIG. Table 10 illustrates the process conditions and the composition of the various flow streams in the process. In Figure 11, feed stream 1111 may optionally be compressed in K-1104 to form stream 1107. Stream 1107 can then be mixed with stream 1146 in MIX-1101. Stream 1146 is generated when the effluent stream 1147 of the stabilizer undergoes processing in process unit X-1101. In particular, the process unit X-1101 can be a separate device, such as a device comprising a membrane or an adsorber. The separation unit can remove carbon dioxide by means of a flow 1148A, thereby producing a stream 1146 having a lower amount of carbon dioxide than the amount of carbon dioxide present in the stabilizer effluent stream 1147. Stream 1146 can then be mixed with feed stream 1107 in MIX-1101A to form stream 1149. Stream 1149 is fed to adsorber system 1110. Stream 1142 is an adsorber effluent stream containing high levels of C1 and C2 components and low C3 component residues. Stream 1142 undergoes processing by means of an additional process unit (compressor K-1102) to produce a stream 1167 having elevated temperatures and pressures. Stream 1143 is an adsorber bottoms stream containing a high content of C3+ components and low C1 and C2 component residues. Stream 1143 is in additional process units and streams (K-1100, 1156, MIX-1102, 1192, E-1103, 1104, V-1101, 1103, K-1101, 1112, E-1104, 1157, 1162, V-1100) Processing is performed in 1, 1102, 1161, K-1103, P-1101, P-1100, 1101, E-1102, 1151, 1106, and 1105). Finally, streams 1105, 1106, and 1103 are mixed in MIX-1100 to form stream 1163, which is fed to stabilizer 1120. A stabilizer bottom stream 1148 enriched in C3+ components and a stabilizer effluent stream 1147 are produced, which is recycled to the adsorber system 1110 after treatment in X-1101. Process units E-1103, E-1104, E-1102 illustrate the heat exchanger and allow for temperature variations in the process. Process units K-1100, K-1101, K-1102, K-1103, and K-1104 illustrate the compressor and allow for pressure variations in the process. Process units V-1100 and V-1101 can be used to remove water from the home process. The process units P-1100 and P-1101 represent pumps. Process units MIX-1100 and MIX-1101 represent mixing valves and/or mixing vessels for combining a plurality of streams. The stream numbers in Fig. 10 correspond to the stream numbers in Table 10.
The process unit X-1101 in the simulation was used to carry out the carbon dioxide removal process, as evident from the composition of streams 1147, 1148A and 1146 summarized in Table 11 below. Instance 6 - With emission recycling NGL Case study of recycling process
The following example illustrates a simulation case study conducted on the flow chart illustrated in FIG. Table 12 illustrates the process conditions and the composition of the various flow streams in the process. In Figure 12, feed stream 1211 may optionally be compressed in compressor K-1204 to form stream 1207, which may then be combined with the effluent from the stabilizer to recycle stream 1247 and stream 1295 in MIX-1201. Mix to form a mixed stream 1249. Stream 1249 is fed into adsorber system 1210. Stream 1242 is an adsorber effluent stream containing high levels of C1 and C2 components and low C3 component residues. Stream 1242 undergoes processing by means of an additional process unit (compressor K-1202) to produce a stream 1267 having elevated temperatures and pressures. Stream 1291 is a bottom stream of adsorber containing a high content of C3+ components and low C1 and C2 component residues. Stream 1290 is the discharge stream produced after the adsorption step during the adsorption process and concurrent with the feed. In some embodiments, the exhaust stream 1290 can be generated after all of the one or more equalization steps are completed. In some embodiments, the exhaust stream 1290 can be generated before or between the equalization steps. The one or more equalization steps assist in separating non-selective particles (i.e., feed gas particles that fill the void spaces in the adsorbent) from the feed stream in contact with the adsorbent. This (equal) equalization step can further aid in the initial decompression of the adsorbent. During the initial pressurization, non-selective particles can be removed from the adsorber while retaining the selective particles in the adsorber. This prevents the non-selective particle dilution present in the initial feed stream from subsequently separating into selective particles of adsorber effluent stream 1242 and adsorber bottom stream 1291. A single equilibrium can reduce the content of non-selective particles by half. Two equalizations can reduce the content of non-selective particles by a further one third (in addition to the reduction from the first equilibrium). Three equalizations can reduce the content of non-selective particles by a further quarter (except for the reduction from the first and second equilibriums). Therefore, the decrease in non-selective particles decreases with the number of equalizations performed. Thus, while equalization may reduce some of the non-selective particles in the adsorber, in some embodiments, some of the non-selective particles may remain in the voids of the adsorbent in the adsorber. Lower levels of non-selective particles in the adsorber can facilitate further concentration of the adsorber bottoms stream having the C3+ component. Stream 1290 from unit 1210 can be compressed in compressor K-1205 and fed to MIX-1201 where it can be combined with feed stream 1207 and stabilizer effluent stream 1247 to form mixed adsorbent feed stream 1249. The adsorber bottom stream 1291 is in additional process units and streams (K-1200, 1250, MIX-1202, 1292, E-1203, 1204, K-1201, 1212, E-1204, 1257, V-1200, 1202, 12161, Processing is experienced in 1261, K-1203, 1201, P-1201, E-1202, 1251, V-1201, 1262, P-1200, 12162, 1203, 1206, and 1205). Finally, streams 1205, 1206, and 1203 are mixed in MIX-1200 to form stream 1263 that is fed to stabilizer 1220. A stabilizer bottoms stream 1248 enriched in C3+ components and a stabilizer effluent stream 1247 can be formed, and the stabilizer effluent stream 1247 can be recycled to the absorbent system 1210. Process units E-1203, E-1204, and E-1202 illustrate the heat exchanger and allow for temperature variations in the process. Process units K-1200, K-1201, K-1202, K-1203, K-1204, and K-1205 depict the compressor and allow for pressure variations in the process. Process unit V-1200 and V-1201 are three-phase separators, in which the bottom stream (12161 and 12162) separates the liquid water, the intermediate stream (1261 and 1262) separates the organic compounds in the liquid phase and the top stream (1202 and 1203) separates. An organic compound in the vapor phase. Process units P-1200 and P-1201 represent pumps. Process units MIX-1200, MIX-1201, and MIX-1202 represent mixing valves and/or mixing vessels for combining a plurality of streams. The stream numbers in Fig. 12 correspond to the stream numbers in Table 12. Instance 7 - Comparative example of the present invention
Figure 13 is a graph comparing C3+ recovery, horsepower and coldest process temperatures of prior art direct refrigeration and IPOR techniques with the inventive techniques of the present invention. As illustrated in Figure 13, the present technology achieves significantly higher C3+ recovery than direct refrigeration technology while operating at significantly higher temperatures than IPOR technology. The terms "a", "an", and "the" are used in the context of the materials and methods discussed herein (particularly in the context of the claims below), unless otherwise indicated herein. Similar indicators should be interpreted to cover both singular and plural. The range of values recited herein is intended to be a shorthand method of individually referring to each individual value in the range, and each individual value is generally incorporated into the specification as if individually recited herein. in. All methods set forth herein can be carried out in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by the context. The use of any and all examples or illustrative language (such as " Nothing in this specification should be construed as indicating that any non-claimed element is essential to the practice of the disclosed materials and methods. References throughout the specification to "one embodiment", "an embodiment", "an embodiment", "one or more embodiments" or "an embodiment" Features, structures, materials or characteristics are included in at least one embodiment of the present disclosure. Thus, phrases appearing in various places throughout the specification are, for example, "in one or more embodiments", "in some embodiments", "in some embodiments", "in one embodiment" Or "in an embodiment" does not necessarily mean the same embodiment of the present disclosure. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments. Although the embodiments disclosed herein have been described with reference to the specific embodiments, it is understood that these embodiments are merely illustrative of the principles and applications of the present disclosure. It will be apparent to those skilled in the art that various modifications and changes can be made in the method and apparatus of the present disclosure without departing from the spirit and scope of the disclosure. Accordingly, the present disclosure is intended to cover the modifications and modifications In addition, the term "or" is intended to mean an inclusive "or" rather than an exclusive "or". When the term "about" or "approximately" is used herein, it is intended to mean that the nominal value presented is within ±10%.
100‧‧‧製程
100B‧‧‧製程
105‧‧‧流線、流
105B‧‧‧流線、流
110‧‧‧壓縮機
110B‧‧‧壓縮機
115‧‧‧流線、流
115B‧‧‧流線、流、進料流
120‧‧‧吸附器
120B‧‧‧吸附器
125‧‧‧吸附器底部流、吸附器之底部體積流、流
125B‧‧‧吸附器底部流、吸附器之底部體積流、流
130‧‧‧壓縮機
130B‧‧‧壓縮機
135‧‧‧吸附器流出物流、吸附器之流出物體積流、流
135B‧‧‧吸附器流出物流、吸附器之流出物體積流、流
140‧‧‧穩定器
140B‧‧‧穩定器
145‧‧‧體積流、流
145B‧‧‧體積流、流
155‧‧‧流
155B‧‧‧流
165‧‧‧可選再循環流、再循環流、流
165B‧‧‧可選再循環流、再循環流、流
200‧‧‧示意圖
300‧‧‧製程
305‧‧‧流線、初始進料流
310‧‧‧吸附器
315‧‧‧流線、流
320‧‧‧壓縮機
325‧‧‧流
330‧‧‧穩定器
335‧‧‧流
345‧‧‧吸附器之底部體積流、底部流、流
355‧‧‧吸附器流出物流、流出物流、流
365‧‧‧體積流
400‧‧‧示意圖
500‧‧‧製程
500B‧‧‧製程
505‧‧‧流
505B‧‧‧流、進料流
510‧‧‧壓縮機
510B‧‧‧壓縮機
515‧‧‧流
515B‧‧‧流、進料流
520‧‧‧吸附器
520B‧‧‧吸附器
525‧‧‧底部流、流
525B‧‧‧底部流、流
530‧‧‧壓縮機
530B‧‧‧壓縮機
535‧‧‧流出物流
535B‧‧‧流出物流
540‧‧‧三相分離器
540B‧‧‧三相分離器
545‧‧‧流、濃縮流
545B‧‧‧流、濃縮流
550‧‧‧穩定器
550B‧‧‧穩定器
555‧‧‧底部流
555B‧‧‧底部流
565‧‧‧中間流
565B‧‧‧中間流
575‧‧‧流出物流
575B‧‧‧流出物流
585‧‧‧穩定器底部流
585B‧‧‧穩定器底部流
595‧‧‧流出物流
595B‧‧‧流出物流、流
600‧‧‧製程
605‧‧‧流
610‧‧‧壓縮機
615‧‧‧初始流體體積流、流
620‧‧‧吸附器
625‧‧‧底部流、流
630‧‧‧壓縮機
635‧‧‧流出物流
640‧‧‧穩定器
645‧‧‧流
650‧‧‧分離裝置
655‧‧‧穩定器底部流
665‧‧‧流出物流
675‧‧‧流
685‧‧‧流
700‧‧‧製程
710‧‧‧吸附劑
720‧‧‧流
730‧‧‧流
750‧‧‧流
760‧‧‧流
800‧‧‧製程流程圖
804‧‧‧流
810‧‧‧吸附器系統
811‧‧‧進料流
812‧‧‧流
820‧‧‧穩定器
842‧‧‧流、吸附器流出物流
843‧‧‧流、吸附器底部流
847‧‧‧穩定器流出物流
848‧‧‧穩定器底部流
849‧‧‧流、穩定器進料流
851‧‧‧吸附器底部流
856‧‧‧流
857‧‧‧流
867‧‧‧流
900‧‧‧製程流程圖
901‧‧‧流
902‧‧‧流
903‧‧‧流
904‧‧‧流
910‧‧‧吸附器系統
911‧‧‧進料流
912‧‧‧流
920‧‧‧穩定器
942‧‧‧流、吸附器流出物流
943‧‧‧流、吸附器底部流
947‧‧‧再循環流、穩定器流出物流
948‧‧‧穩定器底部流
949‧‧‧流、吸附器進料流
956‧‧‧流
957‧‧‧流
961‧‧‧流
962‧‧‧流
963‧‧‧流、穩定器進料流
967‧‧‧流
1000‧‧‧製程流程圖
1001‧‧‧流
1002‧‧‧流
1003‧‧‧流
1004‧‧‧流
1005‧‧‧流
1006‧‧‧流
1007‧‧‧流、進料流
1010‧‧‧吸附器系統、吸收劑系統
1011‧‧‧進料流
1012‧‧‧流
1020‧‧‧穩定器
1042‧‧‧流、吸附器流出物流
1043‧‧‧流、吸附器底部流
1047‧‧‧再循環流、穩定器流出物流、流
1048‧‧‧穩定器底部流
1049‧‧‧混合流、流、吸附器進料流
1051‧‧‧流、V-1001進料流
1056‧‧‧流
1057‧‧‧流、V-1000進料流
1061‧‧‧中間流、流、V-1000中間流
1062‧‧‧中間流、流、V-1001中間流
1063‧‧‧流、穩定器進料流
1067‧‧‧流
10161‧‧‧底部流、流、V-1000底部流
10162‧‧‧底部流、流、V-1001底部流
1100‧‧‧製程流程圖
1101‧‧‧流
1102‧‧‧流
1103‧‧‧流
1104‧‧‧流
1105‧‧‧流
1106‧‧‧流
1107‧‧‧進料流、流
1110‧‧‧吸附器系統
1111‧‧‧進料流
1112‧‧‧流
1120‧‧‧穩定器
1142‧‧‧流、吸附器流出物流
1143‧‧‧流、吸附器底部流
1146‧‧‧流、X-1101輸出流
1147‧‧‧穩定器之流出物流、穩定器流出物流、流、X-1101進料流
1148‧‧‧穩定器底部流
1148A‧‧‧流、X-1101底部流
1149‧‧‧流、吸附器進料流
1151‧‧‧流
1156‧‧‧流
1157‧‧‧流
1161‧‧‧流
1162‧‧‧流
1163‧‧‧流、穩定器進料流
1167‧‧‧流
1192‧‧‧流
1200‧‧‧製程流程圖
1201‧‧‧流
1202‧‧‧頂部流、流
1203‧‧‧頂部流、流
1204‧‧‧流
1205‧‧‧流
1206‧‧‧流
1207‧‧‧進料流、流
1210‧‧‧吸附器系統、單元、吸收劑系統
1211‧‧‧進料流
1212‧‧‧流
1220‧‧‧穩定器
1242‧‧‧吸附器流出物流、流
1247‧‧‧再循環流、穩定器流出物流
1248‧‧‧穩定器底部流
1249‧‧‧混合流、流、混合吸附進料流、吸附器進料流
1250‧‧‧流
1251‧‧‧流
1257‧‧‧流
1261‧‧‧中間流、流
1262‧‧‧中間流、流
1263‧‧‧流、穩定器進料流
1267‧‧‧流
1290‧‧‧排放流、流
1291‧‧‧吸附器底部流、流
1292‧‧‧流
1295‧‧‧流
12161‧‧‧底部流、流
12162‧‧‧底部流、流
C1‧‧‧第一濃度
C2‧‧‧第二濃度
C3‧‧‧第三濃度
C1-A‧‧‧濃度、第一濃度
C1-AB‧‧‧濃度、第一濃度
C2-A‧‧‧濃度
C2-AB‧‧‧濃度
C3-A‧‧‧濃度
C3-AB‧‧‧濃度
C1-B‧‧‧第一濃度
C2-B‧‧‧第二濃度、濃度
C3-B‧‧‧濃度
C4-B‧‧‧濃度
C5-B‧‧‧第五濃度
E-802‧‧‧製程單元、熱交換器
E-803‧‧‧製程單元、熱交換器
E-804‧‧‧製程單元、熱交換器
E-902‧‧‧製程單元、熱交換器
E-903‧‧‧製程單元、熱交換器
E-904‧‧‧製程單元、熱交換器
E-1002‧‧‧製程單元、熱交換器
E-1003‧‧‧製程單元、熱交換器
E-1004‧‧‧製程單元、熱交換器
E-1102‧‧‧製程單元、熱交換器
E-1103‧‧‧製程單元、熱交換器
E-1104‧‧‧製程單元、熱交換器
E-1202‧‧‧製程單元、熱交換器
E-1203‧‧‧製程單元、熱交換器
E-1204‧‧‧製程單元、熱交換器
K-800‧‧‧製程單元、壓縮機
K-801‧‧‧製程單元、壓縮機
K-802‧‧‧製程單元、壓縮機
K-900‧‧‧製程單元、壓縮機
K-901‧‧‧製程單元、壓縮機
K-902‧‧‧製程單元、壓縮機
K-903‧‧‧製程單元、壓縮機
K-1000‧‧‧製程單元、壓縮機
K-1001‧‧‧製程單元、壓縮機
K-1002‧‧‧製程單元、壓縮機
K-1003‧‧‧製程單元、壓縮機
K-1004‧‧‧製程單元、壓縮機
K-1100‧‧‧製程單元、壓縮機
K-1101‧‧‧製程單元、壓縮機
K-1102‧‧‧製程單元、壓縮機
K-1103‧‧‧製程單元、壓縮機
K-1104‧‧‧製程單元、壓縮機
K-1200‧‧‧製程單元、壓縮機
K-1201‧‧‧製程單元、壓縮機
K-1202‧‧‧製程單元、壓縮機
K-1203‧‧‧製程單元、壓縮機
K-1204‧‧‧製程單元、壓縮機
K-1205‧‧‧製程單元、壓縮機
MIX-801‧‧‧混合閥及/或混合容器
MIX-900‧‧‧混合閥及/或混合容器
MIX-1000‧‧‧製程單元、混合閥及/或混合容器
MIX-1001‧‧‧製程單元、混合閥及/或混合容器
MIX-1100‧‧‧製程單元、混合閥及/或混合容器
MIX-1101‧‧‧製程單元、混合閥及/或混合容器
MIX-1102‧‧‧製程單元
MIX-1200‧‧‧製程單元、混合閥及/或混合容器
MIX-1201‧‧‧製程單元、混合閥及/或混合容器
MIX-1202‧‧‧製程單元、混合閥及/或混合容器
P-1000‧‧‧製程單元、幫浦
P-1001‧‧‧製程單元、幫浦
P-1100‧‧‧製程單元、幫浦
P-1101‧‧‧製程單元、幫浦
P-1200‧‧‧製程單元、幫浦
P-1201‧‧‧製程單元、幫浦
V-900‧‧‧製程單元
V-901‧‧‧製程單元
V-1000‧‧‧製程單元、三相分離器
V-1001‧‧‧製程單元、三相分離器
V-1100‧‧‧製程單元
V-1101‧‧‧製程單元
V-1200‧‧‧製程單元、三相分離器
V-1201‧‧‧製程單元、三相分離器
X-1101‧‧‧製程單元100‧‧‧Process
100B‧‧‧Process
105‧‧‧ Streamline, flow
105B‧‧‧Streamline, flow
110‧‧‧Compressor
110B‧‧‧Compressor
115‧‧‧Streamline, flow
115B‧‧‧Streamlines, streams, feed streams
120‧‧‧Adsorber
120B‧‧‧Adsorber
125‧‧‧At the bottom of the adsorber, the bottom volume flow of the adsorber, the flow
125B‧‧‧ bottom flow of adsorber, bottom volume flow, flow of adsorber
130‧‧‧Compressor
130B‧‧‧Compressor
135‧‧‧Adsorber effluent stream, effluent effluent volume flow, flow
135B‧‧‧Adsorber effluent stream, effluent effluent volume flow, flow
140‧‧‧ Stabilizer
140B‧‧‧stabilizer
145‧‧‧ volume flow, flow
145B‧‧‧ volume flow, flow
155‧‧‧ flow
155B‧‧‧ flow
165‧‧‧Optional recirculation, recirculation, flow
165B‧‧‧Optional recirculation, recirculation, flow
200‧‧‧ Schematic
300‧‧‧ Process
305‧‧‧Streamline, initial feed stream
310‧‧‧Adsorber
315‧‧‧ Streamline, flow
320‧‧‧Compressor
325‧‧‧ flow
330‧‧‧ Stabilizer
335‧‧‧ flow
345‧‧‧ bottom volume flow, bottom flow, flow
355‧‧‧Adsorber effluent, effluent, flow
365‧‧‧ volume flow
400‧‧‧ Schematic
500‧‧‧Process
500B‧‧‧Process
505‧‧‧ flow
505B‧‧‧Flow, feed stream
510‧‧‧Compressor
510B‧‧‧Compressor
515‧‧‧ flow
515B‧‧‧Flow, feed stream
520‧‧‧Adsorber
520B‧‧‧Adsorber
525‧‧‧ bottom flow, flow
525B‧‧‧Bottom flow, flow
530‧‧‧Compressor
530B‧‧‧Compressor
535‧‧‧Outflow logistics
535B‧‧‧ outflow logistics
540‧‧‧Three-phase separator
540B‧‧‧Three-phase separator
545‧‧‧flow, concentrated flow
545B‧‧‧flow, concentrated flow
550‧‧‧ Stabilizer
550B‧‧‧ Stabilizer
555‧‧‧ bottom stream
555B‧‧‧ bottom stream
565‧‧‧Intermediate flow
565B‧‧‧Intermediate flow
575‧‧‧Outflow logistics
575B‧‧‧ outflow logistics
585‧‧‧Stabilizer bottom flow
585B‧‧‧Stabilizer bottom flow
595‧‧‧Outflow logistics
595B‧‧‧ outflow logistics, flow
600‧‧‧Process
605‧‧‧ flow
610‧‧‧Compressor
615‧‧‧Initial fluid volume flow, flow
620‧‧‧Adsorber
625‧‧‧ bottom flow, flow
630‧‧‧Compressor
635‧‧‧Outflow logistics
640‧‧‧ Stabilizer
645‧‧‧ flow
650‧‧‧Separation device
655‧‧‧Stabilizer bottom flow
665‧‧‧Outflow logistics
675‧‧‧ flow
685‧‧‧ flow
700‧‧‧Process
710‧‧‧ adsorbent
720‧‧‧ flow
730‧‧‧ flow
750‧‧ ‧ flow
760‧‧‧ flow
800‧‧‧Process flow chart
804‧‧‧ flow
810‧‧‧Adsorber System
811‧‧‧feed stream
812‧‧‧ flow
820‧‧‧ Stabilizer
842‧‧‧Flower, adsorber effluent
843‧‧‧ Flow, adsorber bottom flow
847‧‧‧Stabilizer outflow logistics
848‧‧‧Stabilizer bottom flow
849‧‧‧Flower, stabilizer feed stream
851‧‧‧Adsorber bottom flow
856‧‧‧ flow
857‧‧‧ flow
867‧‧‧ flow
900‧‧‧Process flow chart
901‧‧‧ flow
902‧‧‧ flow
903‧‧‧ flow
904‧‧‧ flow
910‧‧‧Adsorber System
911‧‧‧ feed stream
912‧‧‧ flow
920‧‧‧ Stabilizer
942‧‧‧Flower, adsorber effluent
943‧‧‧Flow, adsorber bottom flow
947‧‧‧Recycling flow, stabilizer effluent
948‧‧‧Stabilizer bottom flow
949‧‧‧Flow, adsorber feed stream
956‧‧‧ flow
957‧‧‧ flow
961‧‧‧ flow
962‧‧‧ flow
963‧‧‧Flower, stabilizer feed stream
967‧‧‧ flow
1000‧‧‧Process flow chart
1001‧‧‧ flow
1002‧‧‧ flow
1003‧‧‧ flow
1004‧‧‧ flow
1005‧‧‧ flow
1006‧‧‧ flow
1007‧‧‧Flow, feed stream
1010‧‧‧Adsorber system, absorbent system
1011‧‧‧ Feed stream
1012‧‧‧ flow
1020‧‧‧ Stabilizer
1042‧‧‧Flower, adsorber effluent
1043‧‧‧Flow, adsorber bottom flow
1047‧‧‧Recycling flow, stabilizer effluent, flow
1048‧‧‧Stabilizer bottom flow
1049‧‧‧ Mixed flow, flow, adsorber feed flow
1051‧‧‧Flow, V-1001 feed stream
1056‧‧‧ flow
1057‧‧‧Flow, V-1000 feed stream
1061‧‧‧Intermediate flow, flow, V-1000 intermediate flow
1062‧‧‧Intermediate flow, flow, V-1001 intermediate flow
1063‧‧‧Flower, stabilizer feed stream
1067‧‧‧ flow
10161‧‧‧Bottom flow, flow, V-1000 bottom flow
10162‧‧‧Bottom flow, flow, V-1001 bottom flow
1100‧‧‧Process flow chart
1101‧‧‧ flow
1102‧‧‧ flow
1103‧‧‧ flow
1104‧‧‧ stream
1105‧‧‧ flow
1106‧‧‧ flow
1107‧‧‧feed stream, flow
1110‧‧‧Adsorber System
1111‧‧‧ Feed stream
1112‧‧‧ flow
1120‧‧‧ Stabilizer
1142‧‧‧Flower, adsorber effluent
1143‧‧‧ Flow, adsorber bottom flow
1146‧‧‧Stream, X-1101 output stream
1147‧‧‧Stabilizer effluent stream, stabilizer effluent stream, stream, X-1101 feed stream
1148‧‧‧Stabilizer bottom flow
1148A‧‧‧ flow, X-1101 bottom flow
1149‧‧‧Flow, adsorber feed stream
1151‧‧‧ flow
1156‧‧‧ flow
1157‧‧‧ flow
1161‧‧‧ flow
1162‧‧‧ flow
1163‧‧‧Flower, stabilizer feed stream
1167‧‧‧ flow
1192‧‧‧ flow
1200‧‧‧Process flow chart
1201‧‧‧ flow
1202‧‧‧top flow, flow
1203‧‧‧top flow, flow
1204‧‧‧ flow
1205‧‧‧ flow
1206‧‧‧ flow
1207‧‧‧feed stream, flow
1210‧‧‧Adsorber system, unit, absorbent system
1211‧‧‧ Feed stream
1212‧‧‧ flow
1220‧‧‧ Stabilizer
1242‧‧‧Adsorber outflow logistics, flow
1247‧‧‧Recycling flow, stabilizer effluent
1248‧‧‧Stabilizer bottom flow
1249‧‧‧ Mixed flow, flow, mixed adsorption feed stream, adsorber feed stream
1250‧‧‧ flow
1251‧‧‧ flow
1257‧‧‧ flow
1261‧‧‧Intermediate flow, flow
1262‧‧‧Intermediate flow, flow
1263‧‧‧Flower, stabilizer feed stream
1267‧‧‧ flow
1290‧‧‧Drainage, flow
1291‧‧‧At the bottom of the adsorber, flow
1292‧‧‧ flow
1295‧‧‧ flow
12161‧‧‧Bottom flow, flow
12162‧‧‧Bottom flow, flow
C1‧‧‧first concentration
C2‧‧‧second concentration
C3‧‧‧ third concentration
C1-A‧‧‧ concentration, first concentration
C1-AB‧‧‧ concentration, first concentration
C2-A‧‧‧ concentration
C2-AB‧‧‧ concentration
C3-A‧‧‧ concentration
C3-AB‧‧‧ concentration
C1-B‧‧‧first concentration
C2-B‧‧‧Second concentration, concentration
C3-B‧‧‧ concentration
C4-B‧‧‧ concentration
C5-B‧‧‧ fifth concentration
E-802‧‧‧Processing unit, heat exchanger
E-803‧‧‧Processing unit, heat exchanger
E-804‧‧‧Processing unit, heat exchanger
E-902‧‧‧Processing unit, heat exchanger
E-903‧‧‧Processing unit, heat exchanger
E-904‧‧‧Processing unit, heat exchanger
E-1002‧‧‧Processing unit, heat exchanger
E-1003‧‧‧Processing unit, heat exchanger
E-1004‧‧‧Processing unit, heat exchanger
E-1102‧‧‧Processing unit, heat exchanger
E-1103‧‧‧Processing unit, heat exchanger
E-1104‧‧‧Processing unit, heat exchanger
E-1202‧‧‧Processing unit, heat exchanger
E-1203‧‧‧Processing unit, heat exchanger
E-1204‧‧‧Processing unit, heat exchanger
K-800‧‧‧Processing unit, compressor
K-801‧‧‧Processing unit, compressor
K-802‧‧‧Processing unit, compressor
K-900‧‧‧Processing unit, compressor
K-901‧‧‧Processing unit, compressor
K-902‧‧‧Processing unit, compressor
K-903‧‧‧Processing unit, compressor
K-1000‧‧‧Processing unit, compressor
K-1001‧‧‧Processing unit, compressor
K-1002‧‧‧Processing unit, compressor
K-1003‧‧‧Processing unit, compressor
K-1004‧‧‧Processing unit, compressor
K-1100‧‧‧Processing unit, compressor
K-1101‧‧‧Processing unit, compressor
K-1102‧‧‧Processing unit, compressor
K-1103‧‧‧Processing unit, compressor
K-1104‧‧‧Processing unit, compressor
K-1200‧‧‧Processing unit, compressor
K-1201‧‧‧Processing unit, compressor
K-1202‧‧‧Processing unit, compressor
K-1203‧‧‧Processing unit, compressor
K-1204‧‧‧Processing unit, compressor
K-1205‧‧‧Processing unit, compressor
MIX-801‧‧‧ Mixing valve and / or mixing container
MIX-900‧‧‧Mixed valve and / or mixing container
MIX-1000‧‧‧Processing unit, mixing valve and / or mixing container
MIX-1001‧‧‧Processing unit, mixing valve and / or mixing container
MIX-1100‧‧‧Processing unit, mixing valve and / or mixing container
MIX-1101‧‧‧Processing unit, mixing valve and / or mixing container
MIX-1102‧‧‧Processing Unit
MIX-1200‧‧‧Processing unit, mixing valve and / or mixing container
MIX-1201‧‧‧Processing unit, mixing valve and / or mixing container
MIX-1202‧‧‧Processing unit, mixing valve and / or mixing container
P-1000‧‧‧Processing unit, pump
P-1001‧‧‧Processing unit, pump
P-1100‧‧‧Processing unit, pump
P-1101‧‧‧Processing unit, pump
P-1200‧‧‧Processing unit, pump
P-1201‧‧‧Processing unit, pump
V-900‧‧‧Processing Unit
V-901‧‧‧Processing Unit
V-1000‧‧‧Processing unit, three-phase separator
V-1001‧‧‧Processing unit, three-phase separator
V-1100‧‧‧Processing Unit
V-1101‧‧‧Processing Unit
V-1200‧‧‧Processing unit, three-phase separator
V-1201‧‧‧Processing unit, three-phase separator
X-1101‧‧‧Processing Unit
在慮及以下詳細描述結合隨附圖式之後,本揭示內容之以上及其他特徵、其性質及各種優點將變得更加顯而易見,其中: 圖1A圖解說明根據實施例之用於自具有低C3+組份濃度之流回收NGL之製程之簡化圖。 圖1B圖解說明根據實施例之用於自具有低C3+組份濃度之流回收NGL之製程之簡化圖。 圖2繪示根據圖1A及1B之簡化圖之用於回收NGL之製程之示意圖。 圖3圖解說明用於自富含C3+組份之流回收NGL之製程之簡化圖。 圖4繪示根據圖3之簡化圖之用於回收NGL之製程之示意圖。 圖5A繪示根據實施例之用於自具有水之流回收NGL之製程之簡化圖。 圖5B繪示根據實施例之用於自受水污染之初始流體體積回收NGL之製程之簡化圖。 圖6繪示用於自具有二氧化碳之流回收NGL之製程之簡化圖。 圖7繪示根據實施例之用於處理流體體積之製程之簡化圖。 圖8繪示實例1之案例研究1之製程流程圖800。 圖9繪示實例2及3之案例研究2及3之製程流程圖900。 圖10繪示實例4之案例研究4之製程流程圖1000。 圖11繪示實例5之案例研究5之製程流程圖1100。 圖12繪示實例6之案例研究6之製程流程圖1200。 圖13繪示比較現有直接致冷及IPOR技術與根據實施例之本發明技術之C3+回收、馬力及最低製程溫度之圖。The above and other features of the present disclosure, its nature, and various advantages will become more apparent from the aspects of the <RTIgt; A simplified diagram of the process for recovering NGL from a concentration stream. FIG. 1B illustrates a simplified diagram of a process for recovering NGL from a stream having a low C3+ component concentration, in accordance with an embodiment. 2 is a schematic diagram of a process for recovering NGL according to the simplified diagrams of FIGS. 1A and 1B. Figure 3 illustrates a simplified diagram of a process for recovering NGL from a stream rich in C3+ components. 4 is a schematic diagram of a process for recovering NGL according to the simplified diagram of FIG. 3. 5A is a simplified diagram of a process for recovering NGL from a stream of water, in accordance with an embodiment. 5B is a simplified diagram of a process for recovering NGL from an initial fluid volume contaminated with water, in accordance with an embodiment. Figure 6 is a simplified diagram of a process for recovering NGL from a stream having carbon dioxide. 7 is a simplified diagram of a process for treating a fluid volume, in accordance with an embodiment. FIG. 8 illustrates a process flow diagram 800 of Case Study 1 of Example 1. 9 depicts a process flow diagram 900 for case studies 2 and 3 of Examples 2 and 3. FIG. 10 illustrates a process flow diagram 1000 of Case Study 4 of Example 4. 11 is a flow chart 1100 of a case study 5 of Example 5. 12 depicts a process flow diagram 1200 of Case Study 6 of Example 6. Figure 13 is a graph comparing C3+ recovery, horsepower and minimum process temperatures of prior art direct refrigeration and IPOR techniques with the inventive techniques of the present invention.