TW201806386A - Image compression method and apparatus - Google Patents

Image compression method and apparatus Download PDF

Info

Publication number
TW201806386A
TW201806386A TW106119982A TW106119982A TW201806386A TW 201806386 A TW201806386 A TW 201806386A TW 106119982 A TW106119982 A TW 106119982A TW 106119982 A TW106119982 A TW 106119982A TW 201806386 A TW201806386 A TW 201806386A
Authority
TW
Taiwan
Prior art keywords
image data
frequency coefficients
encoding
data
frequency
Prior art date
Application number
TW106119982A
Other languages
Chinese (zh)
Other versions
TWI757303B (en
Inventor
丹尼爾 利亞姆 菲茨杰拉德
蒂莫西 西蒙 盧卡斯
Original Assignee
伊門斯機器人控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2016905048A external-priority patent/AU2016905048A0/en
Application filed by 伊門斯機器人控股有限公司 filed Critical 伊門斯機器人控股有限公司
Publication of TW201806386A publication Critical patent/TW201806386A/en
Application granted granted Critical
Publication of TWI757303B publication Critical patent/TWI757303B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/167Position within a video image, e.g. region of interest [ROI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/18Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a set of transform coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Auxiliary Devices For And Details Of Packaging Control (AREA)
  • Image Processing (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

A method of compressing image data from one or more images forming part of digital reality content, the method including obtaining pixel data from the image data, the pixel data representing an array of pixels within the one or more images; determining a position of the array of pixels within the one or more images relative to a defined position, the defined position being at least partially indicative of a point of gaze of the user; and compressing the pixel data at least partially in accordance the determined position so that a degree of compression depends on the determined position of the array of pixels.

Description

影像壓縮方法與設備 Image compression method and device

本發明係關於壓縮或解壓縮影像資料的方法及設備,並且在一個特定範例中用於壓縮或解壓縮影像資料,允許用降低的頻寬並且較少的延遲來傳輸影像資料。 The present invention relates to a method and apparatus for compressing or decompressing image data, and in one particular example for compressing or decompressing image data, allowing image data to be transmitted with reduced bandwidth and less delay.

本說明書中對任何先前公開(或其衍生資訊)或任何已知事項的引用,不是也不應被視為確認或承認或任何形式的建議,即先前申請案(或其衍生資訊)或已知事物,構成本說明書所涉及事業領域的一般常見知識之一部分。 References in this specification to any prior disclosure (or derivative information) or any known matter are not and should not be considered as confirmation or recognition or any form of recommendation, ie prior application (or derivative information) or known matter. The object constitutes part of the general knowledge of the business areas covered by this specification.

在虛擬、增強和混合的實境系統中,通常提供一種可戴式顯示裝置,諸如頭戴式顯示器(HMD,Head Mounted Display),其基於顯示裝置的相對空間位置及/或方位將資訊顯示給佩戴者。這種系統根據關於該顯示裝置姿勢(位置和方位)的資訊產生影像來進行操作,如此隨著該顯示裝置移動,會更新該等影像以反映該顯示裝置的新姿勢。 In virtual, enhanced and hybrid real-world systems, a wearable display device, such as a Head Mounted Display (HMD), is generally provided that displays information based on the relative spatial position and/or orientation of the display device. Wearer. Such a system operates by generating images based on information about the position (position and orientation) of the display device such that as the display device moves, the images are updated to reflect the new pose of the display device.

為了避免暈眩,姿勢資訊的收集和相應影像的建立間之時間差最小化,特別是在該顯示裝置快速移動的情況下,這相當重要。結合產生高解析度影像,使得它們看起來盡可能逼真之需求,這表示需要有相當高階的處理硬體。結果,高端現有系統通常需要具有高頻寬並且低延遲連 接至該顯示裝置的靜態桌上型電腦。因此,像是HTC ViveTM、Oculus RiftTM和Playstation VRTM這些當前的系統在電腦與HMD之間需要有線連接,這並不方便。 In order to avoid dizziness, the time difference between the collection of posture information and the establishment of the corresponding image is minimized, especially in the case of rapid movement of the display device. Combining the production of high-resolution images makes them look as realistic as possible, which means that there is a need for fairly high-level processing hardware. As a result, high-end existing systems typically require a static desktop computer that has a high frequency bandwidth and low latency to connect to the display device. Thus, like the HTC Vive TM, Oculus Rift TM Playstation VR TM and these current systems require a wired connection between the computer and of the HMD, which is not convenient.

雖然有行動解決方案可用,例如Gear VRTM,其併入行動電話來執行HMD本身內的影像處理和顯示,但是處理能力是有限的,意味著可以顯示的內容受到限制,特別是在影像解析度和品質方面。 Although there are actions available solutions, such as Gear VR TM, which is incorporated into the mobile phone to perform image processing and display in the HMD itself, but the processing capacity is limited, meaning content can be displayed is limited, especially in image resolution And quality aspects.

我們都知道,壓縮影像資料可縮小資料體積。這在許多應用當中都非常有用,如減少儲存該影像資料所需的儲存容量,或減少傳輸該影像資料伴隨的頻寬需求。 We all know that compressing image data can reduce the volume of data. This is useful in many applications, such as reducing the storage capacity required to store the image data, or reducing the bandwidth requirements associated with transmitting the image data.

JPEG使用根據離散餘弦轉換(DCT,discrete cosine transform)的破壞性壓縮,此算術運算將視頻源的每個框/區域(frame/field)從空間(2D)域轉換為頻域(也就是轉換域)。鬆散基於人類精神視覺系統的知覺模型拋棄了高頻資訊,即強度上和色調上的急劇轉變。在轉換域中,通過量化來減少資訊。然後量化係數被序列並鬆散地打包至一輸出位元流。 JPEG uses destructive compression according to discrete cosine transform (DCT), which converts each frame/field of a video source from a spatial (2D) domain to a frequency domain (ie, a transform domain). ). The loosely based perception model of the human mental vision system discards high-frequency information, that is, sharp changes in intensity and hue. In the conversion domain, information is reduced by quantification. The quantized coefficients are then sequenced and loosely packed into an output bit stream.

然而,這種方式通常只能完成有限的壓縮量並且需要相當多的處理時間,因此不適合用於低延遲應用,像是虛擬或增強實境、遙現(telepresence)等。 However, this approach typically only achieves a limited amount of compression and requires considerable processing time and is therefore not suitable for low latency applications such as virtual or augmented reality, telepresence, and the like.

在一個廣泛的形式中,本發明的態樣尋求提供一種將形成部分數位實境內容的一或多個影像中之影像資料壓縮之方法,該方法包括:從該影像資料獲得像素資料,該像素料資料代表該等一或多個影像之內一像素陣列;決定該等一或多個影像之內該像素陣列相對於一已定義位置的 一位置,該已定義位置至少部分指示該使用者的一凝視點;以及將該像素資料壓縮來產生壓縮的影像資料,該像素資料以至少部分依照該已決定位置來壓縮,如此壓縮程度取決於該像素陣列的該已決定位置。 In a broad form, aspects of the present invention seek to provide a method of compressing image data in one or more images forming part of a digital reality content, the method comprising: obtaining pixel data from the image data, the pixel The material data represents a pixel array within the one or more images; determining the pixel array within the one or more images relative to a defined position a location, the defined location at least partially indicating a gaze point of the user; and compressing the pixel data to generate compressed image data, the pixel data being compressed at least in part in accordance with the determined position, such that the degree of compression depends The determined position of the pixel array.

在一個具體實施例內,該已定義位置為至少以下之一:一已測量的該使用者凝視點;一預期的該使用者凝視點;偏移一已測量的該使用者凝視點之處;偏移一預期的該使用者凝視點之處;以及至少部分依照指示該使用者凝視點的凝視資料所決定之處,該凝視資料從一凝視追蹤系統來獲得。 In a specific embodiment, the defined location is at least one of: a measured user gaze point; an expected user gaze point; and an offset of the measured user gaze point; Offset to an expected point of gaze of the user; and at least in part determined by gaze data indicative of the user's gaze point, the gaze data is obtained from a gaze tracking system.

在一個具體實施例內,該方法包括壓縮該像素資料,如此該壓縮程度取決於下列之一:根據與該已定義點的一距離;根據相對於該已定義點的一方向;從該已定義點進一步增加;以及提供渲染壓縮。 In a specific embodiment, the method includes compressing the pixel data such that the degree of compression is dependent on one of: a distance from the defined point; a direction relative to the defined point; from the defined Points are further increased; and rendering compression is provided.

在一個具體實施例內,該方法包括:選擇複數個編碼方案之一者;以及使用該選取的編碼方案對該像素資料編碼。 In a specific embodiment, the method includes: selecting one of a plurality of coding schemes; and encoding the pixel data using the selected coding scheme.

在一個具體實施例內,該等編碼方案之每一者提供一個別壓縮程度,並且其中該方法包含至少部分根據至少以下之一者來選擇該編碼方案:一所要的壓縮程度;以及該像素陣列的該位置。 In a specific embodiment, each of the encoding schemes provides a degree of compression, and wherein the method includes selecting the encoding scheme based at least in part on at least one of: a desired degree of compression; and the pixel array The location.

在一個具體實施例內,該方法包括:決定指示所使用該編碼方案的一編碼代碼;以及使用該編碼代碼與已編碼像素資料來產生壓縮影像資料。 In a specific embodiment, the method includes: determining an encoded code indicating the encoding scheme used; and using the encoded code and the encoded pixel data to generate compressed image data.

在一個具體實施例內,該方法包括使用一編碼方案,利用以下來壓縮該像素資料:對該像素資料套用一轉換,以決定指示該像素陣列的頻率分量之一組頻率係數;使用一位元編碼方案選擇性對至少某些該等 頻率分量編碼,藉此產生一組已編碼的頻率係數;以及使用該已編碼的頻率係數產生壓縮的影像資料。 In a specific embodiment, the method includes compressing the pixel data by using a coding scheme: applying a conversion to the pixel data to determine a set of frequency coefficients indicating a frequency component of the pixel array; using a bit element Coding scheme selectivity for at least some of these Frequency component encoding, thereby generating a set of encoded frequency coefficients; and using the encoded frequency coefficients to produce compressed image data.

在一個具體實施例內,該位元編碼方案定義用於編碼該等頻率係數之每一者的位元數,並且其中該等頻率係數進行選擇性編碼,如此至少以下之一者:至少某些該等已編碼頻率係數具有不同位元數;較少位元數用於將對應至較高頻率的頻率係數編碼;逐漸較少的位元數用於將對應至逐漸較高頻率的頻率係數編碼;拋棄至少一頻率係數,如此該組已編碼頻率係數小於該組頻率係數;以及拋棄對應至較高頻率的至少一頻率係數。 In a specific embodiment, the bit coding scheme defines a number of bits for encoding each of the frequency coefficients, and wherein the frequency coefficients are selectively encoded, such that at least one of: at least some of The encoded frequency coefficients have different number of bits; fewer bits are used to encode frequency coefficients corresponding to higher frequencies; progressively fewer bits are used to encode frequency coefficients corresponding to progressively higher frequencies; Discarding at least one frequency coefficient such that the set of encoded frequency coefficients is less than the set of frequency coefficients; and discarding at least one frequency coefficient corresponding to the higher frequency.

在一個具體實施例內,該方法包括:選擇複數個位元編碼方案之一者;以及依照該選取的位元編碼方案對該頻率係數編碼。 In a specific embodiment, the method includes: selecting one of a plurality of bit coding schemes; and encoding the frequency coefficients in accordance with the selected bit coding scheme.

在一個具體實施例內,該等複數個位元編碼方案之每一者選擇性用不同的位元數來編碼不同的頻率係數,以提供不同的壓縮程度。 In a specific embodiment, each of the plurality of bit coding schemes selectively encodes different frequency coefficients with different number of bits to provide different degrees of compression.

在一個具體實施例內,至少部分根據至少以下之一來選擇該位元編碼方案:一所要的壓縮程度;以及該像素陣列的該位置。 In a specific embodiment, the bit encoding scheme is selected based at least in part on at least one of: a desired degree of compression; and the location of the array of pixels.

在一個具體實施例內,該等頻率分量配置在複數個層級內,並且其中每一位元編碼方案定義要用來編碼該等複數個層級中每一者內該等頻率係數的一各別位元數。 In a specific embodiment, the frequency components are arranged in a plurality of levels, and wherein each bit coding scheme defines a respective bit to be used to encode the frequency coefficients in each of the plurality of levels Yuan.

在一個具體實施例內,該陣列為一N x N像素陣列,導致2N-1個頻率分量層級。 In one embodiment, the array is an N x N pixel array resulting in 2 N -1 frequency component levels.

在一個具體實施例內,該方法包括將一比例縮放因數套用到至少某些該等頻率係數,如此編碼已比例縮放的頻率係數,該比例縮放因 數用來減少每一頻率係數的強度,並且其中至少以下之一:將不同的比例縮放因數套用到至少某些頻率係數;將該相同的比例縮放因數套用到每一頻率係數;以及將一不同的比例縮放因數套用到一不同通道內的頻率係數。 In a specific embodiment, the method includes applying a scaling factor to at least some of the frequency coefficients, such that the scaled frequency coefficients are encoded, the scaling factor The number is used to reduce the strength of each frequency coefficient, and at least one of the following: applying different scaling factors to at least some of the frequency coefficients; applying the same scaling factor to each frequency coefficient; and different The scaling factor is applied to the frequency coefficients in a different channel.

在一個具體實施例內,該影像資料定義複數個通道,並且其中該方法包括針對每一通道選擇性編碼頻率係數。 In a specific embodiment, the image data defines a plurality of channels, and wherein the method includes selectively encoding frequency coefficients for each channel.

在一個具體實施例內,該像素資料定義RGB通道,並且其中該方法包括:將該RGB通道轉換成YCbCr通道;以及轉換該等YCbCr通道。 In a specific embodiment, the pixel data defines an RGB channel, and wherein the method includes converting the RGB channel to a YCbCr channel; and converting the YCbCr channels.

在一個具體實施例內,該方法包括至少以下之一:選擇性針對該Y通道比起該等Cb或Cr通道編碼更多頻率係數;選擇性針對該等YCbCr通道同時編碼頻率係數;以及選擇性針對該等CbCr通道編碼頻率係數並使用該Y通道。 In a specific embodiment, the method includes at least one of: selectively encoding more frequency coefficients for the Y channel than the Cb or Cr channels; selectively encoding frequency coefficients for the YCbCr channels simultaneously; and selectively The frequency coefficients are encoded for the CbCr channels and the Y channel is used.

在一個具體實施例內,該轉換為一二維(2-D)離散餘弦轉換。 In one embodiment, the conversion is a two-dimensional (2-D) discrete cosine transform.

在一個具體實施例內,該方法包括利用以下從影像資料獲取像素資料:緩衝對應至該影像的下一個n-1列像素之影像資料;緩衝該下一列像素的下一個n像素之影像資料;從該已緩衝影像資料中獲得下一個nxn像素區塊的像素資料;重複步驟b)和c),直到已經從所有該n列像素中獲得像素資料;以及重複步驟a)至d),直到已經從該影像的每一列像素中獲得像素資料。 In a specific embodiment, the method includes: acquiring pixel data from the image data by buffering image data corresponding to a next n-1 column of pixels of the image; buffering image data of a next n pixels of the next column of pixels; Obtaining pixel data of the next n x n pixel block from the buffered image data; repeating steps b) and c) until pixel data has been obtained from all of the n columns of pixels; and repeating steps a) through d), Until the pixel data has been obtained from each column of pixels of the image.

在一個具體實施例內,根據至少以下之一來選擇n:一選取的位元編碼方案;一所要的壓縮程度;以及該像素陣列的該位置。 In a specific embodiment, n is selected according to at least one of: a selected bit coding scheme; a desired degree of compression; and the location of the pixel array.

在一個具體實施例內,該方法包括:同時選擇編碼頻率係 數;以及至少部分通過並行至序列位元組編碼來產生壓縮的影像資料。 In a specific embodiment, the method includes: simultaneously selecting an encoding frequency system And generating the compressed image data at least in part by parallel to sequential byte encoding.

在一個廣泛的形式中,本發明的態樣尋求提供一種將形成部分數位實境內容的一或多個影像中之已壓縮影像資料解壓縮之方法,該方法包括:獲得已壓縮的影像資料,該已壓縮影像資料代表該等一或多個影像之內一像素陣列,並且至少部分根據該等一或多個影像之內相對於一已定義位置的該像素陣列之一位置來壓縮,該已定義位置至少部分指示該使用者的凝視點;以及至少部分根據該已決定位置來將該已壓縮影像資料解壓縮。 In one broad form, aspects of the present invention seek to provide a method of decompressing compressed image data in one or more images forming part of a digital reality content, the method comprising: obtaining compressed image data, The compressed image data represents an array of pixels within the one or more images and is compressed based, at least in part, on a position of the pixel array relative to a defined position within the one or more images. Defining a location at least partially indicating a gaze point of the user; and decompressing the compressed image data based at least in part on the determined location.

在一個具體實施例內,該已定義位置為至少以下之一:一已測量的該使用者凝視點;一預期的該使用者凝視點;偏移一已測量的該使用者凝視點之處;偏移一預期的該使用者凝視點之處;以及至少部分依照指示該使用者凝視點的凝視資料所決定之處,該凝視資料從一凝視追蹤系統來獲得。 In a specific embodiment, the defined location is at least one of: a measured user gaze point; an expected user gaze point; and an offset of the measured user gaze point; Offset to an expected point of gaze of the user; and at least in part determined by gaze data indicative of the user's gaze point, the gaze data is obtained from a gaze tracking system.

在一個具體實施例內,該方法包括:選擇複數個解碼方案之一者;以及使用該選取的解碼方案對該像素資料解碼。 In a specific embodiment, the method includes: selecting one of a plurality of decoding schemes; and decoding the pixel data using the selected decoding scheme.

在一個具體實施例內,該方法包括至少部分根據至少以下之一來選擇該解碼方案:一所要的壓縮程度;該像素陣列的一位置;以及指示所使用的該編碼方案之一編碼代碼,該編碼代碼由該已壓縮的資料影像來決定。 In a specific embodiment, the method includes selecting the decoding scheme based at least in part on at least one of: a desired degree of compression; a location of the pixel array; and an encoding code indicating one of the encoding schemes used, The coded code is determined by the compressed data image.

在一個具體實施例內,該方法包括使用一解碼方案,利用以下來解壓縮該已壓縮的像素資料:依照其中定義每一已編碼頻率係數內所使用該位元數的一位元編碼方案,從該已壓縮影像資料決定一組已編碼頻 率係數;依照該位元編碼方案來執行該已編碼頻率係數的位元解碼,藉此產生一組頻率係數,其中產生至少一個頻率係數,如此該組已編碼頻率係數小於該組頻率係數;以及對該組頻率係數套用一逆向轉換,來決定代表該等一或多個影像之內一像素陣列的像素資料。 In a specific embodiment, the method includes decompressing the compressed pixel data using a decoding scheme in accordance with a one-bit encoding scheme in which the number of bits used within each encoded frequency coefficient is defined, Determining a set of encoded frequencies from the compressed image data a rate coefficient; performing bit decoding of the encoded frequency coefficients in accordance with the bit encoding scheme, thereby generating a set of frequency coefficients, wherein at least one frequency coefficient is generated, such that the set of encoded frequency coefficients is less than the set of frequency coefficients; A set of inverse coefficients are applied to the set of frequency coefficients to determine pixel data representing a pixel array within the one or more images.

在一個具體實施例內,該位元編碼方案定義用於編碼該等頻率係數每一者的該位元數,該位元編碼方案使用較少的位元數,來編碼對應至較高頻率的頻率係數,並且其中該方法包括產生對應至較高頻域的至少某些該頻率係數。 In a specific embodiment, the bit coding scheme defines the number of bits used to encode each of the frequency coefficients, the bit coding scheme encoding the corresponding higher frequency using fewer bits. a frequency coefficient, and wherein the method includes generating at least some of the frequency coefficients corresponding to a higher frequency domain.

在一個具體實施例內,該方法包括:選擇複數個位元編碼方案之一者;以及依照該選取的位元編碼方案對該已編碼的頻率係數解碼。 In a specific embodiment, the method includes: selecting one of a plurality of bit coding schemes; and decoding the encoded frequency coefficients in accordance with the selected bit coding scheme.

在一個具體實施例內,該等複數個位元編碼方案之每一者選擇性用不同的位元數來編碼不同的頻率係數,以提供一不同的壓縮程度。 In a specific embodiment, each of the plurality of bit coding schemes selectively encodes different frequency coefficients with different number of bits to provide a different degree of compression.

在一個具體實施例內,至少部分根據至少以下之一來選擇該位元編碼方案:一編碼代碼;該位元編碼方案,用來產生該已壓縮的影像資料;以及該像素陣列的該位置。 In a specific embodiment, the bit encoding scheme is selected based at least in part on at least one of: an encoding code; the bit encoding scheme for generating the compressed image material; and the location of the pixel array.

在一個具體實施例內,該等頻率分量配置在複數個層級內,並且其中每一位元編碼方案定義要用來編碼該等複數個層級中每一者內該等頻率係數的一各別位元數。 In a specific embodiment, the frequency components are arranged in a plurality of levels, and wherein each bit coding scheme defines a respective bit to be used to encode the frequency coefficients in each of the plurality of levels Yuan.

在一個具體實施例內,該陣列為一N x N像素陣列,導致2N-1個頻率分量層級。 In one embodiment, the array is an N x N pixel array resulting in 2 N -1 frequency component levels.

在一個具體實施例內,該方法包括將一比例縮放因數套用到至少某些該等頻率係數,如此解碼已比例縮放的已編碼頻率係數,該比例 縮放因數用來增加每一頻率係數的強度,並且其中至少以下之一:將不同的比例縮放因數套用到至少某些已編碼頻率係數;將該相同的比例縮放因數套用到每一已編碼頻率係數;以及將一不同的比例縮放因數套用到一不同通道內的已編碼頻率係數。 In a specific embodiment, the method includes applying a scaling factor to at least some of the frequency coefficients, such that the scaled encoded frequency coefficients are decoded, the ratio The scaling factor is used to increase the strength of each frequency coefficient, and at least one of them: apply different scaling factors to at least some of the encoded frequency coefficients; apply the same scaling factor to each encoded frequency coefficient And applying a different scaling factor to the encoded frequency coefficients in a different channel.

在一個具體實施例內,該影像資料定義複數個通道,並且其中該方法包括針對每一通道選擇性解碼已編碼的頻率係數。 In a specific embodiment, the image material defines a plurality of channels, and wherein the method includes selectively decoding the encoded frequency coefficients for each channel.

在一個具體實施例內,該已壓縮影像資料定義YCbCr通道,並且其中該方法包括:執行該等YCbCr通道的一逆轉換;以及將該等已轉換YCbCr通道轉換成RGB通道。 In one embodiment, the compressed image material defines a YCbCr channel, and wherein the method includes: performing an inverse conversion of the YCbCr channels; and converting the converted YCbCr channels to RGB channels.

在一個具體實施例內,該方法包括至少以下之一:比該Y通道產生更多頻率係數給該Cb或Cr通道;同時解碼該等已編碼YCbCr通道;以及解碼該等CbCr通道,並將該等已編碼CbCr通道與該Y通道轉換成RGB通道。 In a specific embodiment, the method includes at least one of: generating more frequency coefficients to the Cb or Cr channel than the Y channel; simultaneously decoding the encoded YCbCr channels; and decoding the CbCr channels, and The encoded CbCr channel and the Y channel are converted into RGB channels.

在一個具體實施例內,該逆轉換為一逆二維(2-D)離散餘弦轉換。 In a specific embodiment, the inverse transform is an inverse two-dimensional (2-D) discrete cosine transform.

在一個具體實施例內,該方法包括:至少部分通過序列至並行位元組解碼來解碼已壓縮的影像資料;以及同時選擇性解碼頻率係數。 In a specific embodiment, the method includes decoding the compressed image data at least in part by sequence to parallel byte decoding; and simultaneously selectively decoding the frequency coefficients.

在一個具體實施例內,根據至少以下之一來決定所要的壓縮程度:該像素陣列的該位置;用來傳輸該已壓縮影像資料的一通訊連結之傳輸頻寬;用來傳輸該已壓縮影像資料的一通訊連結之傳輸服務品質;一顯示裝置的移動;影像顯示需求;一目標顯示解析度;經處理的一通道;以及錯誤矩陣。 In a specific embodiment, determining a desired degree of compression according to at least one of: a location of the pixel array; a transmission bandwidth of a communication link for transmitting the compressed image data; and transmitting the compressed image The quality of the transmission service of a communication link of the data; the movement of a display device; the image display requirement; the resolution of a target display; the processed one channel; and the error matrix.

在一個具體實施例內,該數位實境為至少以下之一:增強實境;虛擬實境;混合實境;以及遙現。 In a specific embodiment, the digital reality is at least one of: augmented reality; virtual reality; mixed reality; and telepresence.

在一個具體實施例內,該方法用於透過至少以下之一,將來自一計算裝置的該影像資料傳輸至一可穿戴式數位實境頭戴組:一通訊網路;以及一無線通訊連結。 In one embodiment, the method is for transmitting the image data from a computing device to a wearable digital reality headset through at least one of: a communication network; and a wireless communication link.

在一個廣泛的形式中,本發明的態樣尋求提供一種將形成部分數位實境內容的一或多個影像中之影像資料壓縮之設備,該設備包括至少一個電子編碼器處理裝置,該至少一個電子編碼器處理裝置:從該影像資料獲得像素資料,該像素料資料代表該等一或多個影像之內一像素陣列;決定該等一或多個影像之內該像素陣列相對於一已定義位置的一位置,該已定義位置至少部分指示該使用者的一凝視點;以及至少部分依照該已決定的位置將該像素資料壓縮,如此壓縮程度取決於該像素陣列的該已決定位置。 In a broad form, aspects of the present invention seek to provide an apparatus for compressing image data in one or more images forming part of a digital reality content, the apparatus comprising at least one electronic encoder processing device, the at least one An electronic encoder processing device: obtaining pixel data from the image data, the pixel material data representing an array of pixels within the one or more images; determining the pixel array within the one or more images relative to a defined one a location of the location, the defined location at least partially indicating a gaze point of the user; and at least partially compressing the pixel data in accordance with the determined location, such that the degree of compression is dependent on the determined location of the pixel array.

在一個廣泛的形式中,本發明的態樣尋求提供一種將形成部分數位實境內容的一或多個影像中之已壓縮影像資料解壓縮之設備,該設備包括至少一個電子解碼器處理裝置,該至少一個電子解碼器處理裝置:獲得已壓縮的影像資料,該已壓縮影像資料代表該等一或多個影像之內一像素陣列,並且至少部分根據該等一或多個影像之內相對於一已定義位置的該像素陣列之一位置來壓縮,該已定義位置至少部分指示該使用者的凝視點;以及至少部分根據該已決定位置來將該已壓縮影像資料解壓縮。 In a broad form, aspects of the present invention seek to provide an apparatus for decompressing compressed image data in one or more images forming part of a digital reality content, the apparatus comprising at least one electronic decoder processing device, The at least one electronic decoder processing device: obtaining compressed image data, the compressed image data representing an array of pixels within the one or more images, and based at least in part on the one or more images relative to A location of the pixel array of a defined location is compressed, the defined location at least partially indicating the gaze point of the user; and the compressed image data is decompressed based at least in part on the determined location.

在一個廣泛的形式中,本發明的態樣尋求提供一種將代表一或多個影像的影像資料壓縮之方法,該方法包括:從該影像資料獲得像素 資料,該像素料資料代表該等一或多個影像之內一像素陣列;對該像素資料套用一轉換,以決定指示該像素陣列的頻率分量之一組頻率係數;使用一位元編碼方案選擇性編碼至少某些該等頻率係數,藉此產生一組已編碼的頻率係數,其中該位元編碼方案定義用於將該等頻率係數每一者編碼的該位元數,如此該等頻率係數選擇性編碼時:使用不同位元數將至少某些該等已編碼頻率係數編碼;以及拋棄至少一頻率係數,如此該組已編碼頻率係數小於該組頻率係數;以及使用該已編碼的頻率係數產生壓縮的影像資料。 In a broad form, aspects of the present invention seek to provide a method of compressing image data representing one or more images, the method comprising: obtaining pixels from the image data Data, the pixel material data represents a pixel array within the one or more images; a conversion is applied to the pixel data to determine a set of frequency coefficients indicating a frequency component of the pixel array; using a one-bit encoding scheme Encoding at least some of the frequency coefficients, thereby generating a set of encoded frequency coefficients, wherein the bit encoding scheme defines the number of bits used to encode each of the frequency coefficients, such that the frequency coefficients are selected Sexual encoding: encoding at least some of the encoded frequency coefficients using different number of bits; and discarding at least one frequency coefficient such that the set of encoded frequency coefficients is less than the set of frequency coefficients; and using the encoded frequency coefficients to produce compression Image data.

在一個具體實施例內,選擇性編碼該等頻率係數,如此至少以下之一:定義使用一些位元來編碼頻率係數之每一者,與該各別頻率係數之值無關;較少位元數用於將對應至較高頻率的頻率係數編碼;逐漸較少的位元數用於將對應至逐漸較高頻率的頻率係數編碼;拋棄對應至較高頻率的至少一頻率係數。 In a specific embodiment, the frequency coefficients are selectively encoded, such as at least one of the following: defining each of the frequency coefficients to be encoded using a number of bits, independent of the value of the respective frequency coefficients; fewer bits For encoding the frequency coefficients corresponding to the higher frequencies; gradually fewer bits are used to encode the frequency coefficients corresponding to the progressively higher frequencies; and at least one of the frequency coefficients corresponding to the higher frequencies is discarded.

在一個具體實施例內,該方法包括將一比例縮放因數套用到至少某些該等頻率係數,如此編碼已比例縮放的頻率係數,並且其中至少以下之一:將不同的比例縮放因數套用到至少某些頻率係數;將該相同的比例縮放因數套用到每一頻率係數;以及該比例縮放因數用來降低頻率係數每一者的強度。 In a specific embodiment, the method includes applying a scaling factor to at least some of the frequency coefficients, such as encoding the scaled frequency coefficients, and wherein at least one of the following: applying different scaling factors to at least some Some frequency coefficients; the same scaling factor is applied to each frequency coefficient; and the scaling factor is used to reduce the strength of each of the frequency coefficients.

在一個具體實施例內,該方法包括:選擇複數個編碼方案之一者;以及使用該選取的編碼方案對該像素資料編碼。 In a specific embodiment, the method includes: selecting one of a plurality of coding schemes; and encoding the pixel data using the selected coding scheme.

在一個具體實施例內,該等編碼方案之每一者提供一各別壓縮程度,並且其中該方法包含至少部分根據至少以下之一者來選擇該編碼 方案:一所要的壓縮程度;以及該像素陣列的該位置。 In a specific embodiment, each of the encoding schemes provides a respective degree of compression, and wherein the method comprises selecting the encoding based at least in part on at least one of: Solution: The degree of compression required; and the location of the pixel array.

在一個具體實施例內,該方法包括依照至少以下之一將頻率係數選擇性編碼:選擇規則;一所要的壓縮程度;以及該等一或多個影像內該像素陣列的一位置。 In a specific embodiment, the method includes selectively encoding the frequency coefficients in accordance with at least one of: a selection rule; a desired degree of compression; and a location of the array of pixels within the one or more images.

在一個具體實施例內,該方法包括:選擇複數個位元編碼方案之一者;以及依照該選取的位元編碼方案對該頻率係數編碼。 In a specific embodiment, the method includes: selecting one of a plurality of bit coding schemes; and encoding the frequency coefficients in accordance with the selected bit coding scheme.

在一個具體實施例內,該等複數個位元編碼方案之每一者選擇性用不同的位元數來編碼不同的頻率係數,以提供不同的壓縮程度。 In a specific embodiment, each of the plurality of bit coding schemes selectively encodes different frequency coefficients with different number of bits to provide different degrees of compression.

在一個具體實施例內,至少部分根據至少以下之一來選擇該位元編碼方案:選擇規則;一所要的壓縮程度;以及該像素陣列的該位置。 In a specific embodiment, the bit encoding scheme is selected based at least in part on at least one of: a selection rule; a desired degree of compression; and the location of the pixel array.

在一個具體實施例內,該方法包括根據至少以下之一來選擇該位元解碼方案:用來傳輸該已壓縮影像資料的一通訊連結之傳輸頻寬;用來傳輸該已壓縮影像資料的一通訊連結之傳輸服務品質;一顯示裝置的移動;影像顯示需求;一目標顯示解析度;經處理的一通道;該等一或多個影像之內該像素陣列的一位置;該等一或多個影像之內該像素陣列相對於該等一或多個影像的一觀察者凝視點之一位置;以及錯誤矩陣。 In a specific embodiment, the method includes selecting the bit decoding scheme according to at least one of: a transmission bandwidth of a communication link for transmitting the compressed image data; and a transmission of the compressed image data The quality of the communication service of the communication link; the movement of a display device; the image display requirement; the resolution of a target display; the processed one channel; a position of the pixel array within the one or more images; the one or more The position of the pixel array within the image relative to an observer gaze point of the one or more images; and an error matrix.

在一個具體實施例內,該等頻率分量配置在複數個層級內,並且其中每一位元編碼方案定義要用來編碼該等複數個層級中每一者內該等頻率係數的一各別位元數。 In a specific embodiment, the frequency components are arranged in a plurality of levels, and wherein each bit coding scheme defines a respective bit to be used to encode the frequency coefficients in each of the plurality of levels Yuan.

在一個具體實施例內,該陣列為一N x N像素陣列,導致2N-1個頻率分量層級。 In one embodiment, the array is an N x N pixel array resulting in 2 N -1 frequency component levels.

在一個具體實施例內,該方法包括:決定該等一或多個影像 的一觀察者之凝視點;至少部分依照該凝視點將頻率係數選擇性編碼。 In a specific embodiment, the method includes: determining the one or more images The gaze point of an observer; the frequency coefficient is selectively encoded at least in part in accordance with the gaze point.

在一個具體實施例內,該方法包括:決定該凝視點與該等一或多個影像內該像素陣列的一位置間之距離;以及依照該距離將頻率係數選擇性編碼,如此較大距離有較少的頻率係數經過編碼。 In a specific embodiment, the method includes: determining a distance between the gaze point and a position of the pixel array in the one or more images; and selectively encoding the frequency coefficient according to the distance, such that the larger distance has Fewer frequency coefficients are encoded.

在一個具體實施例內,該影像資料定義複數個通道,並且其中該方法包括針對每一通道選擇性編碼頻率係數。 In a specific embodiment, the image data defines a plurality of channels, and wherein the method includes selectively encoding frequency coefficients for each channel.

在一個具體實施例內,該像素資料定義RGB通道,並且其中該方法包括:將該RGB通道轉換成YCbCr通道;以及轉換該等YCbCr通道。 In a specific embodiment, the pixel data defines an RGB channel, and wherein the method includes converting the RGB channel to a YCbCr channel; and converting the YCbCr channels.

在一個具體實施例內,該方法包括至少以下之一:選擇性針對該Y通道而比該等Cb或Cr通道編碼更多頻率係數;選擇性針對該等YCbCr通道同時編碼更多頻率係數;以及通過以下產生該已壓縮影像資料:編碼該等CbCr通道;以及使用該Y通道。 In a specific embodiment, the method includes at least one of: selectively encoding more frequency coefficients for the Y channels than the Cb or Cr channels; selectively encoding more frequency coefficients for the YCbCr channels simultaneously; The compressed image data is generated by encoding the CbCr channels; and using the Y channel.

在一個具體實施例內,該轉換為一二維(2-D)離散餘弦轉換。 In one embodiment, the conversion is a two-dimensional (2-D) discrete cosine transform.

在一個具體實施例內,該方法包括從一視頻饋送當中獲取該像素資料。 In a specific embodiment, the method includes obtaining the pixel data from a video feed.

在一個具體實施例內,該方法包括利用以下從影像資料獲取像素資料:緩衝對應至該影像的下一個n-1列像素之影像資料;緩衝該下一列像素的下一個n像素之影像資料;從該已緩衝影像資料中獲得下一個nxn像素區塊的像素資料;重複步驟b)和c),直到已經從所有該n列像素中獲得像素資料;以及重複步驟a)至d),直到已經從該影像的每一列像素中獲得像素資料。 In a specific embodiment, the method includes: acquiring pixel data from the image data by buffering image data corresponding to the next n -1 column of pixels of the image; and buffering image data of the next n pixels of the next column of pixels; Obtaining pixel data of the next n x n pixel block from the buffered image data; repeating steps b) and c) until pixel data has been obtained from all of the n columns of pixels; and repeating steps a) through d), Until the pixel data has been obtained from each column of pixels of the image.

在一個具體實施例內,根據至少以下之一來選擇n:選擇規則;一選取的位元編碼方案;以及該像素陣列的該位置。 In a specific embodiment, n is selected according to at least one of: a selection rule; a selected bit coding scheme; and the location of the pixel array.

在一個具體實施例內,該方法包括:同時選擇編碼頻率係數;以及至少部分通過並行至序列位元組編碼來產生壓縮的影像資料。 In a specific embodiment, the method includes: simultaneously selecting a coding frequency coefficient; and generating compressed image data at least in part by parallel to sequential byte encoding.

在一個廣泛的形式中,本發明的態樣尋求提供一種將代表一或多個影像的影像資料壓縮之設備,該設備包括至少一個電子編碼器處理裝置,該至少一個電子編碼器處理裝置:從該影像資料獲得像素資料,該像素料資料代表該等一或多個影像之內一像素陣列;對該像素資料套用一轉換,以決定指示該像素陣列的頻率分量之一組頻率係數;使用一位元編碼方案選擇性編碼至少某些該等頻率係數,藉此產生一組已編碼的頻率係數,其中該位元編碼方案定義用於將該等頻率係數編碼的該位元數,並且其中該等頻率係數選擇性編碼時:至少某些該等已編碼頻率係數具有不同位元數;拋棄至少一頻率係數,如此該組已編碼頻率係數小於該組頻率係數;以及使用該已編碼的頻率係數產生已壓縮的影像資料。 In a broad form, aspects of the present invention seek to provide an apparatus for compressing image data representing one or more images, the apparatus comprising at least one electronic encoder processing apparatus, the at least one electronic encoder processing apparatus: Obtaining pixel data, the pixel material data representing a pixel array within the one or more images; applying a conversion to the pixel data to determine a frequency coefficient indicating a frequency component of the pixel array; using one A bit coding scheme selectively encodes at least some of the frequency coefficients, thereby generating a set of encoded frequency coefficients, wherein the bit coding scheme defines the number of bits used to encode the equal frequency coefficients, and wherein When the frequency coefficients are selectively encoded: at least some of the encoded frequency coefficients have different number of bits; discarding at least one frequency coefficient such that the set of encoded frequency coefficients is less than the set of frequency coefficients; and using the encoded frequency coefficients to generate Compressed image data.

在一個具體實施例內,該設備包括:一編碼器輸入緩衝區,用來接收該影像資料;以及一編碼器輸出緩衝區,其中儲存壓縮影像資料。 In one embodiment, the apparatus includes an encoder input buffer for receiving the image data, and an encoder output buffer for storing the compressed image data.

在一個具體實施例內,該設備包括一編碼器輸入緩衝區,該編碼器輸入緩衝區:緩衝對應至該影像的下一個n-1列像素之影像資料;緩衝該下一列像素中下一個n像素的影像資料,允許該至少一個編碼器處理裝置從該已緩衝影像資料中獲取下一個nxn像素區塊的像素資料;重複步驟b),直到已經從所有該n列像素中獲得像素資料;以及重複步驟a)和b),直到已經從該影像的每一列像素中獲得像素資料。 In a specific embodiment, the device includes an encoder input buffer that buffers image data corresponding to the next n -1 column of pixels of the image; buffers the next n of the next column of pixels Image data of the pixel, allowing the at least one encoder processing device to acquire pixel data of the next n x n pixel block from the buffered image data; repeating step b) until pixel data has been obtained from all of the n columns of pixels And repeat steps a) and b) until the pixel data has been obtained from each column of pixels of the image.

在一個具體實施例內,該設備包括一編碼器發射器,發射來自該編碼器輸出緩衝區的該影像資料。 In a specific embodiment, the apparatus includes an encoder transmitter that transmits the image data from the encoder output buffer.

在一個具體實施例內,該至少一個編碼器處理裝置包括:一現場可程式閘陣列;一專用積體電路以及一圖形處理單元。 In a specific embodiment, the at least one encoder processing device comprises: a field programmable gate array; a dedicated integrated circuit and a graphics processing unit.

在一個具體實施例內,該像素資料定義複數個通道,並且其中該設備包括至少每一通道的一各別處理裝置之一者以及一並行處理裝置,用來同時處理每一通道。 In a specific embodiment, the pixel data defines a plurality of channels, and wherein the device includes at least one of a respective processing device of each channel and a parallel processing device for processing each channel simultaneously.

在一個具體實施例內,該像素資料定義RGB通道,並且其中該設備:將該RGB通道轉換成YCbCr通道;以及使用處理裝置將該等YCbCr通道選擇性編碼。 In a specific embodiment, the pixel data defines an RGB channel, and wherein the device: converts the RGB channel to a YCbCr channel; and selectively encodes the YCbCr channels using processing means.

在一個具體實施例內,該像素資料定義RGB通道,並且其中該設備:使用一YCbCr處理裝置,將該等RGB通道轉換成CbCr通道;使用至少一各別處理裝置將該等CbCr通道解碼;以及使用一延遲區塊將該Y通道從該YCbCr處理裝置轉換至一輸出緩衝區。 In a specific embodiment, the pixel data defines an RGB channel, and wherein the device: converts the RGB channels into CbCr channels using a YCbCr processing device; decodes the CbCr channels using at least one respective processing device; The Y channel is converted from the YCbCr processing device to an output buffer using a delay block.

在一個具體實施例內,該設備包括一編碼器,用無線通訊方式與一解碼器通訊,允許影像資料以已壓縮影像資料方式在該編碼器與該解碼器之間轉換。 In one embodiment, the apparatus includes an encoder that communicates with a decoder by wireless communication to allow image data to be converted between the encoder and the decoder in a compressed image format.

在一個具體實施例內,該編碼器為耦合至合適程式編輯的處理系統至少之一及其一部分。 In a specific embodiment, the encoder is at least one of a processing system coupled to a suitable program editor and a portion thereof.

在一個具體實施例內,該解碼器為耦合至一可穿戴顯示裝置至少之一及其一部分。 In a specific embodiment, the decoder is coupled to at least one of a wearable display device and a portion thereof.

在一個具體實施例內,該編碼器和解碼器通訊來交換至少以 下之一:已壓縮的影像資料;指示一顯示裝置移動的移動資料;至少部分用來控制該顯示裝置的控制資料;指示使用者輸入指令的輸入資料;指示一觀察者的凝視點之凝視資料;以及來自與一可穿戴顯示裝置關聯的感應器之感應器資料。 In a specific embodiment, the encoder and the decoder communicate to exchange at least The next one: compressed image data; mobile data indicating a movement of the display device; at least part of control data for controlling the display device; input data indicating a user input instruction; and gaze data indicating an observer's gaze point And sensor data from sensors associated with a wearable display device.

在一個廣泛的形式中,本發明的態樣尋求提供一種將代表一或多個影像的已壓縮影像資料解壓縮之方法,該方法包括:獲取已壓縮的影像資料;依照定義每一已編碼頻率係數內所使用位元數的一位元編碼方案,從該已壓縮影像資料決定一組已編碼頻率係數;依照該位元編碼方案來執行該已編碼頻率係數的位元解碼,藉此產生一組頻率係數,其中產生至少一個頻率係數,如此該組已編碼頻率係數小於該組頻率係數;以及對該組頻率係數套用一逆向轉換,來決定代表該等一或多個影像之內一像素陣列的像素資料。 In a broad form, aspects of the present invention seek to provide a method of decompressing compressed image data representing one or more images, the method comprising: acquiring compressed image data; each encoded frequency is defined by definition a one-bit encoding scheme for the number of bits used in the coefficient, determining a set of encoded frequency coefficients from the compressed image data; performing bit decoding of the encoded frequency coefficients according to the bit encoding scheme, thereby generating a Generating a frequency coefficient, wherein at least one frequency coefficient is generated, such that the set of encoded frequency coefficients is less than the set of frequency coefficients; and applying a reverse transform to the set of frequency coefficients to determine a pixel array representing the one or more images Pixel data.

在一個具體實施例內,該方法包括:選擇複數個解碼方案之一者;以及使用該選取的解碼方案對該像素資料解碼。 In a specific embodiment, the method includes: selecting one of a plurality of decoding schemes; and decoding the pixel data using the selected decoding scheme.

在一個具體實施例內,該方法包括至少部分根據至少以下之一來選擇該解碼方案:選擇規則;一所要的壓縮程度;該像素陣列的一位置;以及指示所使用的該編碼方案之一編碼代碼,該編碼代碼由該已壓縮的資料影像來決定。 In a specific embodiment, the method includes selecting the decoding scheme based at least in part on at least one of: a selection rule; a desired degree of compression; a location of the pixel array; and an encoding indicating one of the encoding schemes used Code, the code code is determined by the compressed data image.

在一個具體實施例內,該位元編碼方案使用較少的位元數,來編碼對應至較高頻率的頻率係數,並且其中該方法包括產生對應至較高頻域的至少某些該頻率係數。 In a specific embodiment, the bit encoding scheme uses fewer bits to encode frequency coefficients corresponding to higher frequencies, and wherein the method includes generating at least some of the frequency coefficients corresponding to the higher frequency domain.

在一個具體實施例內,該方法包括將一比例縮放因數套用到 至少某些該等頻率係數,如此轉換已比例縮放的頻率係數,並且其中至少以下之一:將不同的比例縮放因數套用到至少某些已編碼頻率係數;將該相同的比例縮放因數套用到每一已編碼頻率係數;以及該比例縮放因數用來增加已編碼頻率係數每一者的強度。 In a specific embodiment, the method includes applying a scaling factor to At least some of the frequency coefficients, such that the scaled frequency coefficients are converted, and wherein at least one of: applies a different scaling factor to at least some of the encoded frequency coefficients; applying the same scaling factor to each The encoded frequency coefficient; and the scaling factor is used to increase the strength of each of the encoded frequency coefficients.

在一個具體實施例內,該方法包括:選擇複數個位元編碼方案之一者;以及依照該選取的位元編碼方案對該已編碼的頻率係數解碼。 In a specific embodiment, the method includes: selecting one of a plurality of bit coding schemes; and decoding the encoded frequency coefficients in accordance with the selected bit coding scheme.

在一個具體實施例內,該等複數個位元編碼方案之每一者選擇性用不同的位元數來編碼不同的頻率係數,以提供不同的壓縮程度。 In a specific embodiment, each of the plurality of bit coding schemes selectively encodes different frequency coefficients with different number of bits to provide different degrees of compression.

在一個具體實施例內,至少部分根據至少以下之一來選擇該位元編碼方案:一編碼代碼;選擇規則;該位元編碼方案,用來產生該已壓縮的影像資料;以及該像素陣列的該位置。 In a specific embodiment, the bit coding scheme is selected based at least in part on at least one of: an encoding code; a selection rule; the bit encoding scheme for generating the compressed image material; and the pixel array The location.

在一個具體實施例內,該選擇規則根據至少以下之一:用來傳輸該已壓縮影像資料的一通訊連結之傳輸頻寬;用來傳輸該已壓縮影像資料的一通訊連結之傳輸服務品質;一顯示裝置的移動;影像顯示需求;一目標顯示解析度;經處理的一通道;該等一或多個影像之內該像素陣列的一位置;該等一或多個影像之內該像素陣列相對於該等一或多個影像的一觀察者凝視點之一位置;以及錯誤矩陣。 In a specific embodiment, the selection rule is based on at least one of: a transmission bandwidth of a communication link for transmitting the compressed image data; and a transmission service quality of a communication link for transmitting the compressed image data; a display device movement; an image display requirement; a target display resolution; a processed one channel; a position of the pixel array within the one or more images; the pixel array within the one or more images One of the viewer's gaze points relative to the one or more images; and an error matrix.

在一個具體實施例內,該方法包括:決定該等一或多個影像的一觀察者之凝視點;至少部分依照該凝視點將已編碼頻率係數選擇性解碼。 In a specific embodiment, the method includes determining an observer's gaze point for the one or more images; selectively decoding the encoded frequency coefficients based at least in part on the gaze point.

在一個具體實施例內,該方法包括:決定該凝視點與該等一或多個影像內該像素陣列的一位置間之距離;以及依照該距離將該已編碼 頻率係數選擇性解碼,如此較大距離產生較多的頻率係數。 In a specific embodiment, the method includes: determining a distance between the gaze point and a position of the pixel array in the one or more images; and encoding the gaze according to the distance The frequency coefficient is selectively decoded, so that a larger distance produces more frequency coefficients.

在一個具體實施例內,該等頻率分量配置在複數個層級內,並且其中每一位元編碼方案定義要用來編碼該等複數個層級中每一者內該等頻率係數的一各別位元數。 In a specific embodiment, the frequency components are arranged in a plurality of levels, and wherein each bit coding scheme defines a respective bit to be used to encode the frequency coefficients in each of the plurality of levels Yuan.

在一個具體實施例內,該陣列為一N x N像素陣列,導致2N-1個頻率分量層級。 In one embodiment, the array is an N x N pixel array resulting in 2 N -1 frequency component levels.

在一個具體實施例內,該影像資料定義複數個通道,並且其中該方法包括針對每一通道選擇性解碼已編碼的頻率係數。 In a specific embodiment, the image material defines a plurality of channels, and wherein the method includes selectively decoding the encoded frequency coefficients for each channel.

在一個具體實施例內,該已壓縮影像資料定義YCbCr通道,並且其中該方法包括:執行該等YCbCr通道的一逆轉換;以及將該等已轉換YCbCr通道轉換成RGB通道。 In one embodiment, the compressed image material defines a YCbCr channel, and wherein the method includes: performing an inverse conversion of the YCbCr channels; and converting the converted YCbCr channels to RGB channels.

在一個具體實施例內,該方法包括至少以下之一:比該Y通道產生更多頻率係數給該Cb或Cr通道;同時解碼該等已編碼YCbCr通道;解碼該等CbCr通道,並將該等已解碼CbCr通道與該Y通道轉換成RGB通道。 In a specific embodiment, the method includes at least one of: generating more frequency coefficients to the Cb or Cr channel than the Y channel; simultaneously decoding the encoded YCbCr channels; decoding the CbCr channels, and The decoded CbCr channel and the Y channel are converted into RGB channels.

在一個具體實施例內,該逆轉換為一逆二維(2-D)離散餘弦轉換。 In a specific embodiment, the inverse transform is an inverse two-dimensional (2-D) discrete cosine transform.

在一個具體實施例內,該方法包括使用該像素資料來產生一視頻饋送。 In a specific embodiment, the method includes using the pixel data to generate a video feed.

在一個具體實施例內,該方法包括:至少部分通過序列至並行位元組解碼來解碼已壓縮的影像資料;以及同時選擇性解碼頻率係數。 In a specific embodiment, the method includes decoding the compressed image data at least in part by sequence to parallel byte decoding; and simultaneously selectively decoding the frequency coefficients.

在一個具體實施例內,該數位實境為至少以下之一:增強實境;虛擬實境;以及混合實境。 In a specific embodiment, the digital reality is at least one of: augmented reality; virtual reality; and mixed reality.

在一個具體實施例內,該方法用於利用透過至少以下之一,接收來自一計算裝置的該已壓縮影像資料,在一可戴式數位實境頭戴組內顯示影像資料:一通訊網路;以及一無線通訊連結。 In a specific embodiment, the method is for displaying image data in a wearable digital reality wearing group by receiving the compressed image data from a computing device through at least one of: a communication network; And a wireless communication link.

在一個具體實施例內,該方法用於至少以下之一:傳輸虛擬實境視頻資料;以及無線傳輸虛擬實境視頻資料。 In a specific embodiment, the method is for at least one of: transmitting virtual reality video material; and wirelessly transmitting virtual reality video material.

在一個廣泛的形式中,本發明的態樣尋求提供一種將代表一或多個影像的已壓縮影像資料解壓縮之設備,該設備包括至少一個電子解碼器處理裝置,該至少一個電子解碼器處理裝置:獲取已壓縮的影像資料;依照定義每一已編碼頻率係數內所使用該位元數的一位元編碼方案,從該已壓縮影像資料決定一組已編碼頻率係數;依照該位元編碼方案來執行該已編碼頻率係數的位元解碼,藉此產生一組頻率係數,其中產生至少一個頻率係數,如此該組已編碼頻率係數小於該組頻率係數;以及對該組頻率係數套用一逆向轉換,來決定代表該等一或多個影像之內一像素陣列的像素資料。 In a broad form, aspects of the present invention seek to provide an apparatus for decompressing compressed image data representing one or more images, the apparatus comprising at least one electronic decoder processing device, the at least one electronic decoder processing Means: acquiring compressed image data; determining a set of encoded frequency coefficients from the compressed image data according to a one-bit encoding scheme defining the number of bits used in each encoded frequency coefficient; encoding according to the bit encoding a scheme for performing bit decoding of the encoded frequency coefficients, thereby generating a set of frequency coefficients, wherein at least one frequency coefficient is generated, such that the set of encoded frequency coefficients is less than the set of frequency coefficients; and applying a reverse to the set of frequency coefficients Converting to determine pixel data representing a pixel array within the one or more images.

在一個具體實施例內,該設備包括:一解碼器輸入緩衝區,用來接收該已壓縮影像資料;以及一解碼器輸出緩衝區,其儲存該影像資料。 In one embodiment, the apparatus includes a decoder input buffer for receiving the compressed image data, and a decoder output buffer for storing the image data.

在一個具體實施例內,該設備包含一解碼器收發器,接收該已壓縮影像資料並將該已壓縮影像資料提供至該輸入緩衝區。 In one embodiment, the device includes a decoder transceiver that receives the compressed image data and provides the compressed image data to the input buffer.

在一個具體實施例內,該至少一個解碼器處理裝置包括:一現場可程式閘陣列;一專用積體電路以及一圖形處理單元。 In a specific embodiment, the at least one decoder processing device comprises: a field programmable gate array; a dedicated integrated circuit and a graphics processing unit.

在一個具體實施例內,該已壓縮影像資料定義複數個通道, 並且其中該設備包括至少每一通道的一各別處理裝置之一者以及一並行處理裝置,用來同時處理每一通道。 In a specific embodiment, the compressed image data defines a plurality of channels, And wherein the device includes at least one of a respective processing device of each channel and a parallel processing device for processing each channel simultaneously.

在一個具體實施例內,該已壓縮影像資料定義YCbCr通道,並且其中該設備:使用至少一個處理裝置將該等CbCr通道解碼;以及將該等已解碼YCbCr通道轉換成RGB通道。 In one embodiment, the compressed image material defines a YCbCr channel, and wherein the device: decodes the CbCr channels using at least one processing device; and converts the decoded YCbCr channels into RGB channels.

在一個具體實施例內,該已壓縮影像資料定義YCbCr通道,並且其中該設備:使用處理裝置將該等CbCr通道解碼;使用一RGB處理裝置,將該等已解碼CbCr通道與該Y通道轉換成RGB通道;以及使用一延遲區塊將該Y通道從一解碼器輸入緩衝區轉換至該RGB處理裝置。 In a specific embodiment, the compressed image material defines a YCbCr channel, and wherein the device: decodes the CbCr channels using a processing device; and converts the decoded CbCr channels and the Y channel into an RGB processing device RGB channel; and converting the Y channel from a decoder input buffer to the RGB processing device using a delay block.

在一個具體實施例內,該設備包括一解碼器,以無線通訊方式與一編碼器通訊,允許影像資料作為已壓縮影像資料在該編碼器與該解碼器之間傳輸。 In one embodiment, the apparatus includes a decoder for communicating with an encoder in a wireless communication manner to allow image data to be transmitted as compressed image data between the encoder and the decoder.

在一個具體實施例內,該解碼器為耦合至合適程式編輯的電腦系統至少之一及其一部分。 In one embodiment, the decoder is at least one of a computer system coupled to a suitable program editor and a portion thereof.

在一個具體實施例內,該解碼器為耦合至一可穿戴顯示裝置至少之一及其一部分。 In a specific embodiment, the decoder is coupled to at least one of a wearable display device and a portion thereof.

在一個具體實施例內,該解碼器和編碼器通訊來交換至少以下之一:已壓縮的影像資料;指示一顯示裝置移動的移動資料;至少部分用來控制該顯示裝置的控制資料;指示使用者輸入指令的輸入資料;指示一觀察者的凝視點之凝視資料;以及來自與一可穿戴顯示裝置關聯的感應器之感應器資料。 In a specific embodiment, the decoder and the encoder communicate to exchange at least one of: compressed image data; mobile data indicating movement of a display device; control data at least partially used to control the display device; The input data of the input command; the gaze data indicating an observer's gaze point; and the sensor data from the sensor associated with a wearable display device.

在一個廣泛的形式中,本發明的態樣尋求提供一種將代表一 或多個影像的影像資料壓縮之方法,該方法包括:從該影像資料獲得像素資料,該像素料資料代表該等一或多個影像之內一像素陣列;決定一編碼方案;使用該編碼方案對該像素資料編碼;決定指示所使用該編碼方案的一編碼代碼;以及使用該編碼代碼與已編碼像素資料來產生已壓縮影像資料。 In a broad form, aspects of the invention seek to provide a representative Or a method for compressing image data of a plurality of images, the method comprising: obtaining pixel data from the image data, the pixel material data representing a pixel array within the one or more images; determining a coding scheme; using the coding scheme Encoding the pixel data; determining an encoding code indicating the encoding scheme used; and using the encoding code and the encoded pixel data to generate compressed image data.

在一個具體實施例內,該方法包括用至少以下之一來決定該編碼方案:根據該影像資料的一影像類型;根據從一影像資料來源接收的一編碼方案指示;利用分析至少該影像資料與該像素資料之一者;以及根據包含至少以下之一的壓縮需求:一壓縮總量;一結果影像品質;以及一壓縮延遲。 In a specific embodiment, the method includes determining the encoding scheme by using at least one of: an image type according to the image data; an encoding scheme indication received from an image data source; and utilizing analyzing at least the image data and One of the pixel data; and a compression requirement according to at least one of: a total amount of compression; a resulting image quality; and a compression delay.

在一個具體實施例內,該方法包括分析該像素資料來決定該像素陣列是否為至少以下之一:一梯度;一邊界;以及一單一顏色。 In a specific embodiment, the method includes analyzing the pixel data to determine whether the pixel array is at least one of: a gradient; a boundary; and a single color.

在一個具體實施例內,該方法包括至少以下之一:若該像素陣列為純色,則將該像素陣列替換為表示該純色的一編碼代碼;若該像素陣列為一梯度,則該方法包含使用根據本發明另一態樣的一方法來將該像素資料編碼;以及使用根據本發明另一態樣的一方法來將該像素資料解碼。 In a specific embodiment, the method includes at least one of: if the pixel array is a solid color, replacing the pixel array with an encoding code representing the solid color; if the pixel array is a gradient, the method includes using The pixel material is encoded according to a method of another aspect of the present invention; and the pixel material is decoded using a method in accordance with another aspect of the present invention.

在一個廣泛的形式中,本發明的態樣尋求提供一種將代表一或多個影像的影像資料壓縮之設備,該設備包括至少一個電子編碼器處理裝置,該至少一個電子編碼器處理裝置:從該影像資料獲得像素資料,該像素料資料代表該等一或多個影像之內一像素陣列;決定一編碼方案;使用該編碼方案將該像素資料編碼;決定指示所使用該編碼方案的一編碼代碼;以及使用該已編碼的頻率係數產生壓縮的影像資料。 In a broad form, aspects of the present invention seek to provide an apparatus for compressing image data representing one or more images, the apparatus comprising at least one electronic encoder processing apparatus, the at least one electronic encoder processing apparatus: Obtaining pixel data, the pixel material data representing a pixel array within the one or more images; determining an encoding scheme; encoding the pixel data using the encoding scheme; determining an encoding indicating the encoding scheme used a code; and using the encoded frequency coefficient to generate compressed image data.

在一個廣泛的形式中,本發明的態樣尋求提供一種將代表一或多個影像的已壓縮影像資料解壓縮之方法,該方法包括:獲取已壓縮的影像資料;從該已壓縮影像資料決定一編碼代碼;使用該編碼代碼決定一編碼方案;以及使用該編碼方案將該至少部分已壓縮影像資料解碼,來決定代表該等一或多個影像之內一像素陣列的像素資料。 In a broad form, aspects of the present invention seek to provide a method of decompressing compressed image data representing one or more images, the method comprising: acquiring compressed image data; determining from the compressed image data An encoding code; determining an encoding scheme using the encoding code; and decoding the at least partially compressed image data using the encoding scheme to determine pixel data representing a pixel array within the one or more images.

在一個具體實施例內,該方法包括至少以下之一:將一編碼代碼替換為一純色的像素陣列;使用根據本發明另一態樣的一方法,將已壓縮影像資料解碼為一梯度的一像素陣列;以及使用根據本發明另一態樣的一方法來將該已壓縮影像資料解碼。 In a specific embodiment, the method includes at least one of: replacing an encoded code with a solid color pixel array; and using the method according to another aspect of the present invention, decoding the compressed image data into a gradient one a pixel array; and using a method in accordance with another aspect of the present invention to decode the compressed image material.

在一個廣泛的形式中,本發明的態樣尋求提供一種將代表一或多個影像的已壓縮影像資料解壓縮之設備,該設備包括至少一個電子解碼器處理裝置,該至少一個電子解碼器處理裝置:獲取已壓縮的影像資料;從該已壓縮影像資料決定一編碼代碼;使用該編碼代碼決定一編碼方案;以及使用該編碼方案將該已壓縮影像資料解碼,來決定代表該等一或多個影像之內一像素陣列的像素資料。 In a broad form, aspects of the present invention seek to provide an apparatus for decompressing compressed image data representing one or more images, the apparatus comprising at least one electronic decoder processing device, the at least one electronic decoder processing Means: acquiring compressed image data; determining an encoding code from the compressed image data; determining an encoding scheme by using the encoding code; and decoding the compressed image data using the encoding scheme to determine whether to represent the one or more Pixel data of a pixel array within an image.

應了解,本發明的廣泛形式及其各自特徵可以結合使用、可互換及/或獨立使用,並且不用於限制參考單獨的廣泛形式。 It is to be understood that the invention in its broader aspects and its various features may be used in combination, interchangeable and/or independently.

100-170‧‧‧步驟 Steps 100-170‧‧

200‧‧‧可穿戴式裝置上顯示影像設備 200‧‧‧Display equipment on wearable devices

210‧‧‧處理系統 210‧‧‧Processing system

220‧‧‧編碼器 220‧‧‧Encoder

230‧‧‧解碼器 230‧‧‧Decoder

240‧‧‧HMD 240‧‧‧HMD

250‧‧‧控制器 250‧‧‧ Controller

260‧‧‧無線通訊連結 260‧‧‧Wireless communication link

300‧‧‧虛擬實境系統合併用於 壓縮與解壓縮影像資料的設備 300‧‧‧Virtual reality systems are combined for Device for compressing and decompressing image data

310‧‧‧處理系統 310‧‧‧Processing system

311‧‧‧微處理器 311‧‧‧Microprocessor

312‧‧‧記憶體 312‧‧‧ memory

313‧‧‧輸入/輸出裝置 313‧‧‧Input/output devices

314‧‧‧外部介面 314‧‧‧ external interface

315‧‧‧匯流排 315‧‧‧ busbar

320‧‧‧編碼器 320‧‧‧Encoder

321‧‧‧編碼器輸入緩衝區 321‧‧‧Encoder input buffer

322‧‧‧編碼器處理裝置 322‧‧‧Encoder processing device

323‧‧‧編碼器輸出緩衝區 323‧‧‧Encoder output buffer

324‧‧‧收發器 324‧‧‧ transceiver

325‧‧‧個別資料緩衝區 325‧‧‧individual data buffer

330‧‧‧解碼器 330‧‧‧Decoder

331‧‧‧解碼器輸入緩衝區 331‧‧‧Decoder input buffer

332‧‧‧解碼器處理裝置 332‧‧‧Decoder processing device

333‧‧‧解碼器輸出緩衝區 333‧‧‧Decoder output buffer

334‧‧‧收發器 334‧‧‧ transceiver

335‧‧‧個別資料緩衝區 335‧‧‧individual data buffer

340‧‧‧顯示裝置 340‧‧‧ display device

341‧‧‧微處理器 341‧‧‧Microprocessor

342‧‧‧記憶體 342‧‧‧ memory

343‧‧‧輸入/輸出裝置 343‧‧‧Input/output devices

344‧‧‧感測器 344‧‧‧ Sensor

345‧‧‧顯示器 345‧‧‧ display

346‧‧‧外部介面 346‧‧‧ external interface

347‧‧‧匯流排 347‧‧‧ busbar

360‧‧‧短範圍無線電通訊 360‧‧‧Short range radio communication

400-448‧‧‧步驟 400-448‧‧‧Steps

531-533‧‧‧頻率係數 531-533‧‧‧frequency factor

541‧‧‧亮度通道 541‧‧‧Brightness channel

542‧‧‧色度通道 542‧‧‧Color channel

543‧‧‧色度通道 543‧‧‧Color channel

600-630‧‧‧步驟 600-630‧‧ steps

701‧‧‧可觀看部分 701‧‧‧viewable section

702‧‧‧不可觀看部分 702‧‧‧Unvisible part

800-860‧‧‧步驟 800-860‧‧‧Steps

900-928‧‧‧步驟 900-928‧‧‧Steps

1000-1040‧‧‧步驟 1000-1040‧‧‧Steps

請參閱附圖,說明本發明的範例,其中:第一圖為用於壓縮以及後續解壓縮影像資料的一方法範例之流程圖;第二A圖為用於在一可穿戴式裝置上顯示影像的一設備之 第一範例示意圖;第二B圖為用於在一可穿戴式裝置上顯示影像的一設備之第二範例示意圖;第三圖為一虛擬實境系統合併用於壓縮與解壓縮影像資料的設備之特定範例示意圖;第四A圖至第四D圖為用於壓縮以及後續解壓縮影像資料的一方法特定範例之流程圖;第五圖為例示該編碼處理態樣的示意圖;第六圖為選擇一位元編碼方案的一方法範例之流程圖;第七圖為待編碼的影像範例之示意圖;第八圖為用於壓縮影像資料以及解壓縮已壓縮影像資料的一編碼/解碼方案之另一個範例的流程圖;第九A圖和第九B圖為使用一選取的編碼/解碼方案,來壓縮以及後續解壓縮影像資料的一方法特定範例之流程圖;以及第十圖為用於壓縮以及後續解壓縮影像資料的一方法進一步範例之流程圖。 Referring to the drawings, an example of the invention will be described, in which: the first figure is a flowchart of an example of a method for compressing and subsequently decompressing image data; the second figure is for displaying an image on a wearable device One device A first exemplary diagram of a second example; a second exemplary diagram of a device for displaying an image on a wearable device; and a third schematic diagram of a virtual reality system incorporating a device for compressing and decompressing image data A schematic diagram of a specific example; the fourth through fourth graphs are flowcharts of a specific example of a method for compressing and subsequently decompressing image data; the fifth graph is a schematic diagram illustrating the encoding processing aspect; A flow chart of an example of a method for selecting a one-bit coding scheme; a seventh diagram of an example of an image to be encoded; and an eighth diagram of an encoding/decoding scheme for compressing image data and decompressing compressed image data A flow chart of an example; ninth A and ninth B are flowcharts of a specific example of a method of compressing and subsequently decompressing image data using a selected encoding/decoding scheme; and the tenth figure is for compression And a flow chart of a further example of a method for subsequently decompressing image data.

此時將參閱第一圖說明用於壓縮與解壓縮影像資料的方法之範例。 An example of a method for compressing and decompressing image data will be described with reference to the first figure.

針對例示目的,假設至少部分使用一或多個電子處理裝置來執行該處理。在一個範例中,使用個別處理裝置來壓縮與解壓縮該影像資料,允許已壓縮影像資料在該等兩處理裝置之間傳輸,雖然這並非必須並 且可擇一地同一個處理裝置可用於壓縮與解壓縮該影像資料。 For purposes of illustration, it is assumed that the process is performed, at least in part, using one or more electronic processing devices. In one example, an individual processing device is used to compress and decompress the image data, allowing compressed image data to be transferred between the two processing devices, although this is not required and Optionally, the same processing device can be used to compress and decompress the image data.

該處理裝置可形成各別處理系統的一部分,像是電腦系統、電腦伺服器、包含行動電話、可攜式電腦的用戶端裝置、像是可穿戴式或頭戴式顯示器的顯示裝置,或另外可為連結至這種裝置的獨立模組形式。 The processing device can form part of a separate processing system, such as a computer system, a computer server, a client device including a mobile phone, a portable computer, a display device such as a wearable or head mounted display, or It can be in the form of a separate module that is attached to such a device.

該影像資料通常代表一或多個影像,並且在一個範例中,代表要顯示在各別顯示裝置上的一系列影像。如從以下說明中將了解,在一個特定範例中,該影像資料為適於遠端顯示對於一來源的一系列影像,像是在其中影像顯示於一可穿戴式顯示器上的虛擬或增強實境圖形應用中,及/或在其中影像從像是無人機搭載攝影機等遠端可控制系統顯示的遙現應用中。 The image material typically represents one or more images and, in one example, represents a series of images to be displayed on respective display devices. As will be appreciated from the following description, in one particular example, the image data is a series of images suitable for remote display for a source, such as a virtual or augmented reality in which the image is displayed on a wearable display. In graphics applications, and/or in telepresence applications where images are displayed from a remotely controllable system such as a drone-equipped camera.

在此範例中,在步驟100上,從影像資料獲得像素資料,該像素料資料代表該等一或多個影像之內一像素陣列。該像素資料可用任何合適的方式獲取,這取決於該影像資料的格式。在一個範例中,簡單選擇該影像資料之內特定位元組序列就可達成。該像素陣列通常對應至一組像素數量,像是該等影像之一者之內一8x8像素區塊,不過也可使用其他像素陣列。 In this example, at step 100, pixel data is obtained from the image data, the pixel material data representing a pixel array within the one or more images. The pixel data can be obtained in any suitable manner, depending on the format of the image material. In one example, a simple selection of a particular byte sequence within the image data can be achieved. The array of pixels typically corresponds to a set of pixels, such as an 8x8 pixel block within one of the images, although other pixel arrays can be used.

在步驟110上,對該像素資料套用一轉換,以決定指示該像素陣列的頻率分量之一組頻率係數。因此,該轉換通常為一頻率轉換,像是傅立葉轉換等,並且在一個範例內為2D DCT(離散餘弦轉換)。該轉換可用任何合適的方式套用,例如使用已知的轉換技術,但是在一個範例中以高並行方式執行,藉此縮短處理時間。 At step 110, a conversion is applied to the pixel data to determine a set of frequency coefficients indicative of the frequency components of the pixel array. Therefore, the conversion is typically a frequency conversion, such as a Fourier transform, etc., and in one example is a 2D DCT (Discrete Cosine Transform). This conversion can be applied in any suitable manner, for example using known conversion techniques, but in one example in a high parallel manner, thereby reducing processing time.

在步驟120上,使用一位元編碼方案將至少某些該等頻率係 數選擇性編碼,藉此產生一組已編碼的頻率係數。該位元編碼方案定義要用來將每一頻率係數編碼的位元數,在該等頻率係數經過選擇性編碼之後,至少某些該等已編碼頻率係數具有不同位元數,並且至少一頻率係數遭到拋棄,如此該組已編碼頻率係數小於該組頻率係數。 At step 120, at least some of the frequency systems are used using a one-bit encoding scheme Number selective coding, thereby generating a set of encoded frequency coefficients. The bit coding scheme defines a number of bits to be used to encode each frequency coefficient, after the frequency coefficients are selectively encoded, at least some of the encoded frequency coefficients have different number of bits, and at least one frequency coefficient Abandoned, such that the set of coded frequency coefficients is less than the set of frequency coefficients.

此處理可用任何合適方式實現,並且可包含拋棄某些該等頻率係數,然後使用不同的位元數編碼該等剩餘頻率係數,藉此減少編碼該等頻率係數所需的位元數。替代地,該處理應包括用零位元編碼某些該等頻率係數,藉此有效拋棄該等各別頻率係數做為該編碼步驟的一部分。 This processing can be accomplished in any suitable manner and can include discarding some of the frequency coefficients and then encoding the remaining frequency coefficients using different number of bits, thereby reducing the number of bits required to encode the frequency coefficients. Alternatively, the process should include encoding some of the frequency coefficients with zero bits, thereby effectively discarding the respective frequency coefficients as part of the encoding step.

已拋棄的該等特定頻率分量將隨該較佳實施而變,通常較高頻率分量會因其強度較少並因其對應至影像之內劇烈轉變而被拋棄,意味著其對於整體影像品質的貢獻較少。這允許拋棄較高頻率分量係數,而不會對所感受的影像品質有顯著不利地影響。除了拋棄對應至較高頻率的頻率分量以外,該處理可用較少位元編碼較高頻率分量的頻率係數,藉此減少編碼該等頻率係數所需的位元總量。 The particular frequency components that have been discarded will vary with the preferred implementation, and generally higher frequency components will be discarded due to their lower intensity and due to their sharp transitions within the image, meaning that they are for overall image quality. Less contribution. This allows discarding higher frequency component coefficients without significantly adversely affecting the perceived image quality. In addition to discarding the frequency components corresponding to the higher frequencies, the process can encode the frequency coefficients of the higher frequency components with fewer bits, thereby reducing the total number of bits needed to encode the frequency coefficients.

類似地,當用不同位元數編碼該等頻率係數時,其執行與該頻率係數的實際值無關,而是根據對該頻率係數的預期強度之了解來執行。例如:較低頻率上的頻率係數強度通常較大,因此通常用較多位元數編碼,而較高頻率上的頻率係數強度通常較小,因此用較少位元數編碼。這可讓要編碼的該等頻率係數值不會損失資訊。 Similarly, when the frequency coefficients are encoded with different number of bits, their execution is independent of the actual value of the frequency coefficient, but is performed based on an understanding of the expected strength of the frequency coefficient. For example, the frequency coefficient strength at lower frequencies is usually larger, so it is usually coded with more bits, while the frequency coefficient strength at higher frequencies is usually smaller, so it is coded with fewer bits. This allows the values of the frequency coefficients to be encoded without loss of information.

一旦已經執行編碼,則在步驟130上可使用該已編碼頻率係數產生壓縮影像資料,例如,這可通過建立一位元組串流來執行,包含該等已編碼頻率係數序列,選擇性以額外資訊,像是旗標或其他標記來識別 新影像等等的開始。 Once the encoding has been performed, the encoded image coefficients can be used to generate compressed image data at step 130, for example, by performing a one-tuple stream, including the sequence of encoded frequency coefficients, optionally with additional Information, such as flags or other markers to identify The beginning of new images and so on.

因此,上述處理允許通過使用一位元編碼方案,其拋棄至少某些該等頻率係數並使用不同位元數編碼該等剩餘係數,例如根據該頻率係數的強度,選擇性編碼頻率係數來建立已壓縮影像資料。如此,使用較少數量位元就可編碼較小強度係數,而無任何資訊損失。 Thus, the above process allows for the use of a one-bit coding scheme that discards at least some of the frequency coefficients and encodes the remaining coefficients using different number of bits, for example, based on the strength of the frequency coefficients, selectively encoding the frequency coefficients to establish a compressed video material. Thus, a smaller number of bits can be used to encode a smaller intensity factor without any loss of information.

應該注意的是,這種方法應該與代碼替換技術形成對照,例如霍夫曼編碼(Huffman encoding),其中的值替代較短的代碼。相反,在此範例中,該等值仍舊已編碼,儘管使用適合於該值預期強度的位元數,因此如果預期該頻率係數值不超過七,那麼這可編碼為三位元字元,所以六會編碼為「110」,而不是使用預設的八位元字元「00000110」。相較之下,若預期該頻率係數之值高達六十三,則應使用六位元字元,例如二十應編碼為「010100」。在該值高出該可用位元數的事件中,則應使用可用於該定義位元數的最大值,從而導致所得已壓縮影像資料的精度損失。 It should be noted that this approach should be contrasted with code replacement techniques, such as Huffman encoding, where values replace short codes. Conversely, in this example, the value is still encoded, although the number of bits appropriate for the expected strength of the value is used, so if the frequency coefficient value is expected to be no more than seven, then this can be encoded as a three-dimensional character, so Instead of using the default octet character "00000110", the six will be coded as "110". In contrast, if the value of the frequency coefficient is expected to be as high as sixty-three, a six-bit character should be used. For example, twenty should be coded as "010100". In the event that the value is higher than the number of available bits, the maximum value available for the defined number of bits should be used, resulting in a loss of precision in the resulting compressed image data.

如此,該位元編碼方案使用有關該等頻率係數值的預期大小之資訊,以便定義應使用的位元數。較不積極的位元編碼方案將使用較多位元數,導致壓縮較少,但是有較高解析度,而較積極的位元編碼方案將使用較少位元數,因此提供較多壓縮,但是解析度較低。 As such, the bit encoding scheme uses information about the expected size of the frequency coefficient values to define the number of bits that should be used. A less aggressive bit-encoding scheme will use more bits, resulting in less compression, but with higher resolution, while a more aggressive bit-coding scheme will use fewer bits, thus providing more compression. But the resolution is low.

在任何事件中,通過使用一位元編碼方案,其定義用於將每一頻率係數編碼的該位元數,這允許在解壓縮該已壓縮影像資料時使用相同方案,接著允許執行正確解壓縮,同時允許設置所使用的該位元編碼方案,將用於目前情況的該壓縮最佳化。 In any event, by using a one-bit encoding scheme, which defines the number of bits used to encode each frequency coefficient, this allows the same scheme to be used when decompressing the compressed image material, and then allows proper decompression to be performed. At the same time, it is allowed to set the bit coding scheme used, and the compression for the current situation is optimized.

關於這方面,在步驟140上,依照該位元編碼方案,從該已 壓縮影像資料決定一組已編碼的頻率係數。尤其是,利用選擇組成下一個頻率係數的下一個位元數,關於用來將每一頻率係數編碼的該位元數之資訊允許將該已接收已壓縮影像資料劃分成該等已編碼頻率係數。 In this regard, at step 140, according to the bit coding scheme, from the The compressed image data determines a set of encoded frequency coefficients. In particular, by selecting the next number of bits that make up the next frequency coefficient, the information about the number of bits used to encode each frequency coefficient allows the received compressed image data to be divided into the encoded frequency coefficients. .

在步驟150上,依照該位元編碼方案,執行該等已編碼頻率係數的選擇性位元解碼,藉此產生一組頻率係數。在這方面,執行來將每一已編碼頻率係數轉換成一頻率係數,並且另外產生在該編碼處理期間要丟棄的頻率係數。尤其是,通常執行來產生據有空值的頻率係數,藉此再次建立一整組頻率係數。 At step 150, selective bit decoding of the encoded frequency coefficients is performed in accordance with the bit encoding scheme, thereby generating a set of frequency coefficients. In this regard, it is performed to convert each encoded frequency coefficient into a frequency coefficient and additionally generate a frequency coefficient to be discarded during the encoding process. In particular, it is typically performed to generate a frequency coefficient that has a null value, thereby again establishing an entire set of frequency coefficients.

接著,對該組頻率係數套用一逆向轉換,來決定代表該等一或多個影像之內一像素陣列的像素資料。尤其是,其通常為逆向頻率轉換的形式,像是逆向傅立葉轉換、2D DCT等。 Next, an inverse transformation is applied to the set of frequency coefficients to determine pixel data representing a pixel array within the one or more images. In particular, it is usually in the form of inverse frequency conversion, such as inverse Fourier transform, 2D DCT, and the like.

因此,上述處理允許通過使用一位元編碼方案選擇性編碼頻率係數,將影像資料編碼,然後接著使用相同位元編碼方案,將該已編碼頻率係數解碼。更進一步,使用的該位元編碼方案可經過調適,並且可取決於廣泛的標準範圍,像是已編碼影像資料的性質、已編碼的特定通道等。這允許套用該位元編碼方案,藉此可實現最大壓縮量。 Thus, the above process allows the encoded video coefficients to be encoded by selectively encoding the frequency coefficients using a one-bit encoding scheme, and then encoding the encoded frequency coefficients using the same bit encoding scheme. Still further, the bit encoding scheme used can be adapted and can depend on a wide range of criteria, such as the nature of the encoded image material, the particular channel encoded, and the like. This allows the bit coding scheme to be applied, whereby the maximum amount of compression can be achieved.

除了上述優點以外,可用高並行方式實現該方案,例如允許同時編碼每一頻率係數。這反過來使得能夠快速執行該處理,從而減少延遲時間,這在許多應用中相當重要,諸如虛擬實境應用,其中反應顯示裝置的移動而建立影像,並且必須快速將其傳輸到該顯示裝置來顯示。 In addition to the above advantages, the scheme can be implemented in a highly parallel manner, for example allowing simultaneous encoding of each frequency coefficient. This in turn enables the processing to be performed quickly, thereby reducing the delay time, which is quite important in many applications, such as virtual reality applications, in which the display device is moved to create an image and must be quickly transferred to the display device. display.

此時將描述一些進一步特色。 Some further features will be described at this time.

在一個範例中,該位元編碼方案使用較少數量的位元來編碼 對應至較高頻率的頻率係數,這是由於該等較高頻率分量具有較小強度,這表示需要較少量位元就可精確編碼較高頻率係數,相較低頻率。在一個範例中,逐漸較少的位元數用於將對應至逐漸較高頻率的頻率係數編碼。在此案例中,連續較高頻率上的頻率係數應具有位元數等於或低於一前面較低頻率的頻率係數之位元數。類似地,該方法可包括拋棄對應至較高頻率的至少某些該等頻率係數,這傾向對於所看見的影像品質較少衝擊。亦應了解,針對某些該等較低頻率係數,可保留將該係數編碼所需的所有位元,在某些範例可超過8位元。 In one example, the bit coding scheme uses a smaller number of bits to encode Corresponding to higher frequency frequency coefficients, since the higher frequency components have less intensity, which means that a lower number of bits is needed to accurately encode higher frequency coefficients, lower frequencies. In one example, a decreasing number of bits is used to encode frequency coefficients corresponding to progressively higher frequencies. In this case, the frequency coefficients at successive higher frequencies should have a number of bits with a number of bits equal to or lower than the frequency coefficient of a previous lower frequency. Similarly, the method can include discarding at least some of the frequency coefficients corresponding to the higher frequencies, which tends to have less impact on the perceived image quality. It should also be appreciated that for some of these lower frequency coefficients, all of the bits required to encode the coefficients may be retained, and in some examples may exceed eight bits.

在一個範例中,該方法包括將一比例縮放因數套用到至少某些該等頻率係數,如此編碼已比例縮放的頻率係數。在此方面,使用比例縮放減少該等頻率係數的強度,如此可使用較少位元數編碼這些係數。當執行解壓縮時可套用類似的比例縮放因數,藉此將各別頻率分量比例縮放回其原始強度。在此處理期間,通常執行數值簡化(rounding),如此該已比例縮放的頻率分量為整數值,或具有有限數量的有效數據,藉此將用來編碼該等係數的位元數最少化。亦應了解,當執行時,該等重新建立的頻率分量之精準度會下降,但是這效果對於結果影像品質的影響可忽略不計。 In one example, the method includes applying a scaling factor to at least some of the frequency coefficients, such that the scaled frequency coefficients are encoded. In this regard, scaling is used to reduce the strength of the frequency coefficients such that the coefficients can be encoded using fewer bits. A similar scaling factor can be applied when performing decompression, whereby the individual frequency components are scaled back to their original intensity. During this process, numerical rounding is typically performed such that the scaled frequency components are integer values, or have a finite amount of valid data, thereby minimizing the number of bits used to encode the coefficients. It should also be understood that the accuracy of these re-established frequency components will decrease when executed, but the effect of this effect on the resulting image quality is negligible.

在一個範例中,將該相同的比例縮放因數套用到每一頻率係數。因為這減少執行該比例縮放時的計算負擔,因此特別有利。尤其是,這允許從記憶體,像是暫存器中,讀取單一比例縮放因數,或允許在邏輯組態之內寫死,藉此讓該等頻率係數的比例縮放程序更迅速。然而,這不是必需的,並且不同的比例縮放因數可套用於不同的頻率係數,例如以較大量比例縮放頻率較高的頻率係數。 In one example, the same scaling factor is applied to each frequency coefficient. This is particularly advantageous because it reduces the computational burden when performing the scaling. In particular, this allows a single scaling factor to be read from a memory, such as a scratchpad, or to allow writing within a logical configuration, thereby making the scaling of the frequency coefficients faster. However, this is not required, and different scaling factors can be applied to different frequency coefficients, such as scaling the higher frequency coefficients in larger proportions.

在一個範例中,該方法包括將一比例縮放因數套用至該等頻率分量,以決定比例縮放的頻率分量,依照選擇標準選擇一或多個已比例縮放的頻率分量,並依照一位元編碼方案執行該已選取已比例縮放頻率分量的位元編碼,來產生壓縮的影像資料,藉此限制用來將每一已選取已比例縮放的頻率分量編碼。然而,這並非必需並且應使用其他方式,像是在拋棄某些該等頻率係數之後執行比例縮放等。 In one example, the method includes applying a scaling factor to the frequency components to determine a scaled frequency component, selecting one or more scaled frequency components in accordance with a selection criterion, and following a one-bit encoding scheme The bit encoding of the selected scaled frequency component is performed to generate compressed image data, thereby limiting the encoding of each selected scaled frequency component. However, this is not required and other methods should be used, such as performing scaling or the like after discarding some of these frequency coefficients.

在一個範例中,該方法可包括選擇複數個編碼方案之一者,並使用該已選取的編碼方案編碼該像素資料,這允許根據因素,像是所需的壓縮程度,來選擇不同的編碼方案。如此,每一該等編碼方案都能提供各別壓縮程度,例如通過使用不同壓縮方式,或以複數個不同位元編碼方案之一者來使用上述方式。在此後者案例中,該等複數個位元編碼方案之每一者選擇性用不同的位元數來編碼不同的頻率係數,以提供不同的壓縮程度。 In one example, the method can include selecting one of a plurality of coding schemes and encoding the pixel data using the selected coding scheme, which allows for different coding schemes to be selected based on factors such as the degree of compression desired. . As such, each of the encoding schemes can provide a degree of compression, such as by using a different compression scheme, or using one of a plurality of different bit encoding schemes. In this latter case, each of the plurality of bit coding schemes selectively encodes different frequency coefficients with different number of bits to provide different degrees of compression.

根據一係數範圍,像是選擇規則、所要的壓縮程度及/或像素陣列在該等一或多個影像內的位置,可選擇所使用的該特定編碼方案,接著用來提供所喜愛的壓縮,底下將有更詳盡說明。 Depending on a range of coefficients, such as selection rules, desired degree of compression, and/or position of the pixel array within the one or more images, the particular encoding scheme used may be selected and then used to provide the desired compression, More details will be given below.

類似地,在一個範例中,該方法通常包括依照選擇規則、所要的壓縮程度及/或像素陣列在該等一或多個影像內的位置,選擇性編碼頻率係數。在這方面,該等選擇規則可用來定義要編碼哪些頻率係數,及/或使用哪個特定位元編碼方案,這實際上實現相同的最終結果,因此應被認為是等效程序。 Similarly, in one example, the method generally includes selectively encoding frequency coefficients in accordance with a selection rule, a desired degree of compression, and/or a position of the pixel array within the one or more images. In this regard, the selection rules can be used to define which frequency coefficients to encode, and/or which particular bit encoding scheme to use, which actually achieves the same end result and should therefore be considered an equivalent procedure.

例如:該等選擇規則可用來選擇該等頻率係數的子集來進行 編碼,然後使用該位元編碼方案來編碼。替代地,依照選擇規則選擇一位元編碼方案,使用該位元編碼方案以零位元編碼至少某些的該等頻率係數,然後依照該位元編碼方案編碼該等頻率係數。 For example, the selection rules can be used to select a subset of the frequency coefficients for Encoding is then encoded using the bit encoding scheme. Alternatively, a one-bit encoding scheme is selected in accordance with a selection rule, the at least some of the frequency coefficients are encoded in zero bits using the bit encoding scheme, and the frequency coefficients are then encoded in accordance with the bit encoding scheme.

在兩案例中,使用選擇規則允許動態執行選擇性位元編碼,如此可根據環境調整選取的該等頻率係數及/或用來編碼該已選擇頻率係數的位元數。當解壓縮該已壓縮影像資料時,可使用類似的選擇規則,藉此允許根據該特定環境,動態執行該位元編碼方案及/或頻率係數拋棄,確定可精確解壓縮該已壓縮資料。 In both cases, the use of a selection rule allows dynamic execution of the selective bit coding, such that the selected frequency coefficients and/or the number of bits used to encode the selected frequency coefficients can be adjusted according to circumstances. When the compressed image data is decompressed, a similar selection rule can be used, thereby allowing the bit encoding scheme and/or frequency coefficient discarding to be dynamically performed according to the particular environment, to determine that the compressed data can be decompressed accurately.

在一個範例中,這允許考量到許多不同因數,像是用來傳輸該已壓縮影像資料的一通訊連結之傳輸頻寬、用來傳輸該已壓縮影像資料的一通訊連結之傳輸服務品質、顯示裝置的移動、影像顯示需求、目標顯示解析度、所處理的一影像通道、該等一或多個影像之內該像素陣列的位置或關於該等一或多個影像的一觀察者凝視點該該等一或多個影像之內該像素陣列之位置。針對另一替代方案,可使用指示該已解壓縮影像內錯誤及/或資料傳輸的誤差度量,以便控制使用的壓縮程度。亦應了解,這些配置可用來動態調整壓縮程度,例如利用變更用來壓縮該影像資料的該位元編碼方案,例如:若壓縮物超出臨界,則可減少壓縮,而若可用傳輸頻寬下降,則可提高壓縮。此動態調整壓縮的能力幫助將該壓縮最佳化,以獲得當前環境的最佳可能影像品質。 In one example, this allows for consideration of a number of different factors, such as the transmission bandwidth of a communication link used to transmit the compressed image data, the transmission service quality of a communication link used to transmit the compressed image data, and display. Movement of the device, image display requirements, target display resolution, processed image channel, location of the pixel array within the one or more images, or an observer gaze point for the one or more images The location of the array of pixels within the one or more images. For another alternative, an error metric indicating error and/or data transmission within the decompressed image may be used to control the degree of compression used. It should also be understood that these configurations can be used to dynamically adjust the degree of compression, such as by using the bit coding scheme used to compress the image data, for example, if the compression exceeds a critical limit, compression can be reduced, and if the available transmission bandwidth is reduced, Then you can increase the compression. This ability to dynamically adjust compression helps optimize this compression to achieve the best possible image quality for the current environment.

例如:一影像某些部分的相對品質可能不如其他部分那麼重要。在虛擬實境的案例中,由於顯示鏡頭的影像失真,所以影像周邊部分通常不會確實顯示給使用者。因此,這些影像部分應使用一有效零品質編 碼,藉此在不損失該可視影像的任何影像品質之下,可大幅減少壓縮影像資料量。 For example, the relative quality of some parts of an image may not be as important as the other parts. In the case of virtual reality, since the image of the display lens is distorted, the peripheral portion of the image is usually not displayed to the user. Therefore, these image parts should use an effective zero quality The code can greatly reduce the amount of compressed image data without losing any image quality of the visible image.

在另一個範例中,尤其是在虛擬實境應用中,這可根據一觀察者凝視點來執行。在此範例中,這牽涉到決定該等一或多個影像的一觀察者凝視點,並至少部分依照該凝視點來選擇性編碼頻率係數。尤其是,這可牽涉到決定該凝視點與該等一或多個影像內該像素陣列的位置間之距離,並依照該距離選擇性編碼頻率係數,如此距離越遠就編碼越少頻率係數。如此,可執行觀察者觀看影像哪個部分之分析,例如使用眼睛追蹤技術或類似技術,然後以較高品質編碼靠近該凝視點的影像部分。在此方面,一觀察者對於周邊區域的注視通常會減少,如此通常比較不會注意到影像品質下降。因此,用較高品質編碼靠近觀察者凝視點的影像,這會讓整體品質較差的影像被觀察者認為具有一般水準品質。 In another example, particularly in virtual reality applications, this can be performed in accordance with an observer gaze point. In this example, this involves determining an observer gaze point for the one or more images and selectively encoding the frequency coefficients based at least in part on the gaze point. In particular, this may involve determining the distance between the gaze point and the location of the pixel array within the one or more images, and selectively encoding the frequency coefficients in accordance with the distance such that the farther the distance, the less the frequency coefficients are encoded. In this way, an analysis of which portion of the image the viewer views can be performed, such as using eye tracking techniques or the like, and then encoding the portion of the image near the gaze point with a higher quality. In this respect, an observer's gaze to the surrounding area is usually reduced, so that the image quality is generally less noticeable. Therefore, encoding images near the observer's gaze point with higher quality will result in an overall poor quality image being perceived by the observer as having a general level of quality.

在一個範例中,該等頻率分量配置在複數個階層內,用每一位元編碼方案定義要用於編碼該等複數個階層內每一者內該等頻率係數之各別位元數。類似地,或用從應該編碼哪個階層頻率係數所定義之選擇規則。如此,可依照各別階層定義該位元編碼方案及/或頻率係數的選擇。 In one example, the frequency components are arranged in a plurality of levels, each bit encoding scheme defining a respective number of bits to be used to encode the frequency coefficients in each of the plurality of levels. Similarly, or a selection rule defined by which hierarchical frequency coefficient should be encoded. As such, the selection of the bit coding scheme and/or frequency coefficients can be defined in accordance with the respective levels.

在一個範例中,該像素陣列為N x N像素陣列,產生2N-1階頻率分量,不過應了解,這將取決於特定實施。 In one example, the pixel array is an N x N pixel array that produces 2 N -1 order frequency components, although it will be appreciated that this will depend on the particular implementation.

在一個範例中,除了執行上述破壞壓縮以外,也可執行額外非破壞壓縮步驟。這通常牽涉到解析(parsing)位元組序列,識別包含一些一致位元組的子序列,並且將該子序列替換成指出該等一致位元組之值以及該子序列內一些一致位元組之代碼。在一個範例中,當一致位元組的 子序列包括三或多個位元組時,該代碼包括二位元組,不過應了解,應可使用其他合適的編碼方案。 In one example, in addition to performing the above-described corrupted compression, an additional non-destructive compression step can be performed. This typically involves parsing a sequence of bytes, identifying subsequences containing some consistent sets of bytes, and replacing the subsequences with values indicating the identical sets of bytes and some consistent bytes within the subsequence The code. In one example, when consistent bytes When the subsequence includes three or more bytes, the code includes two bytes, although it should be understood that other suitable coding schemes should be available.

雖然通常稱為運行長度編碼的代碼替換可以在任何位元組序列上執行,但是在一個範例中,該位元組序列為從該已編碼頻率係數形成的該位元流。在此方面,通常有許多該等已編碼頻率係數擁有零值,表示當將從該等已編碼頻率係數形成的該位元流當成位元組序列分析時,在序列內頻繁存在許多零值位元組。因此,通過將這些替換為一代碼,這允許減少位元組數量。 Although code replacement, commonly referred to as run length encoding, can be performed on any sequence of bytes, in one example, the sequence of bytes is the stream of bits formed from the encoded frequency coefficients. In this regard, there are typically a number of such coded frequency coefficients having a value of zero, indicating that when the bit stream formed from the encoded frequency coefficients is analyzed as a sequence of bytes, a number of zero bits are frequently present within the sequence. Tuple. Therefore, by replacing these with a code, this allows for a reduction in the number of bytes.

在一個範例中,該影像資料定義複數個通道,並且其中該方法包括針對每一通道選擇性編碼頻率係數。通過單獨編碼不同通道,這允許對不同通道進行不同編碼,例如使用不同位元編碼方案,或拋棄不同頻率係數。此外,單獨編碼通道可允許通道同時編碼,如此可大幅幫助縮短編碼執行時間,因此降低編碼延遲。 In one example, the image data defines a plurality of channels, and wherein the method includes selectively encoding frequency coefficients for each channel. By encoding different channels separately, this allows different coding of different channels, for example using different bit coding schemes, or discarding different frequency coefficients. In addition, separate encoding channels allow the channels to be encoded at the same time, which greatly helps to shorten the encoding execution time and therefore the encoding delay.

在一個範例中,該像素資料定義RGB通道,並且該方法包括將該等RGB通道轉換成亮度與色度通道YCbCr,並變換該等YCbCr通道。在此方面,人眼對於亮度與色度通道的感受並不同,允許色度通道使用較大壓縮程度來編碼,因此品質相較於該亮度通道較低,但無損所感受到的品質。然而,應了解,這並非必需並且處理可另外在該等RGB通道內執行,在此案例中色彩轉換並非必要。 In one example, the pixel data defines RGB channels, and the method includes converting the RGB channels to luminance and chrominance channels YCbCr and transforming the YCbCr channels. In this respect, the human eye feels differently for the luminance and chrominance channels, allowing the chrominance channel to be encoded with a greater degree of compression, so the quality is lower compared to the luminance channel, but the perceived quality is not compromised. However, it should be understood that this is not required and processing may additionally be performed within the RGB channels, in which case color conversion is not necessary.

如此在此範例中,該方法可包括針對該Y通道比該Cb或Cr通道選擇性編碼更多頻率係數,並且類似可包括針對該Y通道用超過該等Cb和Cr通道的位元來選擇性編碼頻率係數。 Thus in this example, the method can include selectively encoding more frequency coefficients for the Y channel than the Cb or Cr channel, and similarly can include selectively using the bits over the Cb and Cr channels for the Y channel Coding frequency coefficient.

在進一步範例中,在該像素資料定義RGB通道之處,該方法可包括將該等RGB通道轉換成YCbCr通道,並利用編碼該等CbCr通道並使用該Y通道來產生該壓縮影像資料。實際上在此範例中,該Y通道並未有效編碼,表示保留該亮度通道內含的完整資訊。這在某些編碼場景中特別有用,例如當編碼顯示漸層的像素陣列時,這可幫助保留色彩變化,因此改善畫質,同時僅導致壓縮些微減小。 In a further example, where the pixel data defines an RGB channel, the method can include converting the RGB channels to a YCbCr channel and utilizing the CbCr channels to encode the compressed image data. In fact, in this example, the Y channel is not effectively coded, indicating that the complete information contained in the luminance channel is retained. This is particularly useful in certain coding scenarios, such as when encoding a progressive array of pixels, which helps preserve color variations, thus improving image quality while only causing a slight reduction in compression.

如上述,該等不同通道可同時編碼。此外,該等頻率係數中每一通道都可同時編碼。在此案例中,產生已壓縮影像資料的該方法通常包括同時執行來串列位元組編碼,如此將該等頻率係數串列成一位元組串流,然後進行位元組編碼。 As mentioned above, the different channels can be encoded simultaneously. In addition, each of the frequency coefficients can be encoded simultaneously. In this case, the method of generating compressed image data typically includes simultaneously performing serial string encoding, such that the frequency coefficients are serialized into a one-tuple stream and then byte encoded.

在一個範例中,從影像資料獲取像素資料的方法包括將對應至該影像中下一個n-1像素列的影像資料緩衝、將該下一個像素列的下一n個像素之影像資料緩衝,以及從該已緩衝影像資料中獲取下一個n x n像素區塊之像素資料。重複此程序,直到已經從所有n列像素獲取像素資料,而針對下一n列重複此程序,通過將對應至該影像中下一個n-1像素列的影像資料緩衝、將該下一個像素列的下一n個像素之影像資料緩衝,以及從該已緩衝影像資料中獲取下一個n x n像素區塊之像素資料。 In one example, the method for obtaining pixel data from image data includes buffering image data corresponding to a next n -1 pixel column in the image, buffering image data of a next n pixels of the next pixel column, and The pixel data of the next n x n pixel block is obtained from the buffered image data. Repeat this process until the pixel data has been acquired from all n columns of pixels, and the program is repeated for the next n columns by buffering the image data corresponding to the next n -1 pixel column in the image, and the next pixel column The image data buffer of the next n pixels, and the pixel data of the next n x n pixel block is obtained from the buffered image data.

如此,從此可了解,該處理並未要求整個影像都緩衝,而是只有在開始處理之前先將n-1列像素以及來自下一列的進一步n個像素緩衝即可。這有兩個主要衝擊,換言之縮短處理時間,接著造成延遲顯著縮小,同時降低整體記憶體需求。n值通常為整數並且可根據因素來設定,像是選擇規則、所需的壓縮程度、像素陣列的位置等。在一個範例中n=8,但是這 並非必要,任何值都可使用。 Thus, it can be understood from this that the process does not require the entire image to be buffered, but only the n-1 column pixels and the further n pixels from the next column are buffered before starting the process. There are two main shocks, in other words, shortening the processing time, which in turn causes a significant reduction in latency while reducing overall memory requirements. The value of n is usually an integer and can be set according to factors such as selection rules, degree of compression required, position of the pixel array, and the like. In one example n = 8, but this is not necessary and any value can be used.

雖然可以從任何來源獲取影像資料,不過在一個範例中,該方法包括從一視頻饋送中,像是要顯示的一系列影像,獲取該像素資料。在一個範例中,該方法用於傳輸虛擬實境視頻資料,並且在一個特定範例中,用於無線傳輸虛擬實境視頻資料。 Although image data can be obtained from any source, in one example, the method includes obtaining the pixel data from a video feed, such as a series of images to be displayed. In one example, the method is for transmitting virtual reality video material and, in a particular example, for wirelessly transmitting virtual reality video material.

上述處理也可用於提供形成任何數位實境內容一部分的影像,包含增強實境、虛擬實境、混合實境、遙現等。 The above process can also be used to provide images that form part of any digital reality content, including augmented reality, virtual reality, mixed reality, telepresence, and the like.

在一個範例中,該方法用於利用透過至少一通訊網路與一無線通訊連結之一者,接收來自一計算裝置的該已壓縮影像資料,在一可戴式數位實境頭戴組內顯示影像資料。這可包括從一電腦以無線方式將已壓縮影像傳輸至其他類似裝置,或可包括從雲端計算環境將已壓縮影像傳輸至本機裝置,像是頭戴式智慧型手機,允許使用雲端計算來執行影像建立。合適連接的範例,包括一有線GB網際網路、至行動電話的串流,例如透過行動通訊網路,像是3G、4G或5G網路,透過有線連接傳輸至一綁定HMD,或透過無線連接傳輸至未綁定HMD等。 In one example, the method is for receiving, by one of the at least one communication network and a wireless communication link, the compressed image data from a computing device, displaying the image in a wearable digital reality wearing set data. This may include wirelessly transmitting the compressed image from a computer to other similar devices, or may include transmitting the compressed image to a native device from a cloud computing environment, such as a head-mounted smart phone, allowing for cloud computing to be used. Perform image creation. Examples of suitable connections, including a wired GB internet, streaming to mobile phones, such as via a mobile communication network, such as a 3G, 4G or 5G network, over a wired connection to a bonded HMD, or via a wireless connection Transfer to unbound HMD, etc.

應了解,當解壓縮該已壓縮影像資料時,可使用類似方式。 It should be appreciated that a similar approach can be used when decompressing the compressed image material.

例如:可使用相同位元編碼方案,如此該位元編碼方案使用較少位元數來編碼對應至較高頻率的頻率係數。在此案例中,針對壓縮期間拋棄對應至較高頻率的至少某些頻率係數,必需要在解壓縮期間再次產生,通常為空值,允許套用後續逆變換,以下將有更詳細說明。 For example, the same bit coding scheme can be used, such that the bit coding scheme uses fewer bits to encode frequency coefficients corresponding to higher frequencies. In this case, discarding at least some of the frequency coefficients corresponding to the higher frequencies during compression must be regenerated during decompression, typically null, allowing subsequent inverse transformations to be applied, as described in more detail below.

通常該方法包括將一比例縮放因數套用到至少某些該等頻率係數,如此轉換已比例縮放的頻率係數。再次,將相同比例縮放因數套 用至每一頻率係數,藉此提高每一頻率係數的強度,進而逆轉壓縮期間執行的該比例縮放,並再次產生該原始頻率係數強度的近似值。 Typically the method includes applying a scaling factor to at least some of the frequency coefficients, such that the scaled frequency coefficients are converted. Again, the same scale scaling factor set Each frequency coefficient is used, thereby increasing the intensity of each frequency coefficient, thereby reversing the scaling performed during compression, and again producing an approximation of the original frequency coefficient strength.

該方法可包括選擇複數個解碼方案之一者,並使用該已選取的解碼方案解碼該像素資料。在此案例中,可使用選擇規則、所要的壓縮程度或該像素陣列的位置,類似於上述關於影像壓縮的該編碼方案選擇,來選擇該解碼方案。替代地,此可根據指出所使用該編碼方案的一編碼代碼來執行,該編碼代碼由該已壓縮影像資料所決定。 The method can include selecting one of a plurality of decoding schemes and decoding the pixel data using the selected decoding scheme. In this case, the decoding scheme can be selected using a selection rule, a desired degree of compression, or a location of the pixel array, similar to the encoding scheme selection described above with respect to image compression. Alternatively, this may be performed in accordance with an encoding code indicating the encoding scheme used, the encoding code being determined by the compressed image material.

同樣,該解碼方案可與上面描述的不同,但可同樣使用複數個不同位元編碼方案之一者,依照該選取的位元編碼方案解碼該已編碼頻率係數。在此案例中,該等複數個位元編碼方案之每一者選擇性用不同的位元數來編碼不同的頻率係數,以提供不同的壓縮程度。 Again, the decoding scheme can be different than that described above, but one of a plurality of different bit encoding schemes can be used as well, and the encoded frequency coefficients are decoded in accordance with the selected bit encoding scheme. In this case, each of the plurality of bit coding schemes selectively encodes different frequency coefficients with different numbers of bits to provide different degrees of compression.

類似地並有效等效地,該方法可以包括依照選擇規則選擇性地解碼該已編碼頻率係數,特別是通過依照選擇規則產生該已編碼頻率係數,並依照該位元編碼方案解碼該已編碼頻率係數。 Similarly and effectively equivalently, the method can include selectively decoding the encoded frequency coefficients in accordance with a selection rule, in particular by generating the encoded frequency coefficients in accordance with a selection rule and decoding the encoded frequencies in accordance with the bit encoding scheme coefficient.

如壓縮期間,該等選擇規則通常取決於一因素範圍,像是用來傳輸該已壓縮影像資料的一通訊連結之一或多個傳輸頻寬、用來傳輸該已壓縮影像資料的一通訊連結之傳輸服務品質、顯示裝置的移動、影像顯示需求、目標顯示解析度、所處理的一通道、該等一或多個影像之內該像素陣列的位置或關於該等一或多個影像的一觀察者凝視點之該等一或多個影像之內該像素陣列之位置。 During compression, the selection rules generally depend on a range of factors, such as one or more transmission bandwidths used to transmit the compressed image data, and a communication link for transmitting the compressed image data. Transmission service quality, movement of the display device, image display requirements, target display resolution, processed one channel, location of the pixel array within the one or more images, or one of the one or more images The viewer gaze at the location of the array of pixels within the one or more images of the point.

例如:這可牽涉到決定該等一或多個影像的一觀察者凝視點,並至少部分依照該凝視點來選擇性解碼已編碼頻率係數。這通常可通 過決定該凝視點與該等一或多個影像內該像素陣列的位置間之距離,並依照該距離選擇性解碼該已編碼頻率係數來實現,如此距離越遠就產生更多頻率係數。然而,應了解,選擇規則的實施可根據該較佳實施以任何合適方式來實現。 For example, this may involve determining an observer gaze point for the one or more images and selectively decoding the encoded frequency coefficients based at least in part on the gaze point. This usually passes The distance between the gaze point and the position of the pixel array in the one or more images is determined, and the encoded frequency coefficient is selectively decoded according to the distance, such that the further the distance, the more frequency coefficients are generated. However, it should be appreciated that the implementation of the selection rules can be implemented in any suitable manner in accordance with the preferred implementation.

該等頻率分量通常配置在複數個階層內,使用該位元編碼方案,其定義要用於編碼對應至該等複數個階層之個別一者之內頻率分量的該等頻率係數之各別位元數,或使用該等選擇規則,其由應該產生哪個階層頻率係數來定義。 The frequency components are typically arranged in a plurality of levels, using the bit coding scheme, which defines respective bits of the frequency coefficients to be used to encode frequency components corresponding to individual ones of the plurality of levels Number, or use these selection rules, which are defined by which hierarchical frequency coefficient should be generated.

在也執行非破壞編碼的事件中,該方法通常包括識別序列位元組之內一代碼,並將該代碼替換成包含一些一致位元組的子序列。在此案例中,該代碼通常指出該子序列內該等一致位元組以及一些一致位元組之值。同樣,該子序列通常包括三個或更多位元組,必且該代碼包含兩位元組,不過也可使用其他合適的配置。通常在該已壓縮影像資料上執行此處理,用此來產生該位元串流,然後用來建立該等已編碼頻率係數。 In the event of also performing non-destructive encoding, the method typically includes identifying a code within the sequence of bytes and replacing the code with a subsequence containing some consistent sets of bytes. In this case, the code typically indicates the value of the identical byte and some consistent bytes within the subsequence. Again, the subsequence typically includes three or more bytes, and the code must contain two tuples, although other suitable configurations can be used. This process is typically performed on the compressed image data, which is used to generate the bit stream, which is then used to establish the encoded frequency coefficients.

如先前所說明,該影像資料通常定義複數個通道,而已編碼頻率係數選擇性單獨解碼每一通道。該等通道通常包括YCbCr通道,而該方法包括執行該等YCbCr通道的逆變換,並且將該等已變換YCbCr通道轉換成RGB通道。通常,該逆變換為一逆2-D離散餘弦變換,不過可使用其他合適的轉換。亦應了解,若該Y通道尚未編碼,如上述,該方法可包括解碼該等CbCr通道,然後將該等已解碼CbCr通道和該Y通道轉換成RGB通道。 As previously explained, the image data typically defines a plurality of channels, and the encoded frequency coefficients selectively decode each channel individually. The channels typically include a YCbCr channel, and the method includes performing an inverse transform of the YCbCr channels and converting the transformed YCbCr channels to RGB channels. Typically, the inverse transform is an inverse 2-D discrete cosine transform, although other suitable transforms can be used. It should also be appreciated that if the Y channel is not yet encoded, as described above, the method can include decoding the CbCr channels and then converting the decoded CbCr channels and the Y channels to RGB channels.

如壓縮該影像資料的範例中,該方法通常包括比該Y通道產生更多頻率係數給該等Cb或Cr通道。該方法也可包括同時解碼該等已編碼 YCbCr通道,亦選擇性同時對個別頻率分量進行位元解碼,在案例中已壓縮影像資料通過串聯至並聯位元組解碼進行至少部分解碼,有效將該傳入位元組串流區分成單獨位元編碼頻率分量,然後同時進行解碼。 In an example of compressing the image data, the method generally includes generating more frequency coefficients to the Cb or Cr channels than the Y channel. The method can also include simultaneously decoding the encoded The YCbCr channel also selectively performs bit decoding on individual frequency components at the same time. In the case, the compressed image data is decoded at least partially by serial to parallel byte decoding, effectively separating the incoming byte stream into individual bits. The frequency encodes the frequency components and then decodes them simultaneously.

該已解壓縮資料也可進行進一步處理,像是使用一去區塊濾波器(deblocking filter),用來在使用區塊編碼技術等等時,以使宏區塊(marcoblocks)之間形成的銳利邊緣平順。這又可以允許使用更高程度的壓縮,同時避免影像品質的相應降低。 The decompressed data can also be further processed, such as using a deblocking filter for sharpness between macroblocks when using block coding techniques and the like. The edges are smooth. This in turn allows for a higher degree of compression while avoiding a corresponding reduction in image quality.

在進一步範例中,由一各別硬體組態執行上述方法,例如:壓縮影像資料可由包括一電子編碼器處理裝置的一編碼器來執行,其中該裝置從該影像資料獲得像素資料、執行一頻率變換、使用一位元編碼方案選擇性編碼至少某些該等頻率係數,以及使用該已編碼頻率係數產生已壓縮影像資料。 In a further example, the method is performed by a separate hardware configuration, for example, the compressed image data may be executed by an encoder including an electronic encoder processing device, wherein the device obtains pixel data from the image data, and executes one Frequency transforming, selectively encoding at least some of the frequency coefficients using a one-bit encoding scheme, and using the encoded frequency coefficients to produce compressed image data.

類似地,使用包括一電子解碼器處理裝置的一解碼器來執行該已壓縮影像資料的解壓縮,其中該裝置獲得已壓縮影像資料、從該已壓縮影像資料決定一組已編碼頻率係數、依照該位元編碼方案執行該等已編碼頻率係數的位元解碼,以及將一逆變換套用至該組頻率係數,來決定代表該等一或多個影像之內一像素陣列的像素資料。 Similarly, decompressing the compressed image material is performed using a decoder including an electronic decoder processing device, wherein the device obtains compressed image data, determines a set of encoded frequency coefficients from the compressed image data, The bit encoding scheme performs bit decoding of the encoded frequency coefficients and applies an inverse transform to the set of frequency coefficients to determine pixel data representing a pixel array within the one or more images.

在一個範例中,該設備(200)包括以無線通訊的一編碼器和一解碼器,允許影像資料以已壓縮影像資料方式在該編碼器與該解碼器之間傳輸。在一個特定範例中,可用此來提供可穿戴式顯示裝置,像是一HMD與一處理系統之間的無線通訊。此時將參照第二A圖來說明此範例。 In one example, the device (200) includes an encoder and a decoder for wireless communication that allows image data to be transferred between the encoder and the decoder in a compressed image format. In one particular example, this can be used to provide a wearable display device, such as a wireless communication between an HMD and a processing system. This example will be explained with reference to the second A diagram.

在此範例中,像是適合程式編輯電腦系統、遊戲控制台等的 一處理系統210適用於在一HMD 240上產生顯示內容。處理系統210通常通過接收來自該HMD有關該HMD姿勢的感測器資料,並且選擇性輸入來自一或多個個別控制器250的資料,來實現此目的。然後處理系統210根據該感測器及/或輸入資料來產生內容,通常為視頻資料的形式,其可從視頻卡等地方輸出。該視頻資料傳輸至一編碼器220,其藉由壓縮該影像資料來編碼該視頻資料,然後透過一無線通訊連結260無線傳輸該已壓縮影像資料至解碼器230。解碼器230將該已壓縮影像資料解碼,並將該結果視頻資料提供給該HMD來顯示。 In this example, it is suitable for program editing computer systems, game consoles, etc. A processing system 210 is adapted to generate display content on an HMD 240. Processing system 210 typically accomplishes this by receiving sensor data from the HMD regarding the HMD gesture and selectively inputting data from one or more individual controllers 250. Processing system 210 then generates content based on the sensor and/or input data, typically in the form of video material, which can be output from a video card or the like. The video data is transmitted to an encoder 220, which compresses the video data to encode the video data, and then wirelessly transmits the compressed video data to the decoder 230 via a wireless communication link 260. The decoder 230 decodes the compressed image data and provides the resulting video material to the HMD for display.

應了解,此配置允許現有的電腦系統、遊戲機等以及HMD 210、240透過無線連接260相連,如此避免處理系統210與HMD 240之間有線連接的需求。如此例如一使用者可穿戴一HMD和相關解碼器,然後將該編碼器連接至其電腦系統或遊戲機,建構成一無線HMD配置。這可用於將傳統繫連(tethered)耳麥轉換成無線配置。 It should be appreciated that this configuration allows existing computer systems, gaming machines, etc., as well as HMDs 210, 240 to be connected through wireless connection 260, thus avoiding the need for a wired connection between processing system 210 and HMD 240. Thus, for example, a user can wear an HMD and associated decoder and then connect the encoder to their computer system or gaming machine to form a wireless HMD configuration. This can be used to convert a traditional tethered headset into a wireless configuration.

然而這並非必需,或者處理系統210和HMD 240可設置成包括整合式編碼器與解碼器硬體,允許這些透過直接無線連接260來通訊,如第二B圖內所示。例如:在一電腦系統內可提供該編碼器,用於產生內容,而該解碼器可整合在智慧型手機內,例如Snapdragon 820 Hexagon DSP或類似裝置內,允許該智慧型手機接收並解碼從該電腦系統無線串流來的內容。在一個範例中,這允許該電腦系統越過一本機無線連接來串流,但在另一個範例中,這可用來透過一行動電話網路或類似網路,提供來自雲端型數位實境引擎的內容。 However, this is not required, or processing system 210 and HMD 240 may be configured to include integrated encoder and decoder hardware, allowing these to communicate over direct wireless connection 260, as shown in FIG. For example, the encoder can be provided in a computer system for generating content, and the decoder can be integrated in a smart phone, such as a Snapdragon 820 Hexagon DSP or the like, allowing the smart phone to receive and decode from the smart phone. The content of the computer system wireless streaming. In one example, this allows the computer system to stream over a local wireless connection, but in another example, this can be used to provide a cloud-based digital reality engine from a mobile phone network or similar network. content.

此時將參照第三圖來更詳細說明該硬體組態的範例。 An example of this hardware configuration will be described in more detail with reference to the third figure.

此範例將用分離的硬體編碼器與解碼器來例示,但應了解,這並非必需並且該相同技術可與整合式硬體結合使用。更進一步,雖然參照虛擬實境應用,同樣這並非必需,並且該技術可用來套用至其中要傳輸影像資料的任何環境,尤其是當要使用有限頻寬傳輸影像資料時,同時保持可接受的影像品質以及期望的延遲,像是在虛擬實境、增強實境或遙現應用中。 This example will be exemplified with a separate hardware encoder and decoder, but it should be understood that this is not required and the same technique can be used in conjunction with integrated hardware. Furthermore, although reference is made to a virtual reality application, this is not necessary, and the technique can be applied to any environment in which image data is to be transmitted, especially when image data is to be transmitted using limited bandwidth while maintaining acceptable images. Quality and latency expectations, as in virtual reality, augmented reality or telepresence applications.

在此範例中,設備300再次包括一處理系統310、編碼器320、解碼器330以及HMD或類似形式的一顯示裝置340。此時將更詳細說明這些組件每一者。 In this example, device 300 again includes a processing system 310, an encoder 320, a decoder 330, and a display device 340 of the HMD or similar form. Each of these components will be described in more detail at this time.

在此範例中,處理系統310包括一個微處理器311、一記憶體312、一選配輸入/輸出裝置313,像是鍵盤及/或顯示器,以及如所示透過一匯流排315互連的一外部介面314。在此範例中,外部介面314可用於將處理系統310連接至周邊裝置,像是通訊網路、儲存裝置、週邊設備等。雖然顯示單一外部介面314,不過這僅為範例,並且實際上可提供使用許多方法(例如乙太網路、序列、USB、無線等等)的多個介面。在此特定範例中,該外部介面包括至少一資料連接,像是USB,以及視頻連接,像是DisplayPort、HMDI、Thunderbolt等等。 In this example, processing system 310 includes a microprocessor 311, a memory 312, an optional input/output device 313, such as a keyboard and/or display, and a interconnect interconnected by a busbar 315 as shown. External interface 314. In this example, external interface 314 can be used to connect processing system 310 to peripheral devices such as communication networks, storage devices, peripherals, and the like. Although a single external interface 314 is shown, this is merely an example and may actually provide multiple interfaces using many methods (eg, Ethernet, serial, USB, wireless, etc.). In this particular example, the external interface includes at least one data connection, such as a USB, and a video connection, such as DisplayPort, HMDI, Thunderbolt, and the like.

在使用中,微處理器311執行儲存在記憶體312內應用程式軟體形式的指令,允許執行所需的處理。該應用程式軟體可包括一或多個軟體模組,並且可在合適的執行環境內執行,像是一作業系統環境等。 In use, microprocessor 311 executes instructions stored in the form of application software in memory 312, allowing the required processing to be performed. The application software can include one or more software modules and can be executed in a suitable execution environment, such as an operating system environment.

因此,應了解,可從任何合適的處理系統形成處理系統310,像是合適的程式編輯PC等等。在一個特定範例中,處理系統310為標準處理 系統,像是Intel架構型處理系統,其執行儲存在非揮發性(例如硬碟)儲存設備內的軟體應用程式,不過這並非必要。然而,亦應了解,該處理系統可為任何電子處理裝置,像是微處理器、微晶片處理器、邏輯閘組態、選擇性關聯於實施邏輯的韌體,諸如FPGA(場可程式編輯閘陣列)、一專用積體電路(ASIC)、一晶片上系統(SoC)、一圖形處理單元(GPU)、數位信號處理(DSP)或任何其他電子裝置、系統或配置。 Accordingly, it should be appreciated that processing system 310 can be formed from any suitable processing system, such as a suitable program editing PC or the like. In one particular example, processing system 310 is a standard process Systems, such as the Intel architecture processing system, execute software applications stored in non-volatile (eg, hard disk) storage devices, although this is not required. However, it should also be understood that the processing system can be any electronic processing device such as a microprocessor, a microchip processor, a logic gate configuration, a firmware selectively associated with the implementation logic, such as an FPGA (field programmable gate) Array), a dedicated integrated circuit (ASIC), a system on a chip (SoC), a graphics processing unit (GPU), digital signal processing (DSP), or any other electronic device, system, or configuration.

更進一步,雖然處理系統310顯示為單一實體,應了解,實際上處理系統310應由多個實體裝置所形成,可選擇性分配在一些地理個別位置上,例如雲端環境一部分。 Still further, although the processing system 310 is shown as a single entity, it should be understood that the processing system 310 should be formed by a plurality of physical devices that can be selectively distributed at some geographic locations, such as a portion of the cloud environment.

編碼器320通常包括一編碼器輸入緩衝區321,依序連結至一編碼器處理裝置322、一編碼器輸出緩衝區323以及一收發器324。可提供一個別資料緩衝區325來耦接至收發器324。 The encoder 320 typically includes an encoder input buffer 321 coupled in sequence to an encoder processing device 322, an encoder output buffer 323, and a transceiver 324. An additional data buffer 325 can be provided for coupling to the transceiver 324.

在使用中,影像資料,並且在一個特定範例中,視頻資料已接收,並且在送至編碼器處理裝置322進行壓縮之前,暫時儲存在輸入緩衝區321內。在此方面,該編碼器輸入緩衝區通常緩衝對應至該影像的接下來七列像素,然後接下來八列像素之影像資料。這允許編碼器處理裝置322從該已緩衝影像資料獲得接下來8x8區塊像素的像素資料,並開始編碼。 In use, the image material, and in one particular example, the video material has been received and temporarily stored in the input buffer 321 before being sent to the encoder processing device 322 for compression. In this regard, the encoder input buffer typically buffers the next seven columns of pixels corresponding to the image, and then the image data for the next eight columns of pixels. This allows the encoder processing device 322 to obtain pixel data for the next 8x8 block pixel from the buffered image data and begin encoding.

一旦已經完成,接下來八個像素則緩衝,重複此步驟直到已獲取並已編碼來自八列像素的像素資料。然後針對該影像內後續像素列重複此處理,直到已獲取整個影像的像素資料,在此點上以類似方式處理下一個影像。針對此方式的結果,該編碼器輸入緩衝區從來不需要儲存超過七列及八個影像資料像素,減少記憶體之需求。此外,針對已獲取像素資 料,這可使用該編碼處理立即處理,即使在緩衝影像資料的接下來八個像素之前。這顯著縮短處理時間,並幫助減少整體延遲。 Once it has been completed, the next eight pixels are buffered, repeating this step until the pixel data from the eight columns of pixels has been acquired and encoded. This process is then repeated for subsequent pixel columns within the image until the pixel data for the entire image has been acquired, at which point the next image is processed in a similar manner. As a result of this method, the encoder input buffer never needs to store more than seven columns and eight image data pixels, reducing the memory requirements. In addition, for the acquired pixel This can be processed immediately using this encoding process, even before buffering the next eight pixels of the image data. This significantly reduces processing time and helps reduce overall latency.

然後,該結果已壓縮影像資料儲存在編碼器輸出緩衝器323內,例如依序通過編碼位元內的讀取,藉此透過收發器324,在傳輸至解碼器330之前,執行並列至序列位元組編碼。收發器324也調適成透過編碼器資料緩衝區325傳輸其他資料,像是接收自HMD 340的一感測器資料。 The resulting compressed image data is then stored in the encoder output buffer 323, for example, sequentially through the readings within the encoded bits, thereby being passed through the transceiver 324 for parallel alignment to the sequence bits prior to transmission to the decoder 330. Tuple encoding. Transceiver 324 is also adapted to transmit other data, such as a sensor data received from HMD 340, through encoder data buffer 325.

根據較佳具體實施例,緩衝區321、323、325可為任何合適的暫時儲存設備形式,根據該較佳實施並且在一個範例中,可包括高效能FIFO(先進先出)場記憶體晶片等等。該輸入緩衝區通常連接至HDMI連接埠、顯示器連接埠輸出或任何其他合適的視頻源,而資料緩衝區335連接至USB連接埠,藉此允許等效連接至該電腦系統。 According to a preferred embodiment, the buffers 321, 323, 325 can be in the form of any suitable temporary storage device, according to the preferred implementation and in one example, a high performance FIFO (first in first out) field memory chip, etc. Wait. The input buffer is typically connected to an HDMI port, a display port, or any other suitable video source, and a data buffer 335 is connected to the USB port, thereby allowing an equivalent connection to the computer system.

收發器324可為任何合適形式,但是在一個範例中,允許該編碼器與該解碼器之間短範圍無線電通訊360,例如透過點對點直接WiFiTM連接、60GHz無線技術等等。 The transceiver 324 may be any suitable form, in one example, allowing short-range radio communication between the encoder and the decoder 360, for example, through direct peer connection WiFi TM, 60GHz wireless technologies.

處理裝置322可為能夠執行本文所說明該壓縮處理的任何裝置。處理裝置322可包括依照記憶體內儲存的軟體指令操作之通用處理裝置。然而,在一個範例中,為了確定適當的快速壓縮時間,該處理裝置包括設置成執行該壓縮處理的客製化硬體。這應包括選擇性關聯於實現邏輯的韌體,像是一FPGA(場可程式編輯閘陣列)、一圖形處理單元(GPU,Graphics Processing Unit)、一專用積體電路(ASIC,Application-Specific Integrated Circuit)、一晶片上系統(SoC,system on a chip)、數位信號處理器(DSP,digitial signal processor)或任何其他電子裝置、系統或配置。在較佳 範例中,編碼器處理裝置322設置成執行每一DCT的個別通道並行處理,以及個別頻率係數的並行編碼。如此,雖然顯示單一編碼器處理裝置322,實務上,可提供各別編碼器處理裝置322來同時編碼每一該等通道,或另外可使用、一GPU或其他類似並行處理架構。在像是該Y通道這類通道未編碼的事件中,該編碼器處理裝置可在將該各別資料發送至編碼器輸出緩衝區323當中簡單導入一延遲,確定這仍舊與該等已編碼CbCr通道同步。 Processing device 322 can be any device capable of performing the compression process described herein. Processing device 322 can include general purpose processing devices that operate in accordance with software instructions stored in memory. However, in one example, to determine an appropriate fast compression time, the processing device includes a customized hardware configured to perform the compression process. This should include firmware that is selectively associated with the implementation logic, such as an FPGA (field programmable gate array), a graphics processing unit (GPU), and a dedicated integrated circuit (ASIC, Application-Specific Integrated). Circuit), a system on a chip (SoC), a digital signal processor (DSP), or any other electronic device, system, or configuration. Better In an example, encoder processing device 322 is arranged to perform individual channel parallel processing of each DCT, as well as parallel encoding of individual frequency coefficients. As such, although a single encoder processing device 322 is shown, in practice, a separate encoder processing device 322 can be provided to simultaneously encode each of the channels, or alternatively, a GPU or other similar parallel processing architecture can be used. In the case of a channel uncoded such as the Y channel, the encoder processing means can simply import a delay into the encoder output buffer 323 to determine that it is still associated with the encoded CbCr. Channel synchronization.

解碼器330通常包括一收發器334,其連結至一解碼器輸入緩衝區331,接著連結至一解碼器處理裝置332和一解碼器輸出緩衝區333。另外提供一分離的資料緩衝區335,其耦接至收發器334。 The decoder 330 typically includes a transceiver 334 coupled to a decoder input buffer 331 and then coupled to a decoder processing device 332 and a decoder output buffer 333. Additionally, a separate data buffer 335 is provided that is coupled to the transceiver 334.

在使用中,透過收發器334從編碼器320接收已壓縮影像資料,並且在送至解碼器處理緩衝區332進行解壓縮之前,暫時儲存在輸入緩衝區331內。然後,該結果影像資料在傳輸至顯示裝置340之前,儲存在解碼器輸出緩衝區333內。收發器324也適用於透過解碼器資料緩衝區335傳輸其他資料,像是接收自顯示裝置340的一感測器資料。 In use, the compressed image material is received from encoder 320 via transceiver 334 and temporarily stored in input buffer 331 before being sent to decoder processing buffer 332 for decompression. The resulting image data is then stored in the decoder output buffer 333 prior to transmission to the display device 340. Transceiver 324 is also adapted to transmit other data, such as a sensor data received from display device 340, through decoder data buffer 335.

根據較佳具體實施例,緩衝區331、333、335可為任何合適的暫時儲存設備形式,並且在一個範例中,可包括高效能FIFO(先進先出)場記憶體晶片等等。該輸出緩衝區通常連接至HDMI連接埠,而資料緩衝區335則連接至USB連接埠,藉此允許等效連接至該顯示裝置。 According to a preferred embodiment, the buffers 331, 333, 335 can be in the form of any suitable temporary storage device, and in one example, can include a high performance FIFO (first in first out) field memory chip or the like. The output buffer is typically connected to the HDMI port and the data buffer 335 is connected to the USB port, thereby allowing an equivalent connection to the display device.

收發器334可為任何合適形式,但是在一個範例中,允許該編碼器與該解碼器之間短範圍無線電通訊360,例如透過點對點直接WiFiTM連接、60GHz無線技術等等。 The transceiver 334 may be any suitable form, in one example, allowing short-range radio communication between the encoder and the decoder 360, for example, through direct peer connection WiFi TM, 60GHz wireless technologies.

處理裝置332可包括依照記憶體內儲存的軟體指令操作之通 用處理裝置。然而,在一個範例中,為了確定適當的低解壓縮時間,該處理裝置包括設置成執行該解壓縮處理的客製化硬體。這應包括選擇性關聯於實現邏輯的韌體,像是一FPGA(場可程式編輯閘陣列)、一圖形處理單元(GPU,Graphics Processing Unit)、一專用積體電路(ASIC,Application-Specific Integrated Circuit)、一晶片上系統(SoC,system on a chip)、數位信號處理器(DSP,digitial signal processor)或任何其他電子裝置、系統或配置。在較佳範例中,解碼器處理裝置332設置成執行每一DCT的個別通道並行處理,以及個別頻率係數的並行編碼。同樣,雖然顯示單一解碼器處理裝置332,實務上,可提供各別解碼器處理裝置332來同時編碼每一該等通道,或另外可使用、一GPU或其他類似並行處理架構。在像是該Y通道這類通道未編碼的事件中,該解碼器處理裝置可在將該各別資料發送至解碼器輸出緩衝區333當中簡單導入一延遲,確定這仍舊與該等已解碼CbCr通道同步。 The processing device 332 can include a device that operates in accordance with software instructions stored in the memory. Use a processing device. However, in one example, to determine an appropriate low decompression time, the processing device includes a customized hardware configured to perform the decompression process. This should include firmware that is selectively associated with the implementation logic, such as an FPGA (field programmable gate array), a graphics processing unit (GPU), and a dedicated integrated circuit (ASIC, Application-Specific Integrated). Circuit), a system on a chip (SoC), a digital signal processor (DSP), or any other electronic device, system, or configuration. In a preferred example, decoder processing device 332 is arranged to perform individual channel parallel processing of each DCT, as well as parallel encoding of individual frequency coefficients. Likewise, while a single decoder processing device 332 is shown, in practice, individual decoder processing devices 332 can be provided to simultaneously encode each of the channels, or alternatively, a GPU or other similar parallel processing architecture can be used. In the case of a channel uncoded such as the Y channel, the decoder processing means can simply introduce a delay in the transmission of the individual data to the decoder output buffer 333 to determine that this is still associated with the decoded CbCr. Channel synchronization.

顯示裝置340包括至少一個微處理器341、一記憶體342、一選配輸入/輸出裝置343,像是鍵盤或輸入按鈕、一或多個感測器344、一顯示器345以及的一外部介面346,如所示透過一匯流排347互連。 The display device 340 includes at least one microprocessor 341, a memory 342, an optional input/output device 343, such as a keyboard or input button, one or more sensors 344, a display 345, and an external interface 346. Interconnected through a bus 347 as shown.

顯示裝置340可為HMD形式,因此提供於適當外殼內,然後可讓使用者佩戴,並包括相關透鏡,允許觀看到該顯示器,精通技術人士將會了解。 Display device 340 can be in the form of an HMD, and thus is provided in a suitable housing that can then be worn by a user and includes an associated lens that allows viewing of the display, as will be appreciated by those skilled in the art.

在此範例中,外部介面347適用於用來透過有線連接,將該顯示裝置正常連接至處理系統310。雖然顯示單一外部介面347,不過這僅為範例,並且實際上可提供使用許多方法(例如乙太網路、序列、USB、無線等等)的多個介面。在此特定範例中,該外部介面通常包括至少一資料連 接,像是USB,以及視頻連接,像是DisplayPort、HMDI、Thunderbolt等等。 In this example, the external interface 347 is adapted to normally connect the display device to the processing system 310 via a wired connection. Although a single external interface 347 is shown, this is merely an example and may actually provide multiple interfaces using many methods (eg, Ethernet, serial, USB, wireless, etc.). In this particular example, the external interface typically includes at least one data link Connected, like USB, and video connections, like DisplayPort, HMDI, Thunderbolt, and more.

在使用中,微處理器341執行儲存在記憶體342內應用程式軟體形式的指令,允許執行所需的處理。該應用程式軟體可包括一或多個軟體模組,並且可在合適的執行環境內執行,像是一作業系統環境等。因此,應了解,該處理裝置可為任何電子處理裝置,像是微處理器、微晶片處理器、邏輯閘組態、選擇性關聯於實施邏輯的韌體,諸如FPGA(場可程式編輯閘陣列)、一圖形處理單元(GPU)、一專用積體電路(ASIC)、一晶片上系統(SoC)、數位信號處理(DSP)或任何其他電子裝置、系統或配置。 In use, microprocessor 341 executes instructions stored in the form of application software in memory 342, allowing the required processing to be performed. The application software can include one or more software modules and can be executed in a suitable execution environment, such as an operating system environment. Therefore, it should be understood that the processing device can be any electronic processing device such as a microprocessor, a microchip processor, a logic gate configuration, a firmware selectively associated with the implementation logic, such as an FPGA (field programmable gate array) ), a graphics processing unit (GPU), a dedicated integrated circuit (ASIC), a system on a chip (SoC), digital signal processing (DSP), or any other electronic device, system, or configuration.

感測器344一般用於感測顯示裝置340的方位及/或位置,並且可包括慣性感測器、加速度計等。可提供像是光感測器或接近感測器這些額外感測器,來決定目前是否正在佩戴該顯示裝置,而眼睛追蹤感測器可用於提供使用者凝視點的指示。 The sensor 344 is generally used to sense the orientation and/or position of the display device 340 and may include an inertial sensor, an accelerometer, or the like. Additional sensors, such as light sensors or proximity sensors, can be provided to determine if the display device is currently being worn, and an eye tracking sensor can be used to provide an indication of the user's gaze point.

在一個範例中,該顯示裝置可因此為現有商業顯示裝置,像是HTC ViveTM、Oculus RiftTM或Playstation VRTM頭戴組,不過應了解,這並非必需並且可使用任何合適的配置。 In one example, the display device can thus display device is a conventional commercial, such HTC Vive TM, Oculus Rift TM Playstation VR TM wearing or group, it should be appreciated that this is not necessary and may use any suitable configuration.

此時將更詳盡說明該影像壓縮/解壓縮的操作範例。 An example of the operation of the image compression/decompression will be described in more detail.

為了該範例的目的,假設處理系統310正在執行產生顯示在顯示裝置340上內容的應用程式軟體,其中根據來自顯示裝置340上感測器345以及選配的其他感測器之感測器資料,動態地顯示內容,例如手持控制器或位置檢測系統(未顯示),如精通技術人員將了解的。 For the purposes of this example, assume that processing system 310 is executing an application software that produces content displayed on display device 340, wherein sensor data from sensors 345 on display device 340 and other selected sensors, Dynamically display content, such as a handheld controller or position detection system (not shown), as will be appreciated by those skilled in the art.

由處理系統310所執行的動作,係由處理器311依照在記憶體312內儲存為應用程式軟體的指令來執行,及/或透過I/O裝置313或其他週邊 (未顯示)接收自使用者的輸入指令來執行。顯示裝置340所執行的動作由處理器341依照在記憶體342內儲存為應用程式軟體的指令來執行。 The operations performed by processing system 310 are performed by processor 311 in accordance with instructions stored in memory 312 as application software, and/or through I/O device 313 or other peripherals. (not shown) is received from the user's input command to execute. The actions performed by display device 340 are performed by processor 341 in accordance with instructions stored in memory 342 as application software.

編碼器320和解碼器340當成處理系統310與顯示裝置340之間的介面,允許影像資料顯示於顯示裝置340上之前壓縮、無線傳輸然後解壓縮,同時也允許感測器資料或輸入指令資料回傳至該處理系統。由編碼器320和解碼器330所執行的動作通常由各別處理裝置322、332根據已定義的程式編輯來執行,並且在一個範例中,根據一客製化硬體組態及/或嵌入式韌體內的指令來執行。 The encoder 320 and the decoder 340 serve as an interface between the processing system 310 and the display device 340, allowing the image data to be compressed, wirelessly transmitted, and then decompressed before being displayed on the display device 340, while also allowing the sensor data or inputting instruction data back. Passed to the processing system. The actions performed by encoder 320 and decoder 330 are typically performed by respective processing devices 322, 332 in accordance with defined program editing, and in one example, according to a customized hardware configuration and/or embedded The instructions in the firmware are executed.

然而,應了解,針對以下範例目的所假設的上述組態並非必需,並且可使用許多其他組態,例如:該編碼器與解碼器的功能性可直接內建在處理系統310與顯示裝置340之內。此外,該壓縮技術可套用至廣泛的其他其況中,包括在一或多個電腦系統上壓縮與解壓縮影像,不需要使用分開的顯示裝置。然而,上述配置對於虛擬或增強實境應用、遙現應用等特別有利。 However, it should be appreciated that the above-described configuration assumed for the following example purposes is not required and that many other configurations may be used, for example, the functionality of the encoder and decoder may be directly built into processing system 310 and display device 340. Inside. In addition, the compression technique can be applied to a wide variety of other situations, including compressing and decompressing images on one or more computer systems without the need for separate display devices. However, the above configuration is particularly advantageous for virtual or augmented reality applications, telepresence applications, and the like.

此時將參閱第四A圖至第四D圖說明壓縮與後續解壓縮影像資料的方法之範例程序。 An example procedure for compressing and subsequently decompressing image data will be described with reference to Figures 4A through 4D.

在此範例中,在步驟400和402上,編碼器320從處理系統310接收影像資料,特別是代表一系列影像的視頻資料,然後暫時儲存在編碼器輸入緩衝區321內。接著分析該影像資料,例如通過解析該資料來識別限定標頭(header)的該資料內之旗標、識別一影像的開頭等等,在步驟404上允許獲取對應至接下來8x8像素區塊的影像資料。在此方面,當緩衝該資料時,該編碼器從該影像要求一初始8x8像素區塊,以便開始處理。因此, 在開始處理之前,在編碼器輸入緩衝區321內填入一影像的前七行像素,以及第八行像素的前八個像素。隨著接收到接下來八個像素,接著處理接下來8x8區塊,然後重複到已經處理完該影像前八列內所有像素。接著用類似方式處理接下來八列群組。 In this example, at steps 400 and 402, encoder 320 receives image data from processing system 310, particularly video material representing a series of images, and then temporarily stores it in encoder input buffer 321 . The image data is then analyzed, for example by parsing the data to identify a flag within the data defining the header, identifying the beginning of an image, etc., at step 404, allowing access to the next 8x8 pixel block. video material. In this regard, when buffering the data, the encoder requests an initial 8x8 pixel block from the image to begin processing. therefore, Before the start of processing, the encoder input buffer 321 is filled with the first seven rows of pixels of an image, and the first eight pixels of the eighth row of pixels. As the next eight pixels are received, the next 8x8 block is processed, and then all pixels in the first eight columns of the image have been processed. The next eight column groups are then processed in a similar manner.

該影像資料通常為多通道RGB資料的形式,然後在步驟406上由處理裝置322轉換成YCbCr亮度與色度通道。此處理可用已知的數學座標轉換來執行,因此將不會進一步詳細說明。 The image material is typically in the form of multi-channel RGB data and then converted by processing device 322 to YCbCr luminance and chrominance channels at step 406. This processing can be performed with known mathematical coordinate transformations and will therefore not be described in further detail.

在步驟408上,一2D DCT套用至每一該等亮度與色度通道,藉此將該等通道轉換至頻率領域。此處理可用已知的技術執行,並且在較佳範例中,由處理裝置322以並行度非常高的方式執行,藉此縮短處理時間。每一通道上的轉換處理結果為8x8矩陣,具有64個頻率係數,代表該各別影像通道內不同頻率分量的強度。 At step 408, a 2D DCT is applied to each of the luminance and chrominance channels, thereby converting the channels to the frequency domain. This processing can be performed using known techniques, and in the preferred example, is performed by processing device 322 in a very high degree of parallelism, thereby reducing processing time. The result of the conversion process on each channel is an 8x8 matrix with 64 frequency coefficients representing the strength of different frequency components within the respective image channel.

在步驟410上,一比例縮放因數套用至每一矩陣,例如用該比例縮放因數除以每一頻率係數,藉此降低每一頻率係數的強度。該比例縮放因數應為任何值,並且可不同通道都不同。身為此處理的一部分,該已比例縮放的頻率係數通常數值簡化為為整數或有效圖的設定數量,藉此減少編碼該等頻率係數所需資料的量,例如:係數500應需要9位元來編碼,而50只需要6位元,因此套用10的比例縮放因數可減少編碼該等特別頻率係數所需之位元數。 At step 410, a scaling factor is applied to each matrix, for example by dividing the scaling factor by each frequency coefficient, thereby reducing the strength of each frequency coefficient. The scaling factor should be any value and can be different for different channels. For this part of the process, the scaled frequency coefficients are usually reduced to a set number of integers or significant pictures, thereby reducing the amount of data required to encode the frequency coefficients, for example, the coefficient 500 should require 9 bits. To encode, and 50 only requires 6 bits, so applying a scaling factor of 10 reduces the number of bits needed to encode the particular frequency coefficients.

在此方式中,應了解較低值係數可數值簡化為零,例如4經過比例縮放為0.4,並因此四捨五入為零。雖然這導致資訊損失,這傾向發生於已知對該影像整體外觀貢獻較少的較高頻率分量,因此這種損失的衝 擊有限。 In this way, it should be understood that the lower value coefficient can be reduced to zero, for example 4 is scaled to 0.4 and thus rounded to zero. Although this leads to loss of information, this tends to occur at higher frequency components that are known to contribute less to the overall appearance of the image, so the loss of this loss Hit limited.

在套用該比例縮放因數之後,在步驟412上決定選擇規則。該等選擇規則用於允許選擇某些該等頻率分量,如此在步驟414上可拋棄其他分量。該選擇通常根據定義為對角跨越該矩陣的一階層(hierarchy)之層級來執行,如此一個8x8頻率領域矩陣包括分別具有1、2、3、4、5、6、7、8、7、6、5、4、3、2、1係數的15層級。 After applying the scaling factor, the selection rule is determined at step 412. The selection rules are used to allow selection of certain of the frequency components such that other components may be discarded at step 414. The selection is typically performed according to a hierarchy defined as diagonal across the hierarchy of the matrix, such an 8x8 frequency domain matrix comprising 1, 2, 3, 4, 5, 6, 7, 8, 7, 6 respectively. 15 levels of 5, 4, 3, 2, 1 coefficients.

已拋棄的該等層級通常是較高頻率分量,這上面有提到對於該影像外觀的貢獻較低。根據該較佳實施,該等選擇規則基於一廣泛的因素範圍來定義哪個層級被拋棄。 The levels that have been discarded are usually higher frequency components, and there is a mention of a lower contribution to the appearance of the image. According to the preferred implementation, the selection rules define which level is discarded based on a wide range of factors.

例如:色度通道對於影像外觀的貢獻通常低於亮度通道,所以相對於該亮度通道來說,通常會拋棄更多層級的色度。如此例如,針對該亮度通道Y,保留層級1至8,對應至36個頻率係數,如第五圖內531上所示,而針對該等色度通道Cb和Cr,可保留層級1至6,對應於只有21個頻率係數,如第五圖內532和533上所示。應了解,這減少從192編碼至78通過全部三個通道所需的頻率係數總量。 For example, the chroma channel's contribution to the appearance of the image is usually lower than the brightness channel, so more levels of chromaticity are usually discarded relative to the brightness channel. Thus, for example, for the luminance channel Y, levels 1 through 8 are reserved, corresponding to 36 frequency coefficients, as shown in 531 of the fifth diagram, and levels 1 through 6 may be reserved for the chrominance channels Cb and Cr, Corresponds to only 21 frequency coefficients, as shown in 532 and 533 in the fifth figure. It will be appreciated that this reduces the total amount of frequency coefficients required to encode all of the three channels from 192 to 78.

根據規則選擇要保留哪個階層,當選擇要保留哪個階層時,允許該編碼器和解碼器套用相同標準,接著以即時調適方式執行之。接著根據其他因素選擇不同階層,像是編碼器與解碼器之間一通訊通道的品質及/或頻寬。如此,若由於干擾而減少頻寬,可選擇較少階層,這導致較高壓縮程度。雖然這將導致影像品質下降,不過在許多應用中,像是VR,某些框品質下降受注目的程度要低於掉框或增加延遲,因此是較佳結果。 Which hierarchy to keep is selected according to the rules, and when selecting which hierarchy to keep, the encoder and decoder are allowed to apply the same criteria, and then executed in an instant adaptation manner. Then select different levels according to other factors, such as the quality and/or bandwidth of a communication channel between the encoder and the decoder. Thus, if the bandwidth is reduced due to interference, fewer levels can be selected, which results in a higher degree of compression. Although this will result in a decline in image quality, in many applications, such as VR, some frame quality degradation is less noticeable than dropping the frame or increasing the delay, so it is the better result.

其他因素可包括但不受限於該顯示裝置的移動,尤其是移動 速率、影像顯示需求、目標顯示解析度、該等一或多個影像之內該像素陣列的位置以及該等一或多個影像之內該項素陣列相對於該等一或多個影像的觀察者凝視點之位置。底下將更詳細說明進一步範例。 Other factors may include, but are not limited to, movement of the display device, especially movement Rate, image display requirement, target display resolution, position of the pixel array within the one or more images, and observation of the element array relative to the one or more images within the one or more images The gaze is at the position of the point. Further examples are explained in more detail below.

在步驟416上,決定一位元編碼方案,然後在步驟418上,允許使用不同位元數來選擇性編碼該已選取頻率係數。在此方案,如上述,一已比例縮放頻率分量可能只需要6位元就可完全編碼該係數。因此,選取該位元編碼方案,如此針對該階層內每一層級,改變用來編碼該等頻率係數的位元數。這是可行的,因為較高頻率分量通常具有較小的強度,因此需要較少的位元進行編碼。 At step 416, a one-bit encoding scheme is determined, and then at step 418, the selected frequency coefficients are selectively encoded using different number of bits. In this scheme, as described above, a scaled frequency component may only require 6 bits to fully encode the coefficient. Therefore, the bit coding scheme is chosen such that for each level in the hierarchy, the number of bits used to encode the frequency coefficients is changed. This is possible because higher frequency components typically have less intensity and therefore require fewer bits for encoding.

在一個範例中,用於該亮度通道的該編碼方案不同於該色度通道所使用的,而範例編碼方案顯示於底下的表格1內。 In one example, the encoding scheme for the luma channel is different from that used for the chroma channel, and the example encoding scheme is shown in Table 1 below.

Figure TW201806386AD00001
Figure TW201806386AD00001

第五圖內顯示用於該等三個通道每一者中前6個層級的此編碼形式之範例。使用選擇規則與位元編碼方案的此特定組合導致以129位元編碼亮度通道541,並且用60位元編碼色度通道542、543之每一者,導致只使用249位元就可編碼該8x8像素陣列的全部三個通道。應了解,這相較於 需要192位元組的原始未壓縮影像資料,代表超過六倍的壓縮。 An example of this coding form for the first six levels of each of the three channels is shown in the fifth figure. This particular combination of selection rules and bit encoding schemes results in a luminance channel 541 encoded in 129 bits, and each of the chroma channels 542, 543 is encoded in 60 bits, resulting in encoding the 8x8 using only 249 bits. All three channels of the pixel array. It should be understood that this is compared to The original uncompressed image data of 192 bytes is required, representing more than six times the compression.

從此將可了解,具有0位元的加密通道有效對應至拋棄該通道,因此這可通過選擇使用該等編碼規則的一編碼方案,用來當成選擇該等已編碼係數之方式,藉此有效地將步驟412和414與416和418組合。 From this it will be appreciated that an encrypted channel having 0 bits effectively corresponds to discarding the channel, so this can be used as a way of selecting the encoded coefficients by selecting a coding scheme using the encoding rules, thereby effectively Steps 412 and 414 are combined with 416 and 418.

一旦已經執行該編碼,則在步驟420上利用執行並列至序列位元組編碼,可將該等位元已編碼頻率分量串連成一位元串流,然後允許以32位元組(256位元)表示。在步驟422上,剖析該等位元組,來在步驟424上識別後續一致位元組。尤其是,此方式用於識別三個或更多一致位元組的子序列,然後在步驟426上替換成一代碼,不損失任何資訊。 Once the encoding has been performed, the parallel encoded bit components can be concatenated into a one-bit stream by performing parallel-to-sequence byte encoding at step 420, and then 32-bit tuples (256 bits) are allowed. ) said. At step 422, the octets are parsed to identify subsequent contiguous contigs at step 424. In particular, this approach is used to identify subsequences of three or more consistent bytes and then replace it with a code at step 426 without losing any information.

特別是針對大部分影像,在該結果編碼頻率係數內有零字串,在此該等已比例縮放的係數都數值簡化為零。因此,可用一代碼替換,其可由該解碼器識別,允許該解碼器重新插入一致位元組的子序列。 In particular for most images, there is a zero string within the resulting coded frequency coefficient, where the scaled coefficients are all reduced to zero. Thus, a code can be substituted, which can be recognized by the decoder, allowing the decoder to re-insert a subsequence of a consistent byte.

雖然該代碼可為任何合適的形式,在一個範例中,該代碼包括識別該特定位元組為代碼的一標頭,以及對應至一致位元組的值與編號之資訊。在較佳配置當中,使用布林OR運算將一2位元組代碼與一列(1-8)內零編號組合。在一個範例中,該零編號代表為N-1,如此0-7的數字與該2位元組代碼進行OR運算,如此只採用該第二位元組的3位元,例如:所使用的該代碼可為(1111 1111;1111 1000),其中該第二位元組根據零編號與0-7進行OR運算。應了解,類似方式可用於不同值。 Although the code can be in any suitable form, in one example, the code includes a header identifying the particular byte as a code, and information corresponding to the value and number of the consistent byte. In a preferred configuration, a 2-byte code is combined with a column (1-8) zero number using a Boolean OR operation. In one example, the zero number is represented as N-1, and the number of 0-7 is ORed with the 2-byte code, so only the third bit of the second byte is used, for example: used The code can be (1111 1111; 1111 1000), where the second byte is ORed according to the zero number and 0-7. It should be appreciated that a similar approach can be used for different values.

此方式運作良好,因為該編碼很少導致連續數字超過或等於248之值,如此該解碼演算法可簡單搜尋具有255值的一個位元組以及具有值大於或等於248的後續位元組,將其識別為與已編碼頻率分量相反地代 碼。然後用對應至具有由該第二位元中最後3位元所表示一系列零的該資料之位元組來取代此代碼。這可導致在根據最新測試的該位元編碼階段之後,資料可進一步縮小19-25%。 This method works well because the code rarely causes the continuous number to exceed or equal to 248, so the decoding algorithm can simply search for a byte with a value of 255 and a subsequent byte with a value greater than or equal to 248, It is identified as being opposite to the encoded frequency component code. This code is then replaced with a byte corresponding to the data having a series of zeros represented by the last 3 bits of the second bit. This can result in a further reduction of 19-25% of the data after the bit coding phase according to the latest test.

在執行代碼替換之後,在步驟428上輸出已壓縮影像資料。尤其是,該已壓縮影像資料通常儲存在輸出緩衝區323內,直到有足夠資料,此時建立一資料封包並由收發器324傳輸至該編碼器。 After the code replacement is performed, the compressed image data is output at step 428. In particular, the compressed image data is typically stored in output buffer 323 until sufficient data is available, at which point a data packet is created and transmitted by transceiver 324 to the encoder.

在步驟430上,解碼器330透過收發器334接收該已壓縮資料,然後儲存在解碼器輸入緩衝區331內。在步驟432上剖析該資料,以識別該資料內的代碼,如上述,然後在步驟434上用重複的一致位元組之子序列來替換,藉此重新建立位元已編碼頻率係數的該位元串流。 At step 430, decoder 330 receives the compressed data via transceiver 334 and stores it in decoder input buffer 331. The data is parsed at step 432 to identify the code within the data, as described above, and then replaced with a subsequence of repeated consistent bytes at step 434, thereby reestablishing the bit of the bit encoded frequency coefficient. Streaming.

在步驟436上,解碼器處理裝置332決定用於編碼該影像資料的該位元編碼方案,用此方案來執行該位元串流的序列至並列解碼,藉此在步驟438上決定該等已編碼頻率係數。尤其是,這允許解碼器處理裝置332決定用於編碼該頻率係數的該位元的數字,允許該位元串流有效分成個別已編碼頻率係數。在步驟440上使用該等個別頻率係數來重新建立該比例縮放的頻率矩陣,使用空值產生拋棄的頻率係數,藉此填滿整個矩陣,接著在步驟442上根據該比例縮係數比例縮放。 At step 436, decoder processing device 332 determines the bit encoding scheme used to encode the image material, and uses this scheme to perform the sequence of the bit stream to parallel decoding, thereby determining at step 438 that the Coding frequency coefficient. In particular, this allows the decoder processing means 332 to determine the number of bits used to encode the frequency coefficients, allowing the bit stream to be effectively divided into individual coded frequency coefficients. The scaled frequency matrices are re-established using the individual frequency coefficients at step 440, the discarded frequency coefficients are generated using null values, thereby filling the entire matrix, and then scaled according to the scaled down coefficients at step 442.

在步驟444上,在步驟446上將每一YCbCr通道的該已轉換矩陣轉換成RGB通道之前,套用逆向2D DCT轉換,允許在步驟448上輸出一8x8像素區塊,而允許由顯示裝置340實施。 At step 444, reverse 2D DCT conversion is applied prior to converting the converted matrix of each YCbCr channel to an RGB channel at step 446, allowing an 8x8 pixel block to be output at step 448, allowing execution by display device 340. .

因此,上述處理可顯著減少每一8x8像素區塊編碼所需的影像資料量,因此減少整體影像量。尤其是,使用YCbCr通道的2D DCT、對 結果頻率係數進行選擇性位元編碼以及一選配的最終非破壞編碼方案,就可實現此目的。每一通道都可同時處理,以並行方式將該DCT套用至該8x8陣列。更進一步,每一該等頻率係數的位元編碼也同時發生,產生大量並行方法,允許以迅速方式同時執行壓縮與解壓縮,造成對等待時間有最小影響,這在像是VR、AR以及遙現這類即時應用當中相當重要。 Therefore, the above processing can significantly reduce the amount of image data required for each 8x8 pixel block encoding, thus reducing the overall image amount. In particular, 2D DCT using YCbCr channels, pair The result is that the frequency coefficient is selectively bit encoded and an optional final non-destructive coding scheme is achieved. Each channel can be processed simultaneously, applying the DCT to the 8x8 array in parallel. Furthermore, the bit coding of each of these frequency coefficients also occurs simultaneously, producing a large number of parallel methods that allow simultaneous compression and decompression to be performed in a rapid manner, with minimal impact on latency, such as VR, AR, and telemetry. This type of instant application is quite important.

此時將參閱第六圖和第七圖來說明實現選擇規則的方式範例。 An example of the way in which the selection rules are implemented will be described with reference to the sixth and seventh figures.

尤其是,此範例著重在如何使用一影像之內該像素陣列的空間定位來影響該選擇處理,並因此影響所執行的壓縮量。針對其他因素可執行類似處理,並且本文將不再詳細說明。此處理對於編碼器或解碼器來說都一樣,所以為了容易說明,因此只將焦點放在編碼器的操作上。 In particular, this example focuses on how to use the spatial localization of the pixel array within an image to affect the selection process and thus the amount of compression performed. Similar processing can be performed for other factors and will not be described in detail herein. This process is the same for the encoder or decoder, so for ease of illustration, only focus is placed on the operation of the encoder.

在此範例中,在步驟600上,編碼器處理裝置322決定該目前通道的選擇規則。在此方面,如先前所述,不同規則通常會套用至該等亮度與色度通道之每一者。然後在步驟605上,編碼器處理裝置322決定該影像之內該像素陣列的位置,並從此決定是否伴隨有與該位置有關的一絕對規則。在此方面,當使用頭戴組顯示影像時,該透鏡配置通常表示看不見影像的該部分。第七圖內顯示此範例,其顯示一影像的可觀看部分701以及不可觀看部分702。在此方面,若該像素陣列位於不可觀看部分702內,則不需要對該像素陣列編碼,因此該處理可簡單忽略該等頻率係數的所有層級。因此,在步驟610上若存在該像素陣列絕對位置的規則,則該處理前往步驟625,允許決定各別層級選擇,然後在步驟630上使用各別位元編碼方案,如上面關於步驟414至418的說明。 In this example, at step 600, encoder processing device 322 determines the selection rules for the current channel. In this regard, as previously described, different rules are typically applied to each of the luminance and chrominance channels. Then at step 605, encoder processing device 322 determines the location of the array of pixels within the image and thereby determines if an absolute rule associated with the location is accompanied. In this regard, when an image is displayed using a headset, the lens configuration generally indicates that the portion of the image is not visible. This example is shown in the seventh diagram, which shows a viewable portion 701 of an image and an unviewable portion 702. In this regard, if the pixel array is located within the unviewable portion 702, the pixel array need not be encoded, so the process can simply ignore all levels of the frequency coefficients. Thus, if there is a rule for the absolute position of the pixel array at step 610, then the process proceeds to step 625, allowing for individual level selection to be determined, and then a separate bit coding scheme is used at step 630, as described above with respect to steps 414 through 418. instruction of.

否則在步驟615上,編碼器處理裝置322決定該影像的觀察者凝視點。運用眼睛追蹤感應系統就可實現,精通技術人士就可了解。一旦已經決定,在步驟620上決定一相對位置,以及決定一範例內該凝視點與該目前像素陣列位置之間的距離,然後在步驟625和630上用此來引導係數及/或位元編碼方案決策。在此方面,當一個人的周邊視野感受不到與其焦點位置相同的細節層級時,所以可從使用者凝視點開始進一步使用更大程度的壓縮。 Otherwise, at step 615, encoder processing device 322 determines the observer gaze point for the image. It can be achieved by using an eye tracking sensing system, which can be understood by a skilled person. Once determined, a relative position is determined at step 620, and the distance between the gaze point and the current pixel array position in an example is determined, and then used at steps 625 and 630 to direct the coefficients and/or bit coding. Program decision making. In this respect, when a person's peripheral field of view does not feel the same level of detail as his focus position, a greater degree of compression can be further used from the user's gaze point.

在一個範例中,可將使用者凝視點四周定義成最低壓縮區域,而隨著從該最低區域往外移動時提高壓縮程度。該區域可為任何形狀,並且可根據特定環境而為圓形、橢圓形、卵形等等。該區域也可相對於該凝視區偏離中心,因此確保使用低於該凝視點的最小壓縮,此區域一般來說就是使用者比較會察覺的區域。 In one example, the user's gaze point can be defined as the lowest compression area, and the degree of compression is increased as moving outward from the lowest area. The area can be any shape and can be circular, elliptical, oval, etc. depending on the particular environment. This area can also be off center with respect to the gaze area, thus ensuring that a minimum compression below the gaze point is used, which is generally the area that the user will perceive.

亦應了解,在無法測量使用者凝視點的環境中,這可預測。一般而言,該預測聚焦在畫面的中央,但應了解,這並非必需並且可改變,例如根據像是所代表內容的性質、頭戴組移動方向等等。 It should also be understood that this is predictable in an environment where the user's gaze point cannot be measured. In general, the prediction is focused on the center of the picture, but it should be understood that this is not required and can be changed, for example, depending on the nature of the content represented, the direction in which the headset is moved, and the like.

如此,應了解,這說明允許根據該影像之內該像素陣列的絕對及/或相對位置來執行選擇性編碼之機制。讓該編碼器與解碼器每一者都執行相同演算法來選擇該編碼方案以及所使用的選擇,這允許該解碼器可靠並精確解壓縮該已壓縮影像資料,同時仍舊允許動態執行編碼,將整體壓縮程度最大化,同時讓可感受的影像品質損失降至最低。 As such, it should be appreciated that this illustrates a mechanism that allows for selective encoding to be performed based on the absolute and/or relative position of the pixel array within the image. Having the encoder and decoder each perform the same algorithm to select the encoding scheme and the selection used, which allows the decoder to reliably and accurately decompress the compressed image data while still allowing dynamic encoding to be performed, Maximize overall compression while minimizing perceived image quality loss.

應了解,類似方式可用於其他因素,像是傳輸品質及/或頻寬,因此確定該壓縮程度最適合當前的環境。 It should be appreciated that similar approaches can be used for other factors, such as transmission quality and/or bandwidth, so it is determined that this degree of compression is best suited to the current environment.

此時將參考第八圖說明用來壓縮影像資料以及後續解壓縮已壓縮影像資料的方法之進一步範例。 Further examples of methods for compressing image data and subsequently decompressing the compressed image data will be described with reference to the eighth figure.

雖然用單獨範例說明,不過從以下說明將了解,該當前範例可與上述壓縮/解壓縮技術結合使用,以便用來進一步改善壓縮與計算效能。尤其是,上述技術代表以下處理當中可運用的選項之一,不過也可了解,根據環境可適當其他壓縮技術。 Although illustrated by a separate example, it will be appreciated from the following description that this current example can be used in conjunction with the compression/decompression techniques described above to further improve compression and computational efficiency. In particular, the above technique represents one of the options available in the following processing, but it is also understood that other compression techniques may be appropriate depending on the environment.

在此範例中,在步驟800上,從像素資料獲得代表該等一或多個影像之內一像素陣列的像素資料。這可用任何合適方式實現,但是通常牽涉到緩衝所接收的影像資料,直到已經用類似上述方式獲得一像素陣列,像是8x8陣列。 In this example, at step 800, pixel data representing a pixel array within the one or more images is obtained from the pixel data. This can be accomplished in any suitable manner, but typically involves buffering the received image data until a pixel array, such as an 8x8 array, has been obtained in a manner similar to that described above.

在步驟810上,已決定一編碼方案,通常從一或多個先前定義的編碼方案當中選擇一編碼方案,像是上面關於第一圖至第七圖所說明的編碼方案。該選擇可用任何適當方式來執行,像是通過該影像及/或像素資料的分析、根據關聯於該影像的影像類型、根據來自影像來源或顯示器的指令等等,並且這通常根據當前情況的特定需求,執行來提供更高或更低壓縮程度。 At step 810, a coding scheme has been determined, typically selecting one of the one or more previously defined coding schemes, such as the coding scheme described above with respect to the first to seventh figures. The selection may be performed in any suitable manner, such as by analysis of the image and/or pixel data, by image type associated with the image, by instructions from the image source or display, etc., and this is typically based on current conditions Requirements, execution to provide higher or lower compression.

在步驟820上,使用該編碼方案編碼該像素資料,例如使用上述技術等等。在步驟830上,指示該編碼方案的一編碼代碼是例如通過與可用方案相關聯的查找(look-up),這與該已編碼區塊搭配使用來產生壓縮影像資料。在一個範例中,這可利用該已編碼代碼當成前綴碼加入至該已編碼像素資料來實現,儘管可使用其他方式,包括根據所使用的該編碼方案,簡單地通過用該編碼代碼取代該像素數據,例如使用一代碼字元替換。 At step 820, the pixel data is encoded using the encoding scheme, such as using the techniques described above, and the like. At step 830, an encoded code indicating the encoding scheme is, for example, by a look-up associated with the available scheme, which is used in conjunction with the encoded block to generate compressed image material. In one example, this may be accomplished by adding the encoded code as a prefix code to the encoded pixel data, although other methods may be used, including simply replacing the pixel with the encoded code depending on the encoding scheme used. Data, for example, is replaced with a code character.

一旦已經建立該已壓縮影像資料,然後這可傳輸至一目的地,例如一位元組串流的一部分,允許進行解碼來產生影像資料。 Once the compressed image material has been created, this can then be transmitted to a destination, such as a portion of a tuple stream, allowing decoding to produce image material.

在步驟840上,通常由決定來自該已壓縮影像資料的該編碼代碼來執行此處理。在此方面,該編碼代碼通常具有一組格式,像是位元的特定組合,這樣在所接收位元組串流之內就可輕易辨識。然後使用該編碼代碼來決定使用的該編碼方案,通常透過步驟850上的查找程序。然後在步驟860上,使用該已辨識編碼方案來解碼該已壓縮影像資料,例如使用上面關於第一圖至第七圖所描述的方式,藉此產生代表該等一或多個影像之內該像素陣列的像素資料。 At step 840, this processing is typically performed by determining the encoded code from the compressed image material. In this regard, the encoded code typically has a set of formats, such as a particular combination of bits, that is readily identifiable within the received byte stream. The encoding code is then used to determine the encoding scheme to use, typically through the lookup procedure at step 850. Then, at step 860, the encoded image data is decoded using the recognized encoding scheme, for example, using the manner described above with respect to the first to seventh figures, thereby generating a representation of the one or more images. Pixel data of the pixel array.

因此,上述處理允許使用一些編碼方案之一者來執行編碼。在較佳範例中,事先知道編碼器與解碼器使用該等不同編碼方案,允許針對已編碼/已解碼的該影像之內每一像素陣列動態改變。這確定該編碼方案用於最佳化被編碼的該特定資料,藉此實現壓縮最大化,同時確定維持其他所要的特性,像是影像品質與編碼時間。 Therefore, the above processing allows encoding to be performed using one of some encoding schemes. In a preferred example, it is known in advance that the encoder and decoder use the different encoding schemes to allow for dynamic changes to each pixel array within the encoded/decoded image. This determines that the encoding scheme is used to optimize the particular material being encoded, thereby maximizing compression while determining to maintain other desired characteristics, such as image quality and encoding time.

此時將描述一些進一步特色。 Some further features will be described at this time.

當編碼該影像時,該處理通常牽涉到根據不同因素的一範圍之一或多者,包括該影像資料的影像類型、從一影像資料來源或顯示器接收的一編碼方案指示、利用分析至少該影像資料與該像素資料之一者,或根據壓縮要求,像是要求的壓縮量、結果影像品質、壓縮延遲等等,來決定該編碼方案。 When encoding the image, the process typically involves one or more of a range of factors, including the image type of the image data, an encoding scheme indication received from an image data source or display, and utilizing at least the image. The data and one of the pixel data, or according to compression requirements, such as the required amount of compression, the resulting image quality, compression delay, etc., determine the coding scheme.

如此例如在編碼相片而非電腦生成圖形時,可使用不同編碼類型,因為其通常具有非常不同的屬性。從與該影像相關聯的中繼資料, 或根據該影像本身的屬性,就可獲得該影像的性質。另外,供應該影像資料的一影像來源,像是供應該影像資料來傳輸至一顯示器或其他計算裝置的一電腦系統,可指定應該使用的該編碼方案。 Thus, for example, when encoding photos rather than computer generated graphics, different encoding types can be used because they typically have very different properties. From the relay data associated with the image, Or depending on the properties of the image itself, the nature of the image can be obtained. In addition, an image source that supplies the image data, such as a computer system that supplies the image data for transmission to a display or other computing device, can specify the encoding scheme that should be used.

進一步範例為分析該像素資料,來識別該像素陣列的特性,例如若該像素陣列具有單一顏色,則應該使用與內含多種顏色的該像素陣列所用不同之演算法。這對於編碼具有單一顏色的大面積影像特別有用,像是天空或背景,允許指示使用純色來取代整個像素陣列的該像素資料之單一編碼代碼,藉此導致最大量壓縮,而對影像品質無有效損失。 A further example is to analyze the pixel data to identify characteristics of the pixel array. For example, if the pixel array has a single color, then a different algorithm than that used for the pixel array containing multiple colors should be used. This is especially useful for encoding large-area images with a single color, such as sky or background, allowing a single encoding code that indicates the use of a solid color to replace the pixel data of the entire pixel array, thereby resulting in maximum compression without effective image quality. loss.

進一步範例為梯度或邊界的識別,其可導致使用許多影像壓縮方式還是得不到所要壓縮物,因此可能需要替代的壓縮方式。 Further examples are the identification of gradients or boundaries, which can result in the use of many image compression methods or the desired compression, and thus alternative compression methods may be required.

在一個較佳範例中,其中該像素陣列並非純色,則使用關於第一圖至第七圖所描述的方式。在該像素陣列不含梯度或邊界的事件中,該技術可牽涉到編碼所有三個該等YCbCr通道。然而,在該像素陣列包含一梯度或邊界的事件中,該Y通道可不用編碼,如此保留額外的亮度資訊。雖然這減少所獲得的最終壓縮總量,不過由於該等CbCr通道的壓縮,所以該壓縮總量仍舊足夠,而該額外保留的顏色資訊可顯著改善該梯度或邊界區域內該結果影像的品質。 In a preferred example, wherein the pixel array is not a solid color, the manner described with respect to the first to seventh figures is used. In the event that the pixel array does not contain gradients or boundaries, the technique may involve encoding all three of the YCbCr channels. However, in the event that the pixel array contains a gradient or boundary, the Y channel can be encoded without the need to retain additional luminance information. Although this reduces the total amount of final compression obtained, the total amount of compression is still sufficient due to the compression of the CbCr channels, and the additional retained color information can significantly improve the quality of the resulting image in the gradient or boundary region.

該選擇也可用來控制一壓縮演算法的其他態樣,例如:這應用於以類似於關於第六圖中該處理所執行方式,指定在上述壓縮處理當中要保留哪個頻率係數。 This selection can also be used to control other aspects of a compression algorithm, for example: this applies to specifying which frequency coefficient to retain in the compression process described above, similar to the manner in which the process is performed in the sixth figure.

該編碼代碼通常指定為從0至255的數字形式,這可用單一位元組定義,並且允許最多256種不同的編碼方案供選擇。如此有廣泛不同的 編碼方案可使用,而這些方案都分別指派給數字0至255,如此可使用廣泛不同的編碼方案,藉此達成具有所要影像品質的最佳壓縮。在一個特定範例中,應了解,可建立編碼方案的工業標準清單,如此即使之前未溝通建立要使用的編碼方案,也可讓編碼與解碼系統協同運作。 The coded code is typically specified as a digital form from 0 to 255, which can be defined with a single byte and allows for up to 256 different coding schemes to choose from. So wide Encoding schemes can be used, and these schemes are each assigned to the numbers 0 to 255, so that a wide variety of encoding schemes can be used, thereby achieving optimal compression with the desired image quality. In a specific example, it should be understood that an industry standard list of coding schemes can be established so that the coding and decoding system can operate in concert even if the coding scheme to be used is not communicated before.

在一個特定範例中,該編碼代碼可由諸如「11111111」之類的固定格式前導位元組來識別,如此用來選擇指派給數字1的編碼方案之該編碼代碼應為「1111111100000001」。應了解,執行此允許該解碼處理輕鬆識別所使用的編碼處理。然而,任何合適的方式都可使用,並且上面範例並非用於設限。 In a particular example, the coded code may be identified by a fixed format preamble byte such as "11111111" such that the code code used to select the coding scheme assigned to the number 1 should be "1111111100000001". It should be appreciated that performing this allows the decoding process to easily identify the encoding process used. However, any suitable means can be used and the above examples are not intended to be limiting.

應了解,當解碼該已壓縮影像資料時,使用類似的方式,該方式包括將一編碼代碼替換成一純色的像素陣列,或使用先前說明的解碼處理。 It will be appreciated that when decoding the compressed image material, a similar approach is used, which involves replacing an encoded code with a solid color pixel array, or using the previously described decoding process.

亦應了解,可使用類似於上述的設備來執行該影像壓縮處理,因此不再進一步詳細說明。 It should also be appreciated that the image compression process can be performed using a device similar to that described above and therefore will not be described in further detail.

此時參閱第九A圖和第九B圖,更詳細說明進一步範例處理。 At this time, referring to the ninth A map and the ninth B graph, further example processing will be described in more detail.

在此範例中,在步驟904上,編碼器320從處理系統310接收影像資料,特別是代表一系列影像的視頻資料,然後在步驟902上暫時儲存在編碼器輸入緩衝區321內。接著分析該影像資料,例如通過解析該資料來識別限定標頭的該資料內之旗標、識別一影像的開頭等等,在步驟904上獲取對應至接下來8x8像素區塊的影像資料。應了解,這對應至上述步驟400至404,因此將不再進一步詳細說明。 In this example, at step 904, encoder 320 receives image data from processing system 310, particularly video material representing a series of images, and is then temporarily stored in encoder input buffer 321 at step 902. The image data is then analyzed, for example, by parsing the data to identify a flag within the data defining the header, identifying the beginning of an image, and the like, and acquiring image data corresponding to the next 8x8 pixel block at step 904. It should be understood that this corresponds to steps 400 through 404 above and will therefore not be described in further detail.

在步驟906上,編碼器920選擇要使用的一編碼方案。這可透 過8x8像素區塊的分析,例如決定該區塊是否為單一顏色、梯度、邊緣等等,或可根據該影像來源提供的資訊來實現。 At step 906, encoder 920 selects an encoding scheme to use. This can be seen The analysis of the 8x8 pixel block, for example, determines whether the block is a single color, gradient, edge, etc., or can be implemented based on information provided by the image source.

在顯示的範例中,該等編碼方案包括一第一編碼方案,用來在步驟908上執行一區塊替換,其中用一已知預定的代碼取代單色像素區塊。在步驟908上提供一第二編碼方案,在此範例中其對應至上述編碼方案,並且指定至步驟406至426。然而,應了解,可使用不同方案的任何數量N,然後在步驟910上選擇並使用其他方案。 In the example shown, the encoding scheme includes a first encoding scheme for performing a block replacement at step 908 in which a monochrome pixel block is replaced with a known predetermined code. A second encoding scheme is provided at step 908, which in this example corresponds to the encoding scheme described above, and is assigned to steps 406 through 426. However, it should be appreciated that any number N of different schemes can be used, and then other schemes are selected and used at step 910.

在步驟912上,代表該已選取編碼方案的一編碼代碼前置附加(prepended)至該已編碼資料,然後在步驟914上將此資料當成壓縮影像資料來輸出。 At step 912, an encoded code representing the selected encoding scheme is prepended to the encoded material, and then the data is output as compressed image data at step 914.

接著,在步驟916上,解碼器330接收該已壓縮影像資料,來執行此解碼,並在步驟918上,偵測該編碼代碼存在與否,然後在步驟920上,用此檢測結果來選擇一適當的解碼方案。例如:這可包括在步驟922上執行區塊替換,用單色像素區塊取代該預定代碼,或包括在步驟924上執行步驟432-446的該解碼處理。同樣,提供N合適的解碼方案,而依照需求可在步驟926上選擇並使用其他方案。 Next, in step 916, the decoder 330 receives the compressed image data to perform the decoding, and in step 918, detects the presence or absence of the encoded code, and then, at step 920, uses the detection result to select a Proper decoding scheme. For example, this may include performing a block replacement at step 922, replacing the predetermined code with a monochrome pixel block, or including performing the decoding process of steps 432-446 at step 924. Similarly, appropriate decoding scheme to provide N, and other programs can be selected and used in step 926 in accordance with requirements.

最終,在步驟928上,從該解碼器輸出一8x8像素區塊。 Finally, at step 928, an 8x8 pixel block is output from the decoder.

從此可了解,步驟906上執行的該選擇程序執行要執行的分類功能,如此每一像素區塊都可指派給不同的編碼方案。在一個範例中,最多可定義256個不同的方案,允許第三方導入新壓縮/解壓縮方案給先前說明架構之內的該8x8像素區塊。更進一步,使用者可定義特定分類方案,如此例如根據要編碼的該影像內容性質、該情況的需求,像是延遲需求等等, 例如256個方案的不同組合就可用於不同環境。 From this, it will be appreciated that the selection procedure executed at step 906 performs the classification function to be performed such that each pixel block can be assigned to a different coding scheme. In one example, up to 256 different schemes can be defined, allowing a third party to import a new compression/decompression scheme to the 8x8 pixel block within the previously illustrated architecture. Further, the user can define a specific classification scheme, such as, for example, according to the nature of the image content to be encoded, the needs of the situation, such as delay requirements, etc. For example, different combinations of 256 schemes can be used in different environments.

這大大增加了可執行的編碼之靈活性,並且特別允許使用針對每個像素區塊的分類處理,來動態選擇個別編碼方案,藉此根據具體情況優化對每個區塊的編碼。更進一步,可以提供不同的分類方案,每個不同的分類方案允許存取編碼方案的不同組合,藉此進一步增加靈活性,允許使用者確保可在各種不同情況中執行最佳編碼。 This greatly increases the flexibility of the executable encoding, and in particular allows the use of classification processing for each pixel block to dynamically select individual encoding schemes, thereby optimizing the encoding of each chunk as the case may be. Still further, different classification schemes can be provided, each of which allows access to different combinations of coding schemes, thereby further increasing flexibility, allowing the user to ensure that optimal coding can be performed in a variety of different situations.

在另一個廣泛形式中,上述第六圖和第七圖中描述的該移動壓縮方案還可結合不同的加密方案來使用,以提供一種將來自數位實境內容中一或多個影像形成部分的影像資料壓縮之方法,此時將參閱第十圖來說明。 In another broad form, the mobile compression scheme described in the sixth and seventh figures above may also be used in conjunction with different encryption schemes to provide an image forming portion from one or more of the digital reality content. The method of compressing image data will be explained with reference to the tenth figure.

在此範例中,該方法包括在步驟1000上從該影像資料獲得像素資料,該像素資料代表該等一或多個影像之內一像素陣列。這可用類似於上述方式來實現。 In this example, the method includes obtaining pixel data from the image data at step 1000, the pixel data representing an array of pixels within the one or more images. This can be done in a manner similar to that described above.

在步驟1010上,決定該等一或多個影像之內該像素陣列相對於一已定義位置的一位置,而該已定義位置至少部分指示該使用者的一凝視點。所定義的位置可以基於凝視的實際測量點,或該使用者的預期或預測凝視點,例如通過假設使用者在開始盯著該影像的大致中心,或基於內容,例如影像內的焦點、頭戴組的移動等來決定。此外,該定義點可偏離該凝視點,例如將此定位在該凝視點底下,來考量到個人傾向稍微聚焦在凝視點底下,避免走路時撞到障礙物。 At step 1010, a position of the pixel array within the one or more images relative to a defined location is determined, and the defined location at least partially indicates a gaze point of the user. The defined location may be based on the actual measurement point of the gaze, or the expected or predicted gaze point of the user, for example by assuming that the user is beginning to stare at the approximate center of the image, or based on content, such as focus within the image, wearing The group moves and so on. In addition, the defined point may deviate from the gaze point, such as positioning it below the gaze point, to take into account that the individual tends to focus slightly below the gaze point to avoid hitting the obstacle while walking.

接著,在步驟1020上將該像素資料壓縮,來產生壓縮的影像資料,該像素資料以至少部分依照該已決定位置來壓縮,如此壓縮程度取 決於該像素陣列的該已決定位置。 Then, the pixel data is compressed at step 1020 to generate compressed image data, and the pixel data is compressed at least partially according to the determined position, so that the degree of compression is taken Depends on the determined position of the pixel array.

應了解,可執行類似的解壓縮處理,其牽涉到在步驟1030上獲得已壓縮的影像資料,該已壓縮影像資料代表該等一或多個影像之內一像素陣列,並且至少部分根據該等一或多個影像之內的該像素陣列相對於一已定義位置之一位置來壓縮,該已定義位置至少部分指示該使用者的凝視點,以及在步驟1040上至少部分依照該已決定位置來解壓縮該已壓縮影像資料。 It will be appreciated that a similar decompression process can be performed which involves obtaining compressed image data at step 1030, the compressed image data representing an array of pixels within the one or more images, and based at least in part on such The pixel array within one or more images is compressed relative to a position of a defined location that at least partially indicates the gaze point of the user, and at least partially in accordance with the determined position at step 1040 Uncompress the compressed image data.

如此,這提供壓縮與後續解壓縮該影像的機制,其中該壓縮根據一像素陣列相對於一定義點的位置來控制,接著至少部分根據該使用者的預測或受測凝視點來控制。尤其是,這允許根據該像素陣列的位置,選擇壓縮程度,如此在該凝視點附近區域可使用較少壓縮,而遠離該凝視點的區域可使用較大壓縮,例如使用者的視野周邊內。這實際上提供了渲染(foveated)壓縮,通過增加使用者的周邊視野的壓縮,其中降低的影像品質不太明顯,從而允許實現更大的總體壓縮,而無可察覺的品質損失。 As such, this provides a mechanism for compressing and subsequently decompressing the image, wherein the compression is controlled based on the position of a pixel array relative to a defined point, and then controlled based at least in part on the predicted or measured gaze point of the user. In particular, this allows the degree of compression to be selected based on the position of the array of pixels such that less compression can be used in the vicinity of the gaze point, while greater compression can be used in areas remote from the gaze point, such as within the perimeter of the field of view of the user. This actually provides foveated compression by increasing the compression of the user's peripheral field of view, where the reduced image quality is less noticeable, allowing for greater overall compression without noticeable quality loss.

應了解,此處理可與上述壓縮處理結合使用,例如允許基於該像素陣列的位置來選擇不同的壓縮方案,並允許使用上述位元編碼方案。然而,這並非必需並且任何合適的壓縮方案都可使用,像是小波壓縮、自適應採樣等。 It will be appreciated that this process can be used in conjunction with the compression process described above, for example to allow selection of different compression schemes based on the location of the pixel array and to allow for the use of the above described bit coding scheme. However, this is not required and any suitable compression scheme can be used, such as wavelet compression, adaptive sampling, and the like.

在任何事件中,此時將描述一些進一步特色。 In any event, some further features will be described at this time.

在一個範例中,所定義位置是使用者的凝視測量點、使用者的凝視預期點、偏離使用者凝視測量點之處、偏離使用者凝視預期點之處以及至少部分依照指示使用者凝視點的凝視資料所決定點之一,其中該凝 視資料獲自於一凝視追踪系統。如此,所定義點可基於凝視的測量點或預測點並且可偏移,像是低於該凝視點,以便優化該壓縮程度,而不會引起可察覺的影像品質降低。 In one example, the defined location is the user's gaze measurement point, the user's gaze expected point, the deviation from the user's gaze measurement point, the deviation from the user's gaze at the expected point, and at least in part in accordance with the user's gaze point. Staring at one of the points determined by the data, wherein the condensation The information was obtained from a gaze tracking system. As such, the defined points may be based on the measured or predicted points of the gaze and may be offset, such as below the gaze point, to optimize the degree of compression without causing a noticeable degradation in image quality.

該壓縮程度可基於與該定義點的距離,例如遠離該凝視點時逐漸降低,但也可基於相對於該定義點的方向,如此高於或低於該定義點時壓縮較多。應了解,這允許在相對於該凝視點定位具有任意形狀的區域中使用相應的壓縮程度,並且這可以根據受壓縮內容的特定環境及/或性質來配置。例如,這允許圍繞該定義點的橢圓形、卵形或心形區域與周邊區域相比具有減少的壓縮量,從而在該使用者對任何壓縮物的感知將會更大的區域中優化影像品質。 The degree of compression may be based on a distance from the defined point, such as gradually decreasing away from the point of gaze, but may also be based on a direction relative to the defined point, such that the compression is greater when the point is above or below the defined point. It will be appreciated that this allows a corresponding degree of compression to be used in positioning an area having an arbitrary shape relative to the gaze point, and this may be configured according to the particular environment and/or nature of the compressed content. For example, this allows an elliptical, oval or heart-shaped region around the defined point to have a reduced amount of compression compared to the surrounding area, thereby optimizing image quality in areas where the user's perception of any compression will be greater. .

在一個範例中,該方法包括選擇複數個編碼方案之一者,並使用該已選取的編碼方案編碼該像素資料,如此應了解,這允許結合類似於第八圖和第九圖中描述的技術來執行渲染壓縮,其中使用的編碼方案係依照該像素陣列的位置來選擇。如此在一個範例中,每個編碼方案都提供相應的壓縮程度,並且其中該方法包括至少部分依照想要的壓縮程度及/或該像素陣列的位置來選擇編碼方案。 In one example, the method includes selecting one of a plurality of coding schemes and encoding the pixel data using the selected coding scheme, such that it is understood that this allows for combining techniques similar to those described in the eighth and ninth diagrams To perform rendering compression, the encoding scheme used is selected according to the location of the pixel array. Thus in one example, each coding scheme provides a corresponding degree of compression, and wherein the method includes selecting an encoding scheme based at least in part on the desired degree of compression and/or the location of the array of pixels.

該處理也涉及決定指出所使用編碼方案的一編碼代碼,並使用該編碼代碼和已編碼像素資料來產生壓縮影像資料,從而允許將其用於解碼該已壓縮影像資料。然而,這並非必需,或者該解壓縮處理可以涉及使用類似的標準來決定所使用的編碼方案,例如該像素陣列的位置以及因此所需的壓縮程度。 The process also involves deciding an encoding code indicating the encoding scheme used and using the encoding code and the encoded pixel data to generate compressed image data, thereby allowing it to be used to decode the compressed image material. However, this is not required, or the decompression process may involve the use of similar criteria to determine the coding scheme used, such as the location of the pixel array and thus the degree of compression required.

在一個範例中,該編碼方案使用類似於上面關於第一圖所描 述的方式,在此案例中,通過對該像素資料套用一轉換,來決定指出該像素陣列頻率分量的一組頻率係數,來壓縮影像資料,使用一位元編碼方案選擇性編碼至少某些該等頻率係數,從而產生一組已編碼的頻率係數,並使用該已編碼的頻率係數產生已壓縮影像資料。然而應了解,可使用任一或多個合適壓縮技術,像是JPEG等等。 In one example, the encoding scheme is similar to that described above with respect to the first graph. In the present case, by applying a conversion to the pixel data, a set of frequency coefficients indicating the frequency components of the pixel array is determined to compress the image data, and at least some of these are selectively encoded using a one-bit encoding scheme. A frequency coefficient that produces a set of encoded frequency coefficients and uses the encoded frequency coefficients to produce compressed image data. However, it should be understood that any suitable compression technique, such as JPEG, etc., can be used.

在該較佳範例中,如上面第一圖的案例中,該位元編碼方案定義用於將每一該等頻率係數編碼的位元數,如此至少某些該等已編碼頻率係數具有不同的位元數。更典型地,使用較少數的位元來編碼對應於較高頻率的頻率係數,並且較佳是,逐漸更少數量的位元用於對逐漸升高頻率相應的頻率係數進行編碼。在一個範例中,拋棄至少一些頻率係數(使用零位元有效進行編碼),使得該組已編碼頻率係數小於該組頻率係數,並且這些頻率係數通常對應於較高頻率。 In the preferred embodiment, as in the case of the first figure above, the bit coding scheme defines the number of bits used to encode each of the frequency coefficients, such that at least some of the encoded frequency coefficients have different bits. Yuan. More typically, a smaller number of bits are used to encode frequency coefficients corresponding to higher frequencies, and preferably, a progressively smaller number of bits are used to encode frequency coefficients corresponding to increasing frequencies. In one example, at least some of the frequency coefficients (effectively encoded using zero bits) are discarded such that the set of encoded frequency coefficients is less than the set of frequency coefficients, and these frequency coefficients generally correspond to higher frequencies.

在一個範例中,該方法包括選擇複數個位元編碼方案之一者,並依照該選取的位元編碼方案編碼該等頻率係數。如此應了解,不同的編碼方案可以對應於第一圖的該編碼方案,其中使用不同的位元編碼方案來用各別不同的位元數對不同的頻率係數進行編碼,從而提供不同的壓縮程度。 In one example, the method includes selecting one of a plurality of bit coding schemes and encoding the frequency coefficients in accordance with the selected bit coding scheme. It should be understood that different coding schemes may correspond to the coding scheme of the first figure, in which different bit coding schemes are used to encode different frequency coefficients with different number of bits to provide different degrees of compression. .

如此應了解,該位元編碼方案可至少部分根據想要的壓縮程度及/或該像素陣列的位置來選擇。這可根據其他因素,例如該像素陣列的位置、用於發送該已壓縮影像資料的一通訊連結之傳輸頻寬、用於發送該已壓縮影像資料的一通訊連結之傳輸服務品質、一顯示裝置的移動、影像顯示要求、一目標顯示解析度、正在處理的通道、錯誤矩陣等。如上述, 這允許動態調整該壓縮,以幫助優化該壓縮並獲得當前情況下最佳可能影像品質之能力。 It should thus be appreciated that the bit encoding scheme can be selected based at least in part on the degree of compression desired and/or the location of the array of pixels. This may be based on other factors, such as the location of the pixel array, the transmission bandwidth of a communication link for transmitting the compressed image data, the transmission service quality of a communication link for transmitting the compressed image data, and a display device. The movement, image display requirements, a target display resolution, the channel being processed, the error matrix, and so on. As above, This allows the compression to be dynamically adjusted to help optimize the compression and the ability to obtain the best possible image quality in the current situation.

在一個範例中,該等頻率分量配置在複數個層級內,並且其中每一位元編碼方案定義要用來編碼該等複數個層級中每一者內該等頻率係數的一個別位元數。尤其是,其中該陣列為N x N像素陣列,這產生2N-1階的頻率分量,其中每一階層內的分量都用各別位元數編碼。 In one example, the frequency components are arranged in a plurality of levels, and wherein each bit encoding scheme defines a number of different bits to be used to encode the frequency coefficients in each of the plurality of levels. In particular, where the array is an N x N pixel array, this produces a frequency component of 2 N -1 order, with components within each level being encoded with individual bit numbers.

如上述,該方法可包括以類似於上述方式套用一比例縮放因數。 As mentioned above, the method can include applying a scaling factor in a manner similar to that described above.

該影像資料通常定義複數個通道,其中該方法包括針對每一通道選擇性編碼頻率係數。例如:該像素資料可定義RGB通道,該等通道會轉換成YCbCr通道,然後如上述轉換該等通道。此處理涉及選擇性比該等Cb或Cr通道編碼更多頻率係數給該Y通道、選擇性同時編碼頻率係數給該等YCbCr通道及/或選擇性編碼頻率係數給該等CbCr通道並使用該Y通道,如此該Y通道有效未壓縮。 The image data typically defines a plurality of channels, wherein the method includes selectively encoding frequency coefficients for each channel. For example, the pixel data can define RGB channels that are converted to YCbCr channels and then converted as described above. The process involves selectively encoding more frequency coefficients to the Y channel than the Cb or Cr channels, selectively encoding frequency coefficients to the YCbCr channels and/or selectively encoding frequency coefficients to the CbCr channels and using the Y Channel, so the Y channel is effectively uncompressed.

在一個範例中,該轉換為一2-D離散餘弦轉換。 In one example, the conversion is a 2-D discrete cosine transform.

該方法通常也包括將該影像資料緩衝,以獲得該等像素陣列,例如通過緩衝像素的n-1列,以及下一列像素的接下來n像素,來形成第一nxn像素區塊。然後如前所述緩衝連續區塊,其中基於所選位元編碼方案、想要的壓縮程度及/或該像素陣列的位置,可選擇性控制每個區塊中的像素數。 The method also generally includes buffering the image data to obtain the array of pixels, such as by n-1 columns of buffered pixels, and subsequent n pixels of the next column of pixels to form a first n x n pixel block. The contiguous blocks are then buffered as previously described, wherein the number of pixels in each block can be selectively controlled based on the selected bit coding scheme, the desired degree of compression, and/or the location of the pixel array.

頻率係數通常同時編碼,而該已壓縮影像資料是通過並列到序列位元組編碼所產生,不過也可使用其他合適的方式。 The frequency coefficients are typically encoded simultaneously, and the compressed image data is generated by juxtaposition to the sequence byte encoding, although other suitable methods may be used.

類似方式可用於將該已壓縮影像資料解碼。 A similar approach can be used to decode the compressed image material.

例如:對該已壓縮影像資料解碼可包括選擇複數個解碼方案之一者,並使用所選解碼方案對該像素資料解碼,其中該選擇係基於想要的壓縮程度、該像素陣列的位置或該已壓縮影像資料內一編碼代碼。 For example, decoding the compressed image data can include selecting one of a plurality of decoding schemes and decoding the pixel data using the selected decoding scheme, wherein the selection is based on a desired degree of compression, a location of the pixel array, or the An encoded code in the compressed image data.

該方法可包括使用與上述類似的解壓縮方案,其可使用複數個位元編碼方案之一者來提供不同程度的壓縮,通過針對複數個階層每一者中的該等頻率係數,編碼個別位元數。 The method can include using a decompression scheme similar to that described above, which can use one of a plurality of bit coding schemes to provide varying degrees of compression by encoding individual bits for the frequency coefficients in each of the plurality of levels Yuan.

一比例縮放因數可套用到至少某些該等頻率係數,如此解碼已比例縮放的已編碼頻率係數,該比例縮放因素用來增加每一頻率係數的強度。再次,不同的比例縮放因數可套用於至少某些已編碼的頻率係數,或該相同的比例縮放因數可套用於每一已編碼的頻率係數。在兩案例中,不同的比例縮放因數可套用於不同通道內的已編碼頻率係數。 A scaling factor can be applied to at least some of the frequency coefficients, such that the scaled encoded frequency coefficients are decoded, the scaling factor used to increase the strength of each frequency coefficient. Again, different scaling factors can be applied to at least some of the encoded frequency coefficients, or the same scaling factor can be applied to each encoded frequency coefficient. In both cases, different scaling factors can be applied to the encoded frequency coefficients in different channels.

可使用複數個通道,其中每個通道都依照需要進行解碼,這可通過使用序列至並列位元組解碼並選擇性同時解碼頻率係數,來選擇性同時執行。 A plurality of channels can be used, each of which is decoded as needed, which can be selectively performed simultaneously by using sequence to parallel byte decoding and selectively decoding frequency coefficients simultaneously.

上述技術想要的壓縮程度可基於該像素陣列的位置、用於發送該已壓縮影像資料的一通訊連結之傳輸頻寬、用於發送該已壓縮影像資料的一通訊連結之傳輸服務品質、一顯示裝置的移動、影像顯示要求、一目標顯示解析度、正在處理的通道或錯誤矩陣之任一或多者。 The degree of compression desired by the above technique may be based on the location of the pixel array, the transmission bandwidth of a communication link for transmitting the compressed image data, and the transmission service quality of a communication link for transmitting the compressed image data, Any one or more of the movement of the display device, the image display request, a target display resolution, the channel being processed, or the error matrix.

這些技術可用於傳輸數位實境內容,包括增強實境、虛擬實境、混合實境、遙現等之任一或多者。這可包括經由一通訊網路及/或一無線通訊連結,從計算裝置將該影像資料發送到可穿戴式數位實境頭戴組。 These techniques can be used to transfer digital reality content, including any one or more of augmented reality, virtual reality, mixed reality, telepresence, and the like. This may include transmitting the image data from the computing device to the wearable digital reality headset via a communication network and/or a wireless communication link.

因此,上述處理允許進行顯著的影像壓縮,而對於等待時間沒有不利的影響,允許將該技術用於使用現有硬體,對虛擬或增強實境可穿戴式顯示器提供無線連接,同時也允許在其他應用當中更廣泛地實現已改良的影像壓縮。 Thus, the above process allows for significant image compression without adversely affecting latency, allowing the technology to be used to provide wireless connectivity to virtual or augmented reality wearable displays using existing hardware, while also allowing other Improved image compression is more widely implemented in applications.

在本說明書和以下申請專利範圍中,除非上下文另有要求,否則文字「包括」以及諸如「包括」或「包含」之類的變體將被理解為暗示包括所述整數群組或步驟,但不排除任何其他整數或整數群組。 In the present specification and the following claims, the word "comprise" and variations such as "comprises" or "comprising" are to be understood to include the integer group or step, unless the context requires otherwise. Any other integer or integer group is not excluded.

精通技術人士將了解,許多變化和修改將變得顯而易見。精通技術人士應了解的所有這些變化和修改,都應落在上述本發明中廣泛的精神和範疇內。 Those skilled in the art will understand that many changes and modifications will become apparent. All such changes and modifications that the skilled artisan is aware of should fall within the broad spirit and scope of the invention described above.

100-170‧‧‧步驟 Steps 100-170‧‧

Claims (122)

一種將形成部分數位實境內容的一或多個影像中之影像資料壓縮之方法,該方法包括:a)從該影像資料獲得像素資料,該像素料資料代表該等一或多個影像之內一像素陣列;b)決定該等一或多個影像之內該像素陣列相對於一已定義位置的一位置,該已定義位置至少部分指示該使用者的一凝視點;以及c)將該像素資料壓縮來產生壓縮的影像資料,該像素資料以至少部分依照該已決定位置來壓縮,藉此一壓縮程度取決於該像素陣列的該已決定位置。 A method of compressing image data in one or more images forming part of a digital reality content, the method comprising: a) obtaining pixel data from the image data, the pixel material data representing the one or more images a pixel array; b) determining a position of the pixel array relative to a defined position within the one or more images, the defined position indicating at least a portion of the gaze point of the user; and c) the pixel Data compression produces compressed image data that is compressed at least in part in accordance with the determined position, whereby a degree of compression depends on the determined position of the pixel array. 如申請專利範圍第1項之方法,其中該已定義位置為至少以下之一:a)一已測量的該使用者凝視點;b)一預期的該使用者凝視點;c)偏移一已測量的該使用者凝視點之處;d)偏移一預期的該使用者凝視點之處;以及e)至少部分依照指示該使用者凝視點的凝視資料所決定之處,該凝視資料從一凝視追蹤系統來獲得。 The method of claim 1, wherein the defined position is at least one of: a) a measured user gaze point; b) an expected user gaze point; c) an offset one Measured at the user's gaze point; d) offset from an expected point of view of the user; and e) at least in part determined by the gaze data indicative of the user's gaze point, the gaze data from Gaze through the tracking system to get it. 如申請專利範圍第1項或第2項之方法,其中該方法包括壓縮該像素資料,如此該壓縮程度取決於下列之一:a)根據與該已定義點的一距離;b)根據相對於該已定義點的一方向; c)從該已定義點進一步增加;以及d)提供渲染壓縮。 The method of claim 1 or 2, wherein the method comprises compressing the pixel data, such that the degree of compression depends on one of: a) a distance from the defined point; b) based on a direction of the defined point; c) further increase from the defined point; and d) provide rendering compression. 如申請專利範圍第1至3項任一項之方法,其中該方法包括:a)選擇複數個編碼方案之一者;以及b)使用該選取的編碼方案對該像素資料編碼。 The method of any one of claims 1 to 3, wherein the method comprises: a) selecting one of a plurality of coding schemes; and b) encoding the pixel data using the selected coding scheme. 如申請專利範圍第4項之方法,其中該等編碼方案之每一者提供一個別壓縮程度,並且其中該方法包含至少部分根據至少以下之一者來選擇該編碼方案:a)一所要的壓縮程度;以及b)該像素陣列的該位置。 The method of claim 4, wherein each of the encoding schemes provides a degree of compression, and wherein the method comprises selecting the encoding scheme based at least in part on at least one of: a) a desired compression Degree; and b) the position of the pixel array. 如申請專利範圍第4或5項之方法,其中該方法包括:a)決定指示所使用該編碼方案的一編碼代碼;以及b)使用該編碼代碼與已編碼像素資料來產生壓縮影像資料。 The method of claim 4, wherein the method comprises: a) determining an encoding code indicating the encoding scheme used; and b) using the encoding code and the encoded pixel data to generate compressed image data. 如申請專利範圍第1至6項任一項之方法,其中該方法包括使用一編碼方案,利用以下來壓縮該像素資料:a)對該像素資料套用一轉換,以決定指示該像素陣列的頻率分量之一組頻率係數;b)使用一位元編碼方案選擇性對至少某些該等頻率係數編碼,藉此產生一組已編碼的頻率係數;以及c)使用該已編碼的頻率係數產生壓縮的影像資料。 The method of any one of claims 1 to 6, wherein the method comprises compressing the pixel data by using a coding scheme: a) applying a conversion to the pixel data to determine a frequency indicative of the pixel array a set of frequency coefficients of the component; b) selectively encoding at least some of the frequency coefficients using a one-bit encoding scheme, thereby generating a set of encoded frequency coefficients; and c) generating compression using the encoded frequency coefficients video material. 如申請專利範圍第7項之方法,其中該位元編碼方案定義用於編碼該等頻率係數之每一者的位元數,並且其中該等頻率係數進行選擇性編 碼,如此至少以下之一者:a)至少某些該等已編碼頻率係數具有不同位元數;b)較少位元數用於將對應至較高頻率的頻率係數編碼;c)逐漸較少的位元數用於將對應至逐漸較高頻率的頻率係數編碼;d)拋棄至少一頻率係數,如此該組已編碼頻率係數小於該組頻率係數;以及e)拋棄對應至較高頻率的至少一頻率係數。 The method of claim 7, wherein the bit coding scheme defines a number of bits for encoding each of the frequency coefficients, and wherein the frequency coefficients are selectively encoded a code, such as at least one of: a) at least some of the encoded frequency coefficients have different number of bits; b) fewer bits are used to encode frequency coefficients corresponding to higher frequencies; c) gradually less The number of bits is used to encode a frequency coefficient corresponding to a gradually higher frequency; d) discarding at least one frequency coefficient such that the set of encoded frequency coefficients is less than the set of frequency coefficients; and e) discarding at least corresponding to a higher frequency A frequency coefficient. 如申請專利範圍第7或8項之方法,其中該方法包括:a)選擇複數個位元編碼方案之一者;以及b)依照該選取的位元編碼方案對該頻率係數編碼。 The method of claim 7 or 8, wherein the method comprises: a) selecting one of a plurality of bit coding schemes; and b) encoding the frequency coefficients in accordance with the selected bit coding scheme. 如申請專利範圍第9項之方法,其中該等複數個位元編碼方案之每一者選擇性用不同的位元數來編碼不同的頻率係數,以提供不同的壓縮程度。 The method of claim 9, wherein each of the plurality of bit coding schemes selectively encodes different frequency coefficients with different numbers of bits to provide different degrees of compression. 如申請專利範圍第9或10項之方法,其中至少部分根據至少以下之一來選擇該位元編碼方案:a)一所要的壓縮程度;以及b)該像素陣列的該位置。 The method of claim 9 or 10, wherein the bit encoding scheme is selected based at least in part on at least one of: a) a desired degree of compression; and b) the location of the pixel array. 如申請專利範圍第9至11項任一項之方法,其中該等頻率分量配置在複數個層級內,並且其中每一位元編碼方案定義要用來編碼該等複數個層級中每一者內該等頻率係數的一各別位元數。 The method of any one of clauses 9 to 11, wherein the frequency components are arranged in a plurality of levels, and wherein each of the bit coding scheme definitions is to be used to encode each of the plurality of levels The number of individual bits of the frequency coefficients. 如申請專利範圍第12項之方法,其中該陣列為一N x N像素陣列,導 致2N-1個頻率分量層級。 The method of claim 12, wherein the array is an N x N pixel array, resulting in a 2N-1 frequency component level. 如申請專利範圍第7至13項任一項之方法,其中該方法包括將一比例縮放因數套用到至少某些該等頻率係數,如此編碼已比例縮放的頻率係數,該比例縮放因數用來減少每一頻率係數的強度,並且其中至少以下之一:a)將不同的比例縮放因數套用到至少某些頻率係數;b)將該相同的比例縮放因數套用到每一頻率係數;以及c)將一不同的比例縮放因數套用到一不同通道內的頻率係數。 The method of any one of claims 7 to 13, wherein the method comprises applying a scaling factor to at least some of the frequency coefficients, such that the scaled frequency coefficients are encoded, the scaling factor being used to reduce each An intensity of a frequency coefficient, and wherein at least one of: a) applies a different scaling factor to at least some of the frequency coefficients; b) applies the same scaling factor to each frequency coefficient; and c) Different scaling factors apply to the frequency coefficients in a different channel. 如申請專利範圍第7至14項任一項之方法,其中該影像資料定義複數個通道,並且其中該方法包括針對每一通道選擇性編碼頻率係數。 The method of any one of claims 7 to 14, wherein the image data defines a plurality of channels, and wherein the method comprises selectively encoding frequency coefficients for each channel. 如申請專利範圍第15項之方法,其中該像素資料定義RGB通道,並且其中該方法包括:a)將該RGB通道轉換成YCbCr通道;以及b)轉換該等YCbCr通道。 The method of claim 15, wherein the pixel data defines an RGB channel, and wherein the method comprises: a) converting the RGB channel to a YCbCr channel; and b) converting the YCbCr channels. 如申請專利範圍第16項之方法,其中該方法包括至少以下之一:a)選擇性針對該Y通道比起該等Cb或Cr通道編碼更多頻率係數;b)選擇性針對該等YCbCr通道同時編碼頻率係數;以及c)選擇性針對該等CbCr通道編碼頻率係數並使用該Y通道。 The method of claim 16, wherein the method comprises at least one of: a) selectively encoding more frequency coefficients for the Y channel than the Cb or Cr channels; b) selectively targeting the YCbCr channels Simultaneously encoding frequency coefficients; and c) selectively encoding frequency coefficients for the CbCr channels and using the Y channel. 如申請專利範圍第1至17項任一項之方法,其中該轉換為一二維(2-D)離散餘弦轉換。 The method of any one of claims 1 to 17, wherein the conversion is a two-dimensional (2-D) discrete cosine transform. 如申請專利範圍第1至18項任一項之方法,其中該方法包括利用以下從影像資料獲得像素資料: a)緩衝對應至該影像的下一個n-1列像素之影像資料;b)緩衝該下一列像素的下一個n像素之影像資料;c)從該已緩衝影像資料中獲得下一個nxn像素區塊的像素資料;d)重複步驟b)和c),直到已經從所有該n列像素中獲得像素資料;以及e)重複步驟a)至d),直到已經從該影像的每一列像素中獲得像素資料。 The method of any one of claims 1 to 18, wherein the method comprises: obtaining pixel data from the image data by: a) buffering image data corresponding to a next n-1 column of pixels of the image; b) buffering The next n pixels of image data of the next column of pixels; c) obtaining pixel data of the next n x n pixel block from the buffered image data; d) repeating steps b) and c) until all Pixel data is obtained in n columns of pixels; and e) steps a) through d) are repeated until pixel data has been obtained from each column of pixels of the image. 如申請專利範圍第19項之方法,其中根據至少以下之一選擇n:a)一選取的位元編碼方案;b)一所要的壓縮程度;以及c)該像素陣列的該位置。 The method of claim 19, wherein n is selected according to at least one of: a) a selected bit coding scheme; b) a desired degree of compression; and c) the location of the pixel array. 如申請專利範圍第1至20項任一項之方法,其中該方法包括:a)同時選擇編碼頻率係數;以及b)至少部分通過並行至序列位元組編碼來產生壓縮的影像資料。 The method of any one of claims 1 to 20, wherein the method comprises: a) simultaneously selecting a coding frequency coefficient; and b) generating compressed image data at least in part by parallel to sequential byte encoding. 一種將形成部分數位實境內容的一或多個影像中之已壓縮影像資料解壓縮之方法,該方法包括:a)獲得已壓縮的影像資料,該已壓縮影像資料代表該等一或多個影像之內一像素陣列,並且至少部分根據該等一或多個影像之內該像素陣列相對於一已定義位置之一位置來壓縮,該已定義位置至少部分指示該使用者的凝視點;以及b)至少部分根據該已決定位置來將該已壓縮影像資料解壓縮。 A method of decompressing compressed image data in one or more images forming part of a digital reality content, the method comprising: a) obtaining compressed image data, the compressed image data representing the one or more An array of pixels within the image and compressed at least in part based on a position of the pixel array relative to a defined location within the one or more images, the defined location indicating at least a portion of the gaze point of the user; b) decompressing the compressed image data based at least in part on the determined position. 如申請專利範圍第22項之方法,其中該已定義位置為至少以下之一: a)一已測量的該使用者凝視點;b)一預期的該使用者凝視點;c)偏移一已測量的該使用者凝視點之處;d)偏移一預期的該使用者凝視點之處;以及e)至少部分依照指示該使用者凝視點的凝視資料所決定之處,該凝視資料從一凝視追蹤系統來獲得。 The method of claim 22, wherein the defined location is at least one of the following: a) a measured user gaze point; b) an expected user gaze point; c) offset from the measured user gaze point; d) offsetting the expected user gaze Where; and e) at least in part determined by the gaze data indicative of the user's gaze point, the gaze data is obtained from a gaze tracking system. 如申請專利範圍第22或23項之方法,其中該方法包括:a)選擇複數個解碼方案之一者;以及b)使用該選取的解碼方案對該像素資料解碼。 The method of claim 22, wherein the method comprises: a) selecting one of a plurality of decoding schemes; and b) decoding the pixel data using the selected decoding scheme. 如申請專利範圍第24項之方法,其中該方法包括至少部分根據至少以下之一來選擇該解碼方案:a)一所要的壓縮程度;b)該像素陣列的一位置;以及c)指示所使用的該編碼方案之一編碼代碼,該編碼代碼由該已壓縮的資料影像來決定。 The method of claim 24, wherein the method comprises selecting the decoding scheme based at least in part on at least one of: a) a desired degree of compression; b) a location of the pixel array; and c) indicating that the One of the encoding schemes encodes a code that is determined by the compressed data image. 如申請專利範圍第22至25項任一項之方法,其中該方法包括使用一解碼方案,利用以下來解壓縮已壓縮影像資料:a)依照其中定義每一已編碼頻率係數內所使用該位元數的一位元編碼方案,從該已壓縮影像資料決定一組已編碼頻率係數;b)依照該位元編碼方案來執行該已編碼頻率係數的位元解碼,藉此產生一組頻率係數,其中產生至少一個頻率係數,如此該組已編碼頻率係數小於該組頻率係數;以及 c)對該組頻率係數套用一逆向轉換,來決定代表該等一或多個影像之內一像素陣列的像素資料。 The method of any one of claims 22 to 25, wherein the method comprises decompressing the compressed image data using a decoding scheme: a) using the bit within each encoded frequency coefficient as defined therein a one-bit coding scheme of a plurality of elements, determining a set of encoded frequency coefficients from the compressed image data; b) performing bit decoding of the encoded frequency coefficients according to the bit coding scheme, thereby generating a set of frequency coefficients , wherein at least one frequency coefficient is generated such that the set of encoded frequency coefficients is less than the set of frequency coefficients; c) applying a reverse transform to the set of frequency coefficients to determine pixel data representing a pixel array within the one or more images. 如申請專利範圍第26項之方法,其中該位元編碼方案定義用於編碼該等頻率係數每一者的該位元數,該位元編碼方案使用較少的位元數,來編碼對應至較高頻率的頻率係數,並且其中該方法包括產生對應至較高頻率的至少某些該頻率係數。 The method of claim 26, wherein the bit coding scheme defines the number of bits used to encode each of the frequency coefficients, the bit coding scheme uses a smaller number of bits to encode the corresponding a higher frequency frequency coefficient, and wherein the method includes generating at least some of the frequency coefficients corresponding to the higher frequency. 如申請專利範圍第26或27項之方法,其中該方法包括:a)選擇複數個位元編碼方案之一者;以及b)依照該選取的位元編碼方案對該已編碼的頻率係數解碼。 The method of claim 26, wherein the method comprises: a) selecting one of a plurality of bit coding schemes; and b) decoding the encoded frequency coefficients in accordance with the selected bit coding scheme. 如申請專利範圍第28項之方法,其中該等複數個位元編碼方案之每一者選擇性用不同的位元數來編碼不同的頻率係數,以提供一不同的壓縮程度。 The method of claim 28, wherein each of the plurality of bit coding schemes selectively encodes different frequency coefficients with different number of bits to provide a different degree of compression. 如申請專利範圍第28或29項之方法,其中至少部分根據至少以下之一來選擇該位元編碼方案:a)一編碼代碼;b)該位元編碼方案,用來產生該已壓縮的影像資料;以及c)該像素陣列的該位置。 The method of claim 28 or 29, wherein the bit coding scheme is selected based at least in part on at least one of: a) an encoding code; b) the bit encoding scheme for generating the compressed image Data; and c) the location of the pixel array. 如申請專利範圍第28至30項任一項之方法,其中該等頻率分量配置在複數個層級內,並且其中每一位元編碼方案定義要用來編碼該等複數個層級中每一者內該等頻率係數的一各別位元數。 The method of any one of claims 28 to 30, wherein the frequency components are arranged in a plurality of levels, and wherein each of the bit coding scheme definitions is to be used to encode each of the plurality of levels The number of individual bits of the frequency coefficients. 如申請專利範圍第31項之方法,其中該陣列為一N x N像素陣列,導致2N-1個頻率分量層級。 The method of claim 31, wherein the array is an N x N pixel array, resulting in a 2N-1 frequency component level. 如申請專利範圍第26至32項任一項之方法,其中該方法包括將一比例縮放因數套用到至少某些該等頻率係數,如此解碼已比例縮放的頻率係數,該比例縮放因數用來增加每一頻率係數的強度,並且其中至少以下之一:a)將不同的比例縮放因數套用到至少某些已編碼頻率係數;b)將該相同的比例縮放因數套用到每一已編碼頻率係數;以及c)將一不同的比例縮放因數套用到一不同通道內的已編碼頻率係數。 The method of any one of claims 26 to 32, wherein the method comprises applying a scaling factor to at least some of the frequency coefficients, such that the scaled frequency coefficients are decoded, the scaling factor being used to increase each An intensity of a frequency coefficient, and wherein at least one of: a) applies a different scaling factor to at least some of the encoded frequency coefficients; b) applies the same scaling factor to each encoded frequency coefficient; c) Apply a different scaling factor to the encoded frequency coefficients in a different channel. 如申請專利範圍第26至33項任一項之方法,其中該影像資料定義複數個通道,並且其中該方法包括針對每一通道選擇性解碼已編碼頻率係數。 The method of any one of claims 26 to 33, wherein the image material defines a plurality of channels, and wherein the method comprises selectively decoding the encoded frequency coefficients for each channel. 如申請專利範圍第34項之方法,其中該已壓縮像素資料定義YCbCr通道,並且其中該方法包括:a)執行該等YCbCr通道的一逆轉換;以及b)將該等已轉換YCbCr通道轉換成RGB通道。 The method of claim 34, wherein the compressed pixel data defines a YCbCr channel, and wherein the method comprises: a) performing an inverse conversion of the YCbCr channels; and b) converting the converted YCbCr channels into RGB channel. 如申請專利範圍第35項之方法,其中該方法包括至少以下之一:a)比該Y通道產生更多頻率係數給該Cb或Cr通道;b)同時解碼該等已編碼YCbCr通道;以及c)解碼該等CbCr通道,並將該等已編碼CbCr通道與該Y通道轉換成RGB通道。 The method of claim 35, wherein the method comprises at least one of: a) generating more frequency coefficients to the Cb or Cr channel than the Y channel; b) simultaneously decoding the encoded YCbCr channels; and c Decoding the CbCr channels and converting the encoded CbCr channels to the Y channels into RGB channels. 如申請專利範圍第26至36項任一項之方法,其中該逆轉換為一逆二維(2-D)離散餘弦轉換。 The method of any one of claims 26 to 36, wherein the inverse transformation is an inverse two-dimensional (2-D) discrete cosine transformation. 如申請專利範圍第26至37項任一項之方法,其中該方法包括:a)至少部分通過序列至並行位元組解碼來解碼已壓縮的影像資料;以及b)同時選擇性解碼頻率係數。 The method of any one of claims 26 to 37, wherein the method comprises: a) decoding the compressed image data at least in part by sequence to parallel byte decoding; and b) simultaneously selectively decoding the frequency coefficients. 如申請專利範圍第5、11、20、25和30項任一項之方法,其中根據至少以下之一決定該所要之壓縮程度:a)該像素陣列的該位置;b)用來傳輸該已壓縮影像資料的一通訊連結之傳輸頻寬;c)用來傳輸該已壓縮影像資料的一通訊連結之傳輸服務品質;d)一顯示裝置的移動;e)影像顯示需求;f)一目標顯示解析度;g)經處理的一通道;以及h)錯誤矩陣。 The method of any one of claims 5, 11, 20, 25, and 30, wherein the desired degree of compression is determined according to at least one of: a) the location of the pixel array; b) for transmitting the The transmission bandwidth of a communication link of the compressed image data; c) the transmission service quality of a communication link for transmitting the compressed image data; d) the movement of a display device; e) the image display requirement; and f) a target display Resolution; g) processed one channel; and h) error matrix. 如申請專利範圍第1至39項任一項之方法,其中該數位實境為至少以下之一:a)增強實境;b)虛擬實境;c)混合實境;以及d)遙現。 The method of any one of claims 1 to 39, wherein the digital reality is at least one of: a) augmented reality; b) virtual reality; c) mixed reality; and d) telepresence. 如申請專利範圍第1至40項任一項之方法,其中該方法用於透過至少以下之一,將來自一計算裝置的該影像資料傳輸至一可穿戴式數位實 境頭戴組:a)一通訊網路;以及b)一無線通訊連結。 The method of any one of claims 1 to 40, wherein the method is for transmitting the image data from a computing device to a wearable digital device by using at least one of the following The wearable group: a) a communication network; and b) a wireless communication link. 一種將形成部分數位實境內容的一或多個影像中之影像資料壓縮之設備,該設備包括至少一個電子編碼器處理裝置,該至少一個電子編碼器處理裝置:a)從該影像資料獲得像素資料,該像素料資料代表該等一或多個影像內之一像素陣列;b)決定該等一或多個影像之內該像素陣列相對於一已定義位置的一位置,該已定義位置至少部分指示該使用者的一凝視點;以及c)至少部分依照該已決定的位置將該像素資料壓縮,如此一壓縮程度取決於該像素陣列的該已決定位置。 An apparatus for compressing image data in one or more images forming part of a digital reality content, the apparatus comprising at least one electronic encoder processing device, the at least one electronic encoder processing device: a) obtaining pixels from the image data Data, the pixel material data represents one pixel array in the one or more images; b) determining a position of the pixel array within the one or more images relative to a defined position, the defined position being at least a portion indicating a gaze point of the user; and c) compressing the pixel data at least in part in accordance with the determined position, such that the degree of compression is dependent on the determined position of the pixel array. 一種將形成部分數位實境內容的一或多個影像中之已壓縮影像資料解壓縮之設備,該設備包括至少一個電子解碼器處理裝置,該至少一個電子解碼器處理裝置:a)獲得已壓縮的影像資料,該已壓縮影像資料代表該等一或多個影像之內一像素陣列,並且至少部分根據該等一或多個影像之內該像素陣列相對於一已定義位置之一位置來壓縮,該已定義位置至少部分指示該使用者的凝視點;以及b)至少部分根據該已決定位置來將該已壓縮影像資料解壓縮。 An apparatus for decompressing compressed image data in one or more images forming part of a digital reality content, the apparatus comprising at least one electronic decoder processing device, the at least one electronic decoder processing device: a) obtaining compressed Image data representing an array of pixels within the one or more images and compressed at least in part based on a position of the pixel array relative to a defined location within the one or more images And the defined location at least partially indicates the gaze point of the user; and b) decompressing the compressed image data based at least in part on the determined location. 一種將代表一或多個影像的影像資料壓縮之方法,該方法包括:a)從該影像資料獲得像素資料,該像素料資料代表該等一或多個 影像之內一像素陣列;b)對該像素資料套用一轉換,以決定指示該像素陣列的頻率分量之一組頻率係數;c)使用一位元編碼方案選擇性編碼至少某些該等頻率係數,藉此產生一組已編碼的頻率係數,其中該位元編碼方案定義用於將該等頻率係數每一者編碼的該位元數,如此當該等頻率係數選擇性編碼時:i)使用不同位元數將至少某些該等已編碼頻率係數編碼;以及ii)拋棄至少一頻率係數,如此該組已編碼頻率係數小於該組頻率係數;以及d)使用該已編碼的頻率係數產生壓縮的影像資料。 A method of compressing image data representing one or more images, the method comprising: a) obtaining pixel data from the image data, the pixel material data representing the one or more a pixel array within the image; b) applying a conversion to the pixel data to determine a set of frequency coefficients indicative of a frequency component of the pixel array; c) selectively encoding at least some of the frequency coefficients using a one-bit encoding scheme, Thereby generating a set of encoded frequency coefficients, wherein the bit coding scheme defines the number of bits used to encode each of the frequency coefficients, such that when the frequency coefficients are selectively encoded: i) different uses The number of bits encodes at least some of the encoded frequency coefficients; and ii) discards at least one frequency coefficient such that the set of encoded frequency coefficients is less than the set of frequency coefficients; and d) uses the encoded frequency coefficients to produce a compressed image data. 如申請專利範圍第44項之方法,其中選擇性編碼該等頻率係數,如此至少以下之一:a)定義使用一些位元數來編碼頻率係數之每一者,與該各別頻率係數之值無關;b)較少位元數用於將對應至較高頻率的頻率係數編碼;c)逐漸較少的位元數用於將對應至逐漸較高頻率的頻率係數編碼;d)拋棄對應至較高頻率的至少一頻率係數。 The method of claim 44, wherein the frequency coefficients are selectively encoded, such that at least one of: a) defining each of the frequency coefficients to be encoded using a number of bits, and the value of the respective frequency coefficient Irrelevant; b) fewer bits are used to encode frequency coefficients corresponding to higher frequencies; c) progressively fewer bits are used to encode frequency coefficients corresponding to progressively higher frequencies; d) discard corresponding to At least one frequency coefficient of a higher frequency. 如申請專利範圍第44或45項之方法,其中該方法包括將一比例縮放因數套用到至少某些該等頻率係數,如此編碼已比例縮放的頻率係數,並且其中至少以下之一: a)將不同的比例縮放因數套用到至少某些頻率係數;b)將該相同的比例縮放因數套用到每一頻率係數;以及c)該比例縮放因數用來降低頻率係數每一者的強度。 The method of claim 44, wherein the method comprises applying a scaling factor to at least some of the frequency coefficients, thus encoding the scaled frequency coefficients, and wherein at least one of the following: a) applying different scaling factors to at least some of the frequency coefficients; b) applying the same scaling factor to each frequency coefficient; and c) the scaling factor is used to reduce the strength of each of the frequency coefficients. 如申請專利範圍第44至46項任一項之方法,其中該方法包括:a)選擇複數個編碼方案之一者;以及b)使用該選取的編碼方案對該像素資料編碼。 The method of any one of claims 44 to 46, wherein the method comprises: a) selecting one of a plurality of coding schemes; and b) encoding the pixel data using the selected coding scheme. 如申請專利範圍第47項之方法,其中該等編碼方案之每一者提供一各別壓縮程度,並且其中該方法包含至少部分根據至少以下之一者來選擇該編碼方案:a)一所要的壓縮程度;以及b)該像素陣列的該位置。 The method of claim 47, wherein each of the coding schemes provides a degree of compression, and wherein the method comprises selecting the coding scheme based at least in part on at least one of: a) The degree of compression; and b) the location of the array of pixels. 如申請專利範圍第44至48項任一項之方法,其中該方法包括依照至少以下之一將頻率係數選擇性編碼:a)選擇規則;b)一所要的壓縮程度;以及c)該等一或多個影像內該像素陣列的一位置。 The method of any one of claims 44 to 48, wherein the method comprises selectively encoding the frequency coefficients according to at least one of: a) a selection rule; b) a desired degree of compression; and c) the one Or a location of the array of pixels within the plurality of images. 如申請專利範圍第49項之方法,其中該方法包括:a)選擇複數個位元編碼方案之一者;以及b)依照該選取的位元編碼方案對該頻率係數編碼。 The method of claim 49, wherein the method comprises: a) selecting one of a plurality of bit coding schemes; and b) encoding the frequency coefficients in accordance with the selected bit coding scheme. 如申請專利範圍第50項之方法,其中該等複數個位元編碼方案之每一者選擇性用不同的位元數來編碼不同的頻率係數,以提供不同的壓縮程度。 The method of claim 50, wherein each of the plurality of bit coding schemes selectively encodes different frequency coefficients with different number of bits to provide different degrees of compression. 如申請專利範圍第50或51項之方法,其中至少部分根據至少以下之一來選擇該位元編碼方案:a)選擇規則;b)一所要的壓縮程度;以及c)該像素陣列的該位置。 The method of claim 50 or 51, wherein the bit coding scheme is selected based at least in part on at least one of: a) a selection rule; b) a desired degree of compression; and c) the location of the pixel array . 如申請專利範圍第50至52項任一項之方法,其中該方法包括根據至少以下之一選擇該位元編碼方案:a)用來傳輸該已壓縮影像資料的一通訊連結之傳輸頻寬;b)用來傳輸該已壓縮影像資料的一通訊連結之傳輸服務品質;c)一顯示裝置的移動;d)影像顯示需求;e)一目標顯示解析度;f)經處理的一通道;g)該等一或多個影像之內該像素陣列的一位置;h)該等一或多個影像之內該像素陣列相對於該等一或多個影像的一觀察者凝視點之一位置;以及i)錯誤矩陣。 The method of any one of claims 50 to 52, wherein the method comprises selecting the bit coding scheme according to at least one of: a) a transmission bandwidth of a communication link for transmitting the compressed image data; b) transmission service quality of a communication link for transmitting the compressed image data; c) movement of a display device; d) image display requirement; e) target display resolution; f) processed channel; a position of the pixel array within the one or more images; h) a position of the pixel array within the one or more images relative to an observer gaze point of the one or more images; And i) the error matrix. 如申請專利範圍第50至53項任一項之方法,其中該等頻率分量配置在複數個層級內,並且其中每一位元編碼方案定義要用來編碼該等複數個層級中每一者內該等頻率係數的一各別位元數。 The method of any one of claims 50 to 53, wherein the frequency components are arranged in a plurality of levels, and wherein each of the bit coding scheme definitions is to be used to encode each of the plurality of levels The number of individual bits of the frequency coefficients. 如申請專利範圍第54項之方法,其中該陣列為一N x N像素陣列,導致2N-1個頻率分量層級。 The method of claim 54, wherein the array is an N x N pixel array, resulting in a 2N-1 frequency component level. 如申請專利範圍第44至55項任一項之方法,其中該方法包括:a)決定該等一或多個影像的一觀察者之凝視點;b)至少部分依照該凝視點將頻率係數選擇性編碼。 The method of any one of claims 44 to 55, wherein the method comprises: a) determining a gaze point of an observer of the one or more images; b) selectively selecting a frequency coefficient based at least in part on the gaze point coding. 如申請專利範圍第56項之方法,其中該方法包括:a)決定該凝視點與該等一或多個影像內該像素陣列的一位置間之距離;以及b)依照該距離將頻率係數選擇性編碼,如此較大距離有較少的頻率係數經過編碼。 The method of claim 56, wherein the method comprises: a) determining a distance between the gaze point and a position of the pixel array in the one or more images; and b) selecting a frequency coefficient according to the distance Sexual coding, such a large distance has fewer frequency coefficients encoded. 如申請專利範圍第44至57項任一項之方法,其中該影像資料定義複數個通道,並且其中該方法包括針對每一通道選擇性編碼頻率係數。 The method of any one of claims 44 to 57, wherein the image data defines a plurality of channels, and wherein the method comprises selectively encoding frequency coefficients for each channel. 如申請專利範圍第58項之方法,其中該像素資料定義RGB通道,並且其中該方法包括:a)將該RGB通道轉換成YCbCr通道;以及b)轉換該等YCbCr通道。 The method of claim 58, wherein the pixel data defines an RGB channel, and wherein the method comprises: a) converting the RGB channel to a YCbCr channel; and b) converting the YCbCr channels. 如申請專利範圍第59項之方法,其中該方法包括至少以下之一:a)選擇性針對該Y通道而比該等Cb或Cr通道編碼更多頻率係數;b)選擇性針對該等YCbCr通道同時編碼更多頻率係數;以及c)通過以下產生該已壓縮影像資料:i)編碼該等CbCr通道;以及ii)使用該Y通道。 The method of claim 59, wherein the method comprises at least one of: a) selectively encoding more frequency coefficients for the Y channel than the Cb or Cr channels; b) selectively targeting the YCbCr channels Simultaneously encoding more frequency coefficients; and c) generating the compressed image data by: i) encoding the CbCr channels; and ii) using the Y channel. 如申請專利範圍第44至60項任一項之方法,其中該轉換為一二維(2-D)離散餘弦轉換。 The method of any one of claims 44 to 60, wherein the conversion is a two-dimensional (2-D) discrete cosine transform. 如申請專利範圍第44至61項任一項之方法,其中該方法包括從一影像饋送獲得該像素資料。 The method of any one of claims 44 to 61, wherein the method comprises obtaining the pixel data from an image feed. 如申請專利範圍第44至62項任一項之方法,其中該方法包括利用以下從影像資料獲得像素資料:a)緩衝對應至該影像的下一個n-1列像素之影像資料;b)緩衝該下一列像素的下一個n像素之影像資料;c)從該已緩衝影像資料中獲得下一個nxn像素區塊的像素資料;d)重複步驟b)和c),直到已經從所有該n列像素中獲得像素資料;以及e)重複步驟a)至d),直到已經從該影像的每一列像素中獲得像素資料。 The method of any one of claims 44 to 62, wherein the method comprises obtaining pixel data from the image data by: a) buffering image data corresponding to a next n -1 column of pixels of the image; b) buffering The next n pixels of image data of the next column of pixels; c) obtaining pixel data of the next n x n pixel block from the buffered image data; d) repeating steps b) and c) until all Pixel data is obtained in n columns of pixels; and e) steps a) through d) are repeated until pixel data has been obtained from each column of pixels of the image. 如申請專利範圍第63項之方法,其中根據至少以下之一選擇n:a)選擇規則;b)一選取的位元編碼方案;以及c)該像素陣列的該位置。 The method of claim 63, wherein n : a) a selection rule is selected according to at least one of the following; b) a selected bit coding scheme; and c) the location of the pixel array. 如申請專利範圍第44至64項任一項之方法,其中該方法包括:a)同時選擇編碼頻率係數;以及b)至少部分通過並行至序列位元組編碼來產生壓縮的影像資料。 The method of any one of claims 44 to 64, wherein the method comprises: a) simultaneously selecting a coding frequency coefficient; and b) generating compressed image data at least in part by parallel to sequential byte encoding. 一種將代表一或多個影像的影像資料壓縮之設備,該設備包括至少一個電子編碼器處理裝置,該至少一個電子編碼器處理裝置:a)從該影像資料獲得像素資料,該像素料資料代表該等一或多個影像之內一像素陣列; b)對該像素資料套用一轉換,以決定指示該像素陣列的頻率分量之一組頻率係數;c)使用一位元編碼方案選擇性編碼至少某些該等頻率係數,藉此產生一組已編碼的頻率係數,其中該位元編碼方案定義用於將該等頻率係數編碼的該位元數,並且其中該等頻率係數選擇性編碼時:i)至少某些該等已編碼頻率係數具有不同位元數;ii)拋棄至少一頻率係數,如此該組已編碼頻率係數小於該組頻率係數;以及d)使用該已編碼的頻率係數產生壓縮的影像資料。 An apparatus for compressing image data representing one or more images, the apparatus comprising at least one electronic encoder processing device, the at least one electronic encoder processing device: a) obtaining pixel data from the image data, the pixel material data representing a pixel array within the one or more images; b) applying a conversion to the pixel data to determine a set of frequency coefficients indicative of a frequency component of the pixel array; c) selectively encoding at least some of the frequency coefficients using a one-bit encoding scheme, thereby generating a set of encoded Frequency coefficient, wherein the bit coding scheme defines the number of bits used to encode the frequency coefficients, and wherein the frequency coefficients are selectively encoded: i) at least some of the encoded frequency coefficients have different bits Number ii) discarding at least one frequency coefficient such that the set of encoded frequency coefficients is less than the set of frequency coefficients; and d) using the encoded frequency coefficients to produce compressed image data. 如申請專利範圍第66項之設備,其中該設備包括:a)一編碼器輸入緩衝區,用來接收該影像資料;以及b)一編碼器輸出緩衝區,其中儲存壓縮影像資料。 The device of claim 66, wherein the device comprises: a) an encoder input buffer for receiving the image data; and b) an encoder output buffer for storing the compressed image data. 如申請專利範圍第66或67項之設備,其中該設備包括一編碼器輸入緩衝區,該編碼器輸入緩衝區:a)緩衝對應至該影像的下一個n-1列像素之影像資料;b)緩衝該下一列像素中下一個n像素的影像資料,允許該至少一個編碼器處理裝置從該已緩衝影像資料中獲取下一個nxn像素區塊的像素資料;c)重複步驟b),直到已經從所有該n列像素中獲得像素資料;以及d)重複步驟a)和b),直到已經從該影像的每一列像素中獲得像素資料。 The device of claim 66 or 67, wherein the device comprises an encoder input buffer, the encoder input buffer: a) buffering image data corresponding to the next n -1 column of pixels of the image; b Capturing image data of the next n pixels in the next column of pixels, allowing the at least one encoder processing device to acquire pixel data of the next n x n pixel block from the buffered image data; c) repeating step b), Until pixel data has been obtained from all of the n columns of pixels; and d) steps a) and b) are repeated until pixel data has been obtained from each column of pixels of the image. 如申請專利範圍第66至68項任一項之設備,其中該設備包括一編碼器發射器,發射來自該編碼器輸出緩衝區的該影像資料。 The device of any one of claims 66 to 68, wherein the device comprises an encoder transmitter that transmits the image data from the encoder output buffer. 如申請專利範圍第66至69項任一項之設備,其中該至少一編碼器處理裝置包括:a)一合適程式編輯的現場可程式閘陣列;b)一專用積體電路;以及c)一圖形處理單元。 The apparatus of any one of claims 66 to 69, wherein the at least one encoder processing device comprises: a) a field programmable gate array edited by a suitable program; b) a dedicated integrated circuit; and c) a Graphics processing unit. 如申請專利範圍第66至70項任一項之設備,其中該像素資料定義複數個通道,並且其中該設備包括:a)針對每一通道的一各別處理裝置;以及b)用於同時處理每一通道的一並行處理裝置。 The device of any one of claims 66 to 70, wherein the pixel data defines a plurality of channels, and wherein the device comprises: a) a separate processing device for each channel; and b) for simultaneous processing A parallel processing device for each channel. 如申請專利範圍第71項之設備,其中該像素資料定義RGB通道,並且其中該設備:a)將該RGB通道轉換成YCbCr通道;以及b)使用至少一處理裝置將該等YCbCr通道選擇性編碼。 The device of claim 71, wherein the pixel data defines an RGB channel, and wherein the device: a) converts the RGB channel to a YCbCr channel; and b) selectively encodes the YCbCr channel using at least one processing device . 如申請專利範圍第66至72項任一項之設備,其中該像素資料定義RGB通道,並且其中該設備:a)使用一YCbCr處理裝置,將該等RGB通道轉換成CbCr通道;b)使用至少一各別處理裝置將該等CbCr通道解碼;以及c)使用一延遲區塊將該Y通道從該YCbCr處理裝置轉換至一輸出緩衝區。 The device of any one of claims 66 to 72, wherein the pixel data defines an RGB channel, and wherein the device: a) converts the RGB channels into CbCr channels using a YCbCr processing device; b) uses at least A respective processing device decodes the CbCr channels; and c) converting the Y channel from the YCbCr processing device to an output buffer using a delay block. 如申請專利範圍第66至73項任一項之設備,其中該設備包括一編碼 器,用無線通訊方式與一解碼器通訊,允許影像資料作為已壓縮影像資料在該編碼器與該解碼器之間傳輸。 The device of any one of claims 66 to 73, wherein the device comprises an encoding Communicating with a decoder by wireless communication, allowing image data to be transmitted as compressed image data between the encoder and the decoder. 如申請專利範圍第74項之設備,其中該編碼器為耦合至合適程式編輯的處理系統至少之一及其一部分。 The device of claim 74, wherein the encoder is at least one of a processing system coupled to a suitable program editor and a portion thereof. 如申請專利範圍第74或75項之設備,其中該解碼器為耦合至一可穿戴顯示裝置至少之一及其一部分。 The device of claim 74, wherein the decoder is coupled to at least one of a wearable display device and a portion thereof. 如申請專利範圍第74至76項任一項之設備,其中該編碼器與解碼器通訊來交換至少以下之一:a)已壓縮的影像資料;b)指示一顯示裝置移動的移動資料;c)至少部分用來控制該顯示裝置的控制資料;d)指示使用者輸入指令的輸入資料;e)指示一觀察者的一凝視點之凝視資料;以及f)來自與一可穿戴顯示裝置關聯的感應器之感應器資料。 The apparatus of any one of clauses 74 to 76, wherein the encoder communicates with the decoder to exchange at least one of: a) compressed image data; b) mobile data indicating a display device movement; c At least partially controlling the control data of the display device; d) indicating input data to the user input command; e) indicating gaze data of a viewer's gaze point; and f) from being associated with a wearable display device Sensor data for the sensor. 如申請專利範圍第66至77項任一項之設備,其中該設備執行如申請專利第44至65項任一項之方法。 The apparatus of any one of claims 66 to 77, wherein the apparatus performs the method of any one of claims 44 to 65. 一種將代表一或多個影像的已壓縮影像資料解壓縮之方法,該方法包括:a)獲取已壓縮的影像資料;b)依照定義每一已編碼頻率係數內所使用位元數的一位元編碼方案,從該已壓縮影像資料決定一組已編碼頻率係數;c)依照該位元編碼方案來執行該已編碼頻率係數的位元解碼,藉 此產生一組頻率係數,其中產生至少一個頻率係數,如此該組已編碼頻率係數小於該組頻率係數;以及d)對該組頻率係數套用一逆向轉換,來決定代表該等一或多個影像之內一像素陣列的像素資料。 A method of decompressing compressed image data representing one or more images, the method comprising: a) acquiring compressed image data; b) defining one bit of the number of bits used in each encoded frequency coefficient a metacoding scheme, determining a set of encoded frequency coefficients from the compressed image data; c) performing bit decoding of the encoded frequency coefficients according to the bit encoding scheme, Generating a set of frequency coefficients, wherein at least one frequency coefficient is generated, such that the set of encoded frequency coefficients is less than the set of frequency coefficients; and d) applying a reverse transform to the set of frequency coefficients to determine representative of the one or more images Pixel data for a pixel array. 如申請專利範圍第79項之方法,其中該方法包括:a)選擇複數個解碼方案之一者;以及b)使用該選取的解碼方案將該像素資料解碼。 The method of claim 79, wherein the method comprises: a) selecting one of a plurality of decoding schemes; and b) decoding the pixel data using the selected decoding scheme. 如申請專利範圍第80項之方法,其中該方法包括至少部分根據至少以下之一來選擇該解碼方案:a)選擇規則;b)一所要的壓縮程度;c)該像素陣列的一位置;以及d)指示所使用的該編碼方案之一編碼代碼,該編碼代碼由該已壓縮的資料影像來決定。 The method of claim 80, wherein the method comprises selecting the decoding scheme based at least in part on at least one of: a) a selection rule; b) a desired degree of compression; c) a location of the pixel array; d) an encoding code indicating one of the encoding schemes used, the encoding code being determined by the compressed data image. 如申請專利範圍第81項之方法,其中該位元編碼方案使用較少的位元數,來編碼對應至較高頻率的頻率係數,並且其中該方法包括產生對應至較高頻域的至少某些該頻率係數。 The method of claim 81, wherein the bit coding scheme uses a smaller number of bits to encode a frequency coefficient corresponding to a higher frequency, and wherein the method includes generating at least one corresponding to a higher frequency domain Some of these frequency coefficients. 如申請專利範圍第79至82項任一項之方法,其中該方法包括將一比例縮放因數套用到至少某些該等頻率係數,如此傳輸已比例縮放的頻率係數,並且其中至少以下之一:a)將不同的比例縮放因數套用到至少某些已編碼頻率係數;b)將該相同的比例縮放因數套用到每一已編碼頻率係數;以及 c)該比例縮放因數用來增加已編碼頻率係數每一者的強度。 The method of any one of clauses 79 to 82, wherein the method comprises applying a scaling factor to at least some of the frequency coefficients, thereby transmitting the scaled frequency coefficients, and wherein at least one of the following: a Applying different scaling factors to at least some of the encoded frequency coefficients; b) applying the same scaling factor to each encoded frequency coefficient; c) The scaling factor is used to increase the strength of each of the encoded frequency coefficients. 如申請專利範圍第79至83項任一項之方法,其中該方法包括:a)選擇複數個位元編碼方案之一者;以及b)依照該選取的位元編碼方案對該已編碼的頻率係數解碼。 The method of any one of clauses 79 to 83, wherein the method comprises: a) selecting one of a plurality of bit coding schemes; and b) selecting the encoded frequency according to the selected bit coding scheme Coefficient decoding. 如申請專利範圍第84項之方法,其中該等複數個位元編碼方案之每一者選擇性用不同的位元數來編碼不同的頻率係數,以提供不同的壓縮程度。 The method of claim 84, wherein each of the plurality of bit coding schemes selectively encodes different frequency coefficients with different number of bits to provide different degrees of compression. 如申請專利範圍第84或85項之方法,其中至少部分根據至少以下之一來選擇該位元編碼方案:a)一編碼代碼;b)選擇規則;c)一所要的壓縮程度;以及d)該像素陣列的該位置。 The method of claim 84, wherein the bit coding scheme is selected based at least in part on at least one of: a) an encoding code; b) a selection rule; c) a desired degree of compression; and d) The location of the pixel array. 如申請專利範圍第86項之方法,其中該選擇規則取決於至少以下之一:a)用來傳輸該已壓縮影像資料的一通訊連結之傳輸頻寬;b)用來傳輸該已壓縮影像資料的一通訊連結之傳輸服務品質;c)一顯示裝置的移動;d)影像顯示需求;e)一目標顯示解析度;f)經處理的一通道;g)該等一或多個影像之內該像素陣列的一位置;h)該等一或多個影像之內該像素陣列相對於該等一或多個影像的 一觀察者凝視點之一位置;以及i)錯誤矩陣。 The method of claim 86, wherein the selection rule depends on at least one of: a) a transmission bandwidth of a communication link for transmitting the compressed image data; b) for transmitting the compressed image data The quality of the transmission service of a communication link; c) the movement of a display device; d) the image display requirement; e) the resolution of a target display; f) the processed channel; g) within one or more of the images a position of the pixel array; h) the pixel array within the one or more images relative to the one or more images One observer gaze at one of the positions; and i) the error matrix. 如申請專利範圍第79至87項任一項之方法,其中該方法包括:a)決定該等一或多個影像的一觀察者之凝視點;b)至少部分依照該凝視點將已編碼頻率係數選擇性解碼。 The method of any one of claims 79 to 87, wherein the method comprises: a) determining an observer's gaze point of the one or more images; b) at least partially encoding the encoded frequency coefficient according to the gaze point Selective decoding. 如申請專利範圍第88項之方法,其中該方法包括:a)決定該凝視點與該等一或多個影像內該像素陣列的一位置間之距離;以及b)依照該距離將該已編碼頻率係數選擇性解碼,如此較大距離產生較多的頻率係數。 The method of claim 88, wherein the method comprises: a) determining a distance between the gaze point and a position of the pixel array in the one or more images; and b) encoding the code according to the distance The frequency coefficient is selectively decoded, so that a larger distance produces more frequency coefficients. 如申請專利範圍第79至89項任一項之方法,其中該等頻率分量配置在複數個層級內,並且其中每一位元編碼方案定義要用來編碼該等複數個層級中每一者內該等頻率係數的一各別位元數。 The method of any one of clauses 79 to 89, wherein the frequency components are arranged in a plurality of levels, and wherein each of the bit coding scheme definitions is to be used to encode each of the plurality of levels The number of individual bits of the frequency coefficients. 如申請專利範圍第90項之方法,其中該陣列為一N x N像素陣列,導致2N-1個頻率分量層級。 The method of claim 90, wherein the array is an N x N pixel array, resulting in a 2N-1 frequency component level. 如申請專利範圍第79至91項任一項之方法,其中該影像資料定義複數個通道,並且其中該方法包括針對每一通道選擇性解碼已編碼頻率係數。 The method of any one of clauses 79 to 91, wherein the image data defines a plurality of channels, and wherein the method comprises selectively decoding the encoded frequency coefficients for each channel. 如申請專利範圍第92項之方法,其中該已壓縮像素資料定義YCbCr通道,並且其中該方法包括:a)執行該等YCbCr通道的一逆轉換;以及b)將該等已轉換YCbCr通道轉換成RGB通道。 The method of claim 92, wherein the compressed pixel data defines a YCbCr channel, and wherein the method comprises: a) performing an inverse conversion of the YCbCr channels; and b) converting the converted YCbCr channels into RGB channel. 如申請專利範圍第92或93項之方法,其中該方法包括至少以下之一:a)比該Y通道產生更多頻率係數給該Cb或Cr通道;b)同時解碼該等已編碼YCbCr通道;c)解碼該等CbCr通道,並將該等已解碼CbCr通道與該Y通道轉換成RGB通道。 The method of claim 92, wherein the method comprises at least one of: a) generating more frequency coefficients to the Cb or Cr channel than the Y channel; b) simultaneously decoding the encoded YCbCr channels; c) decoding the CbCr channels and converting the decoded CbCr channels to the Y channels into RGB channels. 如申請專利範圍第79至94項任一項之方法,其中該逆轉換為一逆二維(2-D)離散餘弦轉換。 The method of any one of claims 79 to 94, wherein the inverse conversion is an inverse two-dimensional (2-D) discrete cosine transform. 如申請專利範圍第79至95項任一項之方法,其中該方法包括使用該像素資料來產生一影像饋送。 The method of any one of claims 79 to 95, wherein the method comprises using the pixel data to generate an image feed. 如申請專利範圍第79至96項任一項之方法,其中該方法包括:a)至少部分通過序列至並行位元組解碼來解碼已壓縮的影像資料;以及b)同時選擇性解碼頻率係數。 The method of any one of clauses 79 to 96, wherein the method comprises: a) decoding the compressed image data at least in part by sequence to parallel byte decoding; and b) simultaneously selectively decoding the frequency coefficients. 如申請專利範圍第44至65項或第79至97項任一項之方法,其中該數位實境為至少以下之一:a)增強實境;b)虛擬實境;以及c)混合實境。 The method of any one of claims 44 to 65 or 79 to 97, wherein the digital reality is at least one of: a) augmented reality; b) virtual reality; and c) mixed reality . 如申請專利範圍第44至65項或第79至98項任一項之方法,其中該方法用於利用透過至少以下之一,接收來自一計算裝置的該已壓縮影像資料,在一可戴式數位實境頭戴組內顯示影像資料:a)一通訊網路;以及 b)一無線通訊連結。 The method of claim 44, wherein the method is for receiving the compressed image data from a computing device by using at least one of the following: Displaying video data in a digital reality headset: a) a communication network; b) A wireless communication link. 如申請專利範圍第44至65項或第79至99項任一項之方法,其中該方法用於至少以下之一:a)傳輸虛擬實境視頻資料;以及b)無線傳輸虛擬實境視頻資料。 The method of any one of claims 44 to 65 or 79 to 99, wherein the method is used for at least one of: a) transmitting virtual reality video material; and b) wirelessly transmitting virtual reality video material . 一種將代表一或多個影像的已壓縮影像資料解壓縮之設備,該設備包括至少一個電子解碼器處理裝置,該至少一個電子解碼器處理裝置:a)獲取已壓縮的影像資料;b)依照定義每一已編碼頻率係數內所使用該位元數的一位元編碼方案,從該已壓縮影像資料決定一組已編碼頻率係數;c)依照該位元編碼方案來執行該已編碼頻率係數的位元解碼,藉此產生一組頻率係數,其中產生至少一個頻率係數,如此該組已編碼頻率係數小於該組頻率係數;以及d)對該組頻率係數套用一逆向轉換,來決定代表該等一或多個影像之內一像素陣列的像素資料。 An apparatus for decompressing compressed image data representing one or more images, the apparatus comprising at least one electronic decoder processing device: a) acquiring compressed image data; b) Defining a one-bit encoding scheme for the number of bits used in each encoded frequency coefficient, determining a set of encoded frequency coefficients from the compressed image data; c) performing the encoded frequency coefficients in accordance with the bit encoding scheme Bit decoding, thereby generating a set of frequency coefficients, wherein at least one frequency coefficient is generated such that the set of encoded frequency coefficients is less than the set of frequency coefficients; and d) applying a reverse transform to the set of frequency coefficients to determine Pixel data of a pixel array within one or more images. 如申請專利範圍第101項之設備,其中該設備包括:a)一解碼器輸入緩衝區,用來接收該影像資料;以及b)一解碼器輸出緩衝區,其中儲存該影像資料。 The device of claim 101, wherein the device comprises: a) a decoder input buffer for receiving the image data; and b) a decoder output buffer, wherein the image data is stored. 如申請專利範圍第102項之設備,其中該設備包含一解碼器收發器,接收該已壓縮影像資料並將該已壓縮影像資料提供至該輸入緩衝區。 The device of claim 102, wherein the device comprises a decoder transceiver that receives the compressed image data and provides the compressed image data to the input buffer. 如申請專利範圍第101至103項任一項之設備,其中該至少一解碼器處理裝置包括至少以下之一: a)一現場可程式閘陣列;b)一專用積體電路;以及c)一圖形處理單元。 The apparatus of any one of claims 101 to 103, wherein the at least one decoder processing device comprises at least one of the following: a) a field programmable gate array; b) a dedicated integrated circuit; and c) a graphics processing unit. 如申請專利範圍第101至104項任一項之設備,其中該已壓縮影像資料定義複數個通道,並且其中該設備包括至少以下之一:a)針對每一該等通道的一各別處理裝置;以及b)用於同時處理每一通道的一並行處理裝置。 The apparatus of any one of claims 101 to 104, wherein the compressed image material defines a plurality of channels, and wherein the device comprises at least one of: a) a separate processing device for each of the channels And b) a parallel processing device for processing each channel simultaneously. 如申請專利範圍第105項之設備,其中該已壓縮影像資料定義TCbCr通道,並且其中該設備:a)使用至少一個處理裝置將該等CbCr通道解碼;以及b)將該等已解碼YCbCr通道轉換成RGB通道。 The device of claim 105, wherein the compressed image material defines a TCbCr channel, and wherein the device: a) decodes the CbCr channels using at least one processing device; and b) converts the decoded YCbCr channels Into the RGB channel. 如申請專利範圍第105或106項之設備,其中該已壓縮影像資料定義YCbCr通道,並且其中該設備:a)使用至少一個處理裝置將該等CbCr通道解碼;b)使用一RGB處理裝置,將該等已解碼CbCr通道與該Y通道轉換成RGB通道;以及c)使用一延遲區塊將該Y通道從一解碼器輸入換衝區轉換至該RGB處理裝置。 The apparatus of claim 105, wherein the compressed image material defines a YCbCr channel, and wherein the device: a) decodes the CbCr channels using at least one processing device; b) uses an RGB processing device, The decoded CbCr channel and the Y channel are converted to RGB channels; and c) the Y channel is converted from a decoder input swap region to the RGB processing device using a delay block. 如申請專利範圍第101至107項任一項之設備,其中該設備包括一解碼器,用無線通訊方式與一編碼器通訊,允許影像資料作為已壓縮影像資料方式在該編碼器與該解碼器之間傳輸。 The device of any one of claims 101 to 107, wherein the device comprises a decoder for communicating with an encoder by means of wireless communication, allowing image data to be used as compressed image data in the encoder and the decoder Transfer between. 如申請專利範圍第108項之設備,其中該解碼器為耦合至合適程式編 輯的電腦系統至少之一及其一部分。 For example, the device of claim 108, wherein the decoder is coupled to a suitable program At least one of the computer systems and part of it. 如申請專利範圍第108或109項之設備,其中該解碼器為耦合至一可穿戴顯示裝置至少之一及其一部分。 The device of claim 108, wherein the decoder is coupled to at least one of a wearable display device and a portion thereof. 如申請專利範圍第101至110項任一項之設備,其中該解碼器與編碼器通訊來交換至少以下之一:a)已壓縮的影像資料;b)指示一顯示裝置移動的移動資料;c)至少部分用來控制該顯示裝置的控制資料;d)指示使用者輸入指令的輸入資料;e)指示一觀察者的一凝視點之凝視資料;以及f)來自與一可穿戴顯示裝置關聯的感應器之感應器資料。 The device of any one of claims 101 to 110, wherein the decoder communicates with the encoder to exchange at least one of: a) compressed image data; b) mobile data indicating a display device movement; c At least partially controlling the control data of the display device; d) indicating input data to the user input command; e) indicating gaze data of a viewer's gaze point; and f) from being associated with a wearable display device Sensor data for the sensor. 如申請專利範圍第101至111項任一項之設備,其中該設備執行如申請專利第79至100項任一項之方法。 The apparatus of any one of claims 101 to 111, wherein the apparatus performs the method of any one of claims 79 to 100. 一種將代表一或多個影像的影像資料壓縮之方法,該方法包括:a)從該影像資料獲得像素資料,該像素料資料代表該等一或多個影像之內一像素陣列;b)決定一編碼方案;c)使用該編碼方案對該像素資料編碼;d)決定指示所使用該編碼方案的一編碼代碼;以及e)使用該編碼代碼與已編碼像素資料來產生已壓縮影像資料。 A method of compressing image data representing one or more images, the method comprising: a) obtaining pixel data from the image data, the pixel material data representing a pixel array within the one or more images; b) determining An encoding scheme; c) encoding the pixel data using the encoding scheme; d) determining an encoding code indicating the encoding scheme used; and e) using the encoding code and the encoded pixel data to generate compressed image data. 如申請專利範圍第113項之方法,其中該方法包括以至少以下之一決定該編碼方案: a)根據該影像資料的一影像類型;b)根據從一影像資料來源接收的一編碼方案指示;c)利用分析至少該影像資料與該像素資料之一者;以及d)根據包含至少以下之一的壓縮需求:i)一壓縮總量;ii)一結果影像品質;以及iii)一壓縮延遲。 The method of claim 113, wherein the method comprises determining the coding scheme by at least one of: a) based on an image type of the image data; b) based on a coding scheme indication received from an image data source; c) utilizing at least one of the image data and the pixel data; and d) including at least A compression requirement: i) a total amount of compression; ii) a resulting image quality; and iii) a compression delay. 如申請專利範圍第114項之方法,其中該方法包括分析該像素資料來決定該像素陣列是否為至少以下之一:a)一梯度;b)一邊界;以及c)一單一顏色。 The method of claim 114, wherein the method comprises analyzing the pixel data to determine whether the pixel array is at least one of: a) a gradient; b) a boundary; and c) a single color. 如申請專利範圍第113至115項任一項之方法,其中該方法包括至少以下之一:a)若該像素陣列為純色,則將該像素陣列替換為表示該純色的一編碼代碼;b)若該像素陣列為一梯度,則該方法包含使用如申請專利範圍第60項之方法來將該像素資料編碼;以及c)使用如申請專利範圍第1至21項或第44至65項任一項之方法來將該像素資料編碼。 The method of any one of claims 113 to 115, wherein the method comprises at least one of the following: a) if the pixel array is a solid color, replacing the pixel array with an encoding code representing the solid color; b) If the pixel array is a gradient, the method comprises encoding the pixel data using a method as in claim 60 of the patent application; and c) using any one of claims 1 to 21 or 44 to 65 The method of the item encodes the pixel data. 一種將代表一或多個影像的影像資料壓縮之設備,該設備包括至少一個電子編碼器處理裝置,該至少一個電子編碼器處理裝置: a)從該影像資料獲得像素資料,該像素料資料代表該等一或多個影像之內一像素陣列;b)決定一編碼方案;c)使用該編碼方案對該像素資料編碼;d)決定指示所使用該編碼方案的一編碼代碼;以及e)使用該已編碼的頻率係數產生壓縮的影像資料。 An apparatus for compressing image data representing one or more images, the apparatus comprising at least one electronic encoder processing device, the at least one electronic encoder processing device: a) obtaining pixel data from the image data, the pixel material data representing a pixel array within the one or more images; b) determining a coding scheme; c) encoding the pixel data using the coding scheme; d) determining An encoding code indicating the encoding scheme used; and e) generating compressed image data using the encoded frequency coefficients. 如申請專利範圍第117項之設備,其中該設備執行如申請專利第113至116項任一項之方法。 The apparatus of claim 117, wherein the apparatus performs the method of any one of claims 113 to 116. 一種將代表一或多個影像的已壓縮影像資料解壓縮之方法,該方法包括:a)獲取已壓縮的影像資料;b)從該已壓縮影像資料決定一編碼代碼;c)使用該編碼代碼決定一編碼方案;以及d)使用該編碼方案將該已壓縮影像資料解碼,來決定代表該等一或多個影像之內一像素陣列的像素資料。 A method of decompressing compressed image data representing one or more images, the method comprising: a) acquiring compressed image data; b) determining an encoded code from the compressed image data; c) using the encoded code Determining a coding scheme; and d) decoding the compressed image data using the coding scheme to determine pixel data representing a pixel array within the one or more images. 如申請專利範圍第119項之方法,其中該方法包括至少以下之一:a)將一編碼代碼替換為一純色的像素陣列;b)使用如申請專利範圍第94項之方法,將已壓縮影像資料解碼為一梯度的一像素陣列;以及c)使用如申請專利範圍第21至39項或第79至96項任一項之方法來將該已壓縮影像資料解碼。 The method of claim 119, wherein the method comprises at least one of: a) replacing an encoded code with a solid color pixel array; b) using the method of claim 94, the compressed image The data is decoded into a gradient of a pixel array; and c) the compressed image data is decoded using a method as claimed in any one of claims 21 to 39 or 79 to 96. 一種將代表一或多個影像的已壓縮影像資料解壓縮之設備,該設備包 括至少一個電子解碼器處理裝置,該至少一個電子解碼器處理裝置:a)獲取已壓縮的影像資料;b)從該已壓縮影像資料決定一編碼代碼;c)使用該編碼代碼決定一編碼方案;以及d)使用該編碼方案將該已壓縮影像資料解碼,來決定代表該等一或多個影像之內一像素陣列的像素資料。 A device for decompressing compressed image data representing one or more images, the device package Comprising at least one electronic decoder processing device, the at least one electronic decoder processing device: a) acquiring compressed image data; b) determining an encoding code from the compressed image data; c) determining an encoding scheme using the encoding code And d) decoding the compressed image data using the encoding scheme to determine pixel data representing a pixel array within the one or more images. 如申請專利範圍第121項之設備,其中該設備執行如申請專利第119和120項任一項之方法。 The apparatus of claim 121, wherein the apparatus performs the method of any one of claims 119 and 120.
TW106119982A 2016-06-17 2017-06-15 Image compression method and apparatus TWI757303B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662351738P 2016-06-17 2016-06-17
US62/351738 2016-06-17
AU2016905048A AU2016905048A0 (en) 2016-12-07 Image compression method and apparatus
??2016905048 2016-12-07
AU2016905048 2016-12-07

Publications (2)

Publication Number Publication Date
TW201806386A true TW201806386A (en) 2018-02-16
TWI757303B TWI757303B (en) 2022-03-11

Family

ID=60663859

Family Applications (2)

Application Number Title Priority Date Filing Date
TW111102715A TWI788200B (en) 2016-06-17 2017-06-15 Image compression method and apparatus
TW106119982A TWI757303B (en) 2016-06-17 2017-06-15 Image compression method and apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW111102715A TWI788200B (en) 2016-06-17 2017-06-15 Image compression method and apparatus

Country Status (3)

Country Link
AU (2) AU2017285700B2 (en)
TW (2) TWI788200B (en)
WO (1) WO2017214671A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10657674B2 (en) 2016-06-17 2020-05-19 Immersive Robotics Pty Ltd. Image compression method and apparatus
WO2018145153A1 (en) 2017-02-08 2018-08-16 Immersive Robotics Pty Ltd Antenna control for mobile device communication
CN110495107A (en) 2017-02-08 2019-11-22 因默希弗机器人私人有限公司 Day line traffic control for mobile device communication
EP3714602A4 (en) * 2017-11-21 2021-07-28 Immersive Robotics Pty Ltd Image compression for digital reality
WO2019100109A1 (en) * 2017-11-21 2019-05-31 Immersive Robotics Pty Ltd Frequency component selection for image compression
US10650791B2 (en) 2017-12-28 2020-05-12 Texas Instruments Incorporated Display system
WO2019209257A1 (en) 2018-04-24 2019-10-31 Hewlett-Packard Development Company, L.P. Display devices including switches for selecting column pixel data
CN113033787A (en) * 2019-12-24 2021-06-25 中科寒武纪科技股份有限公司 Method and equipment for quantizing neural network matrix, computer product and board card
US11403782B2 (en) * 2019-12-31 2022-08-02 Alibaba Group Holding Limited Static channel filtering in frequency domain

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5325125A (en) * 1992-09-24 1994-06-28 Matsushita Electric Corporation Of America Intra-frame filter for video compression systems
US5963673A (en) * 1995-12-20 1999-10-05 Sanyo Electric Co., Ltd. Method and apparatus for adaptively selecting a coding mode for video encoding
US6252989B1 (en) * 1997-01-07 2001-06-26 Board Of The Regents, The University Of Texas System Foveated image coding system and method for image bandwidth reduction
KR100323441B1 (en) * 1997-08-20 2002-06-20 윤종용 Mpeg2 motion picture coding/decoding system
US6249614B1 (en) * 1998-03-06 2001-06-19 Alaris, Inc. Video compression and decompression using dynamic quantization and/or encoding
US7027655B2 (en) * 2001-03-29 2006-04-11 Electronics For Imaging, Inc. Digital image compression with spatially varying quality levels determined by identifying areas of interest
SE0401852D0 (en) * 2003-12-19 2004-07-08 Ericsson Telefon Ab L M Image processing
US7689047B2 (en) * 2005-04-19 2010-03-30 Samsung Electronics Co, Ltd. Reduced buffer size for JPEG encoding
US8098941B2 (en) * 2007-04-03 2012-01-17 Aptina Imaging Corporation Method and apparatus for parallelization of image compression encoders
US8542732B1 (en) * 2008-12-23 2013-09-24 Elemental Technologies, Inc. Video encoder using GPU
US8184069B1 (en) * 2011-06-20 2012-05-22 Google Inc. Systems and methods for adaptive transmission of data

Also Published As

Publication number Publication date
AU2019253866B2 (en) 2021-07-22
TWI788200B (en) 2022-12-21
TWI757303B (en) 2022-03-11
WO2017214671A1 (en) 2017-12-21
TW202220441A (en) 2022-05-16
AU2017285700A1 (en) 2019-01-24
AU2017285700B2 (en) 2019-07-25
AU2019253866A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
US11151749B2 (en) Image compression method and apparatus
TWI757303B (en) Image compression method and apparatus
AU2018373495B2 (en) Frequency component selection for image compression
AU2018280337B2 (en) Digital content stream compression
US11973979B2 (en) Image compression for digital reality
TWI772102B (en) Method for transmitting reduced depth information and electronic system
US20240121406A1 (en) Content Compression for Network Transmission
EP3635952B1 (en) Digital content stream compression
US20230395041A1 (en) Content Display Process