TW201804115A - 藉由改造具有主控制器的建築物以改善冷卻系統運作效率的方法 - Google Patents

藉由改造具有主控制器的建築物以改善冷卻系統運作效率的方法 Download PDF

Info

Publication number
TW201804115A
TW201804115A TW106123860A TW106123860A TW201804115A TW 201804115 A TW201804115 A TW 201804115A TW 106123860 A TW106123860 A TW 106123860A TW 106123860 A TW106123860 A TW 106123860A TW 201804115 A TW201804115 A TW 201804115A
Authority
TW
Taiwan
Prior art keywords
water pump
water
valve
pump
components
Prior art date
Application number
TW106123860A
Other languages
English (en)
Inventor
維納 庫馬爾 查拉
Original Assignee
犬魔建物性能私人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 犬魔建物性能私人有限公司 filed Critical 犬魔建物性能私人有限公司
Publication of TW201804115A publication Critical patent/TW201804115A/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • F24F11/47Responding to energy costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/30Velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

本發明提供一種用於一建築物以改造具有一建築管理系統的一加熱、通風及空調(暖通空調)裝置的方法,該方法包括一步驟:評估該暖通空調裝置的多個既有元件。在此之後,提供多個附加元件,該多個附加元件與該多個既有元件被並聯地提供。然後,安裝多個溫度感測器、多個流量計及多個功率計用於該多個元件。稍後,安裝多個變速驅動器(VSD)用於該多個元件。後來,安裝一控制器。

Description

藉由改造具有主控制器的建築物以改善冷卻系統運作效率的方法
本發明係有關於一種用於一建築物的一加熱、通風及空調(暖通空調)系統。
許多建築物具有多個氣候受控空間(climate-controlled spaces)。這些受控空間可意指一旅館房間、一商場零售區、一辦公室或一冷藏室。
諸多溫控器通常被用於控制這些受控空間的該環境溫度。一用戶或更經常為一運作者對於一選定的受控空間選擇一所需的或預設的溫度。
當該氣候控制空間的該環境溫度與該預設溫度不同時,一加熱、通風及空調(Heating,Ventilating,and Air Conditioning,簡稱為暖通空調或HVAC)系統會接著加熱或冷卻受控空間的空氣,直到達到該預設溫度。
在該環境溫度高於該所需溫度的情況下,該HVAC系統將熱能從該受控空間轉移到一媒介。該媒介的實例包括水、空氣及致冷劑。一個或兩個媒介接著經歷一蒸發及凝結循環,以將它的熱能轉移到一第二迴路,該第二迴路用於將該熱能傳送到一外部空間。
由於能源成本高,許多HVAC系統及溫控器都包括被設計為改善能源效率的特性,因此降低加熱及冷卻成本。例如:一些溫控器提供隨時間變化的多個設定點溫度。當該氣候受控空間的諸多住戶被預期不在場時,該多個可變設定點溫度可以被程式化以改變。這些節能特徵在許多大型設施中特別重要,諸如旅館等。
本發明之一目的是對於一建築物改善一既有的加熱、通風及空調(暖通空調)系統的能源效率。
可被相信的是,該HVAC系統可以藉由降低它的多個部件的能量消耗而被改善,該多個部件諸如用於支持一期望冷卻負載的多個泵、風扇及壓縮機。這種冷卻負載可以隨著時間而變化,並且有關從一氣候受控空間去除的熱能的數量,以將該氣候受控空間的溫度保持在一可接受範圍內。簡言之,該改善的HVAC系統以更低能耗承擔相同的冷卻負載。以這種方式,該HVAC系統的該能量效率會被改善。
本發明提供一種用於一建築物以改善加熱、通風及空調(HVAC)設備的方法。該HVAC裝置包括一建築物管理系統(Building Management System,BMS)。
該建築物具有一屋頂及多個牆壁的一實體結構。該建築物的例子包括一房屋、一教堂及一廠房。
該HVAC裝置被用於調整該建築物的氣候受控空間的該熱舒適度。該氣候受控空間意指該建築物的多個房間、多個廊道或其他多個區域。一個地方的溫度及濕度可以定義該地方的熱舒適度。
該BMS充當啟用HVAC設備的多個部件(parts)或多個元件(components),使得該受控空間提供期望的熱舒適度(desired thermal comfort)。該HVAC裝置的多個部件可以意指該HVAC裝置的一水泵(water pump)、一冰水機組壓縮機(chiller compressor)或一冷卻水塔風扇(cooling tower fan)。該BMS還用作調整這些部件的速度。
該方法包括一步驟:評估該HVAC裝置的多個現有元件。該評估可以意指為判斷該多個元件的多個預定值(predetermined values)或多個預定條件(predetermined conditions)。
此後,多個附加的(additional)或備用的(back-up)元件與該各別的多個現有元件被並聯地提供。該附加的元件與該各別的現有元件(respective existing component)執行多個相同的功能。在一個示例中,一附加的水泵與一既有的水泵被並聯地(in parallel)提供。該附加的水泵、該現有的 水泵或兩者可以被啟用(activated),以提供迫使水供應一水流的功能。
多個計量(measurements)感測器接著被安裝於該多個HVAC元件。這些計量感測器包括多個溫度感測器、多個流量計及多個電功率計。該多個溫度感測器用於計量流經各別的HVAC元件的流體的溫度。類似地,該流量計用於計量各別的流體的流率(flow rates)。該電功率計被用於計量各別的HVAC部件消耗的電能(electrical energy)。
多個變速驅動器(VSDs)稍後被安裝(installed)用於該各別的HVAC多個元件。該多個VSD可以用作調節該HVAC多個元件的速度。特別地,該多個VSD可以用於(serve to)調節多個水泵(water pumps)、多個冷卻水塔風扇及多個冰水機組壓縮機的速度。該速度的調節通常藉由改變該各別的HVAC元件的一電源供應器(electrical power supply)的一脈波寬度(pulse width)而被進行。
此後,一主控制器(master controller)被安裝在該HVAC裝置中。該主控制器被連接到該被安裝的多個計量感測器及該被安裝的多個VSD。
該控制器被配置(configured)用於從該多個計量感測器獲得計量資料(measurement data)。
該控制器還被配置用於對該BMS發送多個命令(commands)或指令(instructions),以啟用該多個HVAC裝置元件的不同組合。該控制器可以啟用該現有元件、啟用相應的附加元件或將現有元件及相應的附加元件兩者都啟用。
該控制器還使用該多個VSD以調整該多個元件的多個相應速度參數。該多個元件速度參數被選擇,使得該元件組合及該相應的多個元件速度參數提供一預定熱舒適度用於該建築物的多個用戶。實際上,該建築物的諸多用戶對於具有各別的元件速度參數的諸多不同元件組合,能體驗到相同的熱舒適度。
從不同的諸多組合,該控制器隨後選擇諸多元件中的一個組合與相應的元件速度參數。這個元件與諸多相應的元件速度參數允許該HVAC裝置提供被降低的能量消耗。
該控制器隨後對該BMS發送以啟用被選擇的元件組合,並且使用諸多VSD調整諸多相應的元件速度參數。
該方法具有的一優點為降低該HVAC裝置的電能消耗。特別重要的一點是,該建築物是大的且有許多氣候受控的房間。該HVAC裝置的能量消耗因而很大。
該速度參數的資料可以意指不同類型的資料。
該速度參數的資料可以意指水泵減速資料。
該速度參數的資料還可以意指水流率降低資料。
本發明還提供用於一建築物的加熱、通風及空調(HVAC)裝置的另一種方法。
該HVAC裝置包括一建築物管理系統(BMS)及一主控制器(master controller)、一個或多個水泵,該水泵具有一閥。
該水泵及該水閥被提供,用於該HVAC裝置的一冷水迴路或一冷凝器水迴路的一水管。該水泵用於迫使水經過該管道,同時該閥用於控制通過該管道的水流。該BMS或該控制器用於啟用該水泵的一速度。換言之,該BMS或該控制器調節該水泵的該流率。該BMS或該控制器用作致動該閥的多個位置。
該方法包括將HVAC裝置的管道的水泵的閥致動到完全開啟位置的步驟。在該完全開啟的位置,該閥不會緊縮通過該管道的水流。該水泵閥可以包括一個或兩個閥元件,用於藉由開啟或關閉該多個閥元件以控制流經該管道的水流。一個閥元件可以被放置在一供水側,而另一個閥元件可以被放置在該水泵的一回水側。
然後計量水的一流率。此流率相應於該水泵閥的該完全開啟位置。
之後,根據該水流率計量,確定該水泵的一電源供應器的一頻率的多個脈衝寬度。該不同的頻率功率寬度被用於提供不同的相應的水泵速度。該多個水泵速度與該水泵的一流率有關。一窄的脈衝寬度將相應於一低水泵速度,而一寬的脈衝寬度將相應於一高的水泵速度。
該水泵隨後被啟用,根據該水泵的該電力供給的該頻率的多 個脈衝寬度,用於提供多個水泵速度。
同時,該閥還被啟動到相應的多個位置。這樣做,使得每個水泵速度及相應的水閥位置提供相同的預定水流率。該BMS或該控制器可以使用公式以確定該閥位置。該BMS或該控制器還可以使用試錯法(trial and error methods)以決定該閥位置。
在一個實現方案中,該脈衝寬度被變窄,以減少該水泵的速度,以迫使水變少。該減少的水泵速度及該水閥的相應位置提供相同的期望的水流率。
對於各種水泵速度,該水泵的電力消耗(electrical power consumption)被計量(measured)。
此後,一水泵速度具有相應的水閥位置,這提供被降低的電力消耗,然後被選擇以使用。
這種方法有一些優點。它可以輕鬆應用於HVAC裝置的幾種類型。它也可以被應用於相同HVAC裝置的不同部件。
本發明提供另一種用於一建築物以運作一加熱、通風及空調(HVAC)裝置的方法。
該HVAC裝置包括一建築物管理系統(BMS)、一主控制器及多個變速驅動器。該VSD被用於改變一水泵的一電力供給的一頻率的一脈衝寬度。該控制器或該BMS運作該VSD。
該方法包括提供一第一水泵的步驟,該步驟適於運作在一第一預定電源頻率脈衝寬度。
一相應的水閥還被致動到一第一預定水泵閥位置。該第一預定電力供應頻率脈衝寬度及該第一預定水泵閥位置允許該水泵提供一預定流率。
該第一水泵的電力消耗接著被計量。
然後,一第二水泵與該第一水泵被並聯地設置。該第一水泵及該第二水泵適於運作在一第二預定電力供應頻率脈衝寬度。
該水閥還被致動到一第二預定水泵閥位置,使得該第一水泵及該第二水泵共同提供與上述相同的預定流率。
然後,該第一水泵及該第二水泵的電力消耗被計量(measured)。
然後,以便降低電力消耗,該第一水泵、該第二水泵,或者,該第一及第二水泵兩者被選擇以進行運作。
該方法通常包括一步驟,對於該HVAC裝置的多個部件提供多個運作邊界參數。
該多個運作邊界參數定義該多個HVAC裝置部件的多個參數的多個實際限制。該HVAC裝置部件可能無法正常工作,並且在它的多個實際限制外運作時可能會損壞。簡單地說,該HVAC裝置部件。
然後,將該水泵頻率脈衝寬度與相應的運作邊界參數進行比較。
當該水泵頻率脈衝寬度的該值超過相應的運作邊界參數的值時,該水泵頻率脈衝寬度的值被改變為相應的運作邊界參數的值。
然後,該水泵閥位置與相應的運作邊界參數被進行比較。
當該水泵閥位置的值超過相應的運作邊界參數的值時,該水泵閥位置的值被改變為相應的運作邊界參數的值。
該運作邊界參數可以使用多個統計技術而被產生。當該運作邊界參數具有一常態分佈(normal distribution)時,這是可能的。然後,可以採用諸多電腦以計算該運作邊界參數,而該運作邊界參數也可以用作一質量控制限值(quality control limit)。
在一個實現方案(implementation)中,該水泵是意指一冰水泵(chilled water pump)。該各別的水閥是意指一冰水閥(chilled water valve)。
在另一個實現方案中,該水泵是意指一冷凝器水泵(condenser water pump)。該各別的水閥是意指一冷凝器水閥(condenser water valve)。
10‧‧‧空氣冷卻及循環配置
13‧‧‧建築物管理系統(BMS)
16‧‧‧能量控制模組
20‧‧‧冷卻水塔
22‧‧‧冷凝器水泵
25‧‧‧空調箱(AHU)
27‧‧‧供給冰水泵
29‧‧‧回流冷水泵
33‧‧‧冰水機組
36‧‧‧風扇
40‧‧‧壓縮機
43‧‧‧蒸發器
45‧‧‧冷凝器
48‧‧‧膨脹閥
52‧‧‧變速驅動器(VSD)
60‧‧‧溫度感測器
65‧‧‧壓力感測器
70‧‧‧流量計
73‧‧‧主控制器(MC)
75‧‧‧開關
77‧‧‧開關
78‧‧‧開關
80‧‧‧基於雲端的電腦
100‧‧‧空氣冷卻及循環配置
130‧‧‧建築物管理系統(BMS)
160‧‧‧能量控制模組
200‧‧‧冷卻水塔模組
220‧‧‧冷凝器水泵模組
250‧‧‧空調箱(AHU)模組
270‧‧‧供給冰水泵模組
290‧‧‧回流冰水泵模組
330‧‧‧冰水機組模組
370‧‧‧主控制器(MC)
400‧‧‧圖形
410‧‧‧圖形
500‧‧‧流程圖
510‧‧‧步驟
515‧‧‧步驟
520‧‧‧步驟
530‧‧‧步驟
540‧‧‧步驟
550‧‧‧步驟
560‧‧‧步驟
730‧‧‧主控制器
740‧‧‧計量模組
20A‧‧‧水閥
20B‧‧‧水閥
22A‧‧‧水閥
22B‧‧‧水閥
25A‧‧‧水閥
25B‧‧‧水閥
27A‧‧‧水閥
27B‧‧‧水閥
33A1‧‧‧水閥
33A’‧‧‧水閥
33B1‧‧‧水閥
33B2‧‧‧水閥
20’‧‧‧冷卻水塔
22’‧‧‧冷凝器水泵
25’‧‧‧空調箱(AHU)
27’‧‧‧供給冰水泵
29’‧‧‧回流冷水泵
33’‧‧‧冰水機組
36’‧‧‧風扇
20A’‧‧‧水閥
20B’‧‧‧水閥
22A’‧‧‧水閥
22B’‧‧‧水閥
25A’‧‧‧水閥
25B’‧‧‧水閥
27A’‧‧‧水閥
27B’‧‧‧水閥
29A’‧‧‧水閥
29B’‧‧‧水閥
33A1’‧‧‧水閥
33A2’‧‧‧水閥
33B1’‧‧‧水閥
33B2’‧‧‧水閥
400a‧‧‧圖形
400b‧‧‧圖形
H‧‧‧公共集管
第1圖繪示用於一建築物的一空氣冷卻及循環配置(air cooling and circulating arrangement),包括一建築物管理系統(BMS)及一能量控制 模組;第2圖繪示第1圖的該空氣冷卻及循環配置的一冰水機組的多個部件;第3圖繪示另一個空氣冷卻及循環配置,該空氣冷卻及循環配置具有另一個能量控制模組,該能量控制模組是第1圖的該能量控制模組的一種變化形體;第4圖繪示另一個空氣冷卻及循環配置,具有一能量控制模組被連接到一基於雲端的電腦(cloud-based computer);第5圖繪示另一種空氣冷卻及循環配置,該空氣冷卻及循環配置是第1圖的空氣冷卻及循環配置的一變化形式;第6圖繪示具有一節流閥的一水流系統的多個系統曲線與用於第1圖及第5圖的空氣冷卻及循環配置的一水泵的多個性能曲線的一示例;第7圖繪示第5圖的空氣冷卻及循環配置的一種運作方法的一流程圖;第8圖繪示對於第5圖的空氣冷卻及循環配置在冰水機組效能與冷凝器水溫度之間的一關係的一曲線;及第9圖繪示對於第5圖的空氣冷卻及循環配置在冰水機組效能與冰水機組速度之間的一關係的一曲線。
在下面的描述中,提供描述本發明的多個實施例的多個細節。然而,對於本領域技術人員顯而易見的是,該多個實施例可以在沒有這樣的細節的情況下被實踐。
一些實施例具有相似的多個部件類似的部件可以具有與字母或素數符號相同的名稱或相似的部件附圖標記。在適當的情況下,藉由參考另一相似部件以描述一個相似的部件,從而減少文本的重複而不限制本揭露。
第1圖繪示用於一建築物的一空氣冷卻及循環配置10,該空氣冷卻及循環配置10具有一建築物管理系統(BMS)13及一能量控制模組16。該空氣冷卻及循環配置10被電性連接(electrically connected)到該能量 控制模組16及該BMS 13。該建築物未在第1圖中繪示。該BMS 13也稱為一建築物自動化系統(BAS)。
該空氣冷卻及循環配置10包括一冷卻水塔20、一空調箱(AHU)25及一冰水機組33,該冷卻水塔20具有一冷凝器水泵22,該空調箱25具有一供給冰水泵27及一回流冰水泵29。該冷卻水塔20包括一個或多個風扇36。
在另一個實現方案中,該水泵是意指一冷凝器水泵。該各別的水閥是意指一冷凝器水閥。該水泵22在該冰水機組33與該冷卻水塔20之間循環流通被凝結的水(condensed water)。
該AHU 25藉由一冰水管道被流體地連接(fluidically connected)到該供應冰水泵27。該供應冰水泵27藉由另一個冰水管道被流體地連接到冰水機組33。該冰水機組33藉由另一冰水管道被流體地連接到該回流冰水泵29。該回流冰水泵29藉由另一冰水管道被流體地連接到該AHU 25。該供應冰水泵27及該回流冰水泵29在該AHU 25與該冰水機組33之間循環流通冰水。
可以如第2圖所示,該冰水機組33包括該致冷劑氣體壓縮機40、一蒸發器43、一冷凝器45及一膨脹閥48。
該氣體壓縮機40、該蒸發器43、該冷凝器45及該膨脹閥48藉由一組致冷劑管道(a set of refrigerant pipes)流體地連接,以共同形成一致冷劑迴路(loop),允許一致冷劑在一熱力循環(thermodynamic cycle)中循環流通。
該氣體壓縮機40被流體地連接到該冷凝器45,該冷凝器45被流體地連接到該膨脹閥48。該膨脹閥48被流體地連接到該蒸發器43。該蒸發器43被流體地連接到該氣體壓縮機40。該氣體壓縮機40、該冷凝器45、該膨脹閥48及蒸發器43包含一致冷劑,該致冷劑可以氣體及/或液體形式。
可以如圖1及圖2所示,該冰水機組冷凝器45被流體地連接到該多個冷凝器水管,使得該冷卻水塔20、該冷凝器水泵22及冰水機組冷凝器45共同形成一冷凝器水迴路,該冷凝器水迴路使一冷凝水循環流 通。
該冰水機組蒸發器43被流體地連接到該冰水管,使得該AHU 25、具有該回流冰水泵29的供給冰水泵27及該冰水機組蒸發器43形成一冰水迴路,該冰水迴路允許冰水循環流通。
該供給冰水泵27及該回流冰水泵29適用於在該AHU 25與該冰水機組蒸發器43之間循環流通一冰水。
參考該BMS 13,可以如第1圖所示,適用於啟用該空氣冷卻及循環配置10的各別部件的電動馬達,例如多個泵、多個風扇及多個壓縮機。
詳細地說,該BMS13被電性連接到該冰水機組壓縮機40、該冷凝器水泵22、該冷卻水塔風扇36、該供給冰水泵27及該回流冰水泵29,以啟用這些部件。諸多連接線未繪示於第1圖,以便簡化。
參考該能量控制模組16,它包括多個變速驅動器(VSD)52,該空氣冷卻及循環配置10的一參數計量模組及一主控制器(MC)73。該VSD也稱為一變頻驅動器(VFD)。在第1圖中僅示出多個VSD 52中的一個。
該MC 73被電性連接到該多個VSD 52。
在一個實現方案中,該MC 73經由一電動開關被電性連接到該多個VSD 52,該電動開關用於選擇性地將該VSD 52連接到該MC 73。
該MC 73還被電性連接到該參數計量模組,該參數計量模組藉由多條導線被連接到該空氣冷卻及循環配置10的各部件各別的多個感測器。該MC 73與該多個感測器之間的多條連接線未繪示於第1圖,以便簡化。
在一特殊實現方案中,該多個感測器藉由無線資料傳輸手段(wireless data transmission means)被連接到該參數計量模組,以替代多個有線的電性連接(wired electrical connections)。
該參數計量模組包括多個溫度感測器60、多個壓力感測器65及多個流量計70。
關於該流率,該MC 73被電性連接到一流量計70,該流量計70適用以計量該供給冰水泵27的該流率或該回流冰水泵29的該流率。 實際上,此流量計70適用於計量在該冷水迴路中的流體的流率。
類似地,該MC 73被電性連接到一流量計70,該流量計70適用於計量該冷凝器水泵22的該流率。實際上,此流量計70適用於計量在該冷凝器水迴路中的流體的流率。
關於該壓力,該MC 73被電性連接到一壓力感測器65,該壓力感測器65適用於計量在該冰水迴路中的該冰水的壓力。
該MC 73還被電性連接到一壓力感測器65,該壓力感測器65適用於計量被供應到該AHU 25的該冰水的壓力。此水的壓力用作迫使冰水經由該AHU 25。換言之,來自該感測器65的一低壓讀數(low-pressure reading)指示的是,該冰水的水量不足以流經該AHU 25。
在一特殊情況下,該MC 73被電性連接到一壓力感測器65,該壓力感測器65適用於計量在該冷凝器水迴路中的該冷凝器水的壓力。
關於該溫度,該MC 73還被電性連接到一溫度感測器60,該溫度感測器60適用於計量被供應到該冰水機組33的該冷凝器水的溫度。
該MC 73還被電性連接到一個溫度感測器60,該溫度感測器60適用於計量從該冰水機組33回流的(returned)該冷凝器水的溫度。該冷凝器水從該冰水機組33流出。
該MC 73還被電性連接到一溫度感測器60,該溫度感測器60適用於計量從該冰水機組33供給的(supplied)該冰水的溫度。
該MC 73還被電性連接到一溫度感測器60,該溫度感測器60適用於計量回流到該冰水機組33的該冰水的溫度。
參考該多個VSD 52,它們適用於調節該空氣冷卻及循環配置10的各別部件相應的多個電動馬達的頻率脈衝寬度(frequency pulse width)。這反而改變該空氣冷卻及循環配置10的電力消耗(electrical power consumption)或能量消耗。
在一特殊實施方案中,該多個VSD 52被配置以改變該電動馬達的電壓或頻率。
詳細地,一VSD52被電性連接到該冰水機組壓縮機40的一 電源供應器(electrical power supply),以調節該冰水機組壓縮機40的速度。一VSD52被電性連接到該冷卻水塔風扇36的一電源供應器,以調節該冷卻水塔風扇36的速度。一VSD 52被電性連接到該冷凝器水泵22的一電源供應器,以調節該冷凝器水泵22的速度。一VSD 52被電性連接到該供給冰水泵27的一電源供應器,以調節該供給冰水泵27的速度。一VSD52被電性連接到該回流冰水泵29的一電源供應器,以調節該回流冰水泵29的速度。
在這裡未示出的另一個實施例中,該空氣冷卻及循環配置10包括除了該回流冰水泵29以外的所有部件。
在一般意義上,該空氣冷卻及循環配置10還可以包括多於一個的供給冰水泵27或多於一個的回流冰水泵29或多於一個的冷凝器水泵22。
如果提供多於一個的供給冰水泵27,則該供給冰水泵27與多個電動閥被並聯連接,以啟用(activating)及停用(deactivating)每個供給冰水泵27。該多個電動閥被電性連接到BMS 13及/或該MC 73。
類似地,如果提供多於一個的回流冰水泵29,則該回流冰水泵29與該多個電動閥被並聯連接,以啟用及停用每個回流冰水泵29。該多個電動閥被電性連接到該BMS 13及/或該MC 73。
如果提供多於一個的冷凝器水泵22,則該冷凝器水泵22與該多個電動閥被並聯連接,以啟用及停用每個冷凝器水泵22。該多個電動閥被電性連接到該BMS 13及/或該MC 73。
該空氣冷卻及循環配置10還可以包括多於一個的冷卻水塔20。每個冷卻水塔20可以包括多於一個的風扇36。
該空氣冷卻及循環配置10還可以包括多於一個的冰水機組33。每個冰水機組33可以具有多於一個的壓縮機40。
在一特定實施例中,啟用多個開關的一電氣面板(electrical panel)替代該BMS 13。該多個開關被用於啟用該空氣冷卻及循環配置10的各個部件。
在另一個實施例中,一熱交換器被安裝在該供給冰水泵27 與該回流冰水泵29之間,以提供兩個水的迴路(loops)或環路(circuits)。
詳細地,該熱交換器被流體地連接到該供給冰水泵27及該回流冰水泵29,其中該供給冰水泵27、該熱交換器、該回流冰水泵29及該冰水機組33形成一第一水迴路。
該熱交換器還被流體地連接到一第二泵及該AHU 25,其中該熱交換器、該第二泵及該AHU 25形成一第二水迴路。該第二泵將會驅動此水迴路。
在使用中,該空氣冷卻及循環配置10被用於調節一建築物的多個氣候受控空間的溫度。
該BMS 13管理或啟用該空氣冷卻及循環配置10的多個部件,以便該受控空間具有一用戶期望的舒適溫度。
該能量控制模組16改變該空氣冷卻循環裝置10的各別部件相應的電動馬達的電源供應器的頻率脈衝寬度,以改變該空氣冷卻及循環配置10的能量消耗,同時保持該多個受控空間的該用戶期望的舒適溫度。
該頻率脈衝寬度相應於該電動馬達的一速度。換句話說,調整該頻率脈衝寬度也會改變該電動馬達的速度。該電動馬達通常被用於多個水泵、多個冷卻水塔風扇及多個壓縮機。
關於該冰水迴路,它吸收來自該AHU 25的熱能,並且將此熱能轉移到該冰水機組33。
詳細地,該AHU 25吸收來自該建築物的該多個受控空間的熱能,然後將此熱能傳送到流經該AHU 25的該冰水。
該供給冰水泵27及該回流冰水泵29將該冰水循環流通在該AHU 25與該冰水機組33的該蒸發器43之間。
關於該致冷劑迴路,該冰水機組33用作將熱能從該冰水傳送到該冷凝器水,其中所述冰水及該冷凝器水流經該冰水機組33。
詳細地,該蒸發器43容許流經該蒸發器43的致冷劑吸收熱能,該熱能來自流經該蒸發器43的該冰水。這導致該致冷劑從一種液體態變成一種蒸汽態。
該壓縮機40接收來自該蒸發器43的該致冷劑,其中該壓縮 機40引發該致冷劑的溫度及壓力增加。
該冷凝器45接收來自該壓縮機40的該致冷劑,其中該致冷劑從一種蒸汽態變為一種液體態。在該相態改變(phase change)期間,該致冷劑將它的熱能傳送到該冷凝器水,該冷凝器水流經該冷凝器45。
該膨脹閥48提供該致冷劑的一相態改變,從而降低該致冷劑的溫度。
關於該冷凝器水迴路,它將熱能從該冰水機組33傳送到該冷卻水塔20。
詳細地,該冰水機組冷凝器45將熱能從流經該冰水機組冷凝器45的該致冷劑傳送到該冰水,該冰水流經該冰水機組冷凝器45。
該冷凝器水泵22在該冰水機組33與該冷卻水塔20之間循環流通該冷凝器水。
具有該風扇36的該冷卻水塔20用以將流經該冷卻水塔20的該冷凝水中的熱能排出到外部空間。
以該空氣冷卻及循環配置10改造該建築物的不同方法被描述如下。
一種改造已經存在該BMS 13的該建築物的方法,如第1圖所示,該空氣冷卻及循環配置10還未具備任何VSD。該BMS 13適用於啟用該空氣冷卻及循環配置10的各個部件。
該方法包括一步驟:對該空氣冷卻及循環配置10添加一能量控制模組16。
該能量控制模組16包括具有一啟動開關75及一MC 73的多個VSD 52。該開關75適用於選擇性地將該MC 73連接到該多個VSD 52。換句話說,該開關75的選擇允許該MC 73對該VSD 52發送多個指令(instructions)或多個命令(commands)。
該MC 73被電性連接到一參數計量模組,該參數計量模組被連接到該空氣冷卻及循環配置10的各個感測器。
該MC 73被配置以從該參數計量模組接收該空氣冷卻及循環配置10的多個感測器的多個感測器計量讀數(sensor measurement readings)。該MC 73還被配置有一改良的演算法(improved algorithm),用以控制該多個VSD 52,以根據該多個感測器計量讀數降低該空氣冷卻及循環配置10的多個部件的該能量消耗,同時保持被期望的溫暖或涼爽舒適度(desired thermal or cooling comfort)。
另一種改造該建築物的方法被描述如下,其中相對於一BMS的一主控制器被建置。
第3圖繪示已經存在的具有一BMS 13及多個VSD 52的一空氣冷卻及循環配置10。
該BMS 13被配置以控制該多個VSD 52,以便調節該空氣冷卻及循環配置10的各個部件的速度。
該方法包括一步驟:在該BMS 13與該VSD 52之間提供一啟用開關77。該開關77選擇性地將該BMS 13連接到該多個VSD 52。
該方法還包括一步驟:在該MC 73與該多個VSD 52之間提供一MC 73及一啟用開關78。該開關77選擇性地將該多個VSD 52連接到該MC 73。
該MC 73被電性連接到一參數計量模組,該參數計量模組被連接到該空氣冷卻及循環配置10的各個感測器。
該MC 73被配置以從該參數計量模組接收該空氣冷卻及循環配置10的多個感測器的多個感測器計量讀數。該MC 73還被配置有一改良的演算法,用以控制該多個VSD 52,以根據該多個感測器計量讀數降低該空氣冷卻及循環配置10的多個部件的該能量消耗,同時保持被期望的溫暖或涼爽舒適度。
第4圖顯示另一種空氣冷卻及循環配置。該空氣冷卻及循環配置包括一能量控制模組,該能量控制模組被通訊地連接到具有一資料庫的一基於雲端的電腦(cloud-based computer)。該資料庫儲存計量資料。該能量控制模組包括一可程式化邏輯控制器(PLC)及/或監控與資料獲取(SCADA),用以處置(treating)或處理(processing)來自該基於雲端的電腦的資料,以進行額外的評估。
在另一個實現中,該PLC或該SCADA將資料發送到該基 於雲端的電腦,以進行額外的評估。
一種用於一建築物的該空氣冷卻及循環單元10的該BMS 13及該MC 73的運作方法被描述如下。
該BMS 13及該MC 73以一疊加方式(superimposition manner)產生作用,以降低該空氣冷卻及循環單元10的該能量消耗,同時保持一被期望的熱舒適度。
該方法包括一步驟:該BMS 13從該空氣冷卻及循環單元10的多個部件獲得多個參數計量。
然後,BMS 13將獲得的多個參數計量發送到該MC 73。
此後,該MC 73根據該多個參數計量,計算出一有效的運作設定,諸如每個運作的泵及運作的冷卻水塔的運作設備數量及運作速度等。
然後,該MC 73將該被計算出的運作設定發送到該BMS 13。
之後,該BMS 13將根據該被計算出的運作設定推導出的多個相應的控制訊號發送到多個VSD,該多個VSD被連接到多個泵及多個冷卻水塔風扇。
在另一種運作該BMS 13及該MC 73的方法中,該空氣冷卻及循環單元10的一操作者(operator)被設置有一啟動開關,用以將該空氣冷卻及循環單元10的多個部件連接到該MC 73或該BMS 13。換句話說,該操作者在MC 73或BMS 13作出選擇,以提供多個控制命令到該空氣冷卻及循環單元10。
在另一種運作該BMS 13及該MC 73的方法中,該MC 73從該空氣冷卻及循環單元10獲取感測器計量資料,並經由該BMS 13發送多個控制訊號到該空氣冷卻及循環單元10。
在運作該BMS 13及該MC 73的一特殊方法中,執行上述方法的步驟的一組合。一些感測器計量資料被取自BMS 13,並且多個控制訊號經由BMS 13被發送,而其他感測器計量資料藉由直接地發送多個控制訊號的該MC 73被直接地計量。
在另一種運作該BMS 13及該MC 73的方法中,BMS 13不存在。僅存在該MC 73,用以從該空氣冷卻及循環單元10獲取所有感測器計量資料,並且將所有控制訊號發送到該空氣冷卻及循環單元10。
一種運作空氣冷卻及循環配置10的方法被描述如下。
該BMS 13選擇性地啟用該冰水機組壓縮機40、該冷凝器水泵22、該冷卻水塔風扇36、該供給冰水泵27及該回流冰水泵29。
此後,該MC 73從該參數計量模組740的感測器接收的多個參數計量,有關於該空氣冷卻及循環配置10的多個部件的多個感測器讀數參數。特別地,該MC 73從該溫度感測器60、該壓力感測器65、該流量計70及電功率器接收多個參數計量。
該MC 73然後根據該參數計量對該多個VSD 52產生多個控制訊號。
該MC73隨後對該多個VSD52發送該多個被產生的控制訊號,用以調節該空氣冷卻及循環配置10的各別部件的相應的電動馬達的多個電源供應器的頻率脈衝寬度,以減少該空氣冷卻及循環配置10的能量消耗,同時允許該多個受控空間達到一用戶期望的舒適溫度。
第5圖繪示具有多個附加冰水泵及多個附加冷凝器水泵的一空氣冷卻及循環配置。這些附加水泵可以是目前不運作(operating)或運行(running)中的一冰水機組的一部分。這些水泵也可以被安裝作為一備用品(backup),當正常運作中的水泵故障時,或當正常運作中的水泵被取出用於維修或維護時,該備用品可被使用。
第5圖顯示用於一建築物的一空氣冷卻及循環配置100,包括一建築物管理系統(BMS)130及一能量控制模組160。該空氣冷卻及循環配置100被電性連接到該能量控制模組160及該BMS 130。該建築物未被繪示於第5圖中。
該空氣冷卻及循環配置100包括一冷卻水塔模組200、一空調箱(AHU)模組250及一冰水機組模組330,該冷卻水塔模組200具有一冷凝器水泵模組220,該空調箱(AHU)模組250具有一供給冰水泵模組270及一回流冰水泵模組290。
該冷卻水塔模組200及該冷凝器水泵模組220藉由一組冷凝器管道而被流體連接到冰水機組模組330。該冷卻水塔模組200被流體地連接到該冷凝器水泵模組220,該冷凝器水泵模組220被流體地連接到該冰水機組模組330。該冰水機組模組330被流體地連接到該冷卻水塔模組200。
該AHU模組250、該供給冰水泵模組270及該回流冰水泵模組290藉由一組冰水管道被流體地連接到該冰水機組模組330。該AHU模組250被流體地連接到該供給冰水泵模組270。該供給冰水泵模組270被流體地連接到該冰水機組模組330,該冰水機組模組330被流體地連接到該回流冰水泵模組290。該回流冰水泵模組290被流體地連接到該AHU模組250。
詳細地,該冷卻水塔模組200包括一冷卻水塔20及一冷卻水塔20’,該冷卻水塔20具有多個水閥20A及20B,該冷卻水塔20’具有多個水閥20A’及20B’。該些水閥20A、20B、20A’及20B’也被稱為多個隔離閥(isolation valves)或短行程閥(-in short-valves)。
該閥20A被流體地連接到該冷卻水塔20的一進水口,而該閥20B被流體地連接到該冷卻水塔20的一出水口。
類似地,該閥20A’被流體地連接到該冷卻水塔20’的一進水口,而該閥20B’被流體地連接到該冷卻水塔20’的一出水口。該閥20A還被流體地連接到該閥20A’,而該閥20B被流體地連接到該閥20B’。
該冷卻水塔20包括一風扇36,而該冷卻水塔模組20’包括一風扇36’。
參照該冷凝器水泵模組220,該冷凝器水泵模組220包括一冷凝器水泵22及一冷凝器水泵22’,該冷凝器水泵22具有多個水閥22A及22B,該冷凝器水泵22’具有多個水閥22A’及22B’。
該閥22A被流體地連接到該冷凝器水泵22的一進水口,而該閥22B被流體地連接到該冷凝器水泵22的一出水口。
類似地,該閥22A’被流體地連接到該冷凝器水泵22’的一進水口,而該閥22B’被流體地連接到該冷凝器水泵22’的一出水口。該閥22A還被流體地連接到該閥22A’,而該閥22B被流體地連接到該閥22B’。
參照該AHU模組250,該AHU模組250包括一AHU25及一AHU 25’,該AHU25具有多個水閥25A及25B,該AHU 25’具有多個水閥25A’及25B’。
該閥25A被流體地連接到該AHU 25的一進水口(water inlet),而該閥25B被流體地連接到該AHU 25的一出水口(water outlet)。
同樣地,該閥25A’被流體地連接到該AHU 25’的一進水口,而該閥25B’被流體地連接到該AHU 25’的一出水口。該閥25A還被流體地連接到該閥25A’,而該閥25B被流體地連接到該閥25B’。
請參照該供給冰水泵模組270,該供給冰水泵模組270包括一供給冰水泵27及一供給冰水泵27’,該供給冰水泵27具有多個水閥27A及27B,該供給冰水泵27’具有多個水閥27A’及27B’。
該閥27A被流體地連接到該供給冰水泵27的一進水口,而該閥27B被流體地連接到該供給冰水泵27的一出水口。
以類似的方式,該閥27A’被流體地連接到該供給冰水泵27’的一進水口,而該閥27B’被流體地連接到該供給冰水泵27’的一出水口。該閥27A還被流體地連接到該閥27A’,而該閥27B被流體地連接到該閥27B’。
請參照該回流冰水泵模組290,該回流冰水泵模組290包括一回流冰水泵29及一回流冰水泵29’,該回流冰水泵29具有多個水閥29A及29B,該回流冰水泵29’具有多個水閥29A’及29B’。
該閥29A被流體地連接到該回流冰水泵29的一進水口,而該閥29B被流體地連接到該回流冰水泵29的一出水口。
同樣地,該閥29A’被流體地連接到該回流冰水泵29’的一進水口,而該閥29B’被流體地連接到該回流冰水泵29’的一出水口。該閥29A被流體地連接到該閥29A’,而該閥29B也被流體地連接到該閥29B’。
請參照該冰水機組模組330,該冰水機組模組330包括一冰水機組33及一冰水機組33’,該冰水機組33具有多個水閥33A1、33A2、33B1及33B2,該冰水機組33’具有多個水閥33A1’、33A2’、33B1’及33B2’。
該閥33A1被流體地連接到該冰水機組33的一冷凝器進水 口,而該閥33B1被流體地連接到該冰水機組33的一冷凝器出水口。該閥33A2被流體地連接到該冰水機組33的一冰水機組進水口,而該閥33B2被流體地連接到該冰水機組33的一冰水機組出水口。
類似地,該閥33A1’被流體地連接到該冰水機組33’的一冷凝器進水口,而該閥33B1’被流體地連接到該冰水機組33’的一冷凝器出水口。該閥33A2’被流體地連接到該冰水機組33’的一冰水機組進水口,而該閥33B2’被流體地連接到該冰水機組33’的一冰水機組出水口。
該閥33A1被流體地連接到該閥33A1’,並且該閥33B1也被流體地連接到該閥33B1’。該閥33A2被流體地連接到該閥33B2’,而該閥33B2被流體地連接到該閥33B2’。
請參照該BMS 130,該BMS 130適用於啟用該空氣冷卻及循環配置100的各別部件的多個電動馬達,諸如多個泵、多個風扇及多個壓縮機。該啟用涉及對該多個電動馬達的電能規範(provision of electrical energy)。該BMS 130藉由多條電纜(cables)被電性連接到這些電動馬達,用於將這些電動馬達選擇性地連接到相應的電源供應器,以提供電能到這些電動馬達。
該BMS 130還適用於致動(actuating)該多個水閥20A、20B、22A、22B、25A、25B、27A、27B、29A、29B、29A及29B。該BMS 130還適用於致動該多個水閥20A’、20B’、22A’、22B’、25A’、25B’、27A、27B’、29A’、29B’、29A’及29B’。
一水閥的致動過程(actuation)意指為改變該水閥的該位置或該狀態,例如從一關閉狀態(closed state)到一部分開啟狀態(partially open state)。該水閥被機械地連接(mechanically connected)到一致動器,該致動器以一電纜(electrical cable)被電性連接到該BMS 130。在使用中,該BMS 130對該致動器發送一閥致動電訊號(valve actuation electrical signal),使得該致動器改變或移動該水閥的位置。
詳細地說,該BMS 130適用於致動該冷卻水塔20的該水閥20A及20B,以及該冷卻水塔20’的該水閥20A’及20B’。
該BMS 130還適用於致動該冷凝器水泵22的該水閥22A 及22B,以及該冷凝器水泵22’的該水閥22A’及22B’。
該BMS 130還適用於致動該AHU 25的該水閥25A及25B,以及該AHU 25’的該水閥25A’及25B’。
該BMS 130還適用於致動該供給冰水泵27的該水閥27A及27B,以及該供給冰水泵27’的該水閥27A’及27B’。
該BMS 130還適用於致動該回流冰水泵29的該水閥29A及29B,以及該回流冰水泵29’的該水閥29A’及29B’。
該BMS 130還適用於致動該冰水機組33的該水閥33A1、33A2、33B1及33B2,以及該冰水機組33’的該水閥33A1’、33A2’、33B1’及33B2’。
這些水閥用作隔離該空氣冷卻及循環配置100的多個部件。
完全關閉該空氣冷卻及循環配置100的一部件的一進水口一出水口各別連接的相應多個水閥中的一部件,實際上用作從該空氣冷卻及循環配置100中去除該部件。
類似地,開啟(opening)該多個水閥實際上用作在該空氣冷卻及循環配置100中包括該部件。
作為一示例,關閉該水閥20A及20B用作從該空氣冷卻及循環配置100中去除該冷卻水塔20。開啟該水閥20A及20B用作在該空氣冷卻及循環配置100中包括該冷卻水塔20。
結果,藉由以該BMS 130選擇性地致動該冷卻水塔20或20’,該空氣冷卻及循環配置100可以與兩個或僅與一個選定的冷卻水塔20共同運作。
請參照該能量控制模組160,該能量控制模組160包括多個變速驅動器(VSDs)520、一計量模組740及一主控制器(MC)730,該計量模組740用於計量空氣冷卻及循環配置100的多個參數。為了簡單起見,第5圖中僅示出一個VSD 520。該VSD 520、該計量模組740及該MC 730相互協作(cooperate with each other)。
該MC 730被電性連接到該多個VSD 520,該多個VSD 520 被連接到該空氣冷卻及循環配置100的多個部件。
該MC 730還被電性連接到該計量模組740,該計量模組740被電性連接到該空氣冷卻及循環配置100的多個感測器。該感測器包括多個溫度感測器、多個壓力感測器及多個流量計。這些感測器被連接到該空氣冷卻及循環配置100的多個部件,用於計量這些部件的多個參數。
結果,該MC 730可以從該計量模組740獲得該空氣冷卻及循環配置100的多個部件的多個參數計量。然後,該MC 730可以使用該多個VSD 520,以根據這些參數計量而調節該空氣冷卻及循環配置100的多個電動馬達的頻率脈衝寬度。
安裝該多個流量計的方法可能是不同的。
在一個實現方案中,該多個流量計被安裝在該冰水機組33及33’各別的公共集管(common headers)處,以精確地計量來自該冰水機組33及33’兩者的相應部件的一水流量。該集管意指一水容室(water chamber),在該水容室處的來自冰水機組33及33’兩者的這些相應部件的多個水管道被流體地連接。作為一一示例,該公共集管可以被流體地連接到水泵27及27’兩者的出水口。為更容易參考,該公共集管在第5圖中標記為“H”。
在另一個實現方案中,該流量計被安裝在每個冰水機組33及33’的各別部件處,以精確地計量該冰水機組33及33’的這些部件的該些水流率。
該壓力感測器通常被放置在距離各別的水泵22、22’、27、27’、29及29’的最遠處,諸如該AHU 25及25’,此處的水壓最低。
該MC 370適用於致動該水閥20A、20B、22A、22B、25A、25B、27A、27B、29A、29B、29A及29B。該MC 370還適用於致動該水閥20A’、20B’、22A’、22B’、25A’、25B’、27A、27B’、29A’、29B’、29A’及29B’。
結果,該MC 370可以選擇性地添加或去除與這些水閥相關聯的該空氣冷卻及循環配置100的多個部件。
在一般意義上,原則上考慮在第1圖、第3圖及第4圖的該能量控制模組16的配置可以被應用在第5圖的能量控制模組16。
幾種運作空氣冷卻及循環配置100的方法被顯示如下。一種方法的步驟與另一種方法的步驟也可以組合,在適當的情況下提供運作空氣冷卻及循環配置100的不同方式。
以下描述用於運作對一建築物支持一所需冷卻負載的第1圖、第3圖、第4圖及第5圖的空氣冷卻及循環配置10或100的方法。
該方法包括一步驟:提供對於該空氣冷卻及循環配置10或100而被導出的一組互連的決策矩陣(a set of interlinked decision-making matrixes)。
該能量控制模組16或160然後從各自的參數計量模組獲得參數計量資訊。
此後,該能量控制模組16或160使用上述互連的決策矩陣,以調節該空氣冷卻及循環配置10或100的該多個部件的多個運作參數。
這些調整使得該空氣冷卻及循環配置能夠以高效率運作,以便為該建築物的多個住戶提供所需的熱舒適度,而不影響運作安全性。
該多個運作參數的調整可以藉由向一系統管理工作人員提供用於更改這些運作參數的多個指令而完成。該工作人員然後執行該多個參數的更改。
在另一實現方案中,該能量控制模組16或160自動地改變該參數,而無需任何手動干預。
第5圖的運作空氣冷卻及循環配置100的方法,使用邊界參數資料,以支持一預定冷卻負載(pre-determined cooling load),係如後所述。
該運作邊界參數資料定義在該多個部件可以正常運作的範圍內的多個限制。例如:在低於一最小流限(minimum flow limit)的情況下,運作一冰水機組,可能導致該冰水機組跳脫(trip)或故障(malfunction)。
該邊界參數資料包括:-多個水泵22、22’、27、27’、29及29’的最小運作馬達速度的資料,-藉由多個水泵27及27’產生的最小壓力的資料,以便將該冰水從該AHU 25及25’轉移到該冰水機組33及33’,-藉由該水泵29及29’產生的最小壓力的資料,以便將該冰水從該冰水 機組33及33’轉移到該AHU 25及25’,-在各別的水泵27、27’、29及29’的添加或去除的期間,該冰水的可允許流率變化的資料,及-在該水泵22及22’的添加或去除的期間,該冷凝器水的可允許流率變化的資料。
該運作邊界參數資料可以從諸多設備的製造商處獲得。該資料也可以在該MCT 730的一測試及調試階段(testing and commissioning stage)獲得。該運作邊界參數資料也可以根據各別設備的多個計量使用多種統計技術而被產生。
該方法包括一步驟:對配備具有設備的運作邊界參數資料或該空氣冷卻及循環配置100的多個部件的運作邊界參數資料的該MC 730,該空氣冷卻及循環配置100的多個部件諸如水泵22、22’、27、27’、29及29’。
之後,該MC 730接收該空氣冷卻及循環配置100的一部分的一新的運作參數資料。作為一示例,該新的運作參數資料可以意指該多個水泵22、27、29、22’、27’及29’的一頻率脈衝寬度(frequency pulse width)。
然後,該MC 730將新的運作參數資料與各別的運作邊界參數資料進行比較。
如果新的操作參數資料在藉由該運作邊界參數資料被定義的一限制內,則該MC 730根據該新的運作參數資料改變該空氣冷卻及循環配置100的各別的運作參數。
如果該新的操作參數資料超出藉由該運作邊界參數資料被定義的該限制,則該MC 730隨後將該新的操作參數資料更改為該各別的運作邊界參數資料。此後,該MC 730根據該新的運作參數資料改變該空氣冷卻及循環配置100的該各別的運作參數。
此方法具有防止該空氣冷卻及循環配置100運作在它的多個運作邊界限制以外的一優點,這可能導致該該空氣冷卻及循環配置100的多個部件的損壞。
該相應的水泵22、22’、27、27’、29及29’的該流率、該壓 力及該電力消耗可以藉由親和定律(affinity laws)被描述,如下所示。
Figure TW201804115AD00001
這些參數也可以用圖形而被描述。
第6圖顯示具有一節流閥(throttling valve)的一水流系統的不同系統曲線,以及,第1圖、第3圖、第4圖及第5圖的該空氣冷卻及循環配置10或100的該水流系統的多個水泵的不同性能曲線。
以下揭露的內容是在原理上適用於第1圖、第3圖、第4圖及第5圖的所有水泵的一通用教示(generic teaching)。許多泵被設置有被提供作為一節流閥的一水閥。該節流閥用作縮減或調節流經該節流閥的該水流。
該多個性能曲線包括圖形(graphs)400及400a。該圖形400顯示來自該水泵的水在該壓力與該流率之間的一關係,其中該水泵被運作於一預定全速(predetermined full speed)。該圖形400a顯示來自該水泵的水在該壓力與該流率之間的一關係,其中該水泵被運作於一預定減速(predetermined reduced speed)。
該系統曲線包括圖形410a及410b。該曲線410a顯示該水流系統的水在該壓力與該流率之間的一關係,其中該節流閥是完全開啟(fully open)。該圖形410b顯示該水流系統的水在該壓力與該流率之間的一關係,其中該節流閥僅是部分開啟(partially open)。
在一個實現方案中,該水泵被運作於該預定全速,並且該水閥被置於一部分開啟位置。該來自該水泵的水隨後具有約150磅/平方英寸(psi)的一各別的阻力或壓力(respective resistance or pressure),以及約45加 侖/分鐘(GPM)的一各別的流率(respective flow rate),這相應在該水泵效能曲線圖形400與該系統曲線圖形410b之間的一交叉點A。
如果節流閥被置於完全開啟位置,則來自水泵的水然後具有約100磅/平方英寸(psi)的一各別的阻力及約100加侖/分鐘(GPM)的一各別的流率,這相應在該水泵效能曲線圖形400與該系統曲線圖形410a之間的一交叉點B。
如果水泵的速度降低,則來自水泵的水具有約20磅/平方英寸(psi)的一各別個阻力及約45加侖/分鐘(GPM)的一各別的流率,這相應在該水泵效能曲線圖形400a與該系統曲線圖形410a之間的一交叉點C。
如果水泵的速度降低,則來自水泵的水具有約20磅/平方英寸(psi)的一各別個阻力及約45加侖/分鐘(GPM)的一各別的流率,這相應在該水泵效能曲線圖形400a與該系統曲線圖形410a之間的一交叉點C。相應於較低阻力及較低泵速的點B,在適當的時候也相應於該水泵的一較低的能量消耗。
換句話說,當一完全開啟的水閥在一低速運作時,該水泵消耗最小的功率,這藉由點C被表示。
在許多空調系統中,僅在安裝及調試空調系統或空氣冷卻及循環配置後,才知道實際的水流阻力及所產生的水流率。
因此,多個節流閥被安裝在該空調系統兩側,以允許調節該空調系統的該水流率。然而,如上第6圖所示的描述。藉由關閉一節流閥的一減少的流量,將導致在一水泵中的一增加的壓力,這將轉化(translates)或導致(leads to)一增加的能量消耗,根據以下等式:泵功率(kW)=[流率(m3/s)×壓力(N/m2)]/(1000 x泵效率)
因此,為了支持相同的冷卻負載,如果以較低的壓力實現相同的流率,則該泵的功率消耗可以被降低。
簡單來說,這裡描述的實施例的應用根據所需的流率,藉由在一個或多個水泵之間切換,並且藉由相應地調節該泵馬達的該速度,以便提高該多個泵及相應的空氣冷卻及循環配置的能量消耗,以便支持相同的冷卻負載。
類似的考量應用於該多個冷卻水塔及它們各自的風扇,以及該多個冰水機組及該多個AHU。換句話說,對於一給定的冷卻負載及一給定的條件,使用一個冰水機組的壓縮機以全速運作,比使用兩個或更多個冰水機組的壓縮機以一半的速度運作,可以更有效。
為了支持相同的冷卻負載,使用一個冷卻水塔的風扇以全速運作,比使用兩個或更多個冷卻水塔的風扇以一半的速度運作,可以更有效。
上述原理被應用於一策略,以降低該冰的/冷凝器的(chilled/condenser)水流率,並且增加該節流閥的該開度(opening),以提供相同的冰的/冷凝器的水流率,從而提供相同的冷卻負載,但具有較低的功率消耗。
一種運作該空氣冷卻及循環配置100的方法,用於克服阻力或壓力,以提供一水流率,被描述如後。該阻力意指在一給定的水流率下在一水泵的一出口處的水的壓力,並且可以被稱為摩擦(friction)。有時這種阻力還被稱為“壓力損失(pressure loss)”。這應用於在該水流中的所有元件。
該水流使得空氣冷卻及循環配置能夠支持一預定冷卻負載,以提供一期望的熱舒適度。該冷卻負載意指從一氣候受控空間被去除的熱的數量。該熱舒適度與一建築物的多個氣候受控空間的溫度及濕度有關。
第7圖顯示藉由上述第5圖的空氣冷卻及循環配置100說明運作的上述方法的一流程圖500。
流程圖500包括一步驟515:該BMS 370致動(actuating)該各別的水泵22、27、29、22’、27’及29’的該多個水閥22A、22B、27A、27B、29A、29B、22A’、22B’、27A’、27B’、29A’及29B’為一完全開啟狀態(fully open state)。該多個完全開啟的水閥22A、22B、27A、27B、29A、29B、22A’、22B’、27A’、27B’、29A’及29B’不會阻塞(block)或限制(restrict)水流經這些水閥22A、22B、27A、27B、29A、29B、22A’、22B’、27A’、27B’、29A’及29B’。實際上,它們的作用就像從該空氣冷卻及循環配置100中被去除。
該冰水機組33及33’的該流量計然後執行一步驟520:計量該冰水機組33及33’各自的水流。此後,該流量計將該冰水機組33及33’ 各自的水流資訊發送到該MC 730。
此後,該MC 730執行一步驟530:決定該相應的水泵22、27、29、22’、27’及29’的相應的多個電源供應器的頻率脈衝寬度,並且還根據該被接收的流量計水流資訊,決定相應的多個水泵22、27、29、22’、27’及29’的相應的多個閥位置。該頻率脈衝寬度相應於該相應的水泵22、27、29、22’、27’及29’的一馬達速度。
該頻率脈衝寬度及該相應的閥位置被決定,使得它們相應於該空氣冷卻及循環配置100的一期望的水流率,以支持該期望的冷卻負載。
該MC 730隨後執行一步驟540:根據該被決定的多個脈衝寬度,將多個控制訊號傳送到該多個VSD 520,以改變該多個水泵22、27、29、22’、27’及29’的脈衝寬度,並且根據該被決定的多個閥位置,用於改變該相應的多個閥位置。
然後測量該多個水泵22、27、29、22’、27’及29’各自的水流率,以驗證該期望的水流率被實現。
還計量該多個水泵22、27、29、22’、27’及29’各自的電力消耗。
此後,對於不同的頻率脈衝寬度及該相應的多個閥位置,上述多個步驟被執行,以提供該期望的水流率。
稍後具有它的相應閥位置的一頻率脈衝寬度被選擇,以便提供該水泵的一降低的電力消耗。
該方法提供一優點,以更低功率消耗提供相同的流率。實際上,該多個水泵22、27、29、22’、27’及29’以更低的速度運作,同時允許該AHU 25及25’提供該期望的熱舒適度。
在上述方法的一變化形式中,該多個節流閥始終保持為完全開啟,而該流量僅以多個VFD進行調節。
以上方法也適用於多個冷凝器水泵及其他多個水泵。
換句話說,該空氣冷卻及循環配置100的該結構是自動地被調適(automatically adapted),使得在它的多個部件的運作邊界參數資料內,對於一給定的冷卻負載的該能量消耗被改善。
同樣的考慮因素適用於多個冷卻水塔、多個風扇、多個冰水機組及多個AHU,因為這在多個實施例的後續描述中將變得顯而易見。
第5圖的空氣冷卻及循環配置100的另一種方法,用以克服阻力,以提供一特定的水流率,以支持一預定冷卻負載,以提供一期望的熱舒適度,係被描述如下。
作為示例,該方法以該水泵27及27’而被解釋。
該MC 730啟用用於該空氣冷卻及循環配置100的該水泵27,其中該水泵27運作於一第一預選速度(first pre-selected speed),以提供一期望的水流率。
該MC 730然後決定該水泵27的該能量消耗。該水泵的該能量消耗可以藉由計量該水泵27的一第一能量消耗而被決定。
此後,該MC 730啟動該附加的相應水泵27’,其中該水泵27及相應的水泵27’都運作於一第二預選速度(second pre-selected speed),以提供相同的預定水流率。該第二預選速度比該第一預選速度更慢。實際上,該相應的水泵27’的啟動用於將該水泵27’添加到該空氣冷卻及循環配置100。
此後,該MC 730決定該水泵27及相應的水泵27’兩者的一第二能量消耗(second energy consumption)。
該MC 730隨後將該第一能量消耗與該第二能量消耗進行比較。
該MC 370然後選擇一第一配置或一第二配置,該第一配置包括單獨的水泵27,該第二配置包括該水泵27及該相應的水泵27’,用於使用,其中該被選擇的配置提供能量的一減少消耗。換句話說,該MC 370在該二泵配置之間進行切換。
在一通常意義上,運作中的諸多水泵的數量可以從一個增加到兩個,或者增加到兩個以上,其中這些水泵共同用作提供一期望的水流率。運作中的諸多水泵的數量可以從兩個減少到一個,其中一個水泵用作提供一期望的水流率。
在另一個示例中,該空氣冷卻及循環配置100被運作於“一 個泵(one pump)”的一配置,其中該冰水機組33、具有該回流冰水泵29的該供給冰水泵27、該AHU 25及25’、該冷凝器水泵22及該冷卻水塔20被啟用,同時具有該回流冰水泵29’的該供給冰水泵27’、該冰水機組33’及該冷卻水塔20’未被啟用。
在另一個示例中,該空氣冷卻及循環配置100被運作於“兩個泵(two pump)”的一配置,其中該冰水機組33、具有該回流冰水泵29的該供給冰水泵27、具有該回流冰水泵29’的該供給冰水泵27’、該AHU 25及25’、該冷凝器水泵22及該冷卻水塔20被啟用,同時該冰水機組33’及該冷卻水塔20’未被啟用。
在另一個實施例中,該水泵的啟用可以藉由該MC370發送一啟用訊號到該BMS 130而被實現。此後,該BMS 130發送一視覺文字訊息及/或一電子郵件到一操作者,以手動啟用該水泵。
該方法具有一優點,減少用於實現一所需冷卻負載的該總能量消耗。
一種用於支持一冷卻負載的該空氣冷卻及循環配置100的運作方法,被描述如下。該冷卻負載(cooling load)意指從一氣候受控空間(climate-controlled space)去除的熱量。
該方法包括一步驟:該MC 730接收該冰水的溫度計量資料,該冰水流經該空調箱(AHU)。該AHU提供空氣到建築物的該多個氣候受控空間。
該MC 730還接收被運行於一預定速度中的一冰水機組壓縮機的電力消耗計量資料,及被運行於預定速度中的一相應的冰水泵的電力消耗計量資料。
此後,該MC 730降低該冰水泵的速度。這轉而降低流經該AHU的該冰水的水流率。該降低的水流率用於增加該冰水對該AHU的該回流溫度。
然後,該MC 730提高該冰水機組的該壓縮機的速度,以降低該冰水對該AHU的該供給溫度。該降低的供給溫度用於減低該冰水的該回流溫度。這也用作增加該冰水的一T差值(delta T),其中該T差值意指在 供應到該AHU的該冰水與從該AHU回流的該冰水之間的一溫度差。
該冰水機組壓縮機的上述速度增加,使得對於該冰水的該總體回流溫度維持恆定。該恆定的冰水回流溫度允許該AHU支持相同的冷卻負載。換句話說,該冰水泵的降低速度及該冰水機組壓縮機的增加速度用作支持相同的冷卻負載。
該MC 730然後接收該冰水機組壓縮機被運作於一增加的速度時的電力消耗計量資料。該MC 730還接收該相應的冰水泵被運作於一降低的速度時的電力消耗計量資料。
對於具有不同相應的冰水機組壓縮機速度的不同冰水泵速度,上述步驟被重複進行。
此後,該MC 730選擇具有一個相應冰水機組壓縮機的一個冰水泵速度,用以使用,其中由該冰水泵及該冰水機組壓縮機兩者所消耗的總電力被減低。
該方法提供一種方法,降低該空氣冷卻及循環配置100的該電力消耗,同時支持相同的冷卻負載。
總而言之,藉由降低該冰水泵的速度以增加該T差值,從而允許該回流到該冰水機組的冰水的溫度升高,同時維持從該冰水機組供給的水的溫度。該MC 730確保對滿足所需冷卻舒適度而言增加的任何該AHU及壓縮機的該能量消耗,可藉由降低該冰水泵的能量消耗而被補償。
一種運作該空氣冷卻及循環配置100以支持一冷卻負載以提供一期望的熱舒適度的方法,被描述如下。
該氣候受控空間的諸多住戶感知的該熱舒適度是來自該AHU的該供氣的流率及溫度的一函數。
該方法包括一步驟:該MC 730獲得該供給冰水泵27及該回流冰水泵29循環流通該冰水到該AHU的電能消耗計量資料。該MC 730還接收該AHU風扇的電力消耗計量資料。
該MC 730還獲得從該AHU供氣的溫度計量資料。該MC 730還獲得從該AHU風扇供氣的流率資料。
該MC 730改變該AHU的水閥25A及25B的多個閥位置, 以便調節流經該AHU的該冰水的該流率。該冰水的該流率的變化用作改變從該AHU到該氣候受控空間的供氣溫度。
該MC 730然後改變該VFD的速度,該VFD被鏈接到AHU風扇,從而改變來自該AHU的該供氣的該流率。
該MC 730還從該AHU獲得該供氣的溫度計量資料,並從該AHU風扇獲得該供氣的流率資料。
該風扇的速度改變,使得該AHU供氣的流率及溫度為該氣候控制空間的諸多用戶提供相同的熱舒適度。
該MC 730然後獲得相應於該改變的閥位置的該供給冰水泵27及該回流冰水泵29的功率消耗計量資料。
該冰水流率的變化,也改變被該供給冰水泵27及該回流冰水泵29消耗的功率。
該MC 730還接收相應於風扇轉速變化的AHU風扇的功率消耗計量資料。
該MC 730然後根據該冰水泵功率消耗計量資料及該AHU風扇功率消耗資料,計算被具有該回流冰水泵29的該供給冰水泵27及相應的AHU風扇的消耗的總功率。
此後,該MC 730重複上述多個步驟,對於不同的閥位置以不同的相應AHU風扇轉速,同時提供相同的熱舒適度。
然後,該MC 730選擇具有一個相應的AHU風扇速度的一個閥位置,提供由具有該回流冰水泵29的該供給冰水泵27及相應的AHU風扇兩者所消耗的總功率。
該方法具有一優點,提供一手段以降低功耗,同時提供相同熱舒適度。
一種藉由改變該冷凝器水的流率及溫度以運作該空氣冷卻及循環配置100的方法,被描述如下。
第8圖顯示在冰水機組效率與冷凝器水溫度之間的一關係的一圖形。該圖形繪示一種情況,其中該壓縮機效率的增加相應於在許多情況下發生的一壓縮機的冷卻改善。
該MC 730獲得該供給冷凝器水的溫度計量資料及該回流冷凝器水的溫度計量資料。
該MC 730還獲得該冷凝器水泵的功率消耗資料。該MC 730還獲得該冷卻水塔風扇的功率消耗資料。
該MC 730然後調節該冷凝器水泵的速度,以改變該冷凝器水的該流率。
此後,該MC 730改變運作中的諸多冷卻水塔的數量及/或改變每個冷卻水塔風扇的速度,以改變該供給冷凝器水的溫度。
上述運作中的冷卻水塔的調節及/或冷卻水塔風扇的速度變化被進行,使得該回流冷凝器水的溫度維持相同。
該MC 730隨後獲得該冷卻水塔風扇的功率消耗資料。
該MC 730還獲得具有被調節的泵速度的冷凝器水泵的功率消耗資料。該MC 730還獲得具有該改變的風扇速度的冷卻水塔風扇的功率消耗資料。
該MC 730然後計算該冷凝器水泵及該冷卻水塔風扇兩者的總功率消耗。
此後,該MC 730重複上述步驟,對於具有不同相應數量的運作中的冷卻水塔及不同相應的多個冷卻水塔風扇速度的不同的冷凝器水泵速度,以提供相同的回流冷凝器水溫度。
該MC 730然後選擇具有運作中的冷卻水塔的一個相應數量及/或一個相應的冷卻水塔風扇速度的一個冷凝器水泵速度,其中該冷凝器水泵及該相應的冷卻水塔風扇的總功率消耗被減低。
該方法具有一優點,提供一手段以降低功耗,同時提供相同熱舒適度。
一種藉由選擇設備以支持一預定冷卻負載的運作該空氣冷卻及循環配置100的方法,被描述如下。
該方法包括一步驟:該能量控制模組16存取(accessing)該空氣冷卻及循環配置100的設備。
該能量控制模組16隨後選擇更節能的設備,以進行運作。
該能量控制模組16還自動地添加所選擇的設備,以進行運作。
在設備故障的情況下,該設備也可以自動地被添加。該設備故障可以導致系統級關機(system level shutdown),這需要一能源密集及運作複雜的重啟過程(energy intensive and operationally complex restart process)。
該方法用作改善該空氣冷卻及循環配置100的能量效率。該方法還用作增加該空氣冷卻及循環配置100的運作靈活性,並且降低該空氣冷卻及循環配置100的系統級故障率。
一種具有改善的設備可靠性以支持一預定冷卻負載的運作該空氣冷卻及循環配置100的方法,被描述如下。
該方法包括一步驟:降低系統級故障(system level failure)。這可以藉由添加附加的中央處理單元(CPU)而被執行,以允許來自可程式化邏輯控制器(PLC)的多個命令(commands)的通訊。即使一個中央處理單元(CPU)是故障的,一第二CPU可以接管該運作。
在該能量控制模組16的一設計中還被導入硬體互鎖(Hardware interlocks),以確保在該PLC的兩個CPU都發生故障的情況下,設備的運作不至於會中斷(not disrupted in the unlikely case)。即使該PLC的兩個CPU都發生故障,硬件互鎖確保最後發送的命令保持不變。這與其他諸多系統不同,其中CPU的故障將導致在一空氣冷卻及循環單元中向設備發送錯誤的“關閉(off)”命令,而導致系統級關機(system level shut down)。
這種系統級破壞(system level disruption)將導致該空氣冷卻及循環配置100的主要的運作破壞及非常能量密集的重新啟動(restart)。
該能量控制模組16不同於諸多中央冰水機組廠房(plants)使用的一簡單的開-關調度邏輯(on-and-off scheduling logic)。這些廠房的運作沒有或幾乎沒有考慮到它的運作對能源效率的影響。
該方法具有一優點,提高空氣冷卻循環裝置100的可靠性。
該多個實施例還提供一種使用統計技術運作該空氣冷卻及循環配置以提高可靠性的方法。
一種運作空氣冷卻及循環配置的方法,被描述如下。
該方法包括一步驟:對於該給定的冷卻負載,藉由給定運作中的諸多冰水機組的數量及在每個冰水機組內運作中的諸多壓縮機,最佳化每個壓縮機的冷卻負載。每種壓縮機類型的峰值效率通常在70-80%的負載範圍內。該MC然後計量所需的冷卻負載,並選擇諸多冰水機組的數量,以最佳地匹配(best match)該壓縮機的最佳負載(optimal loading)。
在該方法的一變化形式中,該MC具有啟動(start)或停止(stop)每個冰水機組中的各個壓縮機,以進一步最佳化所有壓縮機的負載的能力。
在該方法的另一變化形式中,該MC對被連接到每個壓縮機的諸多VSD發送訊號,以便在該多個壓縮機之間以更高的精度蔓延(spread)該負載。
第9圖繪示在冰水機組效率與冰水機組速度之間的一關係的多個圖形。該圖形繪示上述方法的益處。
一種運作該空氣冷卻及循環配置100的方法,被提供如下。
在一多壓縮機冰水機組(multi-compressor chiller)中,藉由瞬間膨脹熱交換器(heat exchanger)面積對壓縮機的比例,該冰水機組壓縮機可以被運作而優於設計效率。這可以藉由運作一台壓縮機而被進行,同時允許所有壓縮機的諸多熱交換器區域被定制(made)為可用的。然後,冷凝器水的該流量及冰水的該流量還被據以調整。
一種方法根據計量資料藉由去除(removing)或保養(servicing)設備,以運作該空氣冷卻及循環配置100,同時支持一預定冷卻負載,被描述如下。
該方法包括一步驟:該能量控制模組16存取該空氣冷卻及循環配置100的設備運作參數資料的一資料庫。
詳細地,該設備運作參數資料包括一媒介(medium)的該供給溫度及該回流溫度,該媒介用於冷卻該氣候受控空間。在一冰水系統(chilled water system)的案例中,這意指冰水供給溫度(chilled water supply temperature)及冰水回流溫度(chilled water return temperature)。在一直接膨脹系統(Direct Expansion System)的案例中,這意指供氣溫度(supply air temperature)及回流空氣溫度(return air temperature)。在一直接致冷劑冷卻系統(Direct Refrigerant Cooling System)的案例中,這意指致冷劑供給溫度(refrigerant supply temperature)及致冷劑回流溫度(refrigerant return temperature)。
該設備運作參數資料還意指冷卻該氣候受控空間的媒介的流率(rate of flow of the medium cooling the climate controlled space)。在一冰水系統的案例中,這意指該冰水流率(chilled water flow rate)。在一直接膨脹系統的案例中,這意指該供氣流率(supply air flow rate)。
該設備運作參數資料還包括冷卻該空間的媒介壓力,冷卻冰水的媒介壓力及冰水差值壓力(chilled water delta pressure),該冰水差值壓力為在離開水壓(leaving water pressure)及進入水壓(entering water pressure)之間的一差異。
該設備運作參數資料還包括冷卻該致冷劑的媒介的該供給溫度及該回流溫度。在一水冷系統(water cooled system)的案例中,這意指冷凝器水供給溫度及冷凝器水回流溫度。在一氣冷式冰水機組系統(air cooled chiller system)的案例中,這意指該供給冷凝器的空氣溫度及該回流冷凝器的空氣溫度。
該設備運作參數資料還有關於冷卻該致冷劑的媒介的流率。在一水冷系統(water cooled system)的案例中,這意指冷凝器水流量(condenser water flow)。
該設備運作參數資料還包括設備級功率消耗資料(equipment level power consumption data)。
此後,該能量控制模組16使用多種統計技術確認(checks)該設備運作參數資料。
特別地,該能量控制模組16根據基於一足夠長的時期(over a sufficiently long period time)的各別運作參數資料的一標準差(standard deviation)及一統計平均值(statistical mean),以決定每個運作參數的一參數運作範圍(parameter operating range)。該被決定的參數運作範圍用作定義該設備的正常運作行為(normal operating behavior)。
該能量控制模組16然後檢查新的運作參數資料中違反該相應被決定的參數運作範圍者。
當該設備的參數資料偏離該參數資料被決定的參數運作範圍時,該能量控制模組16發起(initiates)多個步驟,用以從運作過程(operation)去除設備或用以保養該設備,以使設備工作地正常。
該方法有利地允許設備的檢測接近該故障點(point of failing)。即使新設備可能會隨著時間的推移而惡化(deteriorate over time)。然後維修人員(Maintenance staff)可以藉由將該設備從運作過程中去除或者藉由維修(repairing)該設備來對設備進行定址(address),使得該設備在運作過程中不會失效(fail)或故障(malfunction)。在運作過程中發生故障的一件設備可能會導致其他設備出現失效,這需要長時間加以整頓(rectify)。
實際上,該能量控制模組16用作藉由動態地改變設備以改善能量效率,以支持一預定冷卻負載,同時提供期望的熱舒適度。
這些實施例還可以被描述為以下列出的諸多特徵或諸多元件組織成的一項目列表。在該項目列表中揭露的諸多特徵的各別的組合分別被認為是獨立的主題(subject matter),該主題也可以與該應用的其他特徵組合。
1.一種用於一建築物以改造一加熱、通風及空調(HVAC)裝置的方法,所述HVAC裝置包括一建築物管理系統(BMS),該方法包括步驟:評估該暖通空調(HVAC)裝置的多個既有元件;提供多個附加元件,該多個附加元件與該多個既有元件被並聯地提供;對於該多個元件安裝多個計量感測器,該多個計量感測器包括多個溫度感測器、多個流量計及多個功率計;安裝多個變速驅動器(VSDs),以調節該多個元件的多個速度參數;安裝一控制器,該控制器適用於:-從該多個計量感測器獲得計量資料;-發送多個命令到該建築物管理系統(BMS),以啟用該多個元件的不同組合,並且使用該多個變速驅動器(VSD),以調整該多個元件相應的多個速度 參數,使得每個元件組合及相應的該多個元件速度參數提供一預定熱舒適度用於該建築物的多個用戶;-選定該多個元件與相應的該多個元件速度參數的一組合,其中該暖通空調(HVAC)裝置提供一被減低的能量消耗;及-發送多個命令到該建築物管理系統(BMS),以啟用該多個元件的該被選定的組合,並且使用該多個變速驅動器(VSD),以調節該多個元件相應的多個速度參數。
2.根據項目(item)1所述的方法,其中該速度參數的資料是指水泵減速資料(water pump reduction speed data)。
3.根據項目1或2所述的方法,其中該速度參數的資料是指水流率減低資料(water flow rate reduction data)。
4.一種用於一建築物以運作一加熱、通風及空調(HVAC)裝置的方法,所述HVAC裝置包括一建築物管理系統(BMS)、一控制器、至少一水泵,該水泵具有一閥,所述方法包括步驟:將一水泵的一閥致動到一完全開啟位置;計量水的一流率,該水的流率相應於被設置在該完全開啟位置的該水泵閥;根據水流率計量,決定該水泵的一電源供應器的一頻率的多個脈衝寬度,以提供多個水泵速度;根據該水泵的該電源供應器的該頻率的多個脈衝寬度啟用該水泵,用於提供多個水泵速度;將該閥致動到相應的多個位置,其中每個水泵速度及相應的水閥位置提供一預定水流率;對於每個水泵速度計量該水泵的電力消耗;及選定一個水泵速度與相應的水閥位置,以提供一減低的電力消耗供使用。
5.一種用於一建築物以運作一加熱、通風及空調(HVAC)裝置的方法,所述HVAC裝置包括一建築物管理系統(BMS)、一控制器及多個變速驅動器(VSD),該方法包括步驟:提供一第一水泵,該第一水泵適用於在一第一預定電源供應器頻率脈衝寬度下運作,並且將一相應的水閥致動到一第一預定水泵閥位置,以提供一 預定流率;計量該第一水泵的電力消耗;提供與該第一水泵並聯的一第二水泵,其中該第一水泵及該第二水泵適用於在一第二預定電源供應器頻率脈衝寬度下運作,並且將該水閥致動到一第二預定水泵閥位置,使得該第一水泵及該第二水泵共同提供該預定流率;計量該第一水泵及第二水泵的電力消耗;選定該第一水泵及該第二水泵中的至少一個進行運作,以便降低電力消耗。
6.根據項目4或5所述的方法,該方法還包括步驟:為該HVAC裝置的多個部件提供多個運作邊界參數;將該水泵頻率脈衝寬度與該相應的運作邊界參數進行比較;當該水泵頻率脈衝寬度的該值(value)超過該相應的運作邊界參數的該值時,將該水泵頻率脈衝寬度的該值改變為該相應的運作邊界參數的該值;將該水泵閥位置與相應的運作邊界參數進行比較;及當該水泵閥位置的該值超過相應的運作邊界參數的該值時,將該水泵閥位置的該值改變為相應的運作邊界參數的該值。
7.根據項目6所述的方法,該方法還包括步驟:使用多種統計技術產生該運作邊界參數。
8.根據項目6或7所述的方法,其中該水泵是指一冰水泵。
9.根據項目8所述的方法,其中該水閥是指一冰水閥。
10.根據項目6或7所述的方法,其中該水泵是指一冷凝器水泵。
11.根據項目10所述的方法,其中該水閥是指一冷凝器水閥。
雖然以上描述包含很多特異性(specificity),但是這不應被解釋為對實施例範圍的限制,而僅僅是提供可預見的多個實施例的圖例。該多個實施例的上述優點不應被特別地解釋為對實施例範圍的限制,而僅僅是解釋如果所描述的多個實施例付諸實踐的多種可能的成果。因此,該多 個實施例的範圍應藉由多個請求項及其等同物而被決定,並不是由所給出的示例決定。
10‧‧‧空氣冷卻及循環配置
13‧‧‧建築物管理系統(BMS)
16‧‧‧能量控制模組
20‧‧‧冷卻水塔
22‧‧‧冷凝器水泵
25‧‧‧空調箱(AHU)
27‧‧‧供給冰水泵
29‧‧‧回流冷水泵
33‧‧‧冰水機組
36‧‧‧風扇
52‧‧‧變速驅動器(VSD)
60‧‧‧溫度感測器
65‧‧‧壓力感測器
70‧‧‧流量計
73‧‧‧主控制器(MC)
75‧‧‧開關

Claims (17)

  1. 一種用於一建築物以改造一加熱、通風及空調(暖通空調)裝置的方法,該暖通空調裝置包括一建築物管理系統,該方法包括步驟:評估該暖通空調裝置的多個既有元件;提供多個附加元件,該多個附加元件與該多個既有元件被並聯地提供;安裝多個計量感測器用於該多個元件,該多個計量感測器包括多個溫度感測器、多個流量計及多個功率計;安裝多個變速驅動器,以調節該多個元件的多個速度參數;安裝一控制器,該控制器適用於:從該多個計量感測器獲取多個測量資料;發送多個命令到該建築物管理系統,以啟用該多個元件的多個不同組合,並且使用該多個變速驅動器以調整該多個元件相應的多個速度參數,使得每個元件組合及該相應的多個元件速度參數提供一預定熱舒適度用於該建築物的多個用戶;選定該多個元件與該相應的多個元件速度參數的一組合,其中該暖通空調設備提供一減低的能量消耗;及發送多個命令到該建築物管理系統,以啟用該多個元件的該被選擇的組合,並且使用該多個變速驅動器,以調節該多個元件相應的多個速度參數。
  2. 根據請求項第1項所述之方法,其中該速度參數的資料係指一水泵減速資料。
  3. 根據請求項第1項所述之方法,其中該速度參數的資料係指一水流率減低資料。
  4. 一種用於一建築物以運作一加熱、通風及空調(暖通空調)設備的方法,該暖通空調設備包括一建築物管理系統、一控制器、至少一水泵,該水泵具有一閥,所述方法包括步驟:致動一水泵的一閥到一完全打開位置;計量一水的一流率,該水的流率相應於被設置於該完全打開位置的該水泵的閥;依據該水的流率的計量,決定該水泵的一電源供應器的一頻率的多個脈衝寬度,以提供多個水泵速度;依據該水泵的該電源供應器的該頻率的多個脈衝寬度啟用該水泵,以提供多個水泵速度;致動該閥到相應的多個位置,其中每個水泵速度及相應的水閥位置提供一預定水流率;對於每個水泵速度計量該水泵的一電力消耗;及選定一水泵速度與該相應的水閥位置,用於提供一減低的電力消耗供使用。
  5. 根據前述請求項第4項所述的方法,另包括步驟:對於該暖通空調設備的多個部件提供多個運作邊界參數;比較該水泵頻率脈衝寬度與該相應的運作邊界參數;當該水泵頻率脈衝寬度的值超過該相應的運作邊界參數的值時,改變該水泵頻率脈衝寬度的值為該相應的運作邊界參數的值; 比較該水泵閥位置與該相應的運作邊界參數;當該水泵閥位置的值超過該相應的運作邊界參數的值時,改變該水泵閥位置的值為該相應的運作邊界參數的值。
  6. 根據前述請求項第5項所述的方法,另包括步驟:使用多種統計技術產生該運作邊界參數。
  7. 根據請求項第5項所述的方法,其中該水泵係指一冰水泵。
  8. 根據請求項第7項所述的方法,其中該水閥係指一冰水閥。
  9. 根據請求項第5項所述的方法,其中該水泵係指一冷凝器水泵。
  10. 根據請求項第9項所述的方法,其中該水閥係指一冷凝器水閥。
  11. 一種用於一建築物以運作一加熱、通風及空調(暖通空調)設備的方法,該暖通空調設備包括一建築物管理系統、一控制器及多個變速驅動器,該方法包括步驟:提供一第一水泵,該第一水泵適用於在一第一預定電源供應器頻率脈衝寬度下運作,並且致動一相應的水閥到一第一預定水泵閥位置,用於提供一預定流率;計量該第一水泵的一電力消耗;提供與所述第一水泵並聯的一第二水泵,其中該第一水泵及該第二水泵適用於在一第二預定電源供應器頻率脈衝寬度下運作,並且致動該水閥到一第二預定水泵閥位置,使得該第一水泵及該第二水泵共同提供所述預定流率;計量該第一水泵及該第二水泵的該電力消耗;選定該第一水泵及該第二水泵中的至少一個用於運作,用 以減低該電力消耗。
  12. 根據請求項第11項所述的方法,另包括步驟:對於該暖通空調設備的多個部件提供多個運作邊界參數;比較該水泵頻率脈衝寬度與該相應的運作邊界參數;當該水泵頻率脈衝寬度的值超過該相應運作邊界參數的值時,改變該水泵頻率脈衝寬度的值為該相應運作邊界參數的值;比較該水泵閥位置與該相應的運作邊界參數;及當該水泵閥位置的值超過該相應的運作邊界參數的值時,改變該水泵閥位置的值為該相應的運作邊界參數的值。
  13. 根據請求項第12項所述的方法,另包括步驟:使用多種統計技術產生該運作邊界參數。
  14. 根據請求項第12項所述的方法,其中該水泵係指一冰水泵。
  15. 根據請求項第14項所述的方法,其中該水閥係指一冰水閥。
  16. 根據請求項第12項所述的方法,其中該水泵係指一冷凝器水泵。
  17. 根據請求項第16項所述的方法,其中該水閥係指一冷凝器水閥。
TW106123860A 2016-07-15 2017-07-17 藉由改造具有主控制器的建築物以改善冷卻系統運作效率的方法 TW201804115A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/IB2016/054222 WO2018011621A1 (en) 2016-07-15 2016-07-15 Method for improving operational efficiency of a cooling system through retrofitting a building with a master controller
??PCT/IB2016/054222 2016-07-15

Publications (1)

Publication Number Publication Date
TW201804115A true TW201804115A (zh) 2018-02-01

Family

ID=60952827

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106123860A TW201804115A (zh) 2016-07-15 2017-07-17 藉由改造具有主控制器的建築物以改善冷卻系統運作效率的方法

Country Status (2)

Country Link
TW (1) TW201804115A (zh)
WO (1) WO2018011621A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109343597A (zh) * 2018-10-13 2019-02-15 江西奥恒达科技有限公司 一种低电压大电流加热控制器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110726272B (zh) * 2018-07-16 2023-06-06 开利公司 冷机站性能预测系统和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9319323D0 (en) * 1993-09-17 1993-11-03 British Gas Plc An electrical power generating arrangement
US9459015B2 (en) * 2005-05-06 2016-10-04 John Chris Karamanos HVAC system and zone control unit
KR20080019938A (ko) * 2006-08-29 2008-03-05 여운남 네트워크형 전원 관리 시스템
US8178997B2 (en) * 2009-06-15 2012-05-15 Google Inc. Supplying grid ancillary services using controllable loads
US10230240B2 (en) * 2013-10-22 2019-03-12 University Of Florida Research Foundation, Incorporated Low-frequency ancillary power grid services

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109343597A (zh) * 2018-10-13 2019-02-15 江西奥恒达科技有限公司 一种低电压大电流加热控制器

Also Published As

Publication number Publication date
WO2018011621A1 (en) 2018-01-18

Similar Documents

Publication Publication Date Title
TWI641786B (zh) 藉由改造具有主控制器的建築物以改善冷卻系統運作效率的方法
US11953864B2 (en) Self learning control system and method for optimizing a consumable input variable
US9534795B2 (en) Advanced valve actuator with remote location flow reset
US9341396B2 (en) Retro-fit energy exchange system for transparent incorporation into a plurality of existing energy transfer systems
JP2015197236A (ja) 冷凍機システム
CN104089328A (zh) 空调系统以及对空调系统进行控制的方法
US20140374497A1 (en) Heat source system, control device thereof, and control method thereof
JP5622859B2 (ja) 熱源装置
JP6609697B2 (ja) 熱源システム、及び熱源システムの制御方法
US11961383B2 (en) Systems and methods for actuator installation auto-verification
US10948214B2 (en) HVAC system with economizer switchover control
WO2016077559A1 (en) On board chiller capacity calculation
JP6434848B2 (ja) 熱源制御システム
TW201804115A (zh) 藉由改造具有主控制器的建築物以改善冷卻系統運作效率的方法
JP5595975B2 (ja) 空調配管システム
Lu et al. A new approach to set point control in chilled water loops