TW201802499A - Mirror for the EUV wavelength range - Google Patents

Mirror for the EUV wavelength range Download PDF

Info

Publication number
TW201802499A
TW201802499A TW106116287A TW106116287A TW201802499A TW 201802499 A TW201802499 A TW 201802499A TW 106116287 A TW106116287 A TW 106116287A TW 106116287 A TW106116287 A TW 106116287A TW 201802499 A TW201802499 A TW 201802499A
Authority
TW
Taiwan
Prior art keywords
layer
wavelength range
spl
individual
mirror
Prior art date
Application number
TW106116287A
Other languages
Chinese (zh)
Inventor
喬恩 韋柏
克里斯欽 格哈瑟
賽巴斯汀 史托貝爾
彼得 休柏
Original Assignee
卡爾蔡司Smt有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 卡爾蔡司Smt有限公司 filed Critical 卡爾蔡司Smt有限公司
Publication of TW201802499A publication Critical patent/TW201802499A/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0891Ultraviolet [UV] mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70316Details of optical elements, e.g. of Bragg reflectors, extreme ultraviolet [EUV] multilayer or bilayer mirrors or diffractive optical elements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • G21K1/062Devices having a multilayer structure

Abstract

The invention relates to a mirror (S1, S2) for the EUV wavelength range and a projection lens (4) and illumination system (3) for microlithography comprising such a mirror (S1, S2). Furthermore, the invention relates to a projection exposure apparatus (1) for microlithography comprising such a projection lens (4) and/or such an illumination system (3). A mirror (S1, S2) for the EUV wavelength range according to the invention comprises a substrate and a layer arrangement, wherein the layer arrangement (X) comprises a reflective layer system (RL) having at least one layer subsystem (P') and a protective layer system (SPL) protecting the substrate, wherein the protective layer system (SPL) comprises a periodical sequence of at least two periods (PSPL), consisting of in each case two individual layers (AZ, R), characterized in that the first individual layer (AZ) of the period (PSPL) simultaneously protects the substrate by absorbing the EUV radiation and compensates for layer stresses in the layer arrangement (X), and the respective second individual layer (R) reduces the surface roughness of the protective layer system (SPL) by smoothing the surface roughness of the first individual layer (AZ).

Description

EUV波長範圍的反射鏡 EUV wavelength range of mirrors

本發明係關於一種極紫外光(EUV)波長範圍的反射鏡,以及包含此類反射鏡用於微影的投影透鏡和照明系統。再者,本發明係關於一種包含此類投影透鏡和/或此類照明系統用於微影的投影曝光裝置。 The present invention relates to a mirror of the extreme ultraviolet (EUV) wavelength range, and a projection lens and illumination system comprising such a mirror for lithography. Furthermore, the invention relates to a projection exposure apparatus comprising such a projection lens and/or such illumination system for lithography.

用於EUV波長範圍的微影的投影曝光裝置,仰賴用於將光罩曝光或成像至像平面上的該等反射鏡具有高反射率的事實。這是因為,首先,該等個別反射鏡的該等反射率數值的乘積決定該投影曝光裝置的總傳輸,以及其次,EUV光源的光功率有限。再者,此類反射鏡還必須具有該所需光學成像品質,而且即使在以高強度的EUV輻射連續照射多年的情況下仍可確保所需光學成像品質。 Projection exposure apparatus for lithography of the EUV wavelength range relies on the fact that the mirrors for exposing or imaging the reticle to the image plane have high reflectivity. This is because, first of all, the product of the reflectance values of the individual mirrors determines the total transmission of the projection exposure apparatus, and secondly, the optical power of the EUV source is limited. Furthermore, such mirrors must also have this desired optical imaging quality and ensure the desired optical imaging quality even after continuous illumination with high intensity EUV radiation for many years.

為了得到該等反射鏡的高反射率,EUV波長範圍的該等反射鏡通常包含一層配置(layer arrangement),其施加在基板上並包含一反射層系統。在這種情況下,該反射層系統通常包含至少一層子系統(layer subsystem),其包含有個別層的至少兩個週期的週期性序列。在這種情況下,該等週期包含兩層個別層,其由用於高折射率層和低折射率層的不同材料組成,依據其厚度進行調適以得到高反射率。在這種情況下,在該EUV波長範圍內,所謂高折射率和低折射率是有關層子系統的週期中的各自夥伴層的相對用語。層子系統一般來說只有在以光學上高折射率作用的層與 相對於其的光學上較低折射率層結合作為該層子系統的週期的主要組成時,才會在該EUV波長範圍內起作用。 In order to achieve high reflectivity of the mirrors, the mirrors of the EUV wavelength range typically comprise a layer arrangement applied to the substrate and comprising a reflective layer system. In this case, the reflective layer system typically includes at least one layer subsystem comprising a periodic sequence of at least two cycles of individual layers. In this case, the periods include two individual layers composed of different materials for the high refractive index layer and the low refractive index layer, adjusted according to the thickness thereof to obtain high reflectance. In this case, in the EUV wavelength range, the so-called high refractive index and low refractive index are relative terms of the respective partner layers in the cycle of the layer subsystem. Layer subsystems generally only have layers that act optically with high refractive index It will only function in the EUV wavelength range when it is combined with the optically lower refractive index layer as the main component of the period of the layer subsystem.

再者,為了得到該等反射鏡的高反射率,有必要避免由於雜散光的損耗,這導致對於EUV波長範圍的該等反射鏡的表面粗糙度、特別是對於空間波長10nm至1.5μm範圍內的表面粗糙度的嚴格要求。 Furthermore, in order to obtain high reflectivity of the mirrors, it is necessary to avoid loss due to stray light, which results in surface roughness of the mirrors for the EUV wavelength range, in particular for spatial wavelengths in the range of 10 nm to 1.5 μm. The strict requirements of the surface roughness.

為了達成該所需光學成像品質,該層配置的層應力必須格外非常低,以便該基板不會由於該層配置中的該等層應力而不可容許地翹曲。為該目的,例如在該反射層系統中產生的該等層應力必須由該層配置的其他部分的該等層應力補償。在這種情況下,該層應力細分成拉伸應力和壓縮應力;依垂直於該基板表面作用的該等合力(resultant forces)是否具有正號(拉伸應力)或負號(壓縮應力)而定。 In order to achieve this desired optical imaging quality, the layer stress of the layer configuration must be exceptionally low so that the substrate does not unacceptably warp due to the layer stresses in the layer configuration. For this purpose, the layer stresses generated, for example, in the reflective layer system must be compensated for by the layer stresses of other portions of the layer configuration. In this case, the layer stress is subdivided into tensile stress and compressive stress; whether the resultant forces acting perpendicular to the surface of the substrate have a positive sign (tensile stress) or a negative sign (compressive stress) set.

為了在以高強度的EUV輻射連續照射多年的情況下確保該所需光學成像品質,再者有必要防止過多EUV輻射傳輸到該基板程度,以便該基板不會在長時間內暴露於高劑量的EUV輻射。用於由例如來自Schott AG的Zerodur®或來自Corning公司的ULE®的材料組成的EUV反射鏡的基板,在高劑量的EUV輻射下傾向體積有幾個百分比的數量級的壓密(compaction)。憑藉該等反射鏡的大致不均勻照射,這種壓密導致其表面形狀的不均勻變化,結果該等反射鏡的該等光學成像性質在該操作期間非所需地變化。 In order to ensure the desired optical imaging quality under continuous illumination with high intensity EUV radiation for many years, it is necessary to prevent excessive EUV radiation from being transmitted to the substrate so that the substrate is not exposed to high doses for a long period of time. EUV radiation. Substrates for EUV mirrors composed of materials such as Zerodur® from Schott AG or ULE® from Corning, tend to have a fractional order of compaction under high doses of EUV radiation. By virtue of the substantially uneven illumination of the mirrors, such compaction results in non-uniform variations in the shape of the surface, with the result that the optical imaging properties of the mirrors change undesirably during the operation.

DE 10 2009 054 653 A1揭示例如一種包含一基板和一層配置的EUV波長範圍的反射鏡。前述層配置包含一反射層系統和一保護層系統,其中該保護層系統搭配低表面粗糙度數值整體減少穿越該層配置的EUV輻射的傳輸。藉助接合在該基板與該層配置之間的中間層配置,格外可能產生用於補償該層配置中的層應力的拉伸應力。 DE 10 2009 054 653 A1 discloses, for example, a mirror comprising a substrate and a layer of EUV wavelength range. The layer configuration described above includes a reflective layer system and a protective layer system, wherein the protective layer system, together with the low surface roughness value, reduces overall transmission of EUV radiation across the layer configuration. By virtue of the intermediate layer configuration bonded between the substrate and the layer configuration, it is particularly possible to create tensile stresses for compensating for layer stresses in the layer configuration.

在這種情況下,通常使用不同的保護層子系統,而且因此也使用用於藉由吸收而保護該基板免於EUV輻射、用於補償層應力、以及用 於使該等表面粗糙度平滑的不同材料。 In this case, different protective layer subsystems are usually used, and therefore also used to protect the substrate from EUV radiation by absorption, for compensating for layer stress, and Different materials that smooth the surface roughness.

本發明的目的之一是提供一種相較於先前技術具有簡化保護層系統的EUV波長範圍的反射鏡,而先前技術中的反射鏡搭配低表面粗糙度數值減少穿越該層配置的EUV輻射的傳輸,並產生用於補償該層配置中的層應力(layer stress)的層應力。 It is an object of the present invention to provide a mirror having an EUV wavelength range that simplifies the protective layer system compared to the prior art, whereas prior art mirrors with low surface roughness values reduce the transmission of EUV radiation across the layer configuration. And creating a layer stress for compensating for layer stress in the layer configuration.

本發明藉助一種包含一基板和一層配置的EUV波長範圍的反射鏡達成,其中該層配置包含●一反射層系統,其具有至少一個層子系統;以及●一保護層系統,其保護該基板,其中該保護層系統包含至少兩個週期的一週期性序列,其在每種情況下兩層個別層所組成,其特徵在於該週期的各自第一個別層同時藉由吸收該EUV輻射而保護該基板並補償該層配置中的層應力,而且該各自第二個別層藉由使該第一個別層的表面粗糙度平滑而縮減該保護層系統的表面粗糙度。 The present invention is achieved by a mirror comprising a substrate and a layer of EUV wavelength range configured, wherein the layer configuration comprises a reflective layer system having at least one layer subsystem; and a protective layer system protecting the substrate, Wherein the protective layer system comprises a periodic sequence of at least two cycles, which in each case consists of two individual layers, characterized in that the respective first individual layer of the cycle simultaneously protects the EUV radiation by absorbing the EUV radiation The substrate compensates for layer stress in the layer configuration, and the respective second individual layers reduce the surface roughness of the protective layer system by smoothing the surface roughness of the first individual layer.

依據本發明已認可若該等個別層的每層皆本質上結合超過一項功能,則保護該基板的保護層系統的構造可簡化,而且該保護層系統的厚度因此可縮減。就此點而言,該第一個別層的設計方式為首先藉由吸收該EUV輻射而保護該基板,因為否則如上述所提及,壓密該基板並因此在該操作期間在高劑量的EUV輻射下會發生光學成像性質的非所欲變化。其次,該第一個別層同時補償該層配置中的層應力,因為否則該基板會由於該等層應力而不可容許地翹曲。在這種情況下,該反射層系統和該等粗糙度縮減層通常具有壓縮應力,其必須由該保護層系統中產生的拉伸應力補償。該第一個別層因此具有兩項功能。 It has been recognized in accordance with the present invention that if each of the individual layers inherently incorporates more than one function, the construction of the protective layer system protecting the substrate can be simplified and the thickness of the protective layer system can be reduced. In this regard, the first individual layer is designed to first protect the substrate by absorbing the EUV radiation, as otherwise the substrate is compacted as mentioned above and thus at high doses of EUV radiation during the operation Undesirable changes in optical imaging properties occur. Second, the first individual layer simultaneously compensates for layer stress in the layer configuration because otherwise the substrate will unacceptably warp due to the layer stress. In this case, the reflective layer system and the roughness reducing layers typically have compressive stresses that must be compensated for by the tensile stresses generated in the protective layer system. This first individual layer therefore has two functions.

此外,該第二個別層的設計方式為縮減該保護層系統的表面 粗糙度。首先,這憑藉該吸收和層應力補償效應並非由厚層生成,而是如同被該等第二個別層所中斷(interrupted)的多層較薄第一個別層的事實而達成。 Furthermore, the second individual layer is designed to reduce the surface of the protective layer system Roughness. First, this is achieved by the fact that the absorption and layer stress compensation effects are not generated by thick layers, but rather by the fact that the second plurality of thinner first individual layers are interrupted by the second individual layers.

因此,依據其總厚度,該等第一個別層確實具有關於吸收的個別所需效應和分別的層應力,但是該等第一個別層中的晶體生長中斷。因此,該等第一個別層的該等表面處的表面粗糙度相對於單層厚層縮減。其次,該等第二個別層設計成使得該表面粗糙度格外縮減。在這種情況下,所得到的第二個別層的表面粗糙度依該材料和該個別層的沉積方法類型兩者而定。結果,可能生成無高雜散光損耗的非常平滑的表面。 Thus, depending on their total thickness, the first individual layers do have individual desired effects with respect to absorption and separate layer stresses, but crystal growth in the first individual layers is interrupted. Thus, the surface roughness at the surfaces of the first individual layers is reduced relative to the single layer thick layer. Second, the second individual layers are designed such that the surface roughness is exceptionally reduced. In this case, the resulting surface roughness of the second individual layer depends on both the material and the type of deposition method of the individual layer. As a result, it is possible to generate a very smooth surface without high stray light loss.

對於該保護系統的表面粗糙度的該等嚴格要求為必要,以便避免由於雜散光的該等損耗,以得到該反射鏡的高反射率。前述要求特別適用於該反射層系統的該等個別層的該等轉變,因為該EUV輻射在此反射。然而,為了該反射層系統可滿足對於該表面粗糙度的該等要求,該底層的保護層系統必須已具有足夠低的表面粗糙度。 These stringent requirements for the surface roughness of the protection system are necessary in order to avoid such losses due to stray light to obtain a high reflectivity of the mirror. The foregoing requirements are particularly applicable to such transitions of the individual layers of the reflective layer system since the EUV radiation is reflected there. However, in order for the reflective layer system to meet such requirements for the surface roughness, the underlying protective layer system must already have a sufficiently low surface roughness.

在一個具優勢的具體實施例中,該第一個別層的厚度對該第二個別層的厚度的比率於所有週期皆為恆定。憑藉此類保護層系統的該等個別層的該等厚度的例如該等參數的便利可量測性,以及由此促進的製程控制,簡化了此類保護層系統的生成。這是因為只有規則的重複結構能夠藉助X射線光學方法決定該週期厚度。 In an advantageous embodiment, the ratio of the thickness of the first individual layer to the thickness of the second individual layer is constant over all periods. The generation of such a protective layer system is simplified by virtue of the convenient scalability of such thicknesses of such individual layers of such a protective layer system, such as the parameters, and the process control facilitated thereby. This is because only regular repeating structures can determine the thickness of the cycle by means of X-ray optics.

在一個特別具優勢的具體實施例中,該第一個別層的厚度對該第二個別層的厚度的比率隨著與該基板的距離越大而減小。結果,相對於該等平滑的第二個別層,該等層應力產生的第一個別層在該等較低夾層(plies)中具有比在該等較高夾層中更高的厚度。因此,產生層應力主要是在該較低區域中,而該等粗糙度縮減的個別層的效應主要顯現在在該較高部分。該較低層部分的粗糙化因此在該較高部分中再次得到補償。結果,憑藉該保護層系統的較低總厚度,整體可能達成與在其中該第一個別層的厚 度對該第二個別層的厚度的比率對於所有週期皆為恆定的層堆疊的情況下相同的層應力產生和粗糙度縮減效應。 In a particularly advantageous embodiment, the ratio of the thickness of the first individual layer to the thickness of the second individual layer decreases as the distance from the substrate increases. As a result, the first individual layers produced by the equal layer stress have a higher thickness in the lower plies than in the higher interlayers relative to the smoother second individual layers. Therefore, the layer stress is generated mainly in the lower region, and the effect of the individual layers of the roughness reduction is mainly manifested in the higher portion. The roughening of the lower layer portion is thus compensated again in this higher portion. As a result, by virtue of the lower total thickness of the protective layer system, the overall thickness of the first individual layer may be achieved The ratio of the thickness of the second individual layer to the same layer stress generation and roughness reduction effect for a layer stack having a constant period.

在一個具優勢的具體實施例中,該第一個別層(AZ)的材料在13.5nm波長處具有超過0.03的吸收指數k。在這種情況下,該吸收指數(k值)是該虛數折射率ñ=n-i.k的虛數部分。 In an advantageous embodiment, the material of the first individual layer (AZ) has an absorption index k of more than 0.03 at a wavelength of 13.5 nm. In this case, the absorption index (k value) is the imaginary refractive index ñ=n-i. The imaginary part of k.

在一個具優勢的具體實施例中,穿越該層配置到該基板程度的EUV輻射的傳輸小於0.1%。依據本發明已體認到保護該基板免於過度高劑量的EUV輻射需要在該反射鏡的基板上設計該層配置,使得只有一部分的EUV輻射到達該基板。以適用於該反射層系統的方式,其可包含個別層的許多週期並因此也吸收一部分的EUV輻射,在這種情況下,保護該基板的保護層系統設計成使得無論如何穿越該層配置到該基板的EUV輻射的傳輸皆小於0.1%。 In an advantageous embodiment, the transmission of EUV radiation across the layer to the substrate level is less than 0.1%. It has been recognized in accordance with the present invention that protecting the substrate from excessively high doses of EUV radiation requires that the layer configuration be designed on the substrate of the mirror such that only a portion of the EUV radiation reaches the substrate. In a manner suitable for the reflective layer system, it may comprise many cycles of individual layers and thus also absorb a portion of the EUV radiation, in which case the protective layer system protecting the substrate is designed such that it is traversed through the layer anyway The EUV radiation transmission of the substrate is less than 0.1%.

在一個具優勢的具體實施例中,EUV波長範圍的反射鏡的特徵在於在EUV輻射下的保護層經歷小於1%的體積不可逆變化。 In an advantageous embodiment, the mirror of the EUV wavelength range is characterized in that the protective layer under EUV radiation experiences an irreversible change in volume of less than 1%.

在這種情況下,在EUV輻射下的體積不可逆變化理解為意指由於考量中材料的結構變化,由高劑量的EUV輻射引起的體積長期不可逆變化,而非由於熱膨脹的體積可逆變化。在這種情況下,依據本發明已認可還必須列入考量,該保護層系統即使在微影裝置的使用壽命期間積聚的高劑量的EUV輻射下仍必須維持穩定。否則該體積不可逆變化的問題只是從該基板轉變成該保護層系統。 In this case, an irreversible change in volume under EUV radiation is understood to mean a long-term irreversible change in volume caused by high doses of EUV radiation due to structural changes in the material under consideration, rather than a reversible change in volume due to thermal expansion. In this case, it has been recognized in accordance with the invention that consideration must also be taken that the protective layer system must remain stable even under the high dose of EUV radiation accumulated during the life of the lithographic apparatus. Otherwise the problem of irreversible volume change is simply a transition from the substrate to the protective layer system.

再者,本發明的目的之一係藉助一種EUV波長範圍的反射鏡達成,其特徵在於提供該保護層系統,以防止在超過如在相對於在相同方向上所量測到該照射區外部位置處之基板表面的基板照射區內位置處在該法線方向上所量測到0.1nm的EUV輻射下之基板表面的不可逆變化,並同時施加用於補償該層配置中的層應力的層應力。 Furthermore, one of the objects of the invention is achieved by means of a mirror of the EUV wavelength range, characterized in that the protective layer system is provided to prevent the position outside the illumination zone from being measured as compared to being measured in the same direction. An irreversible change in the surface of the substrate under EUV radiation of 0.1 nm measured in the normal direction of the substrate surface of the substrate surface, and simultaneously applying a layer stress for compensating the layer stress in the layer configuration .

在這種情況下,依據本發明已體認到除了保護該基板之外, 還必須注意以確保該保護層系統同時適用於補償該層配置中的該等層應力,因為否則該基板會由於該等層應力而不可容許地翹曲。所以,在保護層系統的設計中,從其產生的層應力必須列入考量。再者,在該保護層系統的情況下藉助該材料選擇,必須注意以確保這些在高劑量的EUV輻射的情況下不會變化,因為這不可避免地需要該層應力和因此該表面形狀的變化。 In this case, it has been recognized in accordance with the present invention that in addition to protecting the substrate, Care must also be taken to ensure that the protective layer system is simultaneously suitable for compensating for such layer stresses in the layer configuration, since otherwise the substrate may unacceptably warp due to the layer stress. Therefore, in the design of the protective layer system, the layer stress generated from it must be taken into consideration. Furthermore, in the case of the protective layer system, by means of this material selection, care must be taken to ensure that these do not change in the case of high doses of EUV radiation, since this inevitably requires the layer stress and hence the change in surface shape. .

在一個具優勢的具體實施例中,該保護層系統的該等週期具有5nm至100nm的厚度,以便補償該所出現拉伸應力產生的子層的粗糙度,並能夠整體生成拉伸應力。 In an advantageous embodiment, the periods of the protective layer system have a thickness of from 5 nm to 100 nm in order to compensate for the roughness of the sub-layers produced by the tensile stresses occurring and to generate tensile stress as a whole.

在一個具優勢的具體實施例中,該保護層系統具有50nm至1000nm的厚度,以便因此能夠生成該基板保護、該必要的層應力、以及還有該可量測性。 In an advantageous embodiment, the protective layer system has a thickness of 50 nm to 1000 nm in order to be able to generate the substrate protection, the necessary layer stress, and also the scalability.

在一個具優勢的具體實施例中,用於補償該層配置中的層應力的保護層施加+10MPa至+2000MPa的拉伸應力,其適合能夠補償在從-1000MPa至幾個-10MPa的範圍內的慣用EUV反射層系統的層應力。 In an advantageous embodiment, the protective layer for compensating for the layer stress in the layer configuration exerts a tensile stress of +10 MPa to +2000 MPa, which is suitable to be compensated in the range from -1000 MPa to several -10 MPa. The layer stress of the conventional EUV reflective layer system.

在一個具優勢的具體實施例中,該第一個別層(AZ)的材料係銅、鉻或鎳鉻合金所組成,其中鉻:鎳的比率在這種情況下在30:70與70:30之間。在這種情況下,依據本發明已體認到銅、鉻或鎳鉻合金是可同時吸收足夠EUV輻射以保護該基板免於高劑量的EUV輻射並具有層應力產生的效應的材料。 In an advantageous embodiment, the material of the first individual layer (AZ) is composed of copper, chromium or nichrome, wherein the ratio of chromium:nickel in this case is 30:70 and 70:30. between. In this case, it has been recognized in accordance with the present invention that copper, chromium or nichrome is a material that simultaneously absorbs sufficient EUV radiation to protect the substrate from high doses of EUV radiation and has the effect of layer stress.

在一個具優勢的具體實施例中,該第二個別層係從該等材料的群組中選定或構成的材料所組成:碳化硼(B4C)、碳(C)、氮化矽(Si nitride)、碳化矽(Si carbide)、硼化矽(Si boride)、氮化鉬(Mo nitride)、碳化鉬(Mo carbide)、硼化鉬(Mo boride)、氮化釕(Ru nitride)、碳化釕(Ru carbide)和硼化釕(Ru boride)。 In an advantageous embodiment, the second individual layer is comprised of materials selected or constructed from the group of materials: boron carbide (B 4 C), carbon (C), tantalum nitride (Si) Nitrile), Si carbide, Si boride, Mo nitride, Mo carbide, Mo boride, Ru nitride, Carbonization Ru carbide and Ru boride.

在一個具優勢的具體實施例中,EUV波長範圍的反射鏡的 特徵在於該保護層系統在10nm至1.5μm的空間波長範圍內具有小於0.6nm rms、特別是小於0.1nm rms的表面粗糙度。如上述所提及的此類層會導致低雜散光損耗。 In an advantageous embodiment, the EUV wavelength range of the mirror It is characterized in that the protective layer system has a surface roughness of less than 0.6 nm rms, in particular less than 0.1 nm rms, in the spatial wavelength range from 10 nm to 1.5 μm. Such layers as mentioned above can result in low stray light losses.

在一個具優勢的具體實施例中,EUV波長範圍的反射鏡的特徵在於該保護層系統的該等個別層使用真空塗佈法施加。憑藉這些方法,可生成用於EUV微影的足夠精確和可再造性的層。 In an advantageous embodiment, the mirrors of the EUV wavelength range are characterized in that the individual layers of the protective layer system are applied using a vacuum coating process. With these methods, layers of sufficient precision and reproducibility for EUV lithography can be generated.

本發明的另一目的藉助一種EUV波長範圍的反射鏡達成,其中該反射層系統包含至少一個層子系統,其由個別層的至少兩個週期的週期性序列所組成,其中該等週期包含兩層個別層,其由用於高折射率層和低折射率層的不同材料組成。 A further object of the invention is achieved by means of a mirror of the EUV wavelength range, wherein the reflective layer system comprises at least one layer subsystem consisting of a periodic sequence of at least two cycles of individual layers, wherein the cycles comprise two Layers of individual layers consisting of different materials for the high refractive index layer and the low refractive index layer.

在這種情況下,如上述所提及,在該EUV波長範圍內,所謂高折射率和低折射率是關於層子系統的週期中的各自夥伴層的相對用語。層子系統一般來說只有在以光學上高折射率作用的層與相對於其的光學上較低折射率層結合作為該層子系統的週期的主要組成時,才會在該EUV波長範圍內起作用。 In this case, as mentioned above, in the EUV wavelength range, the so-called high refractive index and low refractive index are relative terms for the respective partner layers in the period of the layer subsystem. The layer subsystem is generally only in the EUV wavelength range when a layer with an optically high refractive index is combined with an optically lower refractive index layer relative thereto as the main component of the period of the layer subsystem. kick in.

在一個具優勢的具體實施例中,EUV波長範圍的反射鏡的特徵更在於該反射層系統包含一覆蓋(capping)層系統,其端接(terminate)該反射鏡的層配置。結果,可保護該反射鏡免於環境影響。 In an advantageous embodiment, the EUV wavelength range of mirrors is further characterized in that the reflective layer system comprises a capping layer system that terminates the layer configuration of the mirror. As a result, the mirror can be protected from environmental influences.

再者,本發明的目的之一藉助一種用於微影的投影透鏡達成,其包含依據本發明的一反射鏡。 Furthermore, one of the objects of the invention is achieved by means of a projection lens for lithography comprising a mirror according to the invention.

再者,本發明的目的之一藉助一種用於微影的照明系統達成,其包含依據本發明的一反射鏡。 Furthermore, one of the objects of the invention is achieved by means of an illumination system for lithography comprising a mirror according to the invention.

再者,本發明的目的之一藉助一種用於微影的投影曝光裝置達成,其包含依據本發明的一投影透鏡和/或依據本發明的一照明系統。 Furthermore, one of the objects of the invention is achieved by a projection exposure apparatus for lithography comprising a projection lens according to the invention and/or an illumination system according to the invention.

本發明的進一步特徵和優勢根據顯示本發明細節要點的該等圖示從下列本發明的示例性具體實施例的說明中,以及從諸申請專利範 圍中顯露出。該等個別特徵可能由其自身或在本發明的變化例中以任何所需組合作為多數在每種情況下皆個別地實現。 Further features and advantages of the present invention are set forth in the following description of exemplary embodiments of the present invention, as well as It is revealed in the surrounding area. These individual features may be implemented individually in each case by themselves or in any variation of the invention in any desired combination.

1‧‧‧投影曝光裝置 1‧‧‧Projection exposure device

2‧‧‧射束成形系統 2‧‧·beamforming system

3‧‧‧照明系統 3‧‧‧Lighting system

4‧‧‧投影透鏡;投影系統 4‧‧‧Projection lens; projection system

5‧‧‧EUV光源 5‧‧‧EUV light source

6‧‧‧射束路徑 6‧‧‧beam path

7‧‧‧準直儀 7‧‧ ‧collimator

8‧‧‧單色光鏡 8‧‧‧monochrome mirror

9、10‧‧‧第一和第二反射鏡 9, 10‧‧‧ first and second mirrors

11‧‧‧光罩 11‧‧‧Photomask

12‧‧‧晶圓 12‧‧‧ wafer

13、14‧‧‧第三和第四反射鏡 13, 14‧‧‧ third and fourth mirrors

(AZ、R)‧‧‧個別層 (AZ, R) ‧ ‧ individual layers

(d1、d2、d3)‧‧‧常數厚度 (d 1 , d 2 , d 3 ) ‧ ‧ constant thickness

(P'、P"、P''')‧‧‧層子系統 (P', P", P''') ‧ ‧ layer subsystem

(S1、S2)‧‧‧反射鏡 (S1, S2) ‧‧‧Mirror

AZ‧‧‧第一個別層 AZ‧‧‧ first individual layer

B‧‧‧阻障層 B‧‧‧Block layer

C‧‧‧覆蓋層系統 C‧‧‧ Coverage System

dP、dAZN、dAZ、dRN、dR、dSPL‧‧‧厚度 d P , d AZN , d AZ , d RN , d R , d SPL ‧‧‧ thickness

H、(H'、H"、H''')‧‧‧高折射率個別層 H, (H', H", H''') ‧ ‧ high refractive index individual layer

k‧‧‧吸收指數 k‧‧‧Absorption index

L、(L'、L"、L''')‧‧‧低折射率個別層 L, (L', L", L''') ‧ ‧ low refractive index individual layer

M‧‧‧端接層 M‧‧‧Terminal layer

N2、N3‧‧‧數量 Number of N 2 , N 3 ‧‧‧

PSPL、(P1、P2、P3)‧‧‧週期 P SPL , (P 1 , P 2 , P 3 ) ‧ ‧ cycles

R‧‧‧第二個別層 R‧‧‧Second individual layer

RL‧‧‧反射層系統 RL‧‧·reflective layer system

S‧‧‧基板 S‧‧‧Substrate

SPL‧‧‧保護層系統 SPL‧‧‧ protective layer system

X‧‧‧層配置 X‧‧‧ layer configuration

以下參照該等圖示更詳細解說本發明的示例性具體實施例。在該等圖示中:圖1A至圖1B顯示依據本發明的第一反射鏡的示意例示圖;圖2A至圖2B顯示依據本發明的第二反射鏡的示意例示圖;圖3顯示用於微影的投影曝光裝置的依據本發明的投影透鏡的示意例示圖。 Exemplary embodiments of the present invention are explained in more detail below with reference to the drawings. In the drawings: Figures 1A to 1B show schematic illustrations of a first mirror in accordance with the present invention; Figures 2A to 2B show schematic illustrations of a second mirror in accordance with the present invention; A schematic illustration of a projection lens according to the present invention of a lithographic projection exposure apparatus.

圖1A和1B顯示包含一基板(S)和一層配置(X)的EUV波長範圍的依據本發明的反射鏡(S1)的示意例示圖。在這種情況下,該層配置(X)包含一反射層系統(RL);以及一保護層系統(SPL),其保護該基板。在這種情況下,該保護層系統(SPL)在圖1A中詳細例示,而圖1B詳細顯示該反射層系統(RL)。保護層系統(SPL)尤其用來保護該基板免於過度高劑量的EUV輻射,因為例如在高劑量的EUV輻射下由Zerodur®或ULE®製造的反射鏡基板(S)呈現出體積幾個百分比的數量級不可逆的壓密。該保護層系統(SPL)包含至少兩個週期(PSPL)的一週期性序列,其在每種情況下皆包含有兩層個別層(AZ、R),參見圖1A。在這種情況下,該第一個別層(AZ)的設計方式為首先藉由吸收該EUV輻射而保護該基板(S)。舉例來說,該第一個別層在13.5nm處具有超過0.03的吸收指數。其次,該第一個別層(AZ)同時補償該層配置(X)中的層應力,因為否則該基板(S)會由於該等層應力而不可容許地翹曲。舉例來說,用於補償該層配置(X)中的層應力的保護層系統(SPL)施加+10MPa至+2000MPa的拉伸應力(tensile stress)。該第一個別層(AZ)因此具 有兩項功能。該第一個別層(AZ)是從例如具有在30:70與70:30之間的鉻:鎳比率的銅、鉻或鉻鎳合金生成。 1A and 1B show schematic illustrations of a mirror (S1) according to the invention comprising an EUV wavelength range of a substrate (S) and a layer (X). In this case, the layer configuration (X) comprises a reflective layer system (RL); and a protective layer system (SPL) which protects the substrate. In this case, the protective layer system (SPL) is illustrated in detail in FIG. 1A, and FIG. 1B shows the reflective layer system (RL) in detail. The protective layer system (SPL) is especially used to protect the substrate from excessively high doses of EUV radiation, since for example the mirror substrate (S) manufactured by Zerodur® or ULE® exhibits a few percent by volume under high doses of EUV radiation. The magnitude of the irreversible compaction. The protective layer system (SPL) comprises a periodic sequence of at least two periods (P SPL ), which in each case comprises two individual layers (AZ, R), see FIG. 1A. In this case, the first individual layer (AZ) is designed in such a way as to first protect the substrate (S) by absorbing the EUV radiation. For example, the first individual layer has an absorption index of more than 0.03 at 13.5 nm. Secondly, the first individual layer (AZ) simultaneously compensates for the layer stress in the layer configuration (X), since otherwise the substrate (S) would unacceptably warp due to the layer stress. For example, a protective layer system (SPL) for compensating for layer stress in the layer configuration (X) applies a tensile stress of +10 MPa to +2000 MPa. This first individual layer (AZ) therefore has two functions. The first individual layer (AZ) is formed from, for example, a copper, chromium or chromium nickel alloy having a chromium:nickel ratio between 30:70 and 70:30.

此外,該第二個別層(R)的設計方式為藉由使該第一個別層(AZ)的表面粗糙度平滑而縮減該保護層系統(SPL)的表面粗糙度。在該保護層系統(SPL)中表明並在其累積的總厚度中產生層應力的保護層系統的所有吸收的個別層(AZ),在此皆具有關於吸收和/或層應力的分別所需效應。然而,由於被該等第二個別層(R)中斷,因此該第一個別層(AZ)的晶體生長中斷。該第二個別層係由例如從該等材料的群組中選定或構成的材料所組成:碳化硼(B4C)、碳(C)、氮化矽(Si nitride)、碳化矽(Si carbide)、硼化矽(Si boride)、氮化鉬(Mo nitride)、碳化鉬(Mo carbide)、硼化鉬(Mo boride)、氮化釕(Ru nitride)、碳化釕(Ru carbide)和硼化釕(Ru boride)。因此,可能生成無高雜散光損耗的非常光滑的表面;舉例來說,該保護層系統在10nm至1.5μm的空間波長範圍內具有小於0.6nm rms的表面粗糙度。特別是,該表面粗糙度也可小於0.1nm rms。 Further, the second individual layer (R) is designed to reduce the surface roughness of the protective layer system (SPL) by smoothing the surface roughness of the first individual layer (AZ). The individual layers (AZ) of all absorptions of the protective layer system which are indicated in the protective layer system (SPL) and which generate layer stresses in their cumulative total thickness have the respective requirements for absorption and/or layer stress effect. However, the crystal growth of the first individual layer (AZ) is interrupted due to interruption by the second individual layers (R). The second individual layer is composed, for example, of a material selected or composed of a group of such materials: boron carbide (B 4 C), carbon (C), tantalum nitride (Si nitride), tantalum carbide (Si carbide) ), Si boride, Mo nitride, Mo carbide, Mo boride, Ru nitride, Ru carbide, and Boronization Ru boride. Therefore, it is possible to generate a very smooth surface without high stray light loss; for example, the protective layer system has a surface roughness of less than 0.6 nm rms in a spatial wavelength range of 10 nm to 1.5 μm. In particular, the surface roughness can also be less than 0.1 nm rms.

依據本發明,憑藉該個別層(AZ)本質上結合超過一項功能的事實,保護該基板的保護層系統的構造簡化,而且該保護層系統的厚度dP因此縮減。舉例來說,該保護層系統(SPL)具有50nm至1000nm的厚度(dP)。或者,為了免於EUV輻射的保護效應並產生層應力,必須提供不同的保護層子系統。 According to the invention, by virtue of the fact that the individual layer (AZ) essentially combines more than one function, the construction of the protective layer system protecting the substrate is simplified, and the thickness d P of the protective layer system is thus reduced. For example, the protective layer system (SPL) has a thickness (d P ) of 50 nm to 1000 nm. Alternatively, in order to protect against the protective effects of EUV radiation and to create layer stresses, different protective layer subsystems must be provided.

在這種情況下,在圖1A中,舉例來說,該第一個別層(AZ)和該第二個別層(R)的厚度為恆定(dAZ1=dAZ2=...=dAZN=dAZ,而且dR1=dR2=...=dRN=dR)。該第一個別層(AZ)的厚度dAZN對該第二個別層(R)的厚度dR的比率因此對於所有週期(PSPL)也為常數。 In this case, in FIG. 1A, for example, the individual thickness of the first layer (AZ) and the second individual layer (R) is a constant (d AZ1 = d AZ2 = ... = d AZN = d AZ , and d R1 =d R2 =...=d RN =d R ). The first individual layer thickness ratio (AZ) of the second individual d AZN layer (R) of the thickness d R for all cycles and therefore (P SPL) is also constant.

該反射層系統(RL)在圖1B中更詳細闡明。該反射層系統可包含複數層子系統(P'、P"、P'''),每個層子系統皆包含有個別層的至少兩個週期(P1、P2、P3)的週期性序列。該等週期(P1、P2、P3)包含兩層個別層,其 由用於高折射率個別層(H'、H"、H''')和低折射率個別層(L'、L"、L''')的不同材料組成,並在每個層子系統(P'、P"、P''')內皆具有例如恆定厚度(d1、d2、d3),且不同於相鄰層子系統的該等週期的厚度。在這種情況下,距離該基板最遠的層子系統P'''可具有數量N3的週期P3,其大於距離該基板第二遠的層子系統(P")數量N2的週期P2。此外,距離該基板(S)第二遠的層子系統(P")可具有該等週期(P2)的序列,使得距離該基板最遠的層子系統(P''')的第一高折射率個別層(H''')直接跟隨距離該基板第二遠的層子系統P"的最後高折射率個別層(H")。 This reflective layer system (RL) is illustrated in more detail in Figure 1B. The reflective layer system may comprise a plurality of layer subsystems (P', P", P'''), each layer subsystem comprising a period of at least two periods (P 1 , P 2 , P 3 ) of individual layers Sequences. The periods (P 1 , P 2 , P 3 ) comprise two individual layers consisting of individual layers for high refractive index (H', H", H''') and low refractive index individual layers ( L', L", L''') are composed of different materials and have a constant thickness (d 1 , d 2 , d 3 in each layer subsystem (P', P", P'''). And different from the thickness of the periods of the adjacent layer subsystem. In this case the cycle, the substrate layer furthest from the subsystem P '''may have a number of N 3 P 3, which is greater than the layer subsystem (P ") away from the second substrate 2 of the number of cycles N P 2. Further, the substrate away from the second (S) layer subsystem (P ") may have such period (P 2) sequence, such that the substrate layer furthest from the subsystem (P ''') The first high refractive index individual layer (H''') directly follows the last high refractive index individual layer (H" of the layer subsystem P" that is second from the substrate.

所以,在圖1B中,在距離該基板第二遠的層子系統(P")中的該等週期(P2)內的該等高(H")和低折射率(L")個別層的次序,相對於在其他層子系統(P'、P''')的其他週期(P1、P3)內的該等高(H'、H''')和低折射率(L'、L")個別層的次序為反向,使得距離該基板第二遠的層子系統P"的第一低折射率層(L")也在光學上有效地跟隨位置最接近該基板的層子系統(P')的最後低折射率層(L')。 Therefore, in FIG. 1B, the equal (H") and low refractive index (L") individual layers in the periods (P 2 ) in the layer subsystem (P") farthest from the substrate. The order of the relative heights (H', H''') and the low refractive index (L' in the other periods (P 1 , P 3 ) of the other layer subsystems (P', P''') , L") the order of the individual layers is reversed such that the first low refractive index layer (L" of the layer subsystem P" farthest from the substrate is also optically effectively following the layer closest to the substrate The last low refractive index layer (L') of the subsystem (P').

再者,舉例來說,圖1A、圖1B中依據本發明的反射鏡的反射層系統的該等個別層可由至少一層阻障層(B)隔開,其中該阻障層(B)包含有從該等材料的群組中選定或構成的材料:碳化硼(B4C)、碳(C)、氮化矽(Si nitride)、碳化矽(Si carbide)、硼化矽(Si boride)、氮化鉬(Mo nitride)、碳化鉬(Mo carbide)、硼化鉬(Mo boride)、氮化釕(Ru nitride)、碳化釕(Ru carbide)和硼化釕(Ru boride)。此類阻障層(B)會抑制週期的該等兩層個別層之間的交互擴散,由此增加該等兩層個別層的轉變時的光學對比。憑藉將鉬和矽材料用於週期的該等兩層個別層,如從該基板觀察到在該矽層上方的一層阻障層(B)足以提供足夠的對比。在該鉬層上方的第二阻障層(B)在這種情況下可省略。在這方面,為了隔開週期的該等兩層個別層,應提供至少一層阻障層(B),其中該至少一層阻障層(B)可由各種上述材料或其化合物構成,或在這種情況下也可呈現出不同材料或化合物的分層構造。 Furthermore, for example, the individual layers of the reflective layer system of the mirror according to the invention in FIGS. 1A and 1B can be separated by at least one barrier layer (B), wherein the barrier layer (B) comprises Materials selected or constructed from the group of such materials: boron carbide (B 4 C), carbon (C), silicon nitride (Si nitride), silicon carbide (Si carbide), silicon boride (Si boride), Mo nitride, Mo carbide, Mo boride, Ru nitride, Ru carbide, and Ru boride. Such a barrier layer (B) inhibits the inter-diffusion between the two individual layers of the cycle, thereby increasing the optical contrast of the transition of the two individual layers. By virtue of the use of molybdenum and tantalum materials for the two individual layers of the cycle, a layer of barrier layer (B) above the tantalum layer as observed from the substrate is sufficient to provide sufficient contrast. The second barrier layer (B) above the molybdenum layer may be omitted in this case. In this regard, in order to separate the two individual layers of the period, at least one barrier layer (B) should be provided, wherein the at least one barrier layer (B) may be composed of various materials or compounds thereof, or It is also possible to present a layered construction of different materials or compounds.

依據本發明的反射鏡(S1)的層配置(X)在圖1A、圖1B中由包含由例如銠(Rh)、鉑(Pt)、釕(Ru)、鈀(Pd)、金(Au)、二氧化矽(SiO2)的化學惰性材料組成的至少一層作為端接層(terminating layer)(M)的覆蓋層系統(C)端接。前述端接層(M)因此防止該反射鏡表面由於環境影響的化學變化。圖1A、圖1B中的覆蓋層系統(C)除了該端接層(M)之外,包含有高折射率個別層(H)、低折射率個別層(L)和阻障層(B)。 The layer configuration (X) of the mirror (S1) according to the present invention is contained in FIGS. 1A and 1B by, for example, rhodium (Rh), platinum (Pt), ruthenium (Ru), palladium (Pd), gold (Au). At least one layer of a chemically inert material of cerium oxide (SiO 2 ) is terminated as a capping system (C) of a terminating layer (M). The aforementioned termination layer (M) thus prevents chemical changes in the mirror surface due to environmental influences. The cover layer system (C) of FIGS. 1A and 1B includes, in addition to the termination layer (M), a high refractive index individual layer (H), a low refractive index individual layer (L), and a barrier layer (B). .

在此應列入考量所有該等個別層的該等反射性質、該等傳輸性質和該等應力性質,在層配置(X)的任何整體最佳化中皆必須同時列入考量。 It should be taken into account that these reflective properties, the transport properties and the stress properties of all such individual layers must be taken into account in any overall optimization of the layer configuration (X).

表1指出對於13.5nm的波長用於該層配置(X)的該等材料的該等折射率ñ=n-i.k。 Table 1 indicates the refractive indices n = n - i of the materials used for this layer configuration (X) for a wavelength of 13.5 nm. k.

Figure TW201802499AD00001
Figure TW201802499AD00001

再者,下列對應於圖1A、圖1B中的層序列的簡要記號對於與圖1A、圖1B相關聯的該等層設計規定: Furthermore, the following brief notation corresponding to the sequence of layers in FIGS. 1A and 1B provides for the design of the layers associated with FIGS. 1A and 1B:

基板/(AZ R).NSPL/(P1).N1/(P2).N2/(P3).N3/覆蓋層系統C,其中P1=H'BL'B;P2=H"BL"B;P3=H'''BL'''B;C=HBLM。 Substrate / (AZ R). N SPL /(P 1 ). N 1 /(P 2 ). N 2 /(P 3 ). N 3 /cladding system C, where P 1 =H'BL'B; P 2 =H"BL"B; P 3 =H'''BL'''B; C=HBLM.

在此該等字母AZ象徵性地表示該保護層系統的該等第一個別層的厚度、R表示該保護層系統的第二個別層的厚度、H表示高折射率層的厚度、L表示低折射率層的厚度、該字母B表示該阻障層的厚度、以及該字母M表示該化學惰性端接層的厚度。在這種情況下,該單位[nm]適用於圓括號之間指出的該等個別層的厚度。 Here, the letters AZ symbolically represent the thickness of the first individual layers of the protective layer system, R represents the thickness of the second individual layer of the protective layer system, H represents the thickness of the high refractive index layer, and L represents low The thickness of the refractive index layer, the letter B indicates the thickness of the barrier layer, and the letter M indicates the thickness of the chemically inert termination layer. In this case, the unit [nm] applies to the thickness of the individual layers indicated between the parentheses.

與圖1A、圖1B相關聯的該等示例性具體實施例因此可以該簡要記號如下明確說明: The exemplary embodiments associated with Figures 1A, 1B can thus be clearly stated as follows:

示例性具體實施例1:穿越該層配置的EUV輻射的傳輸到該基板小於0.1%,而且該保護層在EUV照射下經歷小於1%的體積不可逆變化和小於0.5nm rms的表面粗糙度。 Exemplary Embodiment 1: Transmission of EUV radiation across the layer configuration to the substrate is less than 0.1%, and the protective layer experiences a volume irreversible change of less than 1% and a surface roughness of less than 0.5 nm rms under EUV illumination.

基板/(8nm鉻 2nm碳化硼).25/RL Substrate / (8nm chromium 2nm boron carbide). 25/RL

示例性具體實施例2:該保護層系統的該等週期具有10nm至100nm的厚度,而且該保護層系統具有50nm至1000nm的厚度。 Exemplary Embodiment 2: The periods of the protective layer system have a thickness of 10 nm to 100 nm, and the protective layer system has a thickness of 50 nm to 1000 nm.

基板/(30nm銅 1nm碳).5/RL Substrate / (30nm copper 1nm carbon). 5/RL

示例性具體實施例3:該層配置施加+10MPa至+2000MPa的拉伸應力,同時防止在該法線方向上超過0.1nm的EUV輻射下的基板表面的不可逆變化。 Exemplary Concrete Example 3: This layer configuration applies a tensile stress of +10 MPa to +2000 MPa while preventing irreversible changes in the surface of the substrate under EUV radiation exceeding 0.1 nm in the normal direction.

基板/(40nm鉻鎳 2nm碳化硼).4/RL Substrate / (40nm chromium nickel 2nm boron carbide). 4/RL

在這種情況下,該反射層系統RL可例如如下構成: In this case, the reflective layer system RL can be constructed, for example, as follows:

RL=(0.4碳化硼2.921矽0.4碳化硼4.931鉬).8/ RL = (0.4 boron carbide 2.921 矽 0.4 boron carbide 4.931 molybdenum). 8/

(0.4碳化硼4、145鉬0.4碳化硼2.911矽).5/ (0.4 boron carbide 4, 145 molybdenum 0.4 boron carbide 2.911 矽). 5/

(3.509矽0.4碳化硼3.216鉬0.4碳化硼).16/2.975矽0.4碳化硼2鉬1.5釕 (3.509 矽 0.4 boron carbide 3.216 molybdenum 0.4 boron carbide). 16/2.975矽0.4BoCar Carbide 2Molybdenum 1.5钌

由於此範例中的阻障層碳化硼始終為0.4nm厚,因此也可省略以便例示該層配置的基本構造,使得該反射層系統的層設計可如下以縮短形式指出: Since the barrier layer of boron carbide in this example is always 0.4 nm thick, it can also be omitted to exemplify the basic configuration of the layer configuration, so that the layer design of the reflective layer system can be indicated in a shortened form as follows:

(2.921矽4.931鉬).8/(4.145鉬2.911矽).5/ (2.921矽4.931 molybdenum). 8/(4.145 molybdenum 2.911矽). 5/

(3.509矽3.216鉬).16/2.975矽2鉬1.5釕 (3.509 矽 3.216 molybdenum). 16/2.975矽2Molybdenum 1.5钌

從依據圖1A、圖1B的第一示例性具體實施例可清楚理解,包含五個週期的第二層子系統中的高折射率層矽和低折射率層鉬的次序,相對於其他層子系統為反向,使得厚度為3.509nm的距離該基板最遠的層子系統的第一高折射率層直接跟隨厚度為2.911nm的距離該基板第二遠的層子系統的最後高折射率層。 As is clear from the first exemplary embodiment according to FIGS. 1A and 1B, the order of the high refractive index layer and the low refractive index layer molybdenum in the second layer subsystem including five periods is relative to the other layers. The system is reversed such that the first high refractive index layer of the layer subsystem having a thickness of 3.509 nm furthest from the substrate directly follows a thickness of 2.911 nm and the last high refractive index layer of the second far layer subsystem of the substrate .

圖2A和圖2B例示本發明的又一具體實施例。在這種情況下,對照圖1A、圖1B中說明的第一示例性具體實施例,該第一個別層(AZ)的厚度dAZ對該第二個別層(R)的厚度dR的比率隨著與該基板(S)的距離越大而減小,參見圖2A。在這種情況下,相對於該等平滑的第二個別層(R),該等層應力產生的第一個別層(AZ)在該等較低夾層(較接近該基板)中具有與在該等較高夾層(距離該基板較遠)中相比更高的厚度。因此,產生補償的層應力主要顯現在該較低區域,而該等粗糙度縮減的個別層的效應則主要顯現在該較高部分。該較低層部分的粗糙化因此在該較高部分中再次得到補償。結果,憑藉該保護層系統(SPL)的相同或甚至較小的總厚度,整體可能達成與在其中該第一個別層(AZ)的厚度對該第二個別層(R)的厚度的比率對於所有週期皆為恆定的層堆疊的情況下相同的層應力補償和粗糙度縮減效應。 2A and 2B illustrate yet another embodiment of the present invention. In this case, the control 1A, a first specific exemplary embodiment illustrated in FIG. 1B embodiment, the thickness of the individual layers of the first (AZ) d ratio of the second individual layer, AZ (R) d R of a thickness See Figure 2A as the distance from the substrate (S) increases. In this case, the first individual layer (AZ) generated by the layer stresses has and is in the lower interlayer (closer to the substrate) relative to the smooth second individual layers (R) A higher thickness than a higher interlayer (farther from the substrate). Therefore, the layer stress that produces the compensation is mainly manifested in the lower region, and the effect of the individual layers of the roughness reduction is mainly manifested in the higher portion. The roughening of the lower layer portion is thus compensated again in this higher portion. As a result, by virtue of the same or even a small total thickness of the protective layer system (SPL), it is possible overall to achieve a ratio of the thickness of the first individual layer (AZ) to the thickness of the second individual layer (R) All cycles are the same layer stress compensation and roughness reduction effects in the case of a constant layer stack.

在這種情況下,該反射層系統(RL)包含複數層子系統(P'、P"、P'''),每個層子系統皆包含有個別層的至少兩個週期(P1、P2、P3)的週期性序列,參見圖2B。該等週期(P1、P2、P3)包含兩層個別層,其由用於高折射率層(H'、H"、H''')和低折射率層(L'、L"、L''')的不同材料組成,並在每個層子系統(P'、P"、P''')內皆具有恆定厚度(d1、d2、d3),且不同於相鄰層子系統的該等週期的厚度。在這種情況下,距離該基板最遠的層子系統(P''')具有數量N3的週期P3,其大於距離該基板第二遠的層子系統(P")數量N2的的 週期P2。在這種情況下,與在關於圖1A、圖1B的示例性具體實施例中不同,距離該基板第二遠的層子系統(P")具有週期P2的序列,其對應於其他層子系統P'和P'''的週期P1和P3的序列,使得距離該基板最遠的層子系統(P''')的第一高折射率層(H''')在光學上有效地跟隨距離該基板第二遠的層子系統(P")的最後低折射率層(L")。 In this case, the reflective layer system (RL) comprises a plurality of layer subsystems (P', P", P'''), each layer subsystem comprising at least two cycles of individual layers (P 1 , The periodic sequence of P 2 , P 3 ), see Fig. 2B. The periods (P 1 , P 2 , P 3 ) comprise two individual layers for the high refractive index layer (H', H", H ''') and low refractive index layers (L', L", L''') are composed of different materials and have a constant thickness in each layer subsystem (P', P", P''') (d 1 , d 2 , d 3 ), and differs from the thickness of the periods of adjacent layer subsystems. In this case, the layer farthest from the substrate subsystem (P ''') having a number of periods of N 3 P 3, which is far greater than the distance of the second sub-layer of the substrate (P ") of the number N 2 Period P 2 . In this case, unlike in the exemplary embodiment with respect to Figures 1A, 1B, the layer subsystem (P" farthest from the substrate has a sequence of periods P 2 , Corresponding to the sequence of periods P 1 and P 3 of the other layer subsystems P′ and P′′′, such that the first high refractive index layer (H′′ of the layer subsystem (P′′′) furthest from the substrate ') optically effectively follows the last low refractive index layer (L") of the layer subsystem (P") that is farthest from the substrate.

再者,舉例來說,類似於圖1A、圖1B中的示例性具體實施例,圖2A、圖2B中依據本發明的反射鏡的反射層系統的該等個別層可由至少一層阻障層(B)隔開。同樣類似於該第一示例性具體實施例,依據本發明的反射鏡(S2)的層配置(X)可由覆蓋層系統(C)端接。 Moreover, for example, similar to the exemplary embodiment of FIGS. 1A and 1B, the individual layers of the reflective layer system of the mirror according to the present invention in FIGS. 2A and 2B may be at least one barrier layer ( B) Separated. Also similar to this first exemplary embodiment, the layer configuration (X) of the mirror (S2) according to the invention may be terminated by a cover layer system (C).

再者,對於與圖2A、圖2B相關聯的該等層設計,下列短記號依據圖2A、圖2B中的層序列規定: Furthermore, for the layer designs associated with Figures 2A and 2B, the following short marks are specified in accordance with the sequence of layers in Figures 2A and 2B:

基板/(AZ R...AZ R)/(P1).N1/(P2).N2/(P3).N3/覆蓋層系統C,其中P1=BH'BL';P2=BL"BH";P3=H'''BL'''B;C=HBLM。 Substrate / (AZ R...AZ R) / (P 1 ). N 1 /(P 2 ). N 2 /(P 3 ). N 3 /cladding system C, where P 1 =BH'BL'; P 2 =BL"BH"; P 3 =H'''BL'''B; C=HBLM.

在這種情況下,類似於該第一示例性具體實施例的說明,該等字母以該單位[nm]象徵性地表示該等各自個別層的厚度。與圖2A、圖2B相關聯的該等示例性具體實施例因此可以該簡短記號如下明確說明: In this case, similar to the description of the first exemplary embodiment, the letters symbolically represent the thickness of the respective individual layers in the unit [nm]. These exemplary embodiments associated with Figures 2A, 2B can thus be clearly stated as follows:

示例性具體實施例4:穿越該層配置的EUV輻射的傳輸到該基板小於0.1%,而且該保護層在EUV照射下經歷小於1%的體積不可逆變化和小於0.5nm rms的表面粗糙度。 Exemplary Embodiment 4: Transmission of EUV radiation across the layer configuration to the substrate is less than 0.1%, and the protective layer experiences a volume irreversible change of less than 1% and a surface roughness of less than 0.5 nm rms under EUV illumination.

基板/(10nm鉻2nm碳化硼).10/(8nm鉻2nm碳化硼).6/(5nm鉻2nm碳化硼).6/RL Substrate / (10nm chromium 2nm boron carbide). 10/(8nm chromium 2nm boron carbide). 6 / (5nm chromium 2nm boron carbide). 6/RL

示例性具體實施例5:該保護層系統的該等週期具有10nm至100nm的厚度,而且該保護層系統具有50nm至1000nm的厚度。 Exemplary Embodiment 5: The periods of the protective layer system have a thickness of 10 nm to 100 nm, and the protective layer system has a thickness of 50 nm to 1000 nm.

基板/(50nm銅1nm碳化硼).2/(30nm銅1nm碳化硼)X/(5nm銅2nm碳化硼).6/RL Substrate / (50nm copper 1nm boron carbide). 2 / (30nm copper 1nm boron carbide) X / (5nm copper 2nm boron carbide). 6/RL

示例性具體實施例6:該層配置施加+10MPa至+2000MPa的拉伸應力,同時防止在該法線方向上超過0.1nm的EUV輻射下的基板表面的不可逆變化。 Exemplary Embodiment 6: This layer configuration applies a tensile stress of +10 MPa to +2000 MPa while preventing irreversible changes in the surface of the substrate under EUV radiation exceeding 0.1 nm in the normal direction.

基板/(50nm鉻鎳2nm碳化硼).2/(25nm鉻鎳1nm碳化硼).1/(5nm鉻鎳2nm碳化硼).4/RL Substrate / (50nm chromium nickel 2nm boron carbide). 2 / (25nm chromium nickel 1nm boron carbide). 1 / (5nm chromium nickel 2nm boron carbide). 4/RL

在這種情況下,該第二示例性具體實施例的反射層系統RL可明確說明為: In this case, the reflective layer system RL of the second exemplary embodiment can be clearly stated as:

RL=(4.737矽0.4碳化硼2.342鉬0.4碳化硼).28 RL = (4.737 矽 0.4 boron carbide 2.342 molybdenum 0.4 boron carbide). 28

/(3.443矽0.4碳化硼2.153鉬0.4碳化硼).5 / (3.443 矽 0.4 boron carbide 2.153 molybdenum 0.4 boron carbide). 5

/(3.523矽0.4碳化硼3.193鉬0.4碳化硼).15 / (3.523 矽 0.4 boron carbide 3.193 molybdenum 0.4 boron carbide). 15

/2.918矽0.4碳化硼2鉬1.5釕 /2.918矽0.4BoCB 2Molybdenum 1.5钌

由於此範例中的阻障層碳化硼又再次始終為0.4nm厚,因此也可省略以便闡明前述層配置,使得關於圖2A、圖2B的層設計可如下以簡略方式明確說明: Since the barrier layer of boron carbide in this example is again 0.4 nm thick again, it can also be omitted to clarify the aforementioned layer configuration, so that the layer design with respect to FIGS. 2A and 2B can be clearly explained as follows:

RL=(4.737矽2.342鉬).28/(3.443矽2.153鉬).5/ RL = (4.737 矽 2.342 molybdenum). 28/(3.443矽2.153 molybdenum). 5/

(3.523矽3.193鉬).15/2.918矽2鉬1.5釕 (3.523 矽 3.193 molybdenum). 15/2.918矽2 molybdenum 1.5钌

不言而喻,上述明確說明的該等層設計應理解為只是舉例來說,而且該第二示例性具體實施例的保護層系統(SPL)特別是也可與例如來自該第一示例性具體實施例的不同反射層系統(RL)結合。 It goes without saying that the layer design explicitly stated above is to be understood by way of example only, and that the protective layer system (SPL) of the second exemplary embodiment may in particular also be derived, for example, from the first exemplary embodiment. Different reflective layer systems (RL) of the embodiments are combined.

圖3示意性顯示包含有射束成形系統(2)、照明系統(3)和投影透鏡(4)的投影曝光裝置(1),其在從該射束成形系統(2)的EUV光源5前進的射束路徑(6)中依次布置。舉例來說,電漿源或同步加速器源可用作EUV光源(5)。該出現的在約5nm與約20nm之間的波長範圍內的輻射首先聚焦在準直儀(7)中。借助於下游的單色光鏡(8),該所需操作波長藉由變化該入射角而過濾出,如由雙頭箭頭指出。在該所述波長範圍內,該準直儀(7)和該單色光鏡(8)通常會設計為反射鏡,其中至少該單色光鏡(8)在其光學表面 上沒有多層系統,以便反射具有最大可能頻寬的波長範圍。 Fig. 3 schematically shows a projection exposure apparatus (1) comprising a beam shaping system (2), an illumination system (3) and a projection lens (4) advancing from an EUV light source 5 of the beam shaping system (2) The beam path (6) is arranged in order. For example, a plasma source or synchrotron source can be used as the EUV source (5). The emerging radiation in the wavelength range between about 5 nm and about 20 nm is first focused in the collimator (7). By means of the downstream monochromator (8), the desired operating wavelength is filtered by varying the angle of incidence, as indicated by the double-headed arrow. Within the wavelength range, the collimator (7) and the monochromator (8) are typically designed as mirrors, wherein at least the monochromator (8) is on its optical surface There is no multi-layer system on top to reflect the wavelength range with the largest possible bandwidth.

關於波長進行處理的輻射和該射束成形系統(2)中的空間分布引導進入該照明系統(3),其具有例如第一和第二反射鏡(9、10)。該等兩個反射鏡(9、10)將該輻射引導到光罩(11)上作為又一反射光學元件,其具有藉助該投影系統(4)以縮減比例成像到晶圓(12)上的結構。為此目的,舉例來說,在該投影系統(4)中提供第三和第四反射鏡(13、14)。在該投影曝光裝置中使用的該等反射鏡(9、10、13、14),可例如在每種情況下皆由來自該第一或第二示例性具體實施例依據本發明的反射鏡(S1、S2)在此形成,參見圖1A、圖1B和圖2A、圖2B。 The radiation processed with respect to the wavelength and the spatial distribution in the beam shaping system (2) are directed into the illumination system (3) with, for example, first and second mirrors (9, 10). The two mirrors (9, 10) direct the radiation onto the reticle (11) as a further reflective optical element having a reduced scale imaging onto the wafer (12) by means of the projection system (4) structure. For this purpose, for example, third and fourth mirrors (13, 14) are provided in the projection system (4). The mirrors (9, 10, 13, 14) used in the projection exposure apparatus may, for example, be in each case a mirror according to the invention from the first or second exemplary embodiment ( S1, S2) are formed here, see FIG. 1A, FIG. 1B and FIG. 2A, FIG. 2B.

在不脫離本發明精神或必要特性的情況下,可以其他特定形式來體現本發明。應將所述具體實施例各方面僅視為解說性而非限制性。因此,本發明的範疇如隨附申請專利範圍所示而非如前述說明所示。所有落在申請專利範圍之等效意義及範圍內的變更應視為落在申請專利範圍的範疇內。 The present invention may be embodied in other specific forms without departing from the spirit and scope of the invention. The aspects of the specific embodiments are to be considered as illustrative and not restrictive. Accordingly, the scope of the invention is indicated by the appended claims rather All changes that fall within the meaning and scope of the patent application are deemed to fall within the scope of the patent application.

AZ‧‧‧第一個別層 AZ‧‧‧ first individual layer

dP、dAZN、dRN、dSPL‧‧‧厚度 d P , d AZN , d RN , d SPL ‧‧‧ thickness

PSPL‧‧‧週期 P SPL ‧‧ cycle

R‧‧‧第二個別層 R‧‧‧Second individual layer

RL‧‧‧反射層系統 RL‧‧·reflective layer system

S‧‧‧基板 S‧‧‧Substrate

S1‧‧‧反射鏡 S1‧‧‧ mirror

SPL‧‧‧保護層系統 SPL‧‧‧ protective layer system

X‧‧‧層配置 X‧‧‧ layer configuration

Claims (18)

一種極紫外光(EUV)波長範圍的反射鏡(S1、S2),包含:一基板(S);以及一層配置(X),其中該層配置包含一反射層系統(RL),其具有至少一個層子系統(P');以及一保護層系統(SPL),其保護該基板,其中該保護層系統(SPL)包含至少兩個週期(PSPL)的一週期性序列,每一週期係由兩層個別層(AZ、R)所組成,其特徵在於該週期(PSPL)的第一個別層(AZ)同時藉由吸收該EUV輻射而保護該基板並補償該層配置(X)中的層應力,而且該各自第二個別層(R)藉由使該第一個別層(AZ)的表面粗糙度平滑而縮減該保護層系統(SPL)的表面粗糙度;以及該第一個別層(AZ)的材料係由銅、鉻或鎳鉻合金所組成,其中鉻:鎳的比率在30:70與70:30之間。 An ultra-ultraviolet (EUV) wavelength range of mirrors (S1, S2) comprising: a substrate (S); and a layer configuration (X), wherein the layer configuration comprises a reflective layer system (RL) having at least one a layer subsystem (P'); and a protection layer system (SPL) that protects the substrate, wherein the protection layer system (SPL) comprises a periodic sequence of at least two periods (P SPL ), each period being Two layers of individual layers (AZ, R), characterized in that the first individual layer (AZ) of the period (P SPL ) simultaneously protects the substrate by absorbing the EUV radiation and compensates for the layer configuration (X) Layer stress, and the respective second individual layers (R) reduce the surface roughness of the protective layer system (SPL) by smoothing the surface roughness of the first individual layer (AZ); and the first individual layer ( The material of AZ) is composed of copper, chromium or nickel-chromium alloy, wherein the ratio of chromium: nickel is between 30:70 and 70:30. 如申請專利範圍第1項之EUV波長範圍的反射鏡(S1、S2),其特徵在於穿越該層配置到該基板程度的EUV輻射的傳輸小於0.1%。 The mirrors (S1, S2) of the EUV wavelength range of claim 1 are characterized in that the transmission of EUV radiation to the extent of the layer is less than 0.1%. 如前述諸申請專利範圍擇一之EUV波長範圍的反射鏡(S1、S2),其特徵在於在EUV輻射下的保護層(SPL)經歷體積小於1%的一不可逆變化。 Mirrors (S1, S2) of the EUV wavelength range, as described in the aforementioned patent applications, are characterized in that the protective layer (SPL) under EUV radiation undergoes an irreversible change in volume of less than 1%. 如前述諸申請專利範圍任一者之EUV波長範圍的反射鏡(S1、S2),其特徵在於該保護層系統(SPL)防止在超過如在相對於在相同方向上所量測到該照射區外部一位置處的基板(S)表面的基板(S)照射區內一位置處在該法線方向上所量測到0.1nm的EUV輻射下的基板(S)表面的一不 可逆變化,並同時施加用於補償該層配置(X)中的層應力的一層應力。 A mirror (S1, S2) of the EUV wavelength range according to any of the aforementioned patent claims, characterized in that the protective layer system (SPL) prevents the illumination zone from being measured in excess of, for example, in the same direction a substrate (S) on the surface of the substrate (S) at an external position is a position of the substrate (S) under EUV radiation measured at a position in the normal direction at a position in the normal direction Reversibly varying and simultaneously applying a layer of stress for compensating for layer stress in the layer configuration (X). 如前述諸申請專利範圍任一者之EUV波長範圍的反射鏡(S1、S2),其特徵在於該第一個別層(AZ)的厚度(dAZ)對該第二個別層(R)的厚度(dR)的比率對於所有週期(PSPL)皆為恆定。 A mirror (S1, S2) of the EUV wavelength range according to any of the aforementioned patent claims, characterized in that the thickness (d AZ ) of the first individual layer (AZ) is the thickness of the second individual layer (R) The ratio of (d R ) is constant for all periods (P SPL ). 如申請專利範圍第1項至第4項中任一者之EUV波長範圍的反射鏡(S1、S2),其特徵在於該第一個別層(AZ)的厚度(dAZ)對該第二個別層(R)的厚度(dR)的比率隨著與該基板(S)的距離越大而減小。 A mirror (S1, S2) of the EUV wavelength range of any one of claims 1 to 4, characterized in that the thickness (d AZ ) of the first individual layer (AZ) is for the second individual The ratio of the thickness (d R ) of the layer (R) decreases as the distance from the substrate (S) increases. 如前述諸申請專利範圍任一者之EUV波長範圍的反射鏡(S1、S2),其特徵在於該第一個別層(AZ)的材料在13.5nm處具有超過0.03的一吸收指數。 A mirror (S1, S2) of the EUV wavelength range of any of the aforementioned patent applications is characterized in that the material of the first individual layer (AZ) has an absorption index of more than 0.03 at 13.5 nm. 如前述諸申請專利範圍任一者之EUV波長範圍的反射鏡(S1、S2),其特徵在於該保護層系統(SPL)的該等週期(PSPL)具有10nm至100nm的一厚度(dSPL)。 A mirror (S1, S2) of the EUV wavelength range according to any of the aforementioned patent applications, characterized in that the periods (P SPL ) of the protective layer system ( SPL ) have a thickness of 10 nm to 100 nm (d SPL) ). 如前述諸申請專利範圍任一者之EUV波長範圍的反射鏡(S1、S2),其特徵在於該保護層系統(SPL)具有50nm至1000nm的一厚度(dP)。 The mirrors (S1, S2) of the EUV wavelength range of any of the aforementioned patent applications are characterized in that the protective layer system (SPL) has a thickness (d P ) of 50 nm to 1000 nm. 如前述諸申請專利範圍任一者之EUV波長範圍的反射鏡(S1、S2),其特徵在於用於補償該層配置(X)中的層應力的保護層系統(SPL)施加+10MPa至+2000MPa的一拉伸應力。 A mirror (S1, S2) of the EUV wavelength range according to any of the aforementioned patent claims, characterized in that a protective layer system (SPL) for compensating for layer stress in the layer configuration (X) is applied +10 MPa to + A tensile stress of 2000 MPa. 如前述諸申請專利範圍任一者之EUV波長範圍的反射鏡(S1、S2),其 特徵在於該第二個別層(R)由該等材料的群組中選定或構成的一材料所組成:碳化硼(B4C)、碳(C)、氮化矽(Si nitride)、碳化矽(Si carbide)、硼化矽(Si boride)、氮化鉬(Mo nitride)、碳化鉬(Mo carbide)、硼化鉬(Mo boride)、氮化釕(Ru nitride)、碳化釕(Ru carbide)和硼化釕(Ru boride)。 A mirror (S1, S2) of the EUV wavelength range according to any of the preceding claims, characterized in that the second individual layer (R) consists of a material selected or composed of a group of such materials: Boron carbide (B 4 C), carbon (C), Si nitride, Si carbide, Si boride, Mo nitride, Mo carbide Mo boride, Ru nitride, Ru carbide and Ru boride. 如前述諸申請專利範圍任一者之EUV波長範圍的反射鏡(S1、S2),其特徵在於該保護層系統(SPL)在10nm至1.5μm的空間波長範圍內具有小於0.6nm rms、特別是小於0.1nm rms的一表面粗糙度。 A mirror (S1, S2) of the EUV wavelength range according to any of the aforementioned patent applications, characterized in that the protective layer system (SPL) has a rms of less than 0.6 nm in a spatial wavelength range of 10 nm to 1.5 μm, in particular A surface roughness of less than 0.1 nm rms. 如前述諸申請專利範圍任一者之EUV波長範圍的反射鏡(S1、S2),其特徵在於該保護層系統(SPL)的該等個別層(AZ、R)使用低壓電漿施加。 Mirrors (S1, S2) of the EUV wavelength range of any of the aforementioned patent applications are characterized in that the individual layers (AZ, R) of the protective layer system (SPL) are applied using low pressure plasma. 如前述諸申請專利範圍任一者之EUV波長範圍的反射鏡(S1、S2),其特徵在於該反射層系統(RL)包含至少一個層子系統(P’、P”、P'''),其由個別層的至少兩個週期(P1、P2、P3)的一週期性序列所組成,其中該等週期(P1、P2、P3)包含兩層個別層,其由用於一高折射率層(H''')和一低折射率層(L''')的不同材料組成。 A mirror (S1, S2) of the EUV wavelength range according to any of the preceding patent claims, characterized in that the reflective layer system (RL) comprises at least one layer subsystem (P', P", P''') , which consists of a periodic sequence of at least two periods (P 1 , P 2 , P 3 ) of the individual layers, wherein the periods (P 1 , P 2 , P 3 ) comprise two individual layers, which are Different material compositions for a high refractive index layer (H''') and a low refractive index layer (L'''). 如前述諸申請專利範圍任一者之EUV波長範圍的反射鏡(S1、S2),其特徵在於該反射層系統(RL)更包含一覆蓋層系統(C),其端接該反射鏡的層配置(X)。 A mirror (S1, S2) of the EUV wavelength range according to any of the preceding patent claims, characterized in that the reflective layer system (RL) further comprises a cover layer system (C) which terminates the layer of the mirror Configuration (X). 一種用於微影的投影透鏡,其包含如申請專利範圍第1項至第15項任一者之一反射鏡(S1、S2)。 A projection lens for lithography, comprising a mirror (S1, S2) according to any one of claims 1 to 15. 一種用於微影的照明系統,其包含如申請專利範圍第1項至第15項任 一者之一反射鏡(S1、S2)。 An illumination system for lithography, comprising items 1 through 15 of the scope of the patent application One of the mirrors (S1, S2). 一種用於微影的投影曝光裝置,包含如申請專利範圍第16項之一投影透鏡和/或如申請專利範圍第17項之一照明系統。 A projection exposure apparatus for lithography, comprising a projection lens according to item 16 of the patent application and/or an illumination system according to item 17 of the patent application.
TW106116287A 2016-05-30 2017-05-17 Mirror for the EUV wavelength range TW201802499A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??102016209273.1 2016-05-30
DE102016209273.1A DE102016209273A1 (en) 2016-05-30 2016-05-30 MIRROR FOR EUV WAVE LENGTH AREA

Publications (1)

Publication Number Publication Date
TW201802499A true TW201802499A (en) 2018-01-16

Family

ID=58709951

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106116287A TW201802499A (en) 2016-05-30 2017-05-17 Mirror for the EUV wavelength range

Country Status (3)

Country Link
DE (1) DE102016209273A1 (en)
TW (1) TW201802499A (en)
WO (1) WO2017207264A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017200667A1 (en) 2017-01-17 2018-07-19 Carl Zeiss Smt Gmbh Mirror, in particular for a microlithographic projection exposure apparatus or an inspection system
DE102022208657A1 (en) 2021-11-25 2023-05-25 Carl Zeiss Smt Gmbh PROCESS FOR DECOATING AN EUV MIRROR
DE102023201546B3 (en) 2023-02-22 2024-01-25 Carl Zeiss Smt Gmbh Method for decoating an optical surface, device for decoating an optical surface and lithography system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329368A (en) * 2006-06-09 2007-12-20 Canon Inc Multilayer film mirror, evaluation method, exposure apparatus, and device manufacturing method
DE102009054653A1 (en) * 2009-12-15 2011-06-16 Carl Zeiss Smt Gmbh Mirror for the EUV wavelength range, substrate for such a mirror, use of a quartz layer for such a substrate, projection lens for microlithography with such a mirror or such a substrate and Projektionsichtung for microlithography with such a projection lens
CN103229248B (en) * 2010-09-27 2016-10-12 卡尔蔡司Smt有限责任公司 Reflecting mirror, comprises the projection objective of this reflecting mirror, and comprises the projection exposure apparatus for micro-lithography of this projection objective
DE102010041502A1 (en) * 2010-09-28 2012-03-29 Carl Zeiss Smt Gmbh Mirror for use in projection lens of projection exposure plant for imaging reticule in image plane using extreme UV radiations during microlithography process, has layer arrangement with layers e.g. barrier layers, made of graphene

Also Published As

Publication number Publication date
WO2017207264A1 (en) 2017-12-07
DE102016209273A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
JP5548781B2 (en) EUV wavelength region mirror, mirror substrate, microlithography projection objective lens including the mirror or the substrate, and microlithography projection exposure apparatus including the projection objective lens
US9341958B2 (en) Deflection mirror and projection exposure apparatus for microlithography comprising such a deflection mirror
JP5716038B2 (en) Reflective optical element for EUV lithography
TWI509295B (en) Mirror for the euv wavelength range, projection objective for microlithography comprising such a mirror, and projection exposure apparatus for microlithography comprising such a projection objective
JP5926264B2 (en) Mirror, projection objective including the mirror, and microlithography projection exposure apparatus including the projection objective
JP5926190B2 (en) Reflective mask for EUV lithography
US10061204B2 (en) Mirror, in particular for a microlithographic projection exposure apparatus
JP5509326B2 (en) EUV wavelength region mirror, microlithographic projection objective lens including the mirror, and microlithography projection exposure apparatus including the objective lens
JP2006519386A (en) Reflective optical element and EUV lithography apparatus
TW201802499A (en) Mirror for the EUV wavelength range
JP2014523641A (en) Multilayer mirror, method for producing multilayer mirror and lithographic apparatus
TWI516873B (en) Projection objective for a microlithographic euv projection exposure apparatus
JP2007057450A (en) Multilayered film mirror and exposure system
CN110050231A (en) The intensity adaptation optical filter of EUV micro-lithography generates its method and the lighting system with corresponding optical filter
JP2017505925A (en) EUV mirror and optical system provided with EUV mirror
US20160116648A1 (en) Optical element comprising a multilayer coating, and optical arrangement comprising same
KR102127230B1 (en) Reflective optical element for euv lithography and method of manufacturing a reflective optical element
EP2068325A1 (en) Optical element for X-ray
JP6739576B2 (en) Reflective optical element and optical system of microlithography projection exposure apparatus
JP2018522281A (en) Mirror especially for microlithography projection exposure equipment